WO2016004746A1 - 不等程工作四转子内燃发动机 - Google Patents

不等程工作四转子内燃发动机 Download PDF

Info

Publication number
WO2016004746A1
WO2016004746A1 PCT/CN2015/000429 CN2015000429W WO2016004746A1 WO 2016004746 A1 WO2016004746 A1 WO 2016004746A1 CN 2015000429 W CN2015000429 W CN 2015000429W WO 2016004746 A1 WO2016004746 A1 WO 2016004746A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
rotor
blade
leaf
shoulder
Prior art date
Application number
PCT/CN2015/000429
Other languages
English (en)
French (fr)
Inventor
苏犁
Original Assignee
苏犁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏犁 filed Critical 苏犁
Publication of WO2016004746A1 publication Critical patent/WO2016004746A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a series of designs and improvements for the mechanical field of rotor internal combustion engine construction, components and construction for the purpose of improving fuel efficiency.
  • a four-rotor internal combustion engine with an out-of-equation operation is designed.
  • existing internal combustion engines have four strokes of suction, compression, work, and exhaust.
  • the air passes through the suction and compression strokes, and its volume is compressed several times to several tens of times and mixed with the fuel when it is ignited. After the explosion, its volume will expand several times on the original basis, so that the expanded gas pushes the rotor (blade) to rotate or push the piston to work.
  • the working strokes of the inhalation, work, and exhaust of the existing internal combustion engines are all equal, only a part of the air pressure generated by the inflation gas is used for work, and the rest is consumed by the muffler, the exhaust pipe, and the like. And then drained away.
  • the piston type cylinder has a power stroke of X, the average pressure in the cylinder is 1 and the cylinder work is 100%, if the power stroke is 2X (the cylinder diameter is constant), the pressure is reduced to 50%, but the work is increased by 50%;
  • the power stroke is 3X, the pressure is reduced to 33%, the work is increased by 33%;
  • the present invention can be designed such that the stroke of the work is several times or even ten times of the intake stroke (before and after The ratio of the two is called the drainage ratio. As for how many times is the most reasonable, it is the subject of further research.
  • the rotor sealing property is not good in actual use, and the high energy consumption affects its popularization and use.
  • the above concept can be ensured if the radial and axial seal of the rotor can reach or approach the sealing effect of the piston internal combustion engine.
  • the invention aims to improve the fuel use efficiency, and adopts an unequally working four-rotor internal combustion engine to increase the power stroke as an improvement means; in the actual use of the existing rotor internal combustion engine, the rotor sealing property is not good, and the rotor radial direction is improved.
  • Axial sealing measures have been carried out in a series of mechanical fields of zero, fitting structure and functional parts.
  • the technical solution adopted by the present invention is: an unequally working four-rotor internal combustion engine,
  • the device consists of a spindle sleeve (1), left and right casings (2, 3), pressure reducing valve (4), left outer rotor (5), left inner rotor (6), right inner rotor (7), right outer rotor (8), left start motor (9), right start motor (10), radial, axial seal, etc.
  • the spindle sleeve (1) passes through the left casing (2), the left outer rotor (5), the left inner rotor (6), the right inner rotor (7), the right outer rotor (8), and the right casing in sequence. (3) The axis (as shown in Figure 2).
  • the four rotor blades are respectively crossed by the inner and outer rotors on the same side, and the rotors on both sides are crossed again, and the blades are arranged clockwise in the left direction as left outer rotor blades (5a), right inner rotor blades (7a), left.
  • the inner rotor blade (6a) and the right outer rotor blade (8a) are arranged and assembled (as shown in Figs. 1 and 7), and the number of blades on each rotor is N, and the blade thickness development angle of the rotor is called a blade angle.
  • the four rotor blades are provided with blade shoulders on both sides of the root (ie, 5b, 6b, 7b, and 8b, as shown in FIG. 7, FIG. 8, and FIG. 9), and the thickness expansion angle is called the blade shoulder angle.
  • the inverse ratio of the volume between the blades when the blades are touching and the volume of the blades when they are inhaled is the engine compression ratio, which is a limiting device for ensuring the compression ratio of the engine.
  • An inner ratchet (5c, 6c, 7c, 8c) is disposed between each of the rotor and the main shaft sleeve (1).
  • an inner ratchet (5c, 6c, 7c, 8c) is disposed between each of the rotor and the main shaft sleeve (1).
  • the two When viewed from the left side, when the rotor rotates counterclockwise in the left direction, the two are locked. Rotating together to form the power output of the engine, does not affect the inertial rotation of the spindle sleeve (1) when the rotor does not rotate (Figure 8-2, Figure 8-1, Figure 9-1, Figure 9-1, Figure 9) 2)).
  • the outer rotor (5 or 8) and the support ring (2g or 3g) on the casing (2 or 3) are each provided with an outer ratchet (5d or 8d), which rotates clockwise when the rotor is left-viewed.
  • an outer ratchet (5d or 8d) which rotates clockwise when the rotor is left-viewed.
  • Each pair of the same side rotor that is, the left outer rotor (5) and the left inner rotor (6) or the right inner rotor (7) and the right outer rotor (8) is centered on the axis of the main shaft sleeve (1).
  • each is equipped with a rotation limit device, namely a slider (5e, 6e, 7e, 8e) and a slide (5f, 6f, 7f, 8f) which allows the inner and outer rotors on one side
  • the sliding can be freely oscillated within a certain angle, so that the rotor blade can complete the suction and compression work.
  • the rotation of the other rotor on the same side can be pushed or prevented.
  • the arrangement of the slider and the slide determines the engine.
  • the pressure reducing valve (4) is installed at 45 degrees on the pressure reducing ports (2a, 3a) on both sides of the left and right casings (2, 3), and the function thereof is to make a rotor blade explode at the end of the work.
  • the gas pressure tends to balance with the pressure of the compressed gas to be erupted, and the inert gas is pushed by the inertia to push the mixed gas of the other two rotor blades to rotate to the spark plug to ignite in place, thereby reducing the resistance and providing a stable environment for continuous operation.
  • Initial spring force of spring (4-3) of pressure valve (4) spool surface
  • the product* is to be compressed to compress the pressure of the mixed gas (as shown in Figure 2).
  • the left and right casings (2, 3) are centered on the axis of the spindle sleeve (1), and are arranged in the counterclockwise direction at a certain angle (R5) in the same radius (Fig. 10, as shown in Fig. 10). 11)) decompression ports (2a, 3a), exhaust ports (2b, 3b), air inlets (2c, 3c) injectors (2d, 3d), spark plugs (2e, 3e); at the same radius ( On the outer R6 and inner R7), the left-view counterclockwise direction is arranged at a certain angle (as shown in Fig. 10): the fuel injection sensing point (2h, 3h), and the induction point (2i, 3i), wherein 3i is divided into inner and outer Two points), the ignition sensing points (2j, 3j), the positional relationship between them is:
  • BC angle leaf angle + 2 * blade shoulder angle
  • BE angle suction angle + 3 * leaf angle + 4 * blade shoulder angle
  • the angle between the center line of the exhaust port (2b, 3b) and the center line of the pressure reducing port (2a, 3a) is the BA angle: the BA angle is less than - (leaf angle + 2 * blade shoulder angle);
  • the angle between the center line of the exhaust port (2b, 3b) and the center line of the injector (2d, 3d) is the BD angle: the BD angle is larger than the leaf angle + 2 * the blade shoulder angle, which is smaller than the suction angle + 2 * leaf angle + 2* leaf shoulder angle;
  • IJ angle leaf angle + 2 * leaf shoulder angle
  • IH angle - (inhalation angle + 2 * leaf angle + 2 * leaf shoulder angle);
  • the outer rotor (5, 8) is centered on the axis of the spindle sleeve (1), and is arranged in a counterclockwise direction at a certain angle (outer R6, inner R7) (Fig. 8, Fig. 8) 11): Injecting oil sensing target (5k, 8k), starting the sensing target (5m, 8m, 8m is divided into two points inside and outside), ignition sensing target (5n, 8n); the positional relationship between them is :
  • MN angle inhalation angle + 2 * leaf angle + 2 * leaf shoulder angle
  • MK angle - (inhalation angle + 2 * leaf angle + 2 * leaf shoulder angle);
  • the circuit logic relationship of the four-rotor internal combustion engine of the unequal working is: when the ignition sensing point (2j or 3j) on the casing coincides with the sensing target on one outer rotor, the sensing point is activated (2i or 3i) ) coincides with the inductive target on the outer rotor of the other side - called the opposite side induction, the circuit Connect the control spark plugs (2e and 3e) to ignite; when the induction point (2i or 3i) and the fuel injection point (2h or 3h) coincide with the inductive target on one side of the outer rotor - the same side induction, the circuit is connected to the control spray The oil nozzles (2d and 3d) are sprayed with oil.
  • the starting sensing point that is, the starting sensing point 3i coincides with the sensing target (8m) on the right outer rotor (8)
  • reverse conversion is realized, and the repeated conversion is supplemented by the above ignition and fuel injection control until the engine is normally operated, starting.
  • the starter motor (9, 10) is turned into a generator to charge the battery by the outer rotor (5, 8).
  • the angle after work is the compression angle;
  • the angle of the air inlet is the angle of the air inlet; the logical relationship between them and the compression ratio, the suction ratio, the blade angle and the blade shoulder angle :
  • the four-rotor internal combustion engine of the unequal-working operation is mounted on the auxiliary gear of the outer rotor (5, 8) (5-2, 8-2, as shown in FIG. 8-8).
  • the drive shaft is inserted into the countershaft, and the base is fixed to the end cover (2-1, 3-1).
  • easy to repair and replace as shown in Figure 2).
  • the four-rotor internal combustion engine of the unequal-working operation has a pin key 1a in the main shaft sleeve (1), and can be multi-machine with one shaft (as shown in FIG. 2).
  • the unequal working four-rotor internal combustion engine has a radial sealing accessory: Two or more annular grooves are arranged on the circumferential surface of the rotor blades (as shown in Fig. 8-8, Fig. 8-7; Fig. 9 Fig. 9-6, Fig. 9-8), and the grooves are embedded similarly.
  • the rotor blade seal (5-1, 6-1, 7-1, 8-1) of the piston ring shape is different from the former in that the outer edge of the latter section is curved (as shown in Fig. 9 in Fig. 9). 7)), the opening is hidden in the groove connecting the rotor and the blade and is not rotatable along the annular groove.
  • the unequal working four-rotor internal combustion engine has an axial sealing fitting in which: two spring laps are used between the four rotors (5-5 and 6-5, 6-4 and 7-4, 7). Between -5 and 8-5), a ball and ball cage (5-4, 6-3, 8-4) is placed along the ring to isolate two adjacent rotors, each of which is embedded in each The respective rotor annular isolation grooves (5p, 6p, 7p, 8p are shown in Figure 2-2 of Figure 2); a radial sealing ring is installed between the outer rotor and the casing (5-6, 8-6 as shown in Figure 8).
  • a single spring coil is placed on the outer ratchet ball of the outer rotor (5d, 8d) to isolate the two, and the spring coil (2-2, 3-2) ) embedded in the annular isolation groove (2p, 3p shown in Figure 2-1 in Figure 2).
  • the inner and outer diameter edge portions of the spring coil are in contact with the rotor or the casing, and the middle portion thereof is overhead.
  • the ball compresses the spring ring to deform, so that Repulsive forces are formed between the two.
  • the purpose of this is as follows: The first is to homogenize the gap between the six rotors and the four rotors.
  • the thickness of the coil can be selected by grinding the thickness of the groove of the isolation groove, and the method can be prepared in advance;
  • An arc-shaped groove is arranged below the root of the four rotor blades (under the armpit), and the left and right compensation pieces are embedded in the groove for short-left and right compensation pieces (5-8, 5-7; 6-8, 6-7; 7-8, 7-7; 8-8, 8-7 are as shown in Fig. 8 in Fig. 8; Fig. 9-3 in Fig. 9), and a wave spring piece is simply referred to as a compensation spring (5) -9, 6-9, 7-9, 8-9,) is used to close the gap under the blade root (underarm) between the two casings and the four rotors when the engine is started (cold state).
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the present invention can achieve the general existing internal combustion engine can not be designed, can be designed: the work stroke is several times or even more than ten times the suction stroke, to achieve the unequal work, the pressure of the gas generated after each combustion expansion Maximize conversion into work - that is, the exhaust gas discharge pressure is approximately equal to the compressed mixed gas pressure, achieving double the efficiency of the internal combustion engine; improving fuel efficiency, reducing high-pressure exhaust emissions, and reducing vibration and noise.
  • the engine rotor of the present invention is a stepwise rotation, that is, one rotor on one side performs work, and the other rotor on the same side and the other rotor on the other side are stationary, and the fuel injection and oil and gas between the three are required.
  • Full mixing provides valuable time, fuel applicability is strong, and it is good for the back Combustion offers the possibility of co-firing multiple fuels in the future.
  • the engine of the invention works on the gas explosion between the two rotor blades, wherein one rotor transmits the reaction force to the machine base, and the other rotor drives the spindle sleeve to do work, much like a pole boat, the force transmission is direct, and the mechanical transmission loss is small.
  • the rotor After the rotor completes the work on the spindle sleeve, it automatically detaches and uses its own inertia kinetic energy to drive the other rotors to rotate in position, and continuously performs work on the spindle sleeve. Achieving beneficial energy conversion, low energy consumption. With fewer types of components, it can reduce and reduce the size and weight of the engine.
  • the engine of the invention is provided with several countershafts on the two sides of the casing, and the rotation of the countershaft is synchronized with the outer rotors on both sides, and the left and right starter motors (9, 10), the cooling water pump, the fuel pump and the machine can be started.
  • the oil pump and other modular drive shafts are inserted into the auxiliary shaft; the base is fixed to the end cover (2-1, 3-1) to improve the transmission efficiency of the supporting equipment, reduce the size of the whole engine, and facilitate inspection and replacement. .
  • the power output of the machine adopts the sleeve method.
  • One of the advantages is that it is easy to assemble and disassemble and easy to maintain.
  • the second advantage is that it can easily connect multiple engines to meet various power requirements and further reduce system energy consumption.
  • the present invention designs several piston ring-like sealing rings around the rotor blade of the engine, and the sealing effect is not lower than that of the piston engine; the ball and the isolation are designed between the rotor, the rotor and the rotor or the casing.
  • the ring and the isolation groove and the spring ring keep the gap stable.
  • the gap becomes smaller and is sealed by the oil film, which forms rolling friction between them and reduces the running resistance.
  • the engine starts (cold state)
  • it is set at The left and right compensating sheets in the arcuate grooves of the blade root (underarm) between the two casings and the four rotors close the gap. It has strong practicability and improves the sealing effect of the rotor engine as a whole.
  • Fig. 1 is a cross-sectional view of the A-A of one of the schematic diagrams of the four-rotor internal combustion engine.
  • Fig. 2 is a cross-sectional view of the B-B of the structure of the four-rotor internal combustion engine.
  • Fig. 3 is one of the schematic diagrams of the working principle of the four-rotor internal combustion engine in the non-equal working.
  • Fig. 4 is the second schematic diagram of the working principle of the four-rotor internal combustion engine in the non-equal working.
  • Fig. 5 is one of the schematic diagrams of the starting principle of the four-rotor internal combustion engine in the non-equal working.
  • Fig. 6 is a schematic diagram of the starting principle of the four-rotor internal combustion engine in the non-equal working.
  • Fig. 7 is a schematic diagram of assembly of a rotor of a four-rotor internal combustion engine without a work distance.
  • Fig. 8 is a schematic view of the left outer rotor (5) of the four-rotor internal combustion engine without the isochronous operation.
  • Fig. 9 is a schematic view of the left inner rotor (6) of the four-rotor internal combustion engine without the isochronous operation.
  • Fig. 10 is a schematic view of the right casing (3) of the four-rotor internal combustion engine without the isochronous operation.
  • Fig. 11 is a schematic diagram showing the design parameters of a four-rotor internal combustion engine with a single-leaf type of non-equal working.
  • Pressure reducing valve - 4 Its main accessories are: 4-1-valve, 4-2-spool, 4-3-spring, 4-4-push, 4-5-adjustment nut.
  • Its functional parts are: 6a, 7a-fan blade, 6b, 7b-leaf shoulder, 6c, 7c-internal ratchet, 6e, 7e-slider, 6f, 7f-slide, 6p, 7p-annular isolation groove;
  • Accessories are: 6-1 or 7-1-rotor blade seal ring, 6-2 or 7-2-stop ring, 6-3-ball ring spacer, 6-4 or 7-4-spring ring 3#,6 -5 or 7-5-spring ring 2#, 6-7 or 7-7-left compensation piece, 6-8 or 7-8-right compensation piece, 6-9 or 7-9-compensation spring.
  • the inner ratchet of the rotor will lock it on the main shaft sleeve (1) to rotate it to form the power of the engine.
  • the slider will hit the same side.
  • the slider of the three rotors pushes its blades to rotate (between the second rotor) and the suction work (between the fourth rotor), and then the rotor's blade shoulders will hit the fourth rotor (different The shoulder of the side rotor), the exhaust gas is squeezed out after the last explosion, and at the same time
  • the pressure reducing valve depressurizes the burned exhaust gas to be isostatically compressed with the compressed mixed gas, and finally uses the rotational inertia of the rotor to rotate a new adjacent rotor blade sandwiching the air and fuel mixture gas through the spark plug.
  • the ignition of the spark plug and the fuel injection of the injector are completed by the coincidence of the induction circuit on the casing and the inductive target on the outer rotor.
  • the left outer rotor blade (5a) and the right inner rotor blade (7a) are pushed by the compressed fuel and air mixed gas (hereinafter referred to as: mixed gas) to be left-viewed.
  • mixed gas compressed fuel and air mixed gas
  • the injectors (2d and 3d) are sprayed with oil.
  • the blade (7a) of the right inner rotor (7) is to rotate clockwise, but the slider (7e) of the right inner rotor (7) is held by the slider (8e) on the right outer rotor (8), and the right outer rotor ( 8)
  • the outer ratchet (8d) on the upper right casing (3) is locked on the support ring (3g).
  • the shoulder (6b) on the left inner rotor blade (6a) is held against the upper outer rotor (8) upper shoulder (8b) to remain stationary.
  • the left outer rotor (5) rotates, and the inner flywheel (5c) locks the main shaft sleeve (1) to rotate and output power, and the left outer rotor blade (5a) and the right outer rotor blade ( The space between 8a) is reduced, and the exhaust gas from the last combustion is squeezed out from the exhaust ports (2b and 3b).
  • the other three rotor blades (7a, 6a, 8a) are stationary, and the starting induction target (8m) and the fuel injection sensing point (3h) and the ignition sensing target (8n) are coincident with the starting sensing point (3i), and the fuel injector ( 2d and 3d) continue to spray oil.
  • the right inner rotor blade (7a) has a high-pressure gas in front of it, and the right outer rotor block (8e) is supported against the left inner rotor block (6e). ) is pushed by the left outer rotor block (5e), the mixed gas is compressed between the left inner rotor blade (6a) and the right inner rotor blade (7a), and the left inner rotor blade (6a) is away from the right outer rotor blade (8a) ) Perform inhalation work.
  • the left outer rotor blade (5a) rotates by inertia while pushing the left inner rotor blade (6a), the right inner rotor blade (7a), and the right outer rotor blade (8a) against The hour hand rotates until the ignition sensing target (5n) coincides with the starting sensing point (2i) and the starting sensing target (5m) coincides with the fuel injection sensing point (2h), and the injectors (2d and 3d) inject oil; at the same time, the ignition sensing target ( 5n) coincides with the start sensing point (2i) and the ignition sensing target (8n) and the ignition sensing point (3j), the spark plugs (2e and 3e) ignite, and a new cycle begins.
  • the control of the starting logic circuit is applied to enable the left and right starting motors to the left,
  • the right electromagnetic brake crosses the action to simulate the engine working, and the engine is started by the control of the logic circuit during operation.
  • the left outer rotor blade (5a) rotates counterclockwise until the induction target (5m) and the start sensing point (2i) and the fuel injection target (5k) and fuel injection induction are activated.
  • the point (2h) coincides, the injector (2d and 3d) injects oil;
  • the left electromagnetic holding brake (9a) is energized to hold the left outer rotor (5) Dead
  • the left start motor (9) is powered off
  • the right electromagnetic brake (10a) is powered off
  • the right outer rotor (8) is relaxed
  • the right start motor (10) is energized to rotate, driving the right outer rotor blade (8a) to push the right inner
  • the rotor blade (7a) and the left inner rotor blade (6a) rotate. Since the left outer rotor (5) is not moved, the fuel injectors (2d and 3d) continue to inject oil.
  • Right start motor (10) energizes and rotates to drive right outer rotor blade
  • the piece (8a) pushes the right inner rotor blade (7a) and the left inner rotor blade (6a) to rotate, and the right inner rotor blade (7a) blocks the suction port (2c and 3c) and compresses the left outer rotor blade (5a) Mixed gas between.
  • the right outer rotor blade (8a) continues to rotate, when the induction target (5m) and the ignition sensing point (2j) and the ignition sensing target (8n) and the starting sensing point (3i) are activated. At the same time, the spark plugs (2e and 3e) are ignited; the starting inductive target (8m) and the fuel sensing point (3h) and the ignition sensing target (8n) coincide with the starting sensing point (3i), and the injector (2d) And 3d) injection, the start is completed.
  • the medium carbon (45#) steel can meet the requirements for the above-mentioned parts, the above parts are subjected to repeated stress and have high requirements for fatigue resistance and impact resistance. Therefore, the medium carbon with high fatigue resistance and impact resistance is selected. Alloy quenched and tempered steel, combined with the surface treatment of the friction surface is preferred.
  • the feasibility analysis of the engine is as follows: the rotor processing is complicated, and the rotor and the blade can be processed separately and then welded. As long as the assembly and positioning measures and the welding materials, methods and processes are proper, the welding strength, the assembly precision and the control welding deformation can be ensured.
  • the second is the isolation elasticity and clearance between the left and right casings and the inner and outer rotors. The elasticity can be adjusted by selecting the thickness of the spring ring, the depth of the isolation groove can be controlled, and the special tire carrier can be repeatedly debugged and prepared. Complete sets are to be solved; other parts are easy to process or use finished parts (such as bearings, balls, rollers, bolts, etc.).
  • the engine rotor operation is stepwise rotation, that is, one rotor on one side performs work, and the other rotor on the same side and the other rotor on the other side are stationary, for a variety of fuels.
  • Mixing with gas provides valuable time to facilitate full combustion in the back; since the left and right casings of the present invention are provided with injectors and spark plugs, dual fuels can be applied (or fuel injectors can be added to achieve multiple fuels).
  • Supply such as gasoline, diesel mixed spray; gasoline, ethanol mixed spray, etc.
  • fuel and booster supply such as gasoline and water
  • the applicability analysis of the present invention for the power requirement although the engine rotor is step-rotating, but after the work is completed, it is separated from the spindle sleeve, and the spindle sleeve is basically uniform by the inertia rotation, which is no different from the existing engine, and the power requirement is applied. Wide range, especially suitable for high-power power output requirements, such as the choice of two-blade or multi-leaf type four-rotor internal combustion engine, the engine vibration will be further reduced, the power output will be more stable; the engine's power output is sleeved
  • One of its advantages is that it is easy to assemble and disassemble and easy to maintain.
  • the second advantage is that it can easily connect multiple engines in series, and it can be used for various power requirements to further reduce system energy consumption.
  • the cylinder suction stroke is approximate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种不等程工作四转子内燃发动机,包括沿轴向依次设置的四个转子(5-8),每个转子(5-8)上配置有一个叶片(5a-8a),每个叶片(5a-8a)的根部两侧设有叶肩(5b-8b),并各自配置有限位滑块(5e-8e)。当发动机做功时,其中一个做功叶片旋转而输出功率,其它三个叶片在限位滑块(5e-8e)、叶肩(5b-8b)以及相应的外棘轮(5d,8d)的作用下保持静止。做功叶片完成排气冲程后在惯性的作用下,利用限位滑块(5e-8e)、叶肩(5b-8b)推动所述其它三个叶片旋转进入吸气和喷油、压缩点火冲程从而使得最远离做功叶片的那个叶片进入下一个做功循环。内燃机的压缩、进气、排气冲程缩短,膨胀做功冲程增大。并改进了转子发动机密封性。该内燃发动机具有燃耗少、功效高、体积小、重量轻、零部件少等优点。

Description

不等程工作四转子内燃发动机 技术领域
本发明涉及一种以提高燃料使用效率为目的,所进行了一系列针对转子内燃发动机结构、零件及构造的机械领域的设计和改进。从而设计出一种不等程工作四转子内燃发动机。
背景技术
一般现有的内燃发动机都有吸气、压缩、做功、排气个四冲程,空气通过吸气和压缩冲程,其体积被压缩了几倍到几十倍并同燃料混合,当其被点燃一爆发后其体积会在原来的基础上再膨胀几十倍,这样膨胀的气体推动转子(叶片)转动或推动活塞运动做功。由于一般现有的内燃发动机的吸气、做功、排气的工作行程都是等程的,其膨胀气体所产生的气压只能有一部分用于做功,其余的被消音器、排气管等消耗,然后排放掉了。
试想:若活塞式气缸做功行程为X,气缸内平均压力为1,气缸做功为100%的话,如果(气缸直径不变)做功行程为2X,压力虽减少至50%,但做功增加50%;做功行程为3X,压力减少至33%,做功再增加33%;做功行程为4X,压力减少至25%,做功再增加25%。这样,行程增加3倍,总做功=100%+50%+33%+25%=208%,由此可见,通过这一途径可将每一次燃烧后膨胀的气体最大限度地转化成做功(即所排出的废气压力与燃料和空气混合气体压缩后的压力接近相等),实现内燃发动机功效成倍增长,因此本发明可以设计成:做功的行程是吸气行程的数倍乃至十倍以上(前后两者之比称为排吸比),至于多少倍为最合理,是下一步研究的课题。
现有转子内燃发动机在实际使用中转子密封性不好,能耗高影响其推广使用。如果转子径向、轴向密封能达到或接近活塞式内燃发动机的密封效果,那么就可得以保证上述构想的实现。
发明内容
本发明以提高燃料使用效率为目的,采用一种不等程工作四转子内燃发动机以增加做功行程为改进手段;针对现有转子内燃发动机实际使用中,转子密封性不好,改进转子径向、轴向的密封措施,所采取所进行了一系列机械领域的零、配件结构及功能部位的设计。
本发明采取的技术方案是:一种不等程工作四转子内燃发动机,该 装置由主轴套(1),左、右机壳(2、3),减压阀(4),左外转子(5),左内转子(6),右内转子(7),右外转子(8),左启动电机(9),右启动电机(10),径向、轴向密封等零、配件组成;
所述的主轴套(1)按顺序穿过左机壳(2)、左外转子(5)、左内转子(6)、右内转子(7),右外转子(8)、右机壳(3)的轴心(如图2所示)。
所述的四转子叶片,以同侧内、外转子分别交叉后,两侧转子再交叉,其叶片按左视顺时针排列为左外转子叶片(5a)、右内转子叶片(7a)、左内转子叶片(6a)、右外转子叶片(8a)布置组装(如图1、图7所示),其每个转子上的叶片数量为N,转子的叶片厚度展开角度称为叶角。
所述的四个转子叶片的根部两侧设有叶肩(即5b、6b、7b、8b,如图7、图8、图9所示),其厚度展开角度称为叶肩角,当两个叶肩相触时叶片之间相夹的体积与其叶片在吸气时相夹的体积之反比为发动机压缩比,它是保证发动机压缩比的限位装置。
所述的每个转子与主轴套(1)之间都配有一个内棘轮(5c、6c、7c、8c),从左视方向看,当转子左视逆时针方向转动时,锁紧两者一起转动,形成发动机的动力输出,当转子不转动时不影响主轴套(1)的惯性转动(如图8中图8-2、图8-1、图9中图9-1、图9-2所示)。
所述的外转子(5或8)与机壳(2或3)上的支撑环(2g或3g)之间,各配有一个外棘轮(5d或8d),当转子左视顺时针方向转动时锁紧两者,让转子不动,将反力传给机座(如图8中图8-1、图8-3所示)。
所述的每对同侧转子即左外转子(5)与左内转子(6)或右内转子(7)与右外转子(8)之间以主轴套(1)的轴心为圆心,在同一半径(R4)上,各自配有转动限位装置,即滑块(5e、6e、7e、8e)和滑道(5f、6f、7f、8f)它允许某一侧内、外转子在某限定的角度内可自由摆动滑行,使转子叶片完成吸气和压缩工作,当达到限定角度时,可推动或阻止同侧另一个转子的转动,其滑块和滑道的设置决定发动机不等程工作的性质。其设计参数:以该转子叶片(厚度)对称轴线为其对称轴线,滑块的展开半角为E角,E角=±(吸气角/2+叶角+叶肩角);滑道的展开角为F角:F角=360度/N-E角*2*N。(如图9中图9-1、图11所示)。
所述的减压阀(4)呈45度安装在左、右机壳(2、3)两侧的减压口(2a、3a)上,其作用是使某转子叶片在做功末期的燃爆气体压强与待爆发被压缩的混合气体压强趋于平衡,为该转子借惯性推动其他两转子叶片相夹被压缩的混合气体转动到火花塞点火就位,为持续工作减少阻力,提供稳定环境,减压阀(4)的弹簧(4-3)的初始弹力=阀芯面 积*待爆发被压缩的混合气体压强(如图2所示)。
所述的左、右机壳(2、3)以主轴套(1)的轴心为圆心,在同一半径(R5)上,左视逆时针方向按一定角度依次排列(如图10、如图11所示)减压口(2a、3a)、排气口(2b、3b)、进气口(2c、3c)喷油嘴(2d、3d)、火花塞(2e、3e);在同一半径(外R6、内R7)上,左视逆时针方向按一定角度依次排列(图10所示):喷油感应点(2h、3h),启动感应点(2i、3i,其中3i分为内、外两点),点火感应点(2j、3j),它们之间的位置关系是:
排气口(2b、3b)中心线与进气口(2c、3c)中心线的夹角为BC角:BC角=叶角+2*叶肩角;
排气口(2b、3b)中心线与火花塞(2e、3e)中心线的夹角为BE角:BE角=吸气角+3*叶角+4*叶肩角;
排气口(2b、3b)中心线与减压口(2a、3a)中心线的夹角为BA角:BA角小于-(叶角+2*叶肩角);
排气口(2b、3b)中心线与喷油嘴(2d、3d)中心线的夹角为BD角:BD角大于叶角+2*叶肩角,小于吸气角+2*叶角+2*叶肩角;
启动感应点(2i、3i)与点火感应点(2j、3j)的夹角为IJ角:IJ角=叶角+2*叶肩角;
启动感应点(2i、3i)与喷油感应点(2h、3h)的夹角为IH角:IH角=-(吸气角+2*叶角+2*叶肩角);
所述的外转子(5、8)以主轴套(1)的轴心为圆心,在同一半径(外R6、内R7)上,左视逆时针方向按一定角度依次排列(如图8、图11所示):喷油感应靶(5k、8k),启动感应靶(5m、8m,其中8m分为内、外两点),点火感应靶(5n、8n);它们之间的位置关系是:
启动感应靶(5m、8m)与点火感应靶(5n、8n)的夹角为MN角:MN角=吸气角+2*叶角+2*叶肩角;
启动感应靶(5m、8m)与喷油感应靶(5k、8k)的夹角为MK角:MK角=-(吸气角+2*叶角+2*叶肩角);
在不同的半径上:启动感应点(2i、3i)与火花塞(2e、3e)的夹角为IE角:IE角=叶角/2+叶肩角;或排气口(2b、3b)中心线与启动感应点(2i、3i)的夹角为BI角:BI角=吸气角+2.5*叶角+3*叶肩角(如图11所示)。
所述的不等程工作四转子内燃发动机,其电路逻辑关系是:当机壳上点火感应点(2j或3j)与一侧外转子上的感应靶重合的同时,启动感应点(2i或3i)与另一侧外转子上的感应靶也重合-称异侧感应,电路 连通控制火花塞(2e和3e)点火;当启动感应点(2i或3i)和喷油感应点(2h或3h)与一侧外转子上的感应靶同时重合-称同侧感应,电路连通控制喷油嘴(2d和3d)喷油。
启动时:模拟发动机工作时转子运动,即启动电路打开,先使左启动电机(9)通电运转带动左外转子5转动,电磁抱闸(9a)断电放松,另一侧的右启动电机(10)断电停转,电磁抱闸(10a)通电抱死;当启动感应点即内启动感应点(2i)与左外转子5上的感应靶(5m)重合时,左启动电机(9)断电停转,电磁抱闸9a(通电)抱死,同时转换成右启动电机(10)通电运转,带动右外转子(8)转动,电磁抱闸(10a)断电放松。当启动感应点即内启动感应点3i与右外转子(8)上的感应靶(8m)重合时,实现反转换,这样反复转换辅以上述的点火和喷油控制,直至发动机正常运转,启动电路断开,启动电机(9、10)被外转子(5、8)带动转变成发电机为电池充电。
所述的不等程工作四转子内燃发动机,其工作区域在于:以主轴套(1)的轴心为圆心,在转子叶片工作圆环体(外半径=R1、内半径=R2、中心轴半径=R3)区域内(如图11所示),两转子叶片吸气完成时的夹角为吸气角;某一转子叶片做功所转过的角度为排气角;异侧两转子叶片完成压缩工作后的夹角为压缩角;排气口展开角度为=排气口角;进气口展开角度=进气口角;它们与压缩比、排吸比、叶角、叶肩角之间的逻辑关系:
360度={排气角+吸气角+(叶角+叶肩角)*4}*N;
压缩比=吸气角/压缩角;其中,压缩角=2*叶肩角;吸气角=2*叶肩角*压缩比;
排吸比=排气角/吸气角;其中,排气角=360度/N-吸气角-(叶角+叶肩角)*4;
排气口角=2*叶肩角;进气口角=2*叶肩角。
所述的不等程工作四转子内燃发动机,其辅件安装于:所述外转子(5、8)的挡圈(5-2、8-2,如图8-8所示)上设置齿轮带动数个副轴(5-3、8-3,如图8中图8-7所示),可将左、右启动电机(9、10)、冷却水泵、燃油泵、机油泵等模块化,其传动轴插接到副轴上,其机座固定到端盖(2-1、3-1)上。以提高传动效率,便于检修和更换(如图2所示)。
所述的不等程工作四转子内燃发动机,其主轴套(1)内设销键1a,可多机带一轴(如图2所示)。
所述的不等程工作四转子内燃发动机,其径向密封配件在于:在每 个转子叶片的圆周表面上设两道以上环形沟槽(如图8中图8-6、图8-7;图9中图9-6、图9-8所示),沟槽内嵌入类似于活塞环型状的转子叶片密封圈(5-1、6-1、7-1、8-1)与前者不同的是后者断面的外边缘为变弧形(如图9中图9-7所示),其开口处匿藏于与转子与叶片连接部位的沟槽内且不可沿环形沟槽转动。
所述的不等程工作四转子内燃发动机,其轴向密封配件在于:在四个转子之间,采用两片弹簧片圈(5-5和6-5、6-4和7-4、7-5和8-5)之间夹一圈沿其布置的滚珠和滚珠隔离圈(5-4、6-3、8-4),使两个相邻转子隔离,每个弹簧片圈各自嵌入各自的转子环形隔离槽(5p、6p、7p、8p如图2中图2-2所示)内;在外转子与机壳之间安装径向密封环(5-6、8-6如图8中图8-1、图8-4所示)并采用单片弹簧片圈靠在外转子的外棘轮滚珠上(5d、8d)使两者隔离,其弹簧片圈(2-2、3-2)嵌入设在机壳的环形隔离槽(2p、3p如图2中图2-1所示)内。在隔离槽内弹簧片圈的内、外直径边缘部位与转子或机壳接触,其中间段被架空,当转子与转子或机壳两者受外力靠拢时,滚珠压迫弹簧片圈变形,使两者之间形成排斥力。此番作为的目的:其一是将两机壳包裹四转子其六者之间间隙均匀化,当发动机工作时零件受热膨胀时,其间隙变小,油膜封闭缝隙,又避免挤死;其二是将六者之间的接触形成滚动摩擦,减小运行阻力。要达到此番目的可以通过选用弹簧圈厚薄,研磨隔离槽的沟槽深浅,等方法事先配制成套;
在所述四个转子叶片根部下方(腋下)设弧形槽,槽内嵌入左、右补偿片简称-左、右补偿片(5-8、5-7;6-8、6-7;7-8、7-7;8-8、8-7如图8中图8-4;图9中图9-3所示),其两者之间安装波形弹簧片简称-补偿弹簧(5-9、6-9、7-9、8-9、)用于封闭发动机启动时(冷机状态)两机壳和四转子六者之间叶片根部下方(腋下)间隙。
本发明与现有技术相比具有明显的优点和有益效果。
a、本发明能够实现一般现有内燃发动机所不能,可以设计成:做功的行程是吸气行程的数倍乃至十倍以上,实现不等程工作,可将每一次燃烧膨胀后气体产生的压力最大限度地转化成做功-即废气排放压力约等于压缩混合气体压力,实现内燃发动机功效成倍增长;提高燃料使用效率,降低高压尾气排放,减轻其震动和噪音。
b、本发明的发动机转子工作是步动式转动,即一侧某一转子运转做功,同侧另一转子和另一侧转子两转子静止待发,为其三者之间的喷油和油气充分混合提供了宝贵时间,燃料适用性强,有利于后面的充分 燃烧,为今后开展多种燃料的混燃提供了可能。
c、本发明的发动机做功靠两转子叶片之间的燃气爆发,其中一转子将反力传给机座,另一转子带动主轴套做功,很象撑竿行船,传力直接,机械传动损耗小;转子对主轴套做功完成后自动脱离并利用自身的惯性动能带动其他转子转动就位,连续对主轴套做功。实现了有益的能量转换,自身能耗低。其零部件种类少,可缩小、减轻发动机整机体积和重量。
d、本发明的发动机在两侧机壳上设置了数个副轴,副轴的转动与两侧外转子同步,可将左、右启动电机(9、10)、冷却水泵、燃油泵、机油泵等模块化其传动轴插接到副轴上;机座固定到端盖(2-1、3-1)上,以提高配套设备的传动效率,缩小发动机整机体积,又便于检修和更换。
e、本机的动力输出采用轴套方式,其优点之一是装拆方便,便于维修;优点之二是可方便串联多台发动机,满足多种动力要求,进一步降低系统能耗。
f、本发明对发动机的转子叶片周边设计了数道类似于活塞环式的密封环,其密封效果不低于活塞式发动机;对轴向即转子与转子或机壳之间设计了滚珠及隔离环和隔离槽与弹簧片圈使其间隙保持稳定,当发动机受热膨胀时其间隙变小被油膜密封,又使其间形成滚动摩擦,减小运转阻力;当发动机启动时(冷机状态)设于两机壳和四转子六者之间叶片根部(腋下)的弧形槽内的左、右补偿片封闭其间隙。其实用性强,整体上提高了转子发动机的密封效果。
具体实施方式
所述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的具体实施方式内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下配合附图,详细说明如下。
附图说明
图1不等程工作四转子内燃发动机结构示意图之一A-A剖面图。
图2不等程工作四转子内燃发动机结构示意图之二B-B剖面图。
图3不等程工作四转子内燃发动机工作原理示意图之一。
图4不等程工作四转子内燃发动机工作原理示意图之二。
图5不等程工作四转子内燃发动机启动原理示意图之一。
图6不等程工作四转子内燃发动机启动原理示意图之二。
图7不等程工作四转子内燃发动机转子组装示意图。
图8不等程工作四转子内燃发动机左外转子(5)示意图。
图9不等程工作四转子内燃发动机左内转子(6)示意图。
图10不等程工作四转子内燃发动机右机壳(3)示意图。
图11单叶型不等程工作四转子内燃发动机设计参数示意图。
其中:
1.不等程工作四转子内燃发动机的主要零配件及功能部位名称(如图1、图2所示)。其中Xw表示X编号零件的第w编号的功能部位名称;X-Y;表示X编号零件的第Y编号相关配件。
1.1主轴套-1。其功能部位有:1a-销键;其主要配件有:1-1轴承、1-2轴承顶圈。
1.2左或右机壳-2或3。其功能部位有:2a、3a-左、右减压口,2b、3b-左、右排气口,2c、3c-左、右进气口,2d、3d-左、右喷油嘴,2e、3e-左、右火花塞,2f、3f-左、右水腔,2g、3g-左、右支撑环,2h、3h-左、右喷油感应点,2i、3i-左、右启动感应点,2j、3j-左、右点火感应点,2p、3p-左、右环形隔离槽;其主要配件有:2-1或3-1-左、右端盖,2-2或3-2-左、右弹簧片圈1#,2-3-机壳密封环。
1.3减压阀-4。其主要配件有:4-1-阀壳,4-2-阀芯,4-3-弹簧,4-4-推杆,4-5-调整螺母。
1.4左外转子或右外转子-5或8。其功能部位有:5a、8a-扇叶,5b、8b-叶肩,5c、8c-内棘轮,5d、8d-外棘轮,5e、8e-滑块,5f、8f-滑道,5k、8k-喷油感应靶,5m、8m-启动感应靶,5n、8n-点火感应靶,5p、8p-环形隔离槽;其主要配件有:5-1或8-1-转子叶片密封环,5-2或8-2-挡圈,5-3或8-3-副轴,5-4或8-4-滚珠隔离环,5-5或8-5-弹簧片圈2#,5-6或8-6-转子径向密封环,5-7或8-7-左补偿片,5-8或8-8-右补偿片,5-9或8-9-补偿弹簧。
1.5左内转子、右内转子-6、7。其功能部位有:6a、7a-扇叶,6b、7b-叶肩,6c、7c-内棘轮,6e、7e-滑块,6f、7f-滑道,6p、7p-环形隔离槽;其主要配件有:6-1或7-1-转子叶片密封环,6-2或7-2-挡圈,6-3-滚珠隔离环,6-4或7-4-弹簧片圈3#,6-5或7-5-弹簧片圈2#,6-7或7-7-左补偿片,6-8或7-8-右补偿片,6-9或7-9-补偿弹簧。
1.6左、右启动电机-9、10。其功能部位有:9a、10a-左、右电磁抱闸(断电时开;通电时抱死)。
2.不等程工作四转子内燃发动机工作原理概述(如图3、图4所示)
当经压缩夹着空气和燃料的混合气体(简称混合气体)的相邻两个转子叶片旋转经过火花塞被点燃时,燃爆后形成高压气体就会推动某一转子(第二转子)的叶片(以左视方向)向顺时针方向转动,这时该转子就会被(自身的或通过滑块传递使同侧外转子的)外棘轮将其锁紧于机壳(2或3)之上使之不动,将反作用力传递给机壳(2或3);而推动另一转子(第一转子)的叶片做逆时针旋转,其初期,其他三个转子的叶片处于静止状态完成喷油、混合工作,此时该转子的内棘轮就会将其锁紧于主轴套(1)之上使之旋转形成发动机的动力,在该转子在旋转过程的末期其滑块会碰上与其同侧第三转子的滑块推动其叶片旋转进行(与第二转子之间的)压缩工作和(与第四转子之间的)吸气工作,随后该转子的叶肩会碰上第四转子(与其异侧转子)的叶肩,将上一次燃爆后废气挤出,同时通过减压阀对燃后的废气进行减压使之与压缩后的混合气体等压,最后再利用该转子的转动惯性使新的夹着空气和燃料混合气体的相邻两个转子叶片旋转经过火花塞……。其中,火花塞点火和喷油嘴喷油动作是由设在机壳上的感应器和外转子上的感应靶重合引发逻辑电路接通控制完成的。
2.1发动机工作初期图解说明(图3所示)
如图3-1、图3-2所示:左外转子叶片(5a)和右内转子叶片(7a)夹着经压缩的燃料和空气混合气体(以下简称:混合气体)被推动以左视逆时针旋转过程中,当左外转子(5)上启动感应靶(5m)与左机壳(2)上的点火感应点(2j)和右外转子(8)上点火感应靶(8n)与右机壳(3)上的启动感应点(3i)同时重合,串联电路被接通,火花塞(2e和3e)点火;当右外转子(8)上点火感应靶(8n)与右机壳(3)上的启动感应点(3i)和右外转子(8)上喷油感应靶(8m)与右机壳(3)上的喷油感应点(3h)同时重合,串联电路被接通,喷油嘴(2d和3d)喷油。右内转子(7)的叶片(7a)欲顺时针转动,但右内转子(7)的滑块(7e)被右外转子(8)上的滑块(8e)顶住,右外转子(8)上的外棘轮(8d)锁定右机壳(3)的支撑环(3g)上不能动。左内转子叶片(6a)上的叶肩(6b)被右外转子(8)上叶肩(8b)顶住保持静止。
如图3-3、图3-4所示:左外转子(5)转动,其内飞轮(5c)锁定主轴套(1)转动输出动力,左外转子叶片(5a)与右外转子叶片(8a)之间的空间缩小,将上一次燃烧的废气从排气口(2b和3b)挤压排出。另外三个转子叶片(7a、6a、8a)不动,启动感应靶(8m)与喷油感应点(3h)和点火感应靶(8n)与启动感应点(3i)保持重合,喷油嘴(2d和3d)继续喷油。
2.2发动机工作末期图解说明(图4所示)
如图4-1、图4-2所示:右内转子叶片(7a)前有燃后的高压气体,后有右外转子滑块(8e)顶住不能动,左内转子滑块(6e)被左外转子滑块(5e)推动,左内转子叶片(6a)转动与右内转子叶片(7a)之间对混合气体进行压缩,左内转子叶片(6a)远离右外转子叶片(8a)进行吸气工作。为使左外转子叶片(5a)与右内转子叶片(7a)和左内转子叶片(6a)与右内转子叶片(7a)之间的气体形成等压,余压由减压口(2a和3a)外接减压阀(4)排出。
如图4-3、图4-4所示:左外转子叶片(5a)借惯性转动,同时推动左内转子叶片(6a)、右内转子叶片(7a)、右外转子叶片(8a)逆时针旋转,直至点火感应靶(5n)与启动感应点(2i)和启动感应靶(5m)与喷油感应点(2h)重合,喷油嘴(2d和3d)喷油;同时点火感应靶(5n)与启动感应点(2i)和点火感应靶(8n)与点火感应点(3j)重合,火花塞(2e和3e)点火,新的循环开始。
3.不等程工作四转子内燃发动机启动原理概述(如图5、图6)
通过设在外转子(5、8)上的感应靶和外机壳(2、3)上的感应器之间的重合与分离,施以启动逻辑电路的控制,使左、右启动电机与左、右电磁抱闸交叉动作以模拟发动机工作运转,配合工作时逻辑电路的控制使发动机启动。
3.1发动机启动初期图解说明(图5所示)
如图5-1、图5-2所示:当处于停机状态时:左外转子叶片(5a)、左内转子叶片(6a)、右内转子叶片(7a)、右外转子叶片(8a)自然垂落;启动时:先使左启动电机(9)通电带动左外转子(5)旋转,同时给右电磁抱闸(10a)通电,锁定右外转子(8)使之不动。
如图5-3、图5-4所示:左外转子叶片(5a)逆时针旋转,直至启动感应靶(5m)与启动感应点(2i)和喷油感应靶(5k)与喷油感应点(2h)重合,喷油嘴(2d和3d)喷油;当启动感应靶(5m)与启动感应点(2i)重合时,左电磁抱闸(9a)通电将左外转子(5)抱死,左启动电机(9)停电不动,右电磁抱闸(10a)断电将右外转子(8)放松,右启动电机(10)通电转动,带动右外转子叶片(8a)推动右内转子叶片(7a)、左内转子叶片(6a)转动。由于左外转子(5)未动,喷油嘴(2d和3d)继续喷油。
3.2发动机启动末期图解说明(图6所示)
如图6-1、图6-2所示:右启动电机(10)通电转动带动右外转子叶 片(8a)推动右内转子叶片(7a)、左内转子叶片(6a)转动转动,右内转子叶片(7a)封堵吸气口(2c和3c)并压缩与左外转子叶片(5a)间的混合气体。
如图6-3、图6-4所示:右外转子叶片(8a)继续转动,当启动感应靶(5m)与点火感应点(2j)和点火感应靶(8n)与启动感应点(3i)同时重合时,火花塞(2e和3e)点火爆发;启动感应靶(8m)与喷油感应点(3h)和点火感应靶(8n)与启动感应点(3i)同时重合,喷油嘴(2d和3d)喷油,启动完成。
4.以一款单叶型不等程工作四转子内燃发动机为例,说明主要参数设计:(如图11所示);
设:所述发动机,压缩比=10;每个转子上的叶片数量为N=1;以主轴套1的轴心为圆心在其工作圆环体内半径R1=100mm;外半径R2=200mm;中线半径R3=150mm;转子叶片的叶角=12度;叶肩角=2度;
吸气角=压缩比*2*叶肩角=10*2*2=40度;
因为:360度=[排气角+吸气角+(叶角+叶肩角)*4]*N;
所以:排气角=360度/N-吸气角-(叶角+叶肩角)*4=360度/1-40度-(12度+2度)*4=264度;
排吸比(排气量与吸气量之比)=排气角/吸气角=264度/40度=6.6;
排气口展开角度(简称排气口角)=2*叶肩角=2*2度=4度;
进气口展开角度(简称进气口角)=2*叶肩角=2*2度=4度;
以所述发动机主轴套1的轴心为圆心同一半径R4=70mm上:
滑块的展开半角=E角=±(吸气角/2+叶角+叶肩角)=±(20+12+2)=±34度;
转动限位沟槽的展开角=F角=360度-E角*2=360-68=292度
以所述发动机主轴套1的轴心为圆心同一半径R5=185.372mm上:
排气口(2b、3b)与进气口(2c、3c)的夹角=BC角=叶角+叶肩角*2=12+2*2=16度;
排气口(2b、3b)与火花塞(2e、3e)的夹角=BE角=吸气角+3叶角+4叶肩角=40+36+8=84度;
排气口(2b、3b)与减压口(2a、3a)的夹角=BA角=小于-(叶角+2叶肩角)=-16度;为避让与其他零件干扰选用-18度
排气口(2b、3b)与喷油嘴(2d、3d)的夹角=BD角=大于叶角+2叶肩角=16度;=小于吸气角+2叶角+2叶肩角=40+24+4=68度;为避让与其他零件干扰选用58度
以所述发动机主轴套1的轴心为圆心同一半径R6=77mm上:
启动感应点(2i、3i)与点火感应点(2j、3j)的夹角=IJ角=叶角+叶肩角*2=12+4=16度;
启动感应点(2i、3i)与喷油感应点(2h、3h)的夹角=IH角=-(吸气角+2*叶角+2*叶肩角)=-(40+24+4)=-68度;
启动感应靶(5m、8m)与点火感应靶(5n、8n)的夹角=MN角=吸气角+2*叶角+2*叶肩角=40+24+4=68度;
启动感应靶(5m、8m)与喷油感应靶(5k、8k)的夹角=MK角=-(吸气角+叶角*2+2*叶肩角)=-(40+24+4)=-68度;
内启动感应点(2i、3i)和内启动感应靶(5m、8m)在R7=67mm上;(启动感应点(2i、3i)与火花塞(2e、3e)的夹角=IE角=叶角/2+叶肩角=6+2=8度;或排气口(2b、3b)与启动感应点(2i、3i)的夹角=BI角=吸气角+2.5叶角+3叶肩角=40+30+6=76度;)
如果把某一部位的极坐标如排气口(2b、3b)或启动感应点(2i、3i)确定了,上述各部位之间的位置也就确定了;上述各部位与轴心之间的(半径)距离关系,要依据发动机各零件结构及功能部位设置要求而定,这里就不予赘述(如图11所示)。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
工业应用性,可行性,适用性,先进性。
5.工业应用性
5.1可行性分析
首先以上述实例对所述发动机所用材料强度进行分析:当转子逆时针转动做功(工作最大压力=100大气压)时,转子叶片的根部剪应力计算:转子叶片压力=(5cm×5cm×3.14×100kg/cm2)=7850kg,叶片中心距主轴套轴心距离=15cm,其转子叶片的力距=7850kg×15cm=117750kg.cm,其转子叶片的根部剪力=117750kg.cm÷10cm=11775kg,左内转子(6)叶片根部(最小)截面积=(3.157cm×0.684cm×2)=4.29cm2,其转子的根部剪应力=11775kg÷4.29cm2=2745kg/cm2;叶片根部拉(压)应力=7850 kg×5cm÷[2.1cm×3.157cm×(2.1cm-0.684cm)]=4181kg/cm2;转子内飞轮的辊子强度计算:转子叶片的力距=117750kg.cm(同上),辊子中心距主轴套轴心距离=4.25cm,内飞轮的辊子受剪力=117750kg.cm÷4.25cm=27705kg,内飞轮的辊子压应力=27705÷(0.6cm×0.5cm×30)=3078kg/cm2。综上所述,虽然中碳(45#)钢材能满足制作上述零件的要求,但上述零件受反复应力作用,抗疲劳和耐冲击性能要求高,因此选用抗疲劳、耐冲击性能高的中碳合金调质钢,结合摩擦面的表面处理为佳。
所述发动机的制造可行性分析:转子加工较复杂可以把转子与叶片分别加工后再焊接,只要组装定位措施和焊接材料、方法、工艺得当,是可以保证焊接强度、组装精度和控制焊接变形的;其二是左、右机壳和内、外转子六者之间的隔离弹性和间隙可以通过选用弹簧圈厚薄调整弹性,研磨隔离槽的深浅控制间隙,制作专用胎架等方法反复调试-配制成套予以解决;其他零配件易加工或选用成品件(如轴承、滚珠、辊子、螺栓等)。
5.2适用性分析
本发明所使用的燃料适用性分析:发动机转子工作是步动式转动的,即一侧某一转子运转做功,同侧另一转子和另一侧转子两转子静止待发,为适用多种燃料和燃气混合提供了宝贵时间,有利于和后面的充分燃烧;由于本发明的左、右机壳上都设有喷油嘴、火花塞,可以适用双燃料(或增加喷油嘴,实现多燃料)供应(如汽油、柴油混喷;汽油、乙醇混喷等)或燃料及助爆液供应(如汽油和水等)和火花塞双频点火。
本发明对动力要求的适用性分析:虽发动机转子工作是步动式转动的,但做功完成后与主轴套脱离,主轴套借惯性转动基本是匀速的,与现有发动机没区别,适用动力要求广泛,特别适用对大功率动力输出的需求,如选用双叶或多叶型不等程工作四转子内燃发动机,发动机震动会进一步减小,动力输出会更平稳;发动机的动力输出采用轴套方式,其优点之一是装拆方便,便于维修;优点之二是可方便串联多台发动机,适用多种动力要求,进一步降低系统能耗。
5.3先进性效能分析:以上述举例的单叶型不等程工作四转子内燃发动机与直径100四缸活塞式发动机进行对比分析:
所述发动机两转子叶片吸气时的夹角称吸气角=40度;两转子在工作圆环体中线距离=150*2*3.14*40/360=105mm与直径100mm四缸活塞式发动机单个气缸吸气行程近似。
所述发动机排吸比=6.6;约是直径100mm四缸活塞式发动机单个气缸排气量的6.6倍;理论增加做功 =100%+50%+33%+25%+20%+16.7%+14.3*0.6-100%=153%。在油耗相等的条件下,前者比后者多做功1.5倍;
所述发动机转子做功角度=排气角=264度并且以接力方式连续做功;主轴套旋转一周做功=360度/264度=1.36次;比直径100mm四缸活塞式发动机做功次数多0.36倍。
综上所述前者比后者增加做功总量=1.36*153%=208.6%。即前者比后者增加油耗36%,但前者是后者做功总量的308.6%。其先进性显而易见。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不局限于上述事例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当提出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种不等程工作四转子内燃发动机,其特征在于:由主轴套(1),左、右机壳(2、3),减压阀(4),左外转子(5),左内转子(6),右内转子(7),右外转子(8),左启动电机(9),右启动电机(10),径向、轴向密封等零、配件组成;
    所述的主轴套(1)按顺序穿过左机壳(2)、左外转子(5)、左内转子(6)、右内转子(7),右外转子(8)、右机壳(3)的轴心(如图2所示)。
    所述的四转子叶片,以同侧内、外转子分别交叉后,两侧转子再交叉,其叶片按左视顺时针排列为左外转子叶片(5a)、右内转子叶片(7a)、左内转子叶片(6a)、右外转子叶片(8a)布置组装(如图1、图7所示),其每个转子上的叶片数量为N,转子的叶片厚度展开角度称为叶角。
    所述的四个转子叶片的根部两侧设有叶肩(即5b、6b、7b、8b,如图7、图8、图9所示),其厚度展开角度称为叶肩角,当两个叶肩相触时叶片之间相夹的体积与其叶片在吸气时相夹的体积之反比为发动机压缩比。
    所述的每个转子与主轴套(1)之间都配有一个内棘轮(5c、6c、7c、8c),从左视方向看,当转子左视逆时针方向转动时,锁紧两者一起转动,形成发动机的动力输出,当转子不转动时不影响主轴套(1)的惯性转动(如图8中图8-2、图8-1、图9中图9-1、图9-2所示)。
    所述的外转子(5或8)与机壳(2或3)上的支撑环(2g或3g)之间,各配有一个外棘轮(5d或8d),当转子左视顺时针方向转动时锁紧两者,让转子不动,将反力传给机座(如图8中图8-1、图8-3所示)。
    所述的每对同侧转子即左外转子(5)与左内转子(6)或右内转子(7)与右外转子(8)之间以主轴套(1)的轴心为圆心,在同一半径(R4)上,各自配有转动限位装置,即滑块(5e、6e、7e、8e)和滑道(5f、6f、7f、8f)它允许某一侧内、外转子在某限定的角度内可自由摆动滑行,当达到限定角度时,可推动或阻止同侧另一个转子的转动,以该转子叶片(厚度)对称轴线为其对称轴线,滑块的展开半角为E角,E角=土(吸气角/2+叶角+叶肩角);滑道的展开为F角:F角=360度/N-E角*2*N。(如图9中图9-1、图11所示)。
    所述的减压阀(4)呈45度安装在左、右机壳(2、3)两侧的减压口(2a、3a)上,减压阀(4)的弹簧(4-3)的初始弹力=阀芯面积*待爆发被压缩的混合气体压强(如图2所示)。
    所述的左、右机壳(2、3)以主轴套(1)的轴心为圆心,在同一半 径(R5)上,左视逆时针方向按一定角度依次排列(如图10、如图11所示)减压口(2a、3a)、排气口(2b、3b)、进气口(2c、3c)喷油嘴(2d、3d)、火花塞(2e、3e);在同一半径(外R6、内R7)上,左视逆时针方向按一定角度依次排列(图10所示):喷油感应点(2h、3h),启动感应点(2i、3i,其中3i分为内、外两点),点火感应点(2j、3j),它们之间的位置关系是:
    排气口(2b、3b)中心线与进气口(2c、3c)中心线的夹角为BC角:BC角=叶角+2*叶肩角;
    排气口(2b、3b)中心线与火花塞(2e、3e)中心线的夹角为BE角:BE角=吸气角+3*叶角+4*叶肩角;
    排气口(2b、3b)中心线与减压口(2a、3a)中心线的夹角为BA角:BA角小于-(叶角+2*叶肩角);
    排气口(2b、3b)中心线与喷油嘴(2d、3d)中心线的夹角为BD角:BD角大于叶角+2*叶肩角,小于吸气角+2*叶角+2*叶肩角;
    启动感应点(2i、3i)与点火感应点(2j、3j)的夹角为IJ角:IJ角=叶角+2*叶肩角;
    启动感应点(2i、3i)与喷油感应点(2h、3h)的夹角为IH角:IH角=-(吸气角+2*叶角+2*叶肩角);
    所述的外转子(5、8)以主轴套(1)的轴心为圆心,在同一半径(外R6、内R7)上,左视逆时针方向按一定角度依次排列(如图8中图8-1所示):喷油感应靶(5k、8k),启动感应靶(5m、8m,其中8m分为内、外两点),点火感应靶(5n、8n);它们之间的位置关系是:
    启动感应靶(5m、8m)与点火感应靶(5n、8n)的夹角为MN角:MN角=吸气角+2*叶角+2*叶肩角;
    启动感应靶(5m、8m)与喷油感应靶(5k、8k)的夹角为MK角:MK角=-(吸气角+2*叶角+2*叶肩角);
    在不同的半径上:启动感应点(2i、3i)与火花塞(2e、3e)的夹角为IE角:IE角=叶角/2+叶肩角;或排气口(2b、3b)中心线与启动感应点(2i、3i)的夹角为BI角:BI角=吸气角+2.5*叶角+3*叶肩角(如图11所示)。
  2. 根据权利要求1所述的不等程工作四转子内燃发动机,其工作区域特征在于:以主轴套(1)的轴心为圆心,在转子叶片工作圆环体(如图11所示,外半径=R1、内半径=R2、中心轴半径=R3)区域内,两转子叶片吸气完成时的夹角为吸气角;某一转子叶片做功所转过的角度为排气角;异侧两转子叶片完成压缩工作后的夹角为压缩角;排气口展开角度 为=排气口角;进气口展开角度=进气口角;它们与压缩比、排吸比、叶角、叶肩角之间的逻辑关系:
    360度={排气角+吸气角+(叶角+叶肩角)*4}*N;
    压缩比=吸气角/压缩角;其中,压缩角=2*叶肩角;吸气角=2*叶肩角*压缩比;
    排吸比=排气角/吸气角;其中,排气角=360度/N-吸气角-(叶角+叶肩角)*4;
    排气口角=2*叶肩角;进气口角=2*叶肩角。
  3. 根据权利要求1所述的不等程工作四转子内燃发动机,其辅件安装特征在于:所述外转子(5、8)的挡圈(5-2、8-2,如图8-8所示)上设置齿轮带动数个副轴(5-3、8-3,如图8中图8-7所示),可将左、右启动电机(9、10)、冷却水泵、燃油泵、机油泵等模块化,其传动轴插接到副轴上,其机座固定到端盖(2-1、3-1)上。
  4. 不等程工作四转子内燃发动机,其所述径向密封配件特征在于:在每个转子叶片的圆周表面上设两道以上环形沟槽(如图8中图8-6、8-7;图9中图9-6、9-8所示),沟槽内嵌入类似于活塞环型状的转子叶片密封圈(5-1、6-1、7-1、8-1)与前者不同的是后者断面的外边缘为变弧形(如图9中图9-7所示),其开口处匿藏于与转子与叶片连接部位的沟槽内且不可沿环形沟槽转动。
  5. 不等程工作四转子内燃发动机,其所述轴向密封配件特征在于:在四个转子之间,采用两片弹簧片圈(5-5和6-5、6-4和7-4、7-5和8-5)之间夹一圈沿其布置的滚珠和滚珠隔离圈(5-4、6-3、8-4),使两个相邻转子隔离,每个弹簧片圈各自嵌入各自的转子环形隔离槽(5p、6p、7p、8p如图2中图2-2所示)内;在外转子与机壳之间安装径向密封环(5-6、8-6如图8中图8-1、图8-4所示)并采用单片弹簧片圈靠在外转子的外棘轮滚珠上(5d、8d)使两者隔离,其弹簧片圈(2-2、3-2)嵌入设在机壳的环形隔离槽(2p、3p如图2中图2-1所示)内。在隔离槽内弹簧片圈的内、外直径边缘部位与转子或机壳接触,其中间段被架空,当转子与转子或机壳两者受外力靠拢时,滚珠压迫弹簧片圈变形,使两者之间形成排斥力。
    在所述四个转子叶片根部下方(腋下)设弧形槽,槽内嵌入左、右补偿片简称-左、右补偿片(5-8、5-7;6-8、6-7;7-8、7-7;8-8、8-7如图8中图8-4;图9中图9-3所示),其两者之间安装波形弹簧片简称-补偿弹簧(5-9、6-9、7-9、8-9、)用于封闭两机壳和四转子六者之间叶片根部下方(腋下)间隙。
PCT/CN2015/000429 2014-07-11 2015-06-19 不等程工作四转子内燃发动机 WO2016004746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410329334.3 2014-07-11
CN201410329334.3A CN105275600B (zh) 2014-07-11 2014-07-11 不等程工作四转子内燃发动机

Publications (1)

Publication Number Publication Date
WO2016004746A1 true WO2016004746A1 (zh) 2016-01-14

Family

ID=55063550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000429 WO2016004746A1 (zh) 2014-07-11 2015-06-19 不等程工作四转子内燃发动机

Country Status (2)

Country Link
CN (1) CN105275600B (zh)
WO (1) WO2016004746A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939523B (zh) * 2017-11-28 2020-11-03 斯凯伦动力设备科技(兴化)有限公司 一种应用于柴油发电机组装的端盖
CN108223791B (zh) * 2018-01-04 2020-01-10 中国人民解放军国防科技大学 一种活塞环自旋减磨结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949688A (en) * 1989-01-27 1990-08-21 Bayless Jack H Rotary internal combustion engine
CN1458392A (zh) * 2003-04-23 2003-11-26 郑伟勇 环形气缸旋转式发动机
US20060225691A1 (en) * 2005-04-12 2006-10-12 Mccoin Dan K Differential with guided feedback control for rotary opposed-piston engine
US20080159897A1 (en) * 2005-01-13 2008-07-03 Eliodoro Pomar Reciprocating Component-Free Kinematic Motion Apparatus for Transforming Pressure Variations of a Fluid Operating in Cyclically Variable Volume Toroidal Chambers into a Mechanical Work on a Rotary Axis and Engine Including Said Apparatus
CN101432512A (zh) * 2006-05-09 2009-05-13 冈村有限会社 旋转活塞型内燃机
CN102322338A (zh) * 2011-06-16 2012-01-18 王尚锋 双转子旋转活塞发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949688A (en) * 1989-01-27 1990-08-21 Bayless Jack H Rotary internal combustion engine
CN1458392A (zh) * 2003-04-23 2003-11-26 郑伟勇 环形气缸旋转式发动机
US20080159897A1 (en) * 2005-01-13 2008-07-03 Eliodoro Pomar Reciprocating Component-Free Kinematic Motion Apparatus for Transforming Pressure Variations of a Fluid Operating in Cyclically Variable Volume Toroidal Chambers into a Mechanical Work on a Rotary Axis and Engine Including Said Apparatus
US20060225691A1 (en) * 2005-04-12 2006-10-12 Mccoin Dan K Differential with guided feedback control for rotary opposed-piston engine
CN101432512A (zh) * 2006-05-09 2009-05-13 冈村有限会社 旋转活塞型内燃机
CN102322338A (zh) * 2011-06-16 2012-01-18 王尚锋 双转子旋转活塞发动机

Also Published As

Publication number Publication date
CN105275600A (zh) 2016-01-27
CN105275600B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
US5720251A (en) Rotary engine and method of operation
US20130081591A1 (en) Rotary internal combustion engine
JP2004529285A (ja) ロータリーマシン並びに熱サイクル
US9010286B2 (en) Internal combustion engine and compressor or pump with rotor and piston construction, and electrical generator pneumatically driven by same
KR20070119689A (ko) 방사상 축, 구형식 로터리 머신
KR20160143785A (ko) 편심 활동 베인 펌프
CN103261625A (zh) 旋转阀连续流可膨胀室动态和正向位移旋转装置
WO2016004746A1 (zh) 不等程工作四转子内燃发动机
US20030062020A1 (en) Balanced rotary internal combustion engine or cycling volume machine
US20020056420A1 (en) Internal combustion rotary engine
CN206016959U (zh) 偶式叶轮转子发动机
JP6316191B2 (ja) 軌道式の非往復動内燃機関
WO1999031363A1 (en) Orbital internal combustion engine
US3923018A (en) Compact rotating internal combustion engine
CN113167172A (zh) 转子型内燃机及其工作方法
RU133564U1 (ru) Адиабатный газопаровой турбодвигатель романова
US20130118445A1 (en) Rotary piston engine
US5419288A (en) Spherical piston radial action engine
EP3953573B1 (en) Improved rotating combustion machine
TWI582301B (zh) 活塞差速回轉引擎
CN102425470A (zh) 内置旋转配气阀、静压轴承曲线球滚道内燃发动机
CN108730045B (zh) 一种自适应阀控活塞发动机
EP1085182B1 (en) Internal combustion rotary engine
CN106014615B (zh) 转叶式发动机
CN105041465A (zh) 直轴型波轮发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818192

Country of ref document: EP

Kind code of ref document: A1