WO2016006047A1 - Optical reception module - Google Patents

Optical reception module Download PDF

Info

Publication number
WO2016006047A1
WO2016006047A1 PCT/JP2014/068246 JP2014068246W WO2016006047A1 WO 2016006047 A1 WO2016006047 A1 WO 2016006047A1 JP 2014068246 W JP2014068246 W JP 2014068246W WO 2016006047 A1 WO2016006047 A1 WO 2016006047A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductance
terminal
current
grounded
preamplifier
Prior art date
Application number
PCT/JP2014/068246
Other languages
French (fr)
Japanese (ja)
Inventor
寛樹 山下
享史 竹本
康信 松岡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/068246 priority Critical patent/WO2016006047A1/en
Publication of WO2016006047A1 publication Critical patent/WO2016006047A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present invention relates to an optical receiver module, and more particularly to an optical communication module and an optical communication apparatus including the same, and more particularly to an optical communication apparatus such as a router and a server, and one of its components, using a laser diode and a photodiode.
  • the present invention relates to a receiving module, a receiving circuit, and a receiving method that are effective when applied to an optical communication module that performs optical communication.
  • the communication speed between boards in information communication devices is required from 10 Gbps to 25 Gbps and 50 Gbps.
  • the electric transmission technology that has been applied to the inter-board communication in the apparatus so far, even if the communication distance is about 1 m, if the communication speed exceeds 20 Gbps, transmission becomes difficult due to an increase in transmission loss and reflection noise. .
  • the application of optical transmission technology using an optical fiber cable with high transmission loss and low reflection is proposed for communication between boards within the apparatus, which has a relatively short communication distance of about 1 m.
  • Patent Document 1 describes a laser diode driver circuit in which a pre-emphasis circuit is provided in a high-speed optical transmission circuit. This circuit realizes high-speed transmission by shortening the high-speed driving of the laser diode and the rise / fall time of the optical signal.
  • Non-Patent Document 1 describes an optical receiver circuit that realizes 25 Gbps optical communication
  • Non-Patent Document 2 describes an optical transceiver that realizes 35 Gbps optical communication.
  • Fig. 10 shows an example of the basic configuration and optical transmission waveform when the optical transmission technology is applied to inter-board communication.
  • (a) shows the basic configuration and
  • (b) shows an example of the output eye waveform of the transmission optical module.
  • This optical transmission system is composed of a transmission optical module Tx composed of a laser driver LDD and a laser diode LD, an optical fiber FI connecting the boards with light, and a reception optical module composed of a photodiode PD and a transimpedance amplifier TIA.
  • the electrical signal from the transmission S_LSI is converted into an optical signal by the transmission optical module Tx and transmitted through the optical fiber between the transmission / reception boards.
  • the signal is restored to an electrical signal by the receiving optical module and transmitted to the receiving R_LSI.
  • the transmission quality of the optical waveform is defined by the time width in which data is determined, that is, the eye opening width, as shown in FIG. 10B as an example of a 25 Gbps optical eye waveform, and can be transmitted with the size of this opening width. Whether it is determined. For normal signal transmission, an eye opening of approximately 30% or more of 40 ps is generally required at 25 Gbps.
  • the cause of reducing the eye opening width of the optical waveform is dominated by random jitter caused by spontaneous emission noise called relative intensity noise (RIN: Relative Intensity Noise) of the laser diode LD.
  • FIG. 11 shows a state in which relative intensity noise generated by a surface emitting laser VCSEL as a direct modulation laser diode is superimposed on a modulated output light waveform.
  • the relative intensity noise RIN_OMA is an index representing a ratio to the spontaneous emission noise with respect to the modulation power P_OMA.
  • P_OMA is modulation power
  • Pn spontaneous emission noise
  • BW noise bandwidth.
  • the value of RIN_OMA is about 130 dB / Hz to 140 dB / Hz, and this value is almost constant even if the performance of VCSEL is improved.
  • the problem here is that the band that must be considered when the bit rate is increased increases the noise, and the random jitter due to the noise increases.
  • FIG. 12 shows the relationship between the noise RIN_OMA and the random jitter RJ_RIN.
  • (A) shows a calculation formula representing the relationship between RIN_OMA and jitter
  • (b) shows an example comparing the calculation formula with the actual measurement result.
  • FIG. 12A for example, when relative intensity noise Pn having a frequency component equal to or lower than the fundamental frequency of the communication speed (bit rate) is generated on the positive side, the optical output waveform moves to the positive side. Thus, the time to cut the center of the output waveform is accelerated by RJ_RIN, which becomes the random jitter RJ_RIN.
  • the fundamental frequency is 12.5 GHz when the communication speed, that is, the bit rate is 25 Gbps.
  • the random jitter due to RIN_OMA is determined by the rise time Trf of the output waveform and the noise band BW in addition to the relative intensity noise Pn and the modulation power P_OMA.
  • the modulation power P_OMA two methods of increasing the modulation power P_OMA, that is, increasing the extinction ratio ER, and shortening the rise time of the output waveform are conceivable.
  • the LD driver includes a driver circuit that drives a laser diode LD, a driver that drives the LD, a delay circuit, two prebuffers, and a waveform adder.
  • the output waveform (B) of the sub-predriver with a certain delay which is a delay circuit, is added to the output waveform (A) of the main predriver, and the laser diode LD is connected to the driver circuit using this added waveform as an input.
  • the rise time of the optical output waveform of the laser diode LD is shortened.
  • the output waveform of the laser diode is a waveform obtained by subtracting the response of the output waveform (B) of the sub-prebuffer from the response to the output waveform (A) of the main prebuffer. Will be output.
  • the optical output waveform of the laser diode LD is greatly shortened with respect to the response waveform of the output waveform (A) of the main driver.
  • the output amplitude decreases. For example, if the rise time is shortened by about 30%, the output amplitude is reduced by 30%. In this method performed by the transmission module, the power modulation by the sub-prebuffer increases and the output modulation amplitude decreases.
  • the present invention has been made in view of the above, and it is an object of the present invention to increase the communication speed without causing a decrease in modulation power or an increase in power in the transmission module.
  • An object of the present invention is to provide an optical receiving circuit and a receiving optical module capable of reducing random jitter generated in a module and realizing transmission with high transmission waveform quality.
  • a photodiode that receives an optical signal from a transmission module and converts it into a current signal, and a transimpedance amplifier that converts the current signal of the photodiode into a voltage signal and outputs the voltage signal.
  • a transition current detecting means for detecting a transition of the current signal and outputting a transition current only during the time when the current signal is transitioned; a means for adding the transition current to the current signal of the photodiode within the transition time;
  • a transimpedance amplifier that converts and amplifies a current signal to which a transition current is added into a voltage signal is provided.
  • the rise time of the current waveform is shortened by adding the transition current component of this current waveform to the current waveform converted by the photodiode from the received optical waveform.
  • random jitter of the optical waveform generated in the transmission module can be reduced, and transmission with high transmission quality can be realized.
  • FIG. 10 is a circuit diagram illustrating an example of a specific circuit configuration in which a transition current adding unit is provided at the output of a threshold voltage detection circuit that is a part of a transimpedance amplifier in the optical receiver module according to Embodiment 2 of the present invention.
  • FIG. 5 is a circuit diagram showing an example of a specific circuit configuration in which transition current addition means is provided in a preamplifier circuit that is a part of a transimpedance amplifier in the optical receiver module according to Embodiment 1 of the present invention.
  • FIG. 10 is a circuit diagram illustrating an example of a specific circuit configuration in which a transition current detection unit and an addition unit are provided in a preamplifier and a threshold voltage detection circuit that are part of a transimpedance amplifier in the optical reception module according to the third embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating an example of a specific circuit configuration in which a transition current detection unit and an addition unit are provided in a preamplifier and a threshold voltage detection circuit that are part of a transimpedance amplifier in the optical reception module according to the third embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing an example of another specific circuit configuration in which the transition current detection unit is provided in the preamplifier circuit and the transition current addition unit is provided at the output of the threshold voltage detection circuit in the optical receiver module according to the third embodiment of the present invention. .
  • the output voltage of the preamplifier and the transition voltage waveform generated across the resistance of the transition current adder circuit are calculated.
  • (a) shows the result of calculating the output voltage waveform of the transimpedance amplifier for each of the cases where the transition voltage waveform is not added and (b) is the case where the transition voltage waveform is added. It is an example which showed the effect.
  • (A) is a block diagram and (b) is an explanatory diagram showing transmission quality when an optical transmission technique is applied to inter-board communication in an information communication apparatus that is an object of the present invention. It is explanatory drawing of the relationship between the natural light emission noise which generate
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by an integrated circuit technology such as a CMOS (complementary MOS transistor) or a bipolar transistor.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • connection of the substrate potential of the transistor is not specified in the drawing, but the connection method is not particularly limited as long as the transistor can operate normally.
  • FIG. 1 is a block diagram showing an example of the configuration of an optical receiver module according to Embodiment 1 of the present invention.
  • the reception module according to the first embodiment includes a photodiode PD that receives an optical signal and outputs a reception current signal, a transition current detection block IDET that detects and outputs a transition current of the reception current, which is a feature of the present invention, and the transition A transition current addition block IADD that adds current to the received current signal and a transimpedance TIA that converts the received current signal after addition into a voltage signal and outputs the voltage signal.
  • a photodiode PD that receives an optical signal and outputs a reception current signal
  • a transition current detection block IDET that detects and outputs a transition current of the reception current, which is a feature of the present invention
  • the transition A transition current addition block IADD that adds current to the received current signal
  • a transimpedance TIA that converts the received current signal after addition into a voltage signal and
  • the current waveform at each position is obtained by adding the transition current detected by the transition current detection / output block IDET to the transition time of the reception current signal. By adding to, it will stand up at high speed. As a result, the input of the transimpedance amplifier TIA rises faster than the optical waveform received by the photodiode PD. Therefore, the random jitter observed at the output of the transimpedance amplifier TIA is reduced as compared with the random jitter caused by the relative intensity noise RIN generated by the laser diode of the transmission module, and the transmission quality can be improved.
  • a receiving circuit and a receiving optical module can be provided.
  • FIG. 2 shows a specific circuit configuration example of the transition current detection block IDET and the addition block IADD in FIG. 1 and a block configuration example of the transimpedance amplifier TIA.
  • the transition current detection block IDET is an inductance L1 connected to the anode side of the photodiode, and one terminal is grounded and the other is an inductance L2 connected to the capacitor C of the transition current addition block.
  • the transition current addition block IADD is a capacitor. Consists of C.
  • the inductances L1 and L2 form a mutual inductance M having a strong coupling.
  • the transition current of the received current of the photodiode PD flowing through the inductance L1 flows through the mutual inductance M to the inductance L2.
  • the transimpedance amplifier TIA includes a preamplifier PRE, a threshold voltage detection circuit ATC, a post amplifier POST, and a driver DRV.
  • the preamplifier PRE converts the input current into a voltage signal
  • the threshold voltage detection circuit ATC detects the center voltage of the output voltage of the preamplifier, that is, the threshold voltage.
  • the post-amplifier POST converts and amplifies the output voltage signal of the preamplifier PRE into a differential signal by amplifying the difference between the output voltage signal of the preamplifier PRE and the output voltage of the threshold voltage detection circuit, that is, the threshold voltage. Further, the driver outputs the differential signal from the transimpedance amplifier TIA. Therefore, the jitter observed at the output of the transimpedance amplifier TIA is smaller than the random jitter of the input waveform of the photodiode PD.
  • FIG. 3 is a configuration example similar to FIG. 2, except that the transition current of the received current is detected on the cathode side of the photodiode.
  • the other configuration is the same as that of the embodiment of FIG. 2, and the operation is also the same. Therefore, this configuration has the same effect as the embodiment of FIG.
  • FIG. 5 is a configuration example in which the transition current detection block has the same configuration as that of the embodiment of FIG. 2, and the transition current addition block IADD is provided in the preamplifier PRE of the transimpedance amplifier TIA.
  • the transition current addition block is composed of a capacitor C having one terminal connected to the input terminal and the other terminal connected to the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1.
  • This preamplifier PRE has an amplifier configuration combining a grounded-gate amplifier composed of a MOS transistor M2 and a load resistor R2, and a common-source amplifier composed of a constant current reduction IST1, a MOS transistor M1, and a load resistor R1. This is a configuration that is advantageous for high bandwidth and high gain.
  • the output terminal is the connection node N0 between the load resistor R1 and the MOS transistor M1, but output by a level shift circuit composed of the MOS transistor M3 and the constant current source IST2 in order to match the input voltage level with the post amplifier POST of the next stage To do.
  • the change in the received current is transmitted to the node N0 via the MOS transistor, and at the same time, the transition current detected by the transition current detection block IDET is also added to the node N0 via the capacitor C, and the output voltage signal of the node N0 Rise time is reduced. As a result, the same effects as in FIG. 2 can be obtained in this embodiment.
  • FIG. 4 is a specific circuit configuration example in which the transition current addition block IADD is provided at the output of the threshold voltage detection circuit ATC of the transimpedance amplifier TIA in the optical receiver module according to Embodiment 2 of the present invention.
  • the transition current of the received current is detected in the same manner as in FIG. 2, with the inductance L1 connected between the cathode of the photodiode PD and the input of the transimpedance amplifier TIA, and one terminal grounded. Detection is performed by an inductance L2 whose terminal is connected to the input terminal of the current addition block.
  • the transition current addition block includes a delay circuit DLY that delays the transition current detected by the inductance L2 and transmits the delay current to the capacitor C and the resistor R, and a resistor R and the capacitor C that convert the transition current into a differential voltage waveform.
  • the transition current flows through the capacitor C and the resistor R through the delay circuit DLY, and then flows into the threshold voltage detection circuit ATC.
  • the output impedance of the threshold voltage detection circuit ATC is designed to be low, the output voltage of the threshold voltage detection circuit, that is, the center voltage of the output waveform of the preamplifier PRE is applied to one input terminal Vn of the post amplifier POST.
  • a voltage waveform obtained by adding the voltage waveform obtained by differentiating the voltage waveform of the product of the transition current and the resistance with the resistor R and the capacitor C is added.
  • the difference between the differential input terminals Vp and Vn is amplified and amplified, so that the above-mentioned differential waveform overlaps within the transition time of the output voltage of the preamplifier PRE.
  • the delay of DLY By setting the delay of DLY, an effect of equivalently shortening the rise time of the output voltage signal of the preamplifier PRE can be obtained. For this reason, the random jitter observed at the output of the transimpedance amplifier TIA is reduced as compared with the random jitter caused by the relative intensity noise generated in the laser diode of the transmission module, and the transmission quality can be improved.
  • FIG. 6 is a circuit configuration example in which the transition current detection block IDET and the addition block IADD are provided in the preamplifier PRE of the transimpedance amplifier TIA and the threshold voltage detection circuit ATC in the optical receiver module according to the third embodiment of the present invention.
  • the detection of the transition current of the received current is performed by detecting the inductance L1 connected between the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1, and one terminal being grounded and the other terminal being a current adding block. Detect with inductance L2 connected to input terminal.
  • the transition current addition block is a circuit similar to the above-described embodiment of FIG.
  • the received current does not flow through the photodiode PD unless an optical signal is input. Therefore, the load resistor R1, the inductance L2 of the transition current detection block, and the MOS transistor M1 are the same as the current of the constant current source IST1. Constant current is flowing. However, when an optical signal enters the photodiode PD, a reception current flows, and this current flows into the constant current source. As a result, the load resistor R1, the inductance L2 of the transition current detection block, and the current flowing through the MOS transistor M1 are the same amount as the received current.
  • the same current signal as the reception current of the photodiode PD flows through the inductance L2 of the transition current detection block, and the transition current of the reception current can be detected by the inductances L2 and L1. Therefore, by inputting the detection current of the transition current detection block IDET to the transition current addition block IADD, the effect of shortening the rise time of the output voltage signal of the preamplifier PRE can be obtained as in FIG. As a result, the random jitter observed at the output of the transimpedance amplifier TIA is reduced compared to the random jitter caused by the relative intensity noise generated in the laser diode of the transmission module, and the transmission quality can be improved.
  • FIG. 7 is a circuit configuration example in which the transition current detection block IDET is provided in the preamplifier PRE and the transition current addition block IADD is provided in the output of the threshold voltage detection circuit ATC in the optical receiver module according to the third embodiment of the present invention.
  • the transition current of the received current is detected by the inductances L2 and L1 connected between the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1, as in FIG. Current flows in the inductance L1. Therefore, a transition voltage signal proportional to the transition current is generated at both ends of the resistor Rb when the current of the inductance L1 flows through the resistor Rb during the time when the output voltage signal of the preamplifier PRE is transitioning.
  • the threshold voltage detection circuit ATC outputs the center voltage of the output voltage waveform of the preamplifier PRE by setting the band to several hundreds KHz with a low-pass filter composed of the resistor R1 and the capacitor C1. For this reason, a voltage waveform is generated at the input terminal Vn of the postamplifier POST by adding the transition voltage waveform proportional to the aforementioned transition current to the center voltage of the output voltage waveform of the preamplifier PRE, that is, the threshold voltage.
  • FIG. 8 shows an example of the result of simulating this situation. It shows that a transition voltage signal is generated across the resistor Rb at the transition time of the output voltage waveform of the preamplifier PRE.
  • the differential voltage signal of the input terminals Vp and Vn is amplified, and the transition voltage of Vn is added, so that the rise time of the input signal voltage is equivalently shortened. That is, as in FIG. 6, the random jitter observed at the output of the transimpedance amplifier TIA improves the rise time of the POST input waveform to the post amplifier.
  • 9A shows an example of the result of calculating the output voltage waveform of the transimpedance amplifier for each of the cases where the transition voltage waveform is not added and FIG. 9B is the case where the transition voltage waveform is added.
  • the optical receiver module according to the present embodiment is particularly useful for an optical receiver module that performs inter-board communication via an optical fiber cable in an information device.
  • the present invention is not limited to this, and a laser diode and a photodiode are used. It can be widely applied to all products that perform optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)

Abstract

The present invention achieves transmission having high transmission waveform qualities by reducing random jitter generated in an optical transmission module. Disclosed is an optical reception module wherein: a transition current of a current signal transmitted from a photodiode is detected; the transition current is added during time when the current signal is transiting; a start-up time of a current waveform is improved; and random jitter due to noise in the amplitude direction is reduced, said noise having been generated in a laser diode of a transmission module.

Description

光受信モジュールOptical receiver module
 本発明は光受信モジュールに関し、特に、光通信モジュール、およびそれを含んだ光通信装置に関し、特に、ルータやサーバ等の光通信装置、およびその部品の一つでありレーザダイオードとフォトダイオードを用いて光通信を行う光通信モジュールに適用して有効な受信モジュール、受信回路、及び受信方式に関する。 The present invention relates to an optical receiver module, and more particularly to an optical communication module and an optical communication apparatus including the same, and more particularly to an optical communication apparatus such as a router and a server, and one of its components, using a laser diode and a photodiode. The present invention relates to a receiving module, a receiving circuit, and a receiving method that are effective when applied to an optical communication module that performs optical communication.
  近年、スマートフォンやタブレット型端末の普及などによるマルチメディアコンテンツの大容量化に伴い、例えばルータ装置やサーバ装置などの情報通信装置内ボード間通信速度は10Gbpsから25Gbps、50Gbpsへと要求されている。これに伴って、これまで装置内ボード間通信に適用されてきた電気伝送技術では、通信距離が1m程度でも通信速度が20Gbpsを超えると伝送損失や反射ノイズの増大によって伝送が困難になってきた。このため、通信距離が1m程度と比較的に短い装置内ボード間通信に、高速かつ伝送損失や反射の小さい光ファイバケーブルを用いた光伝送技術の適用が提案されている。例えば、特許文献1には、高速光送信回路においてプリエンファシス回路を設けたレーザダイオードドライバ回路が記載されている。この回路によって、レーザダイオードの高速駆動と光信号の立ち上がり立ち下がり時間を短縮し、高速伝送を実現している。非特許文献1には25Gbps光通信を実現する光受信回路が、非特許文献2には35Gbps光通信を実現した光送受信器が記載されている。 In recent years, with the increase in capacity of multimedia contents due to the spread of smartphones and tablet terminals, for example, the communication speed between boards in information communication devices such as router devices and server devices is required from 10 Gbps to 25 Gbps and 50 Gbps. Along with this, in the electric transmission technology that has been applied to the inter-board communication in the apparatus so far, even if the communication distance is about 1 m, if the communication speed exceeds 20 Gbps, transmission becomes difficult due to an increase in transmission loss and reflection noise. . For this reason, the application of optical transmission technology using an optical fiber cable with high transmission loss and low reflection is proposed for communication between boards within the apparatus, which has a relatively short communication distance of about 1 m. For example, Patent Document 1 describes a laser diode driver circuit in which a pre-emphasis circuit is provided in a high-speed optical transmission circuit. This circuit realizes high-speed transmission by shortening the high-speed driving of the laser diode and the rise / fall time of the optical signal. Non-Patent Document 1 describes an optical receiver circuit that realizes 25 Gbps optical communication, and Non-Patent Document 2 describes an optical transceiver that realizes 35 Gbps optical communication.
特開2012-43933号公報JP 2012-43933 A
  図10に装置内ボード間通信に光伝送技術を適用した場合の基本構成と光伝送波形の一例を示す。(a)には基本構成を(b)には送信光モジュールの出力アイ波形一例を示す。この光伝送系は、レーザドライバLDDとレーザダイオードLDから成る送信光モジュールTxと、ボード間を光でつなぐ光ファイバーFIと、フォトダイオードPDとトランスインピーダンスアンプTIAから成る受信光モジュールで構成されている。通信装置内送信ボードの送信S_LSIと受信ボードのR_LSIの間での通信は、送信S_LSIからの電気信号が送信光モジュールTxで光信号に変換され、送受信ボード間の光ファイバーを介して伝送された光信号が受信光モジュールで電気信号に復元されて受信R_LSIに伝送されることで行われる。この構成をとることで、送受信LSIと送受信光モジュール間の電気伝送路を短くすることができるため、電気伝送部分での伝送品質の劣化を防ぐことができる。したがって、この伝送系での伝送品質は、送受信モジュール間の光伝送波形の品質に大きく影響する。光波形の伝送品質は、図10(b)に25Gbpsの光アイ波形の一例を示すようにデータが確定している時間幅、つまりアイ開口幅で定義され、この開口幅の大きさで伝送できるかどうかが決定される。正常な信号伝送では、一般的に25Gbpsでは40psの約30%以上のアイ開口が必要である。この光波形のアイ開口幅を小さくする原因は、レーザダイオードLDの相対強度雑音(RIN: Relative Intensity Noise)と呼ばれる自然発光雑音によるランダムジッタが支配的である。図11に直接変調のレーザダイオードとして面発光型レーザVCSELで発生する相対強度雑音が変調出力光波形に重畳した様子を示す。相対強度雑音RIN_OMAは、変調パワーP_OMAに対する自然発光雑音に割合を表す指標である。ここで、P_OMAは変調パワー、Pnは自然発光雑音、BWは雑音帯域幅である。なお、一般的なVCSELでは、RIN_OMAの値は、おおよそ130dB/Hz~140dB/Hz程度で、VCSELが性能向上しても、この値はほぼ一定である。ここで問題となる点は、ビットレートがあがると考慮しなければならない帯域があがるため、その雑音も大きくなり、この雑音によるランダムジッタが増大することである。図12はこの雑音RIN_OMAとランダムジッタRJ_RINとの関係を示したものである。(a)にはRIN_OMAとジッタの関係を表した計算式を、(b)には計算式と実測結果を比較した一例を示す。図12(a)に示すように、たとえば、正側に通信速度(ビットレート)の基本周波数以下の周波数成分をもった相対強度雑音Pnが発生すると、光出力波形は正側に移動することになり、出力波形の中心を切る時刻はRJ_RINだけ速まり、これがランダムジッタRJ_RINとなる。なお、通信速度、つまりビットレートが25Gbpsでは、基本周波数は12.5GHzである。図12(b)に示すように、この考え方で相対強度雑音とランダムジッタRI_RINの関係が計算できることが分かる。したがって、RIN_OMAによるランダムジッタは、相対強度雑音Pnや変調パワーP_OMAに加えて、出力波形の立ち上がり時間Trfと雑音帯域BWで決まることになる。特に、相対強度雑音RIN_OMAによるランダムジッタRJ_RINを低減するためには、変調パワーP_OMAを増やす、つまり消光比ERを高くすることと、出力波形の立ち上がり時間を短縮することの2つの方法が考えられる。しかし、前者の方法は、特に装置内ボード間通信に用いられている面発光型レーザVCSELでは一定以上(おおよそ3mW以上)の変調パワーを出力することができないため、この方法はランダムジッタRJ_RINの低減に有効ではない。このため、従来、後者の出力波形の立ち上がり時間を短縮する方法として、送信モジュールで行う特許文献1の方法がとられている。 Fig. 10 shows an example of the basic configuration and optical transmission waveform when the optical transmission technology is applied to inter-board communication. (a) shows the basic configuration and (b) shows an example of the output eye waveform of the transmission optical module. This optical transmission system is composed of a transmission optical module Tx composed of a laser driver LDD and a laser diode LD, an optical fiber FI connecting the boards with light, and a reception optical module composed of a photodiode PD and a transimpedance amplifier TIA. In the communication between the transmission S_LSI of the transmission board in the communication device and the R_LSI of the reception board, the electrical signal from the transmission S_LSI is converted into an optical signal by the transmission optical module Tx and transmitted through the optical fiber between the transmission / reception boards. The signal is restored to an electrical signal by the receiving optical module and transmitted to the receiving R_LSI. By adopting this configuration, it is possible to shorten the electrical transmission path between the transmission / reception LSI and the transmission / reception optical module, and therefore it is possible to prevent deterioration in transmission quality at the electrical transmission portion. Therefore, the transmission quality in this transmission system greatly affects the quality of the optical transmission waveform between the transmission and reception modules. The transmission quality of the optical waveform is defined by the time width in which data is determined, that is, the eye opening width, as shown in FIG. 10B as an example of a 25 Gbps optical eye waveform, and can be transmitted with the size of this opening width. Whether it is determined. For normal signal transmission, an eye opening of approximately 30% or more of 40 ps is generally required at 25 Gbps. The cause of reducing the eye opening width of the optical waveform is dominated by random jitter caused by spontaneous emission noise called relative intensity noise (RIN: Relative Intensity Noise) of the laser diode LD. FIG. 11 shows a state in which relative intensity noise generated by a surface emitting laser VCSEL as a direct modulation laser diode is superimposed on a modulated output light waveform. The relative intensity noise RIN_OMA is an index representing a ratio to the spontaneous emission noise with respect to the modulation power P_OMA. Here, P_OMA is modulation power, Pn is spontaneous emission noise, and BW is noise bandwidth. In general VCSEL, the value of RIN_OMA is about 130 dB / Hz to 140 dB / Hz, and this value is almost constant even if the performance of VCSEL is improved. The problem here is that the band that must be considered when the bit rate is increased increases the noise, and the random jitter due to the noise increases. FIG. 12 shows the relationship between the noise RIN_OMA and the random jitter RJ_RIN. (A) shows a calculation formula representing the relationship between RIN_OMA and jitter, and (b) shows an example comparing the calculation formula with the actual measurement result. As shown in FIG. 12A, for example, when relative intensity noise Pn having a frequency component equal to or lower than the fundamental frequency of the communication speed (bit rate) is generated on the positive side, the optical output waveform moves to the positive side. Thus, the time to cut the center of the output waveform is accelerated by RJ_RIN, which becomes the random jitter RJ_RIN. Note that the fundamental frequency is 12.5 GHz when the communication speed, that is, the bit rate is 25 Gbps. As shown in FIG. 12B, it can be understood that the relationship between the relative intensity noise and the random jitter RI_RIN can be calculated with this concept. Therefore, the random jitter due to RIN_OMA is determined by the rise time Trf of the output waveform and the noise band BW in addition to the relative intensity noise Pn and the modulation power P_OMA. In particular, in order to reduce the random jitter RJ_RIN due to the relative intensity noise RIN_OMA, two methods of increasing the modulation power P_OMA, that is, increasing the extinction ratio ER, and shortening the rise time of the output waveform are conceivable. However, since the former method cannot output modulation power above a certain level (approximately 3mW or more), especially with the surface emitting laser VCSEL used for inter-board communication, this method reduces random jitter RJ_RIN. Is not effective. For this reason, conventionally, as a method of shortening the rise time of the latter output waveform, the method of Patent Document 1 performed by a transmission module has been adopted.
 図13を用いて (a)に特許文献1のLDドライバの基本構成を、(b)に立ち上がり時間短縮の考え方とその効果と問題点を説明する。このLDドライバは、レーザダイオードLDを駆動するドライバ回路とLDを駆動するドライバと遅延回路と2つのプリバッファと波形加算器とで構成されている。 Referring to FIG. 13, the basic configuration of the LD driver disclosed in Patent Document 1 is shown in FIG. 13 (a), and the idea of shortening the rise time, its effects, and problems are described in (b). The LD driver includes a driver circuit that drives a laser diode LD, a driver that drives the LD, a delay circuit, two prebuffers, and a waveform adder.
 LDドライバでは、メインプリドライバの出力波形(A)対して、遅延回路である一定の遅延をかけたサブプリドライバの出力波形(B)を加算し、この加算波形を入力としてドライバ回路でレーザダイオードLDを駆動することで、レーザダイオードLDの光出力波形の立ち上がり時間を短縮する。具体的には図13(b)に示すように、レーザダイオードの出力波形は、メインプリバッファの出力波形(A)に対する応答に対して、サブプリバッファの出力波形(B)の応答を減算した波形が出力されることになる。この結果、レーザダイオードLDの光出力波形は、メインドライバーの出力波形(A)の応答波形に対して大幅に短縮される。その一方で、プリバッファの出力波形(B)で減算するため、その出力振幅は減少してしまうことになる。たとえば、立ち上がり時間を約30%短縮すると、出力振幅が30%低下することになる。送信モジュールで行うこの方法では、サブプリバッファによる電力増加とともに、出力変調振幅の低下を招くことになる。 In the LD driver, the output waveform (B) of the sub-predriver with a certain delay, which is a delay circuit, is added to the output waveform (A) of the main predriver, and the laser diode LD is connected to the driver circuit using this added waveform as an input. By driving, the rise time of the optical output waveform of the laser diode LD is shortened. Specifically, as shown in FIG. 13B, the output waveform of the laser diode is a waveform obtained by subtracting the response of the output waveform (B) of the sub-prebuffer from the response to the output waveform (A) of the main prebuffer. Will be output. As a result, the optical output waveform of the laser diode LD is greatly shortened with respect to the response waveform of the output waveform (A) of the main driver. On the other hand, since the subtraction is performed with the output waveform (B) of the prebuffer, the output amplitude decreases. For example, if the rise time is shortened by about 30%, the output amplitude is reduced by 30%. In this method performed by the transmission module, the power modulation by the sub-prebuffer increases and the output modulation amplitude decreases.
 本発明は、このようなことを鑑みてなされたものであり、その目的は、通信速度を高速化する上で、送信モジュールでの変調パワーの低下や電力増加を招くことなく、受信モジュールにおいて送信モジュールで発生したランダムジッタを低減し、伝送波形品質の高い伝送を実現可能な光受信回路、受信光モジュールを提供することにある。 The present invention has been made in view of the above, and it is an object of the present invention to increase the communication speed without causing a decrease in modulation power or an increase in power in the transmission module. An object of the present invention is to provide an optical receiving circuit and a receiving optical module capable of reducing random jitter generated in a module and realizing transmission with high transmission waveform quality.
 送信モジュールからの光信号を受けて電流信号に変換するフォトダイオードと、フォトダイオードの電流信号を入力として電圧信号に変換し、出力するトランスインピーダンスアンプを含んで成る光受信モジュールにおいて、前記フォトダイオードからの電流信号の遷移を検出し、電流信号が遷移している時間内だけ遷移電流を出力する遷移電流検出手段と、前記遷移電流を前記フォトダイオードの電流信号に遷移時間内に加算する手段と、遷移電流が加算された電流信号から電圧信号に変換・増幅するトランスインピーダンスアンプを備えたことを特徴とする。 A photodiode that receives an optical signal from a transmission module and converts it into a current signal, and a transimpedance amplifier that converts the current signal of the photodiode into a voltage signal and outputs the voltage signal. A transition current detecting means for detecting a transition of the current signal and outputting a transition current only during the time when the current signal is transitioned; a means for adding the transition current to the current signal of the photodiode within the transition time; A transimpedance amplifier that converts and amplifies a current signal to which a transition current is added into a voltage signal is provided.
 本願による実施の形態によって得られる効果を簡単に説明すると、受信した光波形からフォトダイオードで変換された電流波形に、この電流波形の遷移電流成分を加算することで、電流波形の立ち上がり時間が短縮され、送信モジュールで発生した光波形のランダムジッタを低減し、伝送品質の高い伝送が実現できる。 Briefly explaining the effect obtained by the embodiment of the present application, the rise time of the current waveform is shortened by adding the transition current component of this current waveform to the current waveform converted by the photodiode from the received optical waveform. Thus, random jitter of the optical waveform generated in the transmission module can be reduced, and transmission with high transmission quality can be realized.
本発明の実施形態1による光受信モジュールの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the optical receiver module by Embodiment 1 of this invention. 図1における遷移電流の検出手段と加算手段の一つの具体的な構成例を示すブロック図である。It is a block diagram which shows one specific structural example of the detection means and addition means of the transition current in FIG. 図1における遷移電流の検出手段と加算手段の一つの具体的な他の構成例を示すブロック図である。It is a block diagram which shows the example of another concrete one of the detection means and addition means of a transition current in FIG. 本発明の実施形態2による光受信モジュールにおいて、遷移電流加算手段をトランスインピーダンスアンプの一部である閾値電圧検出回路の出力に設けた具体回路構成の一例を示す回路図である。FIG. 10 is a circuit diagram illustrating an example of a specific circuit configuration in which a transition current adding unit is provided at the output of a threshold voltage detection circuit that is a part of a transimpedance amplifier in the optical receiver module according to Embodiment 2 of the present invention. 本発明の実施形態1による光受信モジュールにおいて、遷移電流の加算手段をトランスインピーダンスアンプの一部であるプリアンプ回路に設けた具体回路構成の一例を示す回路図である。FIG. 5 is a circuit diagram showing an example of a specific circuit configuration in which transition current addition means is provided in a preamplifier circuit that is a part of a transimpedance amplifier in the optical receiver module according to Embodiment 1 of the present invention. 本発明の実施形態3による光受信モジュールにおいて、遷移電流の検出手段と加算手段をトランスインピーダンスアンプの一部であるプリアンプと閾値電圧検出回路に設けた具体回路構成の一例を示す回路図である。FIG. 10 is a circuit diagram illustrating an example of a specific circuit configuration in which a transition current detection unit and an addition unit are provided in a preamplifier and a threshold voltage detection circuit that are part of a transimpedance amplifier in the optical reception module according to the third embodiment of the present invention. 本発明の実施形態3による光受信モジュールにおいて、遷移電流の検出手段をプリアンプ回路に、遷移電流の加算手段を閾値電圧検出回路の出力に設けた他の具体回路構成の一例を示す回路図である。FIG. 10 is a circuit diagram showing an example of another specific circuit configuration in which the transition current detection unit is provided in the preamplifier circuit and the transition current addition unit is provided at the output of the threshold voltage detection circuit in the optical receiver module according to the third embodiment of the present invention. . 図7の実施例において、プリアンプの出力波形と遷移電流加算回路の抵抗両端に生じる遷移電圧波形を計算した一例である。In the embodiment of FIG. 7, the output voltage of the preamplifier and the transition voltage waveform generated across the resistance of the transition current adder circuit are calculated. 図7の実施例において、(a)は遷移電圧波形を加算しない場合、(b)は遷移電圧波形を加算した場合のそれぞれについて、トランスインピーダンスアンプの出力電圧波形を計算した結果で、本発明の効果を示した一例である。In the embodiment of FIG. 7, (a) shows the result of calculating the output voltage waveform of the transimpedance amplifier for each of the cases where the transition voltage waveform is not added and (b) is the case where the transition voltage waveform is added. It is an example which showed the effect. 本発明の対象となる情報通信装置内のボード間通信に光伝送技術を適用した場合における(a)はブロック図を、(b)は伝送品質を示す説明図である。(A) is a block diagram and (b) is an explanatory diagram showing transmission quality when an optical transmission technique is applied to inter-board communication in an information communication apparatus that is an object of the present invention. 本発明の課題の原因となるレーザダイオードで発生する自然発光雑音と光信号との関係の説明図である。It is explanatory drawing of the relationship between the natural light emission noise which generate | occur | produces in the laser diode which causes the subject of this invention, and an optical signal. 本発明の課題である自然発光雑音によるランダムジッタ増加現象の説明図である。It is explanatory drawing of the random jitter increase phenomenon by the natural light emission noise which is the subject of this invention. 従来の方法(特許文献1)による送信モジュールで出力光波形の立ち上がり時間を短縮するやり方の説明図である。(a)はレーザドライバのブロック構成を、(b)は立ち上がり時間短縮の原理と効果の説明図である。It is explanatory drawing of the method of shortening the rise time of an output optical waveform with the transmission module by the conventional method (patent document 1). (a) is a block diagram of the laser driver, and (b) is an explanatory diagram of the principle and effect of shortening the rise time.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant, and one is the other. Some or all of the modifications, details, supplementary explanations, and the like are related. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、CMOS(相補型MOSトランジスタ)やバイポーラトランジスタ等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の一例としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)(MOSトランジスタと略す)を用いるが、ゲート絶縁膜として非酸化膜を除外するものではない。図面にはトランジスタの基板電位の接続は特に明記していないが、トランジスタが正常動作可能な範囲であれば、その接続方法は特に限定しない。 The circuit elements constituting each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by an integrated circuit technology such as a CMOS (complementary MOS transistor) or a bipolar transistor. The In the embodiment, MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (abbreviated as MOS transistor) is used as an example of MISFET (Metal Insulator Semiconductor Field Effect Transistor), but non-oxide film is excluded as a gate insulating film. Absent. The connection of the substrate potential of the transistor is not specified in the drawing, but the connection method is not particularly limited as long as the transistor can operate normally.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 (実施の形態1)
 図1は、本発明の実施形態1による光受信モジュールの構成の一例を示すブロック図である。実施形態1による受信モジュールは、光信号を受けて受信電流信号を出力するフォトダイオードPDと、本発明の特徴である受信電流の遷移電流を検出し、出力する遷移電流検出ブロックIDETと、この遷移電流を受信電流信号に加算する遷移電流加算ブロックIADDと、加算後の受信電流信号を入力として電圧信号に変換し、出力するトランスインピーダンスTIAで構成される。図1に各位部の電流波形を模式的に示しているように、加算後の受信電流は、遷移電流検出・出力ブロックIDETで検出された遷移電流を、受信電流信号の遷移している時間内に加算することで、高速に立ち上がることになる。この結果、トランスインピーダンスアンプTIAの入力では、フォトダイオードPDが受信した光波形よりも、高速に立ち上がる。このため、トランスインピーダンスアンプTIAの出力で観測されるランダムジッタは、送信モジュールのレーザダイオードで発生した相対強度雑音RINによるランダムジッタに比べて低減され、伝送品質の向上が可能となる。したがって、本発明の目的である、送信モジュールでの変調パワーの低下や電力増加を招くことなく、受信モジュールにおいて送信モジュールで発生したランダムジッタを低減し、伝送波形品質の高い伝送を実現可能な光受信回路、受信光モジュールを提供できる。
(Embodiment 1)
FIG. 1 is a block diagram showing an example of the configuration of an optical receiver module according to Embodiment 1 of the present invention. The reception module according to the first embodiment includes a photodiode PD that receives an optical signal and outputs a reception current signal, a transition current detection block IDET that detects and outputs a transition current of the reception current, which is a feature of the present invention, and the transition A transition current addition block IADD that adds current to the received current signal and a transimpedance TIA that converts the received current signal after addition into a voltage signal and outputs the voltage signal. As schematically shown in FIG. 1, the current waveform at each position is obtained by adding the transition current detected by the transition current detection / output block IDET to the transition time of the reception current signal. By adding to, it will stand up at high speed. As a result, the input of the transimpedance amplifier TIA rises faster than the optical waveform received by the photodiode PD. Therefore, the random jitter observed at the output of the transimpedance amplifier TIA is reduced as compared with the random jitter caused by the relative intensity noise RIN generated by the laser diode of the transmission module, and the transmission quality can be improved. Therefore, the light that can reduce the random jitter generated in the transmission module in the reception module and achieve transmission with high transmission waveform quality without causing a decrease in modulation power or an increase in power in the transmission module, which is an object of the present invention. A receiving circuit and a receiving optical module can be provided.
 図2は、図1における遷移電流の検出ブロックIDETと加算ブロックIADDの具体的な回路構成例と、トランスインピーダンスアンプTIAのブロック構成例を示す。遷移電流検出ブロックIDETはフォトダイオードのアノード側に接続したインダクタンスL1と、一方に端子が接地され、もう一方が遷移電流加算ブロックのコンデンサCに接続されたインダクタンスL2で、遷移電流加算ブロックIADDはコンデンサCで構成した。なお、インダクタンスL1とL2は結合の強い相互インダクタンスMを形成している。ここで、インダクタンスL1に流れるフォトダイオードPDの受信電流の遷移電流が相互インダクタンスMを介してインダクタンスL2に流れる。この電流がコンデンサCを介して受信電流に加算され、トランスインピーダンスアンプTIAの入力に流れ込むことになる。この結果、トランスインピーダンスアンプTIAの入力電流波形の立ち上がり時間が、フォトダイオードPDの光入力波形の立ち上がり時間よりも速くなる。トランスインピーダンスアンプTIAは、プリアンプPREと閾値電圧検出回路ATCとポストアンプPOSTとドライバDRVで構成される。プリアンプPREでは、入力電流を電圧信号に変換し、閾値電圧検出回路ATCではプリアンプの出力電圧の中心電圧、つまり閾値電圧を検出する。ポストアンプPOSTでは、プリアンプPREの出力電圧信号と閾値電圧検出回路の出力電圧、つまり閾値電圧との間で差分をとって増幅することで、プリアンプPREの出力電圧信号が差動信号に変換・増幅され、さらにドライバでその差動信号がトランスインピーダンスアンプTIAから出力される。したがって、トランスインピーダンスアンプTIAの出力で観測されるジッタは、フォトダイオードPDの入力波形のランダムジッタよりも小さくなる。 FIG. 2 shows a specific circuit configuration example of the transition current detection block IDET and the addition block IADD in FIG. 1 and a block configuration example of the transimpedance amplifier TIA. The transition current detection block IDET is an inductance L1 connected to the anode side of the photodiode, and one terminal is grounded and the other is an inductance L2 connected to the capacitor C of the transition current addition block. The transition current addition block IADD is a capacitor. Consists of C. The inductances L1 and L2 form a mutual inductance M having a strong coupling. Here, the transition current of the received current of the photodiode PD flowing through the inductance L1 flows through the mutual inductance M to the inductance L2. This current is added to the reception current via the capacitor C and flows into the input of the transimpedance amplifier TIA. As a result, the rise time of the input current waveform of the transimpedance amplifier TIA is faster than the rise time of the optical input waveform of the photodiode PD. The transimpedance amplifier TIA includes a preamplifier PRE, a threshold voltage detection circuit ATC, a post amplifier POST, and a driver DRV. The preamplifier PRE converts the input current into a voltage signal, and the threshold voltage detection circuit ATC detects the center voltage of the output voltage of the preamplifier, that is, the threshold voltage. The post-amplifier POST converts and amplifies the output voltage signal of the preamplifier PRE into a differential signal by amplifying the difference between the output voltage signal of the preamplifier PRE and the output voltage of the threshold voltage detection circuit, that is, the threshold voltage. Further, the driver outputs the differential signal from the transimpedance amplifier TIA. Therefore, the jitter observed at the output of the transimpedance amplifier TIA is smaller than the random jitter of the input waveform of the photodiode PD.
 図3は、図2と同様な構成例で、異なる点は受信電流の遷移電流を検出場所が、フォトダイオードのカソード側で行う点である。その他の構成は、図2の実施例と同様であり、その動作も同様である。したがって、この構成でも、図2の実施例と同様な効果がある。 FIG. 3 is a configuration example similar to FIG. 2, except that the transition current of the received current is detected on the cathode side of the photodiode. The other configuration is the same as that of the embodiment of FIG. 2, and the operation is also the same. Therefore, this configuration has the same effect as the embodiment of FIG.
 図5は、遷移電流検出ブロックは図2の実施例と同様な構成で、遷移電流の加算ブロックIADDがトランスインピーダンスアンプTIAのプリアンプPREに設けた構成例である。遷移電流加算ブロックは一方の端子が入力端子に、もう一方の端子がプリアンプPREの負荷抵抗R1とMOSトランジスタM1のドレインに接続されたコンデンサCで構成した。このプリアンプPREは、MOSトランジスタM2と負荷抵抗R2で構成したゲート接地型アンプと、定電流減IST1とMOSトランジスタM1と負荷抵抗R1で構成したソース接地型アンプを組み合わせたアンプ構成となっている点が特徴で高帯域、かつ高利得化に有利な構成である。出力端子は負荷抵抗R1とMOSトランジスタM1の接続ノードN0であるが、次段のポストアンプPOSTと入力電圧レベルの整合をとるためにMOSトランジスタM3と定電流源IST2で構成したレベルシフト回路で出力する。この回路では、受信電流の変化はMOSトランジスタを介して、ノードN0に伝わると同時に、遷移電流検出ブロックIDETで検出した遷移電流もコンデンサCを介してノードN0に加算され、ノードN0の出力電圧信号の立ち上がり時間が短縮される。この結果、本実施例でも、図2と同様な効果が得られる。 FIG. 5 is a configuration example in which the transition current detection block has the same configuration as that of the embodiment of FIG. 2, and the transition current addition block IADD is provided in the preamplifier PRE of the transimpedance amplifier TIA. The transition current addition block is composed of a capacitor C having one terminal connected to the input terminal and the other terminal connected to the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1. This preamplifier PRE has an amplifier configuration combining a grounded-gate amplifier composed of a MOS transistor M2 and a load resistor R2, and a common-source amplifier composed of a constant current reduction IST1, a MOS transistor M1, and a load resistor R1. This is a configuration that is advantageous for high bandwidth and high gain. The output terminal is the connection node N0 between the load resistor R1 and the MOS transistor M1, but output by a level shift circuit composed of the MOS transistor M3 and the constant current source IST2 in order to match the input voltage level with the post amplifier POST of the next stage To do. In this circuit, the change in the received current is transmitted to the node N0 via the MOS transistor, and at the same time, the transition current detected by the transition current detection block IDET is also added to the node N0 via the capacitor C, and the output voltage signal of the node N0 Rise time is reduced. As a result, the same effects as in FIG. 2 can be obtained in this embodiment.
 (実施の形態2)
 図4は、本発明の実施形態2による光受信モジュールにおいて、遷移電流加算ブロックIADDをトランスインピーダンスアンプTIAの閾値電圧検出回路ATCの出力に設けた具体回路構成例である。本実施例では、受信電流の遷移電流の検出は図2と同様に、フォトダイオードPDのカソードとトランスインピーダンスアンプTIAの入力との間に接続したインダクタンスL1と、一方の端子が接地されもう一方の端子が電流加算ブロックの入力端子に接続されたインダクタンスL2で検出する。一方、遷移電流加算ブロックは、インダクタンスL2で検出した遷移電流を遅延してコンデンサCと抵抗Rに伝える遅延回路DLYと、遷移電流を微分電圧波形に変換する抵抗RとコンデンサCで構成した。遷移電流は、遅延回路DLYを介してコンデンサCと抵抗Rに流れ、閾値電圧検出回路ATCに流れる。ここで、閾値電圧検出回路ATCの出力インピーダンスは低く設計しておけば、ポストアンプPOSTの一方の入力端子Vnには、閾値電圧検出回路の出力電圧、つまりプリアンプPREの出力波形の中心電圧に、遷移電流と抵抗の積の電圧波形を抵抗RとコンデンサCで微分した電圧波形が加算された電圧波形が加わることになる。この結果、ポストアンプPOSTでは、差動入力端子VpとVnの間で差分がとられて増幅されるために、プリアンプPREの出力電圧の遷移時間内に、前述の微分波形が重なるように遅延回路DLYの遅延を設定することで、等価的にプリアンプPREの出力電圧信号の立ち上がり時間が短縮される効果が得られることになる。このため、トランスインピーダンスアンプTIAの出力で観測されるランダムジッタは、送信モジュールのレーザダイオードで発生した相対強度雑音によるランダムジッタに比べて低減され、伝送品質の向上が可能となる。
(Embodiment 2)
FIG. 4 is a specific circuit configuration example in which the transition current addition block IADD is provided at the output of the threshold voltage detection circuit ATC of the transimpedance amplifier TIA in the optical receiver module according to Embodiment 2 of the present invention. In the present embodiment, the transition current of the received current is detected in the same manner as in FIG. 2, with the inductance L1 connected between the cathode of the photodiode PD and the input of the transimpedance amplifier TIA, and one terminal grounded. Detection is performed by an inductance L2 whose terminal is connected to the input terminal of the current addition block. On the other hand, the transition current addition block includes a delay circuit DLY that delays the transition current detected by the inductance L2 and transmits the delay current to the capacitor C and the resistor R, and a resistor R and the capacitor C that convert the transition current into a differential voltage waveform. The transition current flows through the capacitor C and the resistor R through the delay circuit DLY, and then flows into the threshold voltage detection circuit ATC. Here, if the output impedance of the threshold voltage detection circuit ATC is designed to be low, the output voltage of the threshold voltage detection circuit, that is, the center voltage of the output waveform of the preamplifier PRE is applied to one input terminal Vn of the post amplifier POST. A voltage waveform obtained by adding the voltage waveform obtained by differentiating the voltage waveform of the product of the transition current and the resistance with the resistor R and the capacitor C is added. As a result, in the post-amplifier POST, the difference between the differential input terminals Vp and Vn is amplified and amplified, so that the above-mentioned differential waveform overlaps within the transition time of the output voltage of the preamplifier PRE. By setting the delay of DLY, an effect of equivalently shortening the rise time of the output voltage signal of the preamplifier PRE can be obtained. For this reason, the random jitter observed at the output of the transimpedance amplifier TIA is reduced as compared with the random jitter caused by the relative intensity noise generated in the laser diode of the transmission module, and the transmission quality can be improved.
 (実施の形態3)
 図6は、本発明の実施形態3による光受信モジュールにおいて、遷移電流の検出ブロックIDETと加算ブロックIADDをトランスインピーダンスアンプTIAのプリアンプPREと閾値電圧検出回路ATCに設けた回路構成例である。本実施例では、受信電流の遷移電流の検出はプリアンプPREの負荷抵抗R1とMOSトランジスタM1のドレインとの間に接続したインダクタンスL1と、一方の端子が接地されもう一方の端子が電流加算ブロックの入力端子に接続されたインダクタンスL2で検出する。遷移電流加算ブロックは、前述の図4の実施例と同様な回路である。この実施例のプリアンプPREでは、光信号が入力されないかぎりフォトダイオードPDに受信電流が流れないため、負荷抵抗R1と遷移電流検出ブロックのインダクタンスL2とMOSトランジスタM1には定電流源IST1の電流と同じ定電流が流れている。しかし、フォトダイオードPDに光信号が入射すると、受信電流が流れ、この電流が定電流源に流れ込むことになる。この結果、負荷抵抗R1と遷移電流検出ブロックのインダクタンスL2とMOSトランジスタM1に流れる電流は受信電流と同じ量の電流となる。つまり、遷移電流検出ブロックのインダクタンスL2には、フォトダイオードPDの受信電流と同じ電流信号が流れ、このインダクタンスL2とL1で受信電流の遷移電流を検出することができる。したがって、遷移電流加算ブロックIADDに遷移電流検出ブロックIDETの検出電流を入力することで、図4と同様にプリアンプPREの出力電圧信号の立ち上がり時間を短縮する効果が得られる。この結果、トランスインピーダンスアンプTIAの出力で観測されるランダムジッタは、送信モジュールのレーザダイオードで発生した相対強度雑音によるランダムジッタに比べて低減され、伝送品質の向上が可能となる。
(Embodiment 3)
FIG. 6 is a circuit configuration example in which the transition current detection block IDET and the addition block IADD are provided in the preamplifier PRE of the transimpedance amplifier TIA and the threshold voltage detection circuit ATC in the optical receiver module according to the third embodiment of the present invention. In this embodiment, the detection of the transition current of the received current is performed by detecting the inductance L1 connected between the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1, and one terminal being grounded and the other terminal being a current adding block. Detect with inductance L2 connected to input terminal. The transition current addition block is a circuit similar to the above-described embodiment of FIG. In the preamplifier PRE of this embodiment, the received current does not flow through the photodiode PD unless an optical signal is input. Therefore, the load resistor R1, the inductance L2 of the transition current detection block, and the MOS transistor M1 are the same as the current of the constant current source IST1. Constant current is flowing. However, when an optical signal enters the photodiode PD, a reception current flows, and this current flows into the constant current source. As a result, the load resistor R1, the inductance L2 of the transition current detection block, and the current flowing through the MOS transistor M1 are the same amount as the received current. That is, the same current signal as the reception current of the photodiode PD flows through the inductance L2 of the transition current detection block, and the transition current of the reception current can be detected by the inductances L2 and L1. Therefore, by inputting the detection current of the transition current detection block IDET to the transition current addition block IADD, the effect of shortening the rise time of the output voltage signal of the preamplifier PRE can be obtained as in FIG. As a result, the random jitter observed at the output of the transimpedance amplifier TIA is reduced compared to the random jitter caused by the relative intensity noise generated in the laser diode of the transmission module, and the transmission quality can be improved.
 図7は、本発明の実施形態3による光受信モジュールにおいて、遷移電流の検出ブロックIDETをプリアンプPREに、遷移電流の加算ブロックIADDを閾値電圧検出回路ATCの出力に設けた回路構成例である。本実施例では、受信電流の遷移電流の検出は図6と同様に、プリアンプPREの負荷抵抗R1とMOSトランジスタM1のドレインとの間に接続したインダクタンスL2とL1で行われ、受信電流の遷移電流に比例した電流がインダクタンスL1に流れる。このため、この抵抗Rbの両端には、プリアンプPREの出力電圧信号が遷移している時間に、このインダクタンスL1の電流が抵抗Rbに流れることによって遷移電流に比例した遷移電圧信号が生じる。閾値電圧検出回路ATCでは、抵抗R1と容量C1で構成したローパスフィルタで、その帯域を数100KHzに設定することでプリアンプPREの出力電圧波形の中心電圧を出力する。このため、ポストアンプPOSTの入力端子Vnには、プリアンプPREの出力電圧波形の中心電圧、つまり閾値電圧に、前述の遷移電流に比例した遷移電圧波形が加算された電圧波形が生じることになる。図8はこの様子をシミュレーションした結果の一例を示している。プリアンプPREの出力電圧波形の遷移時刻に、抵抗Rb両端に遷移電圧信号が生じることを示している。したがって、ポストアンプPOSTでは、入力端子VpとVnの差動電圧信号を増幅するため、Vnの遷移電圧が加算されることで、等価的に入力信号電圧の立ち上がり時間を短縮することになる。つまり、図6と同様にトランスインピーダンスアンプTIAの出力で観測されるランダムジッタは、ポストアンプにPOSTの入力波形の立ち上がり時間が改善される。図9に(a)は遷移電圧波形を加算しない場合、(b)は遷移電圧波形を加算した場合のそれぞれについて、トランスインピーダンスアンプの出力電圧波形を計算した結果の一例を示す。この結果からもわかるように、本発明の実施例でも送信モジュールのレーザダイオードで発生した相対強度雑音に起因する電圧振幅方向の雑音によるランダムジッタを低減でき、伝送品質の向上が可能となる。 FIG. 7 is a circuit configuration example in which the transition current detection block IDET is provided in the preamplifier PRE and the transition current addition block IADD is provided in the output of the threshold voltage detection circuit ATC in the optical receiver module according to the third embodiment of the present invention. In this embodiment, the transition current of the received current is detected by the inductances L2 and L1 connected between the load resistor R1 of the preamplifier PRE and the drain of the MOS transistor M1, as in FIG. Current flows in the inductance L1. Therefore, a transition voltage signal proportional to the transition current is generated at both ends of the resistor Rb when the current of the inductance L1 flows through the resistor Rb during the time when the output voltage signal of the preamplifier PRE is transitioning. The threshold voltage detection circuit ATC outputs the center voltage of the output voltage waveform of the preamplifier PRE by setting the band to several hundreds KHz with a low-pass filter composed of the resistor R1 and the capacitor C1. For this reason, a voltage waveform is generated at the input terminal Vn of the postamplifier POST by adding the transition voltage waveform proportional to the aforementioned transition current to the center voltage of the output voltage waveform of the preamplifier PRE, that is, the threshold voltage. FIG. 8 shows an example of the result of simulating this situation. It shows that a transition voltage signal is generated across the resistor Rb at the transition time of the output voltage waveform of the preamplifier PRE. Therefore, in the post amplifier POST, the differential voltage signal of the input terminals Vp and Vn is amplified, and the transition voltage of Vn is added, so that the rise time of the input signal voltage is equivalently shortened. That is, as in FIG. 6, the random jitter observed at the output of the transimpedance amplifier TIA improves the rise time of the POST input waveform to the post amplifier. 9A shows an example of the result of calculating the output voltage waveform of the transimpedance amplifier for each of the cases where the transition voltage waveform is not added and FIG. 9B is the case where the transition voltage waveform is added. As can be seen from this result, even in the embodiment of the present invention, random jitter due to noise in the voltage amplitude direction caused by relative intensity noise generated in the laser diode of the transmission module can be reduced, and transmission quality can be improved.
 本実施の形態による光受信モジュールは、特に、情報装置内で光ファイバケーブルを介したボード間通信を行う光受信モジュールに有益なものであり、これに限らず、レーザダイオードとフォトダイオードを用いた光通信を行う製品全般に対して広く適用可能である。 The optical receiver module according to the present embodiment is particularly useful for an optical receiver module that performs inter-board communication via an optical fiber cable in an information device. The present invention is not limited to this, and a laser diode and a photodiode are used. It can be widely applied to all products that perform optical communication.
 PD フォトダイオード
 LD レーザダイオード
 LSI 半導体チップ
 TRIMP 遷移電流検出・加算ブロック
 IDET 遷移電流検出ブロック
 IADD 遷移電流加算ブロック
 TIA トランスインピーダンスアンプ
 PRE プリアンプ
 ATC 閾値電圧検出回路
 POST ポストアンプ
 DRV ドライバ
 L1 インダクタンス
 L2 インダクタンス
 C、C1 コンデンサ
 R、R1,R2、Rb 抵抗
 DLY 遅延回路
 M1,M2,M3 MOSトランジスタ
 IST1,IST2 定電流源
 Tx 送信モジュール
 Rx 受信モジュール
 LDD レーザドライバ回路
 FI 光ファイバー
 Pn 自然発光雑音
 P_OMA 変調パワー
 P_H 出力ハイレベル時光出力パワー
 P_L 出力ローレベル時光出力パワー
 Trf 出力立ち上がり立ち下がり時間
 RIN_OMA 変調パワーに対する相対強度雑音
 ER 消光比
 RJ_RIN 相対強度雑音によるランダムジッタ
 BW 通信速度の基本周波数
PD photodiode LD laser diode LSI semiconductor chip TRIMP transition current detection / addition block IDET transition current detection block IADD transition current addition block TIA transimpedance amplifier PRE preamplifier ATC threshold voltage detection circuit POST postamplifier DRV driver L1 inductance L2 inductance C, C1 capacitor R, R1, R2, Rb Resistance DLY Delay circuit M1, M2, M3 MOS transistor IST1, IST2 Constant current source Tx Transmitter module Rx Receiver module LDD Laser driver circuit FI Optical fiber Pn Spontaneous emission noise P_OMA Modulation power P_H Optical output power at output high level P_L Optical output power at low output level Trf Output rise / fall time RIN_OMA Relative intensity noise to modulation power ER extinction ratio RJ_RIN Random jitter due to relative intensity noise BW Fundamental frequency of communication speed

Claims (8)

  1.  送信モジュールからの光信号を受けて電流信号に変換するフォトダイオードと、フォトダイオードの電流信号を入力として電圧信号に変換し、出力するトランスインピーダンスアンプを有する光受信モジュールにおいて、
    前記フォトダイオードからの電流信号の遷移電流成分を検出し、前記電流信号が遷移している時間内だけ遷移電流を出力する遷移電流検出手段と、
    前記遷移電流を前記フォトダイオードの電流信号に遷移時間内に加算する手段と、
    遷移電流が加算された前記電流信号から電圧信号に変換するトランスインピーダンスアンプを有することを特徴とする光受信モジュール。
    In a light receiving module having a photodiode that receives an optical signal from a transmission module and converts it into a current signal, and a transimpedance amplifier that converts the current signal of the photodiode into a voltage signal and outputs it.
    A transition current detecting means for detecting a transition current component of a current signal from the photodiode and outputting a transition current only within a time during which the current signal is transitioned;
    Means for adding the transition current to a current signal of the photodiode within a transition time;
    An optical receiver module comprising: a transimpedance amplifier that converts the current signal added with the transition current into a voltage signal.
  2. 前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンから成る相互インダクタンスを有しており、
    前記遷移電流加算手段は、容量で構成され、
    前記第1のインダクタンスの一方の端子が前記フォトダイオードのアノード電極に接続され、前記第1のインダクタンスの他方の端子が前記トランスインピーダンスアンプの入力端子に接続されると共に前記容量の第1の端子に接続され、
    前記第2のインダクタンスの一方の端子は接地され、前記第2のインダクタンスのもう一方の端子が前記容量の第2の端子に接続されていることを特徴とする請求項1記載の光受信モジュール。
    The transition current detecting means has a mutual inductance composed of a first inductance and a second inductance,
    The transition current adding means includes a capacitor,
    One terminal of the first inductance is connected to the anode electrode of the photodiode, and the other terminal of the first inductance is connected to the input terminal of the transimpedance amplifier and to the first terminal of the capacitor. Connected,
    2. The optical receiver module according to claim 1, wherein one terminal of the second inductance is grounded, and the other terminal of the second inductance is connected to the second terminal of the capacitor.
  3. 前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンから成る相互インダクタンスを有しており、
    前記前記遷移電流加算手段は、その第1の端子が前記トランスインピーダンスアンプの入力端子に接続された容量を用いて構成され、
    第1のインダクタンスの一方の端子は前記フォトダイオードのカソード電極にに接続され、前記第1のインダクタンスの他方の端子が第1の電源端子に接続され、
    第2のインダクタンスの一方の端子が接地され、前記第2のインダクタンスの一方のもう一方の端子が前記容量の第2の端子に接続されていることを特徴とする請求項1記載の光受信モジュール。
    The transition current detecting means has a mutual inductance composed of a first inductance and a second inductance,
    The transition current adding means is configured using a capacitor having a first terminal connected to an input terminal of the transimpedance amplifier,
    One terminal of the first inductance is connected to the cathode electrode of the photodiode, the other terminal of the first inductance is connected to the first power supply terminal,
    2. The optical receiver module according to claim 1, wherein one terminal of the second inductance is grounded, and the other terminal of the second inductance is connected to the second terminal of the capacitor. .
  4. 前記トランスインピーダンスアンプが、プリアンプと、閾値電圧検出回路と第1、第2の差動入力端子を有するポストアンプと、ドライバとから成ることを特徴とする請求項1記載の光受信モジュール。 2. The optical receiver module according to claim 1, wherein the transimpedance amplifier includes a preamplifier, a threshold voltage detection circuit, a post amplifier having first and second differential input terminals, and a driver.
  5. 前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンから成る相互インダクタンスを用いて構成されており、
    前記遷移電流加算手段は、その入力端子が前記第2のインダクタンスに接続され、かつ、
    その出力端子は、前記容量を介して接地されるとともに、
    前記ポストアンプの第2の入力端子と抵抗を介して前記閾値電圧検出回路の出力端子に接続された遅延回路で構成されたことを特徴とする請求項4記載の光受信モジュール。
    The transition current detection means is configured using a mutual inductance composed of a first inductance and a second inductance,
    The transition current adding means has an input terminal connected to the second inductance, and
    The output terminal is grounded via the capacitor,
    5. The optical receiver module according to claim 4, comprising a delay circuit connected to an output terminal of the threshold voltage detection circuit via a second input terminal of the post amplifier and a resistor.
  6.  前記プリアンプは、そのドレイン端子が第1の抵抗を介して第1の電源端子に接続され、
     ゲートが第1のMOSトランジスタのドレインに接続され、
     ソースが第1の定電流源を介して接地された第1のMOSトランジスタから成るゲート接地型アンプと、
     ドレインが第2の抵抗を介して第1の電源端子に接続され、ゲートが前記プリアンプの入力端子とともに、前記第1のMOSトランジスタのソースに接続され、ソースが接地された第2のMOSトランジスタから成るソース接地型アンプとを有し、
    前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンを用いて構成された相互インダクタンスであり、
    前記遷移電流加算手段が、その第1の端子が前記プリアンプのゲート接地型アンプの出力のノードに接続された容量を用いて構成され、
    第1のインダクタンスの一方の端子が前記フォトダイオードのアノード電極に接続され、前記第1のインダクタンスの他方の端子が前記トランスインピーダンスアンプの入力端子に接続され、
    第2のインダクタンスの一方の端子が接地され、前記第2のインダクタンスのもう一方の端子が遷移電流加算手段の容量の第2の端子に接続されていることを特徴とする請求項4記載の光受信モジュール。
    The drain terminal of the preamplifier is connected to the first power supply terminal via the first resistor,
    The gate is connected to the drain of the first MOS transistor;
    A grounded-gate amplifier including a first MOS transistor whose source is grounded via a first constant current source;
    A drain is connected to the first power supply terminal via a second resistor, a gate is connected to the source of the first MOS transistor together with the input terminal of the preamplifier, and the source is grounded from the second MOS transistor. And a grounded source amplifier,
    The transition current detection means is a mutual inductance configured using a first inductance and a second inductance,
    The transition current adding means is configured by using a capacitor whose first terminal is connected to the output node of the grounded-gate amplifier of the preamplifier,
    One terminal of the first inductance is connected to the anode electrode of the photodiode, the other terminal of the first inductance is connected to the input terminal of the transimpedance amplifier,
    5. The light according to claim 4, wherein one terminal of the second inductance is grounded, and the other terminal of the second inductance is connected to the second terminal of the capacitance of the transition current adding means. Receive module.
  7. 前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンとから成る相互インダクタンスであり、
    前記遷移電流加算手段は、遅延回路と抵抗と容量とを有して構成され、
    かつ、前記プリアンプは、そのドレインが第1の抵抗と前記第1のインダクタンスを介し、かつ、第1の電源端子に接続され、
    前記プリアンプのゲートは、第1のMOSトランジスタのドレイン端子に接続され、
    前記プリアンプのソースは、第1の定電流源を介して接地された第1のMOSトランジスタから成るゲート接地型アンプと、
    前記プリアンプのドレインは、第2の抵抗を介して第1の電源端子に接続され、前記ゲートが前記プリアンプの入力端子とともに、前記第1のMOSトランジスタのソースに、前記ソースが接地された第2のMOSトランジスタから成るソース接地型アンプを有し、
    前記遷移電流加算手段の前記遅延回路は、その入力端子が前記第2のインダクタンスを介して接地され、
    前記遅延回路の出力端子は、前記容量を介して接地されるとともに、
    前記出力端子は、前記ポストアンプの第2の入力端子および前記抵抗を介して前記閾値電圧検出回路の出力端子とに接続されていることを特徴とする請求項4記載の光受信モジュール。
    The transition current detection means is a mutual inductance composed of a first inductance and a second inductance,
    The transition current adding means includes a delay circuit, a resistor, and a capacitor,
    The drain of the preamplifier is connected to the first power supply terminal via the first resistor and the first inductance.
    A gate of the preamplifier is connected to a drain terminal of the first MOS transistor;
    The source of the preamplifier is a grounded-gate amplifier composed of a first MOS transistor grounded via a first constant current source;
    The drain of the preamplifier is connected to a first power supply terminal via a second resistor, the gate is connected to the source of the first MOS transistor together with the input terminal of the preamplifier, and the source is grounded. A common source amplifier composed of MOS transistors,
    The delay circuit of the transition current adding means has its input terminal grounded via the second inductance,
    The output terminal of the delay circuit is grounded through the capacitor,
    5. The optical receiver module according to claim 4, wherein the output terminal is connected to a second input terminal of the post amplifier and an output terminal of the threshold voltage detection circuit via the resistor.
  8. 前記遷移電流検出手段は、第1のインダクタンスと第2のインダクタンとから成る相互インダクタンスであり、
    前記遷移電流加算手段は抵抗を用いて構成され、
    かつ、前記プリアンプは、そのドレインが第1の抵抗と前記第1のインダクタンスを介して第1の電源端子に接続され、
    前記プリアンプのゲートが第1のMOSトランジスタのドレインに接続され、
    前記プリアンプのソースが第1の定電流源を介して接地された第1のMOSトランジスタから成るゲート接地型アンプと、
    前記プリアンプのドレインが第2の抵抗を介して第1の電源端子に接続され、
    前記ゲートが前記プリアンプの入力端子とともに、前記第1のMOSトランジスタのソースに接続され、
    前記ソースが接地された第2のMOSトランジスタから成るソース接地型アンプを有し、
    前記遷移電流加算手段が有する抵抗素子と、前記第2のインダクタンスとが並列接続され、
    2つの端子間に前記遷移電流加算手段が有する抵抗素子と、前記第2のインダクタンスとが並列接続され、
    その一方の端子が前記閾値電圧検出回路の出力端子に、もう一方の端子が前記ポストアンプの第2の入力端子に接続されたことを特徴とする請求項1記載の光受信モジュール。
    The transition current detection means is a mutual inductance composed of a first inductance and a second inductance,
    The transition current adding means is configured using a resistor,
    The drain of the preamplifier is connected to the first power supply terminal via the first resistor and the first inductance,
    The gate of the preamplifier is connected to the drain of the first MOS transistor;
    A grounded-gate amplifier comprising a first MOS transistor in which the source of the preamplifier is grounded via a first constant current source;
    A drain of the preamplifier is connected to a first power supply terminal via a second resistor;
    The gate is connected to the source of the first MOS transistor together with the input terminal of the preamplifier,
    A source-grounded amplifier comprising a second MOS transistor with the source grounded;
    The resistance element of the transition current adding means and the second inductance are connected in parallel,
    A resistance element included in the transition current adding means and the second inductance are connected in parallel between two terminals,
    2. The optical receiver module according to claim 1, wherein one terminal is connected to an output terminal of the threshold voltage detection circuit, and the other terminal is connected to a second input terminal of the post amplifier.
PCT/JP2014/068246 2014-07-09 2014-07-09 Optical reception module WO2016006047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068246 WO2016006047A1 (en) 2014-07-09 2014-07-09 Optical reception module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068246 WO2016006047A1 (en) 2014-07-09 2014-07-09 Optical reception module

Publications (1)

Publication Number Publication Date
WO2016006047A1 true WO2016006047A1 (en) 2016-01-14

Family

ID=55063722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068246 WO2016006047A1 (en) 2014-07-09 2014-07-09 Optical reception module

Country Status (1)

Country Link
WO (1) WO2016006047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477642A (en) * 2019-01-23 2020-07-31 豪威科技股份有限公司 Gate modulation with inductors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193546A (en) * 1993-12-27 1995-07-28 Nec Corp Light-receiving circuit
JPH0993205A (en) * 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd Optical receiver
JP2004135218A (en) * 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd Preamplifier circuit and optical receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193546A (en) * 1993-12-27 1995-07-28 Nec Corp Light-receiving circuit
JPH0993205A (en) * 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd Optical receiver
JP2004135218A (en) * 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd Preamplifier circuit and optical receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAICHI KAWAMURA ET AL.: "25Gbit/s Optical Transceiver Using Lens Integrated Optical Devices and CMOS Integrated Circuit for Optical Interconnects", IEICE TECHNICAL REPORT HIKARI TSUSHIN SYSTEM, vol. 111, no. 265, 20 October 2011 (2011-10-20), pages 81 - 85 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477642A (en) * 2019-01-23 2020-07-31 豪威科技股份有限公司 Gate modulation with inductors
TWI725578B (en) * 2019-01-23 2021-04-21 美商豪威科技股份有限公司 Gate modulation with inductor
US11211421B2 (en) 2019-01-23 2021-12-28 Omnivision Technologies, Inc. Sensor comprising gate modulation with inductor to form a resonant circuit
CN111477642B (en) * 2019-01-23 2022-06-14 豪威科技股份有限公司 Gate modulation with inductors

Similar Documents

Publication Publication Date Title
US9866330B2 (en) Active linear amplifier inside transmitter module
US8502584B1 (en) Capacitive isolation receiver circuitry
KR102194972B1 (en) Optical reception circuit, optical reception device, and optical transmission system
JP2007274032A (en) Optical receiver
JPWO2014128986A1 (en) Burst optical receiver and bias voltage control method for APD of burst optical receiver
KR101541975B1 (en) Optical communication receiver and chip employed in the same
Verbrugghe et al. Multichannel 25 Gb/s low-power driver and transimpedance amplifier integrated circuits for 100 Gb/s optical links
JPWO2008120663A1 (en) Signal amplifier for optical receiver circuit
EP2996267B1 (en) Optical engines and optical cable assemblies having electrical signal conditioning
WO2016006047A1 (en) Optical reception module
JP5669665B2 (en) Optical transceiver
US10623103B2 (en) Driver circuit, optical module, and active optical cable
KR101696388B1 (en) Driver circuit
Park et al. Design of 250-Mb/s low-power fiber optic transmitter and receiver ICs for POF applications
Jeong et al. A 20-Gb/s 1.27 pJ/b low-power optical receiver front-end in 65nm CMOS
WO2021193926A1 (en) Optical transmitter
Nguyen Circuit design techniques for high bit rate and high density optical interconnects
US9148129B2 (en) Driver circuit with asymmetric boost
Kawanaka et al. A dual‐rate burst‐mode receiver with rapid response and high CID tolerance for XGS PON
JP2006287695A (en) Optical receiver
Shi et al. Design techniques for signal reflection suppression in high-speed 25-Gb/s laser drivers in CMOS
US10608605B2 (en) Circuit, receiving circuit, optical receiver, optical transmission system, and active optical cable
Yan et al. A 25 Gb/s 3D Direct Bond Silicon Photonic Receiver in 12nm FinFET
JP2005130303A (en) Bidirectional optical module, optical module, bidirectional optical transmitter/receiver and optical transmission system
JP2013081064A (en) Photoreceiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP