WO2016006267A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2016006267A1
WO2016006267A1 PCT/JP2015/054304 JP2015054304W WO2016006267A1 WO 2016006267 A1 WO2016006267 A1 WO 2016006267A1 JP 2015054304 W JP2015054304 W JP 2015054304W WO 2016006267 A1 WO2016006267 A1 WO 2016006267A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
opening
air conditioner
indoor
fan
Prior art date
Application number
PCT/JP2015/054304
Other languages
French (fr)
Japanese (ja)
Inventor
康巨 鈴木
隆雄 駒井
前田 晃
充 川島
久保 和也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112015003180.4T priority Critical patent/DE112015003180T5/en
Priority to CN201510278090.5A priority patent/CN105299751B/en
Priority to CN201520350838.3U priority patent/CN204704933U/en
Priority to CN201810895807.4A priority patent/CN109185982B/en
Publication of WO2016006267A1 publication Critical patent/WO2016006267A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present invention relates to an air conditioner.
  • a non-flammable HFC refrigerant such as R410A has been used as a refrigerant used in an air conditioner. Unlike the conventional HCFC refrigerant like R22, this R410A does not destroy the ozone layer because the ozone layer depletion coefficient (hereinafter referred to as “ODP”) is zero.
  • ODP ozone layer depletion coefficient
  • R410A has a property of having a high global warming potential (hereinafter referred to as “GWP”). Therefore, as part of the prevention of global warming, studies are underway to change from an HFC refrigerant with a high GWP such as R410A to a refrigerant with a low GWP.
  • HC refrigerants such as R290 (C 3 H 8 ; propane) and R 1270 (C 3 H 6 ; propylene), which are natural refrigerants.
  • R290 and R1270 have flammability (strong flammability) at a high flammability level. Therefore, when R290 or R1270 is used as a refrigerant, attention must be paid to refrigerant leakage.
  • HFC refrigerant candidate of low GWP there is an HFC refrigerant having no carbon double bond in the composition, for example, R32 (CH 2 F 2 ; difluoromethane) having a lower GWP than R410A.
  • Similar refrigerant candidates include halogenated hydrocarbons which are a kind of HFC refrigerant as in R32 and have a carbon double bond in the composition.
  • halogenated hydrocarbon examples include HFO-1234yf (CF 3 CF ⁇ CH 2 ; tetrafluoropropene) and HFO-1234ze (CF 3 —CH ⁇ CHF).
  • HFO-1234yf CF 3 CF ⁇ CH 2 ; tetrafluoropropene
  • HFO-1234ze CF 3 —CH ⁇ CHF
  • an olefin unsaturated with carbon double bond
  • Such low GWP HFC refrigerants are not as flammable as HC refrigerants such as natural refrigerant R290, but unlike R410A, which is nonflammable, flammability at a slightly flammable level ( Slightly flammable). Therefore, it is necessary to pay attention to refrigerant leakage as in the case of R290.
  • coolant which has flammability more than a slight fuel level (for example, 2L or more by the classification
  • the refrigerant concentration in the room rises and a flammable concentration area may be formed.
  • Patent Document 1 discloses that an air conditioner using a flammable refrigerant is provided with a gas sensor for detecting a flammable refrigerant gas on the outer surface of an indoor unit, the indoor unit is a floor type, and the gas sensor is an indoor unit.
  • the air conditioner provided in the lower part of the is described. If the sensor detection voltage of the gas sensor is equal to or higher than the reference value, the control unit of the air conditioner determines that the flammable refrigerant has leaked and immediately issues an alarm by the alarm device. Thereby, the user can know that the flammable refrigerant has leaked, and can take measures such as ventilating the room or calling a service person for repair.
  • control unit determines that the flammable refrigerant has leaked, the control unit immediately performs control to stop the operation of the refrigerant circuit. Thereby, even if this air conditioning apparatus is in operation, the refrigerant circuit can be immediately shut off by the valve existing on the refrigerant circuit, and a large amount of flammable refrigerant can be prevented from leaking.
  • the air conditioner described in Patent Document 1 requires a gas sensor for detecting a flammable refrigerant gas, and thus has a first problem that the manufacturing cost becomes high.
  • a user who knows that a flammable refrigerant has leaked through an alarm can take measures such as ventilating the room or calling a service person for repairs.
  • a room that is a closed space there is a second problem that the combustible refrigerant leaked may form a combustible concentration range.
  • control unit that determines that the flammable refrigerant has leaked since the control unit that determines that the flammable refrigerant has leaked performs control to immediately stop the operation of the refrigerant circuit, it can suppress a large amount of flammable refrigerant from leaking, but a certain amount of flammable refrigerant leaks. It cannot be avoided. For this reason, there is a third problem that the leaked combustible refrigerant may form a combustible concentration region in a room that is generally a closed space.
  • the present invention has been made to solve at least one of the above-described problems, and even if the refrigerant leaks, the indoor refrigerant concentration is suppressed from becoming locally high.
  • An object of the present invention is to provide an air conditioner that can reduce the manufacturing cost.
  • An air conditioner includes a refrigeration cycle that circulates a refrigerant through a refrigerant pipe, an outdoor unit that houses at least a compressor and an outdoor heat exchanger of the refrigeration cycle, and an indoor heat exchanger of at least the refrigeration cycle. And an indoor unit connected to the outdoor unit via an extension pipe that is a part of the refrigerant pipe, wherein the refrigerant has a density greater than that of air under atmospheric pressure.
  • the indoor unit is provided in a housing, an upper space in which the indoor heat exchanger is disposed in the housing, and a lower portion in the housing than the upper space.
  • One of the parts is connected to the air passage opening.
  • the present invention even if the refrigerant leaks in the indoor unit, the leaked refrigerant can be diffused and discharged into the room, so that the indoor refrigerant concentration can be suppressed from becoming locally high. .
  • a sensor for detecting the leakage of the refrigerant becomes unnecessary, so that the manufacturing cost of the air conditioner can be suppressed.
  • FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. 6. It is a front view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 2 of this invention. It is a side view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 2 of this invention. It is a front view which shows typically the internal structure of the indoor unit 1 which concerns on the 1st modification of Embodiment 2 of this invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to the present embodiment.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the air conditioner has a refrigeration cycle 40 for circulating a refrigerant.
  • the compressor 3, the refrigerant flow switching device 4, the outdoor heat exchanger 5 (heat source side heat exchanger), the decompression device 6, and the indoor heat exchanger 7 (load side heat exchanger) are connected to the refrigerant piping. Through the ring.
  • the air conditioner has, for example, an indoor unit 1 installed indoors and an outdoor unit 2 installed outdoor, for example.
  • the indoor unit 1 and the outdoor unit 2 are connected via extension pipes 10a and 10b that are part of the refrigerant pipe.
  • refrigerant circulating in the refrigeration cycle 40 for example, a slightly flammable refrigerant such as R32, HFO-1234yf, HFO-1234ze, or a strong flammable refrigerant such as R290, R1270 is used.
  • These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
  • the compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigeration cycle 40 between the cooling operation and the heating operation.
  • a four-way valve is used as the refrigerant flow switching device 4.
  • the outdoor heat exchanger 5 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation. In the outdoor heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and air (outside air) blown by an outdoor blower fan 5f described later.
  • the decompression device 6 decompresses the high-pressure refrigerant into a low-pressure refrigerant.
  • the decompression device 6 for example, an electronic expansion valve whose opening degree can be adjusted is used.
  • the indoor heat exchanger 7 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation. In the indoor heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and air blown by an indoor blower fan 7f described later.
  • the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the indoor heat exchanger 7
  • the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the indoor heat exchanger 7. .
  • the outdoor unit 2 accommodates a compressor 3, a refrigerant flow switching device 4, an outdoor heat exchanger 5, and a decompression device 6.
  • the outdoor unit 2 accommodates an outdoor air blowing fan 5 f that supplies outside air to the outdoor heat exchanger 5.
  • the outdoor fan 5f is installed to face the outdoor heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the outdoor heat exchanger 5 is generated.
  • a propeller fan is used as the outdoor blower fan 5f.
  • the outdoor blowing fan 5f is arranged, for example, on the downstream side of the outdoor heat exchanger 5 in the air flow generated by the outdoor blowing fan 5f.
  • a discharge pipe 12 connected to the discharge side of the compressor 3, a refrigerant pipe connecting the refrigerant flow switching device 4 and the outdoor heat exchanger 5, a refrigerant pipe connecting the outdoor heat exchanger 5 and the decompression device 6, and A refrigerant pipe connecting the decompression device 6 and the liquid side (cooling operation) extension pipe connection valve 13b is disposed.
  • the extension pipe connection valve 13a is a two-way valve that can be switched between open and closed, and a flare joint is attached to one end thereof.
  • the extension pipe connection valve 13b is composed of a three-way valve that can be switched between open and closed, and is a service that is used when evacuating one end of the valve (before the refrigerant is charged into the refrigeration cycle 40).
  • a mouth 14a is attached, and a flare joint is attached to the other end.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 flows through the discharge pipe 12 during both the cooling operation and the heating operation.
  • a low-temperature and low-pressure refrigerant gas refrigerant or two-phase refrigerant that has undergone an evaporating action flows through the suction pipe 11 in both the cooling operation and the heating operation.
  • a service port 14b with a low-pressure side flare joint is connected to the suction pipe 11, and a service port 14c with a flare joint on the high-pressure side is connected to the discharge pipe 12.
  • the service ports 14b and 14c are used for measuring an operating pressure by connecting a pressure gauge at the time of installation or repair of the air conditioner.
  • the indoor unit 1 accommodates an indoor heat exchanger 7.
  • the indoor unit 1 is also provided with an indoor fan 7f that supplies air to the indoor heat exchanger 7. By rotating the indoor fan 7f, an air flow passing through the indoor heat exchanger 7 is generated.
  • a centrifugal fan for example, a sirocco fan, a turbo fan, etc.
  • a cross flow fan for example, a diagonal fan
  • an axial fan for example, a propeller fan
  • the indoor blower fan 7f of this example is arranged on the upstream side of the indoor heat exchanger 7 in the air flow generated by the indoor blower fan 7f, but may be arranged on the downstream side of the indoor heat exchanger 7. .
  • the indoor unit 1 also detects an intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and detects the refrigerant temperature at the inlet portion of the indoor heat exchanger 7 during the cooling operation (the outlet portion during the heating operation).
  • an intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and detects the refrigerant temperature at the inlet portion of the indoor heat exchanger 7 during the cooling operation (the outlet portion during the heating operation).
  • a heat exchanger inlet temperature sensor 92 a heat exchanger temperature sensor 93 for detecting the refrigerant temperature (evaporation temperature or condensation temperature) of the two-phase part of the indoor heat exchanger 7, and the like.
  • These sensors are configured to output detection signals to a control unit (not shown) that controls the indoor unit 1 or the entire air conditioner.
  • a joint portion 15a for example, a flare joint for connecting the extension piping 10a is provided at a connection portion with the extension piping 10a on the gas side.
  • a joint part 15b for example, a flare joint for connecting the extension pipe 10b is provided in the connection part with the liquid side extension pipe 10b. It has been.
  • a solid line arrow indicates the flow direction of the refrigerant during the cooling operation.
  • the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by a solid line, and the refrigerant circuit is configured so that the low-temperature and low-pressure refrigerant flows through the indoor heat exchanger 7.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the outdoor heat exchanger 5 via the refrigerant flow switching device 4.
  • the outdoor heat exchanger 5 functions as a condenser. That is, in the outdoor heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the air (outside air) blown by the outdoor blower fan 5f, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the refrigerant flowing into the outdoor heat exchanger 5 is condensed and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the decompression device 6 and is decompressed to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the indoor heat exchanger 7 of the indoor unit 1 via the extension pipe 10b.
  • the indoor heat exchanger 7 functions as an evaporator. That is, in the indoor heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and the air (indoor air) blown by the indoor blower fan 7f, and the evaporation heat of the refrigerant is absorbed from the blown air.
  • the refrigerant flowing into the indoor heat exchanger 7 evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Further, the air blown by the indoor blower fan 7f is cooled by the endothermic action of the refrigerant.
  • the low-pressure gas refrigerant or two-phase refrigerant evaporated in the indoor heat exchanger 7 is sucked into the compressor 3 via the extension pipe 10a and the refrigerant flow switching device 4.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the cooling operation, the above cycle is repeated.
  • the refrigerant flow path switching device 4 switches the refrigerant flow paths as indicated by dotted lines, and the refrigerant circuit is configured so that the high-temperature and high-pressure refrigerant flows through the indoor heat exchanger 7.
  • the refrigerant flows in the opposite direction to that during the cooling operation, and the indoor heat exchanger 7 functions as a condenser.
  • FIG. 2 is a front view showing an external configuration of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment.
  • FIG. 3 is a front view schematically showing the internal structure of the indoor unit 1 (with the front panel removed).
  • FIG. 4 is a side view schematically showing the internal structure of the indoor unit 1. The left side in FIG. 4 shows the front side (indoor side) of the indoor unit 1.
  • the indoor unit 1 a floor-standing indoor unit 1 installed on the floor surface of the room that is the air-conditioning target space is illustrated.
  • the positional relationship for example, vertical relationship etc.
  • the indoor unit 1 includes a casing 111 having a vertically long rectangular parallelepiped shape.
  • a suction port 112 (an example of a lower opening) that sucks indoor air is formed in the lower front portion of the housing 111.
  • the suction port 112 of this example is provided below the center portion in the vertical direction of the casing 111 and at a position near the floor surface.
  • An air outlet 113 (an example of an upper opening) that blows air sucked from the air inlet 112 into the room is formed in the upper front portion of the housing 111, that is, at a position higher than the air inlet 112.
  • the air outlet 113 of this example is provided above the center part in the up-down direction of the housing 111.
  • An operation unit 26 is provided on the front surface of the casing 111 above the suction port 112 and below the air outlet 113.
  • an operation start operation, an operation end operation, an operation mode switching, a set temperature, a set air volume, and the like of the indoor unit 1 (air conditioner) are performed by a user operation.
  • the housing 111 is a hollow box, and a front opening is formed on the front surface of the housing 111.
  • the casing 111 includes a first front panel 114a, a second front panel 114b, and a third front panel 114c that are detachably attached to the front opening.
  • the first front panel 114a, the second front panel 114b, and the third front panel 114c all have a substantially rectangular flat plate-like outer shape.
  • the first front panel 114a is detachably attached to the lower portion of the front opening of the casing 111.
  • the suction port 112 is formed in the first front panel 114a.
  • the second front panel 114b is disposed adjacent to and above the first front panel 114a, and is detachably attached to the central portion of the front opening of the housing 111 in the vertical direction.
  • the operation unit 26 is provided on the second front panel 114b.
  • the third front panel 114c is disposed adjacent to and above the second front panel 114b, and is detachably attached to the upper portion of the front opening of the housing 111.
  • the above-described air outlet 113 is formed in the third front panel 114c.
  • the internal space of the housing 111 is roughly divided into a lower space 115a that serves as a blower section and an upper space 115b that is located above the lower space 115a and serves as a heat exchange section.
  • the lower space 115a and the upper space 115b are partitioned by the partition portion 20.
  • the partition part 20 has a flat plate shape, for example, and is arranged substantially horizontally.
  • the partition portion 20 is formed with at least an air passage opening 20a serving as an air passage between the lower space 115a and the upper space 115b.
  • the lower space 115a is exposed to the front surface side by removing the first front panel 114a from the housing 111, and the upper space 115b is configured such that the second front panel 114b and the third front panel 114c are removed from the housing 111. By removing it, it is exposed to the front side. That is, the height at which the partition portion 20 is installed substantially matches the height of the upper end of the first front panel 114a (or the lower end of the second front panel 114b).
  • the partition portion 20 may be formed integrally with a fan casing 108 described later, or may be formed integrally with a drain pan described later, or as a separate body from the fan casing 108 and the drain pan. It may be formed.
  • an indoor blower fan 7f that generates an air flow from the inlet 112 to the outlet 113 is disposed.
  • the indoor blower fan 7f of this example is a sirocco fan that includes a motor (not shown) and an impeller 107 that is connected to an output shaft of the motor and has a plurality of blades arranged at equal intervals in the circumferential direction.
  • the rotating shaft of the impeller 107 (motor output shaft) is arranged so as to be substantially parallel to the depth direction of the casing 111.
  • the impeller 107 is covered with a spiral fan casing 108.
  • a suction opening 108 b provided near the spiral center of the fan casing 108 is disposed so as to face the suction port 112.
  • the blowout opening 108 a of the fan casing 108 is arranged so as to face upward, and is directly connected to the air passage opening 20 a of the partition part 20, for example.
  • At least the inside of the fan casing 108 in the lower space 115 a constitutes a part of the air passage space 81.
  • the air passage space 81 is an internal space of the casing 111, which is a space serving as an air passage for the air from the suction port 112 toward the air outlet 113, or a space communicating with the space.
  • an electrical component box 25 is provided in which a microcomputer, various electrical components, a substrate, and the like that configure the control unit of the indoor unit 1 are accommodated.
  • the upper space 115b is located downstream of the lower space 115a in the air flow generated by the indoor blower fan 7f.
  • the indoor heat exchanger 7 is disposed in the air passage space 81 in the upper space 115b.
  • a drain pan (not shown) that receives condensed water condensed on the surface of the indoor heat exchanger 7 is provided below the indoor heat exchanger 7.
  • the drain pan may be formed as a part of the partition part 20, or may be formed separately from the partition part 20 and disposed on the partition part 20.
  • FIG. 5 is a front view schematically showing the configuration of the indoor heat exchanger 7 and its peripheral components.
  • the indoor heat exchanger 7 of this example has a plurality of fins 70 arranged in parallel at a predetermined interval, and a plurality of fins 70 that pass through the refrigerant.
  • It is a plate fin tube type heat exchanger having a plurality of heat transfer tubes 71.
  • the heat transfer tube 71 includes a plurality of hairpin tubes 72 each having a long straight tube portion that penetrates the plurality of fins 70 and a plurality of U vent tubes 73 that allow the plurality of hairpin tubes 72 to communicate with each other.
  • the hairpin tube 72 and the U vent tube 73 are joined by a brazed portion W (an example of a joined portion).
  • the brazed portion W is indicated by a black circle.
  • the number of the heat transfer tubes 71 may be one or plural.
  • the number of the hairpin tubes 72 constituting one heat transfer tube 71 may be one or plural.
  • a cylindrical header main pipe 61 is connected to the indoor pipe 9a on the gas side.
  • a plurality of header branch pipes 62 are branched and connected to the header main pipe 61.
  • One end 71 a of the heat transfer tube 71 is connected to each of the plurality of header branch tubes 62.
  • a plurality of indoor refrigerant branch pipes 63 are branched and connected to the liquid side indoor pipe 9b.
  • the other end 71 b of the heat transfer pipe 71 is connected to each of the plurality of indoor refrigerant branch pipes 63.
  • the brazed portion W of the indoor heat exchanger 7 (here, the indoor pipe 9a, the header main pipe 61, the header branch pipe 62, the indoor refrigerant branch pipe 63, and the indoor pipe 9b). (Including the brazing portion W of peripheral parts such as) is disposed in the air passage space 81 in the upper space 115b.
  • the joint portion 15a connecting the indoor pipe 9a and the extension pipe 10a and the joint portion 15b connecting the indoor pipe 9b and the extension pipe 10b are also formed in the air passage space 81 in the upper space 115b. Has been placed.
  • a flammable refrigerant such as R32, HFO-1234yf, HFO-1234ze, R290, R1270, or the like is used as the refrigerant circulating in the refrigeration cycle 40.
  • the indoor refrigerant concentration may increase and a combustible concentration region may be formed.
  • the indoor blower fan 7f is also stopped, so that it is difficult to diffuse the leaked refrigerant by the blown air.
  • combustible refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)). Therefore, if the refrigerant leaks at a position where the height from the indoor floor is relatively high, the leaked refrigerant diffuses while descending, and the refrigerant concentration becomes uniform in the indoor space. It is hard to get high. On the other hand, when the refrigerant leaks at a position where the height from the indoor floor surface is low, the leaked refrigerant stays at a low position near the floor surface, so the refrigerant concentration tends to increase locally. Thereby, possibility that a combustible concentration range will be formed will increase relatively.
  • the brazing portion W is located above the air passage space 81 in the upper space 115b, that is, the impeller 107 (blade) of the indoor fan 7f disposed in the lower space 115a. It is arranged in the space 81.
  • the joint portions 15a and 15b are also disposed in the air passage space 81 in the upper space 115b.
  • blowout opening 108 a of the fan casing 108 is connected to the air passage opening 20 a of the partition part 20. For this reason, if the leakage of the refrigerant occurs in the brazing portion W or the joint portions 15a and 15b while the air conditioner is stopped (that is, the indoor blower fan 7f is stopped), almost all of the refrigerant leaked into the upper space 115b. The entire amount flows down into the fan casing 108 via the air passage opening 20a and the blowout opening 108a without detouring to another path inside the casing 111.
  • the fan casing 108 is provided with an impeller 107 having a plurality of blades, the refrigerant flowing into the fan casing 108 collides with the surfaces of the plurality of blades and is partitioned by the plurality of blades. It flows downward while diverting to a plurality of flow paths. Therefore, in the fan casing 108, the refrigerant is diffused into the air.
  • the refrigerant diffused in the fan casing 108 flows out into the room through the suction opening 108 b and the suction port 112 of the fan casing 108. Since the refrigerant is diffused when it flows out into the room, the refrigerant concentration can be prevented from becoming locally high.
  • the manufacturing cost of the indoor unit 1 and the air conditioner including the indoor unit 1 can be suppressed.
  • FIG. 6 is a front view schematically showing the configuration of the suction port 112 of the indoor unit 1 according to the modification of the present embodiment.
  • 7 is a cross-sectional view showing a VII-VII cross section of FIG.
  • a suction grill 120 (an example of a diffusion mechanism) is provided in the suction port 112 (lower opening) of the present modification.
  • the suction grill 120 has a shape that spreads radially from the inside of the housing 111 toward the outside.
  • a filter 121 (an example of a diffusion mechanism) is provided inside the suction grill 120 (inside the housing 111).
  • the filter 121 is composed of a nonwoven fabric or a mesh.
  • the suction grill 120 is provided at the suction port 112, so that the leaked refrigerant flowing out from the suction port 112 into the room can be diffused in a wider range. Therefore, it can suppress more reliably that a combustible concentration area
  • the filter 121 is provided in the suction port 112, the flow of the leaked refrigerant flowing out from the suction port 112 into the room can be disturbed, and as a result, the leaked refrigerant can be further diffused and flowed out into the room. . Therefore, it can suppress more reliably that a combustible concentration area
  • a suction grill having a shape that extends in the left-right direction from the inside of the housing 111 to the outside may be used, or a shape that extends in the vertical direction from the inside of the housing 111 to the outside.
  • the two types of suction grills may be stacked in the flow direction of air or leakage refrigerant.
  • FIG. 8 is a front view schematically showing the internal structure of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment.
  • FIG. 9 is a side view schematically showing the internal structure of the indoor unit 1.
  • symbol is attached
  • a part of the partition portion 20 near the indoor pipes 9a and 9b and the extension pipes 10a and 10b has a container shape in which the upper space 115b side is concave and the lower space 115a side is convex.
  • the recess 130 is formed.
  • the space in the recess 130 is a part of the upper space 115b, but is lower than the height of the upper end of the first front panel 114a (the lower end of the second front panel 114b).
  • An opening is formed on the front side of the recess 130, and a lid 131 that can be attached and detached using a screw or the like is provided in the opening.
  • the lid 131 is removed, the space in the recess 130 is exposed to the front side through the opening.
  • the lid 131 is attached, the front side of the recess 130 is sealed.
  • the joint portions 15a and 15b are disposed in a space in the recess 130. That is, the joint portions 15a and 15b are disposed below the upper end of the first front panel 114a. Thereby, the joint parts 15a and 15b can be exposed to the front side by removing the first front panel 114a and further removing the lid 131.
  • the joint portions 15a and 15b are arranged in the lower space 115a together with the electrical component box 25 and the like. For this reason, in the case of a general floor-standing indoor unit, by removing only the first front panel 114a from the casing 111, the electrical component box 25 and the joint portions 15a and 15b can be exposed to the front side. Can be performed (for example, connection and removal of electrical wiring and refrigerant piping).
  • the front surface is removed by removing the first front panel 114a and the lid 131. It is designed to be exposed to the side. Therefore, in the present embodiment, since the electrical wiring and the refrigerant pipe can be connected and removed without removing the second front panel 114b, the indoor unit 1 can be easily installed, repaired, or removed. be able to. Further, in a normal use state where the lid 131 is attached to the recess 130, the front side of the recess 130 is sealed.
  • the air passage opening 20a and the blowout opening are made without diverting substantially the entire amount of the leaked refrigerant to other paths inside the casing 111. It can flow into the fan casing 108 through 108a. Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 10 is a front view schematically showing the internal structure of the indoor unit 1 according to the first modification of the present embodiment.
  • FIG. 11 is a side view schematically showing the internal structure of the indoor unit 1.
  • the shape of the partition 20 is a flat plate as in the first embodiment.
  • a bulging portion 132 bulged so as to include a part of the refrigerant pipe (indoor pipes 9a, 9b and extension pipes 10a, 10b) in a part of the side wall of the blowout opening 108a of the fan casing 108.
  • An opening is formed on the front side of the bulging portion 132, and a lid 133 that can be attached and detached using screws or the like is provided in the opening.
  • the space in the bulging portion 132 is exposed to the front side through the opening.
  • the lid 133 is attached, the front side of the bulging portion 132 is sealed.
  • the bulging portion 132 is located in the lower space 115a, like the other portions of the fan casing 108.
  • the joint portions 15a and 15b are disposed in a space in the bulging portion 132. That is, the joint portions 15a and 15b are disposed below the upper end of the first front panel 114a. Thereby, the joint parts 15a and 15b can be exposed to the front side by removing the first front panel 114a and further removing the lid 133.
  • the joint portions 15a and 15b are disposed above the impeller 107 (blade). Therefore, also by this modification, the same effect as the structure shown in FIG.8 and FIG.9 can be acquired.
  • the configuration of the indoor unit 1 in the present embodiment is not limited to the configuration shown in FIGS.
  • the height (vertical direction length) of the second front panel 114b is increased while the height (vertical length) of the first front panel 114a is enlarged.
  • the upper end of the first front panel 114a (the lower end of the second front panel 114b) may be disposed above the joint portions 15a and 15b in the upper space 115b.
  • the electrical wiring and the refrigerant pipe can be connected and disconnected without removing the second front panel 114b.
  • FIG. 12 is a front view schematically showing the internal structure of the indoor unit 1 according to the second modification of the present embodiment.
  • FIG. 13 is a side view schematically showing the internal structure of the indoor unit 1.
  • the recessed part 130 shown in FIG.12 and FIG.13 has the shape of a bowl provided with the trunk
  • the space in the trunk portion 130a communicates with the upper space 115b (the space in which the indoor heat exchanger 7 is installed) through the mouth portion 130b.
  • the space in the trunk portion 130a becomes a part of the upper space 115b.
  • Joint portions 15a and 15b are accommodated in the space in the trunk portion 130a.
  • the space in which the joint portions 15a and 15b are accommodated becomes a part of the upper space 115b, so that the same effect as the configuration shown in FIGS. 8 and 9 can be obtained.
  • the recess 130 can have various shapes as long as the space in which the joint portions 15a and 15b are accommodated and the upper space 115b (the space in which the indoor heat exchanger 7 is installed) can communicate with each other. .
  • FIG. 14 is a front view schematically showing the internal structure of the indoor unit 1 according to the third modification of the present embodiment.
  • FIG. 15 is a side view schematically showing the internal structure of the indoor unit 1.
  • the bulging part 132 shown in FIG.14 and FIG.15 has the shape of the horizontal ridge shape provided with the trunk
  • the space in the trunk portion 132a communicates with the blowout opening portion 108a through the mouth portion 132b.
  • Joint portions 15a and 15b are accommodated in the space in the trunk portion 132a.
  • the space in which the joint portions 15a and 15b are accommodated communicates with the blowout opening portion 108a, and the joint portions 15a and 15b are disposed above the indoor blower fan 7f. And the effect similar to the structure shown in FIG. 11 can be acquired.
  • the bulging part 132 can have various shapes as long as the space in which the joint parts 15a and 15b are accommodated can communicate with the outlet opening part 108a.
  • Embodiment 3 An air conditioner according to Embodiment 3 of the present invention will be described.
  • the casing 111, the partition 20 (including the recess 130), the bulging portion 132, and the like are provided with opening holes that allow the extension pipes 10a and 10b to pass therethrough.
  • the extension pipes 10 a and 10 b pass through an opening hole provided in the partition portion 20 and an opening hole provided in the casing 111, thereby allowing the extension pipes 10 a and 10 b to pass through the casing 111. It is taken out of the body 111 and connected to the outdoor unit 2.
  • FIG. 16 is a diagram showing a configuration of the opening hole in the air-conditioning apparatus according to the present embodiment.
  • the opening holes 30a and 30b shown in FIG. 16 are a two-hole type which allows each of the extension pipes 10a and 10b to pass through individually.
  • heat insulating materials 18a and 18b formed of a foamed urethane material or the like are wound around the outer circumferences of the extension pipes 10a and 10b, respectively.
  • the inner diameters of the opening holes 30a and 30b are substantially the same as or slightly larger than the outer diameters of the heat insulating materials 18a and 18b. For this reason, the processing dimensions of the on-site handling (including bending and length adjustment) of the extension pipes 10a and 10b are sufficient at a general permissible level as before. That is, the local workability is improved.
  • gap filling materials 19a and 19b are filled, respectively.
  • the gap fillers 19a and 19b are formed using a foam material with closed cells.
  • the outer periphery of the heat insulating materials 18a and 18b and the opening holes 30a and 30b are hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid (for example, leaked refrigerant) through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b is minimized.
  • FIG. 17 is a diagram showing a first modification of the configuration of the opening hole.
  • the opening hole 30 shown in FIG. 17 is a one-hole type that allows the extension pipes 10a and 10b to pass through together.
  • a gap filler 19 is filled between the outer periphery of the heat insulating materials 18 a and 18 b and the inner periphery of the opening hole 30.
  • the gap filling material 19 is formed using a closed cell foam material.
  • the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is minimized.
  • FIG. 18 is a diagram showing a second modification of the configuration of the opening hole.
  • the opening hole 31 shown in FIG. 18 is a notch type notched from the edge part of a plate-shaped member.
  • a gap filler 19 is filled between the outer periphery of the heat insulating materials 18 a and 18 b and the inner periphery of the opening hole 31.
  • the gap filling material 19 By filling the gap filling material 19, the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is minimized.
  • the openings formed in the partition portion 20 are configured as shown in FIGS. 16 to 18, so that the coolant can be used in the brazed portion W or the joint portions 15a and 15b in the upper space 115b.
  • the fan casing is bypassed through the air passage opening 20a and the blowout opening 108a without diverting the entire amount of the refrigerant leaked at the brazing portion W or the joint portions 15a and 15b to other paths inside the casing 111. 108 can flow into. Accordingly, since the entire amount of the leaked refrigerant can be diffused in the fan casing 108 and then flowed out into the room, it is possible to suppress the formation of a combustible concentration region in the room.
  • FIG. 19 is a front view schematically showing the internal structure of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment.
  • FIG. 20 is a side view schematically showing the internal structure of the indoor unit 1.
  • symbol is attached
  • opening holes 30 a and 30 b that penetrate the extension pipes 10 a and 10 b are provided on the top or top surface (top surface in this example) of the casing 111.
  • the extension pipes 10a and 10b are taken out from the upper space 115b in the housing 111 through the opening holes 30a and 30b, respectively.
  • the upper part of the casing 111 is above the partition part 20 in the casing 111.
  • the opening holes 30a and 30b are desirably provided at a position as high as possible (for example, above the indoor heat exchanger 7 and the joint portions 15a and 15b).
  • the opening holes 30a and 30b have the same configuration as that of the third embodiment, for example. That is, the gap filler 19 is filled between the outer periphery of the heat insulating materials 18a and 18b wound around the extension pipes 10a and 10b and the inner periphery of the opening holes 30a and 30b. By filling the gap filling material 19, the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b.
  • the gap filler 19 is displaced, and a minute gap is formed between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b. It can happen.
  • the refrigerant leaks in the upper space 115b, the refrigerant leaking from the upper space 115b to the outside of the casing 111 through the gap of the gap filler 19 flows out into the room without passing through the fan casing 108. .
  • a refrigerant having a density higher than that of air under atmospheric pressure is used, and the opening holes 30a and 30b are provided on the top or top surface of the casing 111. For this reason, even if there is a gap in the gap filler 19, the leaked refrigerant is difficult to flow out of the housing 111 through the gap of the gap filler 19. Even if the leaked refrigerant in the upper space 115b flows out of the casing 111 through the gap of the gap filler 19, the opening holes 30a and 30b are provided at positions where the height from the floor surface is high. The refrigerant leaked into the room diffuses while descending, and the refrigerant concentration becomes uniform. Therefore, according to this Embodiment, it can prevent more reliably that a combustible density
  • the air-conditioning apparatus includes the refrigeration cycle 40 that circulates the refrigerant through the refrigerant pipe, and the outdoor unit that houses at least the compressor 3 and the outdoor heat exchanger 5 of the refrigeration cycle 40. 2 and an indoor unit 1 that houses at least the indoor heat exchanger 7 of the refrigeration cycle 40 and is connected to the outdoor unit 2 via extension pipes 10a and 10b that are part of the refrigerant pipe.
  • the refrigerant has a density higher than that of air under atmospheric pressure
  • the indoor unit 1 includes a housing 111 and an upper space 115b in which the indoor heat exchanger 7 is disposed inside the housing 111.
  • the lower space 115a provided below the upper space 115b in the interior of the casing 111, the partition 20 that partitions the upper space 115b and the lower space 115a, and the lower space 115a.
  • An internal blower fan 7f, and a fan casing 108 which is disposed in the lower space 115a and covers the indoor blower fan 7f and has a blow-off opening 108a and a suction opening 108b formed therein.
  • An air passage opening 20a serving as an air passage between the space 115b and the lower space 115a is formed, and one of the blowing opening 108a or the suction opening 108b (in this example, the blowing opening 108a) is an air passage. It is connected to the opening 20a.
  • joint part 15a, 15b is upper part. It may be arranged in the space 115b.
  • the indoor heat exchanger 7 and the extension pipes 10a and 10b are connected via joint portions 15a and 15b, and the joint portions 15a and 15b You may arrange
  • a front opening is formed on the front surface of the housing 111, and the housing 111 is detachably attached to at least a lower portion of the front opening.
  • 1 front panel 114a and a second front panel 114b that is detachably attached to a portion of the front opening above the lower part, and the joint portions 15a and 15b are provided with the first front panel 114a. It may be provided below the upper end of.
  • the indoor heat exchanger 7 may have a joint part (for example, a brazing part W) between the pipes that is a part of the refrigerant flow path.
  • the casing 111 is disposed above the lower opening (in this example, the suction inlet 112) serving as one of the suction port or the air outlet and the lower opening. And an upper opening (in this example, the air outlet 113) serving as the other of the suction port or the air outlet, and a gas flowing out from the inside of the housing 111 is diffused into the lower opening.
  • a diffusion mechanism may be provided.
  • the diffusion mechanism may include a grille (in this example, the suction grill 120) having a shape that spreads radially from the inside of the housing 111 toward the outside.
  • the diffusion mechanism may include a filter 121 made of a nonwoven fabric or a mesh.
  • the indoor blower fan 7f may be an axial fan or a diagonal fan.
  • the indoor blower fan 7f may be rotatably stopped while the indoor unit 1 is stopped.
  • At least one of the partition portion 20 (including the recessed portion 130), the bulging portion 132, and the housing 111 has an opening hole 30 that allows the extension pipes 10a and 10b to pass through.
  • 30a, 30b, 31 are formed, and the gap filling formed between the outer periphery of the extension pipes 10a, 10b and the inner periphery of the opening holes 30, 30a, 30b, 31 using a closed cell foam material
  • the materials 19, 19a, 19b may be filled.
  • the casing 111 is formed with opening holes 30, 30a, 30b, 31 through which the extension pipes 10a, 10b pass, and the opening holes 30, 30a, 30b, 31 may be provided on the top or top surface of the casing 111.
  • the upper space 115b may be located on the downstream side of the lower space 115a in the air flow generated by the indoor blower fan 7f.
  • the indoor unit 1 may be a floor-standing type installed on the floor surface of the room.
  • the refrigerant may be a combustible refrigerant.
  • a sirocco fan is used as an example of the indoor blower fan 7f. It can also be used.
  • a cylindrical fan casing is used. The axial end of the fan casing may be formed in a bell mouth shape.
  • the indoor blower fan 7f is configured to freely rotate (unlocked) while the indoor unit 1 is stopped. It is desirable to do.
  • the rotational direction during operation of the stopped indoor blower fan 7f due to the density difference between the leakage refrigerant flowing from the upper space 115b to the lower space 115a and the air It can be rotated in the opposite direction.
  • a flow of a mixed gas of the leaked refrigerant and air can be generated in the direction from the suction port 112 toward the room. Therefore, since the leaked refrigerant flowing out into the room can be further diffused into the air, it is possible to more reliably suppress the formation of a combustible concentration region in the room.
  • the suction inlet 112 was formed in the lower part of the housing
  • casing 111 and the blower outlet 113 was formed upwards as an example
  • the up-and-down relationship of the suction inlet 112 and the blower outlet 113 was mentioned. May be reversed.
  • the air outlet 113 (an example of a lower opening) may be formed in the lower portion of the casing 111
  • the suction port 112 (an example of an upper opening) may be formed above the air outlet 113.
  • the upper space 115b is located upstream of the lower space 115a in the air flow generated by the indoor blower fan 7f.
  • the air passage space 81 does not have a concave portion (a concave portion with an upper opening) serving as a stagnant portion of the leaked refrigerant. Moreover, when such a recessed part exists, the one where the volume of a recessed part is smaller is desirable.
  • a flammable refrigerant is used as an example of the refrigerant.
  • the refrigerant has a density higher than that of air under atmospheric pressure, the refrigerant does not depend on the flammability of the refrigerant.
  • the leaked refrigerant can be diffused and discharged into the room. Therefore, even when a refrigerant other than the flammable refrigerant is used, the indoor refrigerant concentration can be suppressed from becoming locally high.
  • coolant can be made unnecessary, the manufacturing cost of the indoor unit 1 and the air conditioning apparatus containing it can be suppressed.

Abstract

Provided is an air conditioning device having a refrigeration cycle (40), an outdoor unit (2), and an indoor unit (1). The refrigerant has a density greater than that of the air under atmospheric pressure. The indoor unit (1) is provided with: an upper space (115b) in which an indoor heat exchanger (7) is disposed; a lower space (115a) provided lower than the upper space (115b); a partition part (20) that partitions the upper space (115b) and the lower space (115a); an indoor blower fan (7f) disposed in the lower space (115a); and a fan casing (108) in which a blow-out opening part(108a) and a suction opening part(108b) are formed. An air passage opening part (20a) that serves as an air passage between the upper space (115b) and the lower space (115a) is formed in the partitioning part (20). The blow-out opening part (108a) is connected to the air passage opening part (20a).

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関する。 The present invention relates to an air conditioner.
 従来、空気調和装置に用いられる冷媒として、不燃性であるR410AのようなHFC冷媒が用いられている。このR410Aは、従来のR22のようなHCFC冷媒と異なり、オゾン層破壊係数(以下「ODP」と称す)がゼロであるため、オゾン層を破壊することはない。ところが、R410Aは、地球温暖化係数(以下「GWP」と称す)が高いという性質を有している。そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低い冷媒へと変更する検討が進められている。 Conventionally, a non-flammable HFC refrigerant such as R410A has been used as a refrigerant used in an air conditioner. Unlike the conventional HCFC refrigerant like R22, this R410A does not destroy the ozone layer because the ozone layer depletion coefficient (hereinafter referred to as “ODP”) is zero. However, R410A has a property of having a high global warming potential (hereinafter referred to as “GWP”). Therefore, as part of the prevention of global warming, studies are underway to change from an HFC refrigerant with a high GWP such as R410A to a refrigerant with a low GWP.
 そのような低GWPの冷媒候補として、自然冷媒であるR290(C;プロパン)やR1270(C;プロピレン)のようなHC冷媒がある。しかしながら、R290やR1270は、不燃性であるR410Aとは異なり、強燃レベルの可燃性(強燃性)を有している。そのため、R290やR1270を冷媒として用いる場合には、冷媒漏洩に対する注意が必要である。 As such low GWP refrigerant candidates, there are HC refrigerants such as R290 (C 3 H 8 ; propane) and R 1270 (C 3 H 6 ; propylene), which are natural refrigerants. However, unlike R410A, which is nonflammable, R290 and R1270 have flammability (strong flammability) at a high flammability level. Therefore, when R290 or R1270 is used as a refrigerant, attention must be paid to refrigerant leakage.
 また、低GWPの冷媒候補として、組成中に炭素の二重結合を持たないHFC冷媒、例えば、R410AよりもGWPが低いR32(CH;ジフルオロメタン)がある。 Moreover, as a refrigerant candidate of low GWP, there is an HFC refrigerant having no carbon double bond in the composition, for example, R32 (CH 2 F 2 ; difluoromethane) having a lower GWP than R410A.
 また、同じような冷媒候補として、R32と同様にHFC冷媒の一種であって、組成中に炭素の二重結合を有するハロゲン化炭化水素がある。かかるハロゲン化炭化水素として、例えば、HFO-1234yf(CFCF=CH;テトラフルオロプロペン)やHFO-1234ze(CF-CH=CHF)がある。なお、組成中に炭素の二重結合を持つHFC冷媒は、R32のように組成中に炭素の二重結合を持たないHFC冷媒と区別するために、オレフィン(炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれる)の「O」を使って、「HFO」と表現されることが多い。 Similar refrigerant candidates include halogenated hydrocarbons which are a kind of HFC refrigerant as in R32 and have a carbon double bond in the composition. Examples of such a halogenated hydrocarbon include HFO-1234yf (CF 3 CF═CH 2 ; tetrafluoropropene) and HFO-1234ze (CF 3 —CH═CHF). In order to distinguish HFC refrigerants having a carbon double bond in the composition from HFC refrigerants having no carbon double bond in the composition such as R32, an olefin (unsaturated with carbon double bond) is used. Often expressed as "HFO" using "O" in hydrocarbons called olefins.
 このような低GWPのHFC冷媒(HFO冷媒を含む)は、自然冷媒であるR290のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性(微燃性)を有している。そのため、R290と同様に冷媒漏洩に対する注意が必要である。これより以降、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の可燃性を有する冷媒のことを「可燃性冷媒」と称する。 Such low GWP HFC refrigerants (including HFO refrigerants) are not as flammable as HC refrigerants such as natural refrigerant R290, but unlike R410A, which is nonflammable, flammability at a slightly flammable level ( Slightly flammable). Therefore, it is necessary to pay attention to refrigerant leakage as in the case of R290. Henceforth, the refrigerant | coolant which has flammability more than a slight fuel level (for example, 2L or more by the classification | category of ASHRAE34) is called "flammable refrigerant | coolant."
 可燃性冷媒が室内空間へ漏洩した場合、室内の冷媒濃度が上昇し、可燃濃度域が形成されてしまう可能性がある。 When the flammable refrigerant leaks into the indoor space, the refrigerant concentration in the room rises and a flammable concentration area may be formed.
 特許文献1には、可燃性冷媒を用いた空気調和装置において、室内機の外表面に可燃性冷媒ガスを検知するためのガスセンサを備え、室内機は床置形になっており、ガスセンサは室内機の下部に設けられている空気調和装置が記載されている。この空気調和装置の制御部は、ガスセンサのセンサ検知電圧が基準値以上であれば、可燃性冷媒が漏洩したと判断して、直ちに警報器によって警報を発する。これにより、ユーザは、可燃性冷媒が漏洩したことを知ることができ、室内を換気する、修理のためにサービスマンを呼ぶなどの処置をとることができる。また、制御部は、可燃性冷媒が漏洩したと判断すると、直ちに冷媒回路の運転を停止する制御を行う。これにより、この空気調和装置が運転中であっても、冷媒回路上に存在する弁によって冷媒回路を直ちに遮断でき、可燃性冷媒が大量に漏洩するのを抑制できる。 Patent Document 1 discloses that an air conditioner using a flammable refrigerant is provided with a gas sensor for detecting a flammable refrigerant gas on the outer surface of an indoor unit, the indoor unit is a floor type, and the gas sensor is an indoor unit. The air conditioner provided in the lower part of the is described. If the sensor detection voltage of the gas sensor is equal to or higher than the reference value, the control unit of the air conditioner determines that the flammable refrigerant has leaked and immediately issues an alarm by the alarm device. Thereby, the user can know that the flammable refrigerant has leaked, and can take measures such as ventilating the room or calling a service person for repair. Further, when the control unit determines that the flammable refrigerant has leaked, the control unit immediately performs control to stop the operation of the refrigerant circuit. Thereby, even if this air conditioning apparatus is in operation, the refrigerant circuit can be immediately shut off by the valve existing on the refrigerant circuit, and a large amount of flammable refrigerant can be prevented from leaking.
特許第4639451号公報Japanese Patent No. 4639451
 しかしながら、特許文献1に記載された空気調和装置では、可燃性冷媒ガスを検知するガスセンサが必要となるため、製造原価が高くなってしまうという第1の問題点があった。また、警報により可燃性冷媒の漏洩を知ったユーザは、室内を換気する、修理のためにサービスマンを呼ぶなどの処置をとることができるが、これらの処置がとられるまでの間、一般的に閉空間である室内において、漏洩した可燃性冷媒が可燃濃度域を形成してしまうおそれがあるという第2の問題点があった。また、可燃性冷媒が漏洩したと判断した制御部は直ちに冷媒回路の運転を停止する制御を行うため、可燃性冷媒が大量に漏洩するのを抑制できるが、一定量の可燃性冷媒が漏洩することまでは回避できない。このため、一般的に閉空間である室内において、漏洩した可燃性冷媒が可燃濃度域を形成してしまうおそれがあるという第3の問題点があった。 However, the air conditioner described in Patent Document 1 requires a gas sensor for detecting a flammable refrigerant gas, and thus has a first problem that the manufacturing cost becomes high. In addition, a user who knows that a flammable refrigerant has leaked through an alarm can take measures such as ventilating the room or calling a service person for repairs. In a room that is a closed space, there is a second problem that the combustible refrigerant leaked may form a combustible concentration range. In addition, since the control unit that determines that the flammable refrigerant has leaked performs control to immediately stop the operation of the refrigerant circuit, it can suppress a large amount of flammable refrigerant from leaking, but a certain amount of flammable refrigerant leaks. It cannot be avoided. For this reason, there is a third problem that the leaked combustible refrigerant may form a combustible concentration region in a room that is generally a closed space.
 ここで、空気調和装置の運転中には、室内機のファンの運転によって空気が室内に吹き出される。このため、万一可燃性冷媒が室内に漏洩したとしても、漏洩した可燃性冷媒は、吹き出される空気によって室内で拡散するため、室内に可燃濃度域が形成されない。しかしながら、空気調和装置の停止中には、室内機のファンも停止しているため、上記の第2又は第3の問題点が生じやすい。 Here, during the operation of the air conditioner, air is blown into the room by the operation of the fan of the indoor unit. For this reason, even if the flammable refrigerant leaks into the room, the leaked flammable refrigerant diffuses in the room by the air blown out, so that no flammable concentration area is formed in the room. However, since the fan of the indoor unit is also stopped while the air conditioner is stopped, the second or third problem is likely to occur.
 本発明は、上述のような問題点の少なくとも1つを解決するためになされたものであり、万一、冷媒が漏洩したとしても、室内の冷媒濃度が局所的に高くなってしまうことを抑制でき、製造原価も抑制できる空気調和装置を提供することを目的とする。 The present invention has been made to solve at least one of the above-described problems, and even if the refrigerant leaks, the indoor refrigerant concentration is suppressed from becoming locally high. An object of the present invention is to provide an air conditioner that can reduce the manufacturing cost.
 本発明に係る空気調和装置は、冷媒配管を介して冷媒を循環させる冷凍サイクルと、少なくとも前記冷凍サイクルの圧縮機及び室外熱交換器を収容する室外機と、少なくとも前記冷凍サイクルの室内熱交換器を収容し、前記冷媒配管の一部である延長配管を介して前記室外機と接続される室内機と、を有する空気調和装置であって、前記冷媒は、大気圧下で空気よりも大きい密度を有しており、前記室内機は、筐体と、前記筐体の内部において前記室内熱交換器が配置される上部空間と、前記筐体の内部において前記上部空間よりも下方に設けられた下部空間と、前記上部空間と前記下部空間とを仕切る仕切部と、前記下部空間に配置されたファンと、前記下部空間に配置され、前記ファンを覆うとともに吹出開口部及び吸込開口部が形成されたファンケーシングと、を備えており、前記仕切部には、前記上部空間と前記下部空間との間の風路となる風路開口部が形成されており、前記吹出開口部又は前記吸込開口部の一方は、前記風路開口部に接続されているものである。 An air conditioner according to the present invention includes a refrigeration cycle that circulates a refrigerant through a refrigerant pipe, an outdoor unit that houses at least a compressor and an outdoor heat exchanger of the refrigeration cycle, and an indoor heat exchanger of at least the refrigeration cycle. And an indoor unit connected to the outdoor unit via an extension pipe that is a part of the refrigerant pipe, wherein the refrigerant has a density greater than that of air under atmospheric pressure. The indoor unit is provided in a housing, an upper space in which the indoor heat exchanger is disposed in the housing, and a lower portion in the housing than the upper space. A lower part, a partition part for partitioning the upper part and the lower part, a fan arranged in the lower part, and a fan part arranged in the lower part, covering the fan and forming a blowout opening and a suction opening An air passage opening formed as an air passage between the upper space and the lower space, and the blowout opening or the suction opening. One of the parts is connected to the air passage opening.
 本発明によれば、万一、冷媒が室内機で漏洩したとしても、漏洩冷媒を拡散させて室内に流出させることができるため、室内の冷媒濃度が局所的に高くなってしまうことを抑制できる。また、本発明によれば、冷媒の漏洩を検知するセンサが不要となるため、空気調和装置の製造原価を抑制できる。 According to the present invention, even if the refrigerant leaks in the indoor unit, the leaked refrigerant can be diffused and discharged into the room, so that the indoor refrigerant concentration can be suppressed from becoming locally high. . In addition, according to the present invention, a sensor for detecting the leakage of the refrigerant becomes unnecessary, so that the manufacturing cost of the air conditioner can be suppressed.
本発明の実施の形態1に係る空気調和装置の概略構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows schematic structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の室内機1の外観構成を示す正面図である。It is a front view which shows the external appearance structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の室内熱交換器7及びその周辺部品の構成を模式的に示す正面図である。It is a front view which shows typically the structure of the indoor heat exchanger 7 of the air conditioning apparatus which concerns on Embodiment 1 of this invention, and its peripheral component. 本発明の実施の形態1の変形例に係る室内機1の吸込口112の構成を模式的に示す正面図である。It is a front view which shows typically the structure of the suction inlet 112 of the indoor unit 1 which concerns on the modification of Embodiment 1 of this invention. 図6のVII-VII断面を示す断面図である。FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. 6. 本発明の実施の形態2に係る空気調和装置の室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置の室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2の第1変形例に係る室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 which concerns on the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第1変形例に係る室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 which concerns on the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2変形例に係る室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 which concerns on the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2変形例に係る室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 which concerns on the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第3変形例に係る室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 which concerns on the 3rd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第3変形例に係る室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 which concerns on the 3rd modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置における開口孔の構成を示す図である。It is a figure which shows the structure of the opening hole in the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和装置における開口孔の構成の第1変形例を示す図である。It is a figure which shows the 1st modification of a structure of the opening hole in the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和装置における開口孔の構成の第2変形例を示す図である。It is a figure which shows the 2nd modification of a structure of the opening hole in the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和装置の室内機1の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る空気調和装置の室内機1の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit 1 of the air conditioning apparatus which concerns on Embodiment 4 of this invention.
実施の形態1.
 本発明の実施の形態1に係る空気調和装置について説明する。図1は、本実施の形態に係る空気調和装置の概略構成を示す冷媒回路図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
Embodiment 1 FIG.
An air conditioner according to Embodiment 1 of the present invention will be described. FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to the present embodiment. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may differ from the actual ones.
 図1に示すように、空気調和装置は、冷媒を循環させる冷凍サイクル40を有している。冷凍サイクル40は、圧縮機3、冷媒流路切替装置4、室外熱交換器5(熱源側熱交換器)、減圧装置6、及び室内熱交換器7(負荷側熱交換器)が冷媒配管を介して順次環状に接続された構成を有している。また、空気調和装置は、例えば室内に設置される室内機1と、例えば室外に設置される室外機2と、を有している。室内機1と室外機2との間は、冷媒配管の一部である延長配管10a、10bを介して接続されている。 As shown in FIG. 1, the air conditioner has a refrigeration cycle 40 for circulating a refrigerant. In the refrigeration cycle 40, the compressor 3, the refrigerant flow switching device 4, the outdoor heat exchanger 5 (heat source side heat exchanger), the decompression device 6, and the indoor heat exchanger 7 (load side heat exchanger) are connected to the refrigerant piping. Through the ring. Moreover, the air conditioner has, for example, an indoor unit 1 installed indoors and an outdoor unit 2 installed outdoor, for example. The indoor unit 1 and the outdoor unit 2 are connected via extension pipes 10a and 10b that are part of the refrigerant pipe.
 冷凍サイクル40を循環する冷媒としては、例えば、R32、HFO-1234yf、HFO-1234ze等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられている。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。 As the refrigerant circulating in the refrigeration cycle 40, for example, a slightly flammable refrigerant such as R32, HFO-1234yf, HFO-1234ze, or a strong flammable refrigerant such as R290, R1270 is used. These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
 圧縮機3は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。冷媒流路切替装置4は、冷房運転時と暖房運転時とで冷凍サイクル40内の冷媒の流れ方向を切り替えるものである。冷媒流路切替装置4としては、例えば四方弁が用いられる。室外熱交換器5は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する熱交換器である。室外熱交換器5では、内部を流通する冷媒と、後述する室外送風ファン5fにより送風される空気(外気)との熱交換が行われる。減圧装置6は、高圧冷媒を減圧して低圧冷媒とするものである。減圧装置6としては、例えば開度を調節可能な電子膨張弁などが用いられる。室内熱交換器7は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する熱交換器である。室内熱交換器7では、内部を流通する冷媒と、後述する室内送風ファン7fにより送風される空気との熱交換が行われる。ここで、冷房運転とは、室内熱交換器7に低温低圧の冷媒を供給する運転のことであり、暖房運転とは、室内熱交換器7に高温高圧の冷媒を供給する運転のことである。 The compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. The refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigeration cycle 40 between the cooling operation and the heating operation. For example, a four-way valve is used as the refrigerant flow switching device 4. The outdoor heat exchanger 5 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation. In the outdoor heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and air (outside air) blown by an outdoor blower fan 5f described later. The decompression device 6 decompresses the high-pressure refrigerant into a low-pressure refrigerant. As the decompression device 6, for example, an electronic expansion valve whose opening degree can be adjusted is used. The indoor heat exchanger 7 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation. In the indoor heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and air blown by an indoor blower fan 7f described later. Here, the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the indoor heat exchanger 7, and the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the indoor heat exchanger 7. .
 室外機2には、圧縮機3、冷媒流路切替装置4、室外熱交換器5及び減圧装置6が収容されている。また、室外機2には、室外熱交換器5に外気を供給する室外送風ファン5fが収容されている。室外送風ファン5fは、室外熱交換器5に対向して設置されている。室外送風ファン5fを回転させることで、室外熱交換器5を通過する空気流が生成される。室外送風ファン5fとしては、例えばプロペラファンが用いられている。室外送風ファン5fは、当該室外送風ファン5fが生成する空気流において、例えば室外熱交換器5の下流側に配置されている。 The outdoor unit 2 accommodates a compressor 3, a refrigerant flow switching device 4, an outdoor heat exchanger 5, and a decompression device 6. In addition, the outdoor unit 2 accommodates an outdoor air blowing fan 5 f that supplies outside air to the outdoor heat exchanger 5. The outdoor fan 5f is installed to face the outdoor heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the outdoor heat exchanger 5 is generated. For example, a propeller fan is used as the outdoor blower fan 5f. The outdoor blowing fan 5f is arranged, for example, on the downstream side of the outdoor heat exchanger 5 in the air flow generated by the outdoor blowing fan 5f.
 室外機2には、冷媒配管として、ガス側(冷房運転時)の延長配管接続バルブ13aと冷媒流路切替装置4とを繋ぐ冷媒配管、圧縮機3の吸入側に接続されている吸入配管11、圧縮機3の吐出側に接続されている吐出配管12、冷媒流路切替装置4と室外熱交換器5とを繋ぐ冷媒配管、室外熱交換器5と減圧装置6とを繋ぐ冷媒配管、及び、減圧装置6と液側(冷房運転時)の延長配管接続バルブ13bとを繋ぐ冷媒配管、が配置されている。延長配管接続バルブ13aは、開放及び閉止の切替えが可能な二方弁で構成されており、その一端にフレア継手が取り付けられている。また、延長配管接続バルブ13bは、開放及び閉止の切替えが可能な三方弁で構成されており、その一端に真空引きの際(冷凍サイクル40に冷媒を充填する前作業の際)に使用するサービス口14aが取り付けられ、他の一端にフレア継手が取り付けられている。 In the outdoor unit 2, as a refrigerant pipe, a refrigerant pipe connecting the extension pipe connection valve 13 a on the gas side (during cooling operation) and the refrigerant flow switching device 4, and a suction pipe 11 connected to the suction side of the compressor 3. A discharge pipe 12 connected to the discharge side of the compressor 3, a refrigerant pipe connecting the refrigerant flow switching device 4 and the outdoor heat exchanger 5, a refrigerant pipe connecting the outdoor heat exchanger 5 and the decompression device 6, and A refrigerant pipe connecting the decompression device 6 and the liquid side (cooling operation) extension pipe connection valve 13b is disposed. The extension pipe connection valve 13a is a two-way valve that can be switched between open and closed, and a flare joint is attached to one end thereof. The extension pipe connection valve 13b is composed of a three-way valve that can be switched between open and closed, and is a service that is used when evacuating one end of the valve (before the refrigerant is charged into the refrigeration cycle 40). A mouth 14a is attached, and a flare joint is attached to the other end.
 吐出配管12には、冷房運転時及び暖房運転時のいずれにおいても、圧縮機3で圧縮された高温高圧のガス冷媒が流れる。吸入配管11には、冷房運転時及び暖房運転時のいずれにおいても、蒸発作用を経た低温低圧の冷媒(ガス冷媒又は二相冷媒)が流れる。吸入配管11には、低圧側のフレア継手付きのサービス口14bが接続されており、吐出配管12には、高圧側のフレア継手付きのサービス口14cが接続されている。サービス口14b、14cは、空気調和装置の据付け時や修理時の試運転の際に圧力計を接続して、運転圧力を計測するために使用される。 The high-temperature and high-pressure gas refrigerant compressed by the compressor 3 flows through the discharge pipe 12 during both the cooling operation and the heating operation. A low-temperature and low-pressure refrigerant (gas refrigerant or two-phase refrigerant) that has undergone an evaporating action flows through the suction pipe 11 in both the cooling operation and the heating operation. A service port 14b with a low-pressure side flare joint is connected to the suction pipe 11, and a service port 14c with a flare joint on the high-pressure side is connected to the discharge pipe 12. The service ports 14b and 14c are used for measuring an operating pressure by connecting a pressure gauge at the time of installation or repair of the air conditioner.
 室内機1には、室内熱交換器7が収容されている。また、室内機1には、室内熱交換器7に空気を供給する室内送風ファン7fが設置されている。室内送風ファン7fを回転させることで、室内熱交換器7を通過する空気流が生成される。室内送風ファン7fとしては、室内機1の形態によって、遠心ファン(例えば、シロッコファン、ターボファン等)、クロスフローファン、斜流ファン、軸流ファン(例えば、プロペラファン)などが用いられる。本例の室内送風ファン7fは、当該室内送風ファン7fが生成する空気流において室内熱交換器7の上流側に配置されているが、室内熱交換器7の下流側に配置されていてもよい。 The indoor unit 1 accommodates an indoor heat exchanger 7. The indoor unit 1 is also provided with an indoor fan 7f that supplies air to the indoor heat exchanger 7. By rotating the indoor fan 7f, an air flow passing through the indoor heat exchanger 7 is generated. As the indoor fan 7f, a centrifugal fan (for example, a sirocco fan, a turbo fan, etc.), a cross flow fan, a diagonal fan, an axial fan (for example, a propeller fan), or the like is used depending on the form of the indoor unit 1. The indoor blower fan 7f of this example is arranged on the upstream side of the indoor heat exchanger 7 in the air flow generated by the indoor blower fan 7f, but may be arranged on the downstream side of the indoor heat exchanger 7. .
 また、室内機1には、室内から吸い込まれる室内空気の温度を検出する吸込空気温度センサ91、室内熱交換器7の冷房運転時の入口部(暖房運転時の出口部)の冷媒温度を検出する熱交換器入口温度センサ92、室内熱交換器7の二相部の冷媒温度(蒸発温度又は凝縮温度)を検出する熱交換器温度センサ93等が設けられている。これらのセンサ類は、室内機1又は空気調和装置全体を制御する制御部(図示せず)に検出信号を出力するようになっている。 The indoor unit 1 also detects an intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and detects the refrigerant temperature at the inlet portion of the indoor heat exchanger 7 during the cooling operation (the outlet portion during the heating operation). There are provided a heat exchanger inlet temperature sensor 92, a heat exchanger temperature sensor 93 for detecting the refrigerant temperature (evaporation temperature or condensation temperature) of the two-phase part of the indoor heat exchanger 7, and the like. These sensors are configured to output detection signals to a control unit (not shown) that controls the indoor unit 1 or the entire air conditioner.
 室内機1の冷媒配管のうちガス側の室内配管9aにおいて、ガス側の延長配管10aとの接続部には、延長配管10aを接続するための継手部15a(例えば、フレア継手)が設けられている。また、室内機1の冷媒配管のうち液側の室内配管9bにおいて、液側の延長配管10bとの接続部には、延長配管10bを接続するための継手部15b(例えば、フレア継手)が設けられている。 In the indoor piping 9a on the gas side of the refrigerant piping of the indoor unit 1, a joint portion 15a (for example, a flare joint) for connecting the extension piping 10a is provided at a connection portion with the extension piping 10a on the gas side. Yes. In addition, in the liquid side indoor pipe 9b among the refrigerant pipes of the indoor unit 1, a joint part 15b (for example, a flare joint) for connecting the extension pipe 10b is provided in the connection part with the liquid side extension pipe 10b. It has been.
 次に、空気調和装置の冷凍サイクル40の動作について説明する。まず、冷房運転時の動作について説明する。図1において、実線矢印は、冷房運転時の冷媒の流れ方向を示している。冷房運転では、冷媒流路切替装置4によって冷媒流路が実線で示すように切り替えられ、室内熱交換器7に低温低圧の冷媒が流れるように冷媒回路が構成される。 Next, the operation of the refrigeration cycle 40 of the air conditioner will be described. First, the operation during the cooling operation will be described. In FIG. 1, a solid line arrow indicates the flow direction of the refrigerant during the cooling operation. In the cooling operation, the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by a solid line, and the refrigerant circuit is configured so that the low-temperature and low-pressure refrigerant flows through the indoor heat exchanger 7.
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経てまず室外熱交換器5へと流入する。冷房運転では、室外熱交換器5は凝縮器として機能する。すなわち、室外熱交換器5では、内部を流通する冷媒と、室外送風ファン5fにより送風される空気(外気)との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室外熱交換器5に流入した冷媒は、凝縮して高圧の液冷媒となる。高圧の液冷媒は、減圧装置6に流入し、減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、延長配管10bを経由して室内機1の室内熱交換器7に流入する。冷房運転では、室内熱交換器7は蒸発器として機能する。すなわち、室内熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気(室内空気)との熱交換が行われ、冷媒の蒸発熱が送風空気から吸熱される。これにより、室内熱交換器7に流入した冷媒は、蒸発して低圧のガス冷媒又は二相冷媒となる。また、室内送風ファン7fにより送風される空気は、冷媒の吸熱作用によって冷却される。室内熱交換器7で蒸発した低圧のガス冷媒又は二相冷媒は、延長配管10a及び冷媒流路切替装置4を経由して圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。冷房運転では、以上のサイクルが繰り返される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the outdoor heat exchanger 5 via the refrigerant flow switching device 4. In the cooling operation, the outdoor heat exchanger 5 functions as a condenser. That is, in the outdoor heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the air (outside air) blown by the outdoor blower fan 5f, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the refrigerant flowing into the outdoor heat exchanger 5 is condensed and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows into the decompression device 6 and is decompressed to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows into the indoor heat exchanger 7 of the indoor unit 1 via the extension pipe 10b. In the cooling operation, the indoor heat exchanger 7 functions as an evaporator. That is, in the indoor heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and the air (indoor air) blown by the indoor blower fan 7f, and the evaporation heat of the refrigerant is absorbed from the blown air. Thereby, the refrigerant flowing into the indoor heat exchanger 7 evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Further, the air blown by the indoor blower fan 7f is cooled by the endothermic action of the refrigerant. The low-pressure gas refrigerant or two-phase refrigerant evaporated in the indoor heat exchanger 7 is sucked into the compressor 3 via the extension pipe 10a and the refrigerant flow switching device 4. The refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the cooling operation, the above cycle is repeated.
 次に、暖房運転時の動作について説明する。図1において、点線矢印は、暖房運転時の冷媒の流れ方向を示している。暖房運転では、冷媒流路切替装置4によって冷媒流路が点線で示すように切り替えられ、室内熱交換器7に高温高圧の冷媒が流れるように冷媒回路が構成される。暖房運転時には、冷媒は冷房運転時とは逆方向に流れ、室内熱交換器7は凝縮器として機能する。すなわち、室内熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室内送風ファン7fにより送風される空気は、冷媒の放熱作用によって加熱される。 Next, the operation during heating operation will be described. In FIG. 1, the dotted line arrows indicate the flow direction of the refrigerant during the heating operation. In the heating operation, the refrigerant flow path switching device 4 switches the refrigerant flow paths as indicated by dotted lines, and the refrigerant circuit is configured so that the high-temperature and high-pressure refrigerant flows through the indoor heat exchanger 7. During the heating operation, the refrigerant flows in the opposite direction to that during the cooling operation, and the indoor heat exchanger 7 functions as a condenser. That is, in the indoor heat exchanger 7, heat exchange is performed between the refrigerant circulating inside and the air blown by the indoor blower fan 7f, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the air blown by the indoor fan 7f is heated by the heat radiation action of the refrigerant.
 図2は、本実施の形態に係る空気調和装置の室内機1の外観構成を示す正面図である。図3は、室内機1の内部構造(前面パネルを外した状態)を模式的に示す正面図である。図4は、室内機1の内部構造を模式的に示す側面図である。図4における左方は、室内機1の前面側(室内側)を示している。本実施の形態では、室内機1として、空調対象空間となる室内の床面に設置される床置形の室内機1を例示している。なお、以下の説明における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、室内機1を使用可能な状態に設置したときのものである。 FIG. 2 is a front view showing an external configuration of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment. FIG. 3 is a front view schematically showing the internal structure of the indoor unit 1 (with the front panel removed). FIG. 4 is a side view schematically showing the internal structure of the indoor unit 1. The left side in FIG. 4 shows the front side (indoor side) of the indoor unit 1. In the present embodiment, as the indoor unit 1, a floor-standing indoor unit 1 installed on the floor surface of the room that is the air-conditioning target space is illustrated. In addition, the positional relationship (for example, vertical relationship etc.) between each structural member in the following description is a thing when installing the indoor unit 1 in the state which can be used in principle.
 図2~図4に示すように、室内機1は、縦長の直方体状の形状を有する筐体111を備えている。筐体111の前面下部には、室内の空気を吸い込む吸込口112(下開口部の一例)が形成されている。本例の吸込口112は、筐体111の上下方向において中央部よりも下方であり、床面近傍の位置に設けられている。筐体111の前面上部、すなわち吸込口112よりも高さの高い位置には、吸込口112から吸い込まれた空気を室内に吹き出す吹出口113(上開口部の一例)が形成されている。本例の吹出口113は、筐体111の上下方向における中央部よりも上方に設けられている。筐体111の前面のうち、吸込口112よりも上方で吹出口113よりも下方には、操作部26が設けられている。操作部26では、ユーザの操作により室内機1(空気調和装置)の運転開始操作、運転終了操作、運転モードの切替え、設定温度及び設定風量の設定などが行われる。 As shown in FIGS. 2 to 4, the indoor unit 1 includes a casing 111 having a vertically long rectangular parallelepiped shape. A suction port 112 (an example of a lower opening) that sucks indoor air is formed in the lower front portion of the housing 111. The suction port 112 of this example is provided below the center portion in the vertical direction of the casing 111 and at a position near the floor surface. An air outlet 113 (an example of an upper opening) that blows air sucked from the air inlet 112 into the room is formed in the upper front portion of the housing 111, that is, at a position higher than the air inlet 112. The air outlet 113 of this example is provided above the center part in the up-down direction of the housing 111. An operation unit 26 is provided on the front surface of the casing 111 above the suction port 112 and below the air outlet 113. In the operation unit 26, an operation start operation, an operation end operation, an operation mode switching, a set temperature, a set air volume, and the like of the indoor unit 1 (air conditioner) are performed by a user operation.
 筐体111は中空の箱体であり、筐体111の前面には前面開口部が形成されている。筐体111は、前面開口部に対して着脱可能に取り付けられる第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cを備えている。第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cは、いずれも略長方形平板状の外形状を有している。第1前面パネル114aは、筐体111の前面開口部の下部に対して着脱可能に取り付けられている。第1前面パネル114aには、上記の吸込口112が形成されている。第2前面パネル114bは、第1前面パネル114aの上方に隣接して配置されており、筐体111の前面開口部の上下方向における中央部に対して着脱可能に取り付けられている。第2前面パネル114bには、上記の操作部26が設けられている。第3前面パネル114cは、第2前面パネル114bの上方に隣接して配置されており、筐体111の前面開口部の上部に対して着脱可能に取り付けられている。第3前面パネル114cには、上記の吹出口113が形成されている。 The housing 111 is a hollow box, and a front opening is formed on the front surface of the housing 111. The casing 111 includes a first front panel 114a, a second front panel 114b, and a third front panel 114c that are detachably attached to the front opening. The first front panel 114a, the second front panel 114b, and the third front panel 114c all have a substantially rectangular flat plate-like outer shape. The first front panel 114a is detachably attached to the lower portion of the front opening of the casing 111. The suction port 112 is formed in the first front panel 114a. The second front panel 114b is disposed adjacent to and above the first front panel 114a, and is detachably attached to the central portion of the front opening of the housing 111 in the vertical direction. The operation unit 26 is provided on the second front panel 114b. The third front panel 114c is disposed adjacent to and above the second front panel 114b, and is detachably attached to the upper portion of the front opening of the housing 111. The above-described air outlet 113 is formed in the third front panel 114c.
 筐体111の内部空間は、送風部となる下部空間115aと、下部空間115aの上方に位置し、熱交換部となる上部空間115bと、に大まかに分けられている。下部空間115aと上部空間115bとの間は、仕切部20によって仕切られている。仕切部20は、例えば、平板状の形状を有しており、概ね水平に配置されている。仕切部20には、下部空間115aと上部空間115bとの間の風路となる風路開口部20aが少なくとも形成されている。下部空間115aは、第1前面パネル114aを筐体111から取り外すことによって前面側に露出するようになっており、上部空間115bは、第2前面パネル114b及び第3前面パネル114cを筐体111から取り外すことによって前面側に露出するようになっている。すなわち、仕切部20が設置されている高さは、第1前面パネル114aの上端(又は第2前面パネル114bの下端)の高さと概ね一致している。ここで、仕切部20は、後述するファンケーシング108と一体的に形成されていてもよいし、後述するドレンパンと一体的に形成されていてもよいし、ファンケーシング108及びドレンパンとは別体として形成されていてもよい。 The internal space of the housing 111 is roughly divided into a lower space 115a that serves as a blower section and an upper space 115b that is located above the lower space 115a and serves as a heat exchange section. The lower space 115a and the upper space 115b are partitioned by the partition portion 20. The partition part 20 has a flat plate shape, for example, and is arranged substantially horizontally. The partition portion 20 is formed with at least an air passage opening 20a serving as an air passage between the lower space 115a and the upper space 115b. The lower space 115a is exposed to the front surface side by removing the first front panel 114a from the housing 111, and the upper space 115b is configured such that the second front panel 114b and the third front panel 114c are removed from the housing 111. By removing it, it is exposed to the front side. That is, the height at which the partition portion 20 is installed substantially matches the height of the upper end of the first front panel 114a (or the lower end of the second front panel 114b). Here, the partition portion 20 may be formed integrally with a fan casing 108 described later, or may be formed integrally with a drain pan described later, or as a separate body from the fan casing 108 and the drain pan. It may be formed.
 下部空間115aには、吸込口112から吹出口113に向かう空気の流れを生じさせる室内送風ファン7fが配置されている。本例の室内送風ファン7fは、不図示のモータと、モータの出力軸に接続され、複数の翼が周方向に等間隔で配置された羽根車107と、を備えたシロッコファンである。羽根車107の回転軸(モータの出力軸)は、筐体111の奥行方向とほぼ平行になるように配置されている。羽根車107は、渦巻状のファンケーシング108で覆われている。ファンケーシング108の渦巻中心付近に設けられた吸込開口部108bは、吸込口112に対向するように配置されている。また、ファンケーシング108の吹出開口部108aは、上方を向くように配置されており、仕切部20の風路開口部20aに例えば直接接続されている。下部空間115aのうち少なくともファンケーシング108の内部は、風路空間81の一部を構成する。ここで、風路空間81とは、筐体111の内部空間であって、吸込口112から吹出口113に向かう空気の風路となる空間、又は当該空間と連通した空間のことである。 In the lower space 115a, an indoor blower fan 7f that generates an air flow from the inlet 112 to the outlet 113 is disposed. The indoor blower fan 7f of this example is a sirocco fan that includes a motor (not shown) and an impeller 107 that is connected to an output shaft of the motor and has a plurality of blades arranged at equal intervals in the circumferential direction. The rotating shaft of the impeller 107 (motor output shaft) is arranged so as to be substantially parallel to the depth direction of the casing 111. The impeller 107 is covered with a spiral fan casing 108. A suction opening 108 b provided near the spiral center of the fan casing 108 is disposed so as to face the suction port 112. Further, the blowout opening 108 a of the fan casing 108 is arranged so as to face upward, and is directly connected to the air passage opening 20 a of the partition part 20, for example. At least the inside of the fan casing 108 in the lower space 115 a constitutes a part of the air passage space 81. Here, the air passage space 81 is an internal space of the casing 111, which is a space serving as an air passage for the air from the suction port 112 toward the air outlet 113, or a space communicating with the space.
 また、下部空間115aには、例えば室内機1の制御部などを構成するマイコン、各種電気部品、基板などが収容される電気品箱25が設けられている。 Further, in the lower space 115a, for example, an electrical component box 25 is provided in which a microcomputer, various electrical components, a substrate, and the like that configure the control unit of the indoor unit 1 are accommodated.
 上部空間115bは、室内送風ファン7fにより生じる空気の流れにおいて下部空間115aよりも下流側に位置している。上部空間115b内の風路空間81には、室内熱交換器7が配置されている。室内熱交換器7の下方には、室内熱交換器7の表面で凝縮した凝縮水を受けるドレンパン(図示せず)が設けられている。ドレンパンは、仕切部20の一部として形成されていてもよいし、仕切部20とは別体として形成されて仕切部20上に配置されていてもよい。 The upper space 115b is located downstream of the lower space 115a in the air flow generated by the indoor blower fan 7f. The indoor heat exchanger 7 is disposed in the air passage space 81 in the upper space 115b. A drain pan (not shown) that receives condensed water condensed on the surface of the indoor heat exchanger 7 is provided below the indoor heat exchanger 7. The drain pan may be formed as a part of the partition part 20, or may be formed separately from the partition part 20 and disposed on the partition part 20.
 図5は、室内熱交換器7及びその周辺部品の構成を模式的に示す正面図である。図5に示すように、本例の室内熱交換器7は、所定の間隔を空けて並列して配置された複数枚のフィン70と、複数枚のフィン70を貫通し、内部に冷媒を流通させる複数の伝熱管71と、を有するプレートフィンチューブ型の熱交換器である。伝熱管71は、複数枚のフィン70を貫通する長い直管部を具備する複数のヘアピン管72と、複数のヘアピン管72同士を連通させる複数のUベント管73と、から構成されている。ヘアピン管72とUベント管73との間は、ろう付け部W(接合部の一例)によって接合されている。図5では、ろう付け部Wを黒丸で示している。なお、伝熱管71の本数は、1本であってもよいし複数本であってもよい。また、1本の伝熱管71を構成するヘアピン管72の本数は、1本であってもよいし複数本であってもよい。 FIG. 5 is a front view schematically showing the configuration of the indoor heat exchanger 7 and its peripheral components. As shown in FIG. 5, the indoor heat exchanger 7 of this example has a plurality of fins 70 arranged in parallel at a predetermined interval, and a plurality of fins 70 that pass through the refrigerant. It is a plate fin tube type heat exchanger having a plurality of heat transfer tubes 71. The heat transfer tube 71 includes a plurality of hairpin tubes 72 each having a long straight tube portion that penetrates the plurality of fins 70 and a plurality of U vent tubes 73 that allow the plurality of hairpin tubes 72 to communicate with each other. The hairpin tube 72 and the U vent tube 73 are joined by a brazed portion W (an example of a joined portion). In FIG. 5, the brazed portion W is indicated by a black circle. Note that the number of the heat transfer tubes 71 may be one or plural. Moreover, the number of the hairpin tubes 72 constituting one heat transfer tube 71 may be one or plural.
 ガス側の室内配管9aには、円筒状のヘッダー主管61が接続されている。ヘッダー主管61には、複数のヘッダー枝管62が枝分かれして接続されている。複数のヘッダー枝管62のそれぞれには、伝熱管71の一方の端部71aが接続されている。液側の室内配管9bには、複数の室内冷媒枝管63が枝分かれして接続されている。複数の室内冷媒枝管63のそれぞれには、伝熱管71の他方の端部71bが接続されている。これらの室内配管9aとヘッダー主管61との間、ヘッダー主管61とヘッダー枝管62との間、ヘッダー枝管62と伝熱管71との間、室内配管9bと室内冷媒枝管63との間、及び、室内冷媒枝管63と伝熱管71との間は、ろう付け部Wによって接合されている。 A cylindrical header main pipe 61 is connected to the indoor pipe 9a on the gas side. A plurality of header branch pipes 62 are branched and connected to the header main pipe 61. One end 71 a of the heat transfer tube 71 is connected to each of the plurality of header branch tubes 62. A plurality of indoor refrigerant branch pipes 63 are branched and connected to the liquid side indoor pipe 9b. The other end 71 b of the heat transfer pipe 71 is connected to each of the plurality of indoor refrigerant branch pipes 63. Between these indoor pipes 9a and the header main pipe 61, between the header main pipe 61 and the header branch pipe 62, between the header branch pipe 62 and the heat transfer pipe 71, between the indoor pipe 9b and the indoor refrigerant branch pipe 63, The indoor refrigerant branch pipe 63 and the heat transfer pipe 71 are joined by a brazing portion W.
 図3及び図4に戻り、本実施の形態では、室内熱交換器7のろう付け部W(ここでは、室内配管9a、ヘッダー主管61、ヘッダー枝管62、室内冷媒枝管63、室内配管9b等の周辺部品のろう付け部Wを含む)は、上部空間115b内の風路空間81に配置されている。また、室内配管9aと延長配管10aとの間を接続する継手部15a、及び室内配管9bと延長配管10bとの間を接続する継手部15bも同様に、上部空間115b内の風路空間81に配置されている。 Returning to FIGS. 3 and 4, in the present embodiment, the brazed portion W of the indoor heat exchanger 7 (here, the indoor pipe 9a, the header main pipe 61, the header branch pipe 62, the indoor refrigerant branch pipe 63, and the indoor pipe 9b). (Including the brazing portion W of peripheral parts such as) is disposed in the air passage space 81 in the upper space 115b. Similarly, the joint portion 15a connecting the indoor pipe 9a and the extension pipe 10a and the joint portion 15b connecting the indoor pipe 9b and the extension pipe 10b are also formed in the air passage space 81 in the upper space 115b. Has been placed.
 上述のとおり、本実施の形態では、冷凍サイクル40を循環する冷媒として、例えば、R32、HFO-1234yf、HFO-1234ze、R290、R1270等の可燃性冷媒が用いられている。このため、万一室内機1で冷媒の漏洩が生じた場合、室内の冷媒濃度が上昇して可燃濃度域が形成されてしまうおそれがある。特に、空気調和装置が停止している場合には、室内送風ファン7fも停止しているため、送風空気によって漏洩冷媒を拡散させることが困難となる。 As described above, in the present embodiment, a flammable refrigerant such as R32, HFO-1234yf, HFO-1234ze, R290, R1270, or the like is used as the refrigerant circulating in the refrigeration cycle 40. For this reason, in the unlikely event that refrigerant leaks in the indoor unit 1, the indoor refrigerant concentration may increase and a combustible concentration region may be formed. In particular, when the air conditioner is stopped, the indoor blower fan 7f is also stopped, so that it is difficult to diffuse the leaked refrigerant by the blown air.
 これらの可燃性冷媒は、大気圧下(例えば、温度は室温(25℃))において空気よりも大きい密度を有している。したがって、室内の床面からの高さが比較的高い位置で冷媒の漏洩が生じた場合には、漏洩した冷媒は下降中に拡散し、冷媒濃度が室内空間で均一化するため、冷媒濃度は高くなりにくい。これに対し、室内の床面からの高さが低い位置で冷媒の漏洩が生じた場合には、漏洩した冷媒が床面付近の低い位置に留まるため、冷媒濃度が局所的に高くなりやすい。これにより、可燃濃度域が形成される可能性が相対的に高まってしまう。 These combustible refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)). Therefore, if the refrigerant leaks at a position where the height from the indoor floor is relatively high, the leaked refrigerant diffuses while descending, and the refrigerant concentration becomes uniform in the indoor space. It is hard to get high. On the other hand, when the refrigerant leaks at a position where the height from the indoor floor surface is low, the leaked refrigerant stays at a low position near the floor surface, so the refrigerant concentration tends to increase locally. Thereby, possibility that a combustible concentration range will be formed will increase relatively.
 室内機1において冷媒の漏洩が生じるおそれがあるのは、室内熱交換器7のろう付け部W(ここでは、周辺部品のろう付け部Wを含む)及び継手部15a、15bである。本実施の形態では、少なくともろう付け部Wが、上部空間115b内の風路空間81、すなわち、下部空間115a内に配置される室内送風ファン7fの羽根車107(翼)よりも上方の風路空間81に配置されている。また、本実施の形態では、ろう付け部Wに加えて継手部15a、15bも、上部空間115b内の風路空間81に配置されている。また、ファンケーシング108の吹出開口部108aは、仕切部20の風路開口部20aに接続されている。このため、空気調和装置の停止中(すなわち、室内送風ファン7fの停止中)に、ろう付け部W又は継手部15a、15bで冷媒の漏洩が生じたとすると、上部空間115bに漏洩した冷媒のほぼ全量が、筐体111内部の他の経路に迂回することなく、風路開口部20a及び吹出開口部108aを介してファンケーシング108内に流れ落ちる。ファンケーシング108内には、複数の翼を備えた羽根車107が設けられているため、ファンケーシング108内に流入した冷媒は、複数の翼の表面に衝突するとともに、複数の翼によって区画された複数の流路に分流しながら下方に流れ落ちる。したがって、ファンケーシング108内では、冷媒が空気中に拡散される。ファンケーシング108内で拡散された冷媒は、ファンケーシング108の吸込開口部108b及び吸込口112を介して室内に流出する。室内に流出した時点で冷媒は拡散されているため、冷媒濃度が局所的に高くなってしまうことを防ぐことができる。これにより、万一、可燃性冷媒が室内機1で漏洩したとしても、室内に可燃濃度域が形成されてしまうことを抑制できる。特に、床置形の室内機1の場合、室内への冷媒の漏洩が生じる位置が床面付近の低い位置となりやすく、漏洩した冷媒が床面付近の低い位置に留まりやすいため、特に効果的である。 In the indoor unit 1, there is a possibility that refrigerant leakage may occur in the brazed portion W (including the brazed portion W of peripheral parts here) and the joint portions 15 a and 15 b of the indoor heat exchanger 7. In the present embodiment, at least the brazing portion W is located above the air passage space 81 in the upper space 115b, that is, the impeller 107 (blade) of the indoor fan 7f disposed in the lower space 115a. It is arranged in the space 81. In the present embodiment, in addition to the brazing portion W, the joint portions 15a and 15b are also disposed in the air passage space 81 in the upper space 115b. Further, the blowout opening 108 a of the fan casing 108 is connected to the air passage opening 20 a of the partition part 20. For this reason, if the leakage of the refrigerant occurs in the brazing portion W or the joint portions 15a and 15b while the air conditioner is stopped (that is, the indoor blower fan 7f is stopped), almost all of the refrigerant leaked into the upper space 115b. The entire amount flows down into the fan casing 108 via the air passage opening 20a and the blowout opening 108a without detouring to another path inside the casing 111. Since the fan casing 108 is provided with an impeller 107 having a plurality of blades, the refrigerant flowing into the fan casing 108 collides with the surfaces of the plurality of blades and is partitioned by the plurality of blades. It flows downward while diverting to a plurality of flow paths. Therefore, in the fan casing 108, the refrigerant is diffused into the air. The refrigerant diffused in the fan casing 108 flows out into the room through the suction opening 108 b and the suction port 112 of the fan casing 108. Since the refrigerant is diffused when it flows out into the room, the refrigerant concentration can be prevented from becoming locally high. Thereby, even if a combustible refrigerant | coolant leaks with the indoor unit 1, it can suppress that a combustible density | concentration area | region will be formed indoors. Particularly, in the case of the floor-mounted indoor unit 1, the position where the refrigerant leaks into the room tends to be a low position near the floor surface, and the leaked refrigerant tends to stay at a low position near the floor surface, which is particularly effective. .
 また、本実施の形態では、冷媒の漏洩を検知するセンサが不要となるため、室内機1及びそれを含む空気調和装置の製造原価を抑制することができる。 Further, in the present embodiment, since a sensor for detecting refrigerant leakage is not necessary, the manufacturing cost of the indoor unit 1 and the air conditioner including the indoor unit 1 can be suppressed.
 図6は、本実施の形態の変形例に係る室内機1の吸込口112の構成を模式的に示す正面図である。図7は、図6のVII-VII断面を示す断面図である。図6及び図7に示すように、本変形例の吸込口112(下開口部)には、吸込グリル120(拡散機構の一例)が設けられている。吸込グリル120は、筐体111の内部から外部に向かって放射状に広がる形状を有している。また、吸込グリル120の内側(筐体111の内部側)には、フィルタ121(拡散機構の一例)が設けられている。フィルタ121は、不織布又はメッシュで構成されている。 FIG. 6 is a front view schematically showing the configuration of the suction port 112 of the indoor unit 1 according to the modification of the present embodiment. 7 is a cross-sectional view showing a VII-VII cross section of FIG. As shown in FIGS. 6 and 7, a suction grill 120 (an example of a diffusion mechanism) is provided in the suction port 112 (lower opening) of the present modification. The suction grill 120 has a shape that spreads radially from the inside of the housing 111 toward the outside. A filter 121 (an example of a diffusion mechanism) is provided inside the suction grill 120 (inside the housing 111). The filter 121 is composed of a nonwoven fabric or a mesh.
 本変形例によれば、吸込口112に吸込グリル120が設けられていることにより、吸込口112から室内に流出する漏洩冷媒をより広範囲に拡散させることができる。したがって、室内に可燃濃度域が形成されてしまうことをより確実に抑制できる。また、吸込口112にフィルタ121が設けられていることにより、吸込口112から室内に流出する漏洩冷媒の流れを乱すことができ、結果として漏洩冷媒をより拡散させて室内に流出させることができる。したがって、室内に可燃濃度域が形成されてしまうことをより確実に抑制できる。 According to the present modification, the suction grill 120 is provided at the suction port 112, so that the leaked refrigerant flowing out from the suction port 112 into the room can be diffused in a wider range. Therefore, it can suppress more reliably that a combustible concentration area | region will be formed in a room | chamber interior. In addition, since the filter 121 is provided in the suction port 112, the flow of the leaked refrigerant flowing out from the suction port 112 into the room can be disturbed, and as a result, the leaked refrigerant can be further diffused and flowed out into the room. . Therefore, it can suppress more reliably that a combustible concentration area | region will be formed in a room | chamber interior.
 なお、吸込グリル120に代えて、筐体111の内部から外部に向かって左右方向に広がる形状を有する吸込グリルを用いてもよいし、筐体111の内部から外部に向かって上下方向に広がる形状を有する吸込グリルを用いてもよいし、これらの2種類の吸込グリルを空気又は漏洩冷媒の流れ方向に重ねて用いてもよい。 Instead of the suction grill 120, a suction grill having a shape that extends in the left-right direction from the inside of the housing 111 to the outside may be used, or a shape that extends in the vertical direction from the inside of the housing 111 to the outside. The two types of suction grills may be stacked in the flow direction of air or leakage refrigerant.
実施の形態2.
 本発明の実施の形態2に係る空気調和装置について説明する。図8は、本実施の形態に係る空気調和装置の室内機1の内部構造を模式的に示す正面図である。図9は、室内機1の内部構造を模式的に示す側面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
An air conditioner according to Embodiment 2 of the present invention will be described. FIG. 8 is a front view schematically showing the internal structure of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment. FIG. 9 is a side view schematically showing the internal structure of the indoor unit 1. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図8及び図9に示すように、仕切部20のうち、室内配管9a、9b及び延長配管10a、10b近傍の一部には、上部空間115b側が凹となりかつ下部空間115a側が凸となる容器状の凹部130が形成されている。凹部130内の空間は、上部空間115bの一部であるが、第1前面パネル114aの上端(第2前面パネル114bの下端)の高さよりも低くなっている。凹部130の前面側には開口部が形成されており、当該開口部には、ねじ等を用いて着脱可能な蓋131が設けられている。蓋131が取り外されると、凹部130内の空間が開口部を介して前面側に露出する。一方、蓋131が取り付けられると、凹部130の前面側は密閉される。 As shown in FIGS. 8 and 9, a part of the partition portion 20 near the indoor pipes 9a and 9b and the extension pipes 10a and 10b has a container shape in which the upper space 115b side is concave and the lower space 115a side is convex. The recess 130 is formed. The space in the recess 130 is a part of the upper space 115b, but is lower than the height of the upper end of the first front panel 114a (the lower end of the second front panel 114b). An opening is formed on the front side of the recess 130, and a lid 131 that can be attached and detached using a screw or the like is provided in the opening. When the lid 131 is removed, the space in the recess 130 is exposed to the front side through the opening. On the other hand, when the lid 131 is attached, the front side of the recess 130 is sealed.
 継手部15a、15bは、凹部130内の空間に配置されている。すなわち、継手部15a、15bは、第1前面パネル114aの上端よりも下方に配置されている。これにより、第1前面パネル114aを取り外し、さらに蓋131を取り外すことによって、継手部15a、15bを前面側に露出させることができるようになっている。 The joint portions 15a and 15b are disposed in a space in the recess 130. That is, the joint portions 15a and 15b are disposed below the upper end of the first front panel 114a. Thereby, the joint parts 15a and 15b can be exposed to the front side by removing the first front panel 114a and further removing the lid 131.
 一般的な床置形室内機では、継手部15a、15bは電気品箱25等と共に下部空間115a内に配置されている。このため、一般的な床置形室内機の場合、第1前面パネル114aのみを筐体111から取り外すことによって、電気品箱25及び継手部15a、15bを前面側に露出させることができ、室内機の据付け、修理又は撤去等の作業(例えば、電気配線及び冷媒配管の接続や取外し等)を行うことができる。 In a general floor-standing indoor unit, the joint portions 15a and 15b are arranged in the lower space 115a together with the electrical component box 25 and the like. For this reason, in the case of a general floor-standing indoor unit, by removing only the first front panel 114a from the casing 111, the electrical component box 25 and the joint portions 15a and 15b can be exposed to the front side. Can be performed (for example, connection and removal of electrical wiring and refrigerant piping).
 これに対し、図2~図4に示した実施の形態1における室内機1の構成では、継手部15a、15bが上部空間115b内に配置されている。このため、第1前面パネル114aを取り外しただけでは、冷媒配管(室内配管9a、9b及び延長配管10a、10b)の接続や取外しを行うことができない。したがって、電気配線及び冷媒配管の接続や取外しを行う場合には、第1前面パネル114aだけでなく第2前面パネル114bも取り外す必要がある。 On the other hand, in the configuration of the indoor unit 1 in Embodiment 1 shown in FIGS. 2 to 4, the joint portions 15a and 15b are arranged in the upper space 115b. For this reason, connection and removal of refrigerant piping ( indoor piping 9a, 9b and extension piping 10a, 10b) cannot be performed only by removing the 1st front panel 114a. Therefore, when connecting or removing the electrical wiring and the refrigerant pipe, it is necessary to remove not only the first front panel 114a but also the second front panel 114b.
 本実施の形態では、継手部15a、15bは、上部空間115b内ではあるが第1前面パネル114aの上端よりも下方に配置されているため、第1前面パネル114a及び蓋131を取り外すことによって前面側に露出するようになっている。したがって、本実施の形態では、第2前面パネル114bを取り外さなくても電気配線及び冷媒配管の接続や取外しを行うことができるため、室内機1の据付け、修理又は撤去等の作業を容易に行うことができる。また、凹部130に蓋131が取り付けられた通常の使用状態では、凹部130の前面側が密閉される。このため、継手部15a、15bで冷媒の漏洩が生じた場合には、漏洩した冷媒のほぼ全量を、筐体111内部の他の経路に迂回させることなく、風路開口部20a及び吹出開口部108aを介してファンケーシング108内に流入させることができる。したがって、本実施の形態においても、実施の形態1と同様の効果が得られる。 In the present embodiment, since the joint portions 15a and 15b are disposed below the upper end of the first front panel 114a in the upper space 115b, the front surface is removed by removing the first front panel 114a and the lid 131. It is designed to be exposed to the side. Therefore, in the present embodiment, since the electrical wiring and the refrigerant pipe can be connected and removed without removing the second front panel 114b, the indoor unit 1 can be easily installed, repaired, or removed. be able to. Further, in a normal use state where the lid 131 is attached to the recess 130, the front side of the recess 130 is sealed. For this reason, when leakage of the refrigerant occurs in the joint portions 15a and 15b, the air passage opening 20a and the blowout opening are made without diverting substantially the entire amount of the leaked refrigerant to other paths inside the casing 111. It can flow into the fan casing 108 through 108a. Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained.
 図10は、本実施の形態の第1変形例に係る室内機1の内部構造を模式的に示す正面図である。図11は、室内機1の内部構造を模式的に示す側面図である。図10及び図11に示すように、本変形例では、仕切部20の形状は実施の形態1と同様に平板状である。本変形例では、ファンケーシング108の吹出開口部108aの側壁の一部に、冷媒配管(室内配管9a、9b及び延長配管10a、10b)の一部を内包するように膨出した膨出部132が形成されている。膨出部132の前面側には開口部が形成されており、当該開口部には、ねじ等を用いて着脱可能な蓋133が設けられている。蓋133が取り外されると、膨出部132内の空間が開口部を介して前面側に露出する。一方、蓋133が取り付けられると、膨出部132の前面側は密閉される。膨出部132は、ファンケーシング108の他の部分と同様に、下部空間115a内に位置している。 FIG. 10 is a front view schematically showing the internal structure of the indoor unit 1 according to the first modification of the present embodiment. FIG. 11 is a side view schematically showing the internal structure of the indoor unit 1. As shown in FIGS. 10 and 11, in this modification, the shape of the partition 20 is a flat plate as in the first embodiment. In the present modification, a bulging portion 132 bulged so as to include a part of the refrigerant pipe ( indoor pipes 9a, 9b and extension pipes 10a, 10b) in a part of the side wall of the blowout opening 108a of the fan casing 108. Is formed. An opening is formed on the front side of the bulging portion 132, and a lid 133 that can be attached and detached using screws or the like is provided in the opening. When the lid 133 is removed, the space in the bulging portion 132 is exposed to the front side through the opening. On the other hand, when the lid 133 is attached, the front side of the bulging portion 132 is sealed. The bulging portion 132 is located in the lower space 115a, like the other portions of the fan casing 108.
 継手部15a、15bは、膨出部132内の空間に配置されている。すなわち、継手部15a、15bは、第1前面パネル114aの上端よりも下方に配置されている。これにより、第1前面パネル114aを取り外し、さらに蓋133を取り外すことによって、継手部15a、15bを前面側に露出させることができるようになっている。また、継手部15a、15bは、羽根車107(翼)よりも上方に配置されている。したがって、本変形例によっても、図8及び図9に示した構成と同様の効果を得ることができる。 The joint portions 15a and 15b are disposed in a space in the bulging portion 132. That is, the joint portions 15a and 15b are disposed below the upper end of the first front panel 114a. Thereby, the joint parts 15a and 15b can be exposed to the front side by removing the first front panel 114a and further removing the lid 133. The joint portions 15a and 15b are disposed above the impeller 107 (blade). Therefore, also by this modification, the same effect as the structure shown in FIG.8 and FIG.9 can be acquired.
 なお、本実施の形態における室内機1の構成は、図8~図11に示した構成には限定されない。例えば、図2~図4等に示した実施の形態1の構成において、第1前面パネル114aの高さ(上下方向の長さ)を拡大しつつ第2前面パネル114bの高さ(上下方向の長さ)を縮小し、第1前面パネル114aの上端(第2前面パネル114bの下端)が上部空間115b内の継手部15a、15bよりも上方に配置されるようにしてもよい。この構成によれば、図8~図11に示した構成と同様に、第2前面パネル114bを取り外さなくても電気配線及び冷媒配管の接続や取外しを行うことができる。 It should be noted that the configuration of the indoor unit 1 in the present embodiment is not limited to the configuration shown in FIGS. For example, in the configuration of the first embodiment shown in FIGS. 2 to 4 and the like, the height (vertical direction length) of the second front panel 114b is increased while the height (vertical length) of the first front panel 114a is enlarged. The upper end of the first front panel 114a (the lower end of the second front panel 114b) may be disposed above the joint portions 15a and 15b in the upper space 115b. According to this configuration, similarly to the configurations shown in FIGS. 8 to 11, the electrical wiring and the refrigerant pipe can be connected and disconnected without removing the second front panel 114b.
 また、仕切部20の一部である凹部130の形状は、図8及び図9に示したような容器状(有底筒状)には限られない。図12は、本実施の形態の第2変形例に係る室内機1の内部構造を模式的に示す正面図である。図13は、室内機1の内部構造を模式的に示す側面図である。図12及び図13に示す凹部130は、胴部130aと、胴部130aに対して細く形成された口部130bと、を備えた壺状の形状を有している。胴部130a内の空間は、口部130bを介して上部空間115b(室内熱交換器7の設置された空間)と連通している。すなわち、胴部130a内の空間は、上部空間115bの一部となる。胴部130a内の空間には、継手部15a、15bが収容されている。本変形例によっても、継手部15a、15bが収容される空間が上部空間115bの一部となるため、図8及び図9に示した構成と同様の効果を得ることができる。このように、凹部130は、継手部15a、15bが収容される空間と上部空間115b(室内熱交換器7の設置された空間)とを連通させることができれば、種々の形状を有することができる。 Moreover, the shape of the recessed part 130 which is a part of the partition part 20 is not restricted to the container shape (bottomed cylindrical shape) as shown in FIG.8 and FIG.9. FIG. 12 is a front view schematically showing the internal structure of the indoor unit 1 according to the second modification of the present embodiment. FIG. 13 is a side view schematically showing the internal structure of the indoor unit 1. The recessed part 130 shown in FIG.12 and FIG.13 has the shape of a bowl provided with the trunk | drum 130a and the opening part 130b formed thinly with respect to the trunk | drum 130a. The space in the trunk portion 130a communicates with the upper space 115b (the space in which the indoor heat exchanger 7 is installed) through the mouth portion 130b. That is, the space in the trunk portion 130a becomes a part of the upper space 115b. Joint portions 15a and 15b are accommodated in the space in the trunk portion 130a. Also according to this modification, the space in which the joint portions 15a and 15b are accommodated becomes a part of the upper space 115b, so that the same effect as the configuration shown in FIGS. 8 and 9 can be obtained. As described above, the recess 130 can have various shapes as long as the space in which the joint portions 15a and 15b are accommodated and the upper space 115b (the space in which the indoor heat exchanger 7 is installed) can communicate with each other. .
 また、膨出部132の形状は、図10及び図11に示したような形状には限られない。図14は、本実施の形態の第3変形例に係る室内機1の内部構造を模式的に示す正面図である。図15は、室内機1の内部構造を模式的に示す側面図である。図14及び図15に示す膨出部132は、胴部132aと、胴部132aに対して細く形成された口部132bと、を備えた横向きの壺状の形状を有している。胴部132a内の空間は、口部132bを介して吹出開口部108aと連通している。胴部132a内の空間には、継手部15a、15bが収容されている。本変形例によっても、継手部15a、15bが収容される空間が吹出開口部108aと連通しており、かつ継手部15a、15bが室内送風ファン7fよりも上方に配置されているため、図10及び図11に示した構成と同様の効果を得ることができる。このように、膨出部132は、継手部15a、15bが収容される空間と吹出開口部108aとを連通させることができれば、種々の形状を有することができる。 Further, the shape of the bulging portion 132 is not limited to the shape shown in FIGS. FIG. 14 is a front view schematically showing the internal structure of the indoor unit 1 according to the third modification of the present embodiment. FIG. 15 is a side view schematically showing the internal structure of the indoor unit 1. The bulging part 132 shown in FIG.14 and FIG.15 has the shape of the horizontal ridge shape provided with the trunk | drum 132a and the opening | mouth part 132b formed thinly with respect to the trunk | drum 132a. The space in the trunk portion 132a communicates with the blowout opening portion 108a through the mouth portion 132b. Joint portions 15a and 15b are accommodated in the space in the trunk portion 132a. Also in this modified example, the space in which the joint portions 15a and 15b are accommodated communicates with the blowout opening portion 108a, and the joint portions 15a and 15b are disposed above the indoor blower fan 7f. And the effect similar to the structure shown in FIG. 11 can be acquired. Thus, the bulging part 132 can have various shapes as long as the space in which the joint parts 15a and 15b are accommodated can communicate with the outlet opening part 108a.
実施の形態3.
 本発明の実施の形態3に係る空気調和装置について説明する。上記実施の形態1又は2において、筐体111、仕切部20(凹部130を含む)及び膨出部132等には、延長配管10a、10bを貫通させる開口孔が設けられている。例えば、図3に示す構成において、延長配管10a、10bは、仕切部20に設けられた開口孔と、筐体111に設けられた開口孔と、を貫通させることにより、筐体111内から筐体111外に取り出されて室外機2に接続される。
Embodiment 3 FIG.
An air conditioner according to Embodiment 3 of the present invention will be described. In the first or second embodiment, the casing 111, the partition 20 (including the recess 130), the bulging portion 132, and the like are provided with opening holes that allow the extension pipes 10a and 10b to pass therethrough. For example, in the configuration shown in FIG. 3, the extension pipes 10 a and 10 b pass through an opening hole provided in the partition portion 20 and an opening hole provided in the casing 111, thereby allowing the extension pipes 10 a and 10 b to pass through the casing 111. It is taken out of the body 111 and connected to the outdoor unit 2.
 図16は、本実施の形態に係る空気調和装置における開口孔の構成を示す図である。図16に示す開口孔30a、30bは、延長配管10a、10bのそれぞれを個別に貫通させる2孔タイプである。図16に示すように、延長配管10a、10bの外周には、発泡ウレタン材等によって形成された断熱材18a、18bがそれぞれ巻かれている。開口孔30a、30bの内径は、断熱材18a、18bの外径とほぼ同一又はそれより若干大きくなっている。このため、延長配管10a、10bの現地取り回し(曲げ、長さ合わせを含む)の加工寸法は、従来並みの一般許容レベルで十分になる。すなわち、現地施工性が改善される。 FIG. 16 is a diagram showing a configuration of the opening hole in the air-conditioning apparatus according to the present embodiment. The opening holes 30a and 30b shown in FIG. 16 are a two-hole type which allows each of the extension pipes 10a and 10b to pass through individually. As shown in FIG. 16, heat insulating materials 18a and 18b formed of a foamed urethane material or the like are wound around the outer circumferences of the extension pipes 10a and 10b, respectively. The inner diameters of the opening holes 30a and 30b are substantially the same as or slightly larger than the outer diameters of the heat insulating materials 18a and 18b. For this reason, the processing dimensions of the on-site handling (including bending and length adjustment) of the extension pipes 10a and 10b are sufficient at a general permissible level as before. That is, the local workability is improved.
 断熱材18a、18bの外周と開口孔30a、30bの内周との間には、隙間充填材19a、19bがそれぞれ充填されている。隙間充填材19a、19bは、独立気泡の発泡材料を用いて形成されている。隙間充填材19a、19bが充填されることにより、断熱材18a、18bの外周と開口孔30a、30bとの間は、延長配管10a、10bの管軸方向において気密に密閉される。このため、断熱材18a、18bの外周と開口孔30a、30bの内周との間の隙間を介したガス流体(例えば、漏洩冷媒)の流通は、最小限に抑えられる。 Between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b, gap filling materials 19a and 19b are filled, respectively. The gap fillers 19a and 19b are formed using a foam material with closed cells. By filling the gap filling materials 19a and 19b, the outer periphery of the heat insulating materials 18a and 18b and the opening holes 30a and 30b are hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid (for example, leaked refrigerant) through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b is minimized.
 図17は、開口孔の構成の第1変形例を示す図である。図17に示す開口孔30は、延長配管10a、10bをまとめて貫通させる1孔タイプである。図17に示すように、断熱材18a、18bの外周と開口孔30の内周との間には、隙間充填材19が充填されている。隙間充填材19は、独立気泡の発泡材料を用いて形成されている。隙間充填材19が充填されることにより、断熱材18a、18bの外周と開口孔30の内周との間は、延長配管10a、10bの管軸方向において気密に密閉される。このため、断熱材18a、18bの外周と開口孔30の内周との間の隙間を介したガス流体の流通は、最小限に抑えられる。 FIG. 17 is a diagram showing a first modification of the configuration of the opening hole. The opening hole 30 shown in FIG. 17 is a one-hole type that allows the extension pipes 10a and 10b to pass through together. As shown in FIG. 17, a gap filler 19 is filled between the outer periphery of the heat insulating materials 18 a and 18 b and the inner periphery of the opening hole 30. The gap filling material 19 is formed using a closed cell foam material. By filling the gap filling material 19, the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is minimized.
 図18は、開口孔の構成の第2変形例を示す図である。図18に示す開口孔31は、板状部材の端部から切り欠かれた切欠きタイプである。図18に示すように、断熱材18a、18bの外周と開口孔31の内周との間には、隙間充填材19が充填されている。隙間充填材19が充填されることにより、断熱材18a、18bの外周と開口孔30の内周との間は、延長配管10a、10bの管軸方向において気密に密閉される。このため、断熱材18a、18bの外周と開口孔30の内周との間の隙間を介したガス流体の流通は、最小限に抑えられる。 FIG. 18 is a diagram showing a second modification of the configuration of the opening hole. The opening hole 31 shown in FIG. 18 is a notch type notched from the edge part of a plate-shaped member. As shown in FIG. 18, a gap filler 19 is filled between the outer periphery of the heat insulating materials 18 a and 18 b and the inner periphery of the opening hole 31. By filling the gap filling material 19, the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, the circulation of the gas fluid through the gap between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening hole 30 is minimized.
 例えば図3に示す構成において、仕切部20に形成される開口孔を図16~図18に示すような構成にすることにより、上部空間115b内のろう付け部W又は継手部15a、15bで冷媒の漏洩が生じた場合に、漏洩冷媒が開口孔の隙間を介して下部空間115a(ファンケーシング108の外側)に漏洩してしまうのを防ぐことができる。このため、ろう付け部W又は継手部15a、15bで漏洩した冷媒の全量を、筐体111内部の他の経路に迂回させることなく、風路開口部20a及び吹出開口部108aを介してファンケーシング108内に流入させることができる。したがって、漏洩した冷媒の全量をファンケーシング108内で拡散させてから室内に流出させることができるため、室内に可燃濃度域が形成されてしまうことを抑制できる。 For example, in the configuration shown in FIG. 3, the openings formed in the partition portion 20 are configured as shown in FIGS. 16 to 18, so that the coolant can be used in the brazed portion W or the joint portions 15a and 15b in the upper space 115b. When leakage occurs, it is possible to prevent the leaked refrigerant from leaking into the lower space 115a (outside of the fan casing 108) through the gap of the opening hole. For this reason, the fan casing is bypassed through the air passage opening 20a and the blowout opening 108a without diverting the entire amount of the refrigerant leaked at the brazing portion W or the joint portions 15a and 15b to other paths inside the casing 111. 108 can flow into. Accordingly, since the entire amount of the leaked refrigerant can be diffused in the fan casing 108 and then flowed out into the room, it is possible to suppress the formation of a combustible concentration region in the room.
実施の形態4.
 本発明の実施の形態4に係る空気調和装置について説明する。図19は、本実施の形態に係る空気調和装置の室内機1の内部構造を模式的に示す正面図である。図20は、室内機1の内部構造を模式的に示す側面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
An air conditioner according to Embodiment 4 of the present invention will be described. FIG. 19 is a front view schematically showing the internal structure of the indoor unit 1 of the air-conditioning apparatus according to the present embodiment. FIG. 20 is a side view schematically showing the internal structure of the indoor unit 1. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図19及び図20に示す室内機1では、延長配管10a、10bを貫通させる開口孔30a、30bが、筐体111の上部又は天面(本例では天面)に設けられている。延長配管10a、10bは、開口孔30a、30bをそれぞれ介して筐体111内の上部空間115bから外部に取り出されている。ここで、筐体111の上部とは、筐体111のうちの仕切部20よりも上方のことである。開口孔30a、30bは、できるだけ高さの高い位置(例えば、室内熱交換器7及び継手部15a、15bよりも上方)に設けられるのが望ましい。 In the indoor unit 1 shown in FIGS. 19 and 20, opening holes 30 a and 30 b that penetrate the extension pipes 10 a and 10 b are provided on the top or top surface (top surface in this example) of the casing 111. The extension pipes 10a and 10b are taken out from the upper space 115b in the housing 111 through the opening holes 30a and 30b, respectively. Here, the upper part of the casing 111 is above the partition part 20 in the casing 111. The opening holes 30a and 30b are desirably provided at a position as high as possible (for example, above the indoor heat exchanger 7 and the joint portions 15a and 15b).
 開口孔30a、30bは、例えば、実施の形態3と同様の構成を有している。すなわち、延長配管10a、10bに巻かれた断熱材18a、18bの外周と開口孔30a、30bの内周との間には、隙間充填材19が充填されている。隙間充填材19が充填されることにより、断熱材18a、18bの外周と開口孔30a、30bの内周との間は、延長配管10a、10bの管軸方向において気密に密閉される。このため、上部空間115b内で漏洩した冷媒が断熱材18a、18bの外周と開口孔30a、30bの内周との間の隙間を介して筐体111の外部に漏れるのを抑えることができる。 The opening holes 30a and 30b have the same configuration as that of the third embodiment, for example. That is, the gap filler 19 is filled between the outer periphery of the heat insulating materials 18a and 18b wound around the extension pipes 10a and 10b and the inner periphery of the opening holes 30a and 30b. By filling the gap filling material 19, the space between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b is hermetically sealed in the tube axis direction of the extension pipes 10a and 10b. For this reason, it can suppress that the refrigerant | coolant which leaked in the upper space 115b leaks outside the housing | casing 111 through the clearance gap between the outer periphery of heat insulating material 18a, 18b and the inner periphery of opening hole 30a, 30b.
 ただし、室内機1の据付け作業の精度が低い場合には、隙間充填材19にずれが生じ、断熱材18a、18bの外周と開口孔30a、30bの内周との間に微小な隙間が形成されてしまうことがあり得る。上部空間115b内で冷媒の漏洩が生じた場合において、隙間充填材19の隙間を介して上部空間115bから筐体111外部に漏れる冷媒は、ファンケーシング108を介さずに室内に流出することになる。したがって、室内機1の据付け作業の精度が低い場合、上部空間115b内で冷媒の漏洩が生じると、ファンケーシング108内で十分に拡散されていない漏洩冷媒の一部が室内に直接漏洩してしまうおそれがある。 However, when the accuracy of the installation operation of the indoor unit 1 is low, the gap filler 19 is displaced, and a minute gap is formed between the outer periphery of the heat insulating materials 18a and 18b and the inner periphery of the opening holes 30a and 30b. It can happen. When the refrigerant leaks in the upper space 115b, the refrigerant leaking from the upper space 115b to the outside of the casing 111 through the gap of the gap filler 19 flows out into the room without passing through the fan casing 108. . Therefore, when the accuracy of the installation work of the indoor unit 1 is low, when the refrigerant leaks in the upper space 115b, a part of the leaked refrigerant that is not sufficiently diffused in the fan casing 108 leaks directly into the room. There is a fear.
 しかしながら、本実施の形態では、大気圧下で空気よりも密度の大きい冷媒が用いられ、かつ開口孔30a、30bが筐体111の上部又は天面に設けられている。このため、隙間充填材19に隙間が生じている場合であっても、漏洩冷媒は隙間充填材19の隙間を介して筐体111外部には流出し難くなっている。仮に、上部空間115b内の漏洩冷媒が隙間充填材19の隙間を介して筐体111外部に流出したとしても、開口孔30a、30bは床面からの高さが高い位置に設けられているため、室内に漏洩した冷媒は下降中に拡散し、冷媒濃度が均一化する。したがって、本実施の形態によれば、室内の冷媒濃度が局所的に高くなることによって室内に可燃濃度域が形成されてしまうのをより確実に防ぐことができる。 However, in the present embodiment, a refrigerant having a density higher than that of air under atmospheric pressure is used, and the opening holes 30a and 30b are provided on the top or top surface of the casing 111. For this reason, even if there is a gap in the gap filler 19, the leaked refrigerant is difficult to flow out of the housing 111 through the gap of the gap filler 19. Even if the leaked refrigerant in the upper space 115b flows out of the casing 111 through the gap of the gap filler 19, the opening holes 30a and 30b are provided at positions where the height from the floor surface is high. The refrigerant leaked into the room diffuses while descending, and the refrigerant concentration becomes uniform. Therefore, according to this Embodiment, it can prevent more reliably that a combustible density | concentration area | region will be formed in a room | chamber interior by the indoor refrigerant | coolant density | concentration becoming high locally.
 以上説明したように、上記実施の形態に係る空気調和装置は、冷媒配管を介して冷媒を循環させる冷凍サイクル40と、少なくとも冷凍サイクル40の圧縮機3及び室外熱交換器5を収容する室外機2と、少なくとも冷凍サイクル40の室内熱交換器7を収容し、冷媒配管の一部である延長配管10a、10bを介して室外機2と接続される室内機1と、を有する空気調和装置であって、冷媒は、大気圧下で空気よりも大きい密度を有しており、室内機1は、筐体111と、筐体111の内部において室内熱交換器7が配置される上部空間115bと、筐体111の内部において上部空間115bよりも下方に設けられた下部空間115aと、上部空間115bと下部空間115aとを仕切る仕切部20と、下部空間115aに配置された室内送風ファン7fと、下部空間115aに配置され、室内送風ファン7fを覆うとともに吹出開口部108a及び吸込開口部108bが形成されたファンケーシング108と、を備えており、仕切部20には、上部空間115bと下部空間115aとの間の風路となる風路開口部20aが形成されており、吹出開口部108a又は吸込開口部108bの一方(本例では、吹出開口部108a)は、風路開口部20aに接続されているものである。 As described above, the air-conditioning apparatus according to the above embodiment includes the refrigeration cycle 40 that circulates the refrigerant through the refrigerant pipe, and the outdoor unit that houses at least the compressor 3 and the outdoor heat exchanger 5 of the refrigeration cycle 40. 2 and an indoor unit 1 that houses at least the indoor heat exchanger 7 of the refrigeration cycle 40 and is connected to the outdoor unit 2 via extension pipes 10a and 10b that are part of the refrigerant pipe. The refrigerant has a density higher than that of air under atmospheric pressure, and the indoor unit 1 includes a housing 111 and an upper space 115b in which the indoor heat exchanger 7 is disposed inside the housing 111. The lower space 115a provided below the upper space 115b in the interior of the casing 111, the partition 20 that partitions the upper space 115b and the lower space 115a, and the lower space 115a. An internal blower fan 7f, and a fan casing 108 which is disposed in the lower space 115a and covers the indoor blower fan 7f and has a blow-off opening 108a and a suction opening 108b formed therein. An air passage opening 20a serving as an air passage between the space 115b and the lower space 115a is formed, and one of the blowing opening 108a or the suction opening 108b (in this example, the blowing opening 108a) is an air passage. It is connected to the opening 20a.
 また、上記実施の形態に係る空気調和装置において、室内熱交換器7と延長配管10a、10bとの間は、継手部15a、15bを介して接続されており、継手部15a、15bは、上部空間115bに配置されていてもよい。 Moreover, in the air conditioning apparatus which concerns on the said embodiment, between the indoor heat exchanger 7 and extension piping 10a, 10b is connected via joint part 15a, 15b, and joint part 15a, 15b is upper part. It may be arranged in the space 115b.
 また、上記実施の形態に係る空気調和装置において、室内熱交換器7と延長配管10a、10bとの間は、継手部15a、15bを介して接続されており、継手部15a、15bは、室内送風ファン7f(例えば、羽根車107(翼))よりも上方に配置されていてもよい。 In the air conditioner according to the above-described embodiment, the indoor heat exchanger 7 and the extension pipes 10a and 10b are connected via joint portions 15a and 15b, and the joint portions 15a and 15b You may arrange | position above the ventilation fan 7f (for example, impeller 107 (blade)).
 また、上記実施の形態に係る空気調和装置において、筐体111の前面には前面開口部が形成されており、筐体111は、少なくとも、前面開口部の下部に対して着脱可能に取り付けられる第1前面パネル114aと、前面開口部のうち当該下部よりも上方の部分に対して着脱可能に取り付けられる第2前面パネル114bと、を備えており、継手部15a、15bは、第1前面パネル114aの上端よりも下方に設けられていてもよい。 Further, in the air conditioner according to the above-described embodiment, a front opening is formed on the front surface of the housing 111, and the housing 111 is detachably attached to at least a lower portion of the front opening. 1 front panel 114a and a second front panel 114b that is detachably attached to a portion of the front opening above the lower part, and the joint portions 15a and 15b are provided with the first front panel 114a. It may be provided below the upper end of.
 また、上記実施の形態に係る空気調和装置において、室内熱交換器7は、冷媒の流路の一部となる管同士の接合部(例えば、ろう付け部W)を有していてもよい。 Moreover, in the air conditioning apparatus according to the above-described embodiment, the indoor heat exchanger 7 may have a joint part (for example, a brazing part W) between the pipes that is a part of the refrigerant flow path.
 また、上記実施の形態に係る空気調和装置において、筐体111には、吸込口又は吹出口の一方となる下開口部(本例では、吸込口112)と、下開口部よりも上方に配置され、吸込口又は吹出口の他方となる上開口部(本例では、吹出口113)と、が設けられており、下開口部には、筐体111の内部から外部に流出する気体を拡散させる拡散機構が設けられていてもよい。 Moreover, in the air conditioning apparatus according to the above-described embodiment, the casing 111 is disposed above the lower opening (in this example, the suction inlet 112) serving as one of the suction port or the air outlet and the lower opening. And an upper opening (in this example, the air outlet 113) serving as the other of the suction port or the air outlet, and a gas flowing out from the inside of the housing 111 is diffused into the lower opening. A diffusion mechanism may be provided.
 また、上記実施の形態に係る空気調和装置において、拡散機構は、筐体111の内部から外部に向かって放射状に広がる形状を有するグリル(本例では、吸込グリル120)を含んでいてもよい。 Further, in the air conditioner according to the above-described embodiment, the diffusion mechanism may include a grille (in this example, the suction grill 120) having a shape that spreads radially from the inside of the housing 111 toward the outside.
 また、上記実施の形態に係る空気調和装置において、拡散機構は、不織布又はメッシュで構成されたフィルタ121を含んでいてもよい。 Moreover, in the air conditioning apparatus according to the above embodiment, the diffusion mechanism may include a filter 121 made of a nonwoven fabric or a mesh.
 また、上記実施の形態に係る空気調和装置において、室内送風ファン7fは、軸流ファン又は斜流ファンであってもよい。 In the air conditioner according to the above embodiment, the indoor blower fan 7f may be an axial fan or a diagonal fan.
 また、上記実施の形態に係る空気調和装置において、室内送風ファン7fは、室内機1の停止中には回転自在に停止していてもよい。 Moreover, in the air conditioning apparatus according to the above-described embodiment, the indoor blower fan 7f may be rotatably stopped while the indoor unit 1 is stopped.
 また、上記実施の形態に係る空気調和装置において、仕切部20(凹部130を含む)、膨出部132及び筐体111の少なくともいずれかには、延長配管10a、10bを貫通させる開口孔30、30a、30b、31が形成されており、延長配管10a、10bの外周と開口孔30、30a、30b、31の内周との間には、独立気泡の発泡材料を用いて形成された隙間充填材19、19a、19bが充填されていてもよい。 In the air conditioner according to the above-described embodiment, at least one of the partition portion 20 (including the recessed portion 130), the bulging portion 132, and the housing 111 has an opening hole 30 that allows the extension pipes 10a and 10b to pass through. 30a, 30b, 31 are formed, and the gap filling formed between the outer periphery of the extension pipes 10a, 10b and the inner periphery of the opening holes 30, 30a, 30b, 31 using a closed cell foam material The materials 19, 19a, 19b may be filled.
 また、上記実施の形態に係る空気調和装置において、筐体111には、延長配管10a、10bを貫通させる開口孔30、30a、30b、31が形成されており、開口孔30、30a、30b、31は、筐体111の上部又は天面に設けられていてもよい。 Further, in the air conditioner according to the above embodiment, the casing 111 is formed with opening holes 30, 30a, 30b, 31 through which the extension pipes 10a, 10b pass, and the opening holes 30, 30a, 30b, 31 may be provided on the top or top surface of the casing 111.
 また、上記実施の形態に係る空気調和装置において、上部空間115bは、室内送風ファン7fにより生じる空気の流れにおいて下部空間115aよりも下流側に位置していてもよい。 In the air conditioner according to the above embodiment, the upper space 115b may be located on the downstream side of the lower space 115a in the air flow generated by the indoor blower fan 7f.
 また、上記実施の形態に係る空気調和装置において、室内機1は、室内の床面に設置される床置形であってもよい。 Moreover, in the air conditioning apparatus according to the above-described embodiment, the indoor unit 1 may be a floor-standing type installed on the floor surface of the room.
 また、上記実施の形態に係る空気調和装置において、冷媒は可燃性冷媒であってもよい。 In the air conditioner according to the above embodiment, the refrigerant may be a combustible refrigerant.
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、室内送風ファン7fとしてシロッコファンを例に挙げたが、室内送風ファン7fとしては、ターボファン、クロスフローファン、軸流ファン(例えば、プロペラファン)又は斜流ファンを用いることもできる。例えば、室内送風ファン7fとして軸流ファンを用いる場合には、円筒状のファンケーシングが用いられる。ファンケーシングの軸方向端部は、ベルマウス状に形成されていてもよい。また、例えば、室内送風ファン7fとして軸流ファン又は斜流ファンを用いる場合、室内機1の停止中には、室内送風ファン7fが回転自在(ロックされていない状態)に停止するような構成にするのが望ましい。室内送風ファン7fとして軸流ファン又は斜流ファンを用いた場合、上部空間115bから下部空間115aに流れ落ちる漏洩冷媒と空気との密度差によって、停止している室内送風ファン7fを運転時の回転方向とは逆方向に回転させることができる。この室内送風ファン7fの逆方向の回転により、吸込口112から室内に向かう方向に、漏洩冷媒と空気との混合気体の流れを生じさせることができる。したがって、室内に流出する漏洩冷媒を空気中にさらに拡散させることができるため、室内に可燃濃度域が形成されてしまうことをより確実に抑制できる。
Other embodiments.
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, a sirocco fan is used as an example of the indoor blower fan 7f. It can also be used. For example, when an axial fan is used as the indoor fan 7f, a cylindrical fan casing is used. The axial end of the fan casing may be formed in a bell mouth shape. Further, for example, when an axial fan or a mixed flow fan is used as the indoor blower fan 7f, the indoor blower fan 7f is configured to freely rotate (unlocked) while the indoor unit 1 is stopped. It is desirable to do. When an axial flow fan or a mixed flow fan is used as the indoor blower fan 7f, the rotational direction during operation of the stopped indoor blower fan 7f due to the density difference between the leakage refrigerant flowing from the upper space 115b to the lower space 115a and the air It can be rotated in the opposite direction. By rotating the indoor blower fan 7f in the reverse direction, a flow of a mixed gas of the leaked refrigerant and air can be generated in the direction from the suction port 112 toward the room. Therefore, since the leaked refrigerant flowing out into the room can be further diffused into the air, it is possible to more reliably suppress the formation of a combustible concentration region in the room.
 また、上記実施の形態では、筐体111の下部に吸込口112が形成され、それより上方に吹出口113が形成された構成を例に挙げたが、吸込口112及び吹出口113の上下関係は逆であってもよい。すなわち、筐体111の下部に吹出口113(下開口部の一例)が形成され、それより上方に吸込口112(上開口部の一例)が形成された構成であってもよい。この場合、上部空間115bは、室内送風ファン7fにより生じる空気の流れにおいて下部空間115aよりも上流側に位置する。 Moreover, in the said embodiment, although the suction inlet 112 was formed in the lower part of the housing | casing 111 and the blower outlet 113 was formed upwards as an example, the up-and-down relationship of the suction inlet 112 and the blower outlet 113 was mentioned. May be reversed. In other words, the air outlet 113 (an example of a lower opening) may be formed in the lower portion of the casing 111, and the suction port 112 (an example of an upper opening) may be formed above the air outlet 113. In this case, the upper space 115b is located upstream of the lower space 115a in the air flow generated by the indoor blower fan 7f.
 また、上記実施の形態において、風路空間81には、漏洩した冷媒の滞留部となる凹部(上方が開口した凹部)が存在しない方が望ましい。また、このような凹部が存在する場合には、凹部の容積は小さい方が望ましい。 Further, in the above-described embodiment, it is desirable that the air passage space 81 does not have a concave portion (a concave portion with an upper opening) serving as a stagnant portion of the leaked refrigerant. Moreover, when such a recessed part exists, the one where the volume of a recessed part is smaller is desirable.
 また、上記実施の形態では、冷媒として可燃性冷媒を例に挙げたが、大気圧下で空気よりも密度の大きい冷媒であれば、冷媒の燃焼性によらず上記実施の形態と同様に、漏洩冷媒を拡散させて室内に流出させることができる。したがって、可燃性冷媒以外の冷媒が用いられた場合であっても、室内の冷媒濃度が局所的に高くなってしまうことを抑制することができる。また、冷媒の漏洩を検知するセンサを不要とすることができるため、室内機1及びそれを含む空気調和装置の製造原価を抑制することができる。 In the above embodiment, a flammable refrigerant is used as an example of the refrigerant. However, as long as the refrigerant has a density higher than that of air under atmospheric pressure, the refrigerant does not depend on the flammability of the refrigerant. The leaked refrigerant can be diffused and discharged into the room. Therefore, even when a refrigerant other than the flammable refrigerant is used, the indoor refrigerant concentration can be suppressed from becoming locally high. Moreover, since the sensor which detects the leakage of a refrigerant | coolant can be made unnecessary, the manufacturing cost of the indoor unit 1 and the air conditioning apparatus containing it can be suppressed.
 また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。 Also, the above embodiments and modifications can be implemented in combination with each other.
 1 室内機、2 室外機、3 圧縮機、4 冷媒流路切替装置、5 室外熱交換器、5f 室外送風ファン、6 減圧装置、7 室内熱交換器、7f 室内送風ファン、9a、9b 室内配管、10a、10b 延長配管、11 吸入配管、12 吐出配管、13a、13b 延長配管接続バルブ、14a、14b、14c サービス口、15a、15b 継手部、18a、18b 断熱材、19、19a、19b 隙間充填材、20 仕切部、20a 風路開口部、25 電気品箱、26 操作部、30、30a、30b、31 開口孔、40 冷凍サイクル、61 ヘッダー主管、62 ヘッダー枝管、63 室内冷媒枝管、70 フィン、71 伝熱管、71a、71b 端部、72 ヘアピン管、73 Uベント管、81 風路空間、91 吸込空気温度センサ、92 熱交換器入口温度センサ、93 熱交換器温度センサ、107 羽根車、108 ファンケーシング、108a 吹出開口部、108b 吸込開口部、111 筐体、112 吸込口、113 吹出口、114a 第1前面パネル、114b 第2前面パネル、114c 第3前面パネル、115a 下部空間、115b 上部空間、120 吸込グリル、121 フィルタ、130 凹部、130a 胴部、130b 口部、131、133 蓋、132 膨出部、132a 胴部、132b 口部、W ろう付け部。 1 indoor unit, 2 outdoor unit, 3 compressor, 4 refrigerant flow switching device, 5 outdoor heat exchanger, 5f outdoor fan, 6 decompressor, 7 indoor heat exchanger, 7f indoor fan, 9a, 9b indoor piping 10a, 10b extension pipe, 11 suction pipe, 12 discharge pipe, 13a, 13b extension pipe connection valve, 14a, 14b, 14c service port, 15a, 15b joint part, 18a, 18b heat insulating material, 19, 19a, 19b gap filling Material, 20 partition part, 20a air passage opening part, 25 electrical component box, 26 operation part, 30, 30a, 30b, 31 opening hole, 40 refrigeration cycle, 61 header main pipe, 62 header branch pipe, 63 indoor refrigerant branch pipe, 70 fins, 71 heat transfer tubes, 71a, 71b ends, 72 hairpin tubes, 73 U vent tubes, 81 air passages 91, intake air temperature sensor, 92 heat exchanger inlet temperature sensor, 93 heat exchanger temperature sensor, 107 impeller, 108 fan casing, 108a outlet opening, 108b inlet opening, 111 housing, 112 inlet, 113 outlet Exit, 114a first front panel, 114b second front panel, 114c third front panel, 115a lower space, 115b upper space, 120 suction grille, 121 filter, 130 recess, 130a body, 130b mouth, 131, 133 lid 132, bulging part, 132a body part, 132b mouth part, W brazing part.

Claims (17)

  1.  冷媒配管を介して冷媒を循環させる冷凍サイクルと、
     少なくとも前記冷凍サイクルの圧縮機及び室外熱交換器を収容する室外機と、
     少なくとも前記冷凍サイクルの室内熱交換器を収容し、前記冷媒配管の一部である延長配管を介して前記室外機と接続される室内機と、を有する空気調和装置であって、
     前記冷媒は、大気圧下で空気よりも大きい密度を有しており、
     前記室内機は、
     筐体と、
     前記筐体の内部において前記室内熱交換器が配置される上部空間と、
     前記筐体の内部において前記上部空間よりも下方に設けられた下部空間と、
     前記上部空間と前記下部空間とを仕切る仕切部と、
     前記下部空間に配置されたファンと、
     前記下部空間に配置され、前記ファンを覆うとともに吹出開口部及び吸込開口部が形成されたファンケーシングと、
     を備えており、
     前記仕切部には、前記上部空間と前記下部空間との間の風路となる風路開口部が形成されており、
     前記吹出開口部又は前記吸込開口部の一方は、前記風路開口部に接続されている空気調和装置。
    A refrigeration cycle for circulating the refrigerant through the refrigerant pipe;
    An outdoor unit that houses at least the compressor and the outdoor heat exchanger of the refrigeration cycle;
    An air conditioner having at least an indoor heat exchanger of the refrigeration cycle and an indoor unit connected to the outdoor unit via an extension pipe that is a part of the refrigerant pipe,
    The refrigerant has a density greater than air at atmospheric pressure;
    The indoor unit is
    A housing,
    An upper space in which the indoor heat exchanger is disposed inside the housing;
    A lower space provided below the upper space inside the housing; and
    A partition for partitioning the upper space and the lower space;
    A fan disposed in the lower space;
    A fan casing disposed in the lower space and covering the fan and having a blowout opening and a suction opening;
    With
    The partition portion is formed with an air passage opening serving as an air passage between the upper space and the lower space,
    One of the blowing opening or the suction opening is an air conditioner connected to the air passage opening.
  2.  前記室内熱交換器と前記延長配管との間は、継手部を介して接続されており、
     前記継手部は、前記上部空間に配置されている請求項1に記載の空気調和装置。
    The indoor heat exchanger and the extension pipe are connected via a joint part,
    The air conditioner according to claim 1, wherein the joint portion is disposed in the upper space.
  3.  前記室内熱交換器と前記延長配管との間は、継手部を介して接続されており、
     前記継手部は、前記ファンよりも上方に配置されている請求項1又は請求項2に記載の空気調和装置。
    The indoor heat exchanger and the extension pipe are connected via a joint part,
    The air conditioner according to claim 1 or 2, wherein the joint portion is disposed above the fan.
  4.  前記筐体の前面には前面開口部が形成されており、
     前記筐体は、少なくとも、前記前面開口部の下部に対して着脱可能に取り付けられる第1前面パネルと、前記前面開口部のうち前記下部よりも上方の部分に対して着脱可能に取り付けられる第2前面パネルと、を備えており、
     前記継手部は、前記第1前面パネルの上端よりも下方に設けられている請求項2又は請求項3に記載の空気調和装置。
    A front opening is formed on the front surface of the housing,
    The housing is detachably attached to at least a first front panel that is detachably attached to a lower portion of the front opening, and a second that is detachably attached to a portion above the lower portion of the front opening. A front panel, and
    The air conditioner according to claim 2 or 3, wherein the joint portion is provided below an upper end of the first front panel.
  5.  前記室内熱交換器は、前記冷媒の流路の一部となる管同士の接合部を有している請求項1~請求項4のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 4, wherein the indoor heat exchanger has a joint portion between tubes that is a part of a flow path of the refrigerant.
  6.  前記筐体には、吸込口又は吹出口の一方となる下開口部と、前記下開口部よりも上方に配置され、前記吸込口又は前記吹出口の他方となる上開口部と、が設けられており、
     前記下開口部には、前記筐体の内部から外部に流出する気体を拡散させる拡散機構が設けられている請求項1~請求項5のいずれか一項に記載の空気調和装置。
    The casing is provided with a lower opening serving as one of a suction port or a blower outlet, and an upper opening disposed above the lower opening and serving as the other of the suction port or the blower outlet. And
    The air conditioner according to any one of claims 1 to 5, wherein a diffusion mechanism for diffusing a gas flowing out from the inside of the housing to the outside is provided in the lower opening.
  7.  前記拡散機構は、前記筐体の内部から外部に向かって放射状に広がる形状を有するグリルを含む請求項6に記載の空気調和装置。 The air conditioner according to claim 6, wherein the diffusion mechanism includes a grille having a shape that spreads radially from the inside of the housing toward the outside.
  8.  前記拡散機構は、不織布又はメッシュで構成されたフィルタを含む請求項6又は請求項7に記載の空気調和装置。 The air conditioner according to claim 6 or 7, wherein the diffusion mechanism includes a filter made of a nonwoven fabric or a mesh.
  9.  前記ファンは、軸流ファン又は斜流ファンである請求項1~請求項8のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 8, wherein the fan is an axial flow fan or a mixed flow fan.
  10.  前記ファンは、前記室内機の停止中には回転自在に停止している請求項9に記載の空気調和装置。 The air conditioner according to claim 9, wherein the fan is rotatably stopped while the indoor unit is stopped.
  11.  前記仕切部及び前記筐体の少なくとも一方には、前記延長配管を貫通させる開口孔が形成されており、
     前記延長配管の外周と前記開口孔の内周との間には、隙間充填材が充填されている請求項1~請求項10のいずれか一項に記載の空気調和装置。
    At least one of the partition part and the housing is formed with an opening through which the extension pipe passes.
    The air conditioner according to any one of claims 1 to 10, wherein a gap filler is filled between an outer periphery of the extension pipe and an inner periphery of the opening hole.
  12.  前記隙間充填材は、独立気泡の発泡材料を用いて形成されている請求項11に記載の空気調和装置。 12. The air conditioner according to claim 11, wherein the gap filler is formed using a closed cell foam material.
  13.  前記筐体には、前記延長配管を貫通させる開口孔が形成されており、
     前記開口孔は、前記筐体の上部又は天面に設けられている請求項1~請求項12のいずれか一項に記載の空気調和装置。
    The casing is formed with an opening through which the extension pipe passes.
    The air conditioner according to any one of claims 1 to 12, wherein the opening hole is provided in an upper portion or a top surface of the casing.
  14.  前記上部空間は、前記ファンにより生じる空気の流れにおいて前記下部空間よりも下流側に位置している請求項1~請求項13のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 13, wherein the upper space is located downstream of the lower space in the air flow generated by the fan.
  15.  前記上部空間は、前記ファンにより生じる空気の流れにおいて前記下部空間よりも上流側に位置している請求項1~請求項13のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 13, wherein the upper space is located upstream of the lower space in the air flow generated by the fan.
  16.  前記室内機は、室内の床面に設置される床置形である請求項1~請求項15のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 15, wherein the indoor unit is a floor-standing type installed on a floor surface of a room.
  17.  前記冷媒は可燃性冷媒である請求項1~請求項16のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 16, wherein the refrigerant is a combustible refrigerant.
PCT/JP2015/054304 2014-07-08 2015-02-17 Air conditioning device WO2016006267A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015003180.4T DE112015003180T5 (en) 2014-07-08 2015-02-17 air conditioning
CN201510278090.5A CN105299751B (en) 2014-07-08 2015-05-27 Air-conditioning device
CN201520350838.3U CN204704933U (en) 2014-07-08 2015-05-27 Aircondition
CN201810895807.4A CN109185982B (en) 2014-07-08 2015-05-27 Air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014140762 2014-07-08
JP2014-140762 2014-07-08
JP2015-010347 2015-01-22
JP2015010347A JP5918399B2 (en) 2014-07-08 2015-01-22 Air conditioner

Publications (1)

Publication Number Publication Date
WO2016006267A1 true WO2016006267A1 (en) 2016-01-14

Family

ID=55063915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054304 WO2016006267A1 (en) 2014-07-08 2015-02-17 Air conditioning device

Country Status (4)

Country Link
JP (1) JP5918399B2 (en)
CN (2) CN109185982B (en)
DE (1) DE112015003180T5 (en)
WO (1) WO2016006267A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207653B2 (en) * 2014-07-08 2017-10-04 三菱電機株式会社 Air conditioner
WO2017187562A1 (en) * 2016-04-27 2017-11-02 三菱電機株式会社 Refrigeration cycle apparatus
CN106052038A (en) * 2016-07-04 2016-10-26 珠海格力电器股份有限公司 Air conditioning system as well as air conditioning control method and device
CN110226071B (en) * 2017-02-01 2023-09-22 三菱电机株式会社 Air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195126A (en) * 1989-01-23 1990-08-01 Matsushita Refrig Co Ltd Air conditioner
JPH10332163A (en) * 1997-06-03 1998-12-15 Matsushita Seiko Co Ltd Piping device for heat-exchanger for air-conditioner
JPH11304626A (en) * 1998-04-20 1999-11-05 Nec Yamagata Ltd Cylinder cabinet
JP2000130794A (en) * 1998-10-28 2000-05-12 Daikin Ind Ltd Cover for part for passing piping of air conditioner
JP2002098346A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Indoor machine for air conditioner
JP2002115939A (en) * 2000-10-12 2002-04-19 Hitachi Industries Co Ltd Heat pump system
JP2005049004A (en) * 2003-07-28 2005-02-24 Fujitsu General Ltd Air conditioner
JP2011127849A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Shielding plate and air conditioning system
WO2013038599A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071051B2 (en) * 1992-09-21 2000-07-31 三洋電機株式会社 Floor type air conditioner
JP2990570B2 (en) * 1994-08-18 1999-12-13 松下電器産業株式会社 Integrated air conditioner
CN1727763A (en) * 2004-07-30 2006-02-01 上海日立电器有限公司 Bi-directional indoor machine of air conditioner
CN203310012U (en) * 2013-05-08 2013-11-27 广东美的制冷设备有限公司 Heat exchanger and air-conditioner outdoor unit
CN204704933U (en) * 2014-07-08 2015-10-14 三菱电机株式会社 Aircondition
JP5865529B1 (en) * 2014-07-15 2016-02-17 三菱電機株式会社 Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195126A (en) * 1989-01-23 1990-08-01 Matsushita Refrig Co Ltd Air conditioner
JPH10332163A (en) * 1997-06-03 1998-12-15 Matsushita Seiko Co Ltd Piping device for heat-exchanger for air-conditioner
JPH11304626A (en) * 1998-04-20 1999-11-05 Nec Yamagata Ltd Cylinder cabinet
JP2000130794A (en) * 1998-10-28 2000-05-12 Daikin Ind Ltd Cover for part for passing piping of air conditioner
JP2002098346A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Indoor machine for air conditioner
JP2002115939A (en) * 2000-10-12 2002-04-19 Hitachi Industries Co Ltd Heat pump system
JP2005049004A (en) * 2003-07-28 2005-02-24 Fujitsu General Ltd Air conditioner
JP2011127849A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Shielding plate and air conditioning system
WO2013038599A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Air conditioner

Also Published As

Publication number Publication date
CN105299751B (en) 2018-08-28
CN109185982B (en) 2020-08-18
CN105299751A (en) 2016-02-03
JP2016027291A (en) 2016-02-18
CN109185982A (en) 2019-01-11
JP5918399B2 (en) 2016-05-18
DE112015003180T5 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6431174B2 (en) Air conditioner
JP6336121B2 (en) Refrigeration cycle equipment
JP5865529B1 (en) Air conditioner
JP6388735B2 (en) Air conditioner
JP6785883B2 (en) Air conditioner
JP5665937B1 (en) Refrigeration cycle equipment
WO2017187618A1 (en) Refrigeration cycle apparatus
WO2016047278A1 (en) Heat pump apparatus
WO2015190144A1 (en) Heat pump device
JP6157789B1 (en) Refrigeration cycle apparatus and refrigerant leakage detection method
JP5918399B2 (en) Air conditioner
JP6223324B2 (en) Refrigerant leak detection device and refrigeration cycle device
JP6207653B2 (en) Air conditioner
JP6272149B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003180

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818716

Country of ref document: EP

Kind code of ref document: A1