WO2016008958A1 - Lageranordnung für eine gezeitenströmungskraftanlage - Google Patents

Lageranordnung für eine gezeitenströmungskraftanlage Download PDF

Info

Publication number
WO2016008958A1
WO2016008958A1 PCT/EP2015/066225 EP2015066225W WO2016008958A1 WO 2016008958 A1 WO2016008958 A1 WO 2016008958A1 EP 2015066225 W EP2015066225 W EP 2015066225W WO 2016008958 A1 WO2016008958 A1 WO 2016008958A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
power plant
rotor
housing
plant according
Prior art date
Application number
PCT/EP2015/066225
Other languages
English (en)
French (fr)
Inventor
Michael Baumann
Matthias Hofmann
Original Assignee
Aktiebolaget Skf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiebolaget Skf filed Critical Aktiebolaget Skf
Publication of WO2016008958A1 publication Critical patent/WO2016008958A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/545Systems comprising at least one rolling bearing for radial load in combination with at least one rolling bearing for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/30Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps

Definitions

  • the invention relates to a tidal current power plant comprising a rotatably mounted rotor which is mounted radially and axially in a housing by means of a bearing arrangement.
  • Tidal current power plants of this type are known in the art.
  • a turbine wheel which is driven by the tidal water flow.
  • the rotor is directly or indirectly connected to a generator so that power can be generated.
  • the transmission of torque from the rotor to the generator is usually done by a gear that provides the correct translation of the rotational movement.
  • the invention is based on the invention to equip a generic tidal current power plant so that it is possible to realize a compact mounting of the rotor in the housing, which is suitable for optimal transmission of axial loads acting on both sides. This should result in a compact and robust design.
  • the plant should also be easy to maintain, so there are no high costs in this regard.
  • the bearing assembly comprises a fixed bearing comprising: two axially spaced axial spherical roller bearings, which are positioned in X-arrangement and axially support the rotor relative to the housing, and at least one axially between the two axial spherical roller bearings arranged radial bearing for transmitting only radial loads between the rotor and the housing.
  • the radial bearing is preferably a toroidal bearing (known under the trade name "CARB").
  • the bore diameter of the two inner rings of the two axial spherical roller bearings are preferably different sizes.
  • the rotor has cylindrical seat sections with different diameters for receiving the two inner rings of the two axial spherical roller bearings.
  • the two race radii of the two outer rings of the two axial spherical roller bearings preferably have a common center in the radial section.
  • the bearing assembly may further include a floating bearing, which includes a toroidal bearing.
  • the housing may be formed as a tubular element.
  • the bearing assembly may be provided with a lubrication system for supplying a lubricant or may be in communication with such a lubrication system.
  • the bearing assembly may also be provided with a monitoring system for monitoring at least one bearing parameter.
  • a training provides that the monitoring system has at least one wirelessly communicating sensor.
  • the invention takes into account the fact that bearings for the rotor of a wind turbine are usually not a suitable model when it comes to the rotor bearing in the housing of a tidal energy plant.
  • the design of the bearing according to the invention takes into account that with tidal power plants, a particularly stable mounting of the rotor in the housing in both axial directions is necessary. This takes into account the fact of constantly changing currents in the water.
  • the aspects of compactness and the ability of bilaterally occurring axial loads are taken into account by axial spherical roller bearings, between which a radial bearing is arranged, which is preferably designed as a toroidal bearing.
  • axial loads can be transmitted efficiently in both axial directions, although high radial forces are absorbed.
  • Deformations of the axes of rotor and housing can be easily compensated. Even at low rotor speeds, only a slight friction occurs. At the same time a high degree of rigidity is ensured.
  • the bearing arrangement can be realized cost-effectively and thus competitively with regard to other regenerative power generation plants.
  • the maintainability of the bearing arrangement and the maintenance intervals are also positive.
  • a compact arrangement with low weight and reduced costs results in an advantageous manner. Deformations of the axes can be easily compensated. This results in a high availability of the system with less maintenance need and a long service life of storage. This also allows a relatively low operating temperature of the bearing assembly. The assembly and disassembly of the bearing assembly is possible in a simple manner.
  • a favorable production can be achieved by appropriate modular design.
  • the maintenance and possibly the repair as a result of the standardized structure of the housing unit quickly and inexpensively feasible.
  • Corresponding advantages can also be achieved with regard to the provision of spare parts.
  • a housing design is created that integrates the bearing assembly efficiently.
  • the housing is preferably provided in a suitable manner with the possibility that lubricant is supplied in the required amount. It can also be designed for easy replacement of lubricating oil.
  • the bearing arrangement is also equipped with the possibility of monitoring the relevant bearing parameters. This applies in particular to vibrations, acoustic emissions, the temperatures of the bearings and also the rotational speed of the rotor. This allows critical operating conditions to be detected and countermeasures taken in good time. This way, heavy bearing damage can be avoided in advance.
  • the sensors that measure the bearing parameters can therefore be temperature sensors, vibration sensors, acoustic emission sensors, strain gauge strain gauges, rotary speed or rotation angle sensors.
  • the sensor can communicate wirelessly with a monitoring station or by cable. Furthermore, sensors can be used which detect whether seawater has penetrated into the housing interior.
  • slip rings can be provided, which are used for data transmission to the stationary housing.
  • the proposed axial spherical roller bearings offer the possibility to absorb high axial loads, but also to transmit radial loads. At the same time misalignments of the axes can be easily compensated. This advantage also applies to the proposed use of toroidal bearings, which are used for the transmission of radial loads; With this type of bearing, the aspect that makes axial displacements easy to compensate can also be used.
  • seals used are chosen so that they permanently meet the requirements of the unit under water. In both axial end portions of the housing corresponding seals are placed.
  • the required components may be made of a material having high resistance to corrosion after exposure to seawater.
  • FIGURE shows the radial section through part of a tidal current power plant, wherein a rotor is mounted by means of a bearing assembly in a housing.
  • a tidal current power plant 1 which has a rotor 2 which is rotatably mounted in a housing 3.
  • a turbine wheel is attached to one axial end of the rotor 2; at the other end of the rotor 2, an output machine is arranged.
  • the output machine is, for example, a directly flanged generator or a gear that translates the rotation of the rotor 2 and then passes the torque of the rotor 2 for the purpose of generating electricity to a generator.
  • the generator accordingly produces power when the turbine wheel is rotating.
  • energy is gained when the outlined arrangement is placed in the area of a water flow caused by the tidal change.
  • a bearing assembly 4 is provided, which consists of a fixed bearing 5 and an axially spaced therefrom floating bearing 13.
  • the fixed bearing has two axially spaced axial spherical roller bearings 6 and 7, which are positioned in X-arrangement and axially support the rotor 2 relative to the housing 3. Furthermore, the bearing has an axially disposed between the two thrust roller bearings 6 and 7 radial bearing 8 for transmitting only radial loads between the rotor 2 and the housing 3.
  • the radial bearing 8 is a toroidal bearing.
  • the floating bearing 13 also has a toroidal bearing 14, which transmits only radial loads.
  • the two inner rings 9 and 10 of the two axial spherical roller bearings 6 and 7 have different bore diameters Di and D 2 .
  • the rotor 2 has corresponding cylindrical seating surfaces, which are bounded on one side by shoulders for the axial contact of the inner rings 9, 10.
  • the two outer rings 11 and 12 of the two axial spherical roller bearings 6 and 7 have a circular arc-shaped in the radial section career, which is characterized by the raceway radius R. As can be seen, the two raceways of the two outer rings 11, 12 have a common center M.
  • a sensor 15 which is suitable for receiving relevant bearing parameters. So that the bearing assembly is protected from the ingress of seawater, not shown sealing elements are provided.
  • the housing 3 is - which can not be seen in more detail - designed tubular and can have an attachment means in the form of a flange-like radial extension in an axial end region. In this extension holes are introduced around the circumference, via which the fastening means and thus also the housing 3 can be fixed to a (not shown) attachment by screw.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Gezeitenströmungskraftanlage (1), umfassend einen drehbar angeordneten Rotor (2), der in einem Gehäuse (3) mittels einer Lageranordnung (4) radial und axial gelagert ist. Um eine kompakte Lagerung des Rotors im Gehäuse zu erreichen, die zur optimalen Übertragung beidseitig wirkender Axiallasten geeignet ist, sieht die Erfindung vor, dass die Lageranordnung (4) ein Festlager (5) aufweist, das umfasst: zwei axial beabstandete Axial-Pendelrollenlager (6, 7), die in X-Anordnung positioniert sind und den Rotor (2) relativ zum Gehäuse (3) axial lagern, und mindestens ein axial zwischen den beiden Axial-Pendelrollenlagern (6, 7) angeordnetes Radiallager (8) zur Übertragung ausschließlich radialer Lasten zwischen Rotor (2) und Gehäuse (3).

Description

B e s c h r e i b u n g
LAGERANORDNUNG FÜR EINE GEZEITENSTRÖMUNGSKRAFTANLAGE
Die Erfindung betrifft eine Gezeitenströmungskraftanlage, umfassend einen drehbar angeordneten Rotor, der in einem Gehäuse mittels einer Lageranordnung radial und axial gelagert ist.
Gezeitenströmungskraftanlagen dieser Art sind im Stand der Technik bekannt. Bei einer solchen Anlage befindet sich an einem Rotor ein Turbinenrad, das durch die gezeitenbedingte Wasser Strömung angetrieben wird. Der Rotor steht direkt oder indirekt mit einem Generator in Verbindung, so dass Strom erzeugt werden kann. Die Übertragung des Drehmoments vom Rotor bis zum Generator erfolgt zumeist durch ein Getriebe, das für die richtige Übersetzung der Drehbewegung sorgt.
Die hinreichende Durchsetzung besagter Gezeitenströmungskraftwerke wird durch erhebliche Kosten bei der Herstellung der benötigten Komponenten gehindert. Diesbezüglich ist zu vermerken, dass gattungsgemäße Kraftwerke mit anderen regenerativen Kraftwerken konkurrieren, wie beispielsweise Windkraftanlagen.
Es besteht daher ein wachsender Bedarf an Elementen für Gezeitenströmungskraftanlagen, die sich durch einen einfachen Aufbau und in der Folge durch geringe Herstellkosten auszeichnen. Dennoch sollen die Komponenten langlebig sein und hohe Standzeiten haben. Bei Gezeitenströmungskraftanlagen ist diesbezüglich ein Augenmerk darauf zu richten, dass sich infolge der Wasser Strömungen teils hohe Kräfte ergeben, denen das Turbinenrad und in der Folge der Rotor ausgesetzt sind. Eine andere Forderung gegenüber sonstigen regenerativen Energieerzeugungsanlagen ist eine kompakte Bauform der Anlage, deren Lagerung dennoch in der Lage sein muss, hohe Axialkräfte in beiden Achsrichtungen zu übertragen. Daher ist eine qualitativ hochwertige und steife Lagerung anzustreben, die dennoch kompakt und kostengünstig ist.
Der Erfindung liegt die A u f g a b e zugrunde, eine gattungsgemäße Gezeitenströmungskraftanlage so auszustatten, dass es möglich ist, eine kompakte Lagerung des Rotors im Gehäuse zu realisieren, die zur optimalen Übertragung beidseitig wirkender Axiallasten geeignet ist. Dabei soll sich eine kompakte und robuste Konzeption ergeben. Die Anlage soll auch leicht zu warten sein, so dass diesbezüglich keine hohen Kosten anfallen.
Die L ö s u n g dieser Aufgabe durch die Erfindung ist dadurch gekennzeichnet, dass die Lageranordnung ein Festlager aufweist, das umfasst: zwei axial beabstandete Axial- Pendelrollenlager, die in X- Anordnung positioniert sind und den Rotor relativ zum Gehäuse axial lagern, und mindestens ein axial zwischen den beiden Axial-Pendelrollenlagern angeordnetes Radiallager zur Übertragung ausschließlich radialer Lasten zwischen Rotor und Gehäuse.
Das Radiallager ist dabei bevorzugt ein Toroidallager (bekannt unter der Handelsbezeichnung„CARB").
Die Bohrungsdurchmesser der beiden Innenringe der beiden Axial-Pendelrollenlager sind vorzugsweise unterschiedlich groß. In diesem Falle ist bevorzugt vorgesehen, dass der Rotor zylindrische Sitzabschnitte mit unterschiedlichen Durchmessern für die Aufnahme der beiden Innenringe der beiden Axial-Pendelrollenlager aufweist.
Die beiden Laufbahnradien der beiden Außenringe der beiden Axial-Pendelrollenlager haben im Radialschnitt vorzugsweise einen gemeinsamen Mittelpunkt.
Die Lageranordnung kann weiterhin ein Loslager aufweisen, wobei dieses ein Toroidallager umfasst.
Das Gehäuse kann als rohrförmiges Element ausgebildet sein. Die Lageranordnung kann mit einem Schmiersystem zur Versorgung mit einem Schmiermittel versehen sein oder mit einem solchen Schmiersystem in Verbindung stehen.
Die Lageranordnung kann auch mit einem Überwachungssystem zur Überwachung mindestens eines Lagerparameters versehen sein. In diesem Falle sieht eine Fortbildung vor, dass das Überwachungssystem mindestens einen drahtlos kommunizierenden Sensor aufweist.
Die Erfindung trägt dem Umstand Rechnung, dass Lagerungen für den Rotor einer Windkraftanlage zumeist kein geeignetes Vorbild sind, wenn es um die Rotorlagerung im Gehäuse einer Gezeitenenergieanlage geht. Die erfindungsgemäße Ausgestaltung der Lagerung berücksichtigt vielmehr, dass bei Gezeitenenergieanlagen eine in beide Achsrichtungen besonders stabile Lagerung des Rotors im Gehäuse nötig ist. Dies trägt dem Umstand sich ständig ändernder Strömungen im Wasser Rechnung.
Nach dem erfindungsgemäßen Vorschlag werden die Aspekte der Kompaktheit und der Fähigkeit der beidseitig auftretenden Axiallasten durch Axial-Pendelrollenlager berücksichtigt, zwischen denen ein Radiallager angeordnet ist, das bevorzugt als Toroidallager ausgebildet ist. Damit können Axiallasten in beiden Achsrichtungen effizient übertragen werden, wenngleich auch hohe Radialkräfte aufgenommen werden. Fehlstellungen der Achsen von Rotor und Gehäuse können leicht ausgeglichen werden. Auch bei geringen Rotordrehzahlen tritt nur eine geringe Reibung auf. Gleichzeitig ist ein hoher Grad an Steifigkeit gewährleistet.
Es ergibt sich vorteilhaft eine geringe Anzahl an sich bewegenden Bauteilen. Daraus folgt auch ein hohes Maß an Zuverlässigkeit der Lageranordnung.
Die Lageranordnung kann kostengünstig und somit mit Blick auf andere regenerative Energieerzeugungsanlagen wettbewerbsfähig realisiert werden. Auch die Wartbarkeit der Lageranordnung und die Wartungsintervalle gestalten sich positiv.
Es ergibt sich - bezogen auf die Leistung der Energieerzeugungsanlage - ein leichter Aufbau. Somit wird - verglichen mit bisherigen Lösungen - eine höhere Leistungsdichte der Einheit möglich. Durch entsprechende Dichtungselemente kann der Eintritt von Seewasser in die Lageranordnung verhindert werden. Des weiteren wird eine hohe Gebrauchsdauer der Lagerung durch eine effiziente Versorgung mit Schmierstoff begünstigt.
Zusammengefasst ergibt sich in vorteilhafter Weise eine kompakte Anordnung bei geringem Gewicht und verminderten Kosten. Fehlstellungen der Achsen können leicht ausgeglichen werden. Dadurch ergibt sich eine hohe Verfügbarkeit der Anlage bei geringerer Wartungsnotwendigkeit und eine hohe Gebrauchsdauer der Lagerung. Dies ermöglicht auch eine relativ geringe Betriebstemperatur der Lageranordnung. Die Montage und Demontage der Lageranordnung ist in einfacher Weise möglich.
Gleichermaßen kann durch entsprechend modularen Aufbau eine günstige Fertigung erreicht werden. Dabei ist die Wartung und gegebenenfalls die Reparatur infolge des standardisierten Aufbaus der Gehäuseeinheit schnell und kostengünstig durchführbar. Entsprechende Vorteile lassen sich auch mit Blick auf das Vorhalten von Ersatzteilen erzielen. Somit wird eine Gehäusekonzeption geschaffen, die die Lageranordnung effizient integriert.
Das Gehäuse wird bevorzugt in geeigneter Weise mit der Möglichkeit versehen, dass Schmiermittel in benötigter Menge zugeführt wird. Es kann auch für den einfachen Austausch von Schmieröl konzipiert sein.
Vorteilhaft ist es, wenn die Lageranordnung auch mit der Möglichkeit einer Überwachung der relevanten Lagerparameter ausgestattet wird. Dies betrifft insbesondere Schwingungen, akustische Emissionen, die Temperaturen der Lagerstellen und auch die Drehgeschwindigkeit des Rotors. Damit können kritische Betriebszustände erkannt und rechtzeitig Gegenmaßnahmen ergriffen werden. So können schwere Lagerschäden im Vorfeld vermieden werden.
Bei den Sensoren, die die Lagerparameter messen, kann es sich also um Temperatursensoren, Schwingungssensoren, Sensoren für akustische Emissionen, Spannungsmesssensoren (Dehnmessstreifen), Drehgeschwindigkeits- oder Drehwinkelsensoren handeln. Die Senso- rik kann drahtlos mit einer Überwachungsstation kommunizieren oder per Kabel. Weiterhin können auch Sensoren eingesetzt werden, die detektieren, ob Seewasser in das Gehäuseinnere eingedrungen ist.
Sofern Daten von der rotierenden Welle erfasst werden müssen, können entsprechende Schleifringe vorgesehen werden, die der Datenübertragung zum stationären Gehäuse dienen.
Die vorgeschlagenen Axial-Pendelrollenlager bieten die Möglichkeit, hohe Axiallasten aufzunehmen, dennoch aber auch Radiallasten übertragen zu können. Gleichzeitig können auch Fehlstellungen der Achsen sehr einfach ausgeglichen werden. Dieser Vorteil gilt auch für den vorgeschlagenen Einsatz von Toroidallagern, die für die Übertragung der Radiallasten eingesetzt werden; bei diesem Lagertyp kommt besonders auch der Aspekt zum Tragen, dass Axialverschiebungen leicht ausgeglichen werden können.
Die zum Einsatz kommenden Dichtungen werden so gewählt, dass sie dauerhaft dem Einsatz der Einheit unter Wasser gerecht werden. In beiden axialen Endbereichen des Gehäuses werden entsprechende Dichtungen platziert.
Die benötigten Bauteile können aus einem Material gefertigt werden, das eine hohe Resistenz gegen Korrosion aufweist, nachdem sie Seewasser ausgesetzt sind.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die einzige Figur zeigt den Radialschnitt durch einen Teil einer Gezeitenströmungskraftanlage, wobei ein Rotor mittels einer Lageranordnung in einem Gehäuse gelagert ist.
In der Figur ist eine Gezeitenströmungskraftanlage 1 angedeutet, die einen Rotor 2 aufweist, der in einem Gehäuse 3 drehbar gelagert ist. Nicht dargestellt ist, dass am einen axialen Ende des Rotors 2 ein Turbinenrad befestigt ist; am anderen Ende des Rotors 2 ist eine Abtriebsmaschine angeordnet. Es geht vorliegend also um die Lagerung der Hauptwelle einer Gezeitenströmungskraftanlage. Bei der Abtriebsmaschine handelt es sich beispielsweise um einen direkt angeflanschten Generator oder um ein Getriebe, das die Drehung des Rotors 2 übersetzt und das Drehmoment des Rotors 2 dann zwecks Stromerzeugung zu einem Generator leitet.
Der Generator stellt demgemäß Strom her, wenn sich das Turbinenrad dreht. So wird Energie gewonnen, wenn die skizzierte Anordnung im Bereich einer Wasser Strömung platziert wird, die durch den Gezeitenwechsel hervorgerufen wird.
Für die Lagerung des Rotors 2 im Gehäuse 3 ist eine Lageranordnung 4 vorgesehen, die aus einem Festlager 5 und einem hiervon axial beabstandeten Loslager 13 besteht.
Das Festlager weist zwei axial beabstandete Axial-Pendelrollenlager 6 und 7 auf, die in X- Anordnung positioniert sind und den Rotor 2 relativ zum Gehäuse 3 axial lagern. Ferner weist das Festlager ein axial zwischen den beiden Axial-Pendelrollenlagern 6 und 7 angeordnetes Radiallager 8 zur Übertragung ausschließlich radialer Lasten zwischen Rotor 2 und Gehäuse 3 auf. Das Radiallager 8 ist ein Toroidallager.
Das Loslager 13 weist gleichermaßen ein Toroidallager 14 auf, das ausschließlich radiale Lasten überträgt.
Die beiden Innenringe 9 und 10 der beiden Axial-Pendelrollenlager 6 und 7 haben unterschiedliche Bohrungsdurchmesser Di und D2. Der Rotor 2 weist entsprechende zylindrische Sitzflächen auf, die einseitig von Schultern für die axiale Anlage der Innenringe 9, 10 begrenzt werden.
Die beiden Außenringe 11 und 12 der beiden Axial-Pendelrollenlager 6 und 7 haben eine im Radialschnitt kreisbogenförmige Laufbahn, die durch den Laufbahnradius R charakterisiert ist. Wie zu erkennen ist, haben die beiden Laufbahnen der beiden Außenringe 11, 12 einen gemeinsamen Mittelpunkt M.
Nur schematisch angedeutet ist ein Sensor 15, der zur Aufnahme relevanter Lagerparameter geeignet ist. Damit die Lageranordnung vor dem Zutritt von Seewasser geschützt wird, sind nicht dargestellte Dichtungselemente vorgesehen.
Das Gehäuse 3 ist - was nicht näher zu erkennen ist - rohrförmig ausgestaltet und kann in einem axialen Endbereich ein Befestigungsmittel in Form einer flanschartigen radialer Erweiterung aufweisen. In diese Erweiterung sind um den Umfang herum Bohrungen eingebracht, über die die Befestigungsmittel und damit auch das Gehäuse 3 an einem (nicht dargestellten) Anbauteil per Schraubverbindung befestigt werden können.
Hierdurch ergeben sich nicht nur eine kostengünstige Realisierung der beschriebenen Anordnung, sondern auch kostensparende Effekte bei der Wartung und Reparatur der Anlage.
Bezugszeichenliste
1 Gezeitenströmungskraftanlage
2 Rotor
3 Gehäuse
4 Lageranordnung
5 Festlager
6 Axial-Pendelrollenlager
7 Axial-Pendelrollenlager
8 Radiallager (Toroidallager)
9 Innenring
10 Innenring
11 Außenring
12 Außenring
13 Loslager
14 Toroidallager
15 Sensor
Di Bohrungsdurchmesser
D2 Bohrungsdurchmesser
R Laufbahnradius
M Mittelpunkt

Claims

P a t e n t a n s p r ü c h e
Gezeitenströmungskraftanlage
Gezeitenströmungskraftanlage (1), umfassend einen drehbar angeordneten Rotor (2), der in einem Gehäuse (3) mittels einer Lageranordnung (4) radial und axial gelagert ist, dadurch gekennzeichnet, dass die Lageranordnung (4) ein Festlager (5) aufweist, das umfasst: zwei axial beabstandete Axial-Pendelrollenlager (6, 7), die in X-Anordnung positioniert sind und den Rotor (2) relativ zum Gehäuse (3) axial lagern, und mindestens ein axial zwischen den beiden Axial-Pendelrollenlagern (6, 7) angeordnetes Radiallager (8) zur Übertragung ausschließlich radialer Lasten zwischen Rotor
(2) und Gehäuse (3).
Gezeitenströmungskraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Radiallager (8) ein Toroidallager ist.
3. Gezeitenströmungskraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bohrungsdurchmesser (Di, D2) der beiden Innenringe (9, 10) der beiden Axial-Pendelrollenlager (6, 7) unterschiedlich groß sind.
4. Gezeitenströmungskraftanlage nach Anspruch 3, dadurch gekennzeichnet, dass der Rotor (2) zylindrische Sitzabschnitte mit unterschiedlichen Durchmessern für die Aufnahme der beiden Innenringe (9, 10) der beiden Axial-Pendelrollenlager (6, 7) aufweist.
5. Gezeitenströmungskraftanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die beiden Laufbahnradien (R) der beiden Außenringe (11, 12) der beiden Axial-Pendelrollenlager (6, 7) im Radialschnitt einen gemeinsamen Mittelpunkt (M) haben.
6. Gezeitenströmungskraftanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Lageranordnung (4) weiterhin ein Loslager (13) aufweist, wobei dieses ein Toroidallager (14) umfasst.
7. Gezeitenströmungskraftanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse (3) als rohrförmiges Element ausgebildet ist.
8. Gezeitenströmungskraftanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Lageranordnung (4) mit einem Schmiersystem zur Versorgung mit einem Schmiermittel versehen ist oder mit einem solchen Schmiersystem in Verbindung steht.
9. Gezeitenströmungskraftanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Lageranordnung (4) mit einem Überwachungssystem zur Überwachung mindestens eines Lagerparameters versehen ist.
10. Gezeitenströmungskraftanlage nach Anspruch 9, dadurch gekennzeichnet, dass das Überwachungssystem mindestens einen drahtlos kommunizierenden Sensor (15) aufweist.
PCT/EP2015/066225 2014-07-16 2015-07-16 Lageranordnung für eine gezeitenströmungskraftanlage WO2016008958A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014213882.5 2014-07-16
DE102014213882.5A DE102014213882A1 (de) 2014-07-16 2014-07-16 Gezeitenströmungskraftanlage

Publications (1)

Publication Number Publication Date
WO2016008958A1 true WO2016008958A1 (de) 2016-01-21

Family

ID=53682694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/066225 WO2016008958A1 (de) 2014-07-16 2015-07-16 Lageranordnung für eine gezeitenströmungskraftanlage

Country Status (2)

Country Link
DE (1) DE102014213882A1 (de)
WO (1) WO2016008958A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139718A (zh) * 2018-10-22 2019-01-04 国电联合动力技术有限公司 一种低风速大型双馈半直驱主轴承机构
WO2022089701A1 (en) * 2020-10-27 2022-05-05 Component 2.0 A/S Support arrangement for rotating shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019324C1 (de) * 2000-04-19 2001-07-26 Skf Gmbh Verfahren und Vorrichtung zum Überwachen einer Lageranordnung
DE102009057158A1 (de) * 2009-12-05 2011-06-09 Kessler & Co. Gmbh & Co. Kg Drehdurchführung
DE102010054320A1 (de) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
DE102010054319A1 (de) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
DE102011016185A1 (de) * 2011-04-05 2012-10-11 Imo Holding Gmbh Drehverbindung für Unterwasserbetrieb sowie damit ausgerüstete Anlage zur Energiegewinnung aus Wasserkraft
DE102011088716A1 (de) * 2011-12-15 2013-06-20 Schaeffler Technologies AG & Co. KG Wälzlager
WO2014031054A1 (en) * 2012-08-21 2014-02-27 Aktiebolaget Skf Wind turbine rotor shaft arrangement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053879A1 (de) * 2009-11-20 2011-05-26 Voith Patent Gmbh Gezeitenkraftwerk und Verfahren für dessen Erstellung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019324C1 (de) * 2000-04-19 2001-07-26 Skf Gmbh Verfahren und Vorrichtung zum Überwachen einer Lageranordnung
DE102009057158A1 (de) * 2009-12-05 2011-06-09 Kessler & Co. Gmbh & Co. Kg Drehdurchführung
DE102010054320A1 (de) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
DE102010054319A1 (de) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
DE102011016185A1 (de) * 2011-04-05 2012-10-11 Imo Holding Gmbh Drehverbindung für Unterwasserbetrieb sowie damit ausgerüstete Anlage zur Energiegewinnung aus Wasserkraft
DE102011088716A1 (de) * 2011-12-15 2013-06-20 Schaeffler Technologies AG & Co. KG Wälzlager
WO2014031054A1 (en) * 2012-08-21 2014-02-27 Aktiebolaget Skf Wind turbine rotor shaft arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139718A (zh) * 2018-10-22 2019-01-04 国电联合动力技术有限公司 一种低风速大型双馈半直驱主轴承机构
WO2022089701A1 (en) * 2020-10-27 2022-05-05 Component 2.0 A/S Support arrangement for rotating shaft

Also Published As

Publication number Publication date
DE102014213882A1 (de) 2016-01-21

Similar Documents

Publication Publication Date Title
EP2947339B1 (de) Grosslager, insbesondere hauptlager für eine windkraftanlage, sowie windkraftanlage mit einem solchen grosslager
DE112013007159B4 (de) Axialspiel-Messvorrichtung
EP1544504A2 (de) Planetengetriebe, insbesondere für Windkraftanlagen
DE102007008758A1 (de) Getriebe-Nabeneinheit für eine Windkraftanlage
EP3276160B1 (de) Lagermodul zur verstellung eines anstellwinkels eines rotorblatts in einem unterwasserkraftwerk
DE102012212792A1 (de) Lageranordnung für eine Windkraftanlage
EP3524838B1 (de) Abgedichtetes lagermodul
WO2015010691A1 (de) Propellerblattlagerung
EP3018375B1 (de) Wälzlagerschmierung einer windenergieanlage
EP3406941A1 (de) Stirnradanordnung, getriebe und windenergieanlage
WO2009094998A2 (de) Wassergeschmierte lageranordnung
DE102017110966A1 (de) Getriebe insbesondere für Windkraftgeneratoren
WO2016008958A1 (de) Lageranordnung für eine gezeitenströmungskraftanlage
DE112014004779T5 (de) Lageranordnung
DE102017205157A1 (de) Lagereinheit
DE102013223177B4 (de) Gezeitenströmungskraftanlage
US9976541B2 (en) Turbine main bearing lubrication
DE102004021966A1 (de) Wälzlager-Drehverbindung
DE102014205816A1 (de) Lageranordnung zur drehbaren Lagerung eines Turbinenblattes an einer Turbinennabe
EP3645901B1 (de) Windenergieanlagen-drehverbindung, und windenergieanlage mit selbiger
EP4012212B1 (de) Lagergehäuse
DE102014216244A1 (de) Verfahren zum Austausch eines Wälzlagers und Verfahren zum axialen Verschieben eines WKA-Getriebes
BE1029850B1 (de) Hauptlageranordnung für eine Windenergieanlage
BE1029857B1 (de) Hauptlageranordnung für eine Windenergieanlage
DE102018218275A1 (de) Wälzlageranordnung und Windkraftanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15739252

Country of ref document: EP

Kind code of ref document: A1