WO2016006445A1 - Doherty amplifier and radio communication device - Google Patents

Doherty amplifier and radio communication device Download PDF

Info

Publication number
WO2016006445A1
WO2016006445A1 PCT/JP2015/068184 JP2015068184W WO2016006445A1 WO 2016006445 A1 WO2016006445 A1 WO 2016006445A1 JP 2015068184 W JP2015068184 W JP 2015068184W WO 2016006445 A1 WO2016006445 A1 WO 2016006445A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
port
doherty
doherty amplifier
peak
Prior art date
Application number
PCT/JP2015/068184
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 丹後
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016006445A1 publication Critical patent/WO2016006445A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters

Definitions

  • the present invention relates to a Doherty amplifier and a wireless communication apparatus using the Doherty amplifier.
  • the ⁇ gain is a difference between the maximum value and the minimum value of the gain when an input signal in a predetermined frequency band is amplified.
  • Doherty amplifier As a power amplifier for realizing high efficiency, a Doherty type amplifier (hereinafter also referred to as “Doherty amplifier”) including a carrier amplifier and a peak amplifier is known (see, for example, Patent Document 1). .
  • the Doherty amplifier is configured so that the carrier amplifier operates in class AB or class B and the peak amplifier operates in class C. As a result, when the instantaneous power is low, the peak amplifier operation is stopped and only the carrier amplifier is operated to increase the efficiency. When the instantaneous power is high, both amplifiers operate, so the saturation power is increased while maintaining high efficiency. Can do.
  • An amplifying element used for a Doherty amplifier or the like is generally configured to obtain optimum amplification characteristics in a predetermined frequency band. For this reason, when a signal having a frequency outside the frequency band where the optimum amplification characteristic is obtained in the amplification element is amplified, deterioration of the amplification characteristic is inevitable.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a Doherty amplifier and a wireless communication apparatus capable of adjusting gain characteristics.
  • a Doherty amplifier includes a carrier amplifier, a peak amplifier, and a hybrid coupler that distributes an input signal to the carrier amplifier and the peak amplifier, and the hybrid coupler includes an input port to which the input signal is supplied.
  • a pair of output ports for outputting a pair of distributed signals having different phases to the carrier amplifier and the peak amplifier, and an isolation port, and a transmission path for transmitting the input signal to the isolation port
  • a termination device for terminating the isolation port with an impedance substantially different from the characteristic impedance is connected.
  • a wireless communication device includes the Doherty amplifier.
  • the gain characteristic can be adjusted.
  • a Doherty amplifier includes a carrier amplifier, a peak amplifier, and a hybrid coupler that distributes an input signal to the carrier amplifier and the peak amplifier, and the hybrid coupler is provided with the input signal.
  • a termination device for terminating the isolation port with an impedance substantially different from the characteristic impedance of the transmission line is connected.
  • the load impedance of the carrier amplifier when viewed from the output side of the Doherty amplifier is obtained by terminating the isolation port of the hybrid coupler with an impedance substantially different from the characteristic impedance of the transmission line.
  • the balance with the load impedance of the peak amplifier can be changed.
  • the gain characteristic as the Doherty amplifier can be adjusted. Note that “impedance substantially different from the characteristic impedance of the transmission line” differs from the gain characteristic when the isolation port is terminated with the characteristic impedance of the transmission line to the extent that the gain characteristic is changed. It is shown that the impedance is not equal to the impedance of the isolation port.
  • the terminator preferably includes a capacitive element having one end connected to the isolation port and the other end grounded.
  • the capacitance element preferably has a variable capacitance.
  • the termination device may include a resistance element having one end connected to the isolation port and the other end grounded.
  • the resistance value of the resistance element may be variable.
  • an acquisition unit that acquires state information indicating states of the carrier amplifier and the peak amplifier, and a capacitance of the capacitive element based on the state information, or a resistance value of the resistive element It is preferable to further include a control unit that adjusts.
  • the impedance for terminating the isolation port can be adjusted more appropriately according to the states of the carrier amplifier and the peak amplifier, and the gain characteristics as the Doherty amplifier can be adjusted more appropriately.
  • the state information is information indicating the temperatures of the carrier amplifier and the peak amplifier, or information indicating a usage period of the carrier amplifier and the peak amplifier.
  • wireless communication apparatus which concerns on other embodiment is provided with the amplification apparatus as described in said (1).
  • FIG. 1 is a block diagram illustrating a Doherty amplifier 1 according to an embodiment.
  • the Doherty amplifier 1 is used for a base station apparatus or the like in a mobile communication system, and is used for amplifying a communication signal.
  • the Doherty amplifier 1 includes a peak amplifier 2, a carrier amplifier 3, and a 90-degree hybrid coupler 4 that distributes an input signal to the amplifiers 2 and 3.
  • the 90-degree hybrid coupler 4 includes an input port, a pair of output ports, and an isolation port.
  • a peak amplifier 2 and a carrier amplifier 3 are connected to both output ports of the 90-degree hybrid coupler 4.
  • the input terminal Pin of the Doherty amplifier 1 is connected to the input port.
  • a termination device 5 for terminating the isolation port is connected to the isolation port.
  • the 90-degree hybrid coupler 4 distributes the input signal given from the input terminal Pin to the peak amplifier 2 and the carrier amplifier 3 with substantially equal power.
  • the signal distributed to the peak amplifier 2 is given a phase difference of about 90 degrees ( ⁇ / 4) with respect to the signal distributed to the carrier amplifier 3 by the 90-degree hybrid coupler 4.
  • the output signal of the peak amplifier 2 and the output signal of the carrier amplifier 3 are combined by the output combining unit 6 at the subsequent stage of these amplifiers 2 and 3.
  • the output combining unit 6 is connected to the output terminal Pout of the Doherty amplifier 1. Therefore, the signal combined by the output combining unit 6 is output from the output terminal Pout.
  • the peak amplifier 2 and the output combining unit 6 are connected by a line 7.
  • the carrier amplifier 3 and the output combining unit 6 are connected by a line 9.
  • the line 9 has a line length for providing a phase difference of ⁇ / 4 between the output signal of the peak amplifier 2 passing through the line 7 and the output signal of the carrier amplifier 3 passing through the line 9. Yes.
  • the carrier amplifier 3 and the peak amplifier 2 are configured using LD-MOSFETs (Lateral Diffusion Metal Oxide Semiconductor Field Effect Transistors) as amplifying elements.
  • LD-MOSFETs Longeral Diffusion Metal Oxide Semiconductor Field Effect Transistors
  • the carrier amplifier 3 is configured to operate as class AB or class B.
  • the peak amplifier 2 is configured to operate as a class C. Therefore, the carrier amplifier 3 always operates, and the peak amplifier 2 starts operating when the carrier amplifier 3 approaches the saturation state. As a result, when the instantaneous power is small, the operation of the peak amplifier 2 is stopped and only the carrier amplifier 3 is operated to increase the efficiency. When the instantaneous power is large, both amplifiers can be operated.
  • the saturation output level of the peak amplifier 2 is higher than the saturation output level of the carrier amplifier 3, and the Doherty amplifier 1 of this embodiment constitutes a so-called asymmetric Doherty amplifier. .
  • FIG. 2 is a circuit diagram showing an example of a circuit pattern when the Doherty amplifier 1 is formed on a substrate.
  • the above-described peak amplifier 2, carrier amplifier 3, 90-degree hybrid coupler 4, output synthesis unit 6, line 7 and line 9 are provided.
  • the 90-degree hybrid coupler 4 includes four ports 4a, 4b, 4c, and 4d.
  • the second port 4b is an input port to which the input terminal Pin is connected.
  • the third port 4c and the fourth port 4d constitute a pair of output ports that output a pair of distributed signals having different phases to the carrier amplifier 3 and the peak amplifier 2.
  • a matching circuit 16 is provided on the line 15 that connects the fourth port 4 d of the 90-degree hybrid coupler 4 and the peak amplifier 2.
  • a line 7 is connected to the output terminal 2 a of the peak amplifier 2 via a matching circuit 17. Therefore, the line 7 connects the output combining unit 6 and the output terminal 2 a of the peak amplifier 2 via the matching circuit 17.
  • a matching circuit 19 is provided on the line 18 connecting the third port 4 c of the 90-degree hybrid coupler 4 and the carrier amplifier 3.
  • the line 9 is connected to the output terminal 3 a of the carrier amplifier 3 via the matching circuit 20. Therefore, the line 9 connects the output combining unit 6 and the carrier amplifier 3 via the matching circuit 20.
  • the line 9 is a line for giving a phase difference of ⁇ / 4 between the output signal of the peak amplifier 2 passing through the line 7 and the output signal of the carrier amplifier 3 passing through the line 9. The length is secured.
  • the output synthesizer 6 and the output terminal Pout are connected by an output line 21 that performs impedance conversion.
  • the first port 4a is an isolation port, to which the above-described termination device 5 is connected.
  • FIG. 3 is a block diagram showing the configuration of the termination device 5.
  • the termination device 5 includes a resistor 5a and a capacitor 5b.
  • the resistor 5a has one end connected to the first port 4a of the 90-degree hybrid coupler 4 and the other end grounded.
  • the resistor 5a is preferably set to have a resistance value equal to or higher than the characteristic impedance set for the signal transmission path for transmitting the input signal or higher than the impedance when viewed from the outside of the first port 4a.
  • One end of the capacitor 5b is connected to the first port 4a of the 90-degree hybrid coupler 4, and the other end is grounded.
  • the first port 4a which is an isolation port
  • the termination device 5 of the Doherty amplifier 1 of the present embodiment connects the capacitor 5b as a capacitive element in addition to the resistor 5a, so that the first port 4a (isolation port) of the 90-degree hybrid coupler 4 is connected.
  • the gain characteristic of the Doherty amplifier 1 can be appropriately adjusted so that a stable gain can be obtained while the frequency band of the input signal is set to a wider band.
  • a stable gain can be obtained, and the maximum increase / decrease width of the gain change of the output signal when the input signal within the predetermined frequency band is amplified.
  • the ⁇ gain that is a value can be suppressed.
  • impedance substantially different from the characteristic impedance of the signal transmission path means that the gain characteristic changes with respect to the gain characteristic when the first port 4a is terminated with the characteristic impedance of the signal transmission path. It indicates that the impedances are different to the extent that they are generated, or impedances that do not match the impedance of the first port 4a.
  • the ⁇ gain can be suppressed.
  • the ⁇ gain can be more effective by appropriately setting the capacitance of the capacitor 5b.
  • the capacitance of the capacitor 5b is preferably set to 0.1 pF or more.
  • the capacitance of the capacitor 5b is preferably set to 3 pF or less.
  • the resistor 5a is normally terminated with a resistor having the same resistance value as the characteristic impedance of the signal transmission line. Therefore, as described above, the resistance value of the resistor 5a is set to be equal to or higher than the characteristic impedance of the signal transmission line. Is done. Further, in order to effectively obtain the ⁇ gain suppression effect, the resistance value of the resistor 5a is set to 500 ⁇ or less. Further, the resistance value of the resistor 5a is preferably set to 100 ⁇ or less, a more stable gain can be obtained in a wide band, and the ⁇ gain can be more effectively suppressed.
  • FIG. 4 is a block diagram illustrating a Doherty amplifier 1 according to another embodiment
  • FIG. 5 is a block diagram illustrating a configuration of a termination device 5 according to another embodiment.
  • the Doherty amplifier 1 according to the present embodiment includes temperature sensors 31 and 32 for detecting the temperatures of the peak amplifier 2 and the carrier amplifier 3, and the termination device 5 includes a varactor diode 5c instead of the capacitor 5b.
  • the present embodiment is different from the above-described embodiment in that a control unit 33 that applies a voltage to the varactor diode 5c is provided.
  • the temperature sensor 31 detects the temperature of the peak amplifier 2 and gives a detection signal indicating the detection result to the control unit 33.
  • the temperature sensor 32 detects the temperature of the carrier amplifier 3 and gives a detection signal indicating the detection result to the control unit 33.
  • These temperature sensors 31 and 32 constitute an acquisition unit that acquires information (state information) indicating the temperature of each amplifier 2 and 3, and the control unit 33 (FIG. 5) uses the acquired information as a detection signal. To give.
  • the termination device 5 of the present embodiment includes the above-described varactor diode 5 c and a control unit 33 in addition to the resistor 5 a.
  • the varactor diode 5c has a cathode side connected to the first port 4a of the 90-degree hybrid coupler 4 and an anode side grounded.
  • a capacitor 5d is connected between the first port 4a and the varactor diode 5c.
  • the control unit 33 is connected to a line connecting the capacitor 5d and the varactor diode 5c, and has a function of applying a voltage to the cathode side of the varactor diode 5c.
  • the capacitor 5d is provided so as to block the voltage applied by the control unit 33 from reaching the first port 4a, and is set to have a capacity that causes a short circuit in the frequency band of the input signal in the present embodiment. . Therefore, the capacitor 5d does not function as a capacitive element for the input signal. In this embodiment, the capacitor 5d is set to have a short-circuit capacity. However, a capacitor having a smaller capacity can be used together with the varactor diode 5c to form a capacitor element.
  • the control part 33 can adjust the capacity
  • the varactor diode 5 c constitutes a capacitive element provided in the termination device 5.
  • the control unit 33 can adjust the impedance of the termination device 5 that terminates the first port 4a by making the capacitance of the varactor diode 5c variable.
  • the control unit 33 adjusts the capacitance of the varactor diode 5c according to the temperatures of the peak amplifier 2 and the carrier amplifier 3 indicated by the detection signals from the temperature sensors 31 and 32.
  • the control unit 33 stores a table in which the temperatures of the peak amplifier 2 and the carrier amplifier 3 are associated with the voltage value applied to the varactor diode 5c.
  • the voltage value to be applied to the varactor diode 5c registered in this table is set based on the gain characteristics of the Doherty amplifier 1 with respect to changes in the temperature of the peak amplifier 2 and the carrier amplifier 3 that have been grasped in advance by experiments or the like. The value is set so as to suppress the ⁇ gain as much as possible at each temperature.
  • the control unit 33 When the detection signal is given from the temperature sensors 31 and 32, the control unit 33 refers to the table and sets a voltage value to be applied to the varactor diode 5c according to the contents registered in the table. The controller 33 applies the set voltage value to the varactor diode 5c. Thereby, the control unit 33 adjusts the impedance of the termination device 5 that terminates the first port 4a by adjusting the capacitance of the varactor diode 5c according to the temperature of the peak amplifier 2 and the carrier amplifier 3, and the ⁇ gain is The gain characteristic of the Doherty amplifier 1 can be adjusted so as to be suppressed.
  • the gain characteristics of the peak amplifier 2 and the carrier amplifier 3 change according to the temperature.
  • the temperature of the peak amplifier 2 and the carrier amplifier 3 is detected, and the Doherty amplifier 1 is detected according to the temperature. Therefore, even if the gain characteristics of the peak amplifier 2 and the carrier amplifier 3 change according to the temperature, the gain characteristics as the Doherty amplifier 1 can be adjusted appropriately.
  • information indicating temperature is acquired as information indicating the states of the peak amplifier 2 and the carrier amplifier 3, and the capacitance of the varactor diode 5c is adjusted based on this information so that the ⁇ gain is suppressed.
  • the control unit 33 can count the usage elapsed period, which is a period that has elapsed since the peak amplifier 2 and the carrier amplifier 3 are actually used, the control unit 33 As the information indicating the state of the amplifier 3, the impedance of the termination device 5 that terminates the first port 4a is adjusted by adjusting the capacitance of the varactor diode 5c based on the elapsed usage period, and the Doherty amplifier so that the ⁇ gain is suppressed.
  • the gain characteristic as 1 can be adjusted.
  • the gain characteristics of the peak amplifier 2 and the carrier amplifier 3 may change over time according to the usage elapsed period. According to the above configuration, even if the peak amplifier 2 and the carrier amplifier 3 change over time, The gain characteristic of the Doherty amplifier 1 can be appropriately adjusted so that a gain characteristic that suppresses the ⁇ gain according to the change with time can be obtained.
  • the resistor 5a has a fixed resistance value, but a variable resistor having a variable resistance value may be used. Further, when a variable resistor is used as the resistor 5a, the control unit 33 can be configured to control so as to adjust the resistance value of the resistor 5a. With this configuration, the range of adjustment can be expanded, and the ⁇ gain can be more effectively suppressed.
  • the termination device 5 includes the resistor circuit 5a and the capacitor 5b or the varactor diode 5c, and the first port 4a is terminated.
  • the termination device 5 includes the capacitor 5b.
  • the first port 4a may be terminated with an impedance substantially different from the characteristic impedance of the transmission line.
  • Fig.6 (a) it can also be set as the structure which the termination
  • control unit 33 controls the varactor diode 5c in the same manner as in the above embodiment, and adjusts the impedance of the termination device 5 that terminates the first port 4a, so that the gain characteristic as the Doherty amplifier 1 is more appropriate. Can be adjusted.
  • terminus device 5 can also be set as the structure which terminates the 1st port 4a by providing only the resistor 5a made into the impedance substantially different from the characteristic impedance of a transmission line. Further, as shown in FIG. 6B, the termination device 5 may be configured to terminate the first port 4a only by the variable resistance circuit 5e. Even in this case, the control unit 33 controls the resistance value of the variable resistance circuit 5e in accordance with the information indicating the states of the peak amplifier 2 and the carrier amplifier 3, and terminates the first port 4a, as in the above embodiment. By adjusting the impedance of the termination device 5, the gain characteristic of the Doherty amplifier 1 can be adjusted appropriately.
  • the Doherty amplifier 1 is configured by the peak amplifier 2 and the carrier amplifier 3 using an LD-MOSFET as an amplifying element is illustrated, but other amplifying elements such as GaN-HEMT (GaN-High) are exemplified. You may comprise the Doherty amplifier 1 using the amplifier which used Electron Mobility Transistor) as an amplification element. Further, in the present embodiment, the case where the Doherty amplifier 1 is configured as an asymmetric type Doherty amplifier is illustrated, but even when the Doherty amplifier 1 is configured as a symmetric type Doherty amplifier, the above-described termination device 5 is used to suppress ⁇ gain. be able to.
  • the resistor 5a of Comparative Example 1 was set to the same value as the characteristic impedance (50 ⁇ ) set for the signal transmission path of a general communication device.
  • the impedance at which the termination device 5 terminates the first port 4a by changing the resistance value of the resistor 5a or connecting the capacitor 5b is the transmission line.
  • the impedance was set to be different from the characteristic impedance (50 ⁇ ).
  • FIG. 7 is a graph showing an example of the result of the evaluation test.
  • the horizontal axis represents the frequency of the input signal
  • the vertical axis represents the gain of the output signal.
  • solid line A indicates Example 1
  • broken line B indicates Example 2
  • dashed-dotted line C indicates Example 3
  • broken line D indicates Example 4
  • alternate long and two short dashes line E indicates Comparative Example 1.
  • the signal gain was determined as follows. Gain of output signal of embodiment 1 Position m4: 13.420 dB Position m5: 12.513 dB Position m6: 10.994 dB
  • each of the first to third embodiments can adjust the gain characteristic of the Doherty amplifier so as to obtain a stable gain in a wide frequency range as compared with the first comparative example.
  • Example 4 the gain characteristic is different from that in Comparative Example 1. From this result, it can be seen that the Doherty amplifier of this embodiment can adjust the gain characteristic as the Doherty amplifier.
  • the Doherty amplifier 1 by terminating the first port 4a (isolation port) of the 90-degree hybrid coupler 4 with an impedance different from the characteristic impedance of the transmission line, the Doherty amplifier 1 The gain characteristics can be adjusted, and even if the frequency band of the input signal is set to a wider band, it can be adjusted to suppress the ⁇ gain, and it has been confirmed that a stable gain can be obtained. .
  • an input signal having a frequency ranging from 2.5 GHz to 2.9 GHz was evaluated. For example, an input signal having a frequency band different from that of the evaluation test such as a signal having a lower frequency band was amplified. Even so, the Doherty amplifier of the present embodiment can adjust the gain characteristics as described above.

Abstract

A Doherty amplifier (1) is provided with a carrier amplifier (3), a peak amplifier (2), and a 90-degree hybrid coupler (4) which divides an input signal between the carrier amplifier (3) and the peak amplifier (2). The 90-degree hybrid coupler (4) is provided with an input port to which the input signal is given, a pair of output ports which output a pair of divided signals having different phases from each other to the carrier amplifier (3) and the peak amplifier (2), and a first port (4a) which is an isolation port. A terminating device (5) which terminates the first port (4a) at an impedance substantially different from the characteristic impedance of a signal transmission path is connected to the first port (4a).

Description

ドハティ増幅器及び無線通信装置Doherty amplifier and radio communication apparatus
 本発明は、ドハティ増幅器及びこれを用いた無線通信装置に関するものである。 The present invention relates to a Doherty amplifier and a wireless communication apparatus using the Doherty amplifier.
 近年、携帯電話等の移動無線通信システムでは広帯域化が進められており、電力増幅器においても、広い周波数帯域における高効率化や低歪特性、さらにΔゲインの抑圧等、広帯域での増幅特性の向上がより望まれている。
 ここで、Δゲインとは、所定周波数帯域の入力信号を増幅したときにおける利得の最大値と最小値との差である。
In recent years, mobile wireless communication systems such as mobile phones have been widened, and power amplifiers have improved wideband amplification characteristics such as high efficiency and low distortion characteristics over a wide frequency band, and Δ gain suppression. Is more desirable.
Here, the Δ gain is a difference between the maximum value and the minimum value of the gain when an input signal in a predetermined frequency band is amplified.
 高効率化を実現するための電力増幅器としては、キャリア増幅器とピーク増幅器とを備えているドハティ型の増幅器(以下、「ドハティ増幅器」ともいう)が知られている(例えば、特許文献1参照)。 As a power amplifier for realizing high efficiency, a Doherty type amplifier (hereinafter also referred to as “Doherty amplifier”) including a carrier amplifier and a peak amplifier is known (see, for example, Patent Document 1). .
 上記ドハティ増幅器は、キャリア増幅器をAB級又はB級で動作させ、ピーク増幅器をC級で動作させるように構成されている。これによって、瞬時電力が小さいときにはピーク増幅器の動作を停止させるとともにキャリア増幅器のみを動作させて効率を高め、瞬時電力が大きいときには両増幅器が動作するので高効率を維持しつつ飽和電力を大きくすることができる。 The Doherty amplifier is configured so that the carrier amplifier operates in class AB or class B and the peak amplifier operates in class C. As a result, when the instantaneous power is low, the peak amplifier operation is stopped and only the carrier amplifier is operated to increase the efficiency. When the instantaneous power is high, both amplifiers operate, so the saturation power is increased while maintaining high efficiency. Can do.
特開2013-26658号公報JP 2013-26658 A
 ドハティ増幅器等に用いる増幅素子は、一般に、所定の周波数帯域において最適な増幅特性が得られるように構成されている。このため、増幅素子において最適な増幅特性が得られる周波数帯域から外れた周波数の信号を増幅した場合には、その増幅特性の悪化は避けられない。 An amplifying element used for a Doherty amplifier or the like is generally configured to obtain optimum amplification characteristics in a predetermined frequency band. For this reason, when a signal having a frequency outside the frequency band where the optimum amplification characteristic is obtained in the amplification element is amplified, deterioration of the amplification characteristic is inevitable.
 よって、従来のドハティ増幅器では、入力信号の周波数帯域をより広帯域に設定しようとしても、増幅素子が有する増幅特性に起因して、要求されるΔゲインを満たすことが困難になる等、ドハティ増幅器として最適なゲイン特性が得られないという問題を有していた。 Therefore, in the conventional Doherty amplifier, even if it is intended to set the frequency band of the input signal to be wider, it is difficult to satisfy the required Δ gain due to the amplification characteristics of the amplification element, etc. There has been a problem that an optimum gain characteristic cannot be obtained.
 本発明はこのような事情に鑑みてなされたものであり、ゲイン特性を調整することができるドハティ増幅器及び無線通信装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a Doherty amplifier and a wireless communication apparatus capable of adjusting gain characteristics.
 一実施形態に係るドハティ増幅器は、キャリア増幅器と、ピーク増幅器と、入力信号を前記キャリア増幅器及びピーク増幅器に分配するハイブリッドカプラと、を備え、前記ハイブリッドカプラは、前記入力信号が与えられる入力ポートと、互いに位相が異なる一対の分配信号を前記キャリア増幅器及びピーク増幅器に出力する一対の出力ポートと、アイソレーションポートと、を備え、前記アイソレーションポートには、前記入力信号を伝送するための伝送路の特性インピーダンスとは実質的に異なるインピーダンスで前記アイソレーションポートを終端する終端装置が接続されている。 A Doherty amplifier according to an embodiment includes a carrier amplifier, a peak amplifier, and a hybrid coupler that distributes an input signal to the carrier amplifier and the peak amplifier, and the hybrid coupler includes an input port to which the input signal is supplied. A pair of output ports for outputting a pair of distributed signals having different phases to the carrier amplifier and the peak amplifier, and an isolation port, and a transmission path for transmitting the input signal to the isolation port A termination device for terminating the isolation port with an impedance substantially different from the characteristic impedance is connected.
 また、他の実施形態に係る無線通信装置は、上記ドハティ増幅器を備えている。 In addition, a wireless communication device according to another embodiment includes the Doherty amplifier.
 本発明によれば、ゲイン特性を調整することができる。 According to the present invention, the gain characteristic can be adjusted.
一実施形態に係るドハティ増幅器を示すブロック図である。It is a block diagram which shows the Doherty amplifier which concerns on one Embodiment. ドハティ増幅器を基板上に形成したときの回路パターンの一例を示す回路図である。It is a circuit diagram showing an example of a circuit pattern when a Doherty amplifier is formed on a substrate. 終端装置の構成を示すブロック図である。It is a block diagram which shows the structure of a termination device. 他の実施形態に係るドハティ増幅器を示すブロック図である。It is a block diagram which shows the Doherty amplifier which concerns on other embodiment. 他の実施形態に係る終端装置の構成を示すブロック図である。It is a block diagram which shows the structure of the termination | terminus apparatus which concerns on other embodiment. さらに他の実施形態に係る終端装置の構成を示すブロック図である。It is a block diagram which shows the structure of the termination | terminus apparatus which concerns on other embodiment. 評価試験の結果の一例を示すグラフである。It is a graph which shows an example of the result of an evaluation test.
[実施形態の説明]
 広帯域の入力信号に対して安定した増幅特性を得ることができるドハティ増幅器についての研究の中で、入力信号をキャリア増幅器及びピーク増幅器に分配するハイブリッドカプラに着目し、通常は終端されるハイブリッドカプラのアイソレーションポートの設定について検討が行われた。
 その結果、アイソレーションポートに容量素子を接続したりしてその終端部分の特性インピーダンスを調整すれば、当該ドハティ増幅器に用いられている増幅素子として最適な増幅特性が得られる周波数帯域から外れた周波数の信号を入力したとしても、良好なゲイン特性が得られるように調整することができることを見出した。
 以下の実施形態は、上記知見に基づいて成されたものである。
[Description of Embodiment]
In research on Doherty amplifiers that can obtain stable amplification characteristics for wideband input signals, we focused on hybrid couplers that distribute input signals to carrier amplifiers and peak amplifiers. The isolation port setting was studied.
As a result, by connecting a capacitive element to the isolation port and adjusting the characteristic impedance of the terminal part, the frequency deviates from the frequency band where the optimum amplification characteristic can be obtained as the amplification element used in the Doherty amplifier. It has been found that even if the above signal is input, it can be adjusted so as to obtain a good gain characteristic.
The following embodiments have been made based on the above findings.
 まず最初に実施形態の内容を列記して説明する。
(1)一実施形態に係るドハティ増幅器は、キャリア増幅器と、ピーク増幅器と、入力信号を前記キャリア増幅器及びピーク増幅器に分配するハイブリッドカプラと、を備え、前記ハイブリッドカプラは、前記入力信号が与えられる入力ポートと、互いに位相が異なる一対の分配信号を前記キャリア増幅器及びピーク増幅器に出力する一対の出力ポートと、アイソレーションポートと、を備え、前記アイソレーションポートには、前記入力信号を伝送するための伝送路の特性インピーダンスとは実質的に異なるインピーダンスで前記アイソレーションポートを終端する終端装置が接続されている。
First, the contents of the embodiment will be listed and described.
(1) A Doherty amplifier according to an embodiment includes a carrier amplifier, a peak amplifier, and a hybrid coupler that distributes an input signal to the carrier amplifier and the peak amplifier, and the hybrid coupler is provided with the input signal. An input port; a pair of output ports for outputting a pair of distributed signals having different phases to the carrier amplifier and the peak amplifier; and an isolation port; and transmitting the input signal to the isolation port A termination device for terminating the isolation port with an impedance substantially different from the characteristic impedance of the transmission line is connected.
 上記構成のドハティ増幅器によれば、ハイブリッドカプラのアイソレーションポートを伝送路の特性インピーダンスとは実質的に異なるインピーダンスで終端することによって、当該ドハティ増幅器の出力側からみたときのキャリア増幅器の負荷インピーダンスと、ピーク増幅器の負荷インピーダンスとのバランスを変更することができる。この結果、ドハティ増幅器としてのゲイン特性を調整することができる。
 なお、「伝送路の特性インピーダンスとは実質的に異なるインピーダンス」とは、伝送路の特性インピーダンスでアイソレーションポートを終端した場合のゲイン特性に対して、そのゲイン特性に変化を生じさせる程度に異なっているインピーダンスであること、又は、アイソレーションポートのインピーダンスに対して整合しないインピーダンスであることを示している。
According to the Doherty amplifier configured as described above, the load impedance of the carrier amplifier when viewed from the output side of the Doherty amplifier is obtained by terminating the isolation port of the hybrid coupler with an impedance substantially different from the characteristic impedance of the transmission line. The balance with the load impedance of the peak amplifier can be changed. As a result, the gain characteristic as the Doherty amplifier can be adjusted.
Note that “impedance substantially different from the characteristic impedance of the transmission line” differs from the gain characteristic when the isolation port is terminated with the characteristic impedance of the transmission line to the extent that the gain characteristic is changed. It is shown that the impedance is not equal to the impedance of the isolation port.
(2)上記ドハティ増幅器において、前記終端装置は、一端が前記アイソレーションポートに接続され他端が接地された容量素子を備えていることが好ましい。
(3)この場合、前記容量素子は、容量が可変であることが好ましい。これによって、アイソレーションポートを終端するインピーダンスを適切に調整でき、ドハティ増幅器としてのゲイン特性を適切に調整することができる。
(2) In the Doherty amplifier, the terminator preferably includes a capacitive element having one end connected to the isolation port and the other end grounded.
(3) In this case, the capacitance element preferably has a variable capacitance. Thereby, the impedance that terminates the isolation port can be adjusted appropriately, and the gain characteristic as the Doherty amplifier can be adjusted appropriately.
(4)また、上記ドハティ増幅器において、前記終端装置は、一端が前記アイソレーションポートに接続され他端が接地された抵抗素子を備えていてもよい。
(5)また、前記抵抗素子は、抵抗値が可変であってもよい。これによって、アイソレーションポートを終端するインピーダンスを適切に調整でき、ドハティ増幅器としてのゲイン特性を適切に調整することができる。
(4) In the Doherty amplifier, the termination device may include a resistance element having one end connected to the isolation port and the other end grounded.
(5) The resistance value of the resistance element may be variable. Thereby, the impedance that terminates the isolation port can be adjusted appropriately, and the gain characteristic as the Doherty amplifier can be adjusted appropriately.
(6)また、上記ドハティ増幅器において、前記キャリア増幅器及び前記ピーク増幅器の状態を示す状態情報を取得する取得部と、前記状態情報に基づいて前記容量素子の容量、又は、前記抵抗素子の抵抗値を調整する制御部と、をさらに備えていることが好ましい。
 この場合、キャリア増幅器及びピーク増幅器の状態に応じてアイソレーションポートを終端するインピーダンスをより適切に調整することができ、ドハティ増幅器としてのゲイン特性をより適切に調整することができる。
(7)なお、前記状態情報は、前記キャリア増幅器及び前記ピーク増幅器の温度を示す情報、又は前記キャリア増幅器及び前記ピーク増幅器の使用経過期間を示す情報であることが好ましい。
(6) In the Doherty amplifier, an acquisition unit that acquires state information indicating states of the carrier amplifier and the peak amplifier, and a capacitance of the capacitive element based on the state information, or a resistance value of the resistive element It is preferable to further include a control unit that adjusts.
In this case, the impedance for terminating the isolation port can be adjusted more appropriately according to the states of the carrier amplifier and the peak amplifier, and the gain characteristics as the Doherty amplifier can be adjusted more appropriately.
(7) It is preferable that the state information is information indicating the temperatures of the carrier amplifier and the peak amplifier, or information indicating a usage period of the carrier amplifier and the peak amplifier.
(8)また、他の実施形態に係る無線通信装置は、上記(1)に記載の増幅装置を備えている。 (8) Moreover, the radio | wireless communication apparatus which concerns on other embodiment is provided with the amplification apparatus as described in said (1).
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
〔1.全体構成について〕
 図1は、一実施形態に係るドハティ増幅器1を示すブロック図である。このドハティ増幅器1は、移動体通信システムにおける基地局装置などに用いられ、通信信号の増幅を行うために用いられる。
[Details of the embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
[1. (Overall configuration)
FIG. 1 is a block diagram illustrating a Doherty amplifier 1 according to an embodiment. The Doherty amplifier 1 is used for a base station apparatus or the like in a mobile communication system, and is used for amplifying a communication signal.
 ドハティ増幅器1は、ピーク増幅器2と、キャリア増幅器3と、これら増幅器2、3に入力信号を分配する90度ハイブリッドカプラ4とを備えている。
 90度ハイブリッドカプラ4は、入力ポートと、一対の出力ポートと、アイソレーションポートとを備えている。
 90度ハイブリッドカプラ4の両出力ポートには、ピーク増幅器2及びキャリア増幅器3が接続されている。また、入力ポートにはドハティ増幅器1の入力端Pinが接続されている。アイソレーションポートには、当該アイソレーションポートを終端するための終端装置5が接続されている。これにより、90度ハイブリッドカプラ4は、入力端Pinから与えられる入力信号を、ピーク増幅器2及びキャリア増幅器3のそれぞれに対してほぼ等しい電力で分配する。
 また、ピーク増幅器2に分配される信号には、90度ハイブリッドカプラ4によって、キャリア増幅器3に分配する信号に対して約90度(λ/4)の位相差が与えられる。
The Doherty amplifier 1 includes a peak amplifier 2, a carrier amplifier 3, and a 90-degree hybrid coupler 4 that distributes an input signal to the amplifiers 2 and 3.
The 90-degree hybrid coupler 4 includes an input port, a pair of output ports, and an isolation port.
A peak amplifier 2 and a carrier amplifier 3 are connected to both output ports of the 90-degree hybrid coupler 4. Further, the input terminal Pin of the Doherty amplifier 1 is connected to the input port. A termination device 5 for terminating the isolation port is connected to the isolation port. Thereby, the 90-degree hybrid coupler 4 distributes the input signal given from the input terminal Pin to the peak amplifier 2 and the carrier amplifier 3 with substantially equal power.
The signal distributed to the peak amplifier 2 is given a phase difference of about 90 degrees (λ / 4) with respect to the signal distributed to the carrier amplifier 3 by the 90-degree hybrid coupler 4.
 ピーク増幅器2の出力信号と、キャリア増幅器3の出力信号とは、これら増幅器2、3後段の出力合成部6によって合成される。出力合成部6は、ドハティ増幅器1の出力端Poutに接続されている。よって、出力合成部6によって合成された信号は、出力端Poutから出力される。 The output signal of the peak amplifier 2 and the output signal of the carrier amplifier 3 are combined by the output combining unit 6 at the subsequent stage of these amplifiers 2 and 3. The output combining unit 6 is connected to the output terminal Pout of the Doherty amplifier 1. Therefore, the signal combined by the output combining unit 6 is output from the output terminal Pout.
 ピーク増幅器2と、出力合成部6とは、線路7によって接続されている。
 また、キャリア増幅器3と、出力合成部6とは、線路9によって接続されている。
 線路9には、線路7を通過するピーク増幅器2の出力信号と、線路9を通過するキャリア増幅器3の出力信号との間に、λ/4の位相差を与えるための線路長が確保されている。
The peak amplifier 2 and the output combining unit 6 are connected by a line 7.
The carrier amplifier 3 and the output combining unit 6 are connected by a line 9.
The line 9 has a line length for providing a phase difference of λ / 4 between the output signal of the peak amplifier 2 passing through the line 7 and the output signal of the carrier amplifier 3 passing through the line 9. Yes.
 キャリア増幅器3及びピーク増幅器2は、増幅素子としてLD-MOSFET(Lateral Diffusion Metal Oxide Semiconductor Field Effect Transistor)を用いて構成されている。 The carrier amplifier 3 and the peak amplifier 2 are configured using LD-MOSFETs (Lateral Diffusion Metal Oxide Semiconductor Field Effect Transistors) as amplifying elements.
 キャリア増幅器3はAB級又はB級として動作するように構成されている。また、ピーク増幅器2はC級として動作するように構成されている。
 よって、キャリア増幅器3は常時動作し、ピーク増幅器2はキャリア増幅器3が飽和状態に近づいた段階で動作を開始する。この結果、瞬時電力が小さいときにはピーク増幅器2の動作を停止させるとともにキャリア増幅器3のみを動作させて効率を高め、瞬時電力が大きいときには両増幅器を動作させることができる。
The carrier amplifier 3 is configured to operate as class AB or class B. The peak amplifier 2 is configured to operate as a class C.
Therefore, the carrier amplifier 3 always operates, and the peak amplifier 2 starts operating when the carrier amplifier 3 approaches the saturation state. As a result, when the instantaneous power is small, the operation of the peak amplifier 2 is stopped and only the carrier amplifier 3 is operated to increase the efficiency. When the instantaneous power is large, both amplifiers can be operated.
 なお、本実施形態では、ピーク増幅器2の飽和出力レベルが、キャリア増幅器3の飽和出力レベルよりも高くなっており、本実施形態のドハティ増幅器1は、いわゆる非対称型のドハティ増幅器を構成している。 In this embodiment, the saturation output level of the peak amplifier 2 is higher than the saturation output level of the carrier amplifier 3, and the Doherty amplifier 1 of this embodiment constitutes a so-called asymmetric Doherty amplifier. .
 図2は、ドハティ増幅器1を基板上に形成したときの回路パターンの一例を示す回路図である。
 図中、基板B上には、上述のピーク増幅器2、キャリア増幅器3、90度ハイブリッドカプラ4、出力合成部6、線路7、及び線路9が設けられている。
FIG. 2 is a circuit diagram showing an example of a circuit pattern when the Doherty amplifier 1 is formed on a substrate.
In the figure, on the substrate B, the above-described peak amplifier 2, carrier amplifier 3, 90-degree hybrid coupler 4, output synthesis unit 6, line 7 and line 9 are provided.
 90度ハイブリッドカプラ4は、4つのポート4a、4b、4c、4dを備えている。これらポートの内、第2ポート4bは、入力ポートであり、入力端Pinが接続されている。4つのポートの内、第3ポート4cと第4ポート4dは、互いに位相が異なる一対の分配信号をキャリア増幅器3及びピーク増幅器2に出力する一対の出力ポートを構成している。 The 90-degree hybrid coupler 4 includes four ports 4a, 4b, 4c, and 4d. Among these ports, the second port 4b is an input port to which the input terminal Pin is connected. Of the four ports, the third port 4c and the fourth port 4d constitute a pair of output ports that output a pair of distributed signals having different phases to the carrier amplifier 3 and the peak amplifier 2.
 90度ハイブリッドカプラ4の第4ポート4dとピーク増幅器2とを繋ぐ線路15には、整合回路16が設けられている。
 また、ピーク増幅器2の出力端2aには、整合回路17を介して線路7が接続されている。よって、線路7は整合回路17を介して出力合成部6とピーク増幅器2の出力端2aとを繋いでいる。
 90度ハイブリッドカプラ4の第3ポート4cとキャリア増幅器3とを繋ぐ線路18には、整合回路19が設けられている。
 また、キャリア増幅器3の出力端3aには、整合回路20を介して線路9が接続されている。よって、線路9は整合回路20を介して出力合成部6とキャリア増幅器3とを繋いでいる。線路9には、上述したように、線路7を通過するピーク増幅器2の出力信号と、線路9を通過するキャリア増幅器3の出力信号との間に、λ/4の位相差を与えるための線路長が確保されている。
A matching circuit 16 is provided on the line 15 that connects the fourth port 4 d of the 90-degree hybrid coupler 4 and the peak amplifier 2.
A line 7 is connected to the output terminal 2 a of the peak amplifier 2 via a matching circuit 17. Therefore, the line 7 connects the output combining unit 6 and the output terminal 2 a of the peak amplifier 2 via the matching circuit 17.
A matching circuit 19 is provided on the line 18 connecting the third port 4 c of the 90-degree hybrid coupler 4 and the carrier amplifier 3.
The line 9 is connected to the output terminal 3 a of the carrier amplifier 3 via the matching circuit 20. Therefore, the line 9 connects the output combining unit 6 and the carrier amplifier 3 via the matching circuit 20. As described above, the line 9 is a line for giving a phase difference of λ / 4 between the output signal of the peak amplifier 2 passing through the line 7 and the output signal of the carrier amplifier 3 passing through the line 9. The length is secured.
 出力合成部6と、出力端Poutとの間は、インピーダンス変換を行う出力ライン21によって接続されている。 The output synthesizer 6 and the output terminal Pout are connected by an output line 21 that performs impedance conversion.
 また、90度ハイブリッドカプラ4において、第1ポート4aは、アイソレーションポートであり、上述の終端装置5が接続されている。 Further, in the 90-degree hybrid coupler 4, the first port 4a is an isolation port, to which the above-described termination device 5 is connected.
〔2.終端装置について〕
 図3は、終端装置5の構成を示すブロック図である。
 図に示すように、終端装置5は、抵抗器5aと、コンデンサ5bとを備えている。
 抵抗器5aは、一端が90度ハイブリッドカプラ4の第1ポート4aに接続され、他端が接地されている。抵抗器5aは、入力信号を伝送するための信号伝送路に対して設定されている特性インピーダンス以上、又は、第1ポート4aの外側からみたときのインピーダンス以上の抵抗値が設定されることが好ましい。
 コンデンサ5bは、一端が90度ハイブリッドカプラ4の第1ポート4aに接続され、他端が接地されている。
[2. (Terminating device)
FIG. 3 is a block diagram showing the configuration of the termination device 5.
As shown in the figure, the termination device 5 includes a resistor 5a and a capacitor 5b.
The resistor 5a has one end connected to the first port 4a of the 90-degree hybrid coupler 4 and the other end grounded. The resistor 5a is preferably set to have a resistance value equal to or higher than the characteristic impedance set for the signal transmission path for transmitting the input signal or higher than the impedance when viewed from the outside of the first port 4a. .
One end of the capacitor 5b is connected to the first port 4a of the 90-degree hybrid coupler 4, and the other end is grounded.
 ここで、通常、アイソレーションポートである第1ポート4aは、信号伝送路の特性インピーダンスとほぼ同じ抵抗値の抵抗器を接続することで終端される。
 これに対して、本実施形態のドハティ増幅器1の終端装置5は、抵抗器5aに加えて容量素子としてのコンデンサ5bを接続することで、90度ハイブリッドカプラ4の第1ポート4a(アイソレーションポート)を信号伝送路の特性インピーダンスとは実質的に異なるインピーダンスで終端している。
 これによって、当該ドハティ増幅器1の出力側からみたときのキャリア増幅器3の負荷インピーダンスと、ピーク増幅器2の負荷インピーダンスとのバランスを変更することができる。この結果、入力信号の周波数帯域がより広帯域に設定された中で、安定した利得が得られるようにドハティ増幅器1としてのゲイン特性を適切に調整することができる。
 これにより、入力信号の周波数帯域がより広帯域に設定されたとしても、安定した利得を得ることができ、所定の周波数帯域内の入力信号を増幅したときの出力信号の利得変化の増減幅の最大値であるΔゲインを抑圧することができる。
Here, normally, the first port 4a, which is an isolation port, is terminated by connecting a resistor having substantially the same resistance value as the characteristic impedance of the signal transmission path.
On the other hand, the termination device 5 of the Doherty amplifier 1 of the present embodiment connects the capacitor 5b as a capacitive element in addition to the resistor 5a, so that the first port 4a (isolation port) of the 90-degree hybrid coupler 4 is connected. ) Is terminated with an impedance substantially different from the characteristic impedance of the signal transmission line.
As a result, the balance between the load impedance of the carrier amplifier 3 and the load impedance of the peak amplifier 2 when viewed from the output side of the Doherty amplifier 1 can be changed. As a result, the gain characteristic of the Doherty amplifier 1 can be appropriately adjusted so that a stable gain can be obtained while the frequency band of the input signal is set to a wider band.
As a result, even if the frequency band of the input signal is set to a wider band, a stable gain can be obtained, and the maximum increase / decrease width of the gain change of the output signal when the input signal within the predetermined frequency band is amplified. The Δ gain that is a value can be suppressed.
 なお、上述の「信号伝送路の特性インピーダンスとは実質的に異なるインピーダンス」とは、信号伝送路の特性インピーダンスで第1ポート4aを終端した場合のゲイン特性に対して、そのゲイン特性に変化を生じさせる程度に異なっているインピーダンスであること、又は、第1ポート4aのインピーダンスに対して整合しないインピーダンスであることを示している。 The above-mentioned “impedance substantially different from the characteristic impedance of the signal transmission path” means that the gain characteristic changes with respect to the gain characteristic when the first port 4a is terminated with the characteristic impedance of the signal transmission path. It indicates that the impedances are different to the extent that they are generated, or impedances that do not match the impedance of the first port 4a.
 本実施形態において、第1ポート4aに対し、抵抗器5aに加えてコンデンサ5bを接続すればΔゲインを抑圧することができるが、コンデンサ5bの容量を適切に設定することでΔゲインをより効果的に抑圧することができる。例えば、コンデンサ5bの容量は0.1pF以上に設定されることが好ましい。さらに、Δゲインの抑圧効果をより効果的に得るためには、コンデンサ5bの容量は3pF以下に設定されることが好ましい。 In the present embodiment, if the capacitor 5b is connected to the first port 4a in addition to the resistor 5a, the Δ gain can be suppressed. However, the Δ gain can be more effective by appropriately setting the capacitance of the capacitor 5b. Can be suppressed. For example, the capacitance of the capacitor 5b is preferably set to 0.1 pF or more. Furthermore, in order to obtain a Δ gain suppression effect more effectively, the capacitance of the capacitor 5b is preferably set to 3 pF or less.
 また、抵抗器5aは、通常、信号伝送路の特性インピーダンスと同じ抵抗値の抵抗器で終端されるため、抵抗器5aの抵抗値は、上述のように、信号伝送路の特性インピーダンス以上に設定される。また、Δゲインの抑圧効果を効果的に得るためには、抵抗器5aの抵抗値は、500Ω以下に設定される。さらに、抵抗器5aの抵抗値は、100Ω以下に設定することが好ましく、広帯域でさらに安定したゲインを得ることができ、Δゲインをさらに効果的に抑圧することができる。 In addition, the resistor 5a is normally terminated with a resistor having the same resistance value as the characteristic impedance of the signal transmission line. Therefore, as described above, the resistance value of the resistor 5a is set to be equal to or higher than the characteristic impedance of the signal transmission line. Is done. Further, in order to effectively obtain the Δ gain suppression effect, the resistance value of the resistor 5a is set to 500Ω or less. Further, the resistance value of the resistor 5a is preferably set to 100Ω or less, a more stable gain can be obtained in a wide band, and the Δ gain can be more effectively suppressed.
〔3.他の実施形態について〕
 図4は、他の実施形態に係るドハティ増幅器1を示すブロック図であり、図5は、他の実施形態に係る終端装置5の構成を示すブロック図である。
 本実施形態によるドハティ増幅器1は、ピーク増幅器2及びキャリア増幅器3の温度を検出するための温度センサ31、32を備えている点、終端装置5がコンデンサ5bに代えてバラクタダイオード5cを備えているとともに当該バラクタダイオード5cに対して電圧を印加する制御部33を備えている点において、上記実施形態と相違している。
[3. Regarding other embodiments]
FIG. 4 is a block diagram illustrating a Doherty amplifier 1 according to another embodiment, and FIG. 5 is a block diagram illustrating a configuration of a termination device 5 according to another embodiment.
The Doherty amplifier 1 according to the present embodiment includes temperature sensors 31 and 32 for detecting the temperatures of the peak amplifier 2 and the carrier amplifier 3, and the termination device 5 includes a varactor diode 5c instead of the capacitor 5b. In addition, the present embodiment is different from the above-described embodiment in that a control unit 33 that applies a voltage to the varactor diode 5c is provided.
 図4において、温度センサ31は、ピーク増幅器2の温度を検出し、その検出結果を示す検出信号を制御部33に与える。
 温度センサ32は、キャリア増幅器3の温度を検出し、その検出結果を示す検出信号を制御部33に与える。
 これら温度センサ31、32は、各増幅器2、3の状態である温度を示す情報(状態情報)を取得する取得部を構成しており、取得した情報を検出信号として制御部33(図5)に与える。
In FIG. 4, the temperature sensor 31 detects the temperature of the peak amplifier 2 and gives a detection signal indicating the detection result to the control unit 33.
The temperature sensor 32 detects the temperature of the carrier amplifier 3 and gives a detection signal indicating the detection result to the control unit 33.
These temperature sensors 31 and 32 constitute an acquisition unit that acquires information (state information) indicating the temperature of each amplifier 2 and 3, and the control unit 33 (FIG. 5) uses the acquired information as a detection signal. To give.
 図5に示すように、本実施形態の終端装置5は、抵抗器5aの他、上述のバラクタダイオード5cと、制御部33とを備えている。バラクタダイオード5cは、カソード側が90度ハイブリッドカプラ4の第1ポート4aに接続され、アノード側が接地されている。第1ポート4aと、バラクタダイオード5cとの間には、コンデンサ5dが接続されている。 As shown in FIG. 5, the termination device 5 of the present embodiment includes the above-described varactor diode 5 c and a control unit 33 in addition to the resistor 5 a. The varactor diode 5c has a cathode side connected to the first port 4a of the 90-degree hybrid coupler 4 and an anode side grounded. A capacitor 5d is connected between the first port 4a and the varactor diode 5c.
 制御部33は、コンデンサ5dと、バラクタダイオード5cとの間を接続する線路に接続されており、バラクタダイオード5cのカソード側に電圧を印加する機能を有している。コンデンサ5dは、制御部33が印可する電圧が第1ポート4a側に及ぶのを遮断するように設けられており、本実施形態における入力信号の周波数帯域においてショートとなるような容量に設定される。よって、このコンデンサ5dは、入力信号に対しては容量素子として機能しない。
 なお、本実施形態では、コンデンサ5dは、ショートとなるような容量に設定した場合を示したが、より小さい容量のコンデンサを用いることで、バラクタダイオード5cと共に容量素子を構成することもできる。
The control unit 33 is connected to a line connecting the capacitor 5d and the varactor diode 5c, and has a function of applying a voltage to the cathode side of the varactor diode 5c. The capacitor 5d is provided so as to block the voltage applied by the control unit 33 from reaching the first port 4a, and is set to have a capacity that causes a short circuit in the frequency band of the input signal in the present embodiment. . Therefore, the capacitor 5d does not function as a capacitive element for the input signal.
In this embodiment, the capacitor 5d is set to have a short-circuit capacity. However, a capacitor having a smaller capacity can be used together with the varactor diode 5c to form a capacitor element.
 制御部33は、バラクタダイオード5cに印加する電圧を制御することで、当該バラクタダイオード5cの容量を調整することができる。
 バラクタダイオード5cは、終端装置5が備えている容量素子を構成している。制御部33は、バラクタダイオード5cの容量を可変とすることで、第1ポート4aを終端する終端装置5のインピーダンスを調整することができる。
The control part 33 can adjust the capacity | capacitance of the said varactor diode 5c by controlling the voltage applied to the varactor diode 5c.
The varactor diode 5 c constitutes a capacitive element provided in the termination device 5. The control unit 33 can adjust the impedance of the termination device 5 that terminates the first port 4a by making the capacitance of the varactor diode 5c variable.
 制御部33は、温度センサ31、32からの検出信号が示すピーク増幅器2及びキャリア増幅器3の温度に応じて、バラクタダイオード5cの容量を調整する。
 制御部33は、ピーク増幅器2及びキャリア増幅器3の温度と、バラクタダイオード5cに印加する電圧値とを対応付けたテーブルを記憶している。
The control unit 33 adjusts the capacitance of the varactor diode 5c according to the temperatures of the peak amplifier 2 and the carrier amplifier 3 indicated by the detection signals from the temperature sensors 31 and 32.
The control unit 33 stores a table in which the temperatures of the peak amplifier 2 and the carrier amplifier 3 are associated with the voltage value applied to the varactor diode 5c.
 このテーブルに登録されているバラクタダイオード5cに印加する電圧値は、予め実験等によって把握した、ピーク増幅器2及びキャリア増幅器3の温度の変化に対するドハティ増幅器1のゲイン特性に基づいて設定されており、各温度においてΔゲインをできるだけ抑圧されるような値に設定されている。 The voltage value to be applied to the varactor diode 5c registered in this table is set based on the gain characteristics of the Doherty amplifier 1 with respect to changes in the temperature of the peak amplifier 2 and the carrier amplifier 3 that have been grasped in advance by experiments or the like. The value is set so as to suppress the Δ gain as much as possible at each temperature.
 制御部33は、温度センサ31、32から検出信号が与えられると、上記テーブルを参照し、テーブルに登録されている内容に従ってバラクタダイオード5cに印加すべき電圧値を設定する。制御部33は、設定した電圧値をバラクタダイオード5cに印可する。
 これによって、制御部33は、ピーク増幅器2及びキャリア増幅器3の温度に応じて、バラクタダイオード5cの容量を調整することで第1ポート4aを終端する終端装置5のインピーダンスを調整し、Δゲインが抑圧されるようにドハティ増幅器1としてのゲイン特性を調整することができる。
When the detection signal is given from the temperature sensors 31 and 32, the control unit 33 refers to the table and sets a voltage value to be applied to the varactor diode 5c according to the contents registered in the table. The controller 33 applies the set voltage value to the varactor diode 5c.
Thereby, the control unit 33 adjusts the impedance of the termination device 5 that terminates the first port 4a by adjusting the capacitance of the varactor diode 5c according to the temperature of the peak amplifier 2 and the carrier amplifier 3, and the Δ gain is The gain characteristic of the Doherty amplifier 1 can be adjusted so as to be suppressed.
 ピーク増幅器2及びキャリア増幅器3は、その温度に応じてゲイン特性が変化するが、本実施形態によれば、ピーク増幅器2及びキャリア増幅器3の温度を検出し、その温度に応じてドハティ増幅器1としてのゲイン特性を調整することができるので、温度に応じてピーク増幅器2及びキャリア増幅器3のゲイン特性が変化したとしても、ドハティ増幅器1としてのゲイン特性を適切に調整することができる。 The gain characteristics of the peak amplifier 2 and the carrier amplifier 3 change according to the temperature. According to this embodiment, the temperature of the peak amplifier 2 and the carrier amplifier 3 is detected, and the Doherty amplifier 1 is detected according to the temperature. Therefore, even if the gain characteristics of the peak amplifier 2 and the carrier amplifier 3 change according to the temperature, the gain characteristics as the Doherty amplifier 1 can be adjusted appropriately.
 なお、本実施形態では、ピーク増幅器2及びキャリア増幅器3の状態を示す情報として温度を示す情報を取得し、これに基づいてΔゲインが抑圧されるようにバラクタダイオード5cの容量を調整する場合を示したが、ピーク増幅器2及びキャリア増幅器3が実際に使用を開始されてから経過した期間である使用経過期間を制御部33がカウントすることができる場合、制御部33は、ピーク増幅器2及びキャリア増幅器3の状態を示す情報として使用経過期間に基づいてバラクタダイオード5cの容量を調整することで第1ポート4aを終端する終端装置5のインピーダンスを調整し、Δゲインが抑圧されるようにドハティ増幅器1としてのゲイン特性を調整するように構成することもできる。 In the present embodiment, information indicating temperature is acquired as information indicating the states of the peak amplifier 2 and the carrier amplifier 3, and the capacitance of the varactor diode 5c is adjusted based on this information so that the Δ gain is suppressed. As shown, when the control unit 33 can count the usage elapsed period, which is a period that has elapsed since the peak amplifier 2 and the carrier amplifier 3 are actually used, the control unit 33 As the information indicating the state of the amplifier 3, the impedance of the termination device 5 that terminates the first port 4a is adjusted by adjusting the capacitance of the varactor diode 5c based on the elapsed usage period, and the Doherty amplifier so that the Δ gain is suppressed. The gain characteristic as 1 can be adjusted.
 ピーク増幅器2及びキャリア増幅器3は、その使用経過期間に応じてゲイン特性が経時変化する場合があるが、上記構成によれば、ピーク増幅器2及びキャリア増幅器3に経時変化が生じたとしても、その経時変化に応じてΔゲインが抑圧されるようなゲイン特性が得られるように、ドハティ増幅器1としてのゲイン特性を適切に調整することができる。 The gain characteristics of the peak amplifier 2 and the carrier amplifier 3 may change over time according to the usage elapsed period. According to the above configuration, even if the peak amplifier 2 and the carrier amplifier 3 change over time, The gain characteristic of the Doherty amplifier 1 can be appropriately adjusted so that a gain characteristic that suppresses the Δ gain according to the change with time can be obtained.
 なお、本実施形態では、抵抗器5aについては、抵抗値が固定のものを用いた場合を示したが、抵抗値が可変とされた可変抵抗器を用いてもよい。
 さらに、抵抗器5aに可変抵抗器を用いた場合、制御部33が抵抗器5aの抵抗値を調整するように制御するように構成することができる。
 このように構成することで、調整の幅を広げることができ、より効果的にΔゲインを抑圧することができる。
In the present embodiment, the resistor 5a has a fixed resistance value, but a variable resistor having a variable resistance value may be used.
Further, when a variable resistor is used as the resistor 5a, the control unit 33 can be configured to control so as to adjust the resistance value of the resistor 5a.
With this configuration, the range of adjustment can be expanded, and the Δ gain can be more effectively suppressed.
 また、上記各実施形態では、終端装置5が、抵抗回路5aと、コンデンサ5b又はバラクタダイオード5cとを備えて第1ポート4aを終端する構成とした場合を例示したが、終端装置5がコンデンサ5bのみを備えることで伝送路の特性インピーダンスとは実質的に異なるインピーダンスで第1ポート4aを終端する構成とすることもできる。
 さらに、図6(a)に示すように、終端装置5がバラクタダイオード5cを備えて第1ポート4aを終端する構成とすることもできる。この場合も、制御部33は、上記実施形態と同様にバラクタダイオード5cを制御し、第1ポート4aを終端する終端装置5のインピーダンスを調整することで、ドハティ増幅器1としてのゲイン特性をより適切に調整することができる。
In each of the above embodiments, the termination device 5 includes the resistor circuit 5a and the capacitor 5b or the varactor diode 5c, and the first port 4a is terminated. However, the termination device 5 includes the capacitor 5b. The first port 4a may be terminated with an impedance substantially different from the characteristic impedance of the transmission line.
Furthermore, as shown to Fig.6 (a), it can also be set as the structure which the termination | terminus device 5 is equipped with the varactor diode 5c, and terminates the 1st port 4a. Also in this case, the control unit 33 controls the varactor diode 5c in the same manner as in the above embodiment, and adjusts the impedance of the termination device 5 that terminates the first port 4a, so that the gain characteristic as the Doherty amplifier 1 is more appropriate. Can be adjusted.
 また、終端装置5は、伝送路の特性インピーダンスとは実質的に異なるインピーダンスとされた抵抗器5aのみを備えることによって第1ポート4aを終端する構成とすることもできる。
 さらに、図6(b)に示すように、終端装置5について、可変抵抗回路5eのみで第1ポート4aを終端する構成とすることもできる。この場合においても、制御部33は、上記実施形態と同様に、ピーク増幅器2及びキャリア増幅器3の状態を示す情報に応じて可変抵抗回路5eの抵抗値を制御し、第1ポート4aを終端する終端装置5のインピーダンスを調整することで、ドハティ増幅器1としてのゲイン特性を適切に調整することができる。
Moreover, the termination | terminus device 5 can also be set as the structure which terminates the 1st port 4a by providing only the resistor 5a made into the impedance substantially different from the characteristic impedance of a transmission line.
Further, as shown in FIG. 6B, the termination device 5 may be configured to terminate the first port 4a only by the variable resistance circuit 5e. Even in this case, the control unit 33 controls the resistance value of the variable resistance circuit 5e in accordance with the information indicating the states of the peak amplifier 2 and the carrier amplifier 3, and terminates the first port 4a, as in the above embodiment. By adjusting the impedance of the termination device 5, the gain characteristic of the Doherty amplifier 1 can be adjusted appropriately.
 また、本実施形態では、増幅素子としてLD-MOSFETを用いたピーク増幅器2及びキャリア増幅器3によってドハティ増幅器1を構成した場合を例示したが、他の増幅素子、例えば、GaN-HEMT(GaN-High Electron Mobility Transistor)を増幅素子として用いた増幅器を用いてドハティ増幅器1を構成してもよい。
 また、本実施形態では、ドハティ増幅器1を非対称型のドハティ増幅器として構成した場合を例示したが、対称型のドハティ増幅器として構成した場合にも上記終端装置5を用いることで、Δゲインを抑圧することができる。
In the present embodiment, the case where the Doherty amplifier 1 is configured by the peak amplifier 2 and the carrier amplifier 3 using an LD-MOSFET as an amplifying element is illustrated, but other amplifying elements such as GaN-HEMT (GaN-High) are exemplified. You may comprise the Doherty amplifier 1 using the amplifier which used Electron Mobility Transistor) as an amplification element.
Further, in the present embodiment, the case where the Doherty amplifier 1 is configured as an asymmetric type Doherty amplifier is illustrated, but even when the Doherty amplifier 1 is configured as a symmetric type Doherty amplifier, the above-described termination device 5 is used to suppress Δ gain. be able to.
〔4.評価試験について〕
 次に、上記構成のドハティ増幅器1に関する評価試験について説明する。
 前記評価試験では、上記実施形態にて説明した構成のドハティ増幅器1をコンピュータシミュレーションによってモデル化し、一定電力の入力信号をモデル化したドハティ増幅器1に与えたときの入力信号の周波数と、出力信号の利得との関係を求め、入力信号の周波数を変化させたときにおけるゲインの変化を評価した。
[4. Evaluation test)
Next, an evaluation test related to the Doherty amplifier 1 having the above configuration will be described.
In the evaluation test, the Doherty amplifier 1 having the configuration described in the above embodiment is modeled by computer simulation, and the frequency of the input signal when the input signal of constant power is applied to the modeled Doherty amplifier 1 and the output signal The relationship with gain was obtained, and the change in gain when the frequency of the input signal was changed was evaluated.
 モデル化した構成としては、図3に示した終端装置5をドハティ増幅器1に接続した構成を採用した。また、終端装置5が有する抵抗器5a及びコンデンサ5bについて、下記のように設定した。
 実施例1:抵抗器5aの抵抗値 = 50Ω、コンデンサ5bの容量 = 1pF
 実施例2:抵抗器5aの抵抗値 =100Ω、コンデンサ5bの容量 = 1pF
 実施例3:抵抗器5aの抵抗値 =200Ω、コンデンサ5bの容量 = 1pF
 実施例4:抵抗器5aの抵抗値 =100Ω、コンデンサ5bなし
 比較例1:抵抗器5aの抵抗値 = 50Ω、コンデンサ5bなし
As a modeled configuration, a configuration in which the termination device 5 shown in FIG. 3 is connected to the Doherty amplifier 1 is adopted. Moreover, it set as follows about the resistor 5a and the capacitor | condenser 5b which the termination | terminus apparatus 5 has.
Example 1: Resistance value of the resistor 5a = 50Ω, capacitance of the capacitor 5b = 1pF
Example 2: Resistance value of resistor 5a = 100Ω, capacitance of capacitor 5b = 1pF
Example 3: Resistance value of resistor 5a = 200Ω, capacitance of capacitor 5b = 1 pF
Example 4: Resistance value of resistor 5a = 100Ω, no capacitor 5b Comparative example 1: Resistance value of resistor 5a = 50Ω, no capacitor 5b
 なお、上記比較例1の抵抗器5aは、一般的な通信機器の信号伝送路に対して設定される特性インピーダンス(50Ω)と同じ値に設定した。
 また、実施例1から実施例4では、上記のように、抵抗器5aの抵抗値の変更や、コンデンサ5bを接続することによって、終端装置5が第1ポート4aを終端するインピーダンスが、伝送路の特性インピーダンス(50Ω)とは異なるインピーダンスとなるように設定した。
The resistor 5a of Comparative Example 1 was set to the same value as the characteristic impedance (50Ω) set for the signal transmission path of a general communication device.
In the first to fourth embodiments, as described above, the impedance at which the termination device 5 terminates the first port 4a by changing the resistance value of the resistor 5a or connecting the capacitor 5b is the transmission line. The impedance was set to be different from the characteristic impedance (50Ω).
 図7は、評価試験の結果の一例を示すグラフである。
 図中、横軸は入力信号の周波数、縦軸は出力信号の利得(ゲイン)を示している。
 また、図中、実線Aは実施例1、破線Bは実施例2、一点鎖線Cは実施例3、破線Dは実施例4、及び二点鎖線Eは比較例1を示している。
FIG. 7 is a graph showing an example of the result of the evaluation test.
In the figure, the horizontal axis represents the frequency of the input signal, and the vertical axis represents the gain of the output signal.
In the figure, solid line A indicates Example 1, broken line B indicates Example 2, dashed-dotted line C indicates Example 3, broken line D indicates Example 4, and alternate long and two short dashes line E indicates Comparative Example 1.
 図中、入力信号の周波数が2.5GHzである位置m4、入力信号の周波数が2.7GHzである位置m5、及び、入力信号の周波数が2.9GHzである位置m6それぞれにおける実施例1の出力信号の利得は、下記のように求められた。
 実施例1の出力信号の利得
 位置m4:13.420 dB
 位置m5:12.513 dB
 位置m6:10.994 dB
In the figure, the output of the first embodiment at the position m4 where the frequency of the input signal is 2.5 GHz, the position m5 where the frequency of the input signal is 2.7 GHz, and the position m6 where the frequency of the input signal is 2.9 GHz. The signal gain was determined as follows.
Gain of output signal of embodiment 1 Position m4: 13.420 dB
Position m5: 12.513 dB
Position m6: 10.994 dB
 また、位置m4、位置m5、及び位置m6それぞれにおける実施例2の出力信号の利得は、下記のように求められた。
 実施例2の出力信号の利得
 位置m4:14.634 dB
 位置m5:11.709 dB
 位置m6:12.176 dB
Further, the gain of the output signal of Example 2 at each of the position m4, the position m5, and the position m6 was obtained as follows.
Gain of output signal of embodiment 2 Position m4: 14.634 dB
Position m5: 11.709 dB
Position m6: 12.176 dB
 位置m4、位置m5、及び位置m6それぞれにおける実施例3の出力信号の利得は、下記のように求められた。
 実施例3の出力信号の利得
 位置m4:15.403 dB
 位置m5:11.090 dB
 位置m6:13.009 dB
The gain of the output signal of Example 3 at each of the position m4, the position m5, and the position m6 was obtained as follows.
Gain of output signal of embodiment 3 Position m4: 15.403 dB
Position m5: 11.090 dB
Position m6: 13.099 dB
 位置m4、位置m5、及び位置m6それぞれにおける実施例4の出力信号の利得は、下記のように求められた。
 実施例4の出力信号の利得
 位置m4:14.094 dB
 位置m5:11.979 dB
 位置m6: 8.591 dB
The gain of the output signal of Example 4 at each of the position m4, the position m5, and the position m6 was obtained as follows.
Output signal gain of Example 4 Position m4: 14.094 dB
Position m5: 11.979 dB
Position m6: 8.591 dB
 位置m4、位置m5、及び位置m6それぞれにおける比較例1の出力信号の利得は、下記のように求められた。
 比較例1の出力信号の利得
 位置m4:12.562 dB
 位置m5:12.626 dB
 位置m6: 8.646 dB
The gain of the output signal of Comparative Example 1 at each of the position m4, the position m5, and the position m6 was obtained as follows.
Output signal gain of Comparative Example 1 Position m4: 12.5622 dB
Position m5: 12.626 dB
Position m6: 8.646 dB
 図7及び上記数値が示すように、比較例1において利得の低下が見られる2.9GHzといった高い周波数において、各実施例1~3では、比較例1に対して利得が大きく現れていることが確認できる。
 これより、各実施例1~3は、比較例1と比較して、広帯域な周波数の範囲で安定した利得が得られるようにドハティ増幅器のゲイン特性を調整できることが判る。
As shown in FIG. 7 and the above numerical values, the gains appear to be larger than those of Comparative Example 1 in each of Examples 1 to 3 at a high frequency such as 2.9 GHz where the gain is decreased in Comparative Example 1. I can confirm.
From this, it can be seen that each of the first to third embodiments can adjust the gain characteristic of the Doherty amplifier so as to obtain a stable gain in a wide frequency range as compared with the first comparative example.
 また、実施例4では、比較例1と異なるゲイン特性となっており、この結果からも、本実施形態のドハティ増幅器によれば、当該ドハティ増幅器としてのゲイン特性を調整できることが判る。 Further, in Example 4, the gain characteristic is different from that in Comparative Example 1. From this result, it can be seen that the Doherty amplifier of this embodiment can adjust the gain characteristic as the Doherty amplifier.
 上記結果から、本実施形態によるドハティ増幅器1によれば、90度ハイブリッドカプラ4の第1ポート4a(アイソレーションポート)を伝送路の特性インピーダンスとは異なるインピーダンスで終端することによって、ドハティ増幅器としてのゲイン特性を調整することができること、及び、入力信号の周波数帯域がより広帯域に設定されたとしても、Δゲインを抑圧するように調整でき、安定した利得が得られることを確認することができた。
 なお、上記評価試験では、周波数が2.5GHzから2.9GHzの範囲の入力信号について評価したが、例えば、より低い周波数帯域の信号等、上記評価試験とは異なる周波数帯域の入力信号を増幅したとしても、本実施形態のドハティ増幅器は、上記同様、ゲイン特性を調整することができる。
From the above results, according to the Doherty amplifier 1 according to the present embodiment, by terminating the first port 4a (isolation port) of the 90-degree hybrid coupler 4 with an impedance different from the characteristic impedance of the transmission line, the Doherty amplifier 1 The gain characteristics can be adjusted, and even if the frequency band of the input signal is set to a wider band, it can be adjusted to suppress the Δ gain, and it has been confirmed that a stable gain can be obtained. .
In the evaluation test, an input signal having a frequency ranging from 2.5 GHz to 2.9 GHz was evaluated. For example, an input signal having a frequency band different from that of the evaluation test such as a signal having a lower frequency band was amplified. Even so, the Doherty amplifier of the present embodiment can adjust the gain characteristics as described above.
〔5.その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
[5. Others]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ドハティ増幅器
 2 ピーク増幅器
 2a 出力端
 3 キャリア増幅器
 3a 出力端
 4 90度ハイブリッドカプラ
 4a 第1ポート(アイソレーションポート)
 4b 第2ポート(入力ポート)
 4c 第3ポート(出力ポート)
 4d 第4ポート(出力ポート)
 5 終端装置
 5a 抵抗器
 5b コンデンサ
 5c バラクタダイオード
 5d コンデンサ
 5e 可変抵抗回路
 6 出力合成部
 7 線路
 9 線路
 15 線路
 16 整合回路
 17 整合回路
 18 線路
 19 整合回路
 20 整合回路
 21 出力ライン
 31 温度センサ
 32 温度センサ
 33 制御部
 B 基板
DESCRIPTION OF SYMBOLS 1 Doherty amplifier 2 Peak amplifier 2a Output terminal 3 Carrier amplifier 3a Output terminal 4 90 degree hybrid coupler 4a 1st port (isolation port)
4b Second port (input port)
4c 3rd port (output port)
4d 4th port (output port)
DESCRIPTION OF SYMBOLS 5 Termination apparatus 5a Resistor 5b Capacitor 5c Varactor diode 5d Capacitor 5e Variable resistance circuit 6 Output composition part 7 Line 9 Line 15 Line 16 Matching circuit 17 Matching circuit 18 Line 19 Matching circuit 20 Matching circuit 21 Output line 31 Temperature sensor 32 Temperature sensor 32 33 Controller B Board

Claims (8)

  1.  キャリア増幅器と、
     ピーク増幅器と、
     入力信号を前記キャリア増幅器及びピーク増幅器に分配するハイブリッドカプラと、を備え、
     前記ハイブリッドカプラは、前記入力信号が与えられる入力ポートと、互いに位相が異なる一対の分配信号を前記キャリア増幅器及びピーク増幅器に出力する一対の出力ポートと、アイソレーションポートと、を備え、
     前記アイソレーションポートには、前記入力信号を伝送するための伝送路の特性インピーダンスとは実質的に異なるインピーダンスで前記アイソレーションポートを終端する終端装置が接続されているドハティ増幅器。
    A carrier amplifier;
    A peak amplifier;
    A hybrid coupler for distributing an input signal to the carrier amplifier and the peak amplifier,
    The hybrid coupler includes an input port to which the input signal is given, a pair of output ports that output a pair of distributed signals having different phases to the carrier amplifier and the peak amplifier, and an isolation port,
    A Doherty amplifier connected to the isolation port is a termination device that terminates the isolation port with an impedance substantially different from a characteristic impedance of a transmission path for transmitting the input signal.
  2.  前記終端装置は、一端が前記アイソレーションポートに接続され他端が接地された容量素子を備えている請求項1に記載のドハティ増幅器。 The Doherty amplifier according to claim 1, wherein the terminator includes a capacitive element having one end connected to the isolation port and the other end grounded.
  3.  前記容量素子は、容量が可変である請求項2に記載のドハティ増幅器。 The Doherty amplifier according to claim 2, wherein the capacitance element has a variable capacitance.
  4.  前記終端装置は、一端が前記アイソレーションポートに接続され他端が接地された抵抗素子を備えている請求項1から請求項3のいずれか一項に記載のドハティ増幅器。 The Doherty amplifier according to any one of claims 1 to 3, wherein the termination device includes a resistance element having one end connected to the isolation port and the other end grounded.
  5.  前記抵抗素子は、抵抗値が可変である請求項4に記載のドハティ増幅器。 The Doherty amplifier according to claim 4, wherein the resistance element has a variable resistance value.
  6.  前記キャリア増幅器及び前記ピーク増幅器の状態を示す状態情報を取得する取得部と、
     前記状態情報に基づいて前記容量素子の容量、又は、前記抵抗素子の抵抗値を調整する制御部と、をさらに備えている請求項3又は請求項5に記載のドハティ増幅器。
    An acquisition unit for acquiring state information indicating a state of the carrier amplifier and the peak amplifier;
    The Doherty amplifier according to claim 3, further comprising a control unit that adjusts the capacitance of the capacitive element or the resistance value of the resistive element based on the state information.
  7.  前記状態情報は、前記キャリア増幅器及び前記ピーク増幅器の温度を示す情報、又は前記キャリア増幅器及び前記ピーク増幅器の使用経過期間を示す情報である請求項6に記載のドハティ増幅器。 The Doherty amplifier according to claim 6, wherein the state information is information indicating a temperature of the carrier amplifier and the peak amplifier, or information indicating an elapsed usage period of the carrier amplifier and the peak amplifier.
  8.  請求項1に記載のドハティ増幅器を備えている無線通信装置。 A wireless communication apparatus comprising the Doherty amplifier according to claim 1.
PCT/JP2015/068184 2014-07-07 2015-06-24 Doherty amplifier and radio communication device WO2016006445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-139791 2014-07-07
JP2014139791A JP2016019094A (en) 2014-07-07 2014-07-07 Doherty amplifier and wireless communication device

Publications (1)

Publication Number Publication Date
WO2016006445A1 true WO2016006445A1 (en) 2016-01-14

Family

ID=55064083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068184 WO2016006445A1 (en) 2014-07-07 2015-06-24 Doherty amplifier and radio communication device

Country Status (2)

Country Link
JP (1) JP2016019094A (en)
WO (1) WO2016006445A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065117A (en) * 2010-09-15 2012-03-29 Toshiba Corp High frequency amplifier
JP2013141163A (en) * 2012-01-05 2013-07-18 Panasonic Corp Quadrature hybrid coupler, amplifier, and wireless communication device
JP2014064185A (en) * 2012-09-21 2014-04-10 Asahi Kasei Electronics Co Ltd Doherty amplification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065117A (en) * 2010-09-15 2012-03-29 Toshiba Corp High frequency amplifier
JP2013141163A (en) * 2012-01-05 2013-07-18 Panasonic Corp Quadrature hybrid coupler, amplifier, and wireless communication device
JP2014064185A (en) * 2012-09-21 2014-04-10 Asahi Kasei Electronics Co Ltd Doherty amplification device

Also Published As

Publication number Publication date
JP2016019094A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US9899962B2 (en) Power amplifier
JP6690853B2 (en) Adaptive adjustment of power distributor
TWI672904B (en) Doherty power amplifier with tunable input network
TWI487270B (en) Multi-mode high efficiency linear power amplifier and method for amplifying radio frequency signal
US10141890B2 (en) Power amplifier module
US9209754B2 (en) Amplifier with adjustable load
US8115546B2 (en) Apparatus and method for maximizing performance of peaking amplifier in doherty amplifier
US9118282B2 (en) Power amplifier and amplification method thereof
JP5958309B2 (en) Wireless communication apparatus, Doherty amplifier, and wireless communication apparatus control method
CN206211952U (en) Wideband power amplifer and its active matching circuit
JP2013516101A (en) Multiband power amplifier
US20130135060A1 (en) Antenna tuner and method for adjusting antenna impedance
KR102133926B1 (en) Wideband Variable Gain Amplifier with Low Phase Variation
JP5828420B2 (en) Power amplifier circuit
US9667202B2 (en) Power amplifier and method
WO2016006445A1 (en) Doherty amplifier and radio communication device
CN106301255A (en) Wideband power amplifer and active matching circuit thereof
JP6834094B2 (en) Doherty amplifier
JP5971284B2 (en) Amplifying device and wireless communication device
WO2014083876A1 (en) Power amplification circuit and power amplification module
WO2022093828A1 (en) Methods and apparatus for supporting linearization on power combined power amplifiers
US6977554B2 (en) Variable gain amplifier for high frequency band using microstrip hybrid
US11146218B2 (en) Amplification circuit
US11848647B2 (en) Doherty amplifier
JP5484206B2 (en) Differential amplifier circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818807

Country of ref document: EP

Kind code of ref document: A1