WO2016006640A1 - METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE - Google Patents

METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE Download PDF

Info

Publication number
WO2016006640A1
WO2016006640A1 PCT/JP2015/069702 JP2015069702W WO2016006640A1 WO 2016006640 A1 WO2016006640 A1 WO 2016006640A1 JP 2015069702 W JP2015069702 W JP 2015069702W WO 2016006640 A1 WO2016006640 A1 WO 2016006640A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
substrate
layer
silicon carbide
cvd
Prior art date
Application number
PCT/JP2015/069702
Other languages
French (fr)
Japanese (ja)
Inventor
渉 古市
淳仁 長田
祐樹 水向
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2016006640A1 publication Critical patent/WO2016006640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Definitions

  • the present invention relates to a method for manufacturing a SiC wafer, a method for manufacturing a SiC semiconductor, and a silicon carbide composite substrate.
  • SiC silicon carbide
  • the dielectric breakdown electric field strength is 10 times that of Si and the band gap is 3 times that of Si.
  • the p-type and n-type control required for device fabrication can be controlled over a wide range. It is expected as a material for power devices exceeding.
  • SiC has a high withstand voltage even with a thinner thickness, it is characterized that a thin semiconductor can be obtained with a low ON resistance by being made thin.
  • SiC semiconductors are expensive and cannot be mass-produced as compared with Si semiconductors because a large-area wafer cannot be obtained and the process is complicated as compared with widely used Si semiconductors.
  • Patent Document 1 discloses a method for manufacturing a silicon carbide substrate, comprising at least a single crystal silicon carbide substrate and a polycrystalline silicon carbide substrate having a micropipe density of 30 / cm 2 or less, and a single crystal silicon carbide substrate. And a step of laminating the polycrystalline silicon carbide substrate and then a step of thinning the single crystal silicon carbide substrate to manufacture a substrate having a single crystal layer formed on the polycrystalline substrate. Yes.
  • a step of forming a hydrogen ion implanted layer by performing hydrogen ion implantation on the single crystal silicon carbide substrate is performed, and a step of bonding the polycrystalline silicon carbide substrate and a step of thinning the single crystal silicon carbide substrate by performing a heat treatment at a temperature of 350 ° C. or less before the step of thinning the single crystal silicon carbide substrate,
  • a method for manufacturing a silicon carbide substrate is described which is a step of mechanically peeling at a hydrogen ion implanted layer. By such a method, more SiC wafers can be obtained from one SiC single crystal ingot.
  • the SiC wafer uses a polycrystalline SiC substrate having a sufficient thickness so as to have mechanical strength so as not to be damaged during handling such as polishing. Therefore, it is necessary to use a polycrystalline SiC substrate that is thicker than necessary to function as a semiconductor.
  • the polycrystalline SiC substrate is thick, the ON resistance increases, and the characteristics of the original SiC semiconductor cannot be exhibited sufficiently. That is, in order to prevent damage to the substrate in the manufacturing process, it is preferable to increase the thickness of the polycrystalline SiC substrate, and to reduce the ON resistance of the obtained SiC semiconductor, it is preferable to use a thin polycrystalline SiC substrate.
  • the first problem of the present invention is that a single-crystal SiC substrate and a polycrystalline SiC substrate are bonded together and then peeled off to obtain a SiC wafer, which is less likely to be damaged by handling, and a thinner SiC wafer can be easily obtained. It is to provide a manufacturing method.
  • the second problem of the present invention is that the SiC semiconductor manufacturing process using the SiC wafer obtained by laminating and bonding the single crystal SiC substrate and the polycrystalline SiC substrate is less likely to be damaged by handling and is thinner.
  • An object of the present invention is to provide a manufacturing method in which a SiC semiconductor can be easily obtained.
  • a third problem of the present invention is that in a manufacturing process for obtaining a SiC wafer by bonding a single crystal SiC substrate and a polycrystalline SiC substrate and then separating them, it is difficult to damage by handling, and a thinner SiC wafer can be easily obtained.
  • An object of the present invention is to provide a polycrystalline SiC substrate.
  • the SiC wafer manufacturing method of the present invention for solving the above problems includes a silicon carbide composite substrate having a glassy carbon layer on the surface of a SiC substrate and a CVD-SiC layer on the glassy carbon layer, and a surface.
  • a step of preparing a single-crystal SiC substrate having an ion-implanted layer into which hydrogen ions are implanted, a CVD-SiC layer of the silicon carbide composite substrate, and an ion-implanted layer of the single-crystal SiC substrate are bonded to obtain a joined body.
  • the CVD-SiC layer and the ion-implanted layer which will later become a SiC wafer, are handled while being bonded to the SiC substrate together with the glassy carbon layer, so that they are damaged during handling such as polishing. Can be difficult.
  • the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
  • the SiC base material having the same material as the CVD-SiC layer is used, the difference in thermal expansion between the layers can be reduced. Furthermore, since the SiC base material is hard and has high bending elasticity, warpage that occurs during manufacturing is suppressed. Since SiC has small variations in characteristics such as thermal expansion due to crystals and is easy to control, the design is easy and the CVD-SiC layer can be made thin.
  • the glassy carbon constituting the glassy carbon layer can be obtained by carbonizing a solvent containing a resin such as a phenol resin, a furan resin, or an imide resin. Therefore, the flatness of the coated surface after applying the solvent on the SiC substrate is poor, but the solvent applied when carbonizing volatilizes, so the resulting glassy carbon layer does not crack. getting thin. Originally, since the flatness of the SiC base material is good, a flat glassy carbon layer can be obtained.
  • the SiC wafer manufacturing method of the present invention preferably has the following mode.
  • the silicon carbide composite substrate is a disk and has a marking indicating a direction at the edge thereof
  • the single crystal SiC substrate is a disk and has a marking indicating a direction at the edge
  • the bonding step includes The silicon carbide composite substrate and the single crystal SiC substrate are joined together with markings indicating directions.
  • a pattern is formed in a certain direction from a SiC wafer and diced.
  • the silicon carbide composite substrate and the single crystal SiC substrate are discs each having a marking indicating a direction, and the silicon carbide composite substrate and the single crystal SiC substrate are joined together with the marking indicating the direction to thereby align the direction of the single crystal SiC substrate. Can be reflected in the crystal orientation of the SiC wafer, and the crystal orientation of the SiC wafer can be easily confirmed.
  • the marking is an orientation flat or a notch.
  • a crystal manufacturing direction is confirmed by an orientation flat or notch, and semiconductor manufacturing processes such as pattern shape and dicing are performed. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
  • the method for manufacturing the SiC wafer further includes a heat treatment step after the first peeling step.
  • the ion-implanted layer and the CVD-SiC layer can be diffused and bonded more firmly to each other by a heat treatment process.
  • the thickness of the CVD-SiC layer is 50 to 1000 ⁇ m.
  • the thickness of the CVD-SiC layer is 50 ⁇ m or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer.
  • the thickness of the CVD-SiC layer is 1000 ⁇ m or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
  • the silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer.
  • An SiC wafer from which a SiC semiconductor is obtained by having a region without a glassy carbon layer on the side wall or edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer The central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material.
  • the ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
  • a region without the glassy carbon layer on the silicon carbide composite substrate for example, a region where the CVD-SiC layer is not in contact with the SiC substrate at the orientation flat or notch portion can be created. Can be peeled off.
  • a SiC semiconductor can be obtained by dicing after forming a pattern on the ion-implanted layer of the single crystal-coated substrate. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
  • the SiC semiconductor manufacturing method of the present invention includes the above-described SiC wafer manufacturing method and a semiconductor forming step, and the semiconductor forming step is after the heat treatment step and before the second peeling step. .
  • the SiC semiconductor is formed on the single crystal coated substrate and then separated, it is not necessary to handle a thin SiC wafer, and it can be made difficult to damage, and a thin CVD-SiC layer can be used as a part of the SiC semiconductor.
  • the ON resistance of the semiconductor can be easily reduced.
  • a glassy carbon layer and a CVD-SiC layer are sequentially laminated on the surface of an SiC base material which is a disk having a marking on the edge.
  • the CVD-SiC layer and the ion implantation layer which will later become a SiC wafer, are handled while being bonded to the SiC base material together with the glassy carbon layer, so that they are not easily damaged during handling such as polishing. can do.
  • the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
  • a pattern is formed in a certain direction from a SiC wafer and diced.
  • the silicon carbide composite substrate and the single crystal SiC substrate have markings, and the direction of the single crystal SiC substrate is made to be the crystal orientation of the SiC wafer by joining the silicon carbide composite substrate and the single crystal SiC substrate in the same direction.
  • the crystal orientation of the SiC wafer can be easily confirmed.
  • the silicon carbide composite substrate of the present invention is preferably in the following manner. (6)
  • the marking is an orientation flat or a notch.
  • semiconductor manufacturing processes such as pattern formability and dicing are performed by confirming crystal orientation by orientation flats or notches. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
  • the thickness of the CVD-SiC layer is 50 to 1000 ⁇ m. When the thickness of the CVD-SiC layer is 50 ⁇ m or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer. When the thickness of the CVD-SiC layer is 1000 ⁇ m or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
  • the silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer.
  • the central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material.
  • the ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
  • a region without a glassy carbon layer on the silicon carbide composite substrate for example, a region where the CVD-SiC layer and the SiC substrate are not in contact with each other at an orientation flat or a notch portion can be formed. It can be easily peeled off.
  • a SiC semiconductor can be obtained by forming a pattern on the ion implantation layer as a single crystal-coated substrate with the SiC base material bonded and then dicing. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
  • a thin SiC wafer can be handled in a state of being bonded to a SiC substrate, it can be made difficult to damage in the manufacturing process of the SiC wafer, and the obtained SiC wafer can be made thin.
  • a SiC wafer having a small ON resistance can be obtained.
  • a thin SiC wafer can be handled in a state of being bonded to a SiC substrate, it can be made difficult to damage in the manufacturing process of the SiC semiconductor, and the obtained SiC semiconductor can be made thin.
  • a SiC semiconductor having a small ON resistance can be obtained.
  • the silicon carbide composite substrate which is a polycrystalline SiC substrate of the present invention
  • a thin SiC wafer can be handled in a state of being bonded to an SiC base material, so that it can be made difficult to be damaged in the manufacturing process of the SiC wafer.
  • the obtained SiC wafer can be thinned, and a SiC wafer having a small ON resistance can be obtained.
  • FIG. 1 shows a manufacturing process of the SiC wafer manufacturing method of the present invention, where S1 is a bonding process, S2 is a first peeling process, and S3 is a second peeling process.
  • FIG. 2 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, in which (a) has an orientation flat and (b) has a notch.
  • FIG. 3 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, wherein (a) has a region having no glassy carbon layer at the edge, and (b) is glassy on the side wall. This is a modified example having a region without a carbon layer.
  • FIG. 2 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, in which (a) has an orientation flat and (b) has a notch.
  • FIG. 3 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, wherein (a) has a region having no glassy
  • FIG. 4 shows the observation results of warping for each of the three silicon carbide composite substrate samples, (a) is a sample using the first graphite substrate as the substrate, and (b) is the second substrate as the substrate. A sample using a graphite substrate, (c) shows the results of each sample using the SiC substrate 1 of the present embodiment as the substrate.
  • the SiC wafer manufacturing method of the present invention includes a silicon carbide composite substrate having a glassy carbon layer on the surface of a SiC substrate and a CVD-SiC layer on the glassy carbon layer, and ions in which hydrogen ions are implanted on the surface.
  • the CVD-SiC layer and the ion-implanted layer which will later become a SiC wafer, are handled while being bonded to the SiC substrate together with the glassy carbon layer, so that they are damaged during handling such as polishing. Can be difficult.
  • the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
  • hydrogen ions By implanting hydrogen into a single crystal SiC substrate, hydrogen ions can reach a depth corresponding to the incident energy.
  • hydrogen collects in implantation defects formed at the time of ion implantation, and the crystal bond can be cut. Since the single crystal SiC substrate is bonded to the CVD-SiC layer, the ion-implanted surface can move to the CVD-SiC layer side in the first peeling step.
  • the single crystal SiC substrate into which hydrogen ions are implanted is brittle while maintaining the surface of the single crystal, and thus can be moved to the CVD-SiC layer while maintaining the single crystal. Since the single-crystal SiC layer is formed on the surface of the CVD-SiC layer after the first peeling step, it is possible to provide an SiC wafer that can be suitably used for an SiC semiconductor by further epitaxially growing the SiC layer. it can.
  • the bonding step of bonding the CVD-SiC layer and the single crystal SiC substrate can be performed as follows.
  • Both the CVD-SiC layer and the single crystal SiC substrate are mirror-polished.
  • the mirror-polished surfaces can be brought into close contact with each other to form a joint surface without a gap.
  • the CVD-SiC layer and the single crystal SiC substrate are preferably cleaned in advance.
  • the cleaning method is not particularly limited, but it is preferable to use, for example, a chemical such as an acid and pure water.
  • a cleaning method RCA cleaning widely used in semiconductor cleaning can be used.
  • RCA cleaning is a cleaning method called SC1, which is a cleaning method using a combination of ammonia, hydrogen peroxide and water, and a cleaning method called SC2, which is a combination of hydrochloric acid, hydrogen peroxide and water. It is mainly used to remove particles and organic contaminants, and in SC2, it is used to remove metal contaminants.
  • the plasma-activated surface is easy to bond, and the CVD-SiC layer and the single crystal SiC substrate can be bonded more firmly.
  • the first peeling step can be peeled by heating the joined body.
  • the ion-implanted layer is fragile because hydrogen ions penetrate inside. When the bonded body is heated, the ion-implanted layer portion that has become brittle due to a difference in thermal expansion between the single crystal SiC substrate and the silicon carbide composite substrate peels off.
  • a single crystal coated substrate is obtained in which about 1 to 10 ⁇ m of the surface of the ion implantation layer is attached to the CVD-SiC layer, and a part of the ion implantation layer is attached to the CVD-SiC layer of the silicon carbide composite substrate. That is, the ion-implanted layer is exposed on either side of the peeled surface.
  • the first peeling step is aimed at separation of the ion implantation layer due to the difference in thermal expansion, so that it can be separated by heating to a temperature of 200 to 1000 ° C., for example, without being involved in a chemical reaction.
  • the silicon carbide composite substrate is a disk and has a marking indicating the direction at the edge thereof
  • the single crystal SiC substrate is a disk and has a marking indicating the direction at the edge
  • the bonding step includes the silicon carbide composite The substrate and the single crystal SiC substrate are joined together with markings indicating directions.
  • a pattern is formed in a certain direction from a SiC wafer and diced.
  • the silicon carbide composite substrate and the single crystal SiC substrate are discs each having a marking indicating a direction, and the silicon carbide composite substrate and the single crystal SiC substrate are joined together with the marking indicating the direction.
  • the direction can be reflected in the crystal orientation of the SiC wafer, and the crystal orientation of the SiC wafer can be easily confirmed.
  • the marking is preferably an orientation flat or a notch.
  • the crystal orientation is confirmed by an orientation flat or notch, and semiconductor formation and dicing are performed. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
  • the SiC wafer manufacturing method preferably further includes a heat treatment step after the first peeling step.
  • the ion-implanted layer and the CVD-SiC layer can be diffused and bonded more firmly to each other by a heat treatment process.
  • the temperature of the heat treatment step is not particularly limited, but is, for example, 1000 to 2000 ° C.
  • the bonding between the ion implantation layer and the CVD-SiC layer can be further strengthened, and when the temperature is 2000 ° C. or lower, crystal defects are less likely to occur in the ion implantation layer that is single crystal SiC.
  • the heating temperature in the heat treatment step is preferably higher than the heating temperature in the first peeling step in order to promote the bonding between the polycrystalline CVD-SiC layer and the single crystal ion implantation layer. Bonding can be further strengthened by heating to a temperature higher than the heating temperature in the first peeling step.
  • the heat treatment step may be either before the second peeling step or after the second peeling step, and is not particularly limited, but is preferably before the second peeling step.
  • the heat treatment step may be either before the second peeling step or after the second peeling step, and is not particularly limited, but is preferably before the second peeling step.
  • the thickness of the CVD-SiC layer is preferably 50 to 1000 ⁇ m. When the thickness of the CVD-SiC layer is 50 ⁇ m or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer. When the thickness of the CVD-SiC layer is 1000 ⁇ m or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
  • a more desirable CVD-SiC layer thickness is 100 to 500 ⁇ m.
  • the thickness of the CVD-SiC layer is 100 ⁇ m or more, the strength of the SiC semiconductor obtained from the SiC wafer can be further increased.
  • the thickness of the CVD-SiC layer is 500 ⁇ m or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be further reduced.
  • the method for producing the SiC wafer has a region without a glassy carbon layer on a side wall or an edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer. It is preferable.
  • the central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material.
  • the ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
  • a SiC semiconductor can be formed on the single crystal.
  • a SiC semiconductor can be obtained by forming a SiC semiconductor on a single crystal of a single crystal-coated substrate and then dicing. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
  • the glassy carbon constituting the glassy carbon layer can be obtained by carbonizing a solvent containing a resin such as a phenol resin, a furan resin, or an imide resin. Since it is a solvent, the solvent volatilizes during the carbonization treatment after coating on the substrate to form a glassy carbon layer. Therefore, the glassy carbon layer is thin without causing cracks. Further, since SiC used for the base material has little variation in characteristics, the flatness of the glassy carbon layer forming surface is good, and the flatness of the thinly formed glassy carbon layer is also good.
  • the thickness of the glassy carbon layer is preferably set to 0.1 to 50 ⁇ m, more preferably 0.3 to 10 ⁇ m, and particularly preferably 0.5 to 5 ⁇ m.
  • the thickness of the glassy carbon layer is smaller than 0.1 ⁇ m, the surface state of the glassy carbon layer is greatly affected by the surface state (uneven surface) of the substrate. Therefore, the thickness of the CVD-SiC layer must be increased to such an extent that it is not affected by the surface state. If the surface state is poor, the mirror polishing cannot be performed flatly. If the thickness exceeds 50 ⁇ m, the effect of curing shrinkage and linear expansion difference due to the thickness of the glassy carbon layer is increased. Therefore, stress due to curing shrinkage and linear expansion difference is applied to the CVD-SiC layer. -The SiC layer is destroyed.
  • thermosetting resin such as polyimide or phenolic resin
  • dilute solution dimethylacetamide
  • the formation of the SiC semiconductor is appropriately selected according to the desired SiC semiconductor, such as pattern shape, oxidation, diffusion, CVD, ion implantation, CMP, electrode shape, etching, pattern shape, electrode shape, and photoresist coating. can do.
  • FIG. 1 shows a manufacturing process of the SiC wafer manufacturing method of the present invention, where S1 is a bonding process, S2 is a first peeling process, and S3 is a second peeling process.
  • FIG. 2 is one embodiment of a silicon carbide composite substrate described in the manufacturing method of the present invention, in which (a) has an orientation flat 8a, and (b) is a notch (notch) 8b which is a modification thereof. have.
  • FIG. 3 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, wherein (a) has a region having no glassy carbon layer at the edge, and (b) is glass on the side wall.
  • FIG. 3A shows a glassy carbon layer having a diameter smaller than that of the SiC substrate, and the SiC substrate and the CVD-SiC layer are in contact with each other outside the glassy carbon layer.
  • FIG. 3B shows a glassy carbon layer having the same diameter as that of the SiC substrate, but no glassy carbon layer is formed on the side surface of the SiC substrate. And the CVD-SiC layer are in contact with each other.
  • SiC base material 1 of silicon carbide composite substrate 6 has a disk shape with a diameter of 150 mm and a thickness of 2 mm, and is provided with an orientation flat 8a serving as a marking at the edge.
  • the length of the side of the orientation flat 8a is 2 cm.
  • glassy carbon layer 2 having a thickness of 40 ⁇ m and a diameter of 149 mm is provided. That is, the edge 0.5 mm has no glassy carbon layer, and the SiC substrate is in contact with the CVD-SiC layer 3. That is, the outside of the glassy carbon layer 2 is a region 9 without a glassy carbon layer.
  • a CVD-SiC layer 3 having a thickness of 500 ⁇ m is provided on the glassy carbon layer. That is, the edge 0.5 mm of the CVD-SiC layer 3 is directly formed on the SiC substrate without interposing a glassy carbon layer.
  • RCA cleaning is performed. The RCA cleaning can be performed with a commercially available RCA cleaning solution.
  • a single crystal SiC substrate 4 having an orientation flat is prepared, and hydrogen ions are implanted into one surface thereof.
  • an ion implantation layer 4a is formed.
  • RCA cleaning is performed. The RCA cleaning can be performed with a commercially available RCA cleaning solution. The portion where hydrogen ions are not implanted is an ion non-implanted layer 4d.
  • the ion-implanted layer 4a of the single crystal SiC substrate 4 and the CVD-SiC layer 3 of the silicon carbide composite substrate are brought into contact with each other and bonded to obtain a bonded body 7.
  • the obtained bonded body 7 is heated to be separated by the ion implantation layer 4a. Since the ion implantation layer 4a becomes brittle when hydrogen ions are implanted, the surface portion of the ion implantation layer 4a can be peeled off. In FIG. 1, the ion implantation layer left on the single crystal SiC substrate side is 4c, and the ion implantation layer moved to the silicon carbide composite substrate side is 4b.
  • the heating temperature is not particularly limited, but is 400 ° C.
  • the joined body is separated at the ion implantation layer portion due to a difference in thermal expansion generated inside the joined body.
  • the single crystal coated substrate 5 composed of the SiC substrate 1, the glassy carbon layer 2, the CVD-SiC layer 3, and the ion implantation layer 4b is heat-treated.
  • the heat treatment is performed at 1200 ° C. for 10 minutes. By this treatment, the bonding between the CVD-SiC layer 3 and the ion implantation layer 4b can be strengthened.
  • ⁇ Second peeling step> The single crystal SiC wafer is peeled from the orientation flat portion of the heat-treated single crystal coated substrate.
  • the orientation flat portion can be easily peeled off because the glassy carbon layer 2 is present between the SiC substrate 1 and the CVD-SiC layer 3.
  • Example 2 is a manufacturing method of a SiC semiconductor, and includes a semiconductor formation process between the heat treatment process and the second peeling process of Example 1.
  • the process up to the first peeling step is performed in the same manner as in Example 1 to obtain a single crystal-coated substrate, and then an SiC single crystal is epitaxially grown to form an SiC epitaxial layer. Furthermore, after obtaining the desired SiC semiconductor by pattern formability, oxidation, diffusion, CVD, ion implantation, CMP, electrode formability, etching, pattern formability, electrode formability, and photoresist coating, the SiC semiconductor is formed by dicing. Disconnect. Since the cut SiC semiconductor is in contact with the SiC substrate 1 via the glassy carbon layer 2, it can be easily separated between the glassy carbon layer 2 and the CVD-SiC layer 3.
  • FIG. 4 shows the observation results of warpage for each of the three silicon carbide composite substrate samples.
  • 4A is a sample using the first graphite substrate as the substrate
  • FIG. 4B is a sample using the second graphite substrate as the substrate
  • FIG. 4C is the embodiment as the substrate. The result of each sample using this SiC base material 1 is shown.
  • the height of the warp (Z direction) from the height of the surface at the reference point within a range of 50 mm on the left and right (X or Y direction) from the predetermined reference point was measured.
  • warp 1 before forming the glassy carbon layer on the substrate warp of the substrate
  • warp 2 after forming the glassy carbon layer on the substrate warp 2 after forming the glassy carbon layer on the substrate
  • warp 3 warp of the silicon carbide composite substrate
  • the sample using the first graphite substrate as the substrate is more warped (warped) as the silicon carbide composite substrate than the sample using the second graphite substrate. It is understood that 3) is small. That is, at a position 50 mm from the reference point, the warp of the sample using the second graphite base material (silicon carbide composite substrate) is about 400 ⁇ m, whereas the sample using the first graphite base material (silicon carbide composite substrate) The warpage is suppressed to 10 ⁇ m, and it can be seen that the characteristics greatly change depending on the graphite member.
  • the curvature (warpage 3) as a silicon carbide composite substrate is the same as that of a 1st graphite base material. It is suppressed to 10 ⁇ m or less. Furthermore, the warp (warp 2) after forming the glassy carbon layer on the base material before forming the CVD-SiC layer is also suppressed to 10 ⁇ m, and compared to the warp 2 of the sample of the first graphite member, It is kept small.
  • SiC base material 1 the difference in thermal expansion coefficient between the SiC base material 1 and the CVD-SiC layer 3 having the same material is small, and the SiC base material 1 is hard and has high bending elasticity. Thus, it is thought that the warpage is suppressed.
  • SiC has a smaller variation in characteristics such as thermal expansion due to crystals and is easier to control than a graphite member, so that the design is easy and the CVD-SiC layer can be made thin.
  • the bonding strength with the CVD-SiC layer formed thereon is strong. Become. Further, the warp of the silicon carbide composite substrate is small.
  • the ion implantation layer can be peeled from the single crystal SiC substrate, and the first peeling process for obtaining the single crystal coated substrate can be stably performed, thereby improving the manufacturing efficiency of the SiC wafer. It becomes possible.

Abstract

Provided is a method for producing an SiC wafer, said method comprising: a step of preparing a silicon carbide composite substrate that has a vitreous carbon layer on the surface of an SiC substrate and a CVD-SiC layer atop the vitreous carbon layer, and preparing a single-crystal SiC substrate that has on the surface an ion injection layer into which hydrogen ions have been injected; a joining step in which a joined body is obtained by bonding the CVD-SiC layer of the silicon carbide composite substrate and the ion injection layer of the single-crystal SiC substrate; a first separation step in which a single-crystal coated substrate is obtained by heating the joined body and separating the ion injection layer from the single-crystal SiC substrate; and a second separation step in which an SiC wafer is obtained by separating the vitreous carbon layer and CVD-SiC layer of the single-crystal coated substrate.

Description

SiCウェハの製造方法、SiC半導体の製造方法及び炭化珪素複合基板SiC wafer manufacturing method, SiC semiconductor manufacturing method, and silicon carbide composite substrate
 本発明は、SiCウェハの製造方法、SiC半導体の製造方法及び炭化珪素複合基板に関する。 The present invention relates to a method for manufacturing a SiC wafer, a method for manufacturing a SiC semiconductor, and a silicon carbide composite substrate.
 SiC(炭化珪素)はシリコンと炭素で構成される化合物半導体材料である。絶縁破壊電界強度がSiの10倍、バンドギャップがSiの3倍と優れているだけでなくデバイス作製に必要なp型、n型の制御が広い範囲で可能であることなどから、Siの限界を超えるパワーデバイス用材料として期待されている。
 また、SiCは、より薄い厚さでも高い耐電圧が得られるため、薄く構成することにより、ON抵抗が小さく、低損失の半導体が得られることが特徴である。
SiC (silicon carbide) is a compound semiconductor material composed of silicon and carbon. The dielectric breakdown electric field strength is 10 times that of Si and the band gap is 3 times that of Si. In addition, the p-type and n-type control required for device fabrication can be controlled over a wide range. It is expected as a material for power devices exceeding.
In addition, since SiC has a high withstand voltage even with a thinner thickness, it is characterized that a thin semiconductor can be obtained with a low ON resistance by being made thin.
 しかしながら、SiC半導体は、広く普及するSi半導体と比較し、大面積のウェハが得られず、工程も複雑であることから、Si半導体と比較して大量生産ができず、高価であった。 However, SiC semiconductors are expensive and cannot be mass-produced as compared with Si semiconductors because a large-area wafer cannot be obtained and the process is complicated as compared with widely used Si semiconductors.
 SiC半導体のコストを下げるため、様々な工夫が行われてきた。
 特許文献1には、炭化珪素基板の製造方法であって、少なくとも、マイクロパイプの密度が30個/cm以下の単結晶炭化珪素基板と多結晶炭化珪素基板を準備し、単結晶炭化珪素基板と前記多結晶炭化珪素基板とを貼り合わせる工程を行い、その後、単結晶炭化珪素基板を薄膜化する工程を行い、多結晶基板上に単結晶層を形成した基板を製造することが記載されている。
Various attempts have been made to reduce the cost of SiC semiconductors.
Patent Document 1 discloses a method for manufacturing a silicon carbide substrate, comprising at least a single crystal silicon carbide substrate and a polycrystalline silicon carbide substrate having a micropipe density of 30 / cm 2 or less, and a single crystal silicon carbide substrate. And a step of laminating the polycrystalline silicon carbide substrate and then a step of thinning the single crystal silicon carbide substrate to manufacture a substrate having a single crystal layer formed on the polycrystalline substrate. Yes.
 更に、単結晶炭化珪素基板と多結晶炭化珪素基板とを貼り合わせる工程の前に、単結晶炭化珪素基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、単結晶炭化珪素基板と多結晶炭化珪素基板とを貼り合わせる工程の後、単結晶炭化珪素基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、単結晶炭化珪素基板を薄膜化する工程を、水素イオン注入層にて機械的に剥離する工程とする炭化珪素基板の製造方法が記載されている。
 このような方法により、1つのSiCの単結晶のインゴットからより多くのSiCウェハが得られるようになった。
Further, before the step of bonding the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate, a step of forming a hydrogen ion implanted layer by performing hydrogen ion implantation on the single crystal silicon carbide substrate is performed, And a step of bonding the polycrystalline silicon carbide substrate and a step of thinning the single crystal silicon carbide substrate by performing a heat treatment at a temperature of 350 ° C. or less before the step of thinning the single crystal silicon carbide substrate, A method for manufacturing a silicon carbide substrate is described which is a step of mechanically peeling at a hydrogen ion implanted layer.
By such a method, more SiC wafers can be obtained from one SiC single crystal ingot.
日本国特開2009-117533号公報Japanese Unexamined Patent Publication No. 2009-117533
 しかしながら、上記記載されたSiCウェハの製造方法は、水素イオン注入を行って薄いイオン注入層の形成された単結晶SiC基板と、多結晶SiC基板と、を貼り合わせたのちに加熱して剥離することによって製造されているので、SiCウェハは、厚さの大部分が多結晶SiC基板である。このため、SiCウェハは、研磨などハンドリングの際に損傷しないよう機械的な強度を有するよう十分な厚さの多結晶SiCの基板を使用する。そのため、半導体として機能するために必要な厚さよりも厚い多結晶SiC基板を用いなければならない。 However, in the above-described method for manufacturing an SiC wafer, hydrogen ion implantation is performed and a single crystal SiC substrate on which a thin ion implantation layer is formed and a polycrystalline SiC substrate are bonded together, and then heated and peeled off. In most cases, the SiC wafer is a polycrystalline SiC substrate. For this reason, the SiC wafer uses a polycrystalline SiC substrate having a sufficient thickness so as to have mechanical strength so as not to be damaged during handling such as polishing. Therefore, it is necessary to use a polycrystalline SiC substrate that is thicker than necessary to function as a semiconductor.
 多結晶SiC基板が厚いと、ON抵抗が大きくなり、本来のSiC半導体の特徴が充分に発揮できなくなる。
 つまり、製造工程において基板の損傷を防ぐためには多結晶SiC基板を厚くすることが好ましく、得られるSiC半導体のON抵抗を小さくするためには薄い多結晶SiC基板が好ましい。
If the polycrystalline SiC substrate is thick, the ON resistance increases, and the characteristics of the original SiC semiconductor cannot be exhibited sufficiently.
That is, in order to prevent damage to the substrate in the manufacturing process, it is preferable to increase the thickness of the polycrystalline SiC substrate, and to reduce the ON resistance of the obtained SiC semiconductor, it is preferable to use a thin polycrystalline SiC substrate.
 本発明の第1の課題は、単結晶SiC基板と多結晶SiC基板とを貼り合わせたのち剥離することによってSiCウェハを得る製造工程において、ハンドリングで損傷しにくく、より薄いSiCウェハが容易に得られる製造方法を提供することにある。 The first problem of the present invention is that a single-crystal SiC substrate and a polycrystalline SiC substrate are bonded together and then peeled off to obtain a SiC wafer, which is less likely to be damaged by handling, and a thinner SiC wafer can be easily obtained. It is to provide a manufacturing method.
 本発明の第2の課題は、単結晶SiC基板と多結晶SiC基板とを貼り合わせたのち剥離することによって得られるSiCウェハを利用するSiC半導体の製造工程において、ハンドリングで損傷しにくく、より薄いSiC半導体が容易に得られる製造方法を提供することにある。 The second problem of the present invention is that the SiC semiconductor manufacturing process using the SiC wafer obtained by laminating and bonding the single crystal SiC substrate and the polycrystalline SiC substrate is less likely to be damaged by handling and is thinner. An object of the present invention is to provide a manufacturing method in which a SiC semiconductor can be easily obtained.
 本発明の第3の課題は、単結晶SiC基板と多結晶SiC基板とを貼り合わせたのち剥離することによってSiCウェハを得る製造工程において、ハンドリングで損傷しにくく、より薄いSiCウェハが容易に得られる多結晶SiC基板を提供することにある。 A third problem of the present invention is that in a manufacturing process for obtaining a SiC wafer by bonding a single crystal SiC substrate and a polycrystalline SiC substrate and then separating them, it is difficult to damage by handling, and a thinner SiC wafer can be easily obtained. An object of the present invention is to provide a polycrystalline SiC substrate.
 前記課題を解決するための本発明のSiCウェハの製造方法は、SiC基材の表面にガラス状炭素層および前記ガラス状炭素層の上にCVD-SiC層を有する炭化珪素複合基板と、表面に水素イオンが注入されたイオン注入層を有する単結晶SiC基板とを準備する工程と、前記炭化珪素複合基板のCVD-SiC層と前記単結晶SiC基板のイオン注入層とを貼り合せ接合体を得る接合工程と、前記接合体を加熱し、前記イオン注入層を単結晶SiC基板から剥離し、単結晶被覆基板を得る第1剥離工程と、前記単結晶被覆基板の前記ガラス状炭素層とCVD-SiC層とを剥離しSiCウェハを得る第2剥離工程と、からなる。 The SiC wafer manufacturing method of the present invention for solving the above problems includes a silicon carbide composite substrate having a glassy carbon layer on the surface of a SiC substrate and a CVD-SiC layer on the glassy carbon layer, and a surface. A step of preparing a single-crystal SiC substrate having an ion-implanted layer into which hydrogen ions are implanted, a CVD-SiC layer of the silicon carbide composite substrate, and an ion-implanted layer of the single-crystal SiC substrate are bonded to obtain a joined body. A bonding step, a first peeling step of heating the bonded body and peeling the ion-implanted layer from the single crystal SiC substrate to obtain a single crystal coated substrate, and the glassy carbon layer of the single crystal coated substrate and the CVD- A second peeling step of peeling the SiC layer to obtain a SiC wafer.
 本発明のSiCウェハの製造方法は、後にSiCウェハとなるCVD-SiC層とイオン注入層が、ガラス状炭素層と共にSiC基材と接合したまま取り扱われるので、研磨などのハンドリングの際に損傷しにくくすることができる。 In the method for producing a SiC wafer according to the present invention, the CVD-SiC layer and the ion-implanted layer, which will later become a SiC wafer, are handled while being bonded to the SiC substrate together with the glassy carbon layer, so that they are damaged during handling such as polishing. Can be difficult.
 また、CVD-SiC層はSiC基材に支持されているので薄くても容易に取り扱うことができ、厚さが薄いON抵抗の小さなSiCウェハを容易に得ることができる。 Further, since the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
 そして、CVD-SiC層と素材が共通するSiC基材を使用するため、層間の熱膨張差を小さくできる。さらに、SiC基材は硬く曲げ弾性が大きいため、製造時に発生する反りが抑制される。SiCは結晶による熱膨張などの特性ばらつきが小さく、さらには制御がしやすいため、設計が容易であり、CVD-SiC層を薄くすることが可能となる。 And, since the SiC base material having the same material as the CVD-SiC layer is used, the difference in thermal expansion between the layers can be reduced. Furthermore, since the SiC base material is hard and has high bending elasticity, warpage that occurs during manufacturing is suppressed. Since SiC has small variations in characteristics such as thermal expansion due to crystals and is easy to control, the design is easy and the CVD-SiC layer can be made thin.
 加えて、SiC基材とCVD-SiC層との接着にガラス状炭素層を用いることで、反り抑制やガラス状炭素層上面の平坦度をよくすることが可能である。ガラス状炭素層を構成するガラス状炭素は、フェノール樹脂、フラン樹脂、イミド樹脂などの樹脂を含有した溶剤を炭素化して得ることができる。そのため、SiC基材上へ前記溶剤を塗布した後の塗布面の平坦度は悪いが、炭素化させる際に塗布した溶剤は揮発するため、結果物としてのガラス状炭素層はクラックを伴わずに薄くなる。もともとSiC基材の平坦度が良いため、平坦なガラス状炭素層を得ることができる。 In addition, by using a glassy carbon layer for adhesion between the SiC substrate and the CVD-SiC layer, it is possible to suppress warpage and improve the flatness of the upper surface of the glassy carbon layer. The glassy carbon constituting the glassy carbon layer can be obtained by carbonizing a solvent containing a resin such as a phenol resin, a furan resin, or an imide resin. Therefore, the flatness of the coated surface after applying the solvent on the SiC substrate is poor, but the solvent applied when carbonizing volatilizes, so the resulting glassy carbon layer does not crack. getting thin. Originally, since the flatness of the SiC base material is good, a flat glassy carbon layer can be obtained.
 本発明のSiCウェハの製造方法は、次の態様が好ましい。
 (1)前記炭化珪素複合基板は円盤であってその縁に方向を示すマーキングを有するともに、前記単結晶SiC基板は円盤であってその縁に方向を示すマーキングを有し、前記接合工程は前記炭化珪素複合基板と前記単結晶SiC基板とを、方向を示すマーキングを合わせて接合する。
The SiC wafer manufacturing method of the present invention preferably has the following mode.
(1) The silicon carbide composite substrate is a disk and has a marking indicating a direction at the edge thereof, and the single crystal SiC substrate is a disk and has a marking indicating a direction at the edge, and the bonding step includes The silicon carbide composite substrate and the single crystal SiC substrate are joined together with markings indicating directions.
 SiC半導体が充分に機能するために、SiCウェハから一定の方向に揃えてパターンを形成しダイシングされる。炭化珪素複合基板および単結晶SiC基板がそれぞれ方向を示すマーキングを有する円盤であって炭化珪素複合基板と単結晶SiC基板とを方向を示すマーキングを合わせて接合することにより、単結晶SiC基板の方向をSiCウェハの結晶方位に反映させることができ、SiCウェハの結晶方位を容易に確認することができる。 In order for a SiC semiconductor to function sufficiently, a pattern is formed in a certain direction from a SiC wafer and diced. The silicon carbide composite substrate and the single crystal SiC substrate are discs each having a marking indicating a direction, and the silicon carbide composite substrate and the single crystal SiC substrate are joined together with the marking indicating the direction to thereby align the direction of the single crystal SiC substrate. Can be reflected in the crystal orientation of the SiC wafer, and the crystal orientation of the SiC wafer can be easily confirmed.
 (2)前記マーキングは、オリエンテーションフラットまたは切り欠きである。
 一般の半導体製造装置は、オリエンテーションフラットまたは切り欠きによって結晶方向を確認しパターン形性、ダイシングなどの半導体製造工程が行われている。このため本発明のSiCウェハがオリエンテーションフラットまたは切り欠きを有していることにより、広く普及する半導体製造装置を用いてSiC半導体を製造することができる。
(2) The marking is an orientation flat or a notch.
In a general semiconductor manufacturing apparatus, a crystal manufacturing direction is confirmed by an orientation flat or notch, and semiconductor manufacturing processes such as pattern shape and dicing are performed. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
 (3)前記SiCウェハの製造方法は、第1剥離工程のあとに、熱処理工程を更に有する。
 イオン注入層と、CVD-SiC層は、熱処理工程によって互いに拡散し合いより強固に接合することができる。
(3) The method for manufacturing the SiC wafer further includes a heat treatment step after the first peeling step.
The ion-implanted layer and the CVD-SiC layer can be diffused and bonded more firmly to each other by a heat treatment process.
 (4)前記CVD-SiC層の厚さは50~1000μmである。
 CVD-SiC層の厚さが、50μm以上であると、SiCウェハから得られるSiC半導体に十分な機械的な強度を付与することができる。CVD-SiC層の厚さが、1000μm以下であると、SiCウェハから得られるSiC半導体のON抵抗を小さくすることができる。
(4) The thickness of the CVD-SiC layer is 50 to 1000 μm.
When the thickness of the CVD-SiC layer is 50 μm or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer. When the thickness of the CVD-SiC layer is 1000 μm or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
 (5)前記炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、前記ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接している。
 炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることにより、SiC半導体の得られるSiCウェハの中央部分はSiC基材から剥離しやすく、周辺部分はSiC基材から剥離しにくくすることができる。SiC基材を露出させる面積、領域を適宜設定することにより単結晶被覆基板からSiCウェハの剥離しやすさを容易に制御することができる。
(5) The silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer.
An SiC wafer from which a SiC semiconductor is obtained by having a region without a glassy carbon layer on the side wall or edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer The central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material. The ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
 炭化珪素複合基板にガラス状炭素層の無い領域を適宜形成することにより、例えばオリエンテーションフラットまたは切り欠き部位でCVD-SiC層とSiC基材が接していない領域を作ることができ、この部位から容易に剥がすことができる。 By appropriately forming a region without the glassy carbon layer on the silicon carbide composite substrate, for example, a region where the CVD-SiC layer is not in contact with the SiC substrate at the orientation flat or notch portion can be created. Can be peeled off.
 また、単結晶被覆基板のイオン注入層の上にパターンを形成したのちにダイシングし、SiC半導体を得ることができる。このとき、SiC半導体を構成するCVD-SiC層は、ガラス状炭素層を介してSiC基材と接合されているので容易に剥離することができる。 Also, a SiC semiconductor can be obtained by dicing after forming a pattern on the ion-implanted layer of the single crystal-coated substrate. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
 また、本発明のSiC半導体の製造方法は、前記記載のSiCウェハの製造方法と、半導体形成工程とからなり、前記半導体形成工程は、前記熱処理工程の後、前記第2剥離工程の前である。 The SiC semiconductor manufacturing method of the present invention includes the above-described SiC wafer manufacturing method and a semiconductor forming step, and the semiconductor forming step is after the heat treatment step and before the second peeling step. .
 単結晶被覆基板にSiC半導体を形成したのちに切り離すので、薄いSiCウェハを取り扱う必要が無く、損傷しにくくすることができる上に、薄いCVD-SiC層をSiC半導体の一部として利用でき、SiC半導体のON抵抗を容易に小さくすることができる。 Since the SiC semiconductor is formed on the single crystal coated substrate and then separated, it is not necessary to handle a thin SiC wafer, and it can be made difficult to damage, and a thin CVD-SiC layer can be used as a part of the SiC semiconductor. The ON resistance of the semiconductor can be easily reduced.
 また、本発明の炭化珪素複合基板は、縁にマーキングを有する円盤であるSiC基材の表面に、順にガラス状炭素層、CVD-SiC層が積層されている。 Further, in the silicon carbide composite substrate of the present invention, a glassy carbon layer and a CVD-SiC layer are sequentially laminated on the surface of an SiC base material which is a disk having a marking on the edge.
 本発明の炭化珪素複合基板は、後にSiCウェハとなるCVD-SiC層とイオン注入層が、ガラス状炭素層と共にSiC基材と接合したまま取り扱われるので、研磨などのハンドリングの際に損傷しにくくすることができる。 In the silicon carbide composite substrate of the present invention, the CVD-SiC layer and the ion implantation layer, which will later become a SiC wafer, are handled while being bonded to the SiC base material together with the glassy carbon layer, so that they are not easily damaged during handling such as polishing. can do.
 また、CVD-SiC層はSiC基材に支持されているので薄くても容易に取り扱うことができ、厚さが薄いON抵抗の小さなSiCウェハを容易に得ることができる。 Further, since the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
 SiC半導体が充分に機能するために、SiCウェハから一定の方向に揃えてパターンを形成しダイシングされる。炭化珪素複合基板および単結晶SiC基板にマーキングを有し、炭化珪素複合基板と単結晶SiC基板のマーキングとの方向を合わせて接合することにより、単結晶SiC基板の方向をSiCウェハの結晶方位に反映させることができ、SiCウェハの結晶方位を容易に確認することができる。 In order for a SiC semiconductor to function sufficiently, a pattern is formed in a certain direction from a SiC wafer and diced. The silicon carbide composite substrate and the single crystal SiC substrate have markings, and the direction of the single crystal SiC substrate is made to be the crystal orientation of the SiC wafer by joining the silicon carbide composite substrate and the single crystal SiC substrate in the same direction. The crystal orientation of the SiC wafer can be easily confirmed.
 本発明の炭化珪素複合基板は次の態様であることが望ましい。
 (6)前記マーキングは、オリエンテーションフラットまたは切り欠きである。
 一般の半導体製造装置は、オリエンテーションフラットまたは切り欠きによって結晶方位を確認しパターン形性、ダイシングなどの半導体製造プロセスが行われている。このため本発明のSiCウェハがオリエンテーションフラットまたは切り欠きを有していることにより、広く普及する半導体製造装置を用いてSiC半導体を製造することができる。
The silicon carbide composite substrate of the present invention is preferably in the following manner.
(6) The marking is an orientation flat or a notch.
In general semiconductor manufacturing apparatuses, semiconductor manufacturing processes such as pattern formability and dicing are performed by confirming crystal orientation by orientation flats or notches. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
 (7)前記CVD-SiC層の厚さは50~1000μmである。
 CVD-SiC層の厚さが、50μm以上であると、SiCウェハから得られるSiC半導体に十分な機械的な強度を付与することができる。CVD-SiC層の厚さが、1000μm以下であると、SiCウェハから得られるSiC半導体のON抵抗を小さくすることができる。
(7) The thickness of the CVD-SiC layer is 50 to 1000 μm.
When the thickness of the CVD-SiC layer is 50 μm or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer. When the thickness of the CVD-SiC layer is 1000 μm or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
 (8)前記炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、前記ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接している。 (8) The silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer.
 炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることにより、SiC半導体の得られるSiCウェハの中央部分はSiC基材から剥離しやすく、周辺部分はSiC基材から剥離しにくくすることができる。SiC基材を露出させる面積、領域を適宜設定することにより単結晶被覆基板からSiCウェハの剥離しやすさを容易に制御することができる。 An SiC wafer from which a SiC semiconductor is obtained by having a region without a glassy carbon layer on the side wall or edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer The central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material. The ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
 炭化珪素複合基板にガラス状炭素層の無い領域を適宜形成することにより、例えば、オリエンテーションフラットまたは切り欠き部位でCVD-SiC層とSiC基材が接していない領域を作ることができ、この部位から容易に剥がすこともできる。 By appropriately forming a region without a glassy carbon layer on the silicon carbide composite substrate, for example, a region where the CVD-SiC layer and the SiC substrate are not in contact with each other at an orientation flat or a notch portion can be formed. It can be easily peeled off.
 また、SiC基材の接合したままの単結晶被覆基板としてイオン注入層の上にパターンを形成したのちにダイシングし、SiC半導体を得ることができる。このとき、SiC半導体を構成するCVD-SiC層は、ガラス状炭素層を介してSiC基材と接合されているので容易に剥離することができる。 Also, a SiC semiconductor can be obtained by forming a pattern on the ion implantation layer as a single crystal-coated substrate with the SiC base material bonded and then dicing. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
 本発明によれば、薄いSiCウェハがSiC基材に接合した状態で取り扱うことができるので、SiCウェハの製造工程で損傷しにくくすることができる上に、得られるSiCウェハを薄くすることができ、ON抵抗の小さなSiCウェハを得ることができる。 According to the present invention, since a thin SiC wafer can be handled in a state of being bonded to a SiC substrate, it can be made difficult to damage in the manufacturing process of the SiC wafer, and the obtained SiC wafer can be made thin. A SiC wafer having a small ON resistance can be obtained.
 本発明によれば、薄いSiCウェハがSiC基材に接合した状態で取り扱うことができるので、SiC半導体の製造工程で損傷しにくくすることができる上に、得られるSiC半導体を薄くすることができ、ON抵抗の小さなSiC半導体を得ることができる。 According to the present invention, since a thin SiC wafer can be handled in a state of being bonded to a SiC substrate, it can be made difficult to damage in the manufacturing process of the SiC semiconductor, and the obtained SiC semiconductor can be made thin. A SiC semiconductor having a small ON resistance can be obtained.
 本発明の多結晶SiC基板である炭化珪素複合基板によれば、薄いSiCウェハがSiC基材に接合した状態で取り扱うことができるので、SiCウェハの製造工程で損傷しにくくすることができる上に、得られるSiCウェハを薄くすることができ、ON抵抗の小さなSiCウェハを得ることができる。 According to the silicon carbide composite substrate, which is a polycrystalline SiC substrate of the present invention, a thin SiC wafer can be handled in a state of being bonded to an SiC base material, so that it can be made difficult to be damaged in the manufacturing process of the SiC wafer. Thus, the obtained SiC wafer can be thinned, and a SiC wafer having a small ON resistance can be obtained.
図1は本発明のSiCウェハの製造方法の製造工程を示し、S1は接合工程、S2は第1剥離工程、S3は第2剥離工程である。FIG. 1 shows a manufacturing process of the SiC wafer manufacturing method of the present invention, where S1 is a bonding process, S2 is a first peeling process, and S3 is a second peeling process. 図2は本発明の製造方法に記載された炭化珪素複合基板の一実施形態であり、(a)はオリエンテーションフラットを有し、(b)は切り欠きを有している。FIG. 2 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, in which (a) has an orientation flat and (b) has a notch. 図3は本発明の製造方法に記載された炭化珪素複合基板の一実施形態であり、(a)は、縁にガラス状炭素層の無い領域を有し、(b)は、側壁にガラス状炭素層の無い領域を有する変形例である。FIG. 3 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, wherein (a) has a region having no glassy carbon layer at the edge, and (b) is glassy on the side wall. This is a modified example having a region without a carbon layer. 図4は三つの炭化珪素複合基板のサンプル各々についての反りの観察結果を示し、(a)は、基材として第1の黒鉛基材を用いたサンプル、(b)は基材として第2の黒鉛基材を用いたサンプル、(c)は、基材として本実施形態のSiC基材1を用いたサンプルそれぞれの結果を示す。FIG. 4 shows the observation results of warping for each of the three silicon carbide composite substrate samples, (a) is a sample using the first graphite substrate as the substrate, and (b) is the second substrate as the substrate. A sample using a graphite substrate, (c) shows the results of each sample using the SiC substrate 1 of the present embodiment as the substrate.
 本発明のSiCウェハの製造方法は、SiC基材の表面にガラス状炭素層および前記ガラス状炭素層の上にCVD-SiC層を有する炭化珪素複合基板と、表面に水素イオンが注入されたイオン注入層を有する単結晶SiC基板とを準備する工程と、前記炭化珪素複合基板のCVD-SiC層と前記単結晶SiC基板のイオン注入層とを貼り合せ接合体を得る接合工程と、前記接合体を加熱し、前記イオン注入層を単結晶SiC基板から剥離し、単結晶被覆基板を得る第1剥離工程と、前記単結晶被覆基板の前記ガラス状炭素層とCVD-SiC層とを剥離しSiCウェハを得る第2剥離工程と、からなる。 The SiC wafer manufacturing method of the present invention includes a silicon carbide composite substrate having a glassy carbon layer on the surface of a SiC substrate and a CVD-SiC layer on the glassy carbon layer, and ions in which hydrogen ions are implanted on the surface. A step of preparing a single crystal SiC substrate having an implantation layer, a bonding step of bonding a CVD-SiC layer of the silicon carbide composite substrate and an ion implantation layer of the single crystal SiC substrate, and obtaining a bonded body; And the ion-implanted layer is peeled from the single crystal SiC substrate to obtain a single crystal coated substrate, and the glassy carbon layer and the CVD-SiC layer of the single crystal coated substrate are peeled off to form SiC. A second peeling step for obtaining a wafer.
 本発明のSiCウェハの製造方法は、後にSiCウェハとなるCVD-SiC層とイオン注入層が、ガラス状炭素層と共にSiC基材と接合したまま取り扱われるので、研磨などのハンドリングの際に損傷しにくくすることができる。 In the method for producing a SiC wafer according to the present invention, the CVD-SiC layer and the ion-implanted layer, which will later become a SiC wafer, are handled while being bonded to the SiC substrate together with the glassy carbon layer, so that they are damaged during handling such as polishing. Can be difficult.
 また、CVD-SiC層はSiC基材に支持されているので薄くても容易に取り扱うことができ、厚さが薄いON抵抗の小さなSiCウェハを容易に得ることができる。 Further, since the CVD-SiC layer is supported by the SiC base material, it can be easily handled even if it is thin, and a thin SiC wafer with a small ON resistance can be easily obtained.
 単結晶SiC基板に水素をイオン注入することにより、入射エネルギーに応じた深さまで水素イオンを到達させることができる。水素イオンの注入された単結晶基板は、加熱することによりイオン注入の際に形成された注入欠陥に水素が集まり、結晶の結合を切断することができる。単結晶SiC基板は、CVD-SiC層に接合されているので、イオン注入された表面が第1剥離工程でCVD-SiC層側に移動することができる。 By implanting hydrogen into a single crystal SiC substrate, hydrogen ions can reach a depth corresponding to the incident energy. When a single crystal substrate into which hydrogen ions are implanted is heated, hydrogen collects in implantation defects formed at the time of ion implantation, and the crystal bond can be cut. Since the single crystal SiC substrate is bonded to the CVD-SiC layer, the ion-implanted surface can move to the CVD-SiC layer side in the first peeling step.
 水素イオンが注入された単結晶SiC基板は、表面が単結晶の状態を維持したまま脆くなっているので単結晶を維持したままCVD-SiC層に移動させることができる。第1剥離工程の後、CVD-SiC層の表面に単結晶SiC層が形成されているので、さらにSiC層をエピタキシャル成長させることにより、SiC半導体に好適に用いることができるSiCウェハを提供することができる。 The single crystal SiC substrate into which hydrogen ions are implanted is brittle while maintaining the surface of the single crystal, and thus can be moved to the CVD-SiC layer while maintaining the single crystal. Since the single-crystal SiC layer is formed on the surface of the CVD-SiC layer after the first peeling step, it is possible to provide an SiC wafer that can be suitably used for an SiC semiconductor by further epitaxially growing the SiC layer. it can.
 CVD-SiC層と、単結晶SiC基板とを貼り合わせる接合工程は、次のようにして行うことができる。 The bonding step of bonding the CVD-SiC layer and the single crystal SiC substrate can be performed as follows.
 CVD-SiC層及び単結晶SiC基板は、共に鏡面研磨されたものを用いる。鏡面研磨された面同士を密着させ、隙間のない接合面を形成することができる。 Both the CVD-SiC layer and the single crystal SiC substrate are mirror-polished. The mirror-polished surfaces can be brought into close contact with each other to form a joint surface without a gap.
 CVD-SiC層及び単結晶SiC基板は、あらかじめ洗浄されたものを用いることが好ましい。洗浄の方法は特に限定されないが、例えば酸などの化学薬品と純水を用いて洗浄することが好ましい。例えば、洗浄方法は、半導体の洗浄で広く使用されているRCA洗浄などを利用することができる。RCA洗浄とは、SC1と呼ばれるアンモニアと過酸化水素と水とを組み合わせた洗浄と、SC2と呼ばれる塩酸と過酸化水素と水とを組み合わせた洗浄の2段階で行われる洗浄方法で、SC1では、主にパーティクル、有機物汚染の除去、SC2では、金属汚染の除去に使用される。 The CVD-SiC layer and the single crystal SiC substrate are preferably cleaned in advance. The cleaning method is not particularly limited, but it is preferable to use, for example, a chemical such as an acid and pure water. For example, as a cleaning method, RCA cleaning widely used in semiconductor cleaning can be used. RCA cleaning is a cleaning method called SC1, which is a cleaning method using a combination of ammonia, hydrogen peroxide and water, and a cleaning method called SC2, which is a combination of hydrochloric acid, hydrogen peroxide and water. It is mainly used to remove particles and organic contaminants, and in SC2, it is used to remove metal contaminants.
 CVD-SiC層または単結晶SiC基板の少なくとも一方にプラズマ活性化処理を施すことが好ましい。プラズマ活性化処理された表面は、接合しやすくなっており、より強固にCVD-SiC層と単結晶SiC基板を接合することができる。
 第1剥離工程は、接合体を加熱することにより剥離することができる。イオン注入層は、水素イオンが内部に侵入しているので、脆くなっている。接合体を加熱すると、単結晶SiC基板と、炭化珪素複合基板との熱膨張差で、脆くなったイオン注入層部分で剥離する。イオン注入層の表面の1~10μm程度がCVD-SiC層に貼り付き、炭化珪素複合基板のCVD―SiC層にイオン注入層の一部が貼り付いた単結晶被覆基板が得られる。つまり、剥離した面は、いずれの側もイオン注入層が露出している。
It is preferable to perform plasma activation treatment on at least one of the CVD-SiC layer and the single crystal SiC substrate. The plasma-activated surface is easy to bond, and the CVD-SiC layer and the single crystal SiC substrate can be bonded more firmly.
The first peeling step can be peeled by heating the joined body. The ion-implanted layer is fragile because hydrogen ions penetrate inside. When the bonded body is heated, the ion-implanted layer portion that has become brittle due to a difference in thermal expansion between the single crystal SiC substrate and the silicon carbide composite substrate peels off. A single crystal coated substrate is obtained in which about 1 to 10 μm of the surface of the ion implantation layer is attached to the CVD-SiC layer, and a part of the ion implantation layer is attached to the CVD-SiC layer of the silicon carbide composite substrate. That is, the ion-implanted layer is exposed on either side of the peeled surface.
 第1剥離工程は、熱膨張差によるイオン注入層の分離を目的とするので、化学反応に関与せず、例えば200~1000℃の温度に加熱することにより分離することができる。 The first peeling step is aimed at separation of the ion implantation layer due to the difference in thermal expansion, so that it can be separated by heating to a temperature of 200 to 1000 ° C., for example, without being involved in a chemical reaction.
 前記炭化珪素複合基板は円盤であってその縁に方向を示すマーキングを有するともに、前記単結晶SiC基板は円盤であってその縁に方向を示すマーキングを有し、前記接合工程は前記炭化珪素複合基板と前記単結晶SiC基板と、を方向を示すマーキングを合わせて接合する。 The silicon carbide composite substrate is a disk and has a marking indicating the direction at the edge thereof, and the single crystal SiC substrate is a disk and has a marking indicating the direction at the edge, and the bonding step includes the silicon carbide composite The substrate and the single crystal SiC substrate are joined together with markings indicating directions.
 SiC半導体が充分に機能するために、SiCウェハから一定の方向に揃えてパターンを形成しダイシングされる。炭化珪素複合基板および単結晶SiC基板がそれぞれ方向を示すマーキングを有する円盤であって炭化珪素複合基板と単結晶SiC基板と、を方向を示すマーキングを合わせて接合することにより、単結晶SiC基板の方向をSiCウェハの結晶方位に反映させることができ、SiCウェハの結晶方位を容易に確認することができる。 In order for a SiC semiconductor to function sufficiently, a pattern is formed in a certain direction from a SiC wafer and diced. The silicon carbide composite substrate and the single crystal SiC substrate are discs each having a marking indicating a direction, and the silicon carbide composite substrate and the single crystal SiC substrate are joined together with the marking indicating the direction. The direction can be reflected in the crystal orientation of the SiC wafer, and the crystal orientation of the SiC wafer can be easily confirmed.
 前記マーキングは、オリエンテーションフラットまたは切り欠きであることが好ましい。
 一般の半導体製造装置は、オリエンテーションフラットまたは切り欠きによって結晶方位を確認し半導体の形成、ダイシングが行われている。このため本発明のSiCウェハがオリエンテーションフラットまたは切り欠きを有していることにより、広く普及する半導体製造装置を用いてSiC半導体を製造することができる。
The marking is preferably an orientation flat or a notch.
In a general semiconductor manufacturing apparatus, the crystal orientation is confirmed by an orientation flat or notch, and semiconductor formation and dicing are performed. For this reason, when the SiC wafer of this invention has an orientation flat or a notch, a SiC semiconductor can be manufactured using the semiconductor manufacturing apparatus which prevails widely.
 前記SiCウェハの製造方法は、第1剥離工程のあとに、熱処理工程を更に有することが好ましい。イオン注入層と、CVD-SiC層は、熱処理工程によって互いに拡散し合いより強固に接合することができる。 The SiC wafer manufacturing method preferably further includes a heat treatment step after the first peeling step. The ion-implanted layer and the CVD-SiC layer can be diffused and bonded more firmly to each other by a heat treatment process.
 熱処理工程の温度は特に限定されないが、例えば1000~2000℃である。1000℃以上であるとイオン注入層とCVD-SiC層との接合をより強固にでき、2000℃以下であると単結晶SiCであるイオン注入層に結晶の欠陥を生じにくくすることができる。熱処理工程の加熱温度は、多結晶であるCVD-SiC層と、単結晶であるイオン注入層との接合を促進する目的から、第1剥離工程の加熱温度より高いことが好ましい。第1剥離工程の加熱温度よりも高温に加熱することによってより接合を強固にすることができる。 The temperature of the heat treatment step is not particularly limited, but is, for example, 1000 to 2000 ° C. When the temperature is 1000 ° C. or higher, the bonding between the ion implantation layer and the CVD-SiC layer can be further strengthened, and when the temperature is 2000 ° C. or lower, crystal defects are less likely to occur in the ion implantation layer that is single crystal SiC. The heating temperature in the heat treatment step is preferably higher than the heating temperature in the first peeling step in order to promote the bonding between the polycrystalline CVD-SiC layer and the single crystal ion implantation layer. Bonding can be further strengthened by heating to a temperature higher than the heating temperature in the first peeling step.
 熱処理工程は、第2剥離工程の前あるいは第2剥離工程の後のいずれであっても良く、特に限定されないが第2剥離工程の前にあることが好ましい。第2剥離工程の前に熱処理工程があると、熱処理工程で反りが発生しにくくすることができる。 The heat treatment step may be either before the second peeling step or after the second peeling step, and is not particularly limited, but is preferably before the second peeling step. When there is a heat treatment step before the second peeling step, it is possible to make it difficult for warpage to occur in the heat treatment step.
 前記CVD-SiC層の厚さは50~1000μmであることが好ましい。
 CVD-SiC層の厚さが、50μm以上であると、SiCウェハから得られるSiC半導体に十分な機械的な強度を付与することができる。CVD-SiC層の厚さが、1000μm以下であると、SiCウェハから得られるSiC半導体のON抵抗を小さくすることができる。
The thickness of the CVD-SiC layer is preferably 50 to 1000 μm.
When the thickness of the CVD-SiC layer is 50 μm or more, sufficient mechanical strength can be imparted to the SiC semiconductor obtained from the SiC wafer. When the thickness of the CVD-SiC layer is 1000 μm or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be reduced.
 さらに望ましいCVD-SiC層の厚さは100~500μmである。CVD-SiC層の厚さが、100μm以上であると、SiCウェハから得られるSiC半導体の強度をより強くすることができる。CVD-SiC層の厚さが、500μm以下であると、SiCウェハから得られるSiC半導体のON抵抗をより小さくすることができる。 A more desirable CVD-SiC layer thickness is 100 to 500 μm. When the thickness of the CVD-SiC layer is 100 μm or more, the strength of the SiC semiconductor obtained from the SiC wafer can be further increased. When the thickness of the CVD-SiC layer is 500 μm or less, the ON resistance of the SiC semiconductor obtained from the SiC wafer can be further reduced.
 前記SiCウェハの製造方法は、前記炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、前記ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることが好ましい。 The method for producing the SiC wafer has a region without a glassy carbon layer on a side wall or an edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer. It is preferable.
 炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることにより、SiC半導体の得られるSiCウェハの中央部分はSiC基材から剥離しやすく、周辺部分はSiC基材から剥離しにくくすることができる。SiC基材を露出させる面積、領域を適宜設定することにより単結晶被覆基板からSiCウェハの剥離しやすさを容易に制御することができる。 An SiC wafer from which a SiC semiconductor is obtained by having a region without a glassy carbon layer on the side wall or edge of the silicon carbide composite substrate, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer The central portion of the substrate can be easily peeled from the SiC base material, and the peripheral portion can be made difficult to peel from the SiC base material. The ease of peeling of the SiC wafer from the single crystal-coated substrate can be easily controlled by appropriately setting the area and region where the SiC base material is exposed.
 このようにSiC基材の一部を露出させて炭化珪素複合基板を形成することによりSiCウェハの製造工程の途中でSiC基材がSiCウェハと分離してしまうことを防止することができる。 In this way, by forming a silicon carbide composite substrate by exposing a part of the SiC base material, it is possible to prevent the SiC base material from being separated from the SiC wafer during the manufacturing process of the SiC wafer.
 また、SiCウェハを分離する第2剥離工程の前に、単結晶上にSiC半導体を形成することができる。具体的には、単結晶被覆基板の単結晶の上にSiC半導体を形成した後にダイシングし、SiC半導体を得ることができる。このとき、SiC半導体を構成するCVD-SiC層は、ガラス状炭素層を介してSiC基材と接合されているので容易に剥離することができる。 Also, before the second peeling step for separating the SiC wafer, a SiC semiconductor can be formed on the single crystal. Specifically, a SiC semiconductor can be obtained by forming a SiC semiconductor on a single crystal of a single crystal-coated substrate and then dicing. At this time, the CVD-SiC layer constituting the SiC semiconductor is easily peeled off because it is bonded to the SiC substrate via the glassy carbon layer.
 ガラス状炭素層を構成するガラス状炭素は、フェノール樹脂、フラン樹脂、イミド樹脂などの樹脂を含有した溶剤を炭素化して得ることができる。溶剤であるため、基材上へ塗布後の炭化処理する際に溶剤は揮発して、ガラス状炭素層を形成する。そのため、ガラス状炭素層はクラックを生じずに薄くなる。また、基材に使用するSiCは、特性のばらつきが小さいため、前記ガラス状炭素層形成面の平坦度がよい状態となり、薄く形成されたガラス状炭素層上面の平坦度も良いものとなる。ガラス状炭素層の厚さは、0.1~50μmに設定するのが好ましく、0.3~10μmがさらに好ましく、0.5~5μmが特に好ましい。ガラス状炭素層の厚さが0.1μmよりも小さい場合、ガラス状炭素層の面状態は基材の面状態(凹凸面)の影響を大きく受ける。そのため、CVD-SiC層の厚みは、面状態に影響を受けない位まで大きくしなければならず、面状態が悪いと平坦に鏡面研磨できなくなってしまう。また、50μmを超える場合、ガラス状炭素層の厚みによる硬化収縮や線膨張差の影響が大きくなるため、CVD-SiC層に対して硬化収縮や線膨張差による応力を加え、最悪の場合、CVD-SiC層を破壊してしまう。 The glassy carbon constituting the glassy carbon layer can be obtained by carbonizing a solvent containing a resin such as a phenol resin, a furan resin, or an imide resin. Since it is a solvent, the solvent volatilizes during the carbonization treatment after coating on the substrate to form a glassy carbon layer. Therefore, the glassy carbon layer is thin without causing cracks. Further, since SiC used for the base material has little variation in characteristics, the flatness of the glassy carbon layer forming surface is good, and the flatness of the thinly formed glassy carbon layer is also good. The thickness of the glassy carbon layer is preferably set to 0.1 to 50 μm, more preferably 0.3 to 10 μm, and particularly preferably 0.5 to 5 μm. When the thickness of the glassy carbon layer is smaller than 0.1 μm, the surface state of the glassy carbon layer is greatly affected by the surface state (uneven surface) of the substrate. Therefore, the thickness of the CVD-SiC layer must be increased to such an extent that it is not affected by the surface state. If the surface state is poor, the mirror polishing cannot be performed flatly. If the thickness exceeds 50 μm, the effect of curing shrinkage and linear expansion difference due to the thickness of the glassy carbon layer is increased. Therefore, stress due to curing shrinkage and linear expansion difference is applied to the CVD-SiC layer. -The SiC layer is destroyed.
 ガラス状炭素層の製造方法としては種々のものがあるが、次の様なものがある。原料(ポリイミドやフェノール樹脂などの熱硬化樹脂)を、希釈液(ジメチルアセトアミド)で薄めた後、基材上にスピンコートやスプレー、ディップにて液を塗布後、120℃の温度下で10分乾燥する。その後、0.15Torr以下の真空環境のもと、1000℃の温度下で1時間焼成する。 There are various methods for producing a glassy carbon layer, and the following methods are available. After diluting the raw material (thermosetting resin such as polyimide or phenolic resin) with a dilute solution (dimethylacetamide), apply the solution on the substrate by spin coating, spraying, or dipping, and then at a temperature of 120 ° C. for 10 minutes. dry. Thereafter, baking is performed for 1 hour at a temperature of 1000 ° C. under a vacuum environment of 0.15 Torr or less.
 SiC半導体の形成は、パターン形性、酸化、拡散、CVD、イオン注入、CMP、電極形性、エッチング、パターン形性、電極形性、フォトレジスト塗布など、目的とするSiC半導体に応じて適宜選択することができる。 The formation of the SiC semiconductor is appropriately selected according to the desired SiC semiconductor, such as pattern shape, oxidation, diffusion, CVD, ion implantation, CMP, electrode shape, etching, pattern shape, electrode shape, and photoresist coating. can do.
(実施例1)
 次に本発明に係る実施例1について説明する。図1は、本発明のSiCウェハの製造方法の製造工程を示し、S1は接合工程、S2は第1剥離工程、S3は第2剥離工程である。図2は、本発明の製造方法に記載された炭化珪素複合基板の一実施形態であり、(a)はオリエンテーションフラット8aを有し、(b)はその変形例である切り欠き(ノッチ)8bを有している。図3は、本発明の製造方法に記載された炭化珪素複合基板の一実施形態であり、(a)は、縁にガラス状炭素層の無い領域を有し、(b)は、側壁にガラス状炭素層の無い領域を有する変形例である。図3(a)は、SiC基材よりも直径の小さなガラス状炭素層を有し、ガラス状炭素層の外側では、SiC基材とCVD-SiC層とが接している。図3(b)は、SiC基材と同じ直径のガラス状炭素層を有しているが、SiC基材の側面には、ガラス状炭素層が形成されておらず、側面では、SiC基材とCVD-SiC層とが接している。
(Example 1)
Next, Example 1 according to the present invention will be described. FIG. 1 shows a manufacturing process of the SiC wafer manufacturing method of the present invention, where S1 is a bonding process, S2 is a first peeling process, and S3 is a second peeling process. FIG. 2 is one embodiment of a silicon carbide composite substrate described in the manufacturing method of the present invention, in which (a) has an orientation flat 8a, and (b) is a notch (notch) 8b which is a modification thereof. have. FIG. 3 is one embodiment of a silicon carbide composite substrate described in the production method of the present invention, wherein (a) has a region having no glassy carbon layer at the edge, and (b) is glass on the side wall. It is a modification which has an area | region without a carbon-like carbon layer. FIG. 3A shows a glassy carbon layer having a diameter smaller than that of the SiC substrate, and the SiC substrate and the CVD-SiC layer are in contact with each other outside the glassy carbon layer. FIG. 3B shows a glassy carbon layer having the same diameter as that of the SiC substrate, but no glassy carbon layer is formed on the side surface of the SiC substrate. And the CVD-SiC layer are in contact with each other.
<接合工程>
 炭化珪素複合基板6のSiC基材1は、直径φ150mm厚さ2mmの円盤状であり、縁にマーキングとなるオリエンテーションフラット8aが備えられている。オリエンテーションフラット8aの辺の長さは2cmである。SiC基材1の表面には、厚さが40μm、直径φ149mmのガラス状炭素層2が備えられている。すなわち、縁0.5mmはガラス状炭素層がなく、SiC基材がCVD-SiC層3と接している。すなわち、ガラス状炭素層2の外側はガラス状炭素層の無い領域9である。ガラス状炭素層の上に500μmの厚さのCVD-SiC層3が備えられている。すなわち、CVD-SiC層3の縁0.5mmは、ガラス状炭素層を介在することなく直接SiC基材上に形成されている。CVD-SiC層3の表面は研磨されたのち、RCA洗浄が行われている。RCA洗浄は市販のRCA洗浄液により行うことができる。
<Joint process>
SiC base material 1 of silicon carbide composite substrate 6 has a disk shape with a diameter of 150 mm and a thickness of 2 mm, and is provided with an orientation flat 8a serving as a marking at the edge. The length of the side of the orientation flat 8a is 2 cm. On the surface of SiC substrate 1, glassy carbon layer 2 having a thickness of 40 μm and a diameter of 149 mm is provided. That is, the edge 0.5 mm has no glassy carbon layer, and the SiC substrate is in contact with the CVD-SiC layer 3. That is, the outside of the glassy carbon layer 2 is a region 9 without a glassy carbon layer. A CVD-SiC layer 3 having a thickness of 500 μm is provided on the glassy carbon layer. That is, the edge 0.5 mm of the CVD-SiC layer 3 is directly formed on the SiC substrate without interposing a glassy carbon layer. After the surface of the CVD-SiC layer 3 is polished, RCA cleaning is performed. The RCA cleaning can be performed with a commercially available RCA cleaning solution.
 次に、オリエンテーションフラットを有する単結晶SiC基板4を準備し、その一方の面に水素イオンを注入する。水素イオンを注入することによりイオン注入層4aが形成される。水素イオンを注入した後、RCA洗浄が行われている。RCA洗浄は市販のRCA洗浄液により行うことができる。水素イオンが注入されていない部分はイオン非注入層4dとなっている。 Next, a single crystal SiC substrate 4 having an orientation flat is prepared, and hydrogen ions are implanted into one surface thereof. By implanting hydrogen ions, an ion implantation layer 4a is formed. After implanting hydrogen ions, RCA cleaning is performed. The RCA cleaning can be performed with a commercially available RCA cleaning solution. The portion where hydrogen ions are not implanted is an ion non-implanted layer 4d.
 次に単結晶SiC基板4のイオン注入層4aと、炭化珪素複合基板のCVD-SiC層3を接触させ、圧着することにより接合体7を得る。圧着の温度、圧力は特に限定されない。 Next, the ion-implanted layer 4a of the single crystal SiC substrate 4 and the CVD-SiC layer 3 of the silicon carbide composite substrate are brought into contact with each other and bonded to obtain a bonded body 7. There are no particular limitations on the temperature and pressure for pressure bonding.
 <第1剥離工程>
 得られた接合体7を加熱することにより、イオン注入層4aで分離する。イオン注入層4aは、水素イオンが注入されることにより脆くなっているので、イオン注入層4aの表面部分を剥離させることができる。図1において単結晶SiC基板側に残ったイオン注入層は4c、炭化珪素複合基板側に移動したイオン注入層は4bである。加熱の温度は特に限定されないが、400℃である。接合体は、接合体内部に発生する熱膨張差によって、イオン注入層部分で分離する。
<First peeling step>
The obtained bonded body 7 is heated to be separated by the ion implantation layer 4a. Since the ion implantation layer 4a becomes brittle when hydrogen ions are implanted, the surface portion of the ion implantation layer 4a can be peeled off. In FIG. 1, the ion implantation layer left on the single crystal SiC substrate side is 4c, and the ion implantation layer moved to the silicon carbide composite substrate side is 4b. The heating temperature is not particularly limited, but is 400 ° C. The joined body is separated at the ion implantation layer portion due to a difference in thermal expansion generated inside the joined body.
 <熱処理工程>
 SiC基材1とガラス状炭素層2とCVD-SiC層3とイオン注入層4bとからなる単結晶被覆基板5を熱処理する。熱処理は1200℃で10分間行う。この処理により、CVD-SiC層3とイオン注入層4bとの接合を強固にすることができる。
<Heat treatment process>
The single crystal coated substrate 5 composed of the SiC substrate 1, the glassy carbon layer 2, the CVD-SiC layer 3, and the ion implantation layer 4b is heat-treated. The heat treatment is performed at 1200 ° C. for 10 minutes. By this treatment, the bonding between the CVD-SiC layer 3 and the ion implantation layer 4b can be strengthened.
 <第2剥離工程>
 熱処理された単結晶被覆基板のオリエンテーションフラット部分から単結晶SiCウェハを剥離する。オリエンテーションフラット部分は、SiC基材1とCVD-SiC層3との間にガラス状炭素層2があるので容易に剥離することができる。
<Second peeling step>
The single crystal SiC wafer is peeled from the orientation flat portion of the heat-treated single crystal coated substrate. The orientation flat portion can be easily peeled off because the glassy carbon layer 2 is present between the SiC substrate 1 and the CVD-SiC layer 3.
(実施例2)
 次に本発明に係る実施例2について説明する。
 実施例2は、SiC半導体の製造方法であり、実施例1の熱処理工程と第2剥離工程との間に、半導体形成工程を有している。
(Example 2)
Next, a second embodiment according to the present invention will be described.
Example 2 is a manufacturing method of a SiC semiconductor, and includes a semiconductor formation process between the heat treatment process and the second peeling process of Example 1.
 第1剥離工程まで実施例1と同様に行い、単結晶被覆基板を得た後、SiC単結晶をエピタキシャル成長しSiCエピタキシャル層を形成する。更に、パターン形性、酸化、拡散、CVD、イオン注入、CMP、電極形性、エッチング、パターン形性、電極形性、フォトレジスト塗布によって目的のSiC半導体を得た後に、ダイシングによって、SiC半導体を切断する。切断されたSiC半導体は、SiC基材1とガラス状炭素層2を介して接しているので、ガラス状炭素層2とCVD-SiC層3との間で容易に分離することができる。 The process up to the first peeling step is performed in the same manner as in Example 1 to obtain a single crystal-coated substrate, and then an SiC single crystal is epitaxially grown to form an SiC epitaxial layer. Furthermore, after obtaining the desired SiC semiconductor by pattern formability, oxidation, diffusion, CVD, ion implantation, CMP, electrode formability, etching, pattern formability, electrode formability, and photoresist coating, the SiC semiconductor is formed by dicing. Disconnect. Since the cut SiC semiconductor is in contact with the SiC substrate 1 via the glassy carbon layer 2, it can be easily separated between the glassy carbon layer 2 and the CVD-SiC layer 3.
 図4は三つの炭化珪素複合基板のサンプル各々についての反りの観察結果を示す。図4(a)は、基材として第1の黒鉛基材を用いたサンプル、(b)は基材として第2の黒鉛基材を用いたサンプル、(c)は、基材として本実施形態のSiC基材1を用いたサンプルそれぞれの結果を示す。 FIG. 4 shows the observation results of warpage for each of the three silicon carbide composite substrate samples. 4A is a sample using the first graphite substrate as the substrate, FIG. 4B is a sample using the second graphite substrate as the substrate, and FIG. 4C is the embodiment as the substrate. The result of each sample using this SiC base material 1 is shown.
 本観察では所定の基準点から左右(XまたはY方向)50mmの範囲内における、当該基準点における面の高さからの反りの高さ(Z方向)を測定した。それぞれのサンプルについて、基材にガラス状炭素層を形成する前の反り1(基材の反り)、基材にガラス状炭素層を形成した後の反り2、さらにCVD-SiC層を形成した後の反り3(炭化珪素複合基板の反り)を測定し、プロットした。 In this observation, the height of the warp (Z direction) from the height of the surface at the reference point within a range of 50 mm on the left and right (X or Y direction) from the predetermined reference point was measured. For each sample, warp 1 before forming the glassy carbon layer on the substrate (warp of the substrate), warp 2 after forming the glassy carbon layer on the substrate, and further after forming the CVD-SiC layer Warp 3 (warp of the silicon carbide composite substrate) was measured and plotted.
 図4(a)および(b)の結果から、基材として第1の黒鉛基材を用いたサンプルは、第2の黒鉛基材を用いたサンプルよりも、炭化珪素複合基板としての反り(反り3)が小さいことが理解される。すなわち、基準点から50mmの位置において、第2の黒鉛基材を用いたサンプル(炭化珪素複合基板)の反りは約400μmなのに対し、第1の黒鉛基材を用いたサンプル(炭化珪素複合基板)の反りは10μmに抑えられており、黒鉛部材によって特性が大きく変化することがわかる。これは、黒鉛部材の製造過程における結晶成長の制御が難しいため、黒鉛部材の熱膨張などの特性にばらつきが生じてしまうことに起因する現象である。そのため、黒鉛部材を基材として選択すると、大きな特性のばらつきを考慮に入れた設計が必要となるため、結果としてガラス状炭素層やCVD-SiC層の厚みを大きくしなければならず、コストや生産効率の低下を招く。 From the results of FIGS. 4A and 4B, the sample using the first graphite substrate as the substrate is more warped (warped) as the silicon carbide composite substrate than the sample using the second graphite substrate. It is understood that 3) is small. That is, at a position 50 mm from the reference point, the warp of the sample using the second graphite base material (silicon carbide composite substrate) is about 400 μm, whereas the sample using the first graphite base material (silicon carbide composite substrate) The warpage is suppressed to 10 μm, and it can be seen that the characteristics greatly change depending on the graphite member. This is a phenomenon caused by variations in characteristics such as thermal expansion of the graphite member because it is difficult to control crystal growth in the manufacturing process of the graphite member. Therefore, when a graphite member is selected as the base material, a design that takes into account large variations in characteristics is required. As a result, the thickness of the glassy carbon layer or the CVD-SiC layer must be increased, resulting in cost and This leads to a decrease in production efficiency.
 また、図4(c)に示すように、基材として本実施形態のSiC基材1を用いることにより、炭化珪素複合基板としての反り(反り3)は、第1の黒鉛基材と同様に10μm以下に抑えられている。さらに、CVD-SiC層を形成する前の基材にガラス状炭素層を形成した後の反り(反り2)も、10μmに抑えられており、第1の黒鉛部材のサンプルの反り2に比べ、小さく抑えられている。 Moreover, as shown in FIG.4 (c), by using the SiC base material 1 of this embodiment as a base material, the curvature (warpage 3) as a silicon carbide composite substrate is the same as that of a 1st graphite base material. It is suppressed to 10 μm or less. Furthermore, the warp (warp 2) after forming the glassy carbon layer on the base material before forming the CVD-SiC layer is also suppressed to 10 μm, and compared to the warp 2 of the sample of the first graphite member, It is kept small.
 これは、SiC基材1を用いたサンプルでは、素材が共通するSiC基材1とCVD-SiC層3の間で熱膨張率差が小さく、かつSiC基材1が硬く曲げ弾性が大きいため、このように反りが抑制されているものと考えられる。また、SiCは黒鉛部材と比較すると、結晶による熱膨張などの特性ばらつきが小さく、さらには制御がしやすいため、設計が容易であり、CVD-SiC層を薄くできる。 This is because, in the sample using the SiC base material 1, the difference in thermal expansion coefficient between the SiC base material 1 and the CVD-SiC layer 3 having the same material is small, and the SiC base material 1 is hard and has high bending elasticity. Thus, it is thought that the warpage is suppressed. In addition, SiC has a smaller variation in characteristics such as thermal expansion due to crystals and is easier to control than a graphite member, so that the design is easy and the CVD-SiC layer can be made thin.
 本開示のSiCウェハの製造方法においては、炭化珪素複合基板に表面粗度の小さいガラス状炭素層が用いられているため、その上に形成されるCVD-SiC層との接合力は強いものとなる。さらに炭化珪素複合基板の反りは小さい。この結果、SiCウェハの製造工程において、イオン注入層を単結晶SiC基板から剥離し、単結晶被覆基板を得る第1剥離工程を安定的に行うことが可能となり、SiCウェハの製造効率を向上させることが可能となる。 In the SiC wafer manufacturing method of the present disclosure, since a glassy carbon layer having a small surface roughness is used for the silicon carbide composite substrate, the bonding strength with the CVD-SiC layer formed thereon is strong. Become. Further, the warp of the silicon carbide composite substrate is small. As a result, in the manufacturing process of the SiC wafer, the ion implantation layer can be peeled from the single crystal SiC substrate, and the first peeling process for obtaining the single crystal coated substrate can be stably performed, thereby improving the manufacturing efficiency of the SiC wafer. It becomes possible.
 本出願は、2014年7月8日出願の日本特許出願、特願2014-140564に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2014-140564 filed on July 8, 2014, the contents of which are incorporated herein by reference.
1 SiC基材
2 ガラス状炭素層
3 CVD-SiC層
4 単結晶SiC基板
4a、4b、4c イオン注入層
5 単結晶被覆基板
6 炭化珪素複合基板
7 接合体
8a オリエンテーションフラット
8b 切り欠き(ノッチ)
9 ガラス状炭素層の無い領域
DESCRIPTION OF SYMBOLS 1 SiC base material 2 Glassy carbon layer 3 CVD-SiC layer 4 Single crystal SiC substrate 4a, 4b, 4c Ion implantation layer 5 Single crystal coated substrate 6 Silicon carbide composite substrate 7 Joined body 8a Orientation flat 8b Notch
9 Area without glassy carbon layer

Claims (11)

  1.  SiC基材の表面にガラス状炭素層および前記ガラス状炭素層の上にCVD-SiC層を有する炭化珪素複合基板と、表面に水素イオンが注入されたイオン注入層を有する単結晶SiC基板とを準備する工程と、
     前記炭化珪素複合基板のCVD-SiC層と前記単結晶SiC基板のイオン注入層とを貼り合せ接合体を得る接合工程と、
     前記接合体を加熱し、前記イオン注入層を単結晶SiC基板から剥離し、単結晶被覆基板を得る第1剥離工程と、
     前記単結晶被覆基板のガラス状炭素層とCVD-SiC層とを剥離しSiCウェハを得る第2剥離工程と、
     からなるSiCウェハの製造方法。
    A silicon carbide composite substrate having a glassy carbon layer on the surface of the SiC substrate and a CVD-SiC layer on the glassy carbon layer, and a single crystal SiC substrate having an ion implantation layer in which hydrogen ions are implanted on the surface. A preparation process;
    A bonding step of bonding a CVD-SiC layer of the silicon carbide composite substrate and an ion implantation layer of the single crystal SiC substrate to obtain a bonded body;
    Heating the joined body, peeling the ion-implanted layer from the single-crystal SiC substrate, and obtaining a single-crystal-coated substrate;
    A second peeling step of peeling the glassy carbon layer and the CVD-SiC layer of the single crystal-coated substrate to obtain a SiC wafer;
    A method for producing a SiC wafer comprising:
  2.  前記炭化珪素複合基板は円盤であってその縁に方向を示すマーキングを有するともに、前記単結晶SiC基板は円盤であってその縁に方向を示すマーキングを有し、
     前記接合工程は前記炭化珪素複合基板と前記単結晶SiC基板とを、方向を示すマーキングを合わせて接合することを特徴とする請求項1に記載のSiCウェハの製造方法。
    The silicon carbide composite substrate is a disc and has a marking indicating a direction on the edge thereof, and the single crystal SiC substrate is a disc and has a marking indicating a direction on the edge,
    2. The method of manufacturing an SiC wafer according to claim 1, wherein in the bonding step, the silicon carbide composite substrate and the single crystal SiC substrate are bonded together with markings indicating directions.
  3.  前記マーキングは、オリエンテーションフラットまたは切り欠きであることを特徴とする請求項2に記載のSiCウェハの製造方法。 3. The SiC wafer manufacturing method according to claim 2, wherein the marking is an orientation flat or a notch.
  4.  前記SiCウェハの製造方法は、第1剥離工程のあとに、熱処理工程を更に有することを特徴とする請求項1~3のいずれか一項に記載のSiCウェハの製造方法。 4. The SiC wafer manufacturing method according to claim 1, further comprising a heat treatment step after the first peeling step.
  5.  前記CVD-SiC層の厚さは50~1000μmであることを特徴とする請求項1~4のいずれか一項に記載のSiCウェハの製造方法。 The method for producing an SiC wafer according to any one of claims 1 to 4, wherein the CVD-SiC layer has a thickness of 50 to 1000 µm.
  6.  前記炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、前記ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることを特徴とする請求項1~5のいずれか一項に記載のSiCウェハの製造方法。 2. The silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer. The method for producing an SiC wafer according to any one of claims 1 to 5.
  7.  請求項4に記載のSiCウェハの製造方法と、半導体形成工程とからなるSiC半導体の製造方法であって、前記半導体形成工程は、前記熱処理工程の後、前記第2剥離工程の前であるSiC半導体の製造方法。 5. A SiC semiconductor manufacturing method comprising the SiC wafer manufacturing method according to claim 4 and a semiconductor forming step, wherein the semiconductor forming step is performed after the heat treatment step and before the second peeling step. Semiconductor manufacturing method.
  8.  縁にマーキングを有する円盤であるSiC基材の表面に、順にガラス状炭素層、CVD-SiC層が積層されていることを特徴とする炭化珪素複合基板。 A silicon carbide composite substrate, wherein a glassy carbon layer and a CVD-SiC layer are sequentially laminated on the surface of a SiC base material which is a disk having a marking on an edge.
  9.  前記マーキングは、オリエンテーションフラットまたは切り欠きであることを特徴とする請求項8に記載の炭化珪素複合基板。 The silicon carbide composite substrate according to claim 8, wherein the marking is an orientation flat or a notch.
  10.  前記CVD-SiC層の厚さは50~1000μmであることを特徴とする請求項8または9に記載の炭化珪素複合基板。 10. The silicon carbide composite substrate according to claim 8, wherein a thickness of the CVD-SiC layer is 50 to 1000 μm.
  11.  前記炭化珪素複合基板の側壁または縁にガラス状炭素層の無い領域を有し、前記ガラス状炭素層の無い領域ではCVD-SiC層がSiC基材と接していることを特徴とする請求項8~10のいずれか一項に記載の炭化珪素複合基板。 9. The silicon carbide composite substrate has a region without a glassy carbon layer on a side wall or an edge thereof, and the CVD-SiC layer is in contact with the SiC substrate in the region without the glassy carbon layer. 11. The silicon carbide composite substrate according to any one of 1 to 10.
PCT/JP2015/069702 2014-07-08 2015-07-08 METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE WO2016006640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140564A JP6371142B2 (en) 2014-07-08 2014-07-08 SiC wafer manufacturing method, SiC semiconductor manufacturing method, and silicon carbide composite substrate
JP2014-140564 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016006640A1 true WO2016006640A1 (en) 2016-01-14

Family

ID=55064269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069702 WO2016006640A1 (en) 2014-07-08 2015-07-08 METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE

Country Status (2)

Country Link
JP (1) JP6371142B2 (en)
WO (1) WO2016006640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156193A1 (en) * 2022-02-18 2023-08-24 Soitec Composite structure and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591101A4 (en) 2017-03-02 2021-01-13 Shin-Etsu Chemical Co., Ltd. Silicon carbide substrate production method and silicon carbide substrate
FR3120737A1 (en) * 2021-03-09 2022-09-16 Soitec METHOD FOR MANUFACTURING A SEMICONDUCTOR STRUCTURE BASED ON SILICON CARBIDE AND INTERMEDIATE COMPOSITE STRUCTURE
CN117393422B (en) * 2023-12-11 2024-03-01 青禾晶元(天津)半导体材料有限公司 Method for manufacturing silicon carbide composite substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167830A (en) * 1996-12-16 1998-06-23 Toyo Tanso Kk Production of chemical vapor phase vapor deposited silicon carbide material
JP2005005708A (en) * 2003-06-11 2005-01-06 Soi Tec Silicon On Insulator Technologies Method for manufacturing heterogeneous structure
JP2009117533A (en) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd Manufacturing method of silicon carbide substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167830A (en) * 1996-12-16 1998-06-23 Toyo Tanso Kk Production of chemical vapor phase vapor deposited silicon carbide material
JP2005005708A (en) * 2003-06-11 2005-01-06 Soi Tec Silicon On Insulator Technologies Method for manufacturing heterogeneous structure
JP2009117533A (en) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd Manufacturing method of silicon carbide substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156193A1 (en) * 2022-02-18 2023-08-24 Soitec Composite structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016018890A (en) 2016-02-01
JP6371142B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
TWI795293B (en) Engineered substrate structure
TWI793755B (en) Engineered substrate structure for power and rf applications
KR20180033153A (en) Composite substrate and composite substrate manufacturing method
JP6319849B2 (en) Pseudo substrate with improved utilization efficiency of single crystal material
US6699770B2 (en) Method of making a hybride substrate having a thin silicon carbide membrane layer
KR101335713B1 (en) Process for producing laminated substrate and laminated substrate
WO2016006640A1 (en) METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE
JP6049571B2 (en) Method for manufacturing composite substrate having nitride semiconductor thin film
WO2015093550A1 (en) METHOD FOR MANUFACTURING SiC WAFER, METHOD FOR MANUFACTURING SiC SEMICONDUCTOR, AND GRAPHITE SILICON CARBIDE COMPOSITE SUBSTRATE
WO2016006641A1 (en) METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND GRAPHITE-SILICON CARBIDE COMPOSITE SUBSTRATE
KR101573812B1 (en) Method for Manufacturing SOI Wafer and SOI Wafer
KR20120112533A (en) Bonded wafer manufacturing method
JP2016146449A (en) Semiconductor device manufacturing method
JP2017139266A (en) Composite substrate, semiconductor device, and method of manufacturing them
CN113841223B (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JP2016508291A (en) Low temperature layer transfer method for manufacturing multilayer semiconductor devices
TW201546953A (en) A method of preparing a power electronic device
JP2011151267A (en) Method of manufacturing laminated wafer
CN117497477A (en) Composite film and preparation method thereof
CN117476831A (en) LED epitaxial wafer and preparation method thereof, LED chip and preparation method thereof
TW202406024A (en) Engineered substrate structure
JP2004259994A (en) Manufacturing method of substrate having film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818195

Country of ref document: EP

Kind code of ref document: A1