WO2016008108A1 - 一种钻井套管充磁定位方法 - Google Patents

一种钻井套管充磁定位方法 Download PDF

Info

Publication number
WO2016008108A1
WO2016008108A1 PCT/CN2014/082268 CN2014082268W WO2016008108A1 WO 2016008108 A1 WO2016008108 A1 WO 2016008108A1 CN 2014082268 W CN2014082268 W CN 2014082268W WO 2016008108 A1 WO2016008108 A1 WO 2016008108A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
casing
magnetic
drilling
distance
Prior art date
Application number
PCT/CN2014/082268
Other languages
English (en)
French (fr)
Inventor
杨顺伟
Original Assignee
杨顺伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨顺伟 filed Critical 杨顺伟
Priority to PCT/CN2014/082268 priority Critical patent/WO2016008108A1/zh
Priority to CN201480002795.8A priority patent/CN104781503A/zh
Publication of WO2016008108A1 publication Critical patent/WO2016008108A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • E21B47/0228Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor

Definitions

  • the invention relates to a method for measuring the magnetic distance and direction of a positive drilling and an old well, and is a method for magnetizing positioning of a drilling casing, which is suitable for precise control of distance and direction between wells of a cluster well group.
  • the underground wellbore has a high density distribution.
  • the difficulty of collision prevention of the wellbore is increasing.
  • the drilling is designing the profile trajectory, the anti-collision and operation are fully considered.
  • Method but due to the error of various measurement data, in the actual construction, there will still be accidents involving the collision of the two wells, which will cause the drilling tools of the drilling well to squeeze the old well casing, even the old well casing and the inner The tubing is broken.
  • the empirical distance method is widely used in domestic security anti-collision.
  • the design uses the calculation software to perform the mathematical center interval scanning between multiple wells.
  • the accuracy depends on the inclination of the magnetic instrument, the azimuth accuracy, the spacing of the measuring points and the complete measurement of the case to the wellhead. Oblique data, this method is not the most efficient due to the existence of errors.
  • the technical problem to be solved by the present invention is to provide a method for magnetizing and positioning a drilling casing, which realizes control of the anti-collision distance and direction of the drilling.
  • the drilling casing magnetization positioning method of the invention can accurately detect the position and direction of the old wellbore, thereby well controlling the direction and distance of the positive drilling well and the old well.
  • the magnetic signal is emitted from the casing that has been magnetized by the old well, and the magnetic field strength value is obtained by the MWD receiver, and compared with the local standard magnetic field strength, from which the abnormal magnetic signal difference is calculated.
  • the abnormal magnetic letter After the ground anti-collision software, the abnormal magnetic letter The calculation and processing of the number ultimately determines the direction and distance of the magnetic anomaly signal.
  • the direction and distance of this magnetic anomaly signal is the direction and distance between the positive drilling and the old well.
  • FIG. 1 is a schematic view of a downhole operation of a drilling casing magnetization positioning method according to the present invention
  • A is the old well casing string that has been magnetized; B is the positive drilling.
  • the casing magnetic signal has a magnetic signal radius of 4.9 meters.
  • Figure 2 is a two-well distance diagram of the XX29X97C well using the prior art anti-collision scan calculation;
  • Figure 3 shows the XX29X97C well using magnetic measurement processing to analyze the two well distance map
  • Figure 4 is a two-well distance map calculated by the method of the present invention in the XX31 ⁇ 30L well.
  • the magnetized old well A's casing emits a magnetic signal around the formation, and the positive drilling B acquires the magnetic field strength value through the Li D receiver, which is compared with the local standard magnetic field strength, from which the abnormal magnetic is calculated. Signal difference.
  • the ground data receiving processing point C calculates and processes the abnormal magnetic signal, the direction and distance of the magnetic abnormal signal are finally determined, thus completing the measurement of the magnetic distance between the wells at a certain depth, and the depth increases with the depth of the well.
  • the magnetic signal characteristic data emitted by the old well magnetization casing at different depths can be obtained and processed to achieve the purpose of determining the distance and direction of the positive drilling well and the old well casing.
  • the method of the invention can accurately locate the distance and direction of the positive drilling well and the old well; the MWD three-axis fluxgate analysis simulation data method used in the prior art can only blur the approximate position of the adjacent well casing.
  • the detection distance of the abnormal value of the magnetic field strength can reach up to 20 meters; the prior art can only emit a weak abnormal magnetic signal due to the unmagnetized casing, when the positive drilling is close to the old well or has In the event of a collision, the instrument can receive an abnormal magnetic signal.
  • the operation steps of the magnetizing positioning method of the drilling casing of the present invention are as follows:
  • the casing of the well A is magnetized by a high-pressure pulse magnetizer, and the magnetized well sections are numbered. It is not necessary to magnetize all of the casings, and it is only necessary to magnetize the casings that are predicted to be susceptible to the two wells. The difference in the amount of magnetization of the casing results in a different magnetic signal radius of the magnetic anomaly signal. For example: with a 1600 volt voltage, a magnetizer at different current intensities to magnetize a 9-5/8" steel grade J55 (inner diameter 10.03 mm) casing. The relationship between magnetization and magnetic signal radius is shown in Table 1. .
  • Anti-collision of a cluster well platform in an oil field The dangerous section of the XX29X97C well and the XX108 well and the old well is 630-650 meters, which is drilled due to the jumping of the drill.
  • the magnetic interference numerical model is corrected and calculated. After calculating the measured values, the distance between the two wells at 647 meters is 1 meter.
  • the old well is calculated in the direction of 128 degrees of the new well through three-axis magnetic.
  • the magnetization of the old well casing is used, and the magnetic parameters are measured by the D-instrument using the positive drilling, so as to control the distance change between the drilling trajectory and the anti-collision well:
  • the magnetic field strength parameters are abnormal Bt and Bz values are 60. 62 - 79. 52uT and 45. 85 -59. 33uT.
  • the figure below shows the actual anti-collision distance calculated after correction using the magnetic positioning theory.

Abstract

一种钻井套管充磁定位方法,该方法包括以下步骤:由老井已充磁的套管发出磁信号,通过MWD接收器获取到磁场强度值,与本地标准磁场强度进行对比,从中计算这些异常磁信号差值。再经过地面防碰软件对异常磁信号的计算与处理最终确定磁异常信号的方向和距离。这个磁异常信号的距离和方向就是某一深度下正钻井和老井之间的距离和方向。该钻井套管充磁定位方法用于解决丛式井组开发的钻井防碰问题。

Description

一种钻井套管充磁定位方法 技术领域
本发明涉及一种正钻井与老井磁距离及方向测量工艺方法, 是一种钻井套 管充磁定位方法, 适用于丛式井组井间距离和方向的精确控制。
背景技术
对于采用丛式井组开发的油田, 地下井眼高密度分布, 随着布井数量的增 加, 井眼防碰难度日益加大, 虽然正钻井在设计剖面轨迹时已充分考虑了防碰 及作业方法, 但由于存在各种测量数据的误差, 在实际施工中, 依然会有二井 相碰的事故发生, 导致正钻井的钻具挤磨老井套管, 甚至是将老井套管及内在 的油管打烂。
目前, 国内安全防碰广泛采用的是经验距离法。 基于多年的经验积累, 设 计中通过应用计算软件, 进行多井间的数学中心间距扫描, 它的精确程度取决 于磁测仪器的井斜、 方位精度、 测点间距及表套到井口完整的测斜数据, 由于 误差的存在, 此种方法并不是最有效的。
国外安全防碰采用不确定椭圆数学模型、 3D法扫描, 将安全系数法量化到 防碰计算中, 由于此类方法考虑各种误差, 形成的不确定可能性范围较大, 如 果按此安全方式施工, 对于海上 1. 6m X 1. 8m井口槽内丛式井,理论上作业是不 安全的。
发明内容
针对上述现有技术存在的缺陷, 本发明要解决的技术问题是提供一种钻 井套管充磁定位方法, 实现了钻井防碰距离和方向的控制。 与现在技术方案相比, 本发明钻井套管充磁定位方法, 能够精确探测到老 井井眼的位置与方向, 从而很好地控制正钻井与老井的方向和距离。 由老井已 充磁的套管发出磁信号, 通过 MWD接收器获取到磁场强度值, 与本地标准磁场强 度进行对比, 从中计算这些异常磁信号差值。 再经过地面防碰软件对异常磁信 号的计算与处理最终确定磁异常信号的方向和距离。 而这个磁异常信号的方向 和距离就是正钻井和老井之间的方向和距离。 通过此种方法的实施, 来指导钻 井防碰施工, 避免正钻井与老井的碰撞, 具有不影响生产、 易于实现等优点。 附图说明
图 1为本发明钻井套管充磁定位方法井下工作示意图;
其中: A为已充磁的老井套管柱; B为正钻井。 钻柱内装有 MWD接收 仪器; C为地面数据接收处理点; 1 为某一井深下的套管磁信号, 磁信号半 径为 10米; 2为某一井深下的套管磁信号, 磁信号半径为 7.8米; 3为某一 井深下的套管磁信号,磁信号半径为 5.1米; 4、为某一井深下的套管磁信号, 磁信号半径为 5.0米; 5为某一井深下的套管磁信号, 磁信号半径为 4.9米。 图 2为 XX29X97C井应用现有技术防碰扫描计算的二井距离图;
图 3为 XX29X97C井采用磁测量处理分析二井距离图;
图 4为 XX31〜30L井应用本发明方法计算的二井距离图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一歩详细说明。
如图 1所示, 充磁过的老井 A的套管向地层周围发出磁信号, 正钻井 B通 过丽 D接收器获取到磁场强度值, 与本地标准磁场强度进行对比, 从中计算这 些异常磁信号差值。 再经过地面数据接收处理点 C对异常磁信号的计算与处理 最终确定磁异常信号的方向和距离, 这样就完成了二口井在某一深度下的井间 磁距离的测量, 随着井深增加, 可获得不同深度下老井充磁套管发出的磁信号 特征数据并进行处理, 达到确定正钻井与老井套管距离及方向的目的。
本发明方法与现有技术相比优势:
1、 本发明方法能准确定位正钻井与老井的距离和方向; 现有技术采用 的 MWD三轴磁通门分析模拟数据法只能模糊确定邻井套管的大概位置。
2、 本发明方法对磁场强度异常值的探测距离最高可达到 20米; 现有技 术因未充磁套管只能发出微弱的异常磁信号, 当正钻井与老井相距很近或已 发生碰撞时, 仪器才能接收到异常磁信号。 本发明钻井套管充磁定位方法操作歩骤如下:
1、 地面充磁。
(1) 采用高压脉冲充磁机对所钻井 A的套管的进行充磁, 并对已充磁的井 段进行标注编号。 不需要对全部套管充磁, 只需对所预测到的易发生两井碰撞 井段的套管进行充磁。 套管充磁量的不同得到磁异常信号的磁信号半径也不同。 例如:用 1600伏电压,不同电流强度下的充磁机对直径 9一 5/8"钢级为 J55(内 径 10.03mm) 套管进行充磁, 充磁量与磁信号半径的关系见表 1。
9-5/8"套管不同电流磁测距率
Figure imgf000004_0001
(2) 在 A井完井下套管时, 把进行标注编号的套管按要求下到预测的防碰 井段中, 固井完成。
2、 井下测量及钻井防碰控制。
(1) 老井 A充磁后的套管发出磁信号。
(2) 在新井 B钻井时, 利用 B井钻柱内使用的匿 D仪器, 连续监测防碰井段 井眼周围的磁场强度变化并将测量数据传至地面数据接收处理点;
(3)通过地面接收到的不同井深的磁场强度与本地标准磁场强度的差异对 比, 发现异常磁信号, 再经过地面磁定位防碰软件计算即可确定正钻井 B与老井 A的方向和距离。
(4) 依据磁定位防碰软件计算结果, 及时调整正钻井 B的井眼轨迹, 避免与老井 A的套管相碰。 实施例:
1、 未进行套管充磁井应用磁干扰数值模型修正防碰的现场实例 某油田丛式井平台防碰: XX29X97C 井与 XX108 井与老井防碰危险段在 630-650米, 因发生钻具蹩跳而起钻。
(1) 采用现有技术进行防碰扫描计算, 两井在井深 647米处相距还有近 4 米的距离, 如图 2所示。
(2) 采用本发明相关的定位防碰方法理论一一磁干扰数值模型修正计算 后, 通过对每个测量值的计算,分析出两井眼在 647米处的距离为 1米。
如: 正钻井在 647 米磁场强度为 55.29uT, 实际磁差 Δ BZ=2.198uT, Δ BXY=0.4uT而通过三轴磁计算老井在新井 128度方向。
计算: 646米磁源方向计算垂直磁场模量分析 =43968-42000=857
a、 求 H。在 X轴和 Y轴上的投影 H。X、 HOY
Hox= -Ho SIN^ =-42000SIN50° =32173
Ho COS β =42000C0S50° =-26997
b、 求 H与 HO在 X、 Y轴上的模量差值
Figure imgf000005_0001
ΔΥ=Υ-Υ0=Υ- Ηογ=~31460+26997=-4463
c、 定位磁源方向
θ = 180 + tg— ΔΧ/ΔΥ) =257。 ΔΧ 为负 ΔΥ为负
Φ= θ +β=257° +230。 =128°
结论: 按修正磁干扰后的实际方位 128° , 通过磁干扰值数据模型计算, 二 个井眼相距不到 1米,如图 3所示, 考虑二个井眼的直径及丽 D仪器测点位置与 钻头之间有 18米左右的距离和马达的弯曲角度等因素产生的偏移, 实际结果显 示正钻井的钻头与老井的水泥环或套管已经相碰。
(3) 测量井的实测的磁参数和井斜方位数据: XX29X97C测量井磁参数数据表
Figure imgf000006_0001
2、 本发明钻井套管充磁定位方法现场实例
采用对老井套管充磁, 利用正钻井使用 丽 D仪器测量磁参数, 实现随钻井 眼轨迹与防碰井的距离变化控制:
( 1 ) XX31— 30L与 XX29-29井分析: XX29-29井 13-3/8 " J55表套分五段 进行充磁(第 1根 98. 3-109. 37米、 2根 198. 22-209. 22米、 3根 297-308. 9米、 4根 497-509. 017米)。
实钻在井深 496. 5米至 628米, 磁场强度参数均发生异常 Bt和 Bz值分别 为 60. 62 - 79. 52uT和 45. 85 -59. 33uT。下图为采用磁定位理论修正后, 计算的 实际防碰距离。
( 2 ) 如图 4所示, 图为正钻井轨迹线, 通过磁测量钻到 648米计算出二井 相距仅为 0. 5米。
分析结论:由 XX29-29井 628米处的方位井斜证明, 其目标方位 (220度)与 防碰定位方向(232度)近似一样; 另一方面 XX31-30L井磁测方位为 254度其轴 线与邻井磁位置为左 22度轴线相交;加之此时 BZ=59. 33与标准差值为 13,证明 正钻井轴线前井方向上下的磁场异常进一歩说明二井眼已接近相交; 现场及时 调整井眼轨迹, 顺利完成了丛式井防碰作业的施工。

Claims

权 利 要 求 书
1.一种钻井套管充磁定位方法, 其特征是该方法包括以下歩骤:
a、 采用高压脉冲充磁机对所钻井 A的套管进行充磁, 并对已充磁的井段进 行标注编号。
b、 在 A井完井下套管时, 把标注好编号的已充磁套管, 下到预测的易碰井 段中, 完成固井;
c、 老井 A已充磁套管发出磁信号, 在 B井钻井时, 利用丽 D仪器对老井 A井眼 周围的磁场强度变化进行监测, 并将测量数据传至地面数据接收处理点;
d、 传至地面数据接收处理点的测量数据经过磁定位防碰软件的计算, 确定 B井与 A井的方向和距离。
2.根据权利要求 1 所述的钻井套管充磁定位方法, 其特征是: 钻井过程中 精确探测正钻井 B与老井 A的方向和距离, 探测范围达到 20m。
PCT/CN2014/082268 2014-07-15 2014-07-15 一种钻井套管充磁定位方法 WO2016008108A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/082268 WO2016008108A1 (zh) 2014-07-15 2014-07-15 一种钻井套管充磁定位方法
CN201480002795.8A CN104781503A (zh) 2014-07-15 2014-07-15 一种钻井套管充磁定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082268 WO2016008108A1 (zh) 2014-07-15 2014-07-15 一种钻井套管充磁定位方法

Publications (1)

Publication Number Publication Date
WO2016008108A1 true WO2016008108A1 (zh) 2016-01-21

Family

ID=53621888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082268 WO2016008108A1 (zh) 2014-07-15 2014-07-15 一种钻井套管充磁定位方法

Country Status (2)

Country Link
CN (1) CN104781503A (zh)
WO (1) WO2016008108A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102264A1 (en) * 2016-11-29 2018-06-07 Hrl Laboratories, Llc Opportunistic sensor fusion algorithm for autonomous guidance while drilling
CN109209353B (zh) * 2017-07-03 2022-06-03 中国石油天然气股份有限公司 在油气井的钻井过程中确定井间距离和方向的装置及方法
CN110863817B (zh) * 2019-12-03 2020-07-21 西南石油大学 一种超声波井眼防碰监测系统及监测方法
CN113107472B (zh) * 2021-05-11 2022-12-20 京鸿石油钻采工程技术有限公司 一种适用于钻井防碰的主动磁测距装置及方法
CN117027764B (zh) * 2022-05-20 2024-02-09 中国石油天然气集团有限公司 钻井定位装置、方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966935A (zh) * 2005-11-04 2007-05-23 普拉德研究及开发股份有限公司 根据相邻井筒来定位钻井套管的方法及装置
CN102865071A (zh) * 2012-10-16 2013-01-09 中国科学院电工研究所 一种过金属套管磁声电阻率成像测井方法和装置
CA2856036A1 (en) * 2011-11-18 2013-05-23 Halliburton Energy Services, Inc. Systems and methodology for detecting a conductive structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966935A (zh) * 2005-11-04 2007-05-23 普拉德研究及开发股份有限公司 根据相邻井筒来定位钻井套管的方法及装置
CA2856036A1 (en) * 2011-11-18 2013-05-23 Halliburton Energy Services, Inc. Systems and methodology for detecting a conductive structure
CN102865071A (zh) * 2012-10-16 2013-01-09 中国科学院电工研究所 一种过金属套管磁声电阻率成像测井方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUO, HUIWEI: "Design of the Oil Drilling Anti-Collision and Ranging System", CMFD, ENGINEERING TECHNOLOGY I DIVISION, 15 February 2012 (2012-02-15), pages 17, 18 and 34 *

Also Published As

Publication number Publication date
CN104781503A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2016008108A1 (zh) 一种钻井套管充磁定位方法
CN105114059B (zh) 一种三维定向井轨迹设计及控制参数判别方法
CN109306863B (zh) 一种基于邻井套管柱自身磁场探测的丛式井上部直井段防碰预警方法
CN104653172B (zh) 一种三维水平井井眼轨道初始井斜方位角的确定方法
NO320776B1 (no) Fremgangsmate og anordning for a orientere et sidegrensverktoy i en bronnfóring ved akustisk lokalisering av en indekseringsinnretning
CA2964238C (en) Borehole shape characterization
US10145232B2 (en) Methods and apparatus for multi-well ranging determination
WO2016037505A1 (zh) 测量钻井相对距离的旋转磁场测距仪及其测量方法
CN104632076B (zh) 一种丛式井组的钻井方法
US9243455B2 (en) Methods for directing vertical drilling
CN1966935A (zh) 根据相邻井筒来定位钻井套管的方法及装置
MX2014011732A (es) Metodo electromagnetico para obtener angulo de azimut de buzamiento.
CN107227950A (zh) 一种实钻井眼轨迹整体性评价方法
CN105064982A (zh) 煤矿区地面孔与井下巷道内靶点精确导向对接装备及方法
CN109209353B (zh) 在油气井的钻井过程中确定井间距离和方向的装置及方法
US10495777B2 (en) System and method for wellbore surveying using directional gamma detection
WO2014160629A1 (en) Automatic wellbore survey evaluation
US20180142548A1 (en) Multipoint measurements for wellbore ranging
CN104481506A (zh) 一种套管错断方位检测方法
WO2017127117A1 (en) Methods and systems employing a gradient sensor arrangement for ranging
EP3298237B1 (en) Assessment of formation true dip, true azimuth, and data quality with multicomponent induction and directional logging
Topolski et al. Analysis of inaccuracy of determining a directional borehole axis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14897702

Country of ref document: EP

Kind code of ref document: A1