WO2016004778A1 - 一种同时域多频段液压试验系统及其控制方法 - Google Patents

一种同时域多频段液压试验系统及其控制方法 Download PDF

Info

Publication number
WO2016004778A1
WO2016004778A1 PCT/CN2015/076045 CN2015076045W WO2016004778A1 WO 2016004778 A1 WO2016004778 A1 WO 2016004778A1 CN 2015076045 W CN2015076045 W CN 2015076045W WO 2016004778 A1 WO2016004778 A1 WO 2016004778A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
test
data processing
loading
frequency
Prior art date
Application number
PCT/CN2015/076045
Other languages
English (en)
French (fr)
Inventor
陈俐丹
陈洪
Original Assignee
长沙达永川机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙达永川机电科技有限公司 filed Critical 长沙达永川机电科技有限公司
Priority to US15/324,273 priority Critical patent/US10393637B2/en
Publication of WO2016004778A1 publication Critical patent/WO2016004778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure

Definitions

  • the invention relates to a hydraulic test system in the field of electromechanical control, in particular to a simultaneous multi-band hydraulic test system and a control method thereof.
  • An existing complete hydraulic test system is divided into five parts: a data processing system, a control system, an execution system, a load, and a measurement system.
  • the input command signal is converted into a computer program language recognizable by the hydraulic test system for commanding the action of the hydraulic test system;
  • the data processing system processes the input command signal and the measurement system data, and controls the action of the control system;
  • the control system Control and regulate the pressure, flow and direction of the liquid in the hydraulic system;
  • the execution system converts the pressure energy of the liquid into mechanical energy, drives the load to make a linear reciprocating motion or a rotary motion;
  • the load refers to the response of the hydraulic test system, usually refers to the test object The response to the input command signal;
  • the measurement system measures the response of the hydraulic test system and acts as a feedback.
  • the lowest frequency f min of the hydraulic system is the control frequency, which is generally determined by the frequency characteristics of the electro-hydraulic servo valve of the control system, and the detection frequency and data operation processing frequency in the hydraulic system can be higher than the system control frequency f min .
  • the hydraulic test system mainly consists of two parts: the hydraulic system and the test object.
  • the measurement system in the hydraulic test system The measurement frequency is not high enough (hereinafter referred to as the static measurement system), which is not sufficient to describe the full view of the stress-strain curve and the full curve characteristic.
  • the static measurement system There is also a set of dynamic stress-strain measurement system (hereinafter referred to as dynamic measurement system) added to the existing hydraulic test system to collect data separately, and then subjected to data processing to obtain stress-strain curve or full curve; due to the dynamic measurement system and
  • the hydraulic test system is two independent systems.
  • the dynamic measurement system cannot participate in the control as feedback during the test, and the data processing afterwards cannot guarantee sufficient accuracy.
  • a complete hydraulic test system is divided into six parts: power system, data processing system, control system, execution system, auxiliary system and hydraulic oil.
  • the power system converts the mechanical energy of the prime mover into the pressure energy of the liquid;
  • the data processing system processes the input command signal and the measurement system data, and commands the control system to operate;
  • the control system controls and regulates the pressure and flow of the liquid in the hydraulic system.
  • the execution system converts the pressure energy of the liquid into mechanical energy, drives the load to make linear reciprocating motion or rotary motion;
  • the auxiliary system mainly refers to the fuel tank, oil filter, oil pipe and pipe joint, sealing ring, quick-change joint, etc. in the hydraulic system.
  • Hydraulic oil is the working medium that transfers energy in the hydraulic system.
  • the lowest frequency f min of the hydraulic system is the control frequency, which is generally determined by the frequency characteristics of the electro-hydraulic servo valve of the control system, and the detection frequency and data operation processing frequency in the hydraulic system can be higher than the system control frequency f min .
  • the valve in the control system can be divided into two types according to whether the opening degree is continuous (full open, fully closed) and continuous opening.
  • the size of the valve opening is described by two methods: relative value and absolute value.
  • the valve opening degree in the fully closed state is described as a relative value and an absolute value
  • the valve opening degree in the fully open state is described as 100% with a relative value, 1 or 100 with an absolute value, or other positive integers greater than 100.
  • the current hydraulic impact prevention is mostly for the physical improvement of the hydraulic system's power system, control system, execution system, auxiliary system and hydraulic oil.
  • the improvement of the control method still has some shortcomings, and the drawbacks of hydraulic shock have not been eradicated.
  • the object of the present invention is to provide an integrated control method for a multi-band hydraulic test system at the same time.
  • the original data processing system is changed to a high frequency.
  • the data processing system adds a dynamic measurement system, and uses the control method of the simultaneous multi-band hydraulic test system to improve the overall level of the stress-strain curve test and the full curve test.
  • the hydraulic test required loading load (hereinafter referred to as loading) speed the actual measured hydraulic system loading speed v and acceleration a and the newly added maximum acceleration a max are controlled, and the maximum acceleration a max can be added in a stepwise increment manner.
  • the load can prevent the occurrence of hydraulic impact force; it not only improves the reliability of the hydraulic system itself, but also prevents the cracking and scrapping of the concrete sample (component), and avoids secondary damage to personnel and the environment. Improve the reliability and efficiency of the entire system.
  • the high-frequency data processing system can be used to perform high-speed arithmetic processing on the data of the static measurement system, thereby improving the response speed of the entire system to the load feedback, and further improving the effect of preventing hydraulic impact.
  • the technical solution adopted by the present invention is: a simultaneous multi-band hydraulic system including a high frequency data processing system, a control system, an execution system, a load, a static measurement system, and a dynamic measurement system;
  • the system and the dynamic measurement system monitor the operation status of the load in real time;
  • the high-frequency data processing system automatically processes, displays, and stores the input command signal, the dynamic measurement system data, and the static measurement system data into a multi-band hydraulic system at the same time.
  • Test data part of the input signal is converted into the input signal of the control system by the high-frequency data processing system, and is transferred to the execution system; the frequency response and the accuracy of the measurement of the dynamic measurement system and the pre-data processing system should meet the test requirements. And the requirements of the hydraulic test system.
  • a control method for performing a hydraulic test using the above hydraulic system includes the following steps:
  • the initial loading time coefficient k of the hydraulic system is set, and the initial loading time t c of the hydraulic system is calculated;
  • k is a positive integer greater than or equal to 2;
  • the maximum acceleration a max of the hydraulic system in the initial loading phase is loaded in a stepwise increment manner, and the segment number i is a positive integer of 2 or 3; the actual loading speed v i of each stage is controlled to be equal to At this stage, the required loading speed v yi and the actual loading acceleration a i are less than or equal to the maximum acceleration a maxi of the stage.
  • the high-frequency data processing system performs high-speed arithmetic processing on the input signal according to the hydraulic system control method of the hydraulic system, thereby further eliminating the hydraulic impact force.
  • the beneficial effects of the invention are: on the basis of the existing hydraulic test system, the original data processing system is changed into a high-frequency data processing system, and a dynamic measuring system is added, and the simultaneous multi-domain is used.
  • the control method of the frequency band hydraulic test system improves the overall level of the stress-strain curve test and the full curve test.
  • the loading speed v, the actual measured hydraulic system loading speed v y and the acceleration a and the newly added maximum acceleration a max are controlled, and the maximum acceleration a max can be loaded in a stepwise increment manner.
  • Prevent the occurrence of hydraulic impact force and use the high-frequency data processing system to perform high-speed arithmetic processing on the data of the static measurement system, improve the response speed of the whole system to the load feedback, and further improve the effect of preventing hydraulic impact.
  • Figure 1 is a block schematic diagram of an existing hydraulic test system
  • FIG. 2 is a block schematic diagram of a simultaneous multi-band hydraulic test system of the present invention.
  • a simultaneous multi-band hydraulic test system includes a high frequency data processing system 60, a control system 10, an execution system 20, a load 30, a static measurement system 40, and a dynamic measurement system 50.
  • the frequency response and measurement accuracy of the dynamic measurement system and the pre-data processing system should meet the test requirements and the requirements of the hydraulic test system.
  • the high-frequency data processing system 60 automatically processes, displays, and stores the input command signal, the dynamic measurement system data, and the static measurement system data into simultaneous multi-band hydraulic test data. Since the static measurement system has better stability and higher accuracy in the low frequency range than the dynamic measurement system, part of the static measurement system data is processed by the high frequency data processing system 60 and converted into the input signal of the control system 20, and is delivered. Testing of the sample is performed by the execution system 20.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a control object for controlling the hydraulic impact force in advance is the load:
  • a 500-ton electro-hydraulic servo pressure tester the system control frequency f min is 150 Hz, the test requires a loading speed v y of 18.0 kN/s, the maximum valve opening is 30,000, and the cylinder runs to the test piece distance after the test machine is started.
  • the test plate was suspended at 2 mm on the platen and the load was cleared.
  • the automatic conversion procedure will be executed first at the beginning of the test.
  • the computer controls the initial loading of the valve opening to 1000. When the load is 1000N, the computer control system will automatically convert.
  • the initial loading time coefficient of the hydraulic system k is 30000, and the maximum acceleration a max of the hydraulic system is controlled by 3-stage two-three-five open.
  • the time of the first, second, and third stages is t c1 , t c2 , and t c3 , respectively:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a control object for controlling the hydraulic impact force in advance is strain:
  • a 30-ton electro-hydraulic servo universal testing machine the system minimum control frequency f min is 150 Hz, the tensile test requires a loading speed of 6 ⁇ / s, the maximum valve opening is 40,000, and the cylinder is operated after the test machine is started. When the position is paused and the load is cleared, the dependent variable is cleared. In the general hydraulic test, the automatic conversion procedure will be executed first at the beginning of the test. In order to ensure the slow loading of the cylinder, the computer controls the initial loading of the valve opening to 1000. When the load is 100N, the testing machine system will automatically convert.
  • the charging time coefficient k is 22,500 seconds, and the maximum acceleration a max of the hydraulic system is controlled by two-stage two-eighth open.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the system control frequency f min is 150 Hz
  • the test requires a loading speed v y of 18.0 kN / s
  • the maximum valve opening is 30,000
  • the automatic conversion procedure will be executed first at the beginning of the test.
  • the computer controls the initial loading of the valve opening to 1000. When the load is 1000N, the computer control system will automatically convert.
  • the initial loading time coefficient of the hydraulic system k is 30000, and the maximum acceleration a max of the hydraulic system is controlled by 3-stage two-three-five open.
  • the existing data processing system is changed to a high-frequency data processing system, and a dynamic measurement system is added.
  • the frequency period T 1 of the existing data processing system is:
  • the frequency period T 2 of the high frequency data processing system is:
  • the high-frequency data processing system has a load error of 4.85N smaller than that of the existing data processing system. Therefore, the use of high frequency data processing systems is more smooth than the load curve of existing data processing systems.
  • the hydraulic impact force of the hydraulic test system instantaneously formed during sudden shifting or commutation may be a load, or may be a strain or a displacement. .

Abstract

一种同时域多频段液压试验系统及其控制方法。上述系统包括高频数据处理系统(60)、控制系统(10)、执行系统(20)、负载(30)、静态测量系统(40),以及动态测量系统(50);所述高频数据处理系统将输入指令信号、动态测量系统数据、静态测量系统数据处理后,自动生成、显示、存储为同时域多频段液压试验数据,部分输入信号由高频数据处理系统转换成控制系统的输入信号,并交由执行系统运行。上述方法包括根据液压试验要求加载载荷速度、实际测得液压系统加荷速度v及加速度a和新增的最大加速度a max进行控制,其最大加速度a max可采用分段递增方式加荷,即可预防液压冲击力的发生;既提高液压系统自身的可靠性,又能防止混凝土试样(构件)由此产生的开裂、报废,还能避免对人员、环境造成二次伤害,从而提高整个系统的可靠性、效率。并可以利用高频数据处理系统对静态测量系统的数据进行高速运算处理,提高了整个系统对负载反馈的响应速度,进一步提高预防液压冲击力的效果。

Description

一种同时域多频段液压试验系统及其控制方法 技术领域
本发明涉及机电控制领域中的一种液压试验系统,特别是一种同时域多频段液压试验系统及其控制方法。
背景技术
一个现有完整的液压试验系统按方框原理图划分,是由数据处理系统、控制系统、执行系统、负载和测量系统5个部分组成。输入指令信号为试验方案转换成液压试验系统可识别的计算机程序语言,用于指令液压试验系统的动作;数据处理系统对输入指令信号、测量系统数据进行处理,将指令控制系统的动作;控制系统在液压系统中控制和调节液体的压力、流量和方向;执行系统将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动;负载是指液压试验系统的响应,通常是指试验对象对输入指令信号的响应;测量系统是测量出液压试验系统的响应并可充当反馈。液压系统的最低频率fmin即控制频率,一般是由控制系统的电液伺服阀频率特性所决定,而液压系统中的检测频率、数据运算处理频率可以高于系统控制频率fmin。液压试验系统主要包含液压系统和试验对象两部分。在该试验系统用于的土木工程领域,用混凝土、高强混凝土、超高强混凝土做压缩、拉伸试验时,一般都会得到应力——应变曲线;而利用岩石、高强混凝土、超高强混凝土做应力——应变全过程曲线(以下简称“全曲线”)试验时,一般都期许得到全曲线。应力——应变曲线、全曲线是研究材料力学特性的最基本特征曲线之一,甚至运用能量守恒定律解析应力——应变曲线、全曲线与液压试验系统的相互关系。应力——应变曲线试验和全曲线试验一般都是在液压试验系统中独立完成,由于混凝土尤其是高强混凝土、超高强混凝土在压缩、拉伸试验中存在脆性破坏,而液压试验系统内测量系统的测量频率没有足够高(以下简称为静态测量系统),不足以描述应力——应变曲线和全曲线特性的全貌。也有在现有的液压试验系统之外增加一套动态应力应变测量系统(以下简称为动态测量系统)单独采集数据,事后经数据处理再得到应力——应变曲线或全曲线;由于动态测量系统与液压试验系统是两个相互独立的系统,动态测量系统在试验中无法作为反馈参与控制,事后的数据处理也无法保证有足够的准确度。
一个完整的液压试验系统按其组成结构划分,是由动力系统、数据处理系统、控制系统、执行系统、辅助系统和液压油6个部分组成。动力系统将原动机的机械能转换成液体的压力能;数据处理系统对输入指令信号、测量系统数据进行处理,将指令控制系统的动作;控制 系统在液压系统中控制和调节液体的压力、流量和方向;执行系统将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动;辅助系统则主要指液压系统中的油箱、滤油器、油管及管接头、密封圈、快换接头等;液压油是液压系统中传递能量的工作介质。液压系统的最低频率fmin即控制频率,一般是由控制系统的电液伺服阀频率特性所决定,而液压系统中的检测频率、数据运算处理频率可以高于系统控制频率fmin。控制系统中的阀门按开度是否连续可分为只有两点(全开、全关)状态和有连续开度两类,其阀门开度的大小描述有相对值和绝对值两种方式,如全关状态的阀门开度用相对值、绝对值描述均为0,全开状态的阀门开度用相对值描述为100%、用绝对值描述为1或100或为大于100的其它正整数。
液压系统在突然启动、停机、变速或换向时,阀口突然关闭或动作突然停止,由于流动液体和运动部件惯性的作用,使系统内瞬时形成很高的峰值压力,这种现象就称之为液压冲击。发生液压冲击时系统内局部压力变化的峰值可达正常工作压力的几倍,不仅极易引起系统震动,而且有可能使密封破损、管道爆裂、焊缝开裂,造成系统漏油,还可能使压力计、流量计失灵,压力继电器和顺序阀误发信号,调压阀、流量阀损坏等,甚至有可能使混凝土试样(构件)的荷载直接达到极限荷载而致使试样(构件)报废。液压冲击既影响液压系统自身的可靠性,又可能致使混凝土试样(构件)开裂、报废,还可能对人员、环境造成二次伤害。
现有液压试验系统的局限是:
1.由于现有的液压试验系统内测量系统的测量频率没有足够高,单独使用现有的液压试验系统完成应力——应变曲线试验和全曲线试验时,不足以描述应力——应变曲线和全曲线特性的全貌。在现有的液压试验系统之外增加一套动态测量系统单独采集数据,也由于动态测量系统与液压试验系统是两个相互独立的系统,动态测量系统在试验中无法作为反馈参与控制,事后的进行数据处理也无法保证有足够的准确度。
2.现行的液压冲击防治大多是针对液压系统的动力系统、控制系统、执行系统、辅助系统和液压油进行物理改进,控制方法的改进仍存在不足,液压冲击的弊端未能根除。
发明内容
针对上述现有技术存在的不足,本发明的目的旨在提供一种同时域多频段液压试验系统的综合控制方法,在现有液压试验系统的基础上,将原来的数据处理系统改为高频数据处理系统,同时增加一套动态测量系统,运用同时域多频段液压试验系统的控制方法,提高应力——应变曲线试验和全曲线试验的整体水平。根据液压试验要求加载载荷(以下简称为加荷)速度、实际测得液压系统加荷速度v及加速度a和新增的最大加速度amax进行控制,其最大加 速度amax可采用分段递增方式加荷,即可预防液压冲击力的发生;既提高液压系统自身的可靠性,又能防止混凝土试样(构件)由此产生的开裂、报废,还能避免对人员、环境造成二次伤害,从而提高整个系统的可靠性、效率。并可以利用高频数据处理系统对静态测量系统的数据进行高速运算处理,提高了整个系统对负载反馈的响应速度,进一步提高预防液压冲击力的效果。
为达到上述目的,本发明采取的技术方案是:一种同时域多频段液压系统,包括高频数据处理系统、控制系统、执行系统、负载、静态测量系统,以及动态测量系统;所述静态测量系统和动态测量系统对负载的运行状况进实时监测;所述高频数据处理系统将输入指令信号、动态测量系统数据、静态测量系统数据处理后,自动生成、显示、存储为同时域多频段液压试验数据,部分输入信号由高频数据处理系统转换成控制系统的输入信号,并交由执行系统运行;所述动态测量系统及前置数据处理系统的频率响应和测量的准确度应满足试验要求和液压试验系统的要求。
一种使用到上述液压系统进行液压试验的控制方法,包括如下步骤:
(1)根据液压系统的控制频率fmin和试验要求加荷速度vy及液压试验系统的工作性能,设定液压系统初始加荷时间系数k,计算出液压系统初始加荷时间tc,;其中,k为大于等于2的正整数;
(2)根据步骤(1)所述试验要求加荷速度vy、液压系统初始加荷时间tc,计算出初始加荷的最大加速度amax;其中,所述液压试验要求加荷速度vy、最大加速度amax,液压系统在液压试验加荷过程中同时满足实际加荷速度v等于试验要求加荷速度vy、实际加荷的加速度a小于等于最大加速度amax
(3)对液压系统在初始加荷阶段的最大加速度amax采用分段递增方式加荷,所述分段数i是为2或3的正整数;控制各阶段的实际加荷速度vi等于该阶段的要求加荷速度vyi、实际加荷加速度ai小于等于该阶段的最大加速度amaxi
进一步的,所述高频数据处理系统依照液压系统进行液压试验的控制方法对其输入信号进行高速运算处理,可进一步消除液压冲击力。
与现有技术相比,本发明的有益效果是:在现有液压试验系统的基础上,将原来的数据处理系统改为高频数据处理系统,同时增加一套动态测量系统,运用同时域多频段液压试验系统的控制方法,提高应力——应变曲线试验和全曲线试验的整体水平。根据液压试验要求加荷速度v、实际测得液压系统加荷速度vy及加速度a和新增的最大加速度amax进行控制,且最大加速度amax可采用分段递增的方式加荷,即可预防液压冲击力的发生;并可以利用高频数据处理系统对静态测量系统的数据进行高速运算处理,提高了整个系统对负载反馈的响应速 度,进一步提高预防液压冲击力的效果。
附图说明
图1为现有液压试验系统方框原理图;
图2为本发明一种同时域多频段液压试验系统方框原理图。
具体实施方式
下面结合附图对本发明的实施方式做进一步描述。
如图2所示,一种同时域多频段液压试验系统,包括高频数据处理系统60、控制系统10、执行系统20、负载30、静态测量系统40以及动态测量系统50。所述动态测量系统及前置数据处理系统的频率响应和测量的准确度应满足试验要求和液压试验系统的要求。
所述高频数据处理系统60将输入指令信号、动态测量系统数据、静态测量系统数据处理后,自动生成、显示、存储为同时域多频段液压试验数据。而由于静态测量系统较动态测量系统在低频范围具有更好的稳定性和较高的准确度,部分静态测量系统数据经高频数据处理系统60处理后转换成控制系统20的输入信号,并交由执行系统20去实施对试样的测试。
实施例一:
一种超前预防液压冲击力的控制方法的控制对象是荷载:
一台500吨的电液伺服压力试验机,系统控制频率fmin为150Hz,试验要求加荷速度vy为18.0kN/s,最大阀门开度为30000,试验机启动后油缸运行至试件距离试验机上压板2mm处暂停并将荷载清零。一般液压试验在开始试验时,都将首先执行自动转换程序——为保证油缸的缓慢加荷,计算机控制初始加荷的阀门开度为1000,当其荷载为1000N时,计算机控制系统将自动转换为实际加荷速度v等于试验要求加荷速度vy,并同时满足实际加荷的加速度a小于等于最大加速度amax,且设定油缸的初速度v0=0,液压系统初始加荷时间系数k为30000,液压系统最大加速度amax采用3段式二三五开递增控制。
根据以上所述液压试验的条件,因为控制频率周期Tmin为:
Tmin=1/fmin(s)          (1)
液压系统初始加荷时间tc
tc=k×Tmin=k×(1/fmin)=k/fmin=30000/150=200(s)         (2)
假定液压系统的匀速加速,设初始第1、2、3段的时间分别为tc1、tc2、tc3,则:
tc1=tc×5/10=200×5/10=100(s)       (3)
tc2=tc×3/10=200×3/10=60(s)         (4)
tc3=tc×2/10=200×2/10=40(s)       (5)
设初始第1、2、3段的末速度分别为v1、v2、v3,且:
v3=vy=18.0kN/s         (6)
v1=2×v3/10=3.6(kN/s)        (7)
v2=(2+3)×v3/10=9.0(kN/s)       (8)
设初始第1、2、3段的最大加速度分别为amax1、amax2、amax3,则有:
v1=v0+amax1×tc1        (9)
v2=v1+amax2×tc2         (10)
v3=v2+amax3×tc3         (11)
将v0=0及上述1式代入7式,整理后有:
Figure PCTCN2015076045-appb-000001
同理:
Figure PCTCN2015076045-appb-000002
Figure PCTCN2015076045-appb-000003
实施例二:
一种超前预防液压冲击力的控制方法的控制对象是应变:
一台30吨的电液伺服万能试验机,系统最低控制频率fmin为150Hz,拉伸试验要求加荷的应变速度为6με/s,最大阀门开度为40000,试验机启动后油缸运行至适当位置时暂停并加荷清零、应变量清零。一般液压试验在开始试验时,都将首先执行自动转换程序——为保证油缸的缓慢加荷,计算机控制初始加荷的阀门开度为1000,当其荷载为100N时,试验机系统将自动转换为实际加荷的应变速度v等于要求加荷的应变速度vy,并同时满足实际加荷的加速度a小于等于最大加速度amax,且设定油缸的初速度v0=0,液压系统初始加荷时间系数k为22500秒,液压系统最大加速度amax采用2段式二八开递增控制。
根据以上所述液压试验的条件,因为最低控制频率周期Tmin为:
Tmin=1/fmin(s)     (1)
液压系统初始加荷时间tc
tc=k×Tmin=k×(1/fmin)=k/fmin=22500/150=150(s)   (2)
假定液压系统的匀速加速,设初始第1、2段的时间分别为tc1、tc2,则:
tc1=tc×8/10=150×8/10=120(s)      (3)
tc2=tc×2/10=150×2/10=30(s)        (4)
设初始第1、2段的末速度分别为v1、v2,且:
v2=vy=6με/s           (5)
v1=v2×2/10=1.2(με/s)       (6)
设初始第1、2段的最大加速度分别为amax1、amax2,则有:
v1=v0+amax1×tc1        (7)
v2=v1+amax2×tc2          (8)
将v0=0及上述1式代入5式,整理后有:
Figure PCTCN2015076045-appb-000004
同理:
Figure PCTCN2015076045-appb-000005
实施例三:
与实施例一相同:一台500吨的电液伺服压力试验机,系统控制频率fmin为150Hz,试验要求加荷速度vy为18.0kN/s,最大阀门开度为30000,试验机启动后油缸运行至试件距离试验机上压板2mm处暂停并将荷载清零。一般液压试验在开始试验时,都将首先执行自动转换程序——为保证油缸的缓慢加荷,计算机控制初始加荷的阀门开度为1000,当其荷载为1000N时,计算机控制系统将自动转换为实际加荷速度v等于试验要求加荷速度vy,并同时满足实际加荷的加速度a小于等于最大加速度amax,且设定油缸的初速度v0=0,液压系统初始加荷时间系数k为30000,液压系统最大加速度amax采用3段式二三五开递增控制。
在现有液压试验系统的基础上,将现有的数据处理系统改为高频数据处理系统,同时增加一套动态测量系统。现有的数据处理系统的频率f1=600Hz,高频数据处理系统的频率f2=20kHz。由于静态测量系统较动态测量系统在低频范围具有更好的稳定性和较高的准确度,部分静态测量系统数据经高频数据处理系统处理后转换成执行系统的输入信号。
设在初始第1段的某一时刻发出信号实际加速度a1=90(N/s2),实际加荷速度为v10=3.0kN/s时:
现有数据处理系统的频率周期T1为:
T1=1/f1=1/600(s)≈1.67(ms)      (1)
高频数据处理系统的频率周期T2为:
T2=1/f2=1/20000(s)=0.05(ms)=50(μs)       (2)
因此,高频数据处理系统比现有数据处理系统快:
Figure PCTCN2015076045-appb-000006
由于高频数据处理系统与现有数据处理系统的频率不同,而致使电液伺服压力试验机加荷荷载的理论误差Δf有:
Figure PCTCN2015076045-appb-000007
即高频数据处理系统比现有数据处理系统的加荷荷载误差小4.85N。因此,采用高频数据处理系统比现有数据处理系统的加荷荷载曲线要更加平滑。
本发明所述一种同时域多频段液压试验系统的综合控制方法中,针对液压试验系统在突然变速或换向时瞬时形成的液压冲击力,其控制对象可以是载荷,也可以是应变、位移。
综上所述的本发明具体实施例仅为本发明优选的实施方式,并非用于限定本发明保护范围的限制。因此,任何在本发明的技术特征之内所作的改变、修饰、替代、组合或简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

  1. 一种同时域多频段液压系统,其特征在于,包括高频数据处理系统、控制系统、执行系统、负载、静态测量系统,以及动态测量系统;所述高频数据处理系统将输入指令信号、动态测量系统数据、静态测量系统数据处理后,自动生成、显示、存储为同时域多频段液压试验数据,部分输入信号由高频数据处理系统转换成控制系统的输入信号,并交由执行系统运行;所述动态测量系统及前置数据处理系统的频率响应和测量的准确度应满足试验要求和液压试验系统的要求。
  2. 一种使用到上述权利要求所述同时域多频段液压系统进行液压试验的控制方法,其特征在于,包括如下步骤:
    (1)根据液压系统的控制频率fmin和试验要求加荷速度vy及液压试验系统的工作性能,设定液压系统初始加荷时间系数k,计算出液压系统初始加荷时间tc,;其中,k为大于等于2的正整数;
    (2)根据步骤(1)所述试验要求加荷速度vy、液压系统初始加荷时间tc,计算出初始加荷的最大加速度amax;其中,所述液压试验要求加荷速度vy、最大加速度amax,液压系统在液压试验加荷过程中同时满足实际加荷速度v等于试验要求加荷速度vy、实际加荷的加速度a小于等于最大加速度amax
    (3)对液压系统在初始加荷阶段的最大加速度amax采用分段递增方式加荷,所述分段数i是为2或3的正整数;控制各阶段的实际加荷速度vi等于该阶段的要求加荷速度vyi、实际加荷加速度ai小于等于该阶段的最大加速度amaxi
    进一步的,所述高频数据处理系统依照液压系统进行液压试验的控制方法对其输入信号进行高速运算处理,可进一步消除液压冲击力。
PCT/CN2015/076045 2014-07-08 2015-04-08 一种同时域多频段液压试验系统及其控制方法 WO2016004778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/324,273 US10393637B2 (en) 2014-07-08 2015-04-08 Same time domain multi-frequency band hydraulic testing system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410322918.8 2014-07-08
CN201410322918.8A CN104132852B (zh) 2014-07-08 2014-07-08 一种同时域多频段液压试验系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2016004778A1 true WO2016004778A1 (zh) 2016-01-14

Family

ID=51805618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076045 WO2016004778A1 (zh) 2014-07-08 2015-04-08 一种同时域多频段液压试验系统及其控制方法

Country Status (3)

Country Link
US (1) US10393637B2 (zh)
CN (1) CN104132852B (zh)
WO (1) WO2016004778A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132852B (zh) * 2014-07-08 2016-06-22 长沙达永川机电科技有限公司 一种同时域多频段液压试验系统及其控制方法
CN110736820B (zh) * 2019-10-29 2022-07-19 中国石油大学(华东) 一种滑坡区域管道安全性的模型试验装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343752A (en) * 1992-04-20 1994-09-06 Team Corporation High frequency vibration test fixture with hydraulic servo valve and piston actuator
JP2000121528A (ja) * 1998-10-14 2000-04-28 Mitsubishi Heavy Ind Ltd 振動台波形歪制御装置
JP2001033371A (ja) * 1999-07-23 2001-02-09 Shimadzu Corp 2軸材料試験機
CN102156035A (zh) * 2011-03-24 2011-08-17 西安交通大学 一种具有围带阻尼块和叶根楔形阻尼块的汽轮机叶片振动特性试验测量装置
CN103104573A (zh) * 2013-03-11 2013-05-15 武汉科技大学 大型液压缸高频带载频率特性测试装置及其测试方法
CN103278389A (zh) * 2013-04-28 2013-09-04 北京大学 一种岩石动、静态弹性参数同步测量的方法
CN104062184A (zh) * 2014-07-08 2014-09-24 长沙达永川机电科技有限公司 一种同时域多频段液压试验系统
CN104132852A (zh) * 2014-07-08 2014-11-05 长沙达永川机电科技有限公司 一种同时域多频段液压试验系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402089B1 (en) * 2001-03-02 2002-06-11 General Dynamics Advanced Technology Services, Inc. System for control of active system for vibration and noise reduction
US20030192384A1 (en) * 2002-04-11 2003-10-16 Troxler Electronic Laboratories, Inc. In-mold pressure verification device
CN101995354B (zh) * 2009-08-27 2012-07-04 宝山钢铁股份有限公司 一种水压试验机压力平衡装置及其控制方法
CN201488920U (zh) * 2009-09-22 2010-05-26 北京英斯派克科技有限公司 一种精确恒压液压系统
CN102607960B (zh) * 2012-04-16 2013-10-02 公安部天津消防研究所 液压试验测控系统
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343752A (en) * 1992-04-20 1994-09-06 Team Corporation High frequency vibration test fixture with hydraulic servo valve and piston actuator
JP2000121528A (ja) * 1998-10-14 2000-04-28 Mitsubishi Heavy Ind Ltd 振動台波形歪制御装置
JP2001033371A (ja) * 1999-07-23 2001-02-09 Shimadzu Corp 2軸材料試験機
CN102156035A (zh) * 2011-03-24 2011-08-17 西安交通大学 一种具有围带阻尼块和叶根楔形阻尼块的汽轮机叶片振动特性试验测量装置
CN103104573A (zh) * 2013-03-11 2013-05-15 武汉科技大学 大型液压缸高频带载频率特性测试装置及其测试方法
CN103278389A (zh) * 2013-04-28 2013-09-04 北京大学 一种岩石动、静态弹性参数同步测量的方法
CN104062184A (zh) * 2014-07-08 2014-09-24 长沙达永川机电科技有限公司 一种同时域多频段液压试验系统
CN104132852A (zh) * 2014-07-08 2014-11-05 长沙达永川机电科技有限公司 一种同时域多频段液压试验系统及其控制方法

Also Published As

Publication number Publication date
US10393637B2 (en) 2019-08-27
CN104132852B (zh) 2016-06-22
CN104132852A (zh) 2014-11-05
US20170248504A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
CN106644490B (zh) 一种涡轮榫接结构高低周复合疲劳裂纹扩展寿命预测方法
Athanasatos et al. Proactive fault finding in a 4/3-way direction control valve of a high pressure hydraulic system using the bond graph method with digital simulation
RU2695468C2 (ru) Переход к закрытию для позиционеров клапанов управления
CN204512069U (zh) 节能型挖掘机液压缸测试试验台液压控制系统
WO2016004778A1 (zh) 一种同时域多频段液压试验系统及其控制方法
CN107764673B (zh) 一种双向应力疲劳试验装置及试验方法
CN101101247A (zh) 数字式自适应电液疲劳试验机及实现方法
CN104316310A (zh) 一种基于计算机的液压缓冲器性能测试方法
CN102128303B (zh) 电液线速度伺服系统中执行机构参数识别装置及识别方法
Wu et al. Crack status analysis for concrete dams based on measured entropy
CN110374578A (zh) 一种用于液压冲击机械性能测试装置
CN110593966B (zh) 核电站汽轮机调节阀死区测试方法及装置
CN102878433A (zh) 一种煤气排水器工作管智能关闭控制方法
CN203374559U (zh) 液压缸Stribeck模型摩擦参数的测试系统
姚静 et al. Energy saving and control of hydraulic press fast forging system based on the two-stage pressure source
Liu et al. Research of water hammer of air conditioning chilled water system based on flowmaster
CN104074813B (zh) 一种超前预防液压冲击力的控制方法
Ji-Zhong et al. Simulation model of hydraulic turbine speed control system and its parameters identification based on resilient adaptive particle swarm optimization algorithm
Saber et al. Dynamic analysis of a high load, high-speed actuator for rock deformation experimentation
Pan et al. The Study on Hydraulic Oil Property Influences on Motion Performances of the Main Steam Isolation Valve and its Driving Device
Mei et al. Development of an ultra-high pressure hydraulic hose assembly pulse test system
CN104062184B (zh) 一种同时域多频段液压试验系统
Hui et al. Study on Intelligent Pressure Reducing Valve and Leakage Diagnosis
Mbaya Mathematical modeling and simulation of closing function of water hammer system during gas production
CN113866016B (zh) 考虑非比例加载附加损伤的多轴短裂纹扩展全寿命预测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15324273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15819033

Country of ref document: EP

Kind code of ref document: A1