WO2016003097A1 - Organic semiconductor compound, method for producing same, and organic electronic element and organic solar cell element comprising same - Google Patents

Organic semiconductor compound, method for producing same, and organic electronic element and organic solar cell element comprising same Download PDF

Info

Publication number
WO2016003097A1
WO2016003097A1 PCT/KR2015/006281 KR2015006281W WO2016003097A1 WO 2016003097 A1 WO2016003097 A1 WO 2016003097A1 KR 2015006281 W KR2015006281 W KR 2015006281W WO 2016003097 A1 WO2016003097 A1 WO 2016003097A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
solar cell
organic
heteroaryl
semiconductor compound
Prior art date
Application number
PCT/KR2015/006281
Other languages
French (fr)
Korean (ko)
Inventor
황도훈
김지훈
박종백
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150087273A external-priority patent/KR101678580B1/en
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2016003097A1 publication Critical patent/WO2016003097A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic semiconductor compound, a method for manufacturing the same, and an organic electronic device and an organic solar cell device including the same, and more particularly, thieno [3,2-b] thiophene ⁇ -bridges.
  • Intermediate bandgap organic semiconductor compound comprising thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD), a method for preparing the same, and an organic electronic device and an organic solar cell device including the same It is about.
  • the organic semiconductor compound of the present invention is a high performance organic semiconductor compound suitable for stacked and single layer organic solar cell devices.
  • the photovoltaic industry with more than 6GW installed in 2009, formed an independent industrialized country with a $ 30 billion market, and is expected to continue growing rapidly until the mid-21st century.
  • organic solar cells represented by dye-sensitized and organic thin film types are not yet entering the market in earnest, but they can lead the 'ubiquitous solar' era that is expected due to cheap material cost, process cost, and light, flexible and transparent characteristics. Another possibility is presented.
  • BIPV building integrated photovoltaic system
  • the improvement of the efficiency is remarkable due to the new device configuration and the change of the process conditions, so that the donor material having a low bandgap and the charge mobility are still good to replace the existing material.
  • the development of new acceptor materials continues to require research and development.
  • a multilayer organic solar cell using an electron donor material that absorbs different light in each monolayer by making such a monolayer into a laminate has been actively studied. This results in the sum of the open voltages, the average short-circuit current, and the FF of two monolayers, and more than twice the performance of single layer organic solar cells has been reported.
  • a stacked organic solar cell is divided into a bottom cell and a top cell. In the lower layer, an electron donor material and an electron acceptor material exhibiting absorption of 300-600 nm are used, and in the upper layer, an electron donor and acceptor material of 600-1000 nm is used.
  • the present invention provides thieno [3,4-c having thieno [3,2-b] thiophene [pi] -bridges suitable for the bottom cell of a high performance stacked organic solar cell to replace P3HT. ] Middle bandgap organic semiconductor compound comprising pyrrole-4,6 (5H) -dione (TPD).
  • the present invention also provides a method for producing the organic semiconductor compound of the present invention.
  • the present invention also provides an organic electronic device containing the organic semiconductor compound of the present invention.
  • the present invention also provides a stacked type and single layer organic solar cell device containing the organic semiconductor compound of the present invention.
  • the present invention provides an organic semiconductor compound having an intermediate bandgap performance superior to that of P3HT, which is a representative material included in the lower layer of the stacked organic solar cell device, and provides a world-class single layer organic solar cell photoactive organic semiconductor compound. More specifically thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) with thieno [3,2-b] thiophene ⁇ -bridges An organic semiconductor compound is provided.
  • the organic semiconductor compound of the present invention is represented by the following Chemical Formula 1:
  • D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene
  • X is S, Se, O or NR ';
  • R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
  • R ' is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
  • the arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
  • the alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
  • n is an integer from 1 to 2000;
  • the organic semiconductor compound of the present invention is thieno [3] between an electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1).
  • TPD electron acceptor thieno [3,4-c] pyrrole-4,6
  • various electron donors (representing D in formula 1).
  • 2-b] thiophene ⁇ -bridges are introduced and copolymerized with various electron donors to form stacked and single layer organic electronic devices, specifically, the lower layer and single layer organic solar cell devices of the stacked organic solar cell devices. It can be used to.
  • the organic semiconductor compound of the present invention exhibited an intermediate bandgap similar to P3HT, and exhibits excellent crystallinity due to the introduction of thieno [3,2-b] thiophene ⁇ -bridges in the molecule, Improved hole and electron mobility and nano structure can be realized, and the world-class performance in single-layer organic solar cell devices using the same, as well as the world-class performance in stacked organic solar cell devices was implemented.
  • Aryl described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms in each ring as appropriate. It includes the system. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, peryleneyl, chrysenyl, naphthacenyl, fluoranthenyl, and the like.
  • heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected by a single bond.
  • monocyclic heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, isoxazolyl, oxazolyl, pyridyl, benzofuranyl, dibenzofuranyl, di Polycyclic heteros such as benzothiofail, benzothiophenyl, isobenzofuranyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzooxazolyl, quinolyl, isoquinolyl, carbazolyl and the like Aryl and the like, but are not limited thereto.
  • the D is C 3 -C 30 heteroarylene, preferably at least one heteroarylene selected from the following structures:
  • R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
  • R 13 to R 20 are each independently of the other hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 are C 1 -C 30 alkyl.
  • the organic semiconductor compound of Chemical Formula 1 may be represented by the following Chemical Formula 2, Chemical Formula 3 or Chemical Formula 4.
  • X is S, Se or O
  • R 1 and R 2 independently of one another are C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl or C 1 -C 30 alkoxyC 3 -C 20 heteroaryl ;
  • R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1- C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
  • R 13 to R 16 independently of one another are hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
  • n is an integer from 1 to 2000.
  • R 1 may be each C 1 -C 30 alkyl in terms of high charge mobility and high electron density and high solubility in an organic solvent.
  • C 6 -C 30 alkyl more preferably C 6 -C 18 alkyl
  • R 2 may be C 1 -C 30 alkyl, preferably Wherein a is an integer from 1 to 5, and R may be branched C 3 -C 25 alkyl and preferably branched C 11 -C 25 alkyl.
  • a is an integer from 1 to 5
  • R may be branched C 3 -C 25 alkyl and preferably branched C 11 -C 25 alkyl.
  • R 11 and R 12 of Chemical Formula 2 are each independently C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 to control the electron density in the molecule and to improve the solubility in an organic solvent.
  • the organic semiconductor compound of the present invention may be selected from the following structures, but is not limited thereto.
  • N is an integer of 1 to 2000.
  • the present invention also provides a method of preparing an organic semiconductor compound represented by Chemical Formula 1 by copolymerizing a tin compound represented by Chemical Formula 5 with a tt-TPD derivative represented by Chemical Formula 6.
  • D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene
  • X is S, Se, O or NR ';
  • Y is halogen
  • R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
  • R ' is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
  • the arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
  • the alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
  • the tin compound of Formula 5 and the tt-TPD derivative of Formula 6 may be prepared by a method commonly recognized by those skilled in the art.
  • the present invention also provides an organic electronic device, in particular an organic thin film transistor or an organic solar cell, comprising the organic semiconductor compound of the present invention. More specifically, an organic electronic device containing the organic semiconductor compound of the present invention in a photoactive layer is provided.
  • the organic electronic device of the present invention can be any conventional organic electronic device that can be recognized by those skilled in the art, but in general, the organic solar cell is a metal / organic conductor (photoactive layer) / metal (Metal-Semiconductor or Insulator-Metal, MSM, MIM) structure, which has a high work function and uses indium tin oxide (ITO), which is a transparent electrode, as an anode, and Ag, Al, or Ca having a low work function as a cathode.
  • ITO indium tin oxide
  • BHJ Bit Hetero Junction
  • the organic semiconductor compound / C60 composite solution which is a photoactive layer, is coated on the ITO layer with a thickness of about 100 nm by spin coating or inkjet printing.
  • Al or Ca metal is vacuum-deposited and used as a cathode, and an extruder blocking layer (EBL) layer is inserted between the electrode and the photoactive layer to enhance the life of the charge as necessary.
  • EBL extruder blocking layer
  • a mixture of PEDOT (Poly (3,4-Ethylenedioxythiophene)) and PSS (poly (styrenesulfonate) may be used.
  • the diffusion distance of excitons in organic electron donor materials is about 10-30 nm, which is much shorter than the proper thickness of electron donor materials for solar absorption (over 100 nm).
  • the existing bi-layer (BL) structure is difficult to solve this problem.
  • both materials constituting the BL (bi-layer) structure are organic monomolecules, deposition must be performed.
  • the polymer BHJ structure uses a mixture of electron donor (D) and electron acceptor (A) materials to simplify the manufacturing process and increase the surface area at the D / A (Donor / Acceptor) interface. Not only increases the possibility of, but also increases the charge collection efficiency as an electrode.
  • the organic solar cell according to the present invention preferably has a BHJ structure, and the organic semiconductor compound according to the present invention is used as an electron donor material and at least one selected from the following electron acceptor materials is mixed to form an active layer. It is preferable.
  • the electron acceptor materials it is more preferable to use materials such as PCBM and PCBCR, which are designed to be well dissolved in an organic solvent, but are not limited thereto.
  • organic solar cells In general organic solar cells, electrons are discharged to the cathode and holes are discharged to the anode, whereas inverted organic solar cells are electrons to the anode and holes are discharged to the cathode.
  • the general organic solar cell uses PEDOT: PSS mainly as a hole transport layer, and thus has a high acidity and an acid layer is formed. Therefore, there is a disadvantage in that the lifetime of the device is short and the device life is short due to the rapid oxidation rate of electrodes such as Al. More preferred is an inverted organic solar cell which is a more stable device.
  • the stacked organic solar cell forms two layers of photoactive layers having different absorptions, thereby absorbing the necessary area in each layer, thereby achieving higher efficiency than a single layer organic solar cell.
  • the inverted stacked organic solar cell flows electrons and holes in opposition to general organic solar cells for stability, and simultaneously forms two photoactive layers to absorb light in a wider area.
  • the stacked organic solar cell device is preferably an inverted stacked organic solar cell device.
  • the metal-insulator-metal (MIM) structure is repeated once more. That is, the BHJ structure of the electron donor and the electron acceptor is made in the lower layer and the MIM structure is made in the upper layer once again, similar to the MIM structure of the single layer device.
  • MIM metal-insulator-metal
  • the organic semiconductor compound of the present invention is thieno [3] between the electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1).
  • TPD electron acceptor thieno [3,4-c] pyrrole-4,6
  • various electron donors (representing D in formula 1).
  • the introduction of off-pi pi-bridges provides excellent crystallinity, improved hole and electron mobility, and nano structure.
  • the organic semiconductor compound of the present invention has higher performance than P3HT which is generally used because it has intermediate bandgap, high open voltage, high FF and thermal stability, which are the conditions of the organic semiconductor that can be used for the lower layer in the stacked organic solar cell.
  • organic semiconductor compound of the present invention exhibits improved performance through combination with various electron donor materials.
  • the organic semiconductor compound of the present invention has high thermal stability and high solubility in organic solvents.
  • the organic semiconductor compound of the present invention is thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) having thieno [3,2-b] thiophene ⁇ -bridges. ) Is introduced into the electron acceptor and copolymerized with various electron donors, thereby exhibiting an intermediate bandgap, so that the stacked organic electrons including the same have a high efficiency by combining the organic semiconductor compound of the present invention with a fullerene derivative which is a photoactive layer.
  • the organic semiconductor compound of the present invention has high thermal stability and high solubility, so that the organic electronic device including the same has excellent electrical properties, and thus may be very useful in place of P3HT in the lower layer of the organic electronic device, in particular, a stacked organic solar cell. .
  • the present invention has been developed as a new electron donor (donor) material and exhibits a very excellent effect as a breakthrough (breakthrough) that can increase the maximum energy conversion efficiency of the existing organic solar cell.
  • the present invention also provides a method for producing an organic semiconductor compound having high electrical properties.
  • BHJ bulk heterojunction
  • TGA thermal stability
  • Example 6 is a UV spectrum of a solution state and a solid film state of the polymer prepared in Example 7.
  • Example 7 is a UV spectrum of a solution state and a solid film state of the polymer prepared in Example 8.
  • FIG. 10 is a J-V characteristic curve of single layer organic solar cells manufactured in Examples 9 and 10.
  • FIG. 10 is a J-V characteristic curve of single layer organic solar cells manufactured in Examples 9 and 10.
  • FIG. 11 is a J-V characteristic curve of a single layer organic solar cell manufactured in Example 11.
  • Example 12 is a J-V characteristic curve of a single layer organic solar cell manufactured in Example 12.
  • FIG. 13 shows the structure of an inverted stacked organic solar cell device of Example 13.
  • FIG. 14 shows the structure of materials used in each layer of the inverted stacked organic solar cell device of Example 13.
  • FIG. 15 shows the UV-visible absorption spectra of the lower layer and the upper layer photoactive polymer of the inverted stacked organic solar cell device of Example 13.
  • Figure 16 shows (a) the current-voltage curve of the upper layer using PTB7: PCBM, (b) the current-voltage curve of the lower layer using P3HT: ICBA generally used as the lower layer photoactive polymer of the stacked organic solar cell, (c) P3HT : Current-voltage curve of an inverted stacked organic solar cell (Comparative Example 1) using ICBA / PTB7: PCBM as the photoactive layer, (d) Polymer 4: Example 4 The single-layer organic layer of Example 10 using the PCB4 as the photoactive layer The current-voltage curve of the solar cell, and (e) the current-voltage curve of the inverted-laminated organic solar cell of Example 13 using the polymer 4: PCBM / PTB7: PCBM of Example 4 as the photoactive layer.
  • PCB acceptor [6,6] -phenyl C71-butyric acid methyl ester
  • the 1 H NMR spectrum was measured using a Varian Mercury Plus 300 MHz spectrometer, and the ultraviolet absorption spectrum was measured by JASCO JP / V-570.
  • Cyclic Voltammetry was measured using CH Instruments Electrochemical Analyzer to determine HOMO Level of materials. JV curve of solar cell was measured using 1Kw Solar simulator (Newport 91192). It was. IPCE characteristics were measured by Solar cell response / Quantum efficiency / IPCE Measurement system (PV Measurements. Inc.).
  • 8tt-TPD was prepared by the same method as 6tt-TPD of Preparation Example 1.
  • 10tt-TPD was prepared by the same method as 6tt-TPD of Preparation Example 1.
  • the product was purified by an extractor (Soxhlet) to obtain polymer compounds 4, 5, and 6, respectively.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI) and decomposition temperature (T d ) of the obtained polymer compounds are described in Table 1 below.
  • the product was purified by an extractor (Soxhlet) to obtain a polymer compound 7.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI) and decomposition temperature (T d ) of the obtained polymer compound are shown in Table 1 below.
  • Polymeric compound in the same manner as in Example 7 except for using 5,5'-bis (trimethylstannyl) -2,2'-bithiophene instead of 2,5-bis (trimethylstannyl) thiophene 8 was prepared, and the weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI), and decomposition temperature (T d ) of the obtained polymer compound are shown in Table 1 below.
  • the polymers prepared in Examples 1 to 8 were well dissolved in chloroform, THF, and toluene which are common organic solvents at room temperature. Physical properties and optical properties of the polymers prepared in Examples 1 to 6 of the obtained polymers are shown in FIGS. 3 to 4.
  • thermogravimetric analysis (TGA) curves of the polymers prepared in Examples 1 to 6 are shown in FIG. 3, and as shown in FIG. 3, the organic semiconductor compounds of the present invention are thermally very stable.
  • UV absorption spectra of the solution state and the solid film state of the polymer prepared in Examples 1 to 6 were measured and shown in FIGS. 4 and 5, respectively.
  • UV absorption spectra of the solution state and the solid film state of the polymers prepared in Examples 7 and 8 were measured and shown in FIGS. 6 and 7, respectively.
  • the polymers prepared in Examples 1 to 8 commonly exhibit absorptions of 300 to 700 nm in the UV absorption spectrum in the chloroform solution state, and particularly strong vibration peaks are observed. This can be seen as a peak due to strong interactions between molecules.
  • the ferrocene / ferrocenium redox system (Ferrocene / Ferrocenium redox system) (-4.8V) based on the reference (Reference) in the solid film state measured by cyclic voltammetry (Cyclic Voltammertry) prepared in Examples 1 to 8 HOMO levels of the polymers were obtained, which are shown in FIGS. 8 and 9.
  • the six polymers prepared in Examples 1 to 6 were calculated to have a HOMO energy level of -5.48 eV, and the two polymers prepared in Examples 7 and 8 were to a HOMO energy level of -5.65 eV and -5.54 eV, respectively.
  • the two polymers prepared in Examples 7 and 8 were to a HOMO energy level of -5.65 eV and -5.54 eV, respectively.
  • a single layer organic solar cell device containing an organic semiconductor compound according to the present invention as a photoactive layer was fabricated as follows.
  • UV-O 3 was treated on clean indium tin oxide (ITO) glass, ZnO NPs (Zinc oxide nanopartile) was spin-coated at 5000 rpm for 1 minute, and then heat-treated at 120 ° C. for 10 minutes to transport 10 nm thick electrons. A layer (Electron transport layer (ETL)) was formed.
  • ITO indium tin oxide
  • ZnO NPs Zinc oxide nanopartile
  • PCBM (C70) is a weight ratio of 1: 1, when using a polymer 7 or polymer 8, polymer 7 or polymer 8: PCBM (C70) is 1: 1.3, 1: 1.5 or 1: 1.7 weight ratio Used as.
  • V oc open circuit voltage
  • J SC short-circuit current density
  • FF fill factor
  • PCE photoelectric conversion efficiency
  • the J-V characteristic curves of the single layer organic solar cell devices manufactured in Examples 9 to 12 are illustrated in FIGS. 10 to 12.
  • Each polymer was combined with an additive such as DIO (1,8-diiodooctane) to obtain more improved photoelectric conversion efficiency.
  • the polymers exhibited high photoelectric conversion efficiency of 8.23, 8.33, 9.21 and 5.05%, respectively.
  • the organic solar cell device of Example 11 has a photoelectric conversion efficiency of 9% or more, which can be seen as the world's highest photoelectric conversion efficiency.
  • ZnO NPs were spin-coated at 5000 rpm for 1 minute, and then heat-treated at 120 ° C. for 10 minutes to form a 10 nm-thick electron transport layer (Electron transport). layer: ETL).
  • Polymer 4 of Example 4 and PC 71 BM were added to chlorobenzene in a weight ratio of 1: 1, and then DIO (1,8-diiodooctane) was added at 3 vol%, followed by 24 hours at 50 ° C for sufficient mixing of the two materials. While stirring, an organic semiconductor compound mixture was prepared. After the organic semiconductor compound mixture was spin-coated on the ETL layer, which is the coating layer, under nitrogen atmosphere, heat-treated at 120 ° C. for 10 minutes to form a 90 nm photoactive layer, followed by PEDOT: PSS (poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate)) was spin-coated.
  • PSS poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate)
  • the ZnO NPs is coated once again to form an electron transport layer having a thickness of 10 nm, and PTB7: PC 71 BM, which is a low bandgap organic semiconductor compound, has a weight ratio of 1: 1.5.
  • DIO 1,8-diiodooctane
  • the low bandgap organic semiconductor compound mixture solution was spin-coated at 2000 rpm on the ETL layer, which was the coating layer, under nitrogen to form an 80 nm photoactive layer.
  • a high-temperature deposition with MoO 3 (10 nm) / Ag (100 nm) to fabricate an inverted stacked organic solar cell device.
  • An inverted stacked organic solar cell device was manufactured in the same manner as in Example 13 except that P3HT was used instead of Polymer 4 of Example 4 and IC 60 BA was used instead of PC 71 BM.
  • the electrical characteristics of the solar cell device are shown in Table 3 below.
  • P3HT used in an inverted stacked organic solar cell was used in combination with a bis-adduct called IC 60 BA (Indene-C60 Bis-Adduct) (Comparative Example 1).
  • IC 60 BA Indene-C60 Bis-Adduct
  • the inverted stacked organic solar cell of Example 13 including the polymer 4 synthesized in the present invention showed excellent FF of 74% while exhibiting a very high photoelectric conversion efficiency of 9.35%.
  • 74% of FF is one of the best device characteristics in the world. This is a much better result than the conventionally used P3HT (Fig. 16). This is due to the excellent crystallinity of the polymer 4 synthesized in the present invention and excellent charge balance between holes and electrons. The properties of these polymers are advantageous for achieving high FF.
  • the present invention has been compared with P3HT: IC 60 BA which is generally used as a lower layer photoactive layer in an inverted stacked organic solar cell.
  • the photoelectric conversion efficiency of 8.47% was shown for the device of Comparative Example 1 of P3HT: IC 60 BA / PTB7: PC 71 BM (FIG. 16C). That is, it can be seen that the polymer 4, which is a novel organic semiconductor compound of the present invention, serves as a very important material that can exhibit more improved efficiency of the current inverted stacked organic solar cell.
  • the organic semiconductor compound of the present invention is thieno [3] between the electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1).
  • TPD electron acceptor thieno [3,4-c] pyrrole-4,6
  • various electron donors (representing D in formula 1).
  • the introduction of off-pi pi-bridges provides excellent crystallinity, improved hole and electron mobility, and nano structure.
  • the organic semiconductor compound of the present invention has higher performance than P3HT which is generally used because it has intermediate bandgap, high open voltage, high FF and thermal stability, which are the conditions of the organic semiconductor that can be used for the lower layer in the stacked organic solar cell.
  • organic semiconductor compound of the present invention exhibits improved performance through combination with various electron donor materials.
  • the organic semiconductor compound of the present invention has high thermal stability and high solubility in organic solvents.
  • the organic semiconductor compound of the present invention is thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) having thieno [3,2-b] thiophene ⁇ -bridges. ) Is introduced into the electron acceptor and copolymerized with various electron donors, thereby exhibiting an intermediate bandgap, so that the stacked organic electrons including the same have a high efficiency by combining the organic semiconductor compound of the present invention with a fullerene derivative which is a photoactive layer.
  • the organic semiconductor compound of the present invention has high thermal stability and high solubility, so that the organic electronic device including the same has excellent electrical properties, and thus may be very useful in place of P3HT in the lower layer of the organic electronic device, in particular, a stacked organic solar cell. .
  • the present invention has been developed as a new electron donor (donor) material and exhibits a very excellent effect as a breakthrough (breakthrough) that can increase the maximum energy conversion efficiency of the existing organic solar cell.
  • the present invention also provides a method for producing an organic semiconductor compound having high electrical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

The present invention relates to an organic semiconductor compound of a tandem organic solar cell having excellent electrical properties, and a compound exhibiting world-class photoelectric conversion efficiency in a single-layer organic solar cell element, a method for producing same, and an organic electronic element and an organic solar cell element comprising same, the organic semiconductor compound of the present invention having high thermal stability, solubility, and charge mobility, thereby exhibiting excellent performance in the tandem organic solar cell comprising same.

Description

유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기 전자 소자 및 유기 태양전지 소자Organic semiconductor compound, preparation method thereof, organic electronic device and organic solar cell device including same
본 발명은 유기 반도체 화합물, 이의 제조방법, 및 이를 포함하는 유기 전자 소자 및 유기 태양전지 소자에 관한 것으로, 보다 상세하게는 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 가지는 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)을 포함하는 중간 밴드갭 유기 반도체 화합물, 이의 제조방법, 및 이를 포함하는 유기 전자 소자 및 유기 태양전지 소자에 관한 것이다.The present invention relates to an organic semiconductor compound, a method for manufacturing the same, and an organic electronic device and an organic solar cell device including the same, and more particularly, thieno [3,2-b] thiophene π-bridges. Intermediate bandgap organic semiconductor compound comprising thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD), a method for preparing the same, and an organic electronic device and an organic solar cell device including the same It is about.
본 발명의 유기 반도체 화합물은 적층형 그리고 단일층 유기 태양전지 소자에 적합한 고성능 유기 반도체 화합물이다.The organic semiconductor compound of the present invention is a high performance organic semiconductor compound suitable for stacked and single layer organic solar cell devices.
태양광 산업은 2009년에 세계적으로 6GW 이상의 설치량을 보이면서 300억 불 시장의 독립적인 산업국을 형성하였으며 21세기 중반까지도 지속적인 급성장세가 예상되고 있다. The photovoltaic industry, with more than 6GW installed in 2009, formed an independent industrialized country with a $ 30 billion market, and is expected to continue growing rapidly until the mid-21st century.
현재의 주종 품목은 태양광 발전시장에서 압도적인 용도를 갖는 결정질 실리콘 태양전지이지만 최근 들어 a-Si, CdTe, CIGS 등 무기계 박막 태양전지들의 시장 점유율이 꾸준히 증가 하고 있고 실제로 2009년에는 20% 수준 까지 상승하였다. Current main products are crystalline silicon solar cells with overwhelming use in the photovoltaic market, but the market share of inorganic thin film solar cells such as a-Si, CdTe and CIGS has been steadily increasing, and in fact, it has reached 20% in 2009. Rose.
또한 염료감응형 및 유기 박막형으로 대변되는 유기 태양전지들은 아직 본격적으로 시장에 진입하고 있지는 못하지만 값싼 재료비와 공정비, 그리고 가볍고 유연하며 투명한 특성들을 내세워 앞으로 예상되는 ‘ubiquitous solar' 시대를 선도할 수 있는 또 다른 가능성을 제시 하고 있다. In addition, organic solar cells represented by dye-sensitized and organic thin film types are not yet entering the market in earnest, but they can lead the 'ubiquitous solar' era that is expected due to cheap material cost, process cost, and light, flexible and transparent characteristics. Another possibility is presented.
현재는 성능이 낮아 활용에 다소 제한이 있기는 하지만 앞으로 10%이상의 고효율이 확보 되면 본격적으로 건물의 창이나 발코니 등에 설치하여 수려한 외관을 창출하며 동시에 전기를 생산해내는 소위 BIPV (building integrated photovoltaic system) 용도에 크게 쓰여 질 것으로 예상된다. 또한 장래에는 다양한 유연성 디스플레이와 군수용, 실내용 그리고 일회용 태양전지 등 21세기 solar 시대를 뒷받침하는 다양한 에너지원 역할을 할 것으로 기대된다. Currently, its performance is somewhat limited due to its low performance, but when high efficiency of 10% or more is secured in the future, it is used in so-called BIPV (building integrated photovoltaic system), which creates a beautiful appearance by generating it in windows or balconies in earnest and produces electricity at the same time. Is expected to be written largely. In the future, it is expected to serve as a variety of energy sources supporting the 21st century solar era, including various flexible displays, military, indoor and disposable solar cells.
그러나 유기 태양전지의 가능성이 처음 제시되었던 1970년대에는 효율이 너무 낮아 실용성이 없었으며, 1986년 이스트만 코닥(Eastman Kodak)의 탕(C.W. Tang)이 프탈로시아닌 구리(copper phthalocyanine, CuPc)와 페릴렌 테트라카복실산(perylene tetracarboxylic acid) 유도체를 이용한 이중층 구조로 다양한 태양전지로서의 실용화 가능성을 보이자, 유기 태양전지에 대한 관심과 연구가 급속도로 증가하며 많은 발전을 가져왔다. 이후 1995년에는 유(Yu) 등에 의해 BHJ(bulk-heterojunction) 개념이 도입되었고, PCBM과 같이 용해도가 향상된 플러렌(fullerene) 유도체가 n 형 반도체 물질로 개발되면서 유기 태양전지는 효율 면에서 획기적인 발전이 있었다. However, in the 1970s, when the potential for organic solar cells was first proposed, its efficiency was so low that it was impractical.In 1986, Eastman Kodak's Tang was replaced with copper phthalocyanine (CuPc) and perylene tetracarboxylic acid. As the double layer structure using perylene tetracarboxylic acid derivatives showed the possibility of practical use as various solar cells, interest and research on organic solar cells increased rapidly and brought about a lot of development. Since 1995, the concept of bulk-heterojunction (BHJ) was introduced by Yu et al., And fullerene derivatives with improved solubility, such as PCBM, were developed as n-type semiconductor materials. there was.
특히, 유기 태양전지는 2000년 이후 연구가 급격히 증가 하였고, 용액공정으로 광활성을 도입할 수 있는 고분자 태양전지는 2000년 초 PPV계 고분자를 PCBM과의 bulk-hetero junction 개념을 도입함으로서 의미있는 수준의 효율을 얻기 시작하여, P3HT를 광활성층으로 사용함으로써 4~6% 의 효율을 일반적으로 얻을 수 있게 되었고, 이러한 결과로 학계와 산업계의 관심을 끌어 새로운 소재와 소자 구조를 개발하려는 시도들이 2005년 이후 본격적으로 시작되었다. In particular, research on organic solar cells has increased rapidly since 2000, and polymer solar cells that can introduce photoactivity as a solution process were introduced at the beginning of 2000 by introducing the concept of bulk-hetero junction with PCBM. By beginning to gain efficiency, the use of P3HT as a photoactive layer generally yielded efficiencies of 4 to 6%. As a result, attempts to develop new materials and device structures have attracted the attention of academia and industry since 2005. It started in earnest.
고분자 태양전지의 경우 새로운 소자 구성 및 공정 조건의 변화 등으로 효율의 향상이 두드러지고 있어, 여전히 기존의 물질을 대체하기 위해 낮은 밴드갭(bandgap)을 지니는 주개(donor)물질과 전하 이동도가 좋은 새로운 받개(acceptor)물질들의 개발이 지속적으로 연구개발이 요구되고 있다. In the case of the polymer solar cell, the improvement of the efficiency is remarkable due to the new device configuration and the change of the process conditions, so that the donor material having a low bandgap and the charge mobility are still good to replace the existing material. The development of new acceptor materials continues to require research and development.
현재 까지는, 단층형 유기 태양전지 소자를 이용하여 8%의 효율을 전세계적으로 보고하고 있다. To date, 8% efficiency has been reported worldwide using single layer organic solar cell devices.
하지만 이와 같은 단층을 적층으로 만들어 보다 각각의 단층에 서로 다른 빛을 흡수하는 전자 주개 물질을 이용하는 적층형 유기 태양전지가 활발히 연구되고 있다. 이는 두 개의 단층에서 나타나는 개방전압의 합, 평균의 단락전류, FF를 구현하여, 단층형 유기 태양전지의 두 배 이상의 성능이 보고되고 있다. 일반적으로 적층형 유기 태양전지는 아래층(bottom cell)과 윗층(top cell)으로 구분된다. 아래층에는 300-600nm의 흡수를 나타내는 전자 주개 재료와 전자 받개 재료를 이용하고, 윗층에는 600-1000nm에 이르는 전자 주개와 받개 재료를 이용한다. 대부분 연구의 진행 경과는, 아래층은 P3HT:ICBA를 이용하고, 윗층의 낮은 밴드갭을 가지는 신규 재료를 합성하여 이를 이용한 적층형 유기 태양전지가 보고되고 있다. 현재 2012년 UCLA 의 Prof. Yang Yang 그룹에서 10.6%의 적층형 유기 태양전지가 현재 최고의 유기 태양전지 효율이며, 2012년 이후 소재의 부족으로 인해 정체되어있다.However, a multilayer organic solar cell using an electron donor material that absorbs different light in each monolayer by making such a monolayer into a laminate has been actively studied. This results in the sum of the open voltages, the average short-circuit current, and the FF of two monolayers, and more than twice the performance of single layer organic solar cells has been reported. In general, a stacked organic solar cell is divided into a bottom cell and a top cell. In the lower layer, an electron donor material and an electron acceptor material exhibiting absorption of 300-600 nm are used, and in the upper layer, an electron donor and acceptor material of 600-1000 nm is used. Most of the progress of the research, P3HT: ICBA is used as a lower layer, a stacked organic solar cell using a new material having a low band gap of the upper layer has been reported. Currently, Prof. UCLA of 2012 In the Yang Yang group, 10.6% of the stacked organic solar cell is the best organic solar cell efficiency at present, and has been stagnant since 2012 due to the shortage of materials.
본 발명은 P3HT를 대신할 고성능의 적층형 유기 태양전지의 아래층(bottom cell)에 적합한 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 가지는 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)을 포함하는 중간 밴드갭 유기반도체 화합물을 제공한다. The present invention provides thieno [3,4-c having thieno [3,2-b] thiophene [pi] -bridges suitable for the bottom cell of a high performance stacked organic solar cell to replace P3HT. ] Middle bandgap organic semiconductor compound comprising pyrrole-4,6 (5H) -dione (TPD).
또한 본 발명은 본 발명의 유기반도체 화합물을 제조하는 방법을 제공한다.The present invention also provides a method for producing the organic semiconductor compound of the present invention.
또한 본 발명은 본 발명의 유기반도체 화합물을 함유하는 유기 전자 소자를 제공한다.The present invention also provides an organic electronic device containing the organic semiconductor compound of the present invention.
또한 본 발명은 본 발명의 유기반도체 화합물을 함유하는 적층형 그리고 단일층 유기 태양전지 소자를 제공한다.The present invention also provides a stacked type and single layer organic solar cell device containing the organic semiconductor compound of the present invention.
본 발명은 적층형 유기 태양전지 소자의 아래층에 포함되는 대표적인 물질인 P3HT보다 뛰어난 성능의 중간 밴드갭의 유기 반도체 화합물을 제공하는 것이고, 세계 최고수준의 단일층 유기 태양전지 광활성 유기 반도체 화합물을 제공하는 것으로, 보다 상세하게는 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 가지는 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)을 포함하는 유기 반도체 화합물을 제공한다. The present invention provides an organic semiconductor compound having an intermediate bandgap performance superior to that of P3HT, which is a representative material included in the lower layer of the stacked organic solar cell device, and provides a world-class single layer organic solar cell photoactive organic semiconductor compound. More specifically thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) with thieno [3,2-b] thiophene π-bridges An organic semiconductor compound is provided.
본 발명의 유기 반도체 화합물은 하기 화학식 1로 표시된다:The organic semiconductor compound of the present invention is represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2015006281-appb-I000001
Figure PCTKR2015006281-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
D는 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene;
X 는 S, Se, O 또는 NR'이며;X is S, Se, O or NR ';
R1 및 R2는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, C1-C30알콕시C3-C20헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
R'는 수소, C1-C30알킬 또는 C6-C30아르C1-C30알킬이며;R 'is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
상기 D의 아릴렌 및 헤테로아릴렌은 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
상기 R1 및 R2의 알킬 및 아르알킬은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노, 모노- 또는 디-C1-C30알킬아미노, 하이드록시, 할로겐, 사이아노, 나이트로, 할로C1-C30알킬, C1-C30알킬실릴 및 C6-C30아릴실릴로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
n는 1 내지 2000의 정수이고;n is an integer from 1 to 2000;
상기 헤테로아릴 및 헤테로아릴렌은 N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.The heteroaryl and heteroarylene include one or more heteroatoms selected from N, O, S, P (= 0), Si and P.
본 발명의 유기 반도체 화합물은 전자 받개인 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)과 다양한 전자 주개(화학식 1에서 D를 나타냄) 사이에 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 도입하여 다양한 전자 주개와의 공중합을 통하여 적층형 그리고 단일층 유기 전자 소자, 구체적으로 적층형 유기 태양전지 소자의 아래층 그리고 단일층 유기 태양전지 소자에 이용될 수 있다.The organic semiconductor compound of the present invention is thieno [3] between an electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1). , 2-b] thiophene π-bridges are introduced and copolymerized with various electron donors to form stacked and single layer organic electronic devices, specifically, the lower layer and single layer organic solar cell devices of the stacked organic solar cell devices. It can be used to.
특히 본 발명의 유기 반도체 화합물은 P3HT와 유사한 중간 밴드갭을 나타냈고, 분자 내에서 티에노[3,2-b]티오펜 π-브릿지(π-bridges)의 도입으로 인해 우수한 결정성을 나타내며, 향상된 정공과 전자 이동도, 그리고 나노 구조(nano structure)를 구현할 수 있으며, 이를 이용한 단일층 유기 태양전지 소자에서 세계 최고 수준의 성능을 나타내었을 뿐만 아니라, 적층형 유기 태양전지 소자에서도 세계 최고 수준의 성능을 구현하였다. In particular, the organic semiconductor compound of the present invention exhibited an intermediate bandgap similar to P3HT, and exhibits excellent crystallinity due to the introduction of thieno [3,2-b] thiophene π-bridges in the molecule, Improved hole and electron mobility and nano structure can be realized, and the world-class performance in single-layer organic solar cell devices using the same, as well as the world-class performance in stacked organic solar cell devices Was implemented.
본 발명에 기재된 “알킬”, “알콕시” 및 그 외 “알킬” 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.Substituents comprising the "alkyl", "alkoxy" and other "alkyl" moieties described herein include both straight and pulverized forms.
본 발명에 기재된 “아릴”은 하나의 수소 제거에 의한 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.“Aryl” described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms in each ring as appropriate. It includes the system. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, peryleneyl, chrysenyl, naphthacenyl, fluoranthenyl, and the like.
본 발명에 기재된 “헤테로아릴”은 방향족 고리 골격 원자로서 B, N, O, S, P(=O), Si 및 P로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠환과 축합된 다환식 헤테로아릴이다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된 형태도 포함한다. 구체적인 예로 퓨릴, 티오펜일, 피롤릴, 이미다졸릴, 피라졸릴, 티아졸릴, 이소티아졸릴, 이속사졸릴, 옥사졸릴, 피리딜 등의 단환 헤테로아릴, 벤조퓨란일, 다이벤조퓨란일, 다이벤조티오페일, 벤조티오펜일, 이소벤조퓨란일, 벤조이미다졸릴, 벤조티아졸릴, 벤조이소티아졸릴, 벤조이속사졸릴, 벤조옥사졸릴, 퀴놀릴, 이소퀴놀릴, 카바졸릴 등의 다환식 헤테로아릴 등을 포함하지만, 이에 한정되지 않는다.The "heteroaryl" described in the present invention includes 1 to 4 heteroatoms selected from B, N, O, S, P (= O), Si and P as aromatic ring skeleton atoms, and the remaining aromatic ring skeleton atoms are carbon. Meaning an aryl group which is 5 to 6 membered monocyclic heteroaryl and polycyclic heteroaryl condensed with one or more benzene rings. In addition, heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected by a single bond. Specific examples include monocyclic heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, isoxazolyl, oxazolyl, pyridyl, benzofuranyl, dibenzofuranyl, di Polycyclic heteros such as benzothiofail, benzothiophenyl, isobenzofuranyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzooxazolyl, quinolyl, isoquinolyl, carbazolyl and the like Aryl and the like, but are not limited thereto.
본 발명의 일 실시예에 따른 상기 화학식 1의 유기반도체 화합물에서 상기 D는 C3-C30헤테로아릴렌으로, 바람직하게는 하기 구조에서 선택되는 하나 이상의 헤테로아릴렌일 수 있다:In the organic semiconductor compound of Formula 1 according to an embodiment of the present invention, the D is C 3 -C 30 heteroarylene, preferably at least one heteroarylene selected from the following structures:
Figure PCTKR2015006281-appb-I000002
Figure PCTKR2015006281-appb-I000002
상기 R11 및 R12는 각각 독립적으로 수소, C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
R13 내지 R20는 서로 독립적으로 수소, C1-C30알킬, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이다.R 13 to R 20 are each independently of the other hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 are C 1 -C 30 alkyl.
본 발명의 일 실시예에 따른 상기 화학식 1의 유기반도체 화합물에 있어서, 상기 유기반도체 화합물은 바람직하게 하기 화학식 2, 화학식 3 또는 화학식 4로 표시될 수 있다.In the organic semiconductor compound of Chemical Formula 1 according to an embodiment of the present invention, the organic semiconductor compound may be represented by the following Chemical Formula 2, Chemical Formula 3 or Chemical Formula 4.
[화학식 2][Formula 2]
Figure PCTKR2015006281-appb-I000003
Figure PCTKR2015006281-appb-I000003
[화학식 3][Formula 3]
Figure PCTKR2015006281-appb-I000004
Figure PCTKR2015006281-appb-I000004
[화학식 4][Formula 4]
Figure PCTKR2015006281-appb-I000005
Figure PCTKR2015006281-appb-I000005
상기 화학식 2 내지 4에서,In Chemical Formulas 2 to 4,
X는 S, Se 또는 O이며;X is S, Se or O;
R1 및 R2는 서로 독립적으로 C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬 또는 C1-C30알콕시C3-C20헤테로아릴이며;R 1 and R 2 independently of one another are C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl or C 1 -C 30 alkoxyC 3 -C 20 heteroaryl ;
R11 및 R12는 각각 독립적으로 수소, C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1- C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
R13 내지 R16는 서로 독립적으로 수소, C1-C30알킬, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이고;R 13 to R 16 independently of one another are hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
n는 1 내지 2000의 정수이다.n is an integer from 1 to 2000.
본 발명의 일 실시예에 따른 유기반도체 화합물에 있어서, 높은 전하이동도 및 높은 전자 밀도와 함께 유기용매에 대한 높은 용해도를 가지기 위한 측면에서 R1은 각각 C1-C30알킬일 수 있으며, 바람직하게는 C6-C30알킬일 수 있으며, 보다 바람직하게는 C6-C18알킬일 수 있고; R2는 C1-C30알킬일 수 있으며, 바람직하게는
Figure PCTKR2015006281-appb-I000006
일 수 있으며, 여기서 a는 1 내지 5의 정수이고, R은 분지쇄의 C3-C25알킬일 수 있고 바람직하게는 분지쇄의 C11-C25알킬일 수 있다. 상기 R2에서 a 값이 증가함에 따라 결정성 증가와 이동도 증가로 인해 유기 태양전지 소자의 특성을 더욱 향상시킬 수 있다.
In the organic semiconductor compound according to the embodiment of the present invention, R 1 may be each C 1 -C 30 alkyl in terms of high charge mobility and high electron density and high solubility in an organic solvent. Preferably C 6 -C 30 alkyl, more preferably C 6 -C 18 alkyl; R 2 may be C 1 -C 30 alkyl, preferably
Figure PCTKR2015006281-appb-I000006
Wherein a is an integer from 1 to 5, and R may be branched C 3 -C 25 alkyl and preferably branched C 11 -C 25 alkyl. As the value of a in R 2 increases, the characteristics of the organic solar cell device may be further improved due to an increase in crystallinity and an increase in mobility.
또한, 분자 내의 전자 밀도를 조절함과 동시에 유기 용매에 대해 용해도를 향상시키기 위하여 상기 화학식 2의 R11 및 R12는 각각 독립적으로 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬일 수 있으며, 바람직하게는 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬 또는 C1-C30알킬C3-C30헤테로아릴일 수 있으며, 보다 바람직하게는 C1-C30알킬티에닐 또는 C1-C30알콕시일 수 있다.In addition, R 11 and R 12 of Chemical Formula 2 are each independently C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 to control the electron density in the molecule and to improve the solubility in an organic solvent. -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl, preferably C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl or C 1 -C 30 alkylC 3 -C 30 heteroarylyl More preferably, C 1 -C 30 alkylthienyl or C 1 -C 30 alkoxy.
본 발명의 일 실시예에 있어서, 본 발명의 유기반도체 화합물은 하기 구조에서 선택되는 것일 수 있으나, 이에 한정이 되는 것은 아니다.In one embodiment of the present invention, the organic semiconductor compound of the present invention may be selected from the following structures, but is not limited thereto.
Figure PCTKR2015006281-appb-I000007
Figure PCTKR2015006281-appb-I000007
Figure PCTKR2015006281-appb-I000008
Figure PCTKR2015006281-appb-I000008
Figure PCTKR2015006281-appb-I000009
Figure PCTKR2015006281-appb-I000009
Figure PCTKR2015006281-appb-I000010
Figure PCTKR2015006281-appb-I000010
Figure PCTKR2015006281-appb-I000011
Figure PCTKR2015006281-appb-I000011
Figure PCTKR2015006281-appb-I000012
Figure PCTKR2015006281-appb-I000012
Figure PCTKR2015006281-appb-I000013
Figure PCTKR2015006281-appb-I000013
Figure PCTKR2015006281-appb-I000014
Figure PCTKR2015006281-appb-I000014
상기 n은 1 내지 2000의 정수이다.N is an integer of 1 to 2000.
또한 본 발명은 하기 화학식 5의 주석 화합물과 하기 화학식 6의 tt-TPD 유도체를 공중합 반응시켜 상기 화학식 1로 표시되는 유기반도체 화합물을 제조하는 방법을 제공한다.The present invention also provides a method of preparing an organic semiconductor compound represented by Chemical Formula 1 by copolymerizing a tin compound represented by Chemical Formula 5 with a tt-TPD derivative represented by Chemical Formula 6.
[화학식 5][Formula 5]
Figure PCTKR2015006281-appb-I000015
Figure PCTKR2015006281-appb-I000015
[화학식 6][Formula 6]
Figure PCTKR2015006281-appb-I000016
Figure PCTKR2015006281-appb-I000016
상기 화학식 5 및 6에서,In Chemical Formulas 5 and 6,
D는 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene;
X 는 S, Se, O 또는 NR'이며;X is S, Se, O or NR ';
Y는 할로겐이고;Y is halogen;
R1 및 R2는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, C1-C30알콕시C3-C20헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
R'는 수소, C1-C30알킬 또는 C6-C30아르C1-C30알킬이며;R 'is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
상기 D의 아릴렌 및 헤테로아릴렌은 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
상기 R1 및 R2의 알킬 및 아르알킬은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노, 모노- 또는 디-C1-C30알킬아미노, 하이드록시, 할로겐, 사이아노, 나이트로, 할로C1-C30알킬, C1-C30알킬실릴 및 C6-C30아릴실릴로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
상기 헤테로아릴 및 헤테로아릴렌은 N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.The heteroaryl and heteroarylene include one or more heteroatoms selected from N, O, S, P (= 0), Si and P.
상기 화학식 5의 주석 화합물과 상기 화학식 6의 tt-TPD 유도체는 본 발명이 속하는 기술분야의 당업자에게 통상적으로 인정되는 방법으로 제조될 수 있다.The tin compound of Formula 5 and the tt-TPD derivative of Formula 6 may be prepared by a method commonly recognized by those skilled in the art.
또한 본 발명은 본 발명의 유기반도체 화합물을 포함하는 유기 전자 소자, 특히 유기 박막 트랜지스터 또는 유기 태양전지를 제공한다. 보다 구체적으로 본 발명의 유기반도체 화합물을 광활성층에 함유하는 유기 전자 소자를 제공한다.The present invention also provides an organic electronic device, in particular an organic thin film transistor or an organic solar cell, comprising the organic semiconductor compound of the present invention. More specifically, an organic electronic device containing the organic semiconductor compound of the present invention in a photoactive layer is provided.
본 발명의 유기 전자 소자는 당업자가 인지할 수 있는 통상적인 유기 전자 소자라면 모두 가능하나, 일반적으로 유기 태양전지는 금속/유기반도체(광활성층)/금속(Metal-Semiconductor or Insulator-Metal, MSM, MIM) 구조로, 높은 일함수를 가지며 투명전극인 ITO(Indium tin oxide)를 양극으로, 낮은 일함수를 가진 Ag, Al이나 Ca 등을 음극으로 사용한다. The organic electronic device of the present invention can be any conventional organic electronic device that can be recognized by those skilled in the art, but in general, the organic solar cell is a metal / organic conductor (photoactive layer) / metal (Metal-Semiconductor or Insulator-Metal, MSM, MIM) structure, which has a high work function and uses indium tin oxide (ITO), which is a transparent electrode, as an anode, and Ag, Al, or Ca having a low work function as a cathode.
특히, 유기 반도체로 유기반도체 화합물/C60 또는 유기반도체 화합물/C70 복합재를 각각 전자 주개(Donor)와 전자 받개(acceptor)로 사용하는 BHJ (Bulk Hetero Junction)구조를 예를 들어 설명하면 다음과 같다.In particular, the BHJ (Bulk Hetero Junction) structure using an organic semiconductor compound / C60 or an organic semiconductor compound / C70 composite as an electron donor and an electron acceptor as an organic semiconductor will be described as an example.
먼저 광활성층인 유기반도체 화합물/C60 복합재 용액을 스핀코팅, 잉크젯 프린팅 등의 방법으로 100nm 정도의 두께로 ITO층 위에 코팅한다. 이 위에 다시 Al 이나 Ca 금속을 진공 증착하여 음극으로 사용하게 되는데, 필요에 따라 이 전극과 광활성층 사이에 전하의 수명을 증진시키는 EBL(exciton blocking layer)층을 삽입하기도 한다. 상기 EBL층으로는 PEDOT(Poly(3,4-Ethylenedioxythiophene)) 및 PSS(poly(styrenesulfonate))의 혼합물이 사용될 수 있다.First, the organic semiconductor compound / C60 composite solution, which is a photoactive layer, is coated on the ITO layer with a thickness of about 100 nm by spin coating or inkjet printing. On top of this, Al or Ca metal is vacuum-deposited and used as a cathode, and an extruder blocking layer (EBL) layer is inserted between the electrode and the photoactive layer to enhance the life of the charge as necessary. As the EBL layer, a mixture of PEDOT (Poly (3,4-Ethylenedioxythiophene)) and PSS (poly (styrenesulfonate)) may be used.
일반적으로 유기 전자 주개(donor) 물질 안에서 엑시톤(exciton)의 확산거리는 10-30nm 정도이기 때문에 태양광 흡수를 위한 전자 주개(donor) 물질의 적절한 두께(100nm이상)보다 훨씬 짧다. 이것은 유기 태양전지의 효율을 제한하는 근본적인 원인 중의 하나인데 기존의 BL(bi-layer)구조로는 이러한 문제점을 해결하기 어렵다. 또한 BL(bi-layer)구조를 이루는 두 가지 물질이 모두 유기물 단분자이기 때문에 증착을 시켜야 하고, 고분자의 경우에는 스핀코팅과 같은 간단한 공정에 의한 제작이 어려웠다. 반면에 고분자 BHJ 구조는 전자 주개(donor, D)와 전자 받개(acceptor, A) 물질을 섞어 사용하기 때문에 제작공정이 간편하고 D/A(Donor/Acceptor) 계면의 표면적이 크게 증가하기 때문에 전하 분리의 가능성이 커질 뿐만 아니라 전극으로서의 전하 수집 효율도 증가하게 된다.In general, the diffusion distance of excitons in organic electron donor materials is about 10-30 nm, which is much shorter than the proper thickness of electron donor materials for solar absorption (over 100 nm). This is one of the fundamental causes of limiting the efficiency of the organic solar cell, the existing bi-layer (BL) structure is difficult to solve this problem. In addition, since both materials constituting the BL (bi-layer) structure are organic monomolecules, deposition must be performed. In the case of a polymer, it is difficult to manufacture by a simple process such as spin coating. On the other hand, the polymer BHJ structure uses a mixture of electron donor (D) and electron acceptor (A) materials to simplify the manufacturing process and increase the surface area at the D / A (Donor / Acceptor) interface. Not only increases the possibility of, but also increases the charge collection efficiency as an electrode.
이러한 측면에서 본 발명에 따른 유기 태양전지는 BHJ 구조인 것이 바람직하며, 본 발명에 따른 유기반도체 화합물을 전자 주개 물질로서 사용하고 하기의 전자 받개 물질로부터 선택되는 1종 이상을 혼합하여 활성층을 형성하는 것이 바람직하다. In this aspect, the organic solar cell according to the present invention preferably has a BHJ structure, and the organic semiconductor compound according to the present invention is used as an electron donor material and at least one selected from the following electron acceptor materials is mixed to form an active layer. It is preferable.
Figure PCTKR2015006281-appb-I000017
Figure PCTKR2015006281-appb-I000017
상기 전자 받개 물질 중에서도 유기 용매에 잘 녹도록 설계된 PCBM, PCBCR 등의 물질을 사용하는 것이 더욱 바람직하지만 이에 제한되는 것은 아니다. Among the electron acceptor materials, it is more preferable to use materials such as PCBM and PCBCR, which are designed to be well dissolved in an organic solvent, but are not limited thereto.
일반 유기 태양전지는 전자(electron)가 음극으로, 정공(Hole)이 양극으로 빠져나가는 원리이나, 반전 유기 태양전지는 반대로 전자(electron)가 양극으로, 정공(Hole)이 음극으로 빠져나가는 원리이다. 일반 유기 태양전지는 정공수송층으로 PEDOT:PSS를 주로 사용하고 있어 산성도가 높아 산성층이 형성되고 이 때문에 소자의 수명이 짧은 단점, 그리고 Al 등의 전극의 산화 속도가 빨라 소자 수명이 짧은 단점이 있어 이보다 안정한 소자인 반전 유기 태양전지가 보다 바람직하다.In general organic solar cells, electrons are discharged to the cathode and holes are discharged to the anode, whereas inverted organic solar cells are electrons to the anode and holes are discharged to the cathode. . The general organic solar cell uses PEDOT: PSS mainly as a hole transport layer, and thus has a high acidity and an acid layer is formed. Therefore, there is a disadvantage in that the lifetime of the device is short and the device life is short due to the rapid oxidation rate of electrodes such as Al. More preferred is an inverted organic solar cell which is a more stable device.
또한, 적층형 유기 태양전지는 서로 다른 흡수를 가지는 광활성층을 두층으로 형성하여 각층에서 필요한 영역대의 흡수를 하여 단일층 유기 태양전지보다 높은 효율을 구현한다. 즉, 반전 적층형 유기 태양전지는 안정성을 위해 전자(electron)와 정공(hole)을 일반 유기 태양전지와 반대로 흐르게 함과 동시에 두 개의 광활성층을 형성하여 보다 넓은 영역의 빛을 흡수하기 때문에, 본 발명의 적층형 유기 태양전지 소자는 반전 적층형 유기 태양전지 소자인 것이 바람직하다.In addition, the stacked organic solar cell forms two layers of photoactive layers having different absorptions, thereby absorbing the necessary area in each layer, thereby achieving higher efficiency than a single layer organic solar cell. In other words, the inverted stacked organic solar cell flows electrons and holes in opposition to general organic solar cells for stability, and simultaneously forms two photoactive layers to absorb light in a wider area. The stacked organic solar cell device is preferably an inverted stacked organic solar cell device.
특히 본 발명에서 제작한 적층형 유기 태양전지 소자는 MIM(Metal-Insulator-Metal) 구조가 한번 더 반복된 것이 더욱 좋다. 즉, 단층소자의 MIM 구조와 동일하게 전자주개와 전자 받개의 BHJ 구조를 아래층에 만들고, 윗층에 다시 한번 MIM 구조를 만들어 완성하게 된다. 자세한 적층형 유기 태양전지 소자 제작은 실시예에 언급한다. 상기 적층형 유기 태양전지 소자는 반전 적층형 유기 태양전지 소자일 수 있다.In particular, in the stacked organic solar cell device manufactured by the present invention, it is more preferable that the metal-insulator-metal (MIM) structure is repeated once more. That is, the BHJ structure of the electron donor and the electron acceptor is made in the lower layer and the MIM structure is made in the upper layer once again, similar to the MIM structure of the single layer device. Detailed stacked organic solar cell device fabrication is described in the Examples. The stacked organic solar cell device may be an inverted stacked organic solar cell device.
본 발명의 유기 반도체 화합물은 전자 받게인 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)과 다양한 전자 주개(화학식 1에서 D를 나타냄) 사이에 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 도입하여 다양한 전자 주개와 공중합된 구조로, P3HT와 유사한 중간 밴드갭을 나타냈고, 분자 내에서 티에노[3,2-b]티오펜 π-브릿지(π-bridges)의 도입으로 인해 우수한 결정성을 나타내며, 향상된 정공과 전자 이동도, 그리고 나노 구조(nano structure)를 구현할 수 있다.The organic semiconductor compound of the present invention is thieno [3] between the electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1). Incorporated, 2-b] thiophene π-bridges copolymerized with various electron donors, exhibiting an intermediate bandgap similar to that of P3HT and containing thieno [3,2-b] teas in the molecule. The introduction of off-pi pi-bridges provides excellent crystallinity, improved hole and electron mobility, and nano structure.
또한 본 발명의 유기 반도체 화합물은 적층형 유기 태양전지에서 아래층에 사용할 수 있는 유기 반도체의 조건인 중간 밴드갭, 높은 개방전압, 높은 FF 및 열적안정성을 가지고 있어, 일반적으로 사용하고 있는 P3HT 보다 높은 성능을 구현한다. In addition, the organic semiconductor compound of the present invention has higher performance than P3HT which is generally used because it has intermediate bandgap, high open voltage, high FF and thermal stability, which are the conditions of the organic semiconductor that can be used for the lower layer in the stacked organic solar cell. Implement
게다가, 본 발명의 유기 반도체 화합물에 포함되는 다양한 전자 주개(화학식 1에서 D를 나타냄)가 동일할 때 티에노[3,2-b]티오펜 π-브릿지(π-bridges)의 알킬 체인 길이의 조절을 통하여 단일층 유기 태양전지에서 세계 최고 수준의 광-전 변환 효율을 나타낸다.Furthermore, when the various electron donors included in the organic semiconductor compound of the present invention (representing D in the formula 1) are the same, the alkyl chain length of the thieno [3,2-b] thiophene π-bridges Through regulation, it shows the world's best photoelectric conversion efficiency in single layer organic solar cell.
또한 본 발명의 유기반도체 화합물은 다양한 전자 주개 물질과의 조합을 통하여 보다 향상된 성능을 나타낸다.In addition, the organic semiconductor compound of the present invention exhibits improved performance through combination with various electron donor materials.
또한 본 발명의 유기반도체 화합물은 높은 열적 안정성과 유기용매에 대한 높은 용해도를 가진다. In addition, the organic semiconductor compound of the present invention has high thermal stability and high solubility in organic solvents.
따라서 본 발명의 유기 반도체 화합물은 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 가지는 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)을 전자 받개로 도입하여 다양한 전자 주개와 공중합하여, 중간 밴드갭을 나타내므로, 이를 포함하는 적층형 유기 전자는 본 발명의 유기 반도체 화합물과 광활성층인 풀러렌 유도체와의 조합으로 획기적인 높은 효율을 가진다. Thus, the organic semiconductor compound of the present invention is thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) having thieno [3,2-b] thiophene π-bridges. ) Is introduced into the electron acceptor and copolymerized with various electron donors, thereby exhibiting an intermediate bandgap, so that the stacked organic electrons including the same have a high efficiency by combining the organic semiconductor compound of the present invention with a fullerene derivative which is a photoactive layer.
또한 본 발명의 유기반도체 화합물은 높은 열적안정성과 높은 용해도로 인해 이를 포함하는 유기전자소자는 우수한 전기특성을 가져 유기 전자 소자 특히, 적층형 유기 태양전지의 아래층에 P3HT를 대신하여 매우 유용하게 사용될 수 있다. In addition, the organic semiconductor compound of the present invention has high thermal stability and high solubility, so that the organic electronic device including the same has excellent electrical properties, and thus may be very useful in place of P3HT in the lower layer of the organic electronic device, in particular, a stacked organic solar cell. .
또한 본 발명은 새로운 전자주개(donor)물질로서 개발된 것으로 기존의 유기태양전지의 최대 에너지 변환효율을 증가시킬 수 있는 브레이크스루(breakthrough)에 해당하는 발명으로서 매우 우수한 효과를 나타낸다. In addition, the present invention has been developed as a new electron donor (donor) material and exhibits a very excellent effect as a breakthrough (breakthrough) that can increase the maximum energy conversion efficiency of the existing organic solar cell.
또한 본 발명은 높은 전기특성을 가지는 유기반도체 화합물을 제조하는 방법을 제공한다.The present invention also provides a method for producing an organic semiconductor compound having high electrical properties.
도 1은 유기 태양전지의 BHJ(Bulk Hetero Junction) 모드를 나타낸 것이다. 1 illustrates a bulk heterojunction (BHJ) mode of an organic solar cell.
도 2는 유기 태양전지의 구조를 나타낸 것이다. 2 illustrates a structure of an organic solar cell.
도 3은 실시예 1 내지 6에서 제조된 고분자들의 열적 안정성(TGA) 결과이다. 3 is a thermal stability (TGA) result of the polymers prepared in Examples 1 to 6.
도 4는 실시예 1 내지 6에서 제조된 고분자들의 용액상태의 UV 스펙트럼이다.4 is a UV spectrum of the solution state of the polymers prepared in Examples 1 to 6.
도 5는 실시예 1 내지 6에서 제조된 고분자들의 필름상태의 UV 스펙트럼이다.5 is a UV spectrum of the film state of the polymer prepared in Examples 1 to 6.
도 6은 실시예 7에서 제조된 고분자의 용액상태와 고체 필름상태의 UV 스펙트럼이다.6 is a UV spectrum of a solution state and a solid film state of the polymer prepared in Example 7.
도 7은 실시예 8에서 제조된 고분자의 용액상태와 고체 필름상태의 UV 스펙트럼이다.7 is a UV spectrum of a solution state and a solid film state of the polymer prepared in Example 8.
도 8은 Cyclic voltamogram (oxidation)을 통하여 측정된 실시예 1 내지 6에서 제조된 고분자들의 HOMO LUMO 에너지 준위 다이어그램이다.8 is a HOMO LUMO energy level diagram of the polymers prepared in Examples 1 to 6 measured by Cyclic voltamogram (oxidation).
도 9는 Cyclic voltamogram (oxidation)을 통하여 측정된 실시예 7 및 8에서 제조된 고분자들의 HOMO LUMO 에너지 준위 다이어그램이다.9 is a HOMO LUMO energy level diagram of the polymers prepared in Examples 7 and 8 measured by Cyclic voltamogram (oxidation).
도 10은 실시예 9 및 10에서 제작된 단일층 유기 태양전지의 J-V 특성 곡선이다. FIG. 10 is a J-V characteristic curve of single layer organic solar cells manufactured in Examples 9 and 10. FIG.
도 11은 실시예 11에서 제작된 단일층 유기 태양전지의 J-V 특성 곡선이다. FIG. 11 is a J-V characteristic curve of a single layer organic solar cell manufactured in Example 11. FIG.
도 12는 실시예 12에서 제작된 단일층 유기 태양전지의 J-V 특성 곡선이다. 12 is a J-V characteristic curve of a single layer organic solar cell manufactured in Example 12.
도 13은 실시예 13의 반전 적층형 유기 태양전지 소자의 구조를 나타낸 것이다. FIG. 13 shows the structure of an inverted stacked organic solar cell device of Example 13. FIG.
도 14는 실시예 13의 반전 적층형 유기 태양전지 소자의 각 층에 이용된 물질들의 구조를 나타낸 것이다. FIG. 14 shows the structure of materials used in each layer of the inverted stacked organic solar cell device of Example 13. FIG.
도 15는 실시예 13의 반전 적층형 유기 태양전지 소자의 하부층과 상부층 광활성 고분자의 자외선-가시광선 흡수 스펙트라(UV-visible absorption spectra)를 나타낸 것이다. FIG. 15 shows the UV-visible absorption spectra of the lower layer and the upper layer photoactive polymer of the inverted stacked organic solar cell device of Example 13. FIG.
도 16은 (a) PTB7:PCBM을 이용한 상부층의 전류-전압 곡선, (b) 일반적으로 적층형 유기 태양전지의 하부층 광활성 고분자로 사용하는 P3HT:ICBA 을 이용한 하부층의 전류-전압 곡선, (c) P3HT:ICBA/PTB7:PCBM을 광활성 층으로 이용한 반전 적층형 유기 태양전지(비교예 1)의 전류-전압곡선, (d) 실시예 4의 고분자 4:PCBM을 광활성 층으로 사용한 실시예 10의 단일층 유기 태양전지의 전류-전압 곡선, 및 (e) 실시예 4의 고분자 4:PCBM/PTB7:PCBM을 광활성 층으로 이용한 실시예 13의 반전 적층형 유기 태양전지의 전류-전압곡선이다.Figure 16 shows (a) the current-voltage curve of the upper layer using PTB7: PCBM, (b) the current-voltage curve of the lower layer using P3HT: ICBA generally used as the lower layer photoactive polymer of the stacked organic solar cell, (c) P3HT : Current-voltage curve of an inverted stacked organic solar cell (Comparative Example 1) using ICBA / PTB7: PCBM as the photoactive layer, (d) Polymer 4: Example 4 The single-layer organic layer of Example 10 using the PCB4 as the photoactive layer The current-voltage curve of the solar cell, and (e) the current-voltage curve of the inverted-laminated organic solar cell of Example 13 using the polymer 4: PCBM / PTB7: PCBM of Example 4 as the photoactive layer.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 제조예 및 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following Preparation Examples and Examples are only for illustrating the present invention, and the content of the present invention is not limited by the following Examples.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. 또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art. In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.
실시예Example
합성에 필요한 모든 시약은 준세이, 알드리치, 알파 및 티시아이에서 구입하였다. 실리카겔(silicagel)은 머크(Merck)에서 구입하였으며, 물질의 정제과정에 쓰인 HPLC용 클로로포름(Chloroform)과 헥산(Hexane), 메탄올(Methanol), 아세톤(Acetone)은 제이.티.베이커(J.T.Baker)에서 구입하였다. 본 발명에서 사용된 전자 주개 물질인 알콕시 또는 알킬티에닐 기를 포함하는 벤조[1,2-b:4,5-b']디티오펜 (benzo[1,2-b:4,5-b']dithiophene, BDT)은 보고된 논문(Macromolecules 47 (2014) 1613-1622)에 의해 합성되었다. 필름(Film)상태의 UV는 측정 전 0.45μm 실린지 필터를 사용하여 여과한 후, 스핀코팅하여 측정하였다. 유기 태양전지 소자의 전자 받개(acceptor) 물질로는 PCBM([6,6]-phenyl C71-butyric acid methyl ester)를 사용하였다. 1H NMR 스펙트럼은 Varian Mercury Plus 300MHz spectrometer을 사용하였고, 자외선 흡수 스펙트럼은 JASCO JP/V-570으로 측정하였다. 물질의 HOMO Level을 구하기 위하여 순환 전류-전압 분석(Cyclic Voltammetry)은 CH Instruments Electrochemical Analyzer를 이용하여 측정하였고, 태양전지의 J-V 곡선(curve)은 1Kw 솔라 시뮬레이터(Solar simulator, Newport 91192)를 이용하여 측정하였다. IPCE 특성은 Solar cell response/Quantum efficiency/IPCE Measurement system (PV Measurements. Inc.)으로 측정하였다.All reagents required for the synthesis were purchased from Junsei, Aldrich, Alpha and Tsisey. Silicagel was purchased from Merck. Chloroform, Hexane, Methanol and Acetone for HPLC were used by JTBaker. Purchased. Benzo [1,2-b: 4,5-b '] dithiophene (benzo [1,2-b: 4,5-b'] containing an alkoxy or alkylthienyl group which is an electron donor material used in the present invention. dithiophene (BDT) was synthesized by the reported paper (Macromolecules 47 (2014) 1613-1622). UV of the film state was measured by filtration using a 0.45 μm syringe filter and then spin coating. PCB acceptor ([6,6] -phenyl C71-butyric acid methyl ester) was used as an electron acceptor material of the organic solar cell device. The 1 H NMR spectrum was measured using a Varian Mercury Plus 300 MHz spectrometer, and the ultraviolet absorption spectrum was measured by JASCO JP / V-570. Cyclic Voltammetry was measured using CH Instruments Electrochemical Analyzer to determine HOMO Level of materials. JV curve of solar cell was measured using 1Kw Solar simulator (Newport 91192). It was. IPCE characteristics were measured by Solar cell response / Quantum efficiency / IPCE Measurement system (PV Measurements. Inc.).
[제조예 1] 1,3-비스(5-브로모-6-헥실티에노[3,2-b]티오펜-2-일)-5-(2-헥실데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (1,3-Bis(5-bromo-6-hexylthieno[3,2-b]thiophen-2-yl)-5-(2-hexyldecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione, 화합물 6tt-TPD)의 제조Preparation Example 1 1,3-bis (5-bromo-6-hexylthieno [3,2-b] thiophen-2-yl) -5- (2-hexyldecyl) -4H-thieno [ 3,4-c] pyrrole-4,6 (5H) -dione (1,3-Bis (5-bromo-6-hexylthieno [3,2-b] thiophen-2-yl) -5- (2-hexyldecyl ) -4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione, Compound 6tt-TPD)
Figure PCTKR2015006281-appb-I000018
Figure PCTKR2015006281-appb-I000018
1-(3-브로모티에닐)헵타논 (화합물 1)의 제조Preparation of 1- (3-bromothienyl) heptanone (Compound 1)
500 mL 둥근 플라스크에 메틸렌클로라이드 (100 mL)와 3-브로모티오펜 (16.3 g, 0.10 mmol)을 주입한 후, 0℃에서 AlCl3 (26.80 g, 0.20 mmol)을 천천히 주입한다. 30분 뒤 헵타노일 클로라이드(heptanoyl chloride) (14.90 g, 0.10 mol)를 주입하고 24시간 상온에서 교반한다. 반응이 완료되면 HCl (6M, 200 mL)으로 켄칭(quenching)하고, 클로로포름과 소금물로 유기층을 추출한 후 무수황산 마그네슘으로 남은 수분을 제거하고, 컬럼크로마토그래피에 의해 순수한 화합물 1을 얻는다(25.10 g, 91 %).Methylene chloride (100 mL) and 3-bromothiophene (16.3 g, 0.10 mmol) are injected into a 500 mL round flask, followed by slow infusion of AlCl 3 (26.80 g, 0.20 mmol) at 0 ° C. After 30 minutes, heptanoyl chloride (heptanoyl chloride) (14.90 g, 0.10 mol) is injected and stirred at room temperature for 24 hours. After the reaction was completed, the mixture was quenched with HCl (6M, 200 mL), the organic layer was extracted with chloroform and brine, and the remaining water was removed with anhydrous magnesium sulfate. Pure Compound 1 was obtained by column chromatography (25.10 g, 91%).
1H NMR (300MHz, CD2Cl2, ppm): δ 7.53 (d, 1H), 7.12 (d, 1H), 3.01 (t, 2H), 1.71 (m, 2H), 1.38 (m, 6H), 0.92 (t, 3H); 13C NMR (75MHz, CD2Cl2, ppm): δ 193.1, 139.2, 134.2, 132.2, 114.0, 42.2, 32.2, 29.5, 24.7, 23.1, 14.4. 1 H NMR (300 MHz, CD 2 Cl 2 , ppm): δ 7.53 (d, 1H), 7.12 (d, 1H), 3.01 (t, 2H), 1.71 (m, 2H), 1.38 (m, 6H), 0.92 (t, 3 H); 13 C NMR (75 MHz, CD 2 Cl 2 , ppm): δ 193.1, 139.2, 134.2, 132.2, 114.0, 42.2, 32.2, 29.5, 24.7, 23.1, 14.4.
에틸 3-헥실티에노[3,2-b]티오펜-2-카복실레이트 (화합물 2)의 제조Preparation of ethyl 3-hexylthieno [3,2-b] thiophene-2-carboxylate (Compound 2)
500 mL 둥근 플라스크에 DMF (200 mL)와 화합물 1 (35.40 g, 0.13 mol)을 주입한 후, 1시간 교반시킨다. 그 후 에틸 머캅토아세테이트(ethyl mercaptoacetate) (14.00 mL, 0.13 mol)를 천천히 주입하고 60℃에서 12시간 교반시킨다. 반응이 완료되면 에틸아세테이트를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 2을 얻는다(32.10 g, 85 %).DMF (200 mL) and Compound 1 (35.40 g, 0.13 mol) were injected into a 500 mL round flask, followed by stirring for 1 hour. Then ethyl mercaptoacetate (14.00 mL, 0.13 mol) was slowly added and stirred at 60 ° C. for 12 hours. After completion of the reaction, fractional distillation was carried out through ethyl acetate, the remaining water was removed with anhydrous magnesium sulfate, the solvent was evaporated, and pure compound 2 was obtained by column chromatography (32.10 g, 85%).
1H NMR (300MHz, CD2Cl2, ppm): δ 7.56 (d, 1H), 7.24(d, 1H), 4.34(q, 2H), 3.15(t, 2H), 1.71(m, 2H), 1.32(m, 6H), 0.88(m, 6H); 13C NMR (75MHz, CD2Cl2, ppm): δ 163.2, 143.3, 141.9, 141.1, 131.1, 128.4, 120.4, 61.3, 32.0, 29.7 (overlap), 23.0, 14.5, 14.2. 1 H NMR (300 MHz, CD 2 Cl 2 , ppm): δ 7.56 (d, 1H), 7.24 (d, 1H), 4.34 (q, 2H), 3.15 (t, 2H), 1.71 (m, 2H), 1.32 (m, 6 H), 0.88 (m, 6 H); 13 C NMR (75 MHz, CD 2 Cl 2 , ppm): δ 163.2, 143.3, 141.9, 141.1, 131.1, 128.4, 120.4, 61.3, 32.0, 29.7 (overlap), 23.0, 14.5, 14.2.
3-헥실티에노[3,2-b]티오펜-2-카복실 산 (화합물 3)의 제조Preparation of 3-hexylthieno [3,2-b] thiophene-2-carboxylic acid (compound 3)
콘덴서가 장착된 250 mL 둥근 플라스크에 화합물 2 (32.10 g, 0.11 mol)를 넣고 수산화나트륨 수용액 (150 mL, 10% 수용액)과 THF (100 mL)를 넣은 후, 테트라부틸암모늄 아이오다이드(tetrabutylammonium iodide)를 촉매량 주입한다. 그리고 12시간동안 100℃에서 교반한다. 반응이 끝나면 용매를 증발시키고, 6M HCl를 첨가하여 형성된 노란색 결정을 감압 플라스크를 통해 필터 후 건조한다. 노란색 고체의 화합물 3을 수득한다(수율 : 97 %).Add compound 2 (32.10 g, 0.11 mol) to a 250 mL round flask equipped with a condenser, add sodium hydroxide solution (150 mL, 10% solution) and THF (100 mL), and then add tetrabutylammonium iodide. ) Is injected into the catalytic amount. And it stirred at 100 degreeC for 12 hours. After the reaction was completed, the solvent was evaporated, and yellow crystals formed by adding 6M HCl were filtered through a vacuum flask and dried. Compound 3 is obtained as a yellow solid (yield: 97%).
1H NMR (300MHz, CD2Cl2, ppm): δ d 7.66 (d, 1H), 7.31 (d, 1H), 3.20 (t, 2H), 1.79 (m, 2H), 1.33 (m, 6H), 0.91 (t, 3H); 13C NMR (75MHz, CD2Cl2, ppm): δ 145.6, 142.4, 142.1, 132.3, 126.9, 120.5, 32.0, 29.9, 29.7, 23.0, 14.2. 1 H NMR (300 MHz, CD 2 Cl 2 , ppm): δ d 7.66 (d, 1H), 7.31 (d, 1H), 3.20 (t, 2H), 1.79 (m, 2H), 1.33 (m, 6H) , 0.91 (t, 3 H); 13 C NMR (75 MHz, CD 2 Cl 2 , ppm): δ 145.6, 142.4, 142.1, 132.3, 126.9, 120.5, 32.0, 29.9, 29.7, 23.0, 14.2.
3-헥실티에노[3,2-b]티오펜 (화합물 4)의 제조Preparation of 3-hexylthieno [3,2-b] thiophene (Compound 4)
콘덴서가 장착된 250 mL 둥근 플라스크에 화합물 3 (14.60 g, 0.05 mol)를 넣고 구리 분말 (2.00 g)과 퀴놀린 (80 mL)를 넣은 후 240℃에서 12시간 교반한다. 반응이 완료되면 에틸아세테이트와 HCl 수용액을 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 4를 얻는다(8.20 g, 67 %).Add compound 3 (14.60 g, 0.05 mol) to a 250 mL round flask equipped with a condenser, add copper powder (2.00 g) and quinoline (80 mL), and stir at 240 ° C for 12 hours. After completion of the reaction, fractional distillation through ethyl acetate and HCl aqueous solution, water remaining with anhydrous magnesium sulfate was removed, the solvent was evaporated, and pure compound 4 was obtained by column chromatography (8.20 g, 67%).
1H NMR (300MHz, CD2Cl2, ppm): δ 7.36 (m, 1H), 7.25 (m, 1H), 7.01 (m, 1H), 2.73 (t, 2H), 1.69 (m, 2H), 1.34 (m, 6H), 0.89 (t, 3H); 13C NMR (75MHz, CD2Cl2, ppm): δ 140.4, 139.1, 135.4, 127.0, 122.2, 120.3, 32.0, 30.3, 29.4, 29.0, 23.0, 14.2. 1 H NMR (300 MHz, CD 2 Cl 2 , ppm): δ 7.36 (m, 1H), 7.25 (m, 1H), 7.01 (m, 1H), 2.73 (t, 2H), 1.69 (m, 2H), 1.34 (m, 6 H), 0.89 (t, 3 H); 13 C NMR (75 MHz, CD 2 Cl 2 , ppm): δ 140.4, 139.1, 135.4, 127.0, 122.2, 120.3, 32.0, 30.3, 29.4, 29.0, 23.0, 14.2.
(3-헥실티에노[3,2-b]티오펜-5-일)트리메틸스탄난 (화합물 5)의 제조Preparation of (3-hexylthieno [3,2-b] thiophen-5-yl) trimethylstannan (Compound 5)
둥근 100 mL 플라스크에 화합물 4 (5.0 g, 0.02 mol)을 주입 후 테트라하이드로퓨란 (70 mL)를 주입하고, 0℃로 냉각한다. 그 후, 2.0 M n-부틸리튬 (11 mL, 0.02 mol)를 천천히 주입하고 30분동안 동온도에서 교반시킨다. 30분 후 1M 트리메틸틴 클로라이드 (22.2 mL, 0.05 mol)를 천천히 주입하고 상온에서 1시간 교반시킨다. 반응이 완료되면 에틸아세테이트를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시키면 순수한 화합물 5를 얻는다(4.90 g, 91 %).Inject a compound 4 (5.0 g, 0.02 mol) into a round 100 mL flask, add tetrahydrofuran (70 mL), and cool to 0 ° C. Thereafter, 2.0 M n -butyllithium (11 mL, 0.02 mol) is slowly injected and stirred at the same temperature for 30 minutes. After 30 minutes, 1M trimethyltin chloride (22.2 mL, 0.05 mol) is slowly injected and stirred at room temperature for 1 hour. When the reaction was completed, fractional distillation through ethyl acetate, the remaining water with anhydrous magnesium sulfate was removed, and the solvent was evaporated to obtain pure Compound 5 (4.90 g, 91%).
1H NMR (300MHz, CDCl3, ppm): δ 7.21(s, 1H), 7.05(s, 1H), 2.72(t, 2H), 1.72(m, 2H), 1.34(m, 6H), 0.89(t, 3H), 0.40 (t, 9H); 13C NMR (75MHz, CDCl3, ppm): δ 140.1, 128.7, 127.3, 125.9, 124.1, 120.2, 38.7, 37.9, 29.5, 28.1, 25.3, 14.9, 11.1. 1 H NMR (300MHz, CDCl 3 , ppm): δ 7.21 (s, 1H), 7.05 (s, 1H), 2.72 (t, 2H), 1.72 (m, 2H), 1.34 (m, 6H), 0.89 ( t, 3H), 0.40 (t, 9H); 13 C NMR (75 MHz, CDCl 3 , ppm): δ 140.1, 128.7, 127.3, 125.9, 124.1, 120.2, 38.7, 37.9, 29.5, 28.1, 25.3, 14.9, 11.1.
5-(2-헥실데실)-1,3-비스(6-헥실티에노[3,2-b]티오펜-2-일)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 6)의 제조 5- (2-hexyldecyl) -1,3-bis (6-hexylthieno [3,2-b] thiophen-2-yl) -4H-thieno [3,4- c] pyrrole-4, Preparation of 6 (5H) -dione (Compound 6)
둥근 100mL 플라스크에 1,3-디브로모-5-(2-헥실데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (2.00 g,0.37 mmol)를 넣고 진공 상태를 만들어 준다. DMF (50 mL)와 비스(트리페닐포스핀)팔라듐(II) 디클로라이드 (95 mg, 0.06 mmol)를 주입 후, 30분동안 150℃에서 교반시킨다. 그 후, 화합물 5 (3.60 g, 0.75 mmol)를 주입하고, 12시간동안 150℃에서 교반시킨다. 반응이 완료되면 에틸아세테이트를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발후, 컬럼크로마토그래피를 통해 순수한 화합물 6을 얻는다(2.5 g, 58 %).To a round 100 mL flask was placed 1,3-dibromo-5- (2-hexyldecyl) -4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione (2.00 g, 0.37 mmol). Put in and make a vacuum. DMF (50 mL) and bis (triphenylphosphine) palladium (II) dichloride (95 mg, 0.06 mmol) were injected and stirred at 150 ° C. for 30 minutes. Then compound 5 (3.60 g, 0.75 mmol) is injected and stirred at 150 ° C. for 12 h. After completion of the reaction, fractional distillation was performed through ethyl acetate, the remaining water was removed with anhydrous magnesium sulfate, the solvent was evaporated, and pure compound 6 was obtained through column chromatography (2.5 g, 58%).
1H NMR (300 MHz, CDCl3, ppm): δ 8.35 (s, 2H), 7.09 (s, 2H), 3.57 (d, 2H), 2.71 (t, 4H), 1.90 (m, 1H), 1.72 (m, 6H), 1.32 (m, 12H), 1.26-1.24 (m, 30H), 0.92-0.84 (m, 12H); 13C NMR (75 MHz, CDCl3, ppm): δ 162.9, 158.3, 140.5, 137.3, 135.4, 127.2, 125.4, 122.8, 120.5, 50.1, 42.4, 41.1, 39.8, 36.3, 36.0, 35.9, 35.5, 35.1, 34.2, 33.3, 32.1, 31.4, 30.5, 29.9, 29.6, 29.3, 28.1, 27.9, 27.5, 22.5, 15.3; Anal. Calcd for C46H63N : C, 67.19; H, 7.72; N, 1.70. Found: C, 66.87; H, 7.81; N, 1.64. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.35 (s, 2H), 7.09 (s, 2H), 3.57 (d, 2H), 2.71 (t, 4H), 1.90 (m, 1H), 1.72 (m, 6H), 1.32 (m, 12H), 1.26-1.24 (m, 30H), 0.92-0.84 (m, 12H); 13 C NMR (75 MHz, CDCl 3 , ppm): δ 162.9, 158.3, 140.5, 137.3, 135.4, 127.2, 125.4, 122.8, 120.5, 50.1, 42.4, 41.1, 39.8, 36.3, 36.0, 35.9, 35.5, 35.1, 34.2, 33.3, 32.1, 31.4, 30.5, 29.9, 29.6, 29.3, 28.1, 27.9, 27.5, 22.5, 15.3; Anal. Calcd for C 46 H 63 N: C, 67.19; H, 7.72; N, 1.70. Found: C, 66.87; H, 7.81; N, 1.64.
1,3-비스(5-브로모-6-헥실티에노[3,2-b]티오펜-2-일)-5-(2-헥실데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 6tt-TPD)의 제조 1,3-bis (5-bromo-6-hexylthieno [3,2-b] thiophen-2-yl) -5- (2-hexyldecyl) -4H-thieno [3,4-c ] Preparation of Pyrrole-4,6 (5H) -dione (Compound 6tt-TPD)
250 mL 둥근플라스크에 화합물 6 (1.00 g, 0.12 mmol)를 DMF (25 mL)와 함께 주입한 후, 0℃에서 N-브로모숙신이미드 (0.53 g, 0.30 mmol)를 천천히 주입한다. 3시간동안 상온에서 교반 후, 반응이 완료되면 메틸렌클로라이드를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, MC(메틸렌클로라이드)와 메탄올로 재결정시켜 주황색 고체의 화합물 6tt-TPD를 수득한다(80 %).Inject a compound 6 (1.00 g, 0.12 mmol) with DMF (25 mL) into a 250 mL round flask, and slowly inject N-bromosuccinimide (0.53 g, 0.30 mmol) at 0 ° C. After stirring for 3 hours at room temperature, when the reaction is complete, fractional distillation through methylene chloride, the remaining water with anhydrous magnesium sulfate is removed, the solvent is evaporated, recrystallized with MC (methylene chloride) and methanol to give an orange solid Obtain 6tt-TPD (80%).
1H NMR (300 MHz, CDCl3, ppm): δ 8.27 (s, 2H), 3.59 (d, 2H), 2.70 (t, 4H), 1.92 (m, 1H), 1.67 (m, 4H), 1.33-1.25 (m, 36H), 0.89-0.84 (m, 12H); 13C NMR (75 MHz, CDCl3, ppm): δ 165.1, 160.8, 145.3, 136.1, 132.3, 126.1, 125.8, 123.7, 121.4, 51.2, 43.2, 42.1, 37.2, 36.2, 36.0, 35.9, 35.5, 35.1, 34.2, 33.3, 32.1, 31.4, 30.5, 29.9, 29.6, 29.3, 28.1, 27.9, 27.5, 22.5, 15.3; Anal. Calcd for C46H61N: C, 56.37; H, 6.27; N, 1.43. Found: C, 55.89; H, 6.19; N, 1.45. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.27 (s, 2H), 3.59 (d, 2H), 2.70 (t, 4H), 1.92 (m, 1H), 1.67 (m, 4H), 1.33 -1.25 (m, 36H), 0.89-0.84 (m, 12H); 13 C NMR (75 MHz, CDCl 3 , ppm): δ 165.1, 160.8, 145.3, 136.1, 132.3, 126.1, 125.8, 123.7, 121.4, 51.2, 43.2, 42.1, 37.2, 36.2, 36.0, 35.9, 35.5, 35.1, 34.2, 33.3, 32.1, 31.4, 30.5, 29.9, 29.6, 29.3, 28.1, 27.9, 27.5, 22.5, 15.3; Anal. Calcd for C 46 H 61 N: C, 56.37; H, 6. 27; N, 1.43. Found: C, 55.89; H, 6. 19; N, 1.45.
[제조예 2] 1,3-비스(5-브로모-6-옥틸티에노[3,2-b]티오펜-2-일)-5-(2-헥실데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 8tt-TPD)의 제조Preparation Example 2 1,3-bis (5-bromo-6-octylthieno [3,2-b] thiophen-2-yl) -5- (2-hexyldecyl) -4H-thieno [ Preparation of 3,4-c] pyrrole-4,6 (5H) -dione (Compound 8tt-TPD)
Figure PCTKR2015006281-appb-I000019
Figure PCTKR2015006281-appb-I000019
상기 제조예 1의 6tt-TPD와 같은 방법으로 8tt-TPD를 제조하였다. 8tt-TPD was prepared by the same method as 6tt-TPD of Preparation Example 1.
1H NMR (300MHz, CDCl3, ppm):δ 8.30 (s, 2H), 3.57 (d, 2H), 2.75 (t, 4H), 1.89 (m, 1H), 1.71 (m, 4H), 1.34-1.26 (m, 46H), 0.90-0.82 (m, 12H); 13C NMR (75MHz, CDCl3, ppm):δ 164.8, 160.2, 144.8, 135.4, 133.3, 128.2, 127.9, 123.5, 120.8, 50.9, 43.3, 42.0, 38.9, 36.1, 35.6, 35.4, 35.0, 34.8, 34.5, 32.8, 31.9, 30.7, 30.0, 29.1, 28.8, 28.1, 27.6, 27.5, 27.4, 26.1, 23.1, 15.3; Anal. Calcd for C50H69N: C, 57.95; H, 6.71; N, 1.35. Found: C, 57.70; H, 6.65; N, 1.30. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.30 (s, 2H), 3.57 (d, 2H), 2.75 (t, 4H), 1.89 (m, 1H), 1.71 (m, 4H), 1.34- 1.26 (m, 46 H), 0.90-0.82 (m, 12 H); 13 C NMR (75 MHz, CDCl 3 , ppm): δ 164.8, 160.2, 144.8, 135.4, 133.3, 128.2, 127.9, 123.5, 120.8, 50.9, 43.3, 42.0, 38.9, 36.1, 35.6, 35.4, 35.0, 34.8, 34.5 , 32.8, 31.9, 30.7, 30.0, 29.1, 28.8, 28.1, 27.6, 27.5, 27.4, 26.1, 23.1, 15.3; Anal. Calcd for C 50 H 69 N: C, 57.95; H, 6.71; N, 1.35. Found: C, 57.70; H, 6.65; N, 1.30.
[제조예 3] 1,3-비스(5-브로모-6-데실티에노[3,2-b]티오펜-2-일)-5-(2-헥실데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 10tt-TPD)의 제조Preparation Example 3 1,3-bis (5-bromo-6-decylthieno [3,2-b] thiophen-2-yl) -5- (2-hexyldecyl) -4H-thieno [ Preparation of 3,4-c] pyrrole-4,6 (5H) -dione (Compound 10tt-TPD)
Figure PCTKR2015006281-appb-I000020
Figure PCTKR2015006281-appb-I000020
상기 제조예 1의 6tt-TPD와 같은 방법으로 10tt-TPD를 제조하였다. 10tt-TPD was prepared by the same method as 6tt-TPD of Preparation Example 1.
1H NMR (300MHz, CDCl3, ppm):δ 8.30 (s, 2H), 3.56 (d, 2H), 2.75 (t, 4H), 1.90 (m, 1H), 1.70 (m, 4H), 1.33-1.25 (m, 54H), 0.87-0.82 (m, 12H); 13C NMR (75MHz, CDCl3, ppm):δ 165.0, 161.1, 145.2, 138.2, 135.9, 130.2, 128.1, 125.3, 121.1, 51.0, 44.4, 43.8, 40.1, 36.8, 36.2, 35.9, 35.6, 35.2, 35.0, 34.8, 33.5, 32.1, 30.6, 30.1, 29.6, 29.1, 28.7, 28.3, 28.0, 27.3, 27.0, 26.7, 25.9, 25.3, 16.5; Anal. Calcd for C54H77N: C, 59.38; H, 7.11; N, 1.28. Found: C, 59.20; H, 6.98; N, 1.30. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.30 (s, 2H), 3.56 (d, 2H), 2.75 (t, 4H), 1.90 (m, 1H), 1.70 (m, 4H), 1.33- 1.25 (m, 54 H), 0.87-0.82 (m, 12 H); 13 C NMR (75 MHz, CDCl 3 , ppm): δ 165.0, 161.1, 145.2, 138.2, 135.9, 130.2, 128.1, 125.3, 121.1, 51.0, 44.4, 43.8, 40.1, 36.8, 36.2, 35.9, 35.6, 35.2, 35.0 , 34.8, 33.5, 32.1, 30.6, 30.1, 29.6, 29.1, 28.7, 28.3, 28.0, 27.3, 27.0, 26.7, 25.9, 25.3, 16.5; Anal. Calcd for C 54 H 77 N: C, 59.38; H, 7. 11; N, 1.28. Found: C, 59.20; H, 6.98; N, 1.30.
[제조예 4] 1,3-비스(5-브로모-6-옥틸티에노[3,2-b]티오펜-2-일)-5-(5-헥실트리데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 12)의 제조Production Example 4 1,3-bis (5-bromo-6-octylthieno [3,2-b] thiophen-2-yl) -5- (5-hexyltridecyl) -4H-thieno Preparation of [3,4-c] pyrrole-4,6 (5H) -dione (Compound 12)
Figure PCTKR2015006281-appb-I000021
Figure PCTKR2015006281-appb-I000021
2-(5-헥실트리데실)이소인돌린-1,3-디온 (화합물 7)의 제조Preparation of 2- (5-hexyltridecyl) isoindolin-1,3-dione (Compound 7)
250 mL 둥근 플라스크에 7-(4-브로모부틸)펜타데칸 (15.0 g, 0.043 mol)과 프탈이미드 포타슘 솔트 (9.6 g, 0.051 mol)을 넣은 후 DMF (200 mL)를 주입한 후, 90℃에서 16시간 교반한다. 반응이 완료되면 헥산을 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 7을 얻는다(13.8g, 75 %).In a 250 mL round flask, add 7- (4-bromobutyl) pentadecane (15.0 g, 0.043 mol) and phthalimide potassium salt (9.6 g, 0.051 mol), and inject DMF (200 mL). Stir at 16 ° C. for 16 hours. After completion of the reaction, fractional distillation was carried out through hexane, the remaining water was removed with anhydrous magnesium sulfate, the solvent was evaporated, and pure compound 7 was obtained by column chromatography (13.8g, 75%).
1H NMR (300MHz, CDCl3, ppm): δ 7.837.81 (m, 2H), 7.697.67 (d, 2H), 3.65 (t, 2H), 1.671.57 (m, 1H), 1.341.28 (m, 30H), 0.85 (m, 6H). 1 H NMR (300 MHz, CDCl 3 , ppm): δ 7.837.81 (m, 2H), 7.697.67 (d, 2H), 3.65 (t, 2H), 1.671.57 (m, 1H), 1.341.28 (m, 30 H), 0.85 (m, 6 H).
5-헥실트리데칸-1-아민 (화합물 8)의 제조Preparation of 5-hexyltridecane-1-amine (Compound 8)
250 mL 둥근 플라스크에 화합물 7 (10.0 g, 0.024 mol), 하이드라진 (3.09 g, 0.096 mol)와 메탄올 (100 mL)을 주입한 후 12시간 동안 환류시킨다. 반응이 종료 되면 10% KOH 용액 (100 mL)를 통하여 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시켜 순수한 화합물 8을 얻는다(6.67g, 82 %).Inject a compound 7 (10.0 g, 0.024 mol), hydrazine (3.09 g, 0.096 mol) and methanol (100 mL) into a 250 mL round flask and reflux for 12 hours. After completion of the reaction, fractional distillation was carried out through 10% KOH solution (100 mL), the remaining water was removed with anhydrous magnesium sulfate, and the solvent was evaporated to obtain pure compound 8 (6.67g, 82%).
1H NMR (300 MHz, CDCl3): δ 2.68 (t, 2H), 1.52 (m, 1H), 1.301.01 (m, 30H), 0.85 (m, 6H). 1 H NMR (300 MHz, CDCl 3 ): δ 2.68 (t, 2H), 1.52 (m, 1H), 1.301.01 (m, 30H), 0.85 (m, 6H).
5-(5-헥실트리데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 9)의 제조Preparation of 5- (5-hexyltridecyl) -4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione (Compound 9)
티에노[3,4-c]퓨란-1,3-디온 (3.0 g, 0.0194 mol)과 화합물 8(6.6 g, 0.0232 mol)을 톨루엔 (300 mL)을 주입 후 100℃에서 24시간 교반한다. 그 후, 용매를 증발 시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 9을 얻는다(7.5g, 73 %).Thieno [3,4-c] furan-1,3-dione (3.0 g, 0.0194 mol) and compound 8 (6.6 g, 0.0232 mol) were injected with toluene (300 mL) and stirred at 100 ° C for 24 hours. After evaporation of the solvent, the pure compound 9 was obtained by column chromatography (7.5 g, 73%).
1H NMR (300MHz, CDCl3, ppm): δ 7.79 (s, 2H), 3.59 (t, 2H), 1.59 (m, 1H), 1.231.18(m, 30H), 0.86 (m, 6H). 13C NMR (75 MHz, CDCl3)δ:165.1, 145.2, 138.5, 40.2, 39.8, 38.5, 37.1, 36.2, 35.1, 33.3, 32.3, 30.5, 29.8, 29.6, 28.3, 27.0, 26.8, 26.3, 25.9, 25.1. 22.7, 14.1. Anal. Calc. for C25H41N: C, 71.55; H, 9.85; N, 3.34. Found: C, 71.48; H, 9.92; N, 3.28. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 7.79 (s, 2H), 3.59 (t, 2H), 1.59 (m, 1H), 1.231.18 (m, 30H), 0.86 (m, 6H). 13 C NMR (75 MHz, CDCl 3 ) δ: 165.1, 145.2, 138.5, 40.2, 39.8, 38.5, 37.1, 36.2, 35.1, 33.3, 32.3, 30.5, 29.8, 29.6, 28.3, 27.0, 26.8, 26.3, 25.9, 25.1. 22.7, 14.1. Anal. Calc. for C 25 H 41 N: C, 71.55; H, 9.85; N, 3.34. Found: C, 71.48; H, 9.92; N, 3.28.
1,3-디브로모-5-(5-헥실트리데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 10)의 제조Preparation of 1,3-dibromo-5- (5-hexyltridecyl) -4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione (compound 10)
100 mL 둥근 플라스크에 화합물 9 (5.0 g, 0.012 mol)와 설퓨릭 엑시드 (30 mL)와 트리플루오로 아세틱 엑시드 (100 mL)를 넣은 후, N-브로모석신이미드 (5.30 g, 0.030 mol)를 넣은 후, 12시간 상온에서 교반한다. 반응이 완료되면 메틸렌 클로라이드를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 10을 얻는다(4.9g, 76 %).Compound 9 (5.0 g, 0.012 mol), sulfuric acid (30 mL) and trifluoro acetic acid (100 mL) were added to a 100 mL round flask, followed by N-bromosuccinimide (5.30 g, 0.030 mol). ), And stirred at room temperature for 12 hours. After completion of the reaction, fractional distillation through methylene chloride was followed by removal of the remaining water with anhydrous magnesium sulfate, evaporation of the solvent, and column chromatography to obtain pure Compound 10 (4.9 g, 76%).
1H NMR (300MHz, CDCl3, ppm): δ 3.58 (t, 2H), 1.59 (m, 1H), 1.23-1.19 (m, 30H), 0.87 (m, 6H). 13C NMR (75 MHz, CDCl3)δ:170.3, 155.1, 142.5, 41.3, 40.2, 39.3, 38.2, 37.1, 36.4, 34.8, 33.3, 31.7, 30.2, 29.1, 28.6, 27.9, 27.3, 27.0, 26.3, 25.2. 23.1, 16.3. Anal. Calc. for C25H39N: C, 52.00; H, 6.81; N, 2.43. Found: C, 51.84; H, 6.93; N, 2.54. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 3.58 (t, 2H), 1.59 (m, 1H), 1.23-1.19 (m, 30H), 0.87 (m, 6H). 13 C NMR (75 MHz, CDCl 3 ) δ: 170.3, 155.1, 142.5, 41.3, 40.2, 39.3, 38.2, 37.1, 36.4, 34.8, 33.3, 31.7, 30.2, 29.1, 28.6, 27.9, 27.3, 27.0, 26.3, 25.2. 23.1, 16.3. Anal. Calc. for C 25 H 39 N: C, 52.00; H, 6.81; N, 2.43. Found: C, 51.84; H, 6.93; N, 2.54.
5-(5-헥실트리데실)-1,3-비스(6-옥틸티에노[3,2-b]티오펜-2-일)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 11) 의 제조 5- (5-hexyltridecyl) -1,3-bis (6-octylthieno [3,2-b] thiophen-2-yl) -4H-thieno [ 3,4-c] pyrrole-4 , 6 (5H) -dione (Compound 11)
콘덴서가 장착된 100 mL 둥근 플라스크에 화합물 10 (3.00 g, 0.005 mol)과 촉매 비스(트리페닐포스핀)팔라듐(II)디클로라이드 (95 mg, 0.06 mmol)를 넣은 후, 진공상태를 만든다. 그 후, DMF (50 mL)를 주입한 후, 트리메틸(6-옥틸티에노[3,2-b]티오펜-2-일)스탠닌 (5.39 g, 0.012 mol)을 주입한 후, 환류시킨다. 반응이 완료되면 메틸렌 클로라이드를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 11을 얻는다(2.5g, 58 %).Compound 10 (3.00 g, 0.005 mol) and catalyst bis (triphenylphosphine) palladium (II) dichloride (95 mg, 0.06 mmol) were added to a 100 mL round flask equipped with a condenser, followed by vacuum. Thereafter, DMF (50 mL) was injected, followed by trimethyl (6-octylthieno [3,2-b] thiophen-2-yl) stannin (5.39 g, 0.012 mol), followed by reflux. . After completion of the reaction, fractional distillation through methylene chloride is followed by removal of the remaining water with anhydrous magnesium sulfate, evaporation of the solvent, and then pure compound 11 (2.5 g, 58%) by column chromatography.
1H NMR (300MHz, CDCl3, ppm): δ 8.30 (s, 2H), 7.08 (s, 2H), 3.66 (t, 2H), 2.69 (t, 4H), 1.73-1.70 (m, 5H), 1.41-1.23 (m, 50H), 0.97-0.86 (m, 12H). 13CNMR(75MHz,CDCl3)δ:169.1, 160.3, 140.2, 137.5, 127.3, 123.1, 122.8, 122.0, 121.3, 40.2, 39.8, 39.2, 38.9, 38.4, 38.0, 37.8, 37.4, 35.2, 34.7, 34.1, 33.3, 32.9, 31.5, 30.5, 30.1, 29.9, 29.3, 29.2, 28.5, 28.1, 27.4, 25.6, 24.9, 24.5, 22.7, 12.5. Anal. Calc. for C53H77N: C, 69.15; H, 8.43; N, 1.52. Found: C, 68.98; H, 8.51; N, 1.61. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.30 (s, 2H), 7.08 (s, 2H), 3.66 (t, 2H), 2.69 (t, 4H), 1.73-1.70 (m, 5H), 1.41-1.23 (m, 50 H), 0.97-0.86 (m, 12 H). 13 CNMR (75MHz, CDCl 3 ) δ: 169.1, 160.3, 140.2, 137.5, 127.3, 123.1, 122.8, 122.0, 121.3, 40.2, 39.8, 39.2, 38.9, 38.4, 38.0, 37.8, 37.4, 35.2, 34.7, 34.1, 33.3, 32.9, 31.5, 30.5, 30.1, 29.9, 29.3, 29.2, 28.5, 28.1, 27.4, 25.6, 24.9, 24.5, 22.7, 12.5. Anal. Calc. for C 53 H 77 N: C, 69.15; H, 8.43; N, 1.52. Found: C, 68.98; H, 8.51; N, 1.61.
1,3-비스(5-브로모-6-옥틸티에노[3,2-b]티오펜-2-일)-5-(5-헥실트리데실)-4H-티에노[3,4-c]피롤-4,6(5H)-디온 (화합물 12) 의 제조 1,3-bis (5-bromo-6-octylthieno [3,2-b] thiophen-2-yl) -5- (5- hexyltridecyl ) -4H-thieno [3,4- c] Preparation of pyrrole-4,6 (5H) -dione (compound 12)
100 mL 둥근 플라스에 화합물 11 (2.00 g, 0.002 mol)을 넣은 후, DMF (50 mL)를 주입한 후, N-브로모석신이미드 (0.97 g, 0.005 mol)를 주입한 후 빛을 차단한 상태에서 12시간 교반한다. 반응이 완료되면 메틸렌 클로라이드를 통해 분별증류 한 뒤, 무수황산 마그네슘으로 남은 수분을 제거하고, 용매를 증발시킨 후, 컬럼크로마토그래피에 의해 순수한 화합물 12을 얻는다(2.3g, 80 %).In a 100 mL round flask, Compound 11 (2.00 g, 0.002 mol) was added, DMF (50 mL) was injected, N-bromosuccinimide (0.97 g, 0.005 mol) was injected, and the light was blocked. Stir for 12 hours in the state. After completion of the reaction, fractional distillation through methylene chloride is followed by removal of the remaining water with anhydrous magnesium sulfate, evaporation of the solvent, and column chromatography to give pure compound 12 (2.3 g, 80%).
1H NMR (300MHz, CDCl3, ppm): δ 8.20 (s, 2H), 3.64 (t, 2H), 2.68 (t, 4H), 1.70-1.65 (m, 5H), 1.32-1.22 (m, 50H), 0.88-0.83 (m, 12H). 13CNMR(75MHz,CDCl3)δ:170.1, 165.2, 145.1, 140.8, 130.2, 128.2, 125.3, 124.6, 122.2, 41.3, 40.9, 39.9, 39.1, 38.8, 38.0, 37.6, 37.2, 36.3, 35.1, 34.9, 34.2, 33.3, 32.1, 31.6, 30.4, 30.1, 29.3, 29.0, 28.2, 27.9, 27.2, 26.7, 25.3, 24.2, 23.1, 13.1. Anal. Calc. for C53H75N: C, 59.03; H, 7.01; N, 1.30. Found: C, 58.78; H, 7.21; N, 1.28. 1 H NMR (300 MHz, CDCl 3 , ppm): δ 8.20 (s, 2H), 3.64 (t, 2H), 2.68 (t, 4H), 1.70-1.65 (m, 5H), 1.32-1.22 (m, 50H ), 0.88-0.83 (m, 12H). 13 CNMR (75 MHz, CDCl 3 ) δ: 170.1, 165.2, 145.1, 140.8, 130.2, 128.2, 125.3, 124.6, 122.2, 41.3, 40.9, 39.9, 39.1, 38.8, 38.0, 37.6, 37.2, 36.3, 35.1, 34.9, 34.2, 33.3, 32.1, 31.6, 30.4, 30.1, 29.3, 29.0, 28.2, 27.9, 27.2, 26.7, 25.3, 24.2, 23.1, 13.1. Anal. Calc. for C 53 H 75 N: C, 59.03; H, 7.01; N, 1.30. Found: C, 58.78; H, 7. 21; N, 1.28.
[실시예 1 내지 3] 유기반도체 화합물(고분자 1, 2 및 3)의 제조Examples 1 to 3 Preparation of Organic Semiconductor Compounds ( Polymers 1, 2 and 3)
Figure PCTKR2015006281-appb-I000022
Figure PCTKR2015006281-appb-I000022
콘덴서가 장착된 둥근 플라스크에 진공 처리하여 수분 및 산소를 제거한 후 BDT 화합물 (300 mg, 0.03 mmol)과 제조예 1 내지 3의 화합물 tt-TPD (0.03 mmol) 를 첨가하고 여기에 무수 톨루엔 (10 mL)을 가하여 녹였다. Pd(PPh3)4 촉매 (10 mg, 0.03 eq)를 무수 DMF (1 mL)에 녹여 첨가하였다. 120℃에서 48시간동안 교반시킨 후, 반응이 완료되면 생성된 고체를 클로로포름에 녹여 플로리실(Florisil)로 컬럼하여 촉매를 제거하고 메탄올에 재결정하여 보라색 고체를 얻은 후, 얻어진 고체를 메탄올과 아세톤을 사용하여 추출기(Soxhlet)로 정제하여 고분자 화합물 1, 2 및 3을 각각 얻었다. 얻어진 고분자 화합물들의 중량평균분자량(Mw), 수평균분자량(Mn), PDI(polydispersity index) 및 분해온도(decomposition temperature, Td)를 하기 표 1에 기재하였다.After vacuuming in a round flask equipped with a condenser to remove moisture and oxygen, BDT compound (300 mg, 0.03 mmol) and the compound tt-TPD (0.03 mmol) of Preparation Examples 1 to 3 were added thereto, and anhydrous toluene (10 mL) was added thereto. ) Was dissolved. Pd (PPh 3 ) 4 catalyst (10 mg, 0.03 eq) was added dissolved in anhydrous DMF (1 mL). After stirring at 120 ° C. for 48 hours, when the reaction was completed, the produced solid was dissolved in chloroform, columned with Florisil to remove the catalyst, recrystallized from methanol to obtain a purple solid, and the obtained solid was converted into methanol and acetone. Purification by using an extractor (Soxhlet) to obtain the polymer compounds 1, 2 and 3, respectively. The weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI) and decomposition temperature (T d ) of the obtained polymer compounds are described in Table 1 below.
[실시예 4 내지 6] 유기반도체 화합물(고분자 4, 5 및 6)의 제조Examples 4 to 6 Preparation of Organic Semiconductor Compounds ( Polymers 4, 5, and 6)
Figure PCTKR2015006281-appb-I000023
Figure PCTKR2015006281-appb-I000023
콘덴서가 장착된 둥근 플라스크에 진공 처리하여 수분 및 산소를 제거한 후 BDTT 화합물 (300 mg, 0.03 mmol)과 제조예 1 내지 3의 화합물 tt-TPD (0.03 mmol)를 첨가하고 여기에 무수 톨루엔 (10 mL)을 가하여 녹였다. Pd(PPh3)4 촉매 (10 mg, 0.03 eq)를 무수 DMF (1 mL)에 녹여 첨가하였다. 110℃에서 48시간 교반시킨 후, 반응이 완료되면 생성된 고체를 클로로포름에 녹여 플로리실(Florisil)로 컬럼하여 촉매를 제거하고 메탄올에 재결정하여 보라색 고체를 얻은 후, 얻어진 고체를 메탄올과 아세톤을 사용하여 추출기(Soxhlet)로 정제하여 고분자 화합물 4, 5 및 6을 각각 얻었다. 얻어진 고분자 화합물들의 중량평균분자량(Mw), 수평균분자량(Mn), PDI(polydispersity index) 및 분해온도(decomposition temperature, Td)를 하기 표 1에 기재하였다.In a round flask equipped with a condenser to remove water and oxygen by vacuuming, BDTT compound (300 mg, 0.03 mmol) and compound tt-TPD (0.03 mmol) of Preparation Examples 1 to 3 were added thereto, and anhydrous toluene (10 mL) was added thereto. ) Was dissolved. Pd (PPh 3 ) 4 catalyst (10 mg, 0.03 eq) was added dissolved in anhydrous DMF (1 mL). After 48 hours of stirring at 110 ° C, the reaction product was dissolved in chloroform, columned with Florisil to remove the catalyst, recrystallized from methanol to obtain a purple solid, and the obtained solid was used with methanol and acetone. The product was purified by an extractor (Soxhlet) to obtain polymer compounds 4, 5, and 6, respectively. The weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI) and decomposition temperature (T d ) of the obtained polymer compounds are described in Table 1 below.
[실시예 7] 유기반도체 화합물(고분자 7)의 제조Example 7 Preparation of Organic Semiconductor Compound (Polymer 7)
Figure PCTKR2015006281-appb-I000024
Figure PCTKR2015006281-appb-I000024
콘덴서가 장착된 둥근 플라스크에 진공 처리하여 수분 및 산소를 제거한 후 제조예 4의 화합물 12 (300 mg, 0.03 mmol)과 2,5-비스(트리메틸스태닐)티오펜 (0.03 mmol)를 첨가하고 여기에 무수 톨루엔 (10 mL)을 가하여 녹였다. Pd(PPh3)4 촉매 (10 mg, 0.03 eq)를 무수 DMF (1 mL)에 녹여 첨가하였다. 110℃에서 48시간 교반시킨 후, 반응이 완료되면 생성된 고체를 클로로포름에 녹여 플로리실(Florisil)로 컬럼하여 촉매를 제거하고 메탄올에 재결정하여 보라색 고체를 얻은 후, 얻어진 고체를 메탄올과 아세톤을 사용하여 추출기(Soxhlet)로 정제하여 고분자 화합물 7을 얻었다. 얻어진 고분자 화합물의 중량평균분자량(Mw), 수평균분자량(Mn), PDI(polydispersity index) 및 분해온도(decomposition temperature, Td)를 하기 표 1에 기재하였다.After vacuuming in a round flask equipped with a condenser to remove moisture and oxygen, Compound 12 (300 mg, 0.03 mmol) and 2,5-bis (trimethylstannyl) thiophene (0.03 mmol) of Preparation Example 4 were added thereto. Anhydrous toluene (10 mL) was added and dissolved. Pd (PPh 3 ) 4 catalyst (10 mg, 0.03 eq) was added dissolved in anhydrous DMF (1 mL). After 48 hours of stirring at 110 ° C, the reaction product was dissolved in chloroform, columned with Florisil to remove the catalyst, recrystallized from methanol to obtain a purple solid, and the obtained solid was used with methanol and acetone. The product was purified by an extractor (Soxhlet) to obtain a polymer compound 7. The weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI) and decomposition temperature (T d ) of the obtained polymer compound are shown in Table 1 below.
[실시예 8] 유기반도체 화합물(고분자 8)의 제조Example 8 Preparation of Organic Semiconductor Compound (Polymer 8)
Figure PCTKR2015006281-appb-I000025
Figure PCTKR2015006281-appb-I000025
2,5-비스(트리메틸스태닐)티오펜 대신에 5,5'-비스(트리메틸스태닐)-2,2'-바이티오펜을 사용하는 것을 제외하고는 실시예 7과 동일한 방법으로 고분자 화합물 8을 제조하였으며, 얻어진 고분자 화합물의 중량평균분자량(Mw), 수평균분자량(Mn), PDI(polydispersity index) 및 분해온도(decomposition temperature, Td)를 하기 표 1에 기재하였다.Polymeric compound in the same manner as in Example 7 except for using 5,5'-bis (trimethylstannyl) -2,2'-bithiophene instead of 2,5-bis (trimethylstannyl) thiophene 8 was prepared, and the weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity index (PDI), and decomposition temperature (T d ) of the obtained polymer compound are shown in Table 1 below.
표 1
고분자 Mw Mn PDI Td(℃)
실시예 1 Polymer 1 90,000 40,000 2.25 434
실시예 2 Polymer 2 16,000 70,000 2.28 408
실시예 3 Polymer 3 17,000 68,000 2.5 430
실시예 4 Polymer 4 190,000 70,000 2.71 431
실시예 5 Polymer 5 210,000 80,000 2.62 300
실시예 6 Polymer 6 170,000 60,000 2.83 332
실시예 7 Polymer 7 204,000 85,000 2.4 323
실시예 8 Polymer 8 196,000 70,000 2.8 325
Table 1
Polymer Mw Mn PDI T d (℃)
Example 1 Polymer 1 90,000 40,000 2.25 434
Example 2 Polymer 2 16,000 70,000 2.28 408
Example 3 Polymer 3 17,000 68,000 2.5 430
Example 4 Polymer 4 190,000 70,000 2.71 431
Example 5 Polymer 5 210,000 80,000 2.62 300
Example 6 Polymer 6 170,000 60,000 2.83 332
Example 7 Polymer 7 204,000 85,000 2.4 323
Example 8 Polymer 8 196,000 70,000 2.8 325
상기 실시예 1 내지 8에서 제조된 고분자들은 상온에서 일반적인 유기용매인 클로로포름과 THF 및 톨루엔에 잘 용해되었다. 얻어진 고분자들 중 실시예 1 내지 6에서 제조된 고분자들의 물성 및 광학특성은 도 3 내지 도 4에 도시하였다.The polymers prepared in Examples 1 to 8 were well dissolved in chloroform, THF, and toluene which are common organic solvents at room temperature. Physical properties and optical properties of the polymers prepared in Examples 1 to 6 of the obtained polymers are shown in FIGS. 3 to 4.
상기 실시예 1 내지 6에서 제조된 고분자들의 열중량분석(TGA)곡선을 도 3에 나타내었으며, 도 3에서 보이는 바와 같이 본 발명의 유기반도체 화합물들은 열적으로 매우 안정한 것을 알 수 있다.The thermogravimetric analysis (TGA) curves of the polymers prepared in Examples 1 to 6 are shown in FIG. 3, and as shown in FIG. 3, the organic semiconductor compounds of the present invention are thermally very stable.
또한 실시예 1 내지 6에서 제조된 고분자의 용액상태와 고체 필름상태의 UV 흡수 스펙트럼을 측정하여 도 4와 도 5에 각각 도시하였다.In addition, UV absorption spectra of the solution state and the solid film state of the polymer prepared in Examples 1 to 6 were measured and shown in FIGS. 4 and 5, respectively.
또한 실시예 7 및 실시예 8에서 제조된 고분자의 용액상태와 고체 필름상태의 UV 흡수 스펙트럼을 측정하여 도 6 및 도 7에 각각 도시하였다.In addition, UV absorption spectra of the solution state and the solid film state of the polymers prepared in Examples 7 and 8 were measured and shown in FIGS. 6 and 7, respectively.
도 4, 도 6 및 도 7에서 보이는 바와 같이 실시예 1 내지 8에서 제조된 고분자를 클로로포름 용액상태의 UV 흡수 스펙트럼에서는 공통적으로 300 내지 700 nm의 흡수를 나타내고 특히 강한 진동 피크(vibronic peak)를 관찰 할 수 있는데, 이는 분자간의 강력한 상호작용(interaction)에 의한 피크(peak)로 볼 수 있다. As shown in FIGS. 4, 6, and 7, the polymers prepared in Examples 1 to 8 commonly exhibit absorptions of 300 to 700 nm in the UV absorption spectrum in the chloroform solution state, and particularly strong vibration peaks are observed. This can be seen as a peak due to strong interactions between molecules.
또한 도 5, 도 6 및 도 7에 나타낸 바와 같이 실시예 1 내지 8에서 제조된 고분자의 필름상태의 UV 흡수 스펙트럼에서는 용액 상태의 흡수 스펙트럼 보다 넓은 영역의 흡수 스펙트럼을 관찰 할 수 있다. 액체 상태일 때 분자들이 넓은 범위에 걸쳐 분포되어 있고 비교적 자유롭게 움직일 수 있지만, 고체 필름 상태일 경우에는 각각의 그룹들의 응집(aggregation)경향 현상으로부터 나타난 결과라고 볼 수 있다. 이와 같이 필름 상태에서의 흡수 스펙트럼을 이용하여 밴드갭(bandgap = 1240/λedge)을 계산해 본 결과, 실시예 1 내지 8에서 제조된 고분자들은 1.72 내지 1.90 eV의 밴드갭을 나타내었다. 특히 실시예 7과 8에서 제조된 고분자들은 각각 1.73 eV 및 1.72 eV의 낮은 밴드갭을 나타내었다.In addition, in the film UV absorption spectrum of the polymer prepared in Examples 1 to 8, as shown in FIGS. 5, 6, and 7, it is possible to observe the absorption spectrum of a wider region than the absorption spectrum of the solution state. When in the liquid state, the molecules are distributed over a wide range and can move relatively freely, but in the solid film state, it is a result from the tendency of aggregation of individual groups. As a result of calculating the bandgap (bandgap = 1240 / λ edge ) using the absorption spectrum in the film state, the polymers prepared in Examples 1 to 8 showed a bandgap of 1.72 to 1.90 eV. In particular, the polymers prepared in Examples 7 and 8 exhibited low bandgaps of 1.73 eV and 1.72 eV, respectively.
또한, 페로센/페로세늄 레독스 시스템(Ferrocene/Ferrocenium redox system) (-4.8V)을 기준(Reference)으로 고체 필름상태에서 순환전압전류법(Cyclic Voltammertry)으로 측정하여 실시예 1 내지 8에서 제조된 고분자들의 HOMO 레벨을 구하였으며, 이를 도 8 및 도 9에 도시하였다. 실시예 1 내지 6에서 제조된 6종의 고분자들은 -5.48 eV의 HOMO 에너지 준위로 계산되었고, 실시예 7과 8에서 제조된 2종의 고분자들은 각각 -5.65 eV 및 -5.54 eV의 HOMO 에너지 준위로 계산되었다. 상기 계산된 HOMO 에너지 준위를 UV 흡수 스펙트럼에서 계산된 밴드갭과의 차로 각 고분자의 LUMO 에너지 준위를 계산해 본 결과, -3.65 내지 -3.90 eV로 계산되었다.In addition, the ferrocene / ferrocenium redox system (Ferrocene / Ferrocenium redox system) (-4.8V) based on the reference (Reference) in the solid film state measured by cyclic voltammetry (Cyclic Voltammertry) prepared in Examples 1 to 8 HOMO levels of the polymers were obtained, which are shown in FIGS. 8 and 9. The six polymers prepared in Examples 1 to 6 were calculated to have a HOMO energy level of -5.48 eV, and the two polymers prepared in Examples 7 and 8 were to a HOMO energy level of -5.65 eV and -5.54 eV, respectively. Was calculated. As a result of calculating the LUMO energy level of each polymer by the difference between the calculated HOMO energy level and the band gap calculated in the UV absorption spectrum, it was calculated as -3.65 to -3.90 eV.
[실시예 9 내지 12] 단일층 유기 태양전지 소자의 제작[Examples 9 to 12] Fabrication of Single Layer Organic Solar Cell Device
본 발명에 따른 유기 반도체 화합물을 광활성층으로 함유하는 단일층 유기 태양전지 소자를 아래와 같이 제작하였다.A single layer organic solar cell device containing an organic semiconductor compound according to the present invention as a photoactive layer was fabricated as follows.
먼저 깨끗하게 세척한 ITO(Indium tin oxide) 글라스 위에 UV-O3를 처리한 후, ZnO NPs (Zinc oxide nanopartile)를 5000rpm에서 1분간 스핀코팅한 후, 120℃에서 10분간 열처리하여 10nm 두께의 전자수송 층(Electron transport layer : ETL)을 형성하였다.First, UV-O 3 was treated on clean indium tin oxide (ITO) glass, ZnO NPs (Zinc oxide nanopartile) was spin-coated at 5000 rpm for 1 minute, and then heat-treated at 120 ° C. for 10 minutes to transport 10 nm thick electrons. A layer (Electron transport layer (ETL)) was formed.
본 발명에 따른 유기 반도체 화합물과 PCBM(C70)을 클로로벤젠에 첨가한 후 DIO (1,8-diiodooctane)를 3 vol%로 넣은 후 두 물질의 충분한 혼합을 위하여 50℃로 24시간 동안 교반하여 유기 반도체 화합물 혼합액을 제조하였다.After adding the organic semiconductor compound and PCBM (C70) according to the present invention to chlorobenzene, DIO (1,8-diiodooctane) was added to 3 vol% and stirred for 24 hours at 50 ° C. for sufficient mixing of the two organic materials. A semiconductor compound mixture was prepared.
상기 유기 반도체 화합물로 고분자 1(실시예 1), 고분자 4(실시예 4), 고분자 7(실시예 7) 또는 고분자 8(실시예 8)을 사용하였으며, 고분자 1 또는 고분자 4를 사용하는 경우 고분자 1 또는 고분자 4 : PCBM(C70)은 1 : 1의 중량비로, 고분자 7 또는 고분자 8을 사용하는 경우 고분자 7 또는 고분자 8 : PCBM(C70)은 1 : 1.3, 1 : 1.5 또는 1 : 1.7의 중량비로 사용하였다. Polymer 1 (Example 1), Polymer 4 (Example 4), Polymer 7 (Example 7) or Polymer 8 (Example 8) were used as the organic semiconductor compound, and Polymer 1 or Polymer 4 was used. 1 or polymer 4: PCBM (C70) is a weight ratio of 1: 1, when using a polymer 7 or polymer 8, polymer 7 or polymer 8: PCBM (C70) is 1: 1.3, 1: 1.5 or 1: 1.7 weight ratio Used as.
질소 하에 상기 유기 반도체 화합물 혼합액을 상기 코팅층인 ETL 층상에 스핀코팅하고 다시 120℃로 10분간의 열처리를 하여 100nm의 광활성층을 형성한 후, 마지막으로 MoO3 (10 nm) / Ag (100 nm)로 고온 증착하여 단일층 유기 태양전지 소자를 제작하였다. Spin coating the organic semiconductor compound mixture on the ETL layer, which is the coating layer, under nitrogen, followed by heat treatment at 120 ° C. for 10 minutes to form a 100 nm photoactive layer, and finally MoO 3 (10 nm) / Ag (100 nm). The high temperature vapor deposition to produce a single-layer organic solar cell device.
제작된 단일층 유기 태양전지 소자의 광전기력 특성을 조사하기 위하여 솔라 시뮬레이터(Solar simulator)와 복사풀력계(radiant power meter)를 사용하여 AM 1.5 조건의 100mW 태양광을 생성하였고, 1kW 솔라 시뮬레이터 (Newport 91192)을 사용하여 유기태양전지 소자의 전류밀도-전압(Current density-voltage; J-V)특성을 측정하여 그 결과를 도 10 내지 도 12에 도시하였다. 도 11과 도 12로부터 고분자 7 또는 고분자 8 : PCBM(C70)의 혼합 중량비가 1 : 1.5인 경우 가장 우수한 효율 나타냄을 확인하였다.In order to investigate the photovoltaic characteristics of the fabricated single layer organic solar cell device, 100mW solar light under AM 1.5 condition was generated using a solar simulator and a radiant power meter and a 1kW solar simulator (Newport). 91192) was used to measure the current density-voltage (JV) characteristics of the organic solar cell device, and the results are shown in FIGS. 10 to 12. 11 and 12 it was confirmed that the best efficiency when the mixed weight ratio of the polymer 7 or polymer 8: PCBM (C70) is 1: 1.5.
상기 제작된 단일층 유기 태양전지 소자의 전기적 특성, 즉, Voc(open circuit voltage), JSC(short-circuit current density), FF(fill factor) 및 광전 변환 효율(power conversion efficiency; PCE)의 광전 파라미터(photovoltaic parameter)들을 표 2에 정리 도시하였다.Electrical characteristics of the fabricated single layer organic solar cell device, namely, V oc (open circuit voltage), J SC (short-circuit current density), FF (fill factor) and photoelectric conversion efficiency (PCE) Photovoltaic parameters are summarized in Table 2.
표 2
광활성층 유기 반도체 화합물 : PCBM(C70)의 중량비 V oc [V] J sc [mA/cm2] FF[%] PCE[%]
실시예 9 고분자 1 1 : 1 0.83 15.8 63 8.23
실시예 10 고분자 4 1 : 1 0.81 15.6 66 8.33
실시예 11 고분자 7 1 : 1.5 0.86 15.30 70 9.21
실시예 12 고분자 8 1 : 1.5 0.78 10.56 62 5.05
TABLE 2
Photoactive layer Organic Semiconductor Compound: Weight Ratio of PCBM (C70) V oc [V] J sc [mA / cm 2 ] FF [%] PCE [%]
Example 9 Polymer 1 1: 1 0.83 15.8 63 8.23
Example 10 Polymer 4 1: 1 0.81 15.6 66 8.33
Example 11 Polymer 7 1: 1.5 0.86 15.30 70 9.21
Example 12 Polymer 8 1: 1.5 0.78 10.56 62 5.05
실시예 9 내지 12에서 제작된 단일층 유기 태양전지 소자의 J-V 특성 곡선을 도 10 내지 도 12에 도시하였다. 각 고분자들은 보다 향상된 광전 변환 효율을 얻기 위하여 DIO(1,8-diiodooctane)과 같은 첨가제를 함께 사용하였으며, 그 결과 각각 8.23, 8.33, 9.21, 5.05%의 높은 광전 변환 효율을 나타내었다. 특히, 실시예 11의 유기태양전지소자는 9% 이상의 광전 변화 효율을 가지고 있으며, 이는 세계 최고 수준의 광전 변환 효율로 볼 수 있다. The J-V characteristic curves of the single layer organic solar cell devices manufactured in Examples 9 to 12 are illustrated in FIGS. 10 to 12. Each polymer was combined with an additive such as DIO (1,8-diiodooctane) to obtain more improved photoelectric conversion efficiency. As a result, the polymers exhibited high photoelectric conversion efficiency of 8.23, 8.33, 9.21 and 5.05%, respectively. In particular, the organic solar cell device of Example 11 has a photoelectric conversion efficiency of 9% or more, which can be seen as the world's highest photoelectric conversion efficiency.
[실시예 13] 반전 적층형 유기 태양전지 소자의 제작Example 13 Fabrication of Inverted Laminated Organic Solar Cell Device
중간 밴드갭을 갖는 고분자 4 (실시예 4)을 새로운 전자 주게 재료로 사용하여 제작한 반전 적층형 유기태양전지소자의 광기전력 특성을 알아보고자 도 13과 같이 [ITO/ZnO NPs/본 발명의 유기 반도체 화합물(실시예 4의 고분자 4):PC71BM/PEDOT:PSS/ZnO NPs/낮은 밴드갭의 유기 반도체 화합물:PC71BM/MoO3/Ag] 구조의 반전 적층형 유기태양전지소자를 제작하였다. 본 발명에서 도입한 낮은 밴드갭의 유기 반도체 화합물인 PTB7의 경우 도 14와 같은 구조를 가지며, 이 재료 또한 기존에 보고된 재료를 사용하였다. To investigate the photovoltaic characteristics of an inverted stacked organic solar cell device fabricated using a polymer 4 having an intermediate bandgap (Example 4) as a new electron donor material, as shown in FIG. 13 [ITO / ZnO NPs / organic semiconductor of the present invention] Compound (Polymer 4 of Example 4): PC 71 BM / PEDOT: PSS / ZnO NPs / low band gap organic semiconductor compound: PC 71 BM / MoO 3 / Ag] An inverted stacked organic solar cell device was fabricated. In the case of the low bandgap organic semiconductor compound introduced in the present invention, PTB7 has a structure as shown in FIG. 14, and this material also used a previously reported material.
먼저 깨끗하게 세척한 ITO(Indium tin oxide) 글라스 위에 UV-O3를 처리한 후, ZnO NPs를 5000 rpm에서 1분간 스핀코팅한 후, 120℃에서 10분간 열처리하여 10nm 두께의 전자수송 층(Electron transport layer : ETL)을 형성하였다.First, after UV-O 3 treatment on clean indium tin oxide (ITO) glass, ZnO NPs were spin-coated at 5000 rpm for 1 minute, and then heat-treated at 120 ° C. for 10 minutes to form a 10 nm-thick electron transport layer (Electron transport). layer: ETL).
실시예 4의 고분자 4와 PC71BM을 1 : 1 의 중량비로 클로로벤젠에 첨가한 후 DIO (1,8-diiodooctane)를 3 vol% 로 넣은 후 두 물질의 충분한 혼합을 위하여 50℃로 24시간동안 교반하여 유기 반도체 화합물 혼합액을 제조하였다. 질소 분위기 하에 상기 유기 반도체 화합물 혼합액을 상기 코팅층인 ETL 층 상에 스핀코팅하고 다시 120℃로 10분간의 열처리를 하여 90 nm의 광활성층을 형성한 후 PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))를 스핀코팅하였다. Polymer 4 of Example 4 and PC 71 BM were added to chlorobenzene in a weight ratio of 1: 1, and then DIO (1,8-diiodooctane) was added at 3 vol%, followed by 24 hours at 50 ° C for sufficient mixing of the two materials. While stirring, an organic semiconductor compound mixture was prepared. After the organic semiconductor compound mixture was spin-coated on the ETL layer, which is the coating layer, under nitrogen atmosphere, heat-treated at 120 ° C. for 10 minutes to form a 90 nm photoactive layer, followed by PEDOT: PSS (poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate)) was spin-coated.
PEDOT:PSS가 스핀코팅이 완료되면, 다시 한번 ZnO NPs를 위와 동일한 조건으로 코팅하여 10nm 두께의 전자수송 층을 형성하고, 낮은 밴드갭의 유기 반도체 화합물인 PTB7 : PC71BM을 1 : 1.5 의 중량비로 클로로벤젠에 첨가한 후 DIO (1,8-diiodooctane)를 3 vol% 로 넣은 후 두 물질의 충분한 혼합을 위하여 50℃로 24시간동안 교반하여 낮은 밴드갭의 유기 반도체 화합물 혼합액을 제조하였다. 질소 하에 상기 낮은 밴드갭의 유기 반도체 화합물 혼합액을 상기 코팅층인 ETL 층 상에 2000 rpm에서 스핀코팅 하여 80 nm의 광활성층을 형성하였다. 마지막으로 MoO3 (10 nm) / Ag (100 nm)로 고온 증착하여 반전 적층형 유기 태양전지소자를 제작하였다.After the PEDOT: PSS spin coating is completed, the ZnO NPs is coated once again to form an electron transport layer having a thickness of 10 nm, and PTB7: PC 71 BM, which is a low bandgap organic semiconductor compound, has a weight ratio of 1: 1.5. After adding to chlorobenzene, DIO (1,8-diiodooctane) was added at 3 vol% and stirred for 24 hours at 50 ° C. for sufficient mixing of the two materials to prepare a low bandgap organic semiconductor compound mixture. The low bandgap organic semiconductor compound mixture solution was spin-coated at 2000 rpm on the ETL layer, which was the coating layer, under nitrogen to form an 80 nm photoactive layer. Finally, a high-temperature deposition with MoO 3 (10 nm) / Ag (100 nm) to fabricate an inverted stacked organic solar cell device.
상기 제작된 반전 적층형 유기 태양전지소자의 하부층과 상부층 광활성 고분자의 자외선-가시광선 흡수 스펙트라(UV-visible absorption spectra)를 도 15에 도시하였다. 15 shows the UV-visible absorption spectra of the lower layer and the upper layer photoactive polymer of the inverted stacked organic solar cell device.
제작된 반전 적층형 유기태양전지소자의 광전기력 특성을 조사하기 위하여 솔라 시뮬레이터(Solar simulator)와 복사풀력계(radiant power meter)를 사용하여 AM 1.5 조건의 100mW 태양광을 생성하였고, 1kW 솔라 시뮬레이터 (Newport 91192)을 사용하여 유기태양전지 소자의 전류밀도-전압(Current density-voltage) 특성을 측정하였고 그 결과를 도 16에 도시하였다. In order to investigate the photovoltaic characteristics of the fabricated inverted stacked organic solar cell device, a solar simulator and a radiant power meter were used to generate 100 mW solar light under AM 1.5 conditions, and a 1 kW solar simulator (Newport). 91192) was used to measure the current density-voltage characteristics of the organic solar cell device and the results are shown in FIG. 16.
상기 고분자 4를 이용하여 제작된 반전 적층형 유기태양전지소자의 전기적 특성, 즉, Voc(open circuit voltage), JSC(short-circuit current density), FF(fill factor) 및 PCE(power conversion efficiency)의 광전 파라미터(photovoltaic parameter)들을 표 3에 정리 도시하였다.Electrical characteristics of the inverted stacked organic solar cell device fabricated using the polymer 4, that is, V oc (open circuit voltage), J SC (short-circuit current density), FF (fill factor) and PCE (power conversion efficiency) The photovoltaic parameters of are summarized in Table 3.
[비교예 1] 반전 적층형 유기 태양전지 소자의 제작Comparative Example 1 Fabrication of Inverted-Layered Organic Solar Cell Device
실시예 4의 고분자 4 대신에 P3HT를 사용하고, PC71BM 대신에 IC60BA를 사용하는 것을 제외하고는 실시예 13과 동일한 방법으로 반전 적층형 유기 태양전지 소자를 제작하였으며, 제작된 반전 적층형 유기 태양전지 소자의 전기적 특성을 하기 표 3에 나타내었다. An inverted stacked organic solar cell device was manufactured in the same manner as in Example 13 except that P3HT was used instead of Polymer 4 of Example 4 and IC 60 BA was used instead of PC 71 BM. The electrical characteristics of the solar cell device are shown in Table 3 below.
표 3
Cell 활성층(Active layer) V oc [V] J sc [mA/cm2] FF[%] PCE[%]
상부층 소자a PTB7 : PC71BM(1 : 1.5 의 중량비) 0.74 14.64 73 7.86
하부층 소자b P3HT:IC60BA 0.83 8.81 63 4.60
비교예 1의 반전 적층형 소자c - 1.56 8.12 67 8.47
하부층 소자d 고분자 4 : PC71BM(1 : 1의 중량비) 0.84 11.05 73 6.81
실시예 13의 반전 적층형 소자e - 1.58 8.00 74 9.35
TABLE 3
Cell Active layer V oc [V] J sc [mA / cm 2 ] FF [%] PCE [%]
Upper layer device a PTB7: PC 71 BM (weight ratio of 1: 1.5) 0.74 14.64 73 7.86
Lower layer device b P3HT: IC 60 BA 0.83 8.81 63 4.60
Inverted stacked device c of Comparative Example 1 - 1.56 8.12 67 8.47
Lower layer element d Polymer 4: PC 71 BM (weight ratio of 1: 1) 0.84 11.05 73 6.81
Inverted stacked device e of Example 13 - 1.58 8.00 74 9.35
a [ITO/ZnO NPs/PTB7:PC71BM/MoO3/Ag]a [ITO / ZnO NPs / PTB7: PC 71 BM / MoO 3 / Ag]
b [ITO/ZnO NPs/P3HT:IC60BA/PEDOT:PSS/Ag]b [ITO / ZnO NPs / P3HT: IC 60 BA / PEDOT: PSS / Ag]
c [ITO/ZnO NPs/P3HT:IC60BA/PEDOT:PSS/ZnO NPs/PTB7:PC71BM/MoO3/Ag]c [ITO / ZnO NPs / P3HT: IC 60 BA / PEDOT: PSS / ZnO NPs / PTB7: PC 71 BM / MoO 3 / Ag]
d [ITO/ZnO NPs/고분자 4:PC71BM/PEDOT:PSS/Ag]d [ITO / ZnO NPs / Polymer 4: PC 71 BM / PEDOT: PSS / Ag]
e [ITO/ZnO NPs/고분자 4:PC71BM/PEDOT:PSS/ZnO NPs/PTB7:PC71BM/MoO3/Ag]e [ITO / ZnO NPs / Polymer 4: PC 71 BM / PEDOT: PSS / ZnO NPs / PTB7: PC 71 BM / MoO 3 / Ag]
상기 표 3에서 보이는 바와 같이, 지금까지 보고되지 않은 아래층의 재료로 본 발명에 따른 신규 유기 반도체 화합물을 이용한 반전 적층형 소자(실시예 13)의 경우 9.35%의 우수한 PCE 특성을 나타내었다. As shown in Table 3, the inverted stacked device (Example 13) using the novel organic semiconductor compound according to the present invention, which has not been reported so far, exhibited excellent PCE characteristics of 9.35%.
일반적으로 반전 적층형 유기태양전지에 사용되는 P3HT의 경우 IC60BA(Indene-C60 Bis-Adduct)라는 비스-첨가물(bis-adduct)과의 조합으로 사용되었다(비교예 1). 하지만 비스-첨가물(bis-adduct)의 경우 깨끗한 물질을 합성하는 일이 어렵고 그에 따른 효율 변화도 심하였다. In general, P3HT used in an inverted stacked organic solar cell was used in combination with a bis-adduct called IC 60 BA (Indene-C60 Bis-Adduct) (Comparative Example 1). In the case of bis-adducts, however, it was difficult to synthesize clean materials and the efficiency change was severe.
하지만 본 발명에서 합성된 고분자 4를 포함하는 실시예 13의 반전 적층형 유기태양전지의 경우 9.35%의 매우 높은 광-전 변환 효율을 나타내면서 74%의 우수한 FF를 나타내고 있다. 반전 적층형 유기 태양전지에서 74%의 FF는 세계 최고의 소자 특성 중 하나이다. 이는 기존에 많이 사용하는 P3HT 보다 월등히 우수한 결과이다(도 16). 이는 본 발명에서 합성된 고분자 4의 우수한 결정성과 뛰어난 정공과 전자의 전하 균형(charge balance) 때문이다. 이러한 고분자의 특성은 높은 FF를 구현하는데 유리하다. 특히, 도 16에서와 같이 본 발명에서는 지금까지 반전 적층형 유기 태양전지에서 일반적으로 하부층 광활성 층으로 사용하는 P3HT:IC60BA 와의 비교를 해보았다. 그 결과 P3HT:IC60BA/PTB7:PC71BM 의 비교예 1의 소자(도 16의 c)의 경우 8.47 %의 광-전 변환 효율을 나타내었다. 즉, 본 발명의 신규 유기반도체 화합물인 고분자 4는 현재 반전 적층형 유기 태양전지의 보다 향상된 효율을 나타낼 수 있는 아주 중요한 재료로 작용함을 알 수 있다. However, the inverted stacked organic solar cell of Example 13 including the polymer 4 synthesized in the present invention showed excellent FF of 74% while exhibiting a very high photoelectric conversion efficiency of 9.35%. In inverted stacked organic solar cells, 74% of FF is one of the best device characteristics in the world. This is a much better result than the conventionally used P3HT (Fig. 16). This is due to the excellent crystallinity of the polymer 4 synthesized in the present invention and excellent charge balance between holes and electrons. The properties of these polymers are advantageous for achieving high FF. In particular, as shown in FIG. 16, the present invention has been compared with P3HT: IC 60 BA which is generally used as a lower layer photoactive layer in an inverted stacked organic solar cell. As a result, the photoelectric conversion efficiency of 8.47% was shown for the device of Comparative Example 1 of P3HT: IC 60 BA / PTB7: PC 71 BM (FIG. 16C). That is, it can be seen that the polymer 4, which is a novel organic semiconductor compound of the present invention, serves as a very important material that can exhibit more improved efficiency of the current inverted stacked organic solar cell.
본 발명의 유기반도체 화합물인 고분자 4를 광활성층으로 이용하여 74%의 FF를 나타내는 태양전지를 구현한 것은 전세계 최초로 보고하는 것이고, 현재까지 P3HT로만 반전 적층형 유기 태양전지 제작에서의 최고 효율을 뛰어 넘을 수 있을 것으로 예상된다. The implementation of a solar cell showing 74% of FF using the organic semiconductor compound of the present invention, Polymer 4, as a photoactive layer is the first report in the world. It is expected to be able.
본 발명의 유기 반도체 화합물은 전자 받게인 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)과 다양한 전자 주개(화학식 1에서 D를 나타냄) 사이에 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 도입하여 다양한 전자 주개와 공중합된 구조로, P3HT와 유사한 중간 밴드갭을 나타냈고, 분자 내에서 티에노[3,2-b]티오펜 π-브릿지(π-bridges)의 도입으로 인해 우수한 결정성을 나타내며, 향상된 정공과 전자 이동도, 그리고 나노 구조(nano structure)를 구현할 수 있다.The organic semiconductor compound of the present invention is thieno [3] between the electron acceptor thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) and various electron donors (representing D in formula 1). Incorporated, 2-b] thiophene π-bridges copolymerized with various electron donors, exhibiting an intermediate bandgap similar to that of P3HT and containing thieno [3,2-b] teas in the molecule. The introduction of off-pi pi-bridges provides excellent crystallinity, improved hole and electron mobility, and nano structure.
또한 본 발명의 유기 반도체 화합물은 적층형 유기 태양전지에서 아래층에 사용할 수 있는 유기 반도체의 조건인 중간 밴드갭, 높은 개방전압, 높은 FF 및 열적안정성을 가지고 있어, 일반적으로 사용하고 있는 P3HT 보다 높은 성능을 구현한다. In addition, the organic semiconductor compound of the present invention has higher performance than P3HT which is generally used because it has intermediate bandgap, high open voltage, high FF and thermal stability, which are the conditions of the organic semiconductor that can be used for the lower layer in the stacked organic solar cell. Implement
게다가, 본 발명의 유기 반도체 화합물에 포함되는 다양한 전자 주개(화학식 1에서 D를 나타냄)가 동일할 때 티에노[3,2-b]티오펜 π-브릿지(π-bridges)의 알킬 체인 길이의 조절을 통하여 단일층 유기 태양전지에서 세계 최고 수준의 광-전 변환 효율을 나타낸다.Furthermore, when the various electron donors included in the organic semiconductor compound of the present invention (representing D in the formula 1) are the same, the alkyl chain length of the thieno [3,2-b] thiophene π-bridges Through regulation, it shows the world's best photoelectric conversion efficiency in single layer organic solar cell.
또한 본 발명의 유기반도체 화합물은 다양한 전자 주개 물질과의 조합을 통하여 보다 향상된 성능을 나타낸다.In addition, the organic semiconductor compound of the present invention exhibits improved performance through combination with various electron donor materials.
또한 본 발명의 유기반도체 화합물은 높은 열적 안정성과 유기용매에 대한 높은 용해도를 가진다. In addition, the organic semiconductor compound of the present invention has high thermal stability and high solubility in organic solvents.
따라서 본 발명의 유기 반도체 화합물은 티에노[3,2-b]티오펜 π-브릿지(π-bridges)를 가지는 티에노[3,4-c]피롤-4,6(5H)-디온(TPD)을 전자 받개로 도입하여 다양한 전자 주개와 공중합하여, 중간 밴드갭을 나타내므로, 이를 포함하는 적층형 유기 전자는 본 발명의 유기 반도체 화합물과 광활성층인 풀러렌 유도체와의 조합으로 획기적인 높은 효율을 가진다. Thus, the organic semiconductor compound of the present invention is thieno [3,4-c] pyrrole-4,6 (5H) -dione (TPD) having thieno [3,2-b] thiophene π-bridges. ) Is introduced into the electron acceptor and copolymerized with various electron donors, thereby exhibiting an intermediate bandgap, so that the stacked organic electrons including the same have a high efficiency by combining the organic semiconductor compound of the present invention with a fullerene derivative which is a photoactive layer.
또한 본 발명의 유기반도체 화합물은 높은 열적안정성과 높은 용해도로 인해 이를 포함하는 유기전자소자는 우수한 전기특성을 가져 유기 전자 소자 특히, 적층형 유기 태양전지의 아래층에 P3HT를 대신하여 매우 유용하게 사용될 수 있다. In addition, the organic semiconductor compound of the present invention has high thermal stability and high solubility, so that the organic electronic device including the same has excellent electrical properties, and thus may be very useful in place of P3HT in the lower layer of the organic electronic device, in particular, a stacked organic solar cell. .
또한 본 발명은 새로운 전자주개(donor)물질로서 개발된 것으로 기존의 유기태양전지의 최대 에너지 변환효율을 증가시킬 수 있는 브레이크스루(breakthrough)에 해당하는 발명으로서 매우 우수한 효과를 나타낸다. In addition, the present invention has been developed as a new electron donor (donor) material and exhibits a very excellent effect as a breakthrough (breakthrough) that can increase the maximum energy conversion efficiency of the existing organic solar cell.
또한 본 발명은 높은 전기특성을 가지는 유기반도체 화합물을 제조하는 방법을 제공한다.The present invention also provides a method for producing an organic semiconductor compound having high electrical properties.

Claims (12)

  1. 하기 화학식 1로 표시되는 유기반도체 화합물:An organic semiconductor compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2015006281-appb-I000026
    Figure PCTKR2015006281-appb-I000026
    상기 화학식 1에서,In Chemical Formula 1,
    D는 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene;
    X 는 S, Se, O 또는 NR'이며;X is S, Se, O or NR ';
    R1 및 R2는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, C1-C30알콕시C3-C20헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
    R'는 수소, C1-C30알킬 또는 C6-C30아르C1-C30알킬이며;R 'is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
    상기 D의 아릴렌 및 헤테로아릴렌은 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
    상기 R1 및 R2의 알킬 및 아르알킬은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노, 모노- 또는 디-C1-C30알킬아미노, 하이드록시, 할로겐, 사이아노, 나이트로, 할로C1-C30알킬, C1-C30알킬실릴 및 C6-C30아릴실릴로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
    n는 1 내지 2000의 정수이고;n is an integer from 1 to 2000;
    상기 헤테로아릴 및 헤테로아릴렌은 N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.The heteroaryl and heteroarylene include one or more heteroatoms selected from N, O, S, P (= 0), Si and P.
  2. 제 1항에 있어서,The method of claim 1,
    상기 D는 C3-C30헤테로아릴렌인 것을 특징으로 하는 유기반도체 화합물.The D is an organic semiconductor compound, characterized in that C 3 -C 30 heteroarylene.
  3. 제 2항에 있어서,The method of claim 2,
    상기 D는 하기 구조에서 선택되는 헤테로아릴렌인 것을 특징으로 하는 유기반도체 화합물:Wherein D is a heteroarylene selected from the following structures:
    Figure PCTKR2015006281-appb-I000027
    Figure PCTKR2015006281-appb-I000027
    상기 R11 및 R12는 각각 독립적으로 수소, C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
    R13 내지 R20는 서로 독립적으로 수소, C1-C30알킬, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이다.R 13 to R 20 are each independently of the other hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 are C 1 -C 30 alkyl.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 유기 반도체 화합물은 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 것을 특징으로 하는 유기반도체 화합물:The organic semiconductor compound is an organic semiconductor compound, characterized in that represented by the following formula (2), (3) or (4):
    [화학식 2][Formula 2]
    Figure PCTKR2015006281-appb-I000028
    Figure PCTKR2015006281-appb-I000028
    [화학식 3][Formula 3]
    Figure PCTKR2015006281-appb-I000029
    Figure PCTKR2015006281-appb-I000029
    [화학식 4][Formula 4]
    Figure PCTKR2015006281-appb-I000030
    Figure PCTKR2015006281-appb-I000030
    상기 화학식 2 내지 4에서,In Chemical Formulas 2 to 4,
    X는 S, Se 또는 O이며;X is S, Se or O;
    R1 및 R2는 서로 독립적으로 C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬 또는 C1-C30알콕시C3-C20헤테로아릴이며;R 1 and R 2 independently of one another are C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl or C 1 -C 30 alkoxyC 3 -C 20 heteroaryl ;
    R11 및 R12는 각각 독립적으로 수소, C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1- C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
    R13 내지 R16는 서로 독립적으로 수소, C1-C30알킬, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬이고;R 13 to R 16 independently of one another are hydrogen, C 1 -C 30 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
    n는 1 내지 2000의 정수이다.n is an integer from 1 to 2000.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 R1 및 R2는 서로 독립적으로 C1-C30알킬인 것을 특징으로 하는 유기반도체 화합물.The R 1 and R 2 are independently an organic semiconductor compound, characterized in that C 1 -C 30 Alkyl.
  6. 제 5항에 있어서,The method of claim 5,
    상기 유기반도체 화합물은 하기 구조로부터 선택되는 것을 특징으로 하는 유기반도체 화합물:The organic semiconductor compound is an organic semiconductor compound, characterized in that selected from the following structure:
    Figure PCTKR2015006281-appb-I000031
    Figure PCTKR2015006281-appb-I000031
    Figure PCTKR2015006281-appb-I000032
    Figure PCTKR2015006281-appb-I000032
    Figure PCTKR2015006281-appb-I000033
    Figure PCTKR2015006281-appb-I000033
    Figure PCTKR2015006281-appb-I000034
    Figure PCTKR2015006281-appb-I000034
    Figure PCTKR2015006281-appb-I000035
    Figure PCTKR2015006281-appb-I000035
    Figure PCTKR2015006281-appb-I000036
    Figure PCTKR2015006281-appb-I000036
    Figure PCTKR2015006281-appb-I000037
    Figure PCTKR2015006281-appb-I000037
    Figure PCTKR2015006281-appb-I000038
    Figure PCTKR2015006281-appb-I000038
    상기 n은 1 내지 2000의 정수이다.N is an integer of 1 to 2000.
  7. 하기 화학식 5의 주석 화합물과 하기 화학식 6의 tt-TPD 유도체를 공중합 반응시켜 하기 화학식 1로 표시되는 유기반도체 화합물을 제조하는 방법:A method of preparing an organic semiconductor compound represented by Chemical Formula 1 by copolymerizing a tin compound of Chemical Formula 5 and a tt-TPD derivative of Chemical Formula 6 below:
    [화학식 1][Formula 1]
    Figure PCTKR2015006281-appb-I000039
    Figure PCTKR2015006281-appb-I000039
    [화학식 5][Formula 5]
    Figure PCTKR2015006281-appb-I000040
    Figure PCTKR2015006281-appb-I000040
    [화학식 6][Formula 6]
    Figure PCTKR2015006281-appb-I000041
    Figure PCTKR2015006281-appb-I000041
    상기 화학식 1, 5 및 6에서,In Chemical Formulas 1, 5, and 6,
    D는 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;D is C 6 -C 30 arylene or C 3 -C 30 heteroarylene;
    X 는 S, Se, O 또는 NR'이며;X is S, Se, O or NR ';
    Y는 할로겐이고;Y is halogen;
    R1 및 R2는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, C1-C30알콕시C3-C20헤테로아릴 또는 C6-C30아르C1-C30알킬이며;R 1 and R 2 independently of one another are hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 20 heteroaryl or C 6- C 30 arC 1 -C 30 alkyl;
    R'는 수소, C1-C30알킬 또는 C6-C30아르C1-C30알킬이며;R 'is hydrogen, C 1 -C 30 alkyl or C 6 -C 30 arC 1 -C 30 alkyl;
    상기 D의 아릴렌 및 헤테로아릴렌은 C1-C30알킬티에닐, C1-C30알콕시C6-C30아릴, C1-C30알킬, C1-C30알콕시, C1-C30알콕시C1-C30알킬, C1-C30알킬C3-C30헤테로아릴, C1-C30알킬티오, C1-C30알콕시C3-C30헤테로아릴, C6-C30아릴, C3-C30헤테로아릴 또는 C6-C30아르C1-C30알킬로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The arylene and heteroarylene of D are C 1 -C 30 alkylthienyl, C 1 -C 30 alkoxyC 6 -C 30 aryl, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 1 -C 30 alkoxyC 1 -C 30 alkyl, C 1 -C 30 alkylC 3 -C 30 heteroaryl, C 1 -C 30 alkylthio, C 1 -C 30 alkoxyC 3 -C 30 heteroaryl, C 6 -C 30 May be further substituted with one or more substituents selected from the group consisting of aryl, C 3 -C 30 heteroaryl or C 6 -C 30 arC 1 -C 30 alkyl;
    상기 R1 및 R2의 알킬 및 아르알킬은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노, 모노- 또는 디-C1-C30알킬아미노, 하이드록시, 할로겐, 사이아노, 나이트로, 할로C1-C30알킬, C1-C30알킬실릴 및 C6-C30아릴실릴로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;The alkyl and aralkyl of R 1 and R 2 are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, mono- or di-C 1 -C 30 alkyl, amino, hydroxy, halogen, cyano, nitro, halo-C 1 -C 30 alkyl, C 1 -C 30 alkylsilyl group and C 6 one or more substituents selected from the group consisting of -C 30 arylsilyl May be further substituted with;
    n는 1 내지 2000의 정수이고;n is an integer from 1 to 2000;
    상기 헤테로아릴 및 헤테로아릴렌은 N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.The heteroaryl and heteroarylene include one or more heteroatoms selected from N, O, S, P (= 0), Si and P.
  8. 제 1항 내지 제 6항에서 선택되는 어느 한 항에 따른 유기반도체 화합물을 포함하는 유기 전자 소자. An organic electronic device comprising the organic semiconductor compound according to any one of claims 1 to 6.
  9. 제 1항 내지 제 6항에서 선택되는 어느 한 항에 따른 유기반도체 화합물을 포함하는 유기 태양전지 소자.An organic solar cell device comprising the organic semiconductor compound according to any one of claims 1 to 6.
  10. 제 9항에 있어서,The method of claim 9,
    상기 유기 반도체 화합물은 전자 주개 재료로 사용하는 것을 특징으로 하는 유기 태양전지 소자.The organic semiconductor compound is an organic solar cell device, characterized in that used as an electron donor material.
  11. 제 1항 내지 제 6항에서 선택되는 어느 한 항에 따른 유기반도체 화합물을 아래층의 전자 주개 재료로 이용한 적층형 유기 태양전지 소자.A multilayer organic solar cell device using the organic semiconductor compound according to any one of claims 1 to 6 as an electron donor material of a lower layer.
  12. 제 11항에 있어서,The method of claim 11,
    상기 적층형 유기 태양전지 소자는 반전 적층형 유기 태양전지 소자인 것을 특징으로 하는 적층형 유기 태양전지 소자.The stacked organic solar cell device is a stacked organic solar cell device, characterized in that the inverted stacked organic solar cell device.
PCT/KR2015/006281 2014-07-03 2015-06-22 Organic semiconductor compound, method for producing same, and organic electronic element and organic solar cell element comprising same WO2016003097A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140082832 2014-07-03
KR10-2014-0082832 2014-07-03
KR1020150087273A KR101678580B1 (en) 2014-07-03 2015-06-19 Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
KR10-2015-0087273 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016003097A1 true WO2016003097A1 (en) 2016-01-07

Family

ID=55019575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006281 WO2016003097A1 (en) 2014-07-03 2015-06-22 Organic semiconductor compound, method for producing same, and organic electronic element and organic solar cell element comprising same

Country Status (1)

Country Link
WO (1) WO2016003097A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311536A (en) * 2010-07-02 2012-01-11 海洋王照明科技股份有限公司 Copolymer comprising silafluorene and thiophene pyrroledione units and preparation method as well as application thereof
CN102372842A (en) * 2010-08-19 2012-03-14 海洋王照明科技股份有限公司 Copolymer containing thiophene pyrroledione units, and preparation method and application thereof
CN103374116A (en) * 2012-04-24 2013-10-30 南开大学 Photoelectric material preparation method
KR101400077B1 (en) * 2013-01-15 2014-05-28 한국화학연구원 new polymer process for producing the polymer and organic optoelectronic devices using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311536A (en) * 2010-07-02 2012-01-11 海洋王照明科技股份有限公司 Copolymer comprising silafluorene and thiophene pyrroledione units and preparation method as well as application thereof
CN102372842A (en) * 2010-08-19 2012-03-14 海洋王照明科技股份有限公司 Copolymer containing thiophene pyrroledione units, and preparation method and application thereof
CN103374116A (en) * 2012-04-24 2013-10-30 南开大学 Photoelectric material preparation method
KR101400077B1 (en) * 2013-01-15 2014-05-28 한국화학연구원 new polymer process for producing the polymer and organic optoelectronic devices using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CORNELIS, D. ET AL.: "A Chiroptical Study of Chiral A- and X- Type Oligothiophenes Toward Modelling the Interchain Interactions of Chiral Conjugated Polymers", CHEM. MATER., vol. 20, 2008, pages 2133 - 2143, XP055250769 *
LIU, S. ET AL.: "Benzo[1,2-b:4,5-b']dithiophene and Thieno[3,4-c]pyrrole-4,6-dione Based Donor-pi-Acceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation", MACROMOLECULES, vol. 48, 28 April 2015 (2015-04-28), pages 2948 - 2957, XP055250779 *

Similar Documents

Publication Publication Date Title
Yao et al. Molecular design of benzodithiophene-based organic photovoltaic materials
Guo et al. Imide-and amide-functionalized polymer semiconductors
WO2010087655A2 (en) Fullerene derivatives and organic electronic device comprising the same
WO2015163614A1 (en) Heterocyclic compound and organic solar cell comprising same
WO2013119022A1 (en) Polymer and organic solar cell including same
WO2016133368A9 (en) Heterocyclic compound and organic solar cell comprising same
WO2014119962A1 (en) Novel polymer material for hightly efficient organic thin-film solar cell, and organic thin-film solar cell using same
WO2021118238A1 (en) Novel polymer and organic electronic device using same
WO2011068305A2 (en) Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same
WO2013066065A1 (en) Organic semiconductor compound, method for manufacturing same, and organic solar cell using same
AU2010220827A1 (en) Photosensitive optoelectronic devices comprising polycyclic aromatic compounds
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2014061867A1 (en) Novel organic semiconductor compound, and method for preparing same
WO2015037966A1 (en) Copolymer and organic solar cell comprising same
WO2021118171A1 (en) (aryloxy)alkyl group-substituted compound and organic electronic device using same
WO2019221386A1 (en) Heterocyclic compound and organic electronic device comprising same
KR102446165B1 (en) Compound containing aryloxy akyl group and organic electronic device using them
WO2018225999A1 (en) Compound and organic solar cell comprising same
WO2014204082A1 (en) Organic semiconductor compound, method for preparing same, and organic solar cell employing same
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same
WO2021107674A1 (en) Novel compound and organic electronic device using same
WO2012148185A2 (en) Organic semiconductor compound, method for preparing same, and organic semiconductor device employing same
WO2019164054A1 (en) Novel compound, method for manufacturing same, and organic electronic element using same
KR101678580B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
WO2016163624A1 (en) Conjugated polymer having mid band gap, method for preparing same, and organic electronic device having applied same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814322

Country of ref document: EP

Kind code of ref document: A1