WO2016002881A1 - Fine particle dispersion liquid, wiring pattern and method for forming wiring pattern - Google Patents

Fine particle dispersion liquid, wiring pattern and method for forming wiring pattern Download PDF

Info

Publication number
WO2016002881A1
WO2016002881A1 PCT/JP2015/069133 JP2015069133W WO2016002881A1 WO 2016002881 A1 WO2016002881 A1 WO 2016002881A1 JP 2015069133 W JP2015069133 W JP 2015069133W WO 2016002881 A1 WO2016002881 A1 WO 2016002881A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle dispersion
fine particle
wiring
wiring pattern
dispersion according
Prior art date
Application number
PCT/JP2015/069133
Other languages
French (fr)
Japanese (ja)
Inventor
潤 深井
坂上 恵
彰馬 中川
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2016531444A priority Critical patent/JPWO2016002881A1/en
Publication of WO2016002881A1 publication Critical patent/WO2016002881A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to a fine particle dispersion, a wiring pattern, and a method for forming a wiring pattern.
  • the wiring pattern by this printable electronics technology is expected to be applied to various devices.
  • Various printing methods such as ink jet method, gravure printing, nanoimprint method, etc. using ink in which metal or metal oxide nanoparticles are dispersed. And is expected to be applied to fine wiring, electrode formation, and transparent conductive films.
  • auxiliary wiring and electrodes for touch panels, organic electroluminescence (organic EL) displays, lighting, and the like, and electrode formation of thin film transistors has been studied.
  • organic EL organic electroluminescence
  • electrode formation of thin film transistors has been studied.
  • the film shape is not uniform, the resistance value cannot be made sufficiently small, or the resistance may vary, and an organic film formed on the upper part of the film may be formed.
  • a uniform film cannot be formed and sufficient reproducibility of characteristics cannot be obtained. Therefore, in the formation of wiring and electrodes using these nanoparticles, development of a technique for flattening and thinning the wiring shape is strongly demanded.
  • the stain that occurs after the coffee spilled on the desk dries is called coffee stain.
  • the drying speed of the outer peripheral portion of the droplet is high, so that the solute concentration at the outer peripheral portion of the coffee droplet increases during the evaporation process, and the solute accumulates in a ring shape.
  • a solute is deposited particularly near the contact line, and a ring-shaped thin film is formed.
  • the formation of such a ring-shaped thin film is considered to occur when a wiring pattern is formed by a printable electronics technology, and this phenomenon hinders flattening and miniaturization of the wiring shape. There are some reports on the cause of this ring formation.
  • Non-Patent Documents 1 to 3 report the results of observing the behavior of fine particles in the evaporation process of macro droplets having a droplet diameter of 1 mm or more using aqueous droplets in which fine particles are suspended.
  • This document reports that the reason why the ring is formed is that the contact line is fixed during the evaporation process, and that the evaporation rate in the vicinity of the contact line is larger than the central part of the droplet. For this reason, it has been reported that a flow that compensates for the solvent lost near the contact line occurs inside the droplet, and the solute is carried in the direction of the contact line, so that the concentration of the solute near the contact line increases and a ring is formed.
  • Non-Patent Document 4 the evaporation rate distribution of the free surface estimated by the heat conduction analysis by the two-dimensional finite element method is added to the one-dimensional mass transfer model for the influence of the substrate temperature, solute concentration and droplet volume on the thin film formation.
  • a rigorous theoretical analysis is performed using a two-dimensional mass transfer model that takes into account flow, heat transfer, and mass transfer, and is compared with experiments. According to this, the temperature gradient generated inside the droplet due to the substrate temperature and the latent heat of vaporization is different between the droplet center near the droplet height and the contact line at the low height. In order to produce a distribution, an evaporation rate distribution is produced on the droplet surface.
  • Marangoni convection is considered as one of the causes of the flow generated inside the droplet in the evaporation process. Research is also underway to use this convection for thin film formation.
  • Non-Patent Document 5 reports the results of film formation experiments using a solution obtained by mixing a small amount of a non-volatile solvent (acetophenone) with a polymer solution containing ethyl acetate as a main solvent.
  • a non-volatile solvent acetophenone
  • a polymer solution containing ethyl acetate a polymer solution containing ethyl acetate as a main solvent.
  • the receding of the contact line is considered to be the effect of Marangoni convection due to the increase in the acetophenone concentration in the contact line part due to evaporation. If the solvent component on the surface is not uniform, a difference in surface tension is generated due to the concentration distribution of the solvent, and Marangoni convection is induced by the gradient. Due to the stirring effect by this convection, the timing of fixing the contact line is delayed. It concludes that a thin film is produced.
  • Non-Patent Document 6 on a lyophilic substrate, by using a droplet in which silica is mixed with a binary solvent of water and formamide, and utilizing Marangoni convection utilizing a difference in surface tension between the solvents, silica is used. It is reported that a single membrane can be obtained. Here, it is considered that Marangoni convection has two directions depending on the combination of two-component solvents. The ring formation is promoted in the circulation flow accompanied by the upward flow at the center of the droplet, and the ring formation is suppressed in the circulation flow accompanied by the downward flow. However, solid silica is used in this experiment, and the polymer solution droplet has not been sufficiently examined.
  • Non-Patent Documents 7 and 8 Marangoni convection is examined by experiments and numerical analysis using a suspension method using water and octane droplets.
  • the Marangoni convection that rises along the gas-liquid interface occurs, and the octane pure solvent liquid that is not easily affected by the surfactant.
  • the flow is the same between the experiment and the numerical analysis, and ring formation is suppressed.
  • the Marangoni convection in the experiment is weakened and the effect of suppressing ring formation is reduced. It is described that it became clear. From this result, it is concluded that Marangoni convection generated at a clean interface without a surfactant suppresses the formation of a ring.
  • Non-Patent Document 9 a thin film formation process of a droplet accompanied by a receding contact line with a large contact angle is performed using a polystyrene-xylene solution droplet having a diameter of 20 to 300 ⁇ m using an inkjet apparatus.
  • a polystyrene-xylene solution droplet having a diameter of 20 to 300 ⁇ m using an inkjet apparatus.
  • Non-Patent Document 10 in order to examine the ring suppression effect of the two-component solvent in the ink-jet film forming method, a follow-up experiment of Non-Patent Document 5 is performed and detailed studies are added. According to this report, Marangoni convection caused by the solvent concentration distribution in the early stage of evaporation stirs the inside of the droplet, and moves backward while making the solute concentration uniform. After the evaporation of the low-boiling solvent is completed, the solute concentration distribution becomes high-viscosity droplets, and the droplet viscosity increases when the contact line is fixed, and it is concluded that a dot-like thin film is formed. Attached. In the same document, it is reported that even when the initial viscosity is high, a dot-like thin film is formed instead of a ring shape.
  • the present inventors proceeded with a study for the purpose of providing a fine particle dispersion capable of forming a fine wiring pattern with a uniform line width. Further, by using such a fine particle dispersion, studies have been conducted for the purpose of providing a fine and uniform wiring pattern and a method for forming a wiring pattern capable of forming such a wiring pattern. It was.
  • the present inventors have found that a thin film with a fine pattern can be formed with a uniform line width by adding a specific surface conditioner to the fine particle dispersion. I found it.
  • the present invention has the following configuration.
  • a fine particle dispersion containing fine particles and a surface conditioner The surface conditioning agent has a polysiloxane chain having a repeating unit containing a siloxane bond, or at least one polymer chain of a (meth) acrylic polymer chain, and at least one of a side chain and a terminal of the polymer chain.
  • a fine particle dispersion having a hydrophilic group [2] The fine particle dispersion according to [1], wherein the surface conditioner has a polysiloxane chain as the polymer chain. [3] The fine particle dispersion according to [1], wherein the surface conditioner is a compound represented by the following general formula (1).
  • R 1 to R 6 each independently represents a substituent, and at least one of R 1 to R 6 is a hydrophilic group.
  • a plurality of R 1 and a plurality of R 2 present in the molecule may be the same as or different from each other.
  • n is an integer of 3 to 50.
  • [4] The fine particle dispersion according to [3], wherein at least one of R 1 to R 6 includes a (meth) acrylic polymer chain.
  • [5] The fine particle dispersion according to [3] or [4], wherein a part of the plurality of R 1 or a part of the plurality of R 2 present in the molecule is a hydrophilic group.
  • a thin film with a fine pattern can be formed with a uniform line width.
  • a fine wiring pattern can be formed.
  • the wiring pattern thus formed can be suitably used as wiring for various electronic devices.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 4-1 in a stripe shape with a dropping interval of 30 ⁇ m and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 4-1 in a stripe shape with a dropping interval of 50 ⁇ m, and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 3-2 in a stripe shape with a dropping interval of 30 ⁇ m and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 3-2 in a stripe shape with a dropping interval of 50 ⁇ m and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of compound 4-1 in a stripe shape with a dropping interval of 30 ⁇ m, and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of compound 4-1 in a stripe shape with a drop interval of 50 ⁇ m, and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of Compound 3-2 in a stripe shape with a dropping interval of 30 ⁇ m, and a photograph showing a planar shape.
  • 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of Compound 3-2 in a stripe shape with a dropping interval of 50 ⁇ m and a photograph showing a planar shape.
  • FIG. 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing compound 4-1 and diethylene glycol in a stripe shape with a dropping interval of 30 ⁇ m, and a photograph showing a planar shape.
  • FIG. 4 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing compound 4-1 and diethylene glycol in a stripe shape with a drop interval of 50 ⁇ m and a photograph showing a planar shape.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the fine particle dispersion of the present invention contains fine particles and a surface conditioner.
  • the surface conditioning agent has at least one of a polysiloxane chain having a repeating unit containing a siloxane bond or a (meth) acrylic polymer chain, and at least one of a side chain and a terminal of the polymer chain.
  • the “hydrophilic group” refers to a group capable of forming a hydrogen bond with water
  • the “surface modifier” refers to physical properties (viscosity, surface tension, contact angle) of the metal fine particle dispersion. Etc.).
  • the notation “(meth) acryl” is a concept including both acrylic and methacrylic.
  • the fine particle dispersion is supplied to the thin film forming surface and then dried to form a thin film.
  • the fine particle dispersion of the present invention contains the above-mentioned surface conditioner, its wetting and spreading is effectively suppressed when it is dropped onto the thin film forming surface. Therefore, by using this fine particle dispersion, even when the target thin film pattern is fine, a thin film that accurately reflects the pattern can be formed with a uniform line width.
  • the reason why the droplets of the fine particle dispersant are difficult to spread out is that the hydrophilic groups of the surface conditioner contained in the droplets act to aggregate with each other to form a solid-liquid (film-formation surface and metal fine particle dispersion). It is presumed that the surface tension ⁇ SL ( between the liquids) increased and the contact angle of the droplets increased.
  • the surface conditioner used in the fine particle dispersion of the present invention preferably has at least a polysiloxane chain. Especially, it is preferable that it is a compound represented by following General formula (1).
  • R 1 to R 6 each independently represent a substituent, and at least one of R 1 to R 6 is a hydrophilic group.
  • a plurality of R 1 and a plurality of R 2 present in the molecule may be the same as or different from each other.
  • R 1 to R 6 may all be a hydrophilic group or a part thereof may be a hydrophilic group, but at least one of R 1 and R 2 may be a hydrophilic group. preferable.
  • each of the plurality of R 1 and the plurality of R 2 present in the molecule may be a hydrophilic group or a part thereof may be a hydrophilic group. Is preferably a hydrophilic group.
  • the hydrophilic group which R 1 to R 6 can take is preferably a group having a polyoxyalkylene structure represented by the following general formula (2).
  • R 7 is an alkylene group having 2 to 3 carbon atoms, and m is an integer of 20 to 30.
  • the substituents that R 1 to R 6 can take are not particularly limited.
  • the substituent may be a group containing a polymer chain having a repeating unit or a group not having a repeating unit.
  • Examples of the polymer chain having a repeating unit include a (meth) acrylic polymer chain.
  • the (meth) acrylic polymer chain may have a hydrophilic group in at least one of its side chain and terminal.
  • a polysiloxane chain can also be mentioned as a polymer chain which has a repeating unit. Such a polysiloxane chain may also have a hydrophilic group in at least one of its side chain and terminal.
  • the polymer chain having a repeating unit may be one in which a (meth) acrylic polymer chain and a polysiloxane chain are linked.
  • Such a linking chain may also have a hydrophilic group in at least one of its side chain and terminal.
  • the substituent having no repeating unit include a substituted or unsubstituted alkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms.
  • the alkyl group herein may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
  • the alkyl group is more preferably an ethyl group or a methyl group.
  • n is an integer of 3 to 50, and more preferably 3 to 30.
  • Preferred examples of the surface conditioner include compounds represented by the following general formulas (3) and (4). These can be obtained as commercial products. For example, BYK307 and BYK348 (both manufactured by Big Chemie Japan) can be mentioned.
  • the Alkylene oxide chain represents a group containing a repeating unit of the polyoxyalkylene structure shown in the general formula (2), and preferably represents an ethylene oxide chain.
  • R 8 represents an alkyl group having 1 to 3 carbon atoms.
  • n is an integer of 3 to 100, and more preferably 3 to 50.
  • the Alkylene oxide chain represents a group containing a repeating unit of the polyoxyalkylene structure shown in the general formula (2), and preferably represents an ethylene oxide chain.
  • R 9 represents an alkyl group having 1 to 3 carbon atoms.
  • x, y, and z each represents an integer, x represents 1 to 10, y represents 0 to 10, and z represents 0 to 10.
  • x represents 1 to 3, y represents 0 to 3, and z represents 0 to 3.
  • y and z are not 0 at the same time.
  • the surface conditioner preferably used in the present invention typically has the following structure.
  • the surface conditioner included in the present invention can be obtained as a commercial product from various manufacturers, and examples include products such as Big Chemie Japan, Toshiba Silicone, Shin-Etsu Chemical.
  • a polyether-modified dimethylsiloxane-modified surface conditioner manufactured by Big Chemie Japan may be used.
  • the content of the surface conditioner in the fine particle dispersion is preferably 0.001 to 5% by mass, and more preferably 0.01 to 1% by mass with respect to the fine particles as the solute.
  • the content of the surface conditioner in the fine particle dispersion is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and more preferably 0.1 to 3% by mass with respect to the solvent. More preferably, it is still more preferably 0.3 to 2% by mass.
  • the fine particles contained in the fine particle dispersion of the present invention may be inorganic fine particles or organic fine particles, but are preferably inorganic fine particles.
  • the inorganic fine particles fine particles (metal fine particles) made of a material containing metal atoms, such as various metals, alloys, or metal oxides, can be suitably used.
  • any conductive fine particles that are usually used in the field of printable electronics can be used, among which gold, silver, palladium, copper, indium tin oxide, cuprous oxide (Cu It is preferable to use 2 O) fine particles.
  • the particle size of the fine particles is not particularly limited, but is preferably in the order of nanometers (1 to several hundred nm).
  • the particle size of the fine particles in the present invention refers to an average particle size measured by a commercially available particle size distribution measuring device such as a light scattering method.
  • the content of the fine particles in the fine particle dispersion varies depending on the use of the fine particle dispersion and the coating process used, but is preferably 1 to 90% by mass, and more preferably 10 to 80% by mass.
  • the present invention is effective not only when these nanoparticles are used, but also when a dispersion of nanomaterials having no particulate shape such as silver nanowires is applied.
  • the dispersion medium of the metal fine particle dispersion is not particularly limited, and aromatics such as benzene, toluene, xylene, chlorobenzene, diethyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethylene glycol dimethyl ether and the like.
  • esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl propionate, ⁇ -butyrolactone, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, carbonization such as hexane, heptane, octane, nonane, tetradecane, etc.
  • Hydrogens such as dichloromethane, chloroform, 1,2-dichloroethane, organic acids such as formic acid, acetic acid, propionic acid, N, N-dimethylformamide, N, N-dimethylacetoa De, include polar solvents and water, such as N- methylpyrrolidone, also mixtures of these solvents can be used.
  • additives may be added to the fine particle dispersion.
  • the additive include a thickener.
  • the thickener include glycol thickeners such as diethylene glycol.
  • the wiring pattern of the present invention is the fine particle dispersion of the present invention, which is formed using a fine particle dispersion containing conductive fine particles as fine particles. As described above, this wiring pattern is formed with a uniform line width that accurately reflects the pattern even when the set pattern is fine, because the fine particle dispersion of the present invention has the property that it is difficult to spread. Has been. For this reason, this wiring pattern can be used suitably as a wiring pattern of various electronic components.
  • the wiring pattern can be formed by supplying the fine particle dispersion of the present invention to the wiring forming surface and drying it.
  • the method for supplying the fine particle dispersion is not particularly limited, but for example, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating.
  • Examples thereof include a coating method such as a printing method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet method, and a printing method such as a microcontact printing method.
  • a printing method is preferably used, and an ink jet method is used. Is more preferable.
  • the wiring formation surface means a surface on which wiring is formed, and the type is not particularly limited as long as it is a surface on which wiring can be formed.
  • a typical wiring forming surface is a substrate surface.
  • the material of the substrate can be appropriately selected from the materials of the substrate that are usually used according to the application.
  • a substrate made of an inorganic material such as glass, ITO (indium tin oxide), silicon, polyimide, PET ( Examples thereof include a substrate made of a polymer typified by polyethylene terephthalate), but is not limited thereto, and is applicable to all polymer substrates supplied as a film.
  • the wiring pattern can be formed, for example, by supplying the fine particle dispersion of the present invention to a region where wiring on the substrate is to be formed by a supply method such as an ink jet method. If the fine particle dispersion of the present invention is used, the expansion of the line width can be remarkably suppressed as compared with the case where it is not used, so that the intended line width can be easily realized.
  • a region having high wettability with respect to the fine particle dispersion of the present invention is formed in a pattern on a substrate in advance, and the fine particle dispersion of the present invention is accumulated on such a high wettability region.
  • a region having high wettability to the fine particle dispersion of the present invention can be formed in a pattern on the substrate.
  • a region having low wettability to the fine particle dispersion of the present invention can be formed on the substrate in a negative pattern. Forming in a negative pattern here means forming in a region excluding a region where the fine particle dispersion is desired to exist.
  • the pattern can be formed, for example, by spin-coating a photo-curable resin solution on the substrate, exposing it in a pattern with ultraviolet rays, and then washing away the soluble region with a solvent.
  • a self-organized material substituted with fluorine is applied to a substrate and a substrate finely patterned with light is used, the droplets discharged by using the fine particle dispersion of the present invention are lyophilic and repellent. Even when applied over the liquid region, the liquid droplets gather from the liquid repellent region to the lyophilic region, and the wiring can be drawn according to the patterned region.
  • the drying temperature of the fine particle dispersion supplied to the thin film forming surface is preferably 20 to 300 ° C, more preferably 50 to 200 ° C.
  • the drying time of the fine particle dispersion is preferably 1 to 60 minutes, more preferably 2 to 20 minutes. Such drying is called baking, especially when performed at high temperatures.
  • baking is performed after forming a wiring pattern using a conventional fine particle dispersion, there is a problem that the wiring after baking becomes extremely thick as time elapses after the wiring pattern is formed.
  • the fine particle dispersion of the present invention it is possible to suppress the influence of thickened wiring after baking depending on the time from formation of the wiring pattern to baking.
  • the fine particle dispersion of the present invention a series of operations from wiring pattern formation to baking can be performed with ease, and the cost of manufacturing equipment can be suppressed and the yield can be increased. Further, if the wiring is formed using the fine particle dispersion of the present invention, there is an advantage that cracks on the surface of the wiring after baking can be suppressed and the specific resistance of the wiring can be lowered. Conventionally, cracks are observed on the surface of the wiring after baking, and there is a problem that the conductive path is restricted by the influence and the specific resistance of the wiring becomes high.
  • the wiring is formed using the fine particle dispersion of the present invention, the occurrence of cracks after baking can be suppressed, and the conductive area can be increased, so that the specific resistance can be lowered. For this reason, when the fine particle dispersion of the present invention is used, there is an advantage that a high-quality wiring can be efficiently formed.
  • Example 1 ⁇ Material used for experiment>
  • ⁇ -butyrolactone (GBL) is used as a solvent
  • cuprous oxide (Cu 2 O) nanoparticles (particle size: 10 to 20 nm) are used as metal fine particles
  • a siloxane-based surface conditioner is used as a surface conditioner.
  • a certain compound 4-1 and compound 3-2 (both manufactured by Big Chemie Japan) were used.
  • the physical properties of ⁇ -butyrolactone are a vapor pressure of 200 Pa, a surface tension of 43.3 mN / m, a viscosity of 1.7 mPa ⁇ s, and a density of 1131 kg / m 3 .
  • Compound 4-1 is a siloxane compound having a polyoxyethylene chain in the side chain
  • compound 3-2 is a siloxane compound having a polyoxyethylene chain at the terminal, and is a surface conditioner that satisfies the requirements of the present invention.
  • the surface tensions of the surface conditioner solutions having different concentrations were measured.
  • a surface conditioning agent was dissolved in ⁇ -butyrolactone to prepare a surface conditioning solution.
  • Compound 3-2 and Compound 4-1 were used as the surface conditioner.
  • a solution was prepared in which the initial surface conditioner concentration was changed to 0, 0.05, 0.1, 0.5% by mass.
  • An electronic balance (manufactured by A & D, trade name ER182A, minimum weight 0.00001 g) was used for measurement of mass for solution adjustment.
  • the surface tension was measured three times, and the average value was taken.
  • the surface tension was measured after setting a thermostat (ASONE) connected to the sample cup of the surface tension meter to 25 ° C. and then leaving it for 30 minutes or more.
  • ASONE automatic surface tension meter
  • platinum plate method and ring method as the measuring method in this apparatus, but platinum plate method was adopted in this experiment.
  • the platinum plate method is a method of measuring the surface tension (force drawn into the test solution) generated when the plate is immersed in the test solution from the side and pulled out.
  • this apparatus since the surface state of the test solution is not changed, it can be measured even with a high viscosity liquid or a surfactant aqueous solution, and the change with time can be measured. Similar to the viscometer, this apparatus can be connected to a sample cup and a thermostatic bath, and can control the temperature.
  • the measurement result of the surface tension is shown in FIG. As shown in FIG. 1, the surface tension decreased with the surface modifier concentration. When compound 3-2 was used as a surface conditioner, the surface tension hardly decreased as the concentration increased. However, when compound 4-1 was used as a surface conditioner, the surface tension increased as the concentration increased. Fell. This is presumably because the compound 4-1 has a lower molecular weight and higher solubility than the compound 3-2, and is difficult to orient at the gas-liquid interface.
  • ⁇ Measurement of contact angle> The change in contact angle due to the addition of the surface conditioner in the metal fine particle dispersion was measured.
  • the metal fine particle dispersion a dispersion in which cuprous oxide (Cu 2 O) nanoparticles were dispersed in ⁇ -butyrolactone was used.
  • a metal fine particle dispersion in which compound 4-1 or compound 3-2 is added as a surface conditioner at a concentration of 0.05% by mass with respect to the solvent, and a metal fine particle dispersion not added are prepared. And measured.
  • Each metal fine particle dispersion was discharged drop by drop onto a glass substrate that had been UVO 3 treated using an inkjet nozzle, and the change in contact angle due to the addition of a surface conditioner was examined from the wet diameter after dropping.
  • the measurement was performed using an inkjet head (product name: Pulse Viewer) manufactured by CLUSTER TECHNOLOGY, using an ink jet head (product name: Pulse Injector, manufactured by CLUSTER TECHNOLOGY) having a nozzle diameter of 25 ⁇ m. If this apparatus is used, the stage can be moved back and forth and right and left by placing the work on which the droplets are to be deposited on the work fixing table on the upper surface of the stage and controlling the stage controller.
  • the difference in surface tension and contact angle depending on the type of surface modifier was considered from the molecular structure of the surface modifier as follows.
  • Compound 4-1 has a polyethylene oxide chain in the structure and a small molecular weight.
  • Compound 3-2 is terminated with a polyethylene oxide chain, and its molecular weight is larger than that of Compound 4-1.
  • Siloxane groups and ethylene oxide units have hydrophilic properties, and aralkyl groups have hydrophobic properties.
  • an ink jet apparatus product name: Desk Viewer, manufactured by CLUSTER TECHNOLOGY
  • an internal program that creates drawing patterns on the Desk Viewer dedicated software product name Desk Designer, manufactured by CLUSTER TECHNOLOGY
  • transfers the data to the internal memory of the controller and then executes the program data in response to a command from the PC
  • the method of drawing was used.
  • This ultra-deep shape measuring microscope is a laser microscope capable of scanning the surface shape of an object in three dimensions.
  • the wavelength of the semiconductor laser is 685 nm, and the optical system of the laser is a confocal system.
  • the measurement principle is as follows. First, a laser beam is irradiated vertically on an object on an object through an objective lens. If there are interfaces with different refractive indexes, the laser will reflect.
  • the intensity of the reflected light is measured by the light receiving element. If the objective lens is moved up and down at a minimum pitch of 0.01 ⁇ m and the intensity of the reflected light is measured at each objective lens position, a vertical distribution of the reflected light intensity can be obtained.
  • the position where the reflected light intensity is maximum is the interface position.
  • a three-dimensional surface shape can be obtained by two-dimensionally scanning the above interface position specifying method.
  • the minimum vertical resolution at the time of measurement is 0.01 ⁇ m.
  • the maximum measurement range is 295 ⁇ m ⁇ 221 ⁇ m.
  • a series of measurements can be automatically performed by inputting measurement conditions such as angle of view, resolution, incident light quantity, and measurement mode. Moreover, it has a halogen light and can also be used as a normal stereomicroscope.
  • the maximum measurement range is 1479 ⁇ m ⁇ 1109 ⁇ m.
  • the stylus type surface shape measuring apparatus physically measures a two-dimensional sample surface shape by moving a sample stage linearly on a precise reference surface under a diamond stylus. . Changes in the sample surface are exchanged for the vertical movement of the stylus and are detected by a differential transformer. The detected signal is converted from analog to digital by an integrating AD converter. The digitized signal is stored in the memory of the computer, and after performing data processing such as horizontal adjustment and enlargement, the surface state is displayed on the monitor.
  • the tip radius of the stylus is 12.5 ⁇ m and is thick at an angle of 60 °.
  • the stylus pressure can be programmed in the range of 1 to 15 mg, and a measurement distance of 50 to 30000 ⁇ m can be measured at 300 points / s.
  • the maximum number of sampling data is 60000 points.
  • an electronic balance (manufactured by ER182A, trade name AND, minimum weight 0.00001 g) was used.
  • a UV ozone cleaner (manufactured by Filgen, trade name UV253) was applied to the glass substrate. This device generates ozone from oxygen by light with an extremely short wavelength (185 nm), and removes organic pollutants attached to the substrate in combination with the chemical bond dissociation effect of light with a short wavelength (254 nm). It is structured.
  • the generated ozone was decomposed by an ozone killer (manufactured by Filgen).
  • the level on the stage was confirmed using a leveler. Dust was used to remove dust around the experimental apparatus and on the stage.
  • the ambient temperature was set constant by leaving the ambient temperature at 25 ° C. and leaving it for about 60 minutes.
  • the ink jet head was connected to an ink jet driver, inserted into the PIJ fixing bracket of the ink jet apparatus by sliding, and the fixing screw was fastened and fixed.
  • the experiment was performed with the inkjet driver driving waveform fixed at B and the repetition frequency at 1000 Hz.
  • the stage moving speed was fixed at 1500 ⁇ m / s to perform drawing.
  • the glass substrate to be used was put in a UV ozone cleaner, and an experiment was prepared so that drawing could be started within 30 minutes after the completion of the UVO 3 treatment.
  • ⁇ -butyrolactone (GBL) as a solvent
  • cuprous oxide (Cu 2 O) nanoparticles (particle size 10 to 20 nm) as metal fine particles
  • compound 3-2 and compound 4-1 as surface conditioners
  • a metal fine particle dispersion was prepared.
  • the concentration of the surface conditioner was 0% by mass, 0.05% by mass or 0.1% by mass with respect to the solvent.
  • a metal fine particle dispersion in which diethylene glycol was blended as a thickener in a dispersion having the same composition as these was also prepared.
  • three metal wirings were formed by an inkjet nozzle at a dropping interval of 30 ⁇ m or 50 ⁇ m according to the following procedure.
  • the syringe was gently removed from the cartridge. The head was fixed so that the PIJ and the cartridge were horizontal. If the metal fine particle dispersion came out of the nozzle, the nozzle surface was lightly wiped with a Kim wipe moistened with a solvent. (6) The metal fine particle dispersion was continuously discharged onto an untreated glass substrate, and the voltage was changed so as to obtain an appropriate discharge state while observing the discharge state. (7) When an appropriate discharge state was maintained for 1 to 2 minutes, continuous discharge was stopped, and the landing distance was adjusted while checking the positions of the nozzle surface and the workpiece surface with a USB camera.
  • 3 to 16 show the measurement results of the cross-sectional shape and planar shape of each formed metal wiring.
  • a and B each represent one of the three metal wirings, and the observation points are different. From these measurement results, the effect of the surface modifier type, the effect of the initial concentration of the surface modifier, and the effect of the viscosity were evaluated.
  • the contact angle of compound 3-2 is increased as in the case of compound 4-1, but the contact angle is increased compared to compound 4-1, because the straight chain is long and the proportion of ethylene oxide in the structure is small. This is thought to be due to the small size.
  • the ring shape could be suppressed by adding a surface conditioner. In film formation experiments on a smooth substrate according to conventional research, it is known that the ring shape is suppressed as the contact angle increases. However, ring-shaped wiring was formed even at 0.05% by mass of Compound 4-1 having the smallest wiring width. It is known from previous research that the ring shape is suppressed as the viscosity increases, as well as the contact angle.
  • the viscosity was small in the system to which no thickener was added, so it was greatly affected by the viscosity. Conceivable.
  • the addition of the surface conditioner was stable because the wiring width was reduced and the variation in the wiring width was reduced. This is considered that the surface conditioning agent worked as a leveling agent by orienting at the interface. It was also confirmed that the smoothness of the surface of the metal wiring formed at the same time was improved.
  • a wiring having a flat cross-sectional shape could be formed by adding 0.05 mass% of compound 4-1. . It is considered that the ring shape could be suppressed by increasing the contact angle and viscosity. Moreover, the smoothness of the wiring surface was also improved, and the leveling effect of the surface conditioner could be confirmed. From this experiment, it is possible to make the metal wiring finer by adjusting the type and initial concentration of the surface modifier added to the metal fine particle dispersion, and by optimizing the viscosity, the metal wiring has a flat cross-sectional shape. It was shown that it is possible to form
  • the contact angle changed depending on the concentration of the addition.
  • the surface tension could be lowered and the contact angle could be increased.
  • the wiring width of the formed metal wiring is reduced and thinning is possible.
  • the leveling effect of the surface conditioner stabilizes the wiring width and improves the smoothness of the wiring surface. From these results, it was shown that a wiring having a flat cross-sectional shape can be formed by optimizing the type, addition concentration and viscosity of the surface conditioner.
  • Example 2 In Example 2, the case where silver nanoparticles and a mixed solvent were used was examined. ⁇ Procedure> In Example 2, a solvent obtained by mixing water and an organic solvent was used as a solvent, and silver nanoparticles (DIC Corporation, JAGLT-01) were used as metal particles. To this particle dispersion, 0.05% by mass of the surface conditioning agent of the present invention (Compound 4-1) was added and applied onto the line in the same system as in Example 1 with droplet dropping intervals of 50 ⁇ m and 100 ⁇ m. Went. For comparison, a metal fine particle dispersion without addition of a surface conditioner was also prepared and applied in the same manner.
  • Compound 4-1 the surface conditioning agent of the present invention
  • Example 3 In Example 3, the case where various surface conditioners were used together with silver nanoparticles was examined. ⁇ Procedure> In Example 3, tetradecane was used as the solvent, and silver nanoparticles (Harima Kasei Co., Ltd., trade name NPS-JL) were used as the metal particles.
  • a dispersion of silver nanoparticles dispersed in tetradecane (silver content 52.5 mass%), as a surface conditioner, compound 4-1, compound 3-2, compound 5 (dimethylsiloxane, molecular weight 100,000; Shin-Etsu Chemical) 2 mass% of a compound 6 (trade name KF96) or compound 6 (a compound having both a polyethylene oxide chain and an acrylic polymer chain in a siloxane skeleton; manufactured by BYK Japan Japan, trade name BYK3550) is added to the solvent.
  • a metal fine particle dispersion was prepared.
  • a metal fine particle dispersion without a surface conditioner was also prepared.
  • Example 2 In the same manner as in Example 1, coating was performed on the line at a droplet dropping interval of 50 ⁇ m in a system using a nozzle having a diameter of 25 ⁇ m. Immediately after application or after standing at room temperature (20 ° C.) for 2 minutes, baking was performed at 150 ° C. for 60 minutes. ⁇ Result> The results are shown in FIG. 17 and FIG. When the sample without the surface conditioner was baked immediately after application, the line width of the wiring was 460 ⁇ m, and when baked 2 minutes after application, the line width was increased to 600 ⁇ m or more. On the other hand, the line width of the sample to which the surface conditioner was added was thinner than that of the non-added sample.
  • Samples added with compound 4-1, compound 3-2 and compound 6 having a polyalkylene oxide chain have a line width of 150 ⁇ m or less when baked immediately after coating, and a line width of 200 ⁇ m when baked 2 minutes after coating.
  • the effect of the time until baking after application was small.
  • the line width when baked 2 minutes after the application was almost the same as the line width when baked immediately after application, and both were preferred to be 80 ⁇ m or less. It was.
  • Compound 3-2 was particularly preferred with a line width of 60 ⁇ m or less in any case. Being less affected by the time until baking after coating means that the metal fine particle dispersion added with the surface conditioner is easy to handle and has a wide range of applications and applications.
  • Example 4 In Example 4, the influence was examined by the concentration of the surface conditioner. ⁇ Procedure> In Example 4, tetradecane was used as a solvent, and silver nanoparticles (Harima Kasei Co., Ltd., trade name NPS-JL) were used as metal particles. In a dispersion obtained by dispersing silver nanoparticles in tetradecane (silver content: 52.5% by mass), compound 4-1 as a surface conditioning agent was 0.01% by mass, 0.10% by mass, and 1. 00% by mass and 2.00% by mass were added to obtain a metal fine particle dispersion. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared.
  • Example 5 In Example 5, the specific resistance after baking was examined. ⁇ Procedure> In Example 5, tetradecane was used as the solvent, and silver nanoparticles (manufactured by Iox Corporation) were used as the metal particles. To a dispersion liquid in which silver nanoparticles are dispersed in tetradecane (silver content: 52.5 mass%), 0.50 mass% of compound 3-2 as a surface conditioner is added to the solvent, did. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed using a system using a nozzle having a diameter of 25 ⁇ m.
  • Example 6 In Example 6, the surface crack after baking was examined. ⁇ Procedure> In Example 6, tetradecane was used as the solvent, and silver nanoparticles (manufactured by Iox Corporation) were used as the metal particles. To a dispersion liquid in which silver nanoparticles are dispersed in tetradecane (silver content: 52.5% by mass), 2.00% by mass of compound 3-2 as a surface conditioning agent is added to the solvent, did. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed using a system using a nozzle having a diameter of 25 ⁇ m. Immediately after the application, baking was performed at 150 ° C. for 60 minutes.
  • the flatness is high and a fine thin film can be formed.
  • the fine particle dispersion of the present invention it is possible to form a fine wiring pattern with high flatness without using high-cost vacuum / photolithography process and etching process.
  • this invention can be utilized effectively for wiring formation, such as an electronic component, and its industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

This fine particle dispersion liquid contains fine particles and a surface conditioning agent which has a main chain having a repeating unit that contains a siloxane bond, and which has a hydrophilic group in a side chain and/or at an end of the main chain. A fine wiring pattern is able to be formed with a uniform line width if this fine particle dispersion liquid is used therefor.

Description

微粒子分散液、配線パターンおよび配線パターンの形成方法Fine particle dispersion, wiring pattern, and method of forming wiring pattern
 本発明は、微粒子分散液、配線パターンおよび配線パターンの形成方法に関する。 The present invention relates to a fine particle dispersion, a wiring pattern, and a method for forming a wiring pattern.
 近年、インクジェット法をはじめとした印刷技術を用い、導電性微粒子分散液を直接描画して導電性回路パターンを形成するという、プリンタブルエレクトロニクスという新技術が注目されており、微細で高性能な配線パターンの形成が可能になると期待されている。
 これまで半導体などの各種電子部品の製造プロセスにおいては、微細な金属配線形成は真空装置を使ったスパッタリングや真空蒸着によって金属薄膜を形成した後、エッチングなどにより不要部分を除去することで配線パターンを形成する真空・フォトリソグラフィプロセスとエッチングプロセスが中心であった。しかし、この方法では大規模な装置が必要であるため、装置導入コストや製造コストが高くなる。さらに有機溶剤や洗浄水、エッチング液廃液など排出物が多いため環境負荷が大きいなどの問題もあった。そのため製造工程が少なく、廃棄物も少量で済むため、省資源、省エネルギー化および低コストでの製品作成が可能なプリンタブルエレクトロニクス技術において、微細な配線パターンや電極形成の実現が求められている。
 また、このプリンタブルエレクトロニクス技術による配線パターンは、種々のデバイスへの応用が期待されており、金属または金属酸化物ナノ粒子を分散したインクを用い、インクジェット法やグラビア印刷、ナノインプリント法等の各種印刷法を用い、微細配線、電極形成や透明導電膜への応用が期待されている。応用製品としては、タッチパネルや有機エレクトロルミネッセンス(有機EL)ディスプレイや照明等の補助配線や電極、および薄膜トランジスタの電極形成としての利用が検討されている。例えば有機トランジスタの電極として用いる場合、膜形状が不均一であると抵抗値が十分に小さくすることができなかったり、抵抗のバラツキが生じてしまったりすること、さらにその上部に形成する有機膜を均一に成膜することができず、特性の十分な再現性が得られない等の課題がある。よって、これらナノ粒子を用いた配線や電極形成において、配線形状を平坦化かつ細線化する技術の開発が強く求められている。
In recent years, a new technology called printable electronics, in which conductive fine particle dispersions are directly drawn to form conductive circuit patterns using printing techniques such as the inkjet method, has attracted attention. Is expected to be possible.
Until now, in the manufacturing process of various electronic parts such as semiconductors, fine metal wiring is formed by forming a metal thin film by sputtering or vacuum vapor deposition using a vacuum device, and then removing unnecessary portions by etching or the like. The focus was on the vacuum / photolithographic process and the etching process to be formed. However, since this method requires a large-scale apparatus, the apparatus introduction cost and the manufacturing cost increase. Furthermore, there are problems such as a large environmental load because there are many emissions such as organic solvents, cleaning water, and etchant waste liquid. For this reason, since there are few manufacturing processes and only a small amount of waste is required, it is required to realize fine wiring patterns and electrode formation in the printable electronics technology that can save resources, save energy, and produce products at low cost.
In addition, the wiring pattern by this printable electronics technology is expected to be applied to various devices. Various printing methods such as ink jet method, gravure printing, nanoimprint method, etc. using ink in which metal or metal oxide nanoparticles are dispersed. And is expected to be applied to fine wiring, electrode formation, and transparent conductive films. As application products, use of auxiliary wiring and electrodes for touch panels, organic electroluminescence (organic EL) displays, lighting, and the like, and electrode formation of thin film transistors has been studied. For example, when used as an electrode of an organic transistor, if the film shape is not uniform, the resistance value cannot be made sufficiently small, or the resistance may vary, and an organic film formed on the upper part of the film may be formed. There is a problem that a uniform film cannot be formed and sufficient reproducibility of characteristics cannot be obtained. Therefore, in the formation of wiring and electrodes using these nanoparticles, development of a technique for flattening and thinning the wiring shape is strongly demanded.
 ところで、机にこぼしたコーヒーが乾燥した後に生じるシミは、コーヒーステインと呼ばれる。これは、液滴の外周部の乾燥速度が大きいため、蒸発過程においてコーヒー滴外周部の溶質濃度が高くなり、溶質がリング状に堆積するためである。同様に、基板上に滴下した高分子溶液滴が蒸発すると、特に接触線付近において溶質が析出し、リング状薄膜が形成される。このようなリング状薄膜の形成は、プリンタブルエレクトロニクス技術で配線パターンを形成する際にも生じるものと考えられ、この現象が配線形状の平坦化および微細化を妨げる原因になっている。このリング形成については、その原因を検討した報告がいくつか見受けられる。 By the way, the stain that occurs after the coffee spilled on the desk dries is called coffee stain. This is because the drying speed of the outer peripheral portion of the droplet is high, so that the solute concentration at the outer peripheral portion of the coffee droplet increases during the evaporation process, and the solute accumulates in a ring shape. Similarly, when the polymer solution droplet dropped on the substrate evaporates, a solute is deposited particularly near the contact line, and a ring-shaped thin film is formed. The formation of such a ring-shaped thin film is considered to occur when a wiring pattern is formed by a printable electronics technology, and this phenomenon hinders flattening and miniaturization of the wiring shape. There are some reports on the cause of this ring formation.
 例えば、非特許文献1~3には、微粒子を懸濁させた水溶液滴を用いて、液滴径1mm以上のマクロ液滴の蒸発過程における微粒子の挙動を観察した結果が報告されている。同文献では、リングを形成する原因は接触線が蒸発過程で固定されること、および液滴中央部よりも接触線付近の蒸発速度が大きいことであると報告している。そのため、接触線付近で失われた溶媒を補う流動が液滴内部に生じ、溶質が接触線方向に運ばれるため、接触線付近の溶質の濃度が高くなりリングが形成されると報告している。また、同文献では、溶質がリング状に堆積する一次元物質移動モデルを提案している。このモデルにおいては、液滴自由表面の境界値問題として、蒸発速度分布を与える必要がある。ここでは、液滴自由表面の境界値問題が楔形の2平板で構成するコンデンサ内の電磁気学の境界値問題と同一であると仮定し、液滴自由表面の蒸発速度分布を初期の液滴接触角で決まる指数関数で与えている。 For example, Non-Patent Documents 1 to 3 report the results of observing the behavior of fine particles in the evaporation process of macro droplets having a droplet diameter of 1 mm or more using aqueous droplets in which fine particles are suspended. This document reports that the reason why the ring is formed is that the contact line is fixed during the evaporation process, and that the evaporation rate in the vicinity of the contact line is larger than the central part of the droplet. For this reason, it has been reported that a flow that compensates for the solvent lost near the contact line occurs inside the droplet, and the solute is carried in the direction of the contact line, so that the concentration of the solute near the contact line increases and a ring is formed. . In the same document, a one-dimensional mass transfer model in which solutes are deposited in a ring shape is proposed. In this model, it is necessary to give an evaporation rate distribution as a boundary value problem of the droplet free surface. Here, it is assumed that the boundary value problem of the droplet free surface is the same as the boundary value problem of electromagnetics in a capacitor composed of two wedge-shaped flat plates. It is given as an exponential function determined by the angle.
 非特許文献4では、薄膜形成に及ぼす基板温度、溶質濃度および液滴体積の影響について、二次元有限要素法による熱伝導解析により推算した自由表面の蒸発速度分布を1次元物質移動モデルに加え、薄膜形成の理論解析を行い、実験と比較検討している。また、同文献では、流動・伝熱・物質移動を考慮した2次元物質移動モデルにより厳密な理論解析を行い実験と比較検討している。これによれば、基板温度と蒸発潜熱により液滴内部に生じる温度勾配が、液滴高さの高い液滴中心付近と高さの低い接触線付近で異なることに起因して、液滴表面温度に分布を生じるために、液滴表面に蒸発速度分布を生じる。基板温度が高くなるとともに、液滴内部に生じる接触線に向かう移流速度は大きくなり、溶質が接触線方向により多く輸送され、リングの幅が狭くなり、リングの高さが高くなる。加えて膜形状制御の可能性についても触れており、蒸発速度分布を変化させると形状の異なる薄膜を生じることを示している。このように比較的濡れの良い基板上におけるリングの形成過程については十分な検討がなされているが、リングの形成を抑制し、厚みが均一な薄膜を形成する過程については十分な検討がなされていない。 In Non-Patent Document 4, the evaporation rate distribution of the free surface estimated by the heat conduction analysis by the two-dimensional finite element method is added to the one-dimensional mass transfer model for the influence of the substrate temperature, solute concentration and droplet volume on the thin film formation. We conduct theoretical analysis of thin film formation and compare it with experiments. In this document, a rigorous theoretical analysis is performed using a two-dimensional mass transfer model that takes into account flow, heat transfer, and mass transfer, and is compared with experiments. According to this, the temperature gradient generated inside the droplet due to the substrate temperature and the latent heat of vaporization is different between the droplet center near the droplet height and the contact line at the low height. In order to produce a distribution, an evaporation rate distribution is produced on the droplet surface. As the substrate temperature increases, the advection speed toward the contact line generated inside the droplet increases, so that more solute is transported in the contact line direction, the width of the ring is reduced, and the height of the ring is increased. In addition, the possibility of film shape control is mentioned, and it is shown that changing the evaporation rate distribution results in thin films with different shapes. As described above, the process of forming a ring on a relatively wet substrate has been sufficiently studied, but the process of suppressing the ring formation and forming a thin film with a uniform thickness has been sufficiently studied. Absent.
 また、蒸発過程の液滴内部に生じる流動の原因の1つにMarangoni対流が考えられている。この対流を薄膜形成に利用する研究も行われている. Also, Marangoni convection is considered as one of the causes of the flow generated inside the droplet in the evaporation process. Research is also underway to use this convection for thin film formation.
 例えば、非特許文献5には、エチルアセテートを主溶媒とする高分子溶液に不揮発性の溶媒(アセトフェノン)を少量混合した溶液を用い、成膜実験を行った結果が報告されている。この結果では、不揮発性溶媒であるアセトフェノンを少量混合した場合には、液滴の接触線が大きく後退し、ドット状の薄膜を形成した。一方、不揮発性の溶媒を混合しなかった場合は、リング状の薄膜であった。同文献では、この接触線の後退を蒸発により接触線部のアセトフェノン濃度が上昇したことによるMarangoni対流の影響であると考察しており、二成分溶媒の高分子溶液滴において、蒸発により液滴自由表面上の溶媒成分が一様でなくなると、溶媒の濃度分布により表面張力差が生じその勾配によりMarangoni対流が誘起されるとし、この対流による攪拌効果により、接触線固定のタイミングが遅れドット状の薄膜を生じると結論付けている。 For example, Non-Patent Document 5 reports the results of film formation experiments using a solution obtained by mixing a small amount of a non-volatile solvent (acetophenone) with a polymer solution containing ethyl acetate as a main solvent. As a result, when a small amount of acetophenone, which is a non-volatile solvent, was mixed, the contact line of the droplet was greatly retracted to form a dot-like thin film. On the other hand, when a non-volatile solvent was not mixed, it was a ring-shaped thin film. In the same document, the receding of the contact line is considered to be the effect of Marangoni convection due to the increase in the acetophenone concentration in the contact line part due to evaporation. If the solvent component on the surface is not uniform, a difference in surface tension is generated due to the concentration distribution of the solvent, and Marangoni convection is induced by the gradient. Due to the stirring effect by this convection, the timing of fixing the contact line is delayed. It concludes that a thin film is produced.
 また、非特許文献6では、親液性基板上において、水とホルミアミドの二成分溶媒にシリカを混合した液滴を用い、溶媒間の表面張力差を利用したMarangoni対流を利用することで、シリカの単一膜を得ることができると報告している。ここでは、二成分溶媒の組み合わせにより、Marangoni対流に2つの方向があると考えている。そして、液滴中心部で上昇流を伴う循環流では、リング形成を促進するとし、下降流を伴う循環流では、リング形成を抑制するとしている。しかし,この実験では固体のシリカを使用しており、高分子溶液滴についての十分な検討はなされていない。 Further, in Non-Patent Document 6, on a lyophilic substrate, by using a droplet in which silica is mixed with a binary solvent of water and formamide, and utilizing Marangoni convection utilizing a difference in surface tension between the solvents, silica is used. It is reported that a single membrane can be obtained. Here, it is considered that Marangoni convection has two directions depending on the combination of two-component solvents. The ring formation is promoted in the circulation flow accompanied by the upward flow at the center of the droplet, and the ring formation is suppressed in the circulation flow accompanied by the downward flow. However, solid silica is used in this experiment, and the polymer solution droplet has not been sufficiently examined.
 非特許文献7、8では、水およびオクタン液滴を用いて、懸濁法による実験および数値解析によってMarangoni対流に関する検討を行なっている。同文献には、基板上の純溶媒液滴では液滴頭頂部が最も冷却されるため、気液界面に沿って上昇するMarangoni対流が生じること、界面活性剤の影響を受けにくいオクタン純溶媒液滴では実験と数値解析とで流動が一致し、リング形成が抑制されているが、界面活性剤の影響を受けやすい水滴では実験のMarangoni対流が弱くなり、リング形成の抑制効果が小さくなることが判明したことが記載されている。そして、この結果より、界面活性剤のないきれいな界面に生じるMarangoni対流が、リングの形成を抑制すると結論付けられている。 In Non-Patent Documents 7 and 8, Marangoni convection is examined by experiments and numerical analysis using a suspension method using water and octane droplets. In this document, since the top of the droplet is cooled most in the pure solvent droplet on the substrate, the Marangoni convection that rises along the gas-liquid interface occurs, and the octane pure solvent liquid that is not easily affected by the surfactant. In the case of a drop, the flow is the same between the experiment and the numerical analysis, and ring formation is suppressed. However, in the case of a water drop that is easily affected by the surfactant, the Marangoni convection in the experiment is weakened and the effect of suppressing ring formation is reduced. It is described that it became clear. From this result, it is concluded that Marangoni convection generated at a clean interface without a surfactant suppresses the formation of a ring.
 非特許文献9では、インクジェット装置を使用し、径20~300μmのポリスチレン-キシレン溶液滴を用い、接触角が大きな接触線の後退を伴う液滴の薄膜形成過程に関する研究を行っている。ここでは、接触線の固定にかかる時間、接触線固定時の平均溶質濃度、蒸発速度が薄膜形状に及ぼす影響について、実験的な検討を行っており、蒸発速度が小さいほど薄膜はリング状からドット状になること、液滴の自由表面における溶質の移動には、対流だけではなく、拡散も重要な因子になることなどを報告している。 In Non-Patent Document 9, a thin film formation process of a droplet accompanied by a receding contact line with a large contact angle is performed using a polystyrene-xylene solution droplet having a diameter of 20 to 300 μm using an inkjet apparatus. Here, we are investigating the effects of the time it takes to fix the contact line, the average solute concentration at the time of fixing the contact line, and the evaporation rate on the shape of the thin film. It is reported that not only convection but also diffusion is an important factor in the movement of solutes on the free surface of droplets.
 また、非特許文献10では、インクジェット成膜法における2成分溶媒のリング抑制効果を検討するために、非特許文献5の追実験を行い、詳細な検討を加えている。この報告によると、蒸発初期に溶媒濃度分布に起因するMarangoni対流が液滴内を攪拌し,溶質濃度を均一にしながら後退する。そして、低沸点溶媒の蒸発完了後には、溶質濃度分布が一様な高粘度液滴となっており、接触線固定時における液滴粘度が高くなるため、ドット状の薄膜が形成されると結論付けている。また、同文献では、初期粘度が高い場合においても、同様にリング状ではなくドット状薄膜となることを報告している。 Further, in Non-Patent Document 10, in order to examine the ring suppression effect of the two-component solvent in the ink-jet film forming method, a follow-up experiment of Non-Patent Document 5 is performed and detailed studies are added. According to this report, Marangoni convection caused by the solvent concentration distribution in the early stage of evaporation stirs the inside of the droplet, and moves backward while making the solute concentration uniform. After the evaporation of the low-boiling solvent is completed, the solute concentration distribution becomes high-viscosity droplets, and the droplet viscosity increases when the contact line is fixed, and it is concluded that a dot-like thin film is formed. Attached. In the same document, it is reported that even when the initial viscosity is high, a dot-like thin film is formed instead of a ring shape.
 このように、液滴からの薄膜形成過程で生じるリング形成については、様々な研究が見受けられる。しかしながら、いずれもリング形成の原因となるファクターを検討したに留まっており、例えば配線パターンの形成に用いられる導電性の微粒子分散液について、配線パターンを効果的に微細化しうる最適な組成は見出されていない。一方、プリンタブルエレクトロニクスの分野で、従来から用いられている微粒子分散液は、形成される配線の線幅がどうしても広くなり、線幅が安定しないといった問題があり、配線パターンの微細化に限界があるのが実情である。 As described above, various studies have been found on the ring formation that occurs in the process of forming a thin film from droplets. However, all of these have only studied the factors that cause ring formation. For example, for conductive fine particle dispersions used in the formation of wiring patterns, the optimum composition that can effectively refine the wiring patterns has been found. It has not been. On the other hand, the fine particle dispersions conventionally used in the field of printable electronics have a problem that the line width of the formed wiring is inevitably wide and the line width is unstable, and there is a limit to the miniaturization of the wiring pattern. Is the actual situation.
 そこで本発明者らは、このような従来技術の課題を解決するために、微細な配線パターンを均一な線幅で形成することができる微粒子分散液を提供することを目的として検討を進めた。また、そのような微粒子分散液を用いることにより、微細で均一な配線パターンを提供すること、および、そのような配線パターンを形成しうる配線パターンの形成方法を提供することを目的として検討を進めた。 Therefore, in order to solve such a problem of the prior art, the present inventors proceeded with a study for the purpose of providing a fine particle dispersion capable of forming a fine wiring pattern with a uniform line width. Further, by using such a fine particle dispersion, studies have been conducted for the purpose of providing a fine and uniform wiring pattern and a method for forming a wiring pattern capable of forming such a wiring pattern. It was.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、微粒子分散液に特定の表面調整剤を添加することにより、微細なパターンの薄膜が均一な線幅で形成できることを見出した。具体的に、本発明は、以下の構成を有する。 As a result of intensive studies to solve the above problems, the present inventors have found that a thin film with a fine pattern can be formed with a uniform line width by adding a specific surface conditioner to the fine particle dispersion. I found it. Specifically, the present invention has the following configuration.
[1] 微粒子と表面調整剤を含有する微粒子分散液であって、
 前記表面調整剤は、シロキサン結合を含む繰り返し単位を有するポリシロキサン鎖か、(メタ)アクリルポリマー鎖の少なくとも一方のポリマー鎖を有し、かつ、そのポリマー鎖の側鎖および末端の少なくともいずれかに親水性基を有する、微粒子分散液。
[2] 前記表面調整剤が、前記ポリマー鎖としてポリシロキサン鎖を有する[1]に記載の微粒子分散液。
[3] 前記表面調整剤が、下記一般式(1)で表される化合物である[1]に記載の微粒子分散液。
Figure JPOXMLDOC01-appb-C000002
[一般式(1)において、R~Rは、各々独立に置換基を表し、R~Rのうちの少なくとも1つは親水性基である。分子内に存在する複数のRおよび複数のRは、それぞれ互いに同じであっても異なっていてもよい。nは、3~50の整数である。]
[4] R~Rの少なくとも1つが、(メタ)アクリルポリマー鎖を含む[3]に記載の微粒子分散液。
[5] 分子内に存在する複数のRの一部または複数のRの一部が親水性基である[3]または[4]に記載の微粒子分散液。
[6] 前記親水性基は、下記一般式(2)で表される基である[1]~[5]のいずれか1項に記載の微粒子分散液。
一般式(2)
 -(O-R
[一般式(2)において、Rは炭素数1~3のアルキレン基であり、mは20~30の整数である。]
[7] 一般式(2)のRは、エチレン基である[6]に記載の微粒子分散液。
[8] 増粘剤を、さらに含有する[1]~[7]のいずれか1項に記載の微粒子分散液。
[9] 前記増粘剤は、ジエチレングリコールである[8]に記載の微粒子分散液。
[10] 前記微粒子は、金属微粒子である[1]~[9]のいずれか1項に記載の微粒子分散液。
[11] 前記微粒子は、導電性を有する微粒子である[1]~[10]のいずれか1項に記載の微粒子分散液。
[12] 配線パターンの形成に用いられる[11]に記載の微粒子分散液。
[13] [11]に記載の微粒子分散液を用いて形成されたことを特徴とする配線パターン。
[14] [11]に記載の微粒子分散液を配線パターン形成面に供給して塗膜を形成する工程と、該塗膜を乾燥することで導電層を形成する工程を有することを特徴とする配線パターンの形成方法。
[15] 前記微粒子分散液の供給方法が、インクジェット法である[14]に記載の配線パターンの形成方法。
[1] A fine particle dispersion containing fine particles and a surface conditioner,
The surface conditioning agent has a polysiloxane chain having a repeating unit containing a siloxane bond, or at least one polymer chain of a (meth) acrylic polymer chain, and at least one of a side chain and a terminal of the polymer chain. A fine particle dispersion having a hydrophilic group.
[2] The fine particle dispersion according to [1], wherein the surface conditioner has a polysiloxane chain as the polymer chain.
[3] The fine particle dispersion according to [1], wherein the surface conditioner is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
[In the general formula (1), R 1 to R 6 each independently represents a substituent, and at least one of R 1 to R 6 is a hydrophilic group. A plurality of R 1 and a plurality of R 2 present in the molecule may be the same as or different from each other. n is an integer of 3 to 50. ]
[4] The fine particle dispersion according to [3], wherein at least one of R 1 to R 6 includes a (meth) acrylic polymer chain.
[5] The fine particle dispersion according to [3] or [4], wherein a part of the plurality of R 1 or a part of the plurality of R 2 present in the molecule is a hydrophilic group.
[6] The fine particle dispersion according to any one of [1] to [5], wherein the hydrophilic group is a group represented by the following general formula (2).
General formula (2)
-(O-R 7 ) m-
[In the general formula (2), R 7 is an alkylene group having 1 to 3 carbon atoms, and m is an integer of 20 to 30. ]
[7] The fine particle dispersion according to [6], wherein R 7 in the general formula (2) is an ethylene group.
[8] The fine particle dispersion according to any one of [1] to [7], further containing a thickener.
[9] The fine particle dispersion according to [8], wherein the thickener is diethylene glycol.
[10] The fine particle dispersion according to any one of [1] to [9], wherein the fine particles are metal fine particles.
[11] The fine particle dispersion liquid according to any one of [1] to [10], wherein the fine particles are conductive fine particles.
[12] The fine particle dispersion according to [11], which is used for forming a wiring pattern.
[13] A wiring pattern formed using the fine particle dispersion according to [11].
[14] A step of supplying the fine particle dispersion according to [11] to the wiring pattern forming surface to form a coating film, and a step of forming the conductive layer by drying the coating film. A method of forming a wiring pattern.
[15] The method for forming a wiring pattern according to [14], wherein the method for supplying the fine particle dispersion is an inkjet method.
 本発明の微粒子分散液によれば、微細なパターンの薄膜を均一な線幅で形成することができる。例えば、微粒子分散液の微粒子として導電性微粒子を用いた場合には、微細な配線パターンを形成することができる。こうして形成された配線パターンは各種電子機器の配線として好適に用いることができる。 According to the fine particle dispersion of the present invention, a thin film with a fine pattern can be formed with a uniform line width. For example, when conductive fine particles are used as the fine particles of the fine particle dispersion, a fine wiring pattern can be formed. The wiring pattern thus formed can be suitably used as wiring for various electronic devices.
表面調整剤溶液における表面調整剤の濃度と表面張力の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the surface conditioning agent in a surface conditioning agent solution, and surface tension. young式における力の釣り合いを示す模式図である。It is a schematic diagram which shows the balance of the force in a young formula. 化合物4-1を0.05質量%含む微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 4-1 in a stripe shape with a dropping interval of 30 μm and a photograph showing a planar shape. 化合物4-1を0.05質量%含む微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 4-1 in a stripe shape with a dropping interval of 50 μm, and a photograph showing a planar shape. 化合物3-2を0.05質量%含む微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 3-2 in a stripe shape with a dropping interval of 30 μm and a photograph showing a planar shape. 化合物3-2を0.05質量%含む微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.05% by mass of Compound 3-2 in a stripe shape with a dropping interval of 50 μm and a photograph showing a planar shape. 化合物4-1を0.1質量%含む微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of compound 4-1 in a stripe shape with a dropping interval of 30 μm, and a photograph showing a planar shape. 化合物4-1を0.1質量%含む微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of compound 4-1 in a stripe shape with a drop interval of 50 μm, and a photograph showing a planar shape. 化合物3-2を0.1質量%含む微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of Compound 3-2 in a stripe shape with a dropping interval of 30 μm, and a photograph showing a planar shape. 化合物3-2を0.1質量%含む微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing 0.1% by mass of Compound 3-2 in a stripe shape with a dropping interval of 50 μm and a photograph showing a planar shape. 表面調整剤を添加していない微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。It is the figure which shows the cross-sectional shape of the wiring formed by drawing the fine particle dispersion liquid which has not added the surface conditioning agent in the shape of a stripe with a dropping space | interval of 30 micrometers, and the photograph which shows a planar shape. 表面調整剤を添加していない微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。It is the figure which shows the cross-sectional shape of the wiring formed by drawing the fine particle dispersion liquid which has not added the surface conditioning agent in the shape of a stripe with a dropping space | interval of 50 micrometers, and the photograph which shows a planar shape. 化合物4-1とジエチレングリコールを含む微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。FIG. 2 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing compound 4-1 and diethylene glycol in a stripe shape with a dropping interval of 30 μm, and a photograph showing a planar shape. 化合物4-1とジエチレングリコールを含む微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。FIG. 4 is a diagram showing a cross-sectional shape of a wiring formed by drawing a fine particle dispersion containing compound 4-1 and diethylene glycol in a stripe shape with a drop interval of 50 μm and a photograph showing a planar shape. ジエチレングリコールを含み、表面調整剤を含まない微粒子分散液を滴下間隔30μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。It is the figure which shows the cross-sectional shape of the wiring formed by drawing the fine particle dispersion liquid which contains diethylene glycol and does not contain a surface conditioning agent in the shape of a stripe with a dropping space | interval of 30 micrometers, and a photograph which shows a planar shape. ジエチレングリコールを含み、表面調整剤を含まない微粒子分散液を滴下間隔50μmのストライプ状に描画することで形成された配線の断面形状を示す図および平面形状を示す写真である。It is the figure which shows the cross-sectional shape of the wiring formed by drawing the fine particle dispersion liquid which does not contain diethylene glycol and does not contain a surface conditioning agent in the shape of a stripe with a drop interval of 50 micrometers, and a photograph which shows a planar shape. 実施例3におけるベーク後放置の有無による配線線幅の変化を示す写真である。6 is a photograph showing changes in wiring line width depending on whether or not left after baking in Example 3. 実施例3におけるベーク後放置の有無による配線線幅の変化を示す写真である。6 is a photograph showing changes in wiring line width depending on whether or not left after baking in Example 3. 実施例6におけるベーク後の配線表面クラックの有無を示す写真である。It is a photograph which shows the presence or absence of the wiring surface crack after baking in Example 6. FIG.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
(微粒子分散液)
 本発明の微粒子分散液は、微粒子と表面調整剤を含有する。その表面調整剤は、シロキサン結合を含む繰り返し単位を有するポリシロキサン鎖か(メタ)アクリルポリマー鎖の少なくとも一方のポリマー鎖を有しており、かつ、そのポリマー鎖の側鎖および末端の少なくともいずれかに親水性基を有するものである。本発明において「親水性基」とは、水との間に水素結合を形成しうる基のことをいい、「表面調整剤」とは、金属微粒子分散液の物性(粘度、表面張力、接触角等)を変化させる作用を有するものをいう。また、本明細書において、「(メタ)アクリル」という表記は、アクリルとメタクリルの両方を包含する概念である。
(Fine particle dispersion)
The fine particle dispersion of the present invention contains fine particles and a surface conditioner. The surface conditioning agent has at least one of a polysiloxane chain having a repeating unit containing a siloxane bond or a (meth) acrylic polymer chain, and at least one of a side chain and a terminal of the polymer chain. Have a hydrophilic group. In the present invention, the “hydrophilic group” refers to a group capable of forming a hydrogen bond with water, and the “surface modifier” refers to physical properties (viscosity, surface tension, contact angle) of the metal fine particle dispersion. Etc.). Further, in this specification, the notation “(meth) acryl” is a concept including both acrylic and methacrylic.
 この微粒子分散液は、薄膜形成面に供給された後、乾燥されることで薄膜となるものである。ここで、本発明の微粒子分散液は、上記の表面調整剤が含まれていることにより、薄膜形成面に滴下されたとき、その濡れ広がりが効果的に抑えられる。このため、この微粒子分散液を用いることにより、目的とする薄膜のパターンが微細な場合でも、そのパターンを精密に反映した薄膜を均一な線幅で形成することができる。ここで、この微粒子分散剤の液滴が濡れ広がり難いのは、液滴に含まれる表面調整剤の親水性基同士が互いに凝集するように作用して固液間(膜形成面と金属微粒子分散液間)の表面張力γSLが上昇し、液滴の接触角が増加したことによるものと推測される。 The fine particle dispersion is supplied to the thin film forming surface and then dried to form a thin film. Here, when the fine particle dispersion of the present invention contains the above-mentioned surface conditioner, its wetting and spreading is effectively suppressed when it is dropped onto the thin film forming surface. Therefore, by using this fine particle dispersion, even when the target thin film pattern is fine, a thin film that accurately reflects the pattern can be formed with a uniform line width. Here, the reason why the droplets of the fine particle dispersant are difficult to spread out is that the hydrophilic groups of the surface conditioner contained in the droplets act to aggregate with each other to form a solid-liquid (film-formation surface and metal fine particle dispersion). It is presumed that the surface tension γ SL ( between the liquids) increased and the contact angle of the droplets increased.
 本発明の微粒子分散液に用いられる表面調整剤は、少なくともポリシロキサン鎖を有するものであることが好ましい。なかでも、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
The surface conditioner used in the fine particle dispersion of the present invention preferably has at least a polysiloxane chain. Especially, it is preferable that it is a compound represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、R~Rは、各々独立に置換基を表し、R~Rのうちの少なくとも1つは親水性基である。分子内に存在する複数のRおよび複数のRは、それぞれ互いに同じであっても異なっていてもよい。
 R~Rは、全てが親水性基であってもよいし、その一部が親水性基であってもよいが、RおよびRの少なくともいずれかは親水性基であることが好ましい。また、分子内に存在する複数のRおよび複数のRは、それぞれ、その全てが親水性基であってもよいし、その一部が親水性基であってもよいが、その一部が親水性基であることが好ましい。
 R~Rがとりうる親水性基は、下記一般式(2)で表されるポリオキシアルキレン構造を有する基であることが好ましい。
In the general formula (1), R 1 to R 6 each independently represent a substituent, and at least one of R 1 to R 6 is a hydrophilic group. A plurality of R 1 and a plurality of R 2 present in the molecule may be the same as or different from each other.
R 1 to R 6 may all be a hydrophilic group or a part thereof may be a hydrophilic group, but at least one of R 1 and R 2 may be a hydrophilic group. preferable. In addition, each of the plurality of R 1 and the plurality of R 2 present in the molecule may be a hydrophilic group or a part thereof may be a hydrophilic group. Is preferably a hydrophilic group.
The hydrophilic group which R 1 to R 6 can take is preferably a group having a polyoxyalkylene structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、Rは炭素数2~3のアルキレン基であり、mは20~30の整数である。
Figure JPOXMLDOC01-appb-C000004
In the general formula (2), R 7 is an alkylene group having 2 to 3 carbon atoms, and m is an integer of 20 to 30.
 R~Rがとりうる置換基は、特に限定されない。置換基は、繰り返し単位を有するポリマー鎖を含む基であってもよいし、繰り返し単位を有さない基であってもよい。繰り返し単位を有するポリマー鎖としては、(メタ)アクリルポリマー鎖を挙げることができる。(メタ)アクリルポリマー鎖は、親水性基をその側鎖および末端の少なくともいずれかに有するものであってもよい。また、繰り返し単位を有するポリマー鎖として、ポリシロキサン鎖を挙げることもできる。そのようなポリシロキサン鎖も、親水性基をその側鎖および末端の少なくともいずれかに有するものであってもよい。さらに、繰り返し単位を有するポリマー鎖は、(メタ)アクリルポリマー鎖とポリシロキサン鎖が連結したものであってもよい。そのような連結鎖も、親水性基をその側鎖および末端の少なくともいずれかに有するものであってもよい。
 繰り返し単位を有さない置換基としては、例えば置換もしくは無置換のアルキル基を挙げることができる。アルキル基の炭素数は、1~20であることが好ましく、1~10であることがより好ましい。ここでいうアルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であることが好ましく、直鎖状であることがより好ましい。アルキル基としては、エチル基またはメチル基であることがさらに好ましい。
 nは、3~50の整数であり、3~30であることがより好ましい。
The substituents that R 1 to R 6 can take are not particularly limited. The substituent may be a group containing a polymer chain having a repeating unit or a group not having a repeating unit. Examples of the polymer chain having a repeating unit include a (meth) acrylic polymer chain. The (meth) acrylic polymer chain may have a hydrophilic group in at least one of its side chain and terminal. Moreover, a polysiloxane chain can also be mentioned as a polymer chain which has a repeating unit. Such a polysiloxane chain may also have a hydrophilic group in at least one of its side chain and terminal. Furthermore, the polymer chain having a repeating unit may be one in which a (meth) acrylic polymer chain and a polysiloxane chain are linked. Such a linking chain may also have a hydrophilic group in at least one of its side chain and terminal.
Examples of the substituent having no repeating unit include a substituted or unsubstituted alkyl group. The alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. The alkyl group herein may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear. The alkyl group is more preferably an ethyl group or a methyl group.
n is an integer of 3 to 50, and more preferably 3 to 30.
 好ましい表面調整剤としては、下記一般式(3)および(4)で表される化合物を挙げることができる。これらは市販品として、入手することができる。例えばBYK307、BYK348(いずれも、ビックケミー・ジャパン社製)を挙げることができる。 Preferred examples of the surface conditioner include compounds represented by the following general formulas (3) and (4). These can be obtained as commercial products. For example, BYK307 and BYK348 (both manufactured by Big Chemie Japan) can be mentioned.
一般式(1)で表される表面調整剤において、下記一般式(3)および(4)で表される化合物がより好ましく用いられる。
Figure JPOXMLDOC01-appb-C000005
 
 一般式(3)において、Alkylene oxide chainとは、一般式(2)に示したポリオキシアルキレン構造の繰り返しユニットを含む基を表し、好ましくはエチレンオキシド鎖を表す。Rは炭素数1~3のアルキル基を表す。nは3~100の整数であり、3~50であることがより好ましい。
In the surface conditioning agent represented by the general formula (1), compounds represented by the following general formulas (3) and (4) are more preferably used.
Figure JPOXMLDOC01-appb-C000005

In the general formula (3), the Alkylene oxide chain represents a group containing a repeating unit of the polyoxyalkylene structure shown in the general formula (2), and preferably represents an ethylene oxide chain. R 8 represents an alkyl group having 1 to 3 carbon atoms. n is an integer of 3 to 100, and more preferably 3 to 50.
Figure JPOXMLDOC01-appb-C000006
 一般式(4)において、Alkylene oxide chainとは、一般式(2)に示したポリオキシアルキレン構造の繰り返しユニットを含む基を表し、好ましくはエチレンオキシド鎖を表す。Rは炭素数1~3のアルキル基を表す。x、y、zはそれぞれ整数を表し、xは1~10、yは0~10、zは0~10を表す。xは1~3、yは0~3、zは0~3を表す。yとzは同時に0でない。
Figure JPOXMLDOC01-appb-C000006
In the general formula (4), the Alkylene oxide chain represents a group containing a repeating unit of the polyoxyalkylene structure shown in the general formula (2), and preferably represents an ethylene oxide chain. R 9 represents an alkyl group having 1 to 3 carbon atoms. x, y, and z each represents an integer, x represents 1 to 10, y represents 0 to 10, and z represents 0 to 10. x represents 1 to 3, y represents 0 to 3, and z represents 0 to 3. y and z are not 0 at the same time.
本発明で好ましく用いられる表面調整剤は代表的には以下の構造を有する。
一般式(3)で表される例示化合物
(3-1) R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約40のエチレンオキシド鎖
 n=約20
(3-2) R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約50のエチレンオキシド鎖
 n=約40
(3-3) R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約10のエチレンオキシド鎖
 n=約20
(3-4) R=エチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約20のエチレンオキシド鎖
 n=約20
(3-5) R=プロピル基
 Alkylene oxide chain=エチレンオキシドユニット数が約50のエチレンオキシド鎖
 n=50
The surface conditioner preferably used in the present invention typically has the following structure.
Exemplary compound (3-1) represented by formula (3) R 8 = methyl group Alkylene oxide chain = ethylene oxide chain having about 40 ethylene oxide units n = about 20
(3-2) R 8 = methyl group Alkylene oxide chain = ethylene oxide chain having about 50 ethylene oxide units n = about 40
(3-3) R 8 = methyl group Alkylene oxide chain = ethylene oxide chain having about 10 ethylene oxide units n = about 20
(3-4) R 8 = ethyl group Alkylene oxide chain = ethylene oxide chain having about 20 ethylene oxide units n = about 20
(3-5) R 8 = propyl group Alkylene oxide chain = ethylene oxide chain having about 50 ethylene oxide units n = 50
一般式(4)で表される例示化合物
(4-1)R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約10のエチレンオキシド鎖
 x=1,y=1,z=1
(4-2)R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約20のエチレンオキシド鎖
 x=1,y=1、z=0
(4-3)R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約40のエチレンオキシド鎖
 x=1,y=2,z=2
(4-4)R=プロピル基
 Alkylene oxide chain=エチレンオキシドユニット数が約20のエチレンオキシド鎖
 x=1,y=1,z=1
(4-5)R=メチル基
 Alkylene oxide chain=エチレンオキシドユニット数が約50のエチレンオキシド鎖
 x=2、y=20、z=20
Exemplary compound (4-1) represented by general formula (4) R 9 = methyl group Alkylene oxide chain = ethylene oxide chain having about 10 ethylene oxide units x = 1, y = 1, z = 1
(4-2) R 9 = methyl group Alkylene oxide chain = ethylene oxide chain having about 20 ethylene oxide units x = 1, y = 1, z = 0
(4-3) R 9 = methyl group Alkylene oxide chain = ethylene oxide chain having about 40 ethylene oxide units x = 1, y = 2, z = 2
(4-4) R 9 = propyl group Alkylene oxide chain = ethylene oxide chain having about 20 ethylene oxide units x = 1, y = 1, z = 1
(4-5) R 9 = methyl group Alkylene oxide chain = ethylene oxide chain having about 50 ethylene oxide units x = 2, y = 20, z = 20
 本発明に含まれる表面調整剤は、種々のメーカーから市販品として入手することが可能であり、ビックケミー・ジャパン社、東芝シリコーン社、信越化学社等の製品を挙げることができる。例えば、ビックケミー・ジャパン社の、ポリエーテル変性ジメチルシロキサン変性表面調整剤等を用いることができる。 The surface conditioner included in the present invention can be obtained as a commercial product from various manufacturers, and examples include products such as Big Chemie Japan, Toshiba Silicone, Shin-Etsu Chemical. For example, a polyether-modified dimethylsiloxane-modified surface conditioner manufactured by Big Chemie Japan may be used.
 微粒子分散液における表面調整剤の含有量は、溶質である微粒子に対して0.001~5質量%であることが好ましく、0.01~1質量%であることがより好ましい。微粒子分散液における表面調整剤の含有量は、溶媒に対して0.01~5質量%であることが好ましく、0.05~4質量%であることがより好ましく、0.1~3質量%であることがさらに好ましく、0.3~2質量%であることがさらにより好ましい。 The content of the surface conditioner in the fine particle dispersion is preferably 0.001 to 5% by mass, and more preferably 0.01 to 1% by mass with respect to the fine particles as the solute. The content of the surface conditioner in the fine particle dispersion is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and more preferably 0.1 to 3% by mass with respect to the solvent. More preferably, it is still more preferably 0.3 to 2% by mass.
 本発明の微粒子分散液に含まれる微粒子としては、無機微粒子であってもよいし、有機微粒子であってもよいが、無機微粒子であることが好ましい。無機微粒子としては、各種の金属、合金、または金属酸化物等の、金属原子を含有する材料からなる微粒子(金属微粒子)を好適に用いることができる。また、例えば、配線パターン形成用の微粒子分散液では、プリンタブルエレクトロニクスの分野で通常用いられる導電性微粒子がいずれも使用でき、中でも金、銀、パラジウム、銅やインジウムスズ酸化物、亜酸化銅(CuO)の微粒子を用いることが好ましい。
 微粒子の粒径は、特に限定されないが、ナノメーターオーダー(1~数百nm)であることが好ましい。ここで、本発明における微粒子の粒径は、光散乱法等の市販の粒径分布測定器で測定される平均粒径のことをいう。
The fine particles contained in the fine particle dispersion of the present invention may be inorganic fine particles or organic fine particles, but are preferably inorganic fine particles. As the inorganic fine particles, fine particles (metal fine particles) made of a material containing metal atoms, such as various metals, alloys, or metal oxides, can be suitably used. In addition, for example, in the fine particle dispersion for forming a wiring pattern, any conductive fine particles that are usually used in the field of printable electronics can be used, among which gold, silver, palladium, copper, indium tin oxide, cuprous oxide (Cu It is preferable to use 2 O) fine particles.
The particle size of the fine particles is not particularly limited, but is preferably in the order of nanometers (1 to several hundred nm). Here, the particle size of the fine particles in the present invention refers to an average particle size measured by a commercially available particle size distribution measuring device such as a light scattering method.
 微粒子分散液における微粒子の含有量は、微粒子分散液の用途や用いる塗布プロセスによっても異なるが、1~90質量%であることが好ましく、10~80質量%であることがより好ましい。
 本発明は、これらのナノ粒子に限らず、銀ナノワイヤ等の粒子状の形状を持たないナノ材料の分散液を塗布する場合も有効に機能する。
The content of the fine particles in the fine particle dispersion varies depending on the use of the fine particle dispersion and the coating process used, but is preferably 1 to 90% by mass, and more preferably 10 to 80% by mass.
The present invention is effective not only when these nanoparticles are used, but also when a dispersion of nanomaterials having no particulate shape such as silver nanowires is applied.
 金属微粒子分散液の分散媒としては、特に限定されず、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族類、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル等のエステル類、γ-ブチロラクトン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ヘキサン、ヘプタン、オクタン、ノナン、テトラデカン等の炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、蟻酸、酢酸、プロピオン酸等の有機酸類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の極性溶媒および水が挙げられ、これらの混合溶媒も使用できる。 The dispersion medium of the metal fine particle dispersion is not particularly limited, and aromatics such as benzene, toluene, xylene, chlorobenzene, diethyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethylene glycol dimethyl ether and the like. Ethers, esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl propionate, γ-butyrolactone, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, carbonization such as hexane, heptane, octane, nonane, tetradecane, etc. Hydrogens, halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, organic acids such as formic acid, acetic acid, propionic acid, N, N-dimethylformamide, N, N-dimethylacetoa De, include polar solvents and water, such as N- methylpyrrolidone, also mixtures of these solvents can be used.
 微粒子分散液には、以上に説明した成分の他に、添加剤が添加されていてもよい。添加剤としては、増粘剤等を挙げることができる。増粘剤としては、例えばジエチレングリコール等のグリコール系増粘剤を挙げることができる。微粒子分散液に増粘剤を添加することにより、その粘度が増大し、形成される薄膜の平坦性を顕著に高めることができる。 In addition to the components described above, additives may be added to the fine particle dispersion. Examples of the additive include a thickener. Examples of the thickener include glycol thickeners such as diethylene glycol. By adding a thickener to the fine particle dispersion, the viscosity increases, and the flatness of the formed thin film can be remarkably improved.
(配線パターンおよびその形成方法)
 本発明の配線パターンは、本発明の微粒子分散液であって、微粒子として導電性微粒子を含む微粒子分散液を用いて形成されたものである。この配線パターンは、上記のように、本発明の微粒子分散液が濡れ広がり難い特性を有することにより、設定されたパターンが微細である場合でも、そのパターンを精密に反映した均一な線幅で形成されている。このため、この配線パターンは、各種電子部品の配線パターンとして好適に用いることができる。
(Wiring pattern and formation method thereof)
The wiring pattern of the present invention is the fine particle dispersion of the present invention, which is formed using a fine particle dispersion containing conductive fine particles as fine particles. As described above, this wiring pattern is formed with a uniform line width that accurately reflects the pattern even when the set pattern is fine, because the fine particle dispersion of the present invention has the property that it is difficult to spread. Has been. For this reason, this wiring pattern can be used suitably as a wiring pattern of various electronic components.
 配線パターンは、具体的には、本発明の微粒子分散液を配線形成面に供給し、乾燥することによって形成することができる。
 微粒子分散液の供給方法としては、特に限定されないが、例えばスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法のような塗布法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット法、マイクロコンタクトプリンティング法のような印刷法等が挙げられ、中でも印刷法を用いることが好ましく、インクジェット法を用いることがより好ましい。
Specifically, the wiring pattern can be formed by supplying the fine particle dispersion of the present invention to the wiring forming surface and drying it.
The method for supplying the fine particle dispersion is not particularly limited, but for example, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating. Examples thereof include a coating method such as a printing method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet method, and a printing method such as a microcontact printing method. Among them, a printing method is preferably used, and an ink jet method is used. Is more preferable.
 配線形成面は、配線を形成する面を意味しており、配線を形成することが可能な面であればその種類は特に制限されない。典型的な配線形成面は基板表面である。基板の材質は、通常用いられる基板の材質の中から適宜用途に応じて選択することが可能であり、例えば、ガラス、ITO(インジウム錫オキシド)、シリコン等の無機物からなる基板、ポリイミド、PET(ポリエチレンテレフタレート)などに代表される高分子からなる基板を挙げることができるが、これに限定されるものではなくフィルムで供給されるすべての高分子基板にも適用可能である。
 配線パターンは、例えば基板上の配線を形成したい領域にインクジェット法等の供給方法により本発明の微粒子分散液を供給することに形成することが可能である。本発明の微粒子分散液を用いれば、用いなかった場合に比べて線幅の拡大を著しく抑えることができるため、意図した線幅を容易に実現することができる。
 配線パターンは、基板上にあらかじめ本発明の微粒子分散液に対する濡れ性が高い領域をパターン状に形成しておき、そのような濡れ性の高い領域上に本発明の微粒子分散液が集積するようにすることもできる。本発明の微粒子分散液に対する濡れ性が低い基板を使用するときには、基板上に本発明の微粒子分散液に対する濡れ性が高い領域をパターン状に形成して用いることができる。逆に、本発明の微粒子分散液に対する濡れ性が高い基板を使用するときには、基板上に本発明の微粒子分散液に対する濡れ性が低い領域をネガパターン状に形成して用いることができる。ここでいうネガパターン状に形成するとは、微粒子分散液を存在させたい領域を除く領域に形成することをいう。パターンの形成は、例えば光硬化性樹脂溶液を基板上にスピンコートして、紫外線等でパターン状に露光した後に可溶性領域を溶剤で洗い流す等の方法により行うことができる。一例をあげるとフッ素で置換された自己組織化材料を基板に塗布し光で微細パターニンされた基板を用いた場合、本発明の微粒子分散液を用いることにより吐出された液滴が親液、撥液領域にまたがって塗布された場合でも撥液領域から親液領域に液滴が集合しパターニングされた領域に従って配線を描画することを可能とするものである。
The wiring formation surface means a surface on which wiring is formed, and the type is not particularly limited as long as it is a surface on which wiring can be formed. A typical wiring forming surface is a substrate surface. The material of the substrate can be appropriately selected from the materials of the substrate that are usually used according to the application. For example, a substrate made of an inorganic material such as glass, ITO (indium tin oxide), silicon, polyimide, PET ( Examples thereof include a substrate made of a polymer typified by polyethylene terephthalate), but is not limited thereto, and is applicable to all polymer substrates supplied as a film.
The wiring pattern can be formed, for example, by supplying the fine particle dispersion of the present invention to a region where wiring on the substrate is to be formed by a supply method such as an ink jet method. If the fine particle dispersion of the present invention is used, the expansion of the line width can be remarkably suppressed as compared with the case where it is not used, so that the intended line width can be easily realized.
In the wiring pattern, a region having high wettability with respect to the fine particle dispersion of the present invention is formed in a pattern on a substrate in advance, and the fine particle dispersion of the present invention is accumulated on such a high wettability region. You can also When using a substrate having low wettability to the fine particle dispersion of the present invention, a region having high wettability to the fine particle dispersion of the present invention can be formed in a pattern on the substrate. Conversely, when using a substrate having high wettability to the fine particle dispersion of the present invention, a region having low wettability to the fine particle dispersion of the present invention can be formed on the substrate in a negative pattern. Forming in a negative pattern here means forming in a region excluding a region where the fine particle dispersion is desired to exist. The pattern can be formed, for example, by spin-coating a photo-curable resin solution on the substrate, exposing it in a pattern with ultraviolet rays, and then washing away the soluble region with a solvent. As an example, when a self-organized material substituted with fluorine is applied to a substrate and a substrate finely patterned with light is used, the droplets discharged by using the fine particle dispersion of the present invention are lyophilic and repellent. Even when applied over the liquid region, the liquid droplets gather from the liquid repellent region to the lyophilic region, and the wiring can be drawn according to the patterned region.
 薄膜形成面に供給された微粒子分散液の乾燥温度は、20~300℃であることが好ましく、50~200℃であることがより好ましい。微粒子分散液の乾燥時間は、1~60分であることが好ましく、2~20分であることがより好ましい。
 このような乾燥は、特に高温で行う場合はベークと呼ばれる。従来の微粒子分散液を用いて配線パターンを形成した後にベークを行うと、配線パターンを形成してからベークするまでの時間経過によって、ベーク後の配線が著しく太くなってしまうという課題があった。本発明の微粒子分散液を用いれば、配線パターンを形成してからベークするまでの時間によって、ベーク後の配線が太くなる影響を抑えることが可能である。このため、本発明の微粒子分散液を用いれば、配線パターン形成からベークまでの一連の作業をゆとりをもって行うことができ、製造設備のコストを抑え、歩止まりを上げることが可能である。
 また、本発明の微粒子分散液を用いて配線を形成すれば、ベーク後の配線表面のクラックを抑え、配線の比抵抗を低くすることが可能であるという利点もある。従来は、ベーク後に配線表面にクラックが観測され、その影響で導電パスが制限されて配線の比抵抗が高くなってしまうという課題があった。本発明の微粒子分散液を用いて配線を形成すれば、ベーク後のクラック発生を抑えることが可能になり、導電面積を大きくすることができるため、比抵抗を低くすることが可能である。このため、本発明の微粒子分散液を用いれば、高品質な配線を効率よく形成することができるという利点がある。
The drying temperature of the fine particle dispersion supplied to the thin film forming surface is preferably 20 to 300 ° C, more preferably 50 to 200 ° C. The drying time of the fine particle dispersion is preferably 1 to 60 minutes, more preferably 2 to 20 minutes.
Such drying is called baking, especially when performed at high temperatures. When baking is performed after forming a wiring pattern using a conventional fine particle dispersion, there is a problem that the wiring after baking becomes extremely thick as time elapses after the wiring pattern is formed. By using the fine particle dispersion of the present invention, it is possible to suppress the influence of thickened wiring after baking depending on the time from formation of the wiring pattern to baking. For this reason, if the fine particle dispersion of the present invention is used, a series of operations from wiring pattern formation to baking can be performed with ease, and the cost of manufacturing equipment can be suppressed and the yield can be increased.
Further, if the wiring is formed using the fine particle dispersion of the present invention, there is an advantage that cracks on the surface of the wiring after baking can be suppressed and the specific resistance of the wiring can be lowered. Conventionally, cracks are observed on the surface of the wiring after baking, and there is a problem that the conductive path is restricted by the influence and the specific resistance of the wiring becomes high. When the wiring is formed using the fine particle dispersion of the present invention, the occurrence of cracks after baking can be suppressed, and the conductive area can be increased, so that the specific resistance can be lowered. For this reason, when the fine particle dispersion of the present invention is used, there is an advantage that a high-quality wiring can be efficiently formed.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<実験に用いた材料>
 本実施例では、溶媒としてγ-ブチロラクトン(GBL)を用い、金属微粒子として亜酸化銅(CuO)ナノ粒子(粒径10~20nm)を用い、表面調整剤として、シロキサン系表面調整剤である化合物4-1、化合物3-2(いずれも、ビックケミー・ジャパン社製)を用いた。γ-ブチロラクトンの物性値は、蒸気圧200Pa、表面張力43.3mN/m、粘度1.7mPa・s、密度1131kg/mである。化合物4-1は側鎖にポリオキシエチレン鎖を有するシロキサン系化合物であり、化合物3-2は末端にポリオキシエチレン鎖を有するシロキサン系化合物であり、本発明の要件を満たす表面調整剤である。
[Example 1]
<Material used for experiment>
In this example, γ-butyrolactone (GBL) is used as a solvent, cuprous oxide (Cu 2 O) nanoparticles (particle size: 10 to 20 nm) are used as metal fine particles, and a siloxane-based surface conditioner is used as a surface conditioner. A certain compound 4-1 and compound 3-2 (both manufactured by Big Chemie Japan) were used. The physical properties of γ-butyrolactone are a vapor pressure of 200 Pa, a surface tension of 43.3 mN / m, a viscosity of 1.7 mPa · s, and a density of 1131 kg / m 3 . Compound 4-1 is a siloxane compound having a polyoxyethylene chain in the side chain, and compound 3-2 is a siloxane compound having a polyoxyethylene chain at the terminal, and is a surface conditioner that satisfies the requirements of the present invention. .
<表面張力の測定>
 濃度が異なる表面調整剤溶液の表面張力を測定した。
 γ-ブチロラクトンに表面調整剤を溶解して、表面調整剤の溶液を調製した。表面調整剤として、化合物3-2と化合物4-1を用いた。各化合物について、初期表面調整剤濃度を0、0.05、0.1、0.5質量%と変えた溶液を調製した。溶液調整のための質量の測定には、電子天秤(A&D社製、商品名ER182A、最小秤量0.00001g)を使用した。これら表面調整剤の各溶液について、それぞれ表面張力の測定を3回行い、その平均値をとった。表面張力の測定は、表面張力計のサンプルカップと接続した恒温槽(アズワン)を25℃に設定した後、30分以上置いてから行った。
 表面張力の測定には、自動表面張力計(協和界面科学社製、商品名CBVP-Z)を使用した。この装置での計測方法には、白金プレート法とリング法とがあるが、本実験では白金プレート法を採用した。白金プレート法は、プレートを側面から試験液に漬けて,引き出す際に生まれる表面張力(試験液中に引き込まれる力)を計測する方法である。本装置の特徴として、試験液の表面状態を変化させないため、粘度の高い液体や界面活性剤水溶液などでも測定できることや、経時変化の測定ができることが挙げられる。本装置も粘度計と同様、サンプルカップと恒温槽とが接続可能であり、温度制御ができる。
 表面張力の測定結果を図1に示す。図1に示すように、表面調整剤濃度ともに表面張力は低下した。化合物3-2を表面調整剤として用いた場合は、濃度増加に伴って表面張力はほとんど低下しなかったが、化合物4-1を表面調整剤として用いた場合は、濃度増加に伴って表面張力は低下した。これは、化合物4-1が化合物3-2と比べて分子量が小さくて溶解性が高いため、気液界面に配向しにくいためであると考えられる。
<Measurement of surface tension>
The surface tensions of the surface conditioner solutions having different concentrations were measured.
A surface conditioning agent was dissolved in γ-butyrolactone to prepare a surface conditioning solution. As the surface conditioner, Compound 3-2 and Compound 4-1 were used. For each compound, a solution was prepared in which the initial surface conditioner concentration was changed to 0, 0.05, 0.1, 0.5% by mass. An electronic balance (manufactured by A & D, trade name ER182A, minimum weight 0.00001 g) was used for measurement of mass for solution adjustment. For each solution of these surface conditioners, the surface tension was measured three times, and the average value was taken. The surface tension was measured after setting a thermostat (ASONE) connected to the sample cup of the surface tension meter to 25 ° C. and then leaving it for 30 minutes or more.
For measuring the surface tension, an automatic surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., trade name CBVP-Z) was used. There are platinum plate method and ring method as the measuring method in this apparatus, but platinum plate method was adopted in this experiment. The platinum plate method is a method of measuring the surface tension (force drawn into the test solution) generated when the plate is immersed in the test solution from the side and pulled out. As a feature of this apparatus, since the surface state of the test solution is not changed, it can be measured even with a high viscosity liquid or a surfactant aqueous solution, and the change with time can be measured. Similar to the viscometer, this apparatus can be connected to a sample cup and a thermostatic bath, and can control the temperature.
The measurement result of the surface tension is shown in FIG. As shown in FIG. 1, the surface tension decreased with the surface modifier concentration. When compound 3-2 was used as a surface conditioner, the surface tension hardly decreased as the concentration increased. However, when compound 4-1 was used as a surface conditioner, the surface tension increased as the concentration increased. Fell. This is presumably because the compound 4-1 has a lower molecular weight and higher solubility than the compound 3-2, and is difficult to orient at the gas-liquid interface.
<接触角の測定>
 金属微粒子分散液中に表面調整剤を添加することによる接触角の変化を測定した。金属微粒子分散液として、亜酸化銅(CuO)ナノ粒子をγ-ブチロラクトンに分散させた分散液を用いた。この分散液に、表面調整剤として化合物4-1または化合物3-2を溶媒に対して0.05質量%の濃度で添加した金属微粒子分散液と、添加していない金属微粒子分散液を用意して測定を行った。各金属微粒子分散液を、インクジェットノズルを用いてUVO処理を行ったガラス基板上に1滴ずつ吐出して、滴下後の濡れ径から表面調整剤の添加による接触角の変化を検討した。
 測定は、ノズル径25μmのインクジェットヘッド(CLUSTER TECHNOLOGY社製、商品名Pulse Injector)を用いて、インクジェット装置(CLUSTER TECHNOLOGY社製、商品名Desk Viewer)により行った。この装置を用いれば、液滴を着滴させたいワークをステージ上面のワーク固定台にのせ、ステージコントローラを制御することにより、ステージを前後左右に移動させることができる。液滴飛翔状態や着滴状態の観察は、USBカメラにより行い、パソコン画面上で確認を行った。
 測定した結果、表面調整剤を添加した金属微粒子分散液の滴下後の濡れ径は、表面調整剤を添加していない金属微粒子分散液の滴下後の濡れ径よりも縮小していた。これは表面調整剤の添加によって接触角が高くなったことを示している。
 平滑基板上における液滴の接触角は、youngの式における力の釣り合いで説明される。図2にyoungの式における力の釣り合いの図を示す。一般的な溶液は,液体の表面張力が小さいほど接触角も小さくなる。上記の表面張力の測定結果(図1)から、いずれの表面調整剤を用いた場合も、表面調整剤の濃度とともに表面張力は低下した。表面調整剤の種類によって、表面張力と接触角の変化に違いがあることについて、表面調整剤の分子構造から次のように考察した。化合物4-1はポリエチレンオキシド鎖を構造内に持ち分子量が小さい。化合物3-2はポリエチレンオキシド鎖が末端についており、分子量は化合物4-1に比べ大きい。シロキサン基およびエチレンオキシド単位は親水的な性質を持ち、アラルキル基は疎水的な性質を持つ。化合物4-1を添加した場合、ポリエチレンオキシド鎖が液滴内で凝集する力が働き、固液間の表面張力γSLが上昇するため、接触角が大きく上昇したと考えられる。
<Measurement of contact angle>
The change in contact angle due to the addition of the surface conditioner in the metal fine particle dispersion was measured. As the metal fine particle dispersion, a dispersion in which cuprous oxide (Cu 2 O) nanoparticles were dispersed in γ-butyrolactone was used. To this dispersion, a metal fine particle dispersion in which compound 4-1 or compound 3-2 is added as a surface conditioner at a concentration of 0.05% by mass with respect to the solvent, and a metal fine particle dispersion not added are prepared. And measured. Each metal fine particle dispersion was discharged drop by drop onto a glass substrate that had been UVO 3 treated using an inkjet nozzle, and the change in contact angle due to the addition of a surface conditioner was examined from the wet diameter after dropping.
The measurement was performed using an inkjet head (product name: Pulse Viewer) manufactured by CLUSTER TECHNOLOGY, using an ink jet head (product name: Pulse Injector, manufactured by CLUSTER TECHNOLOGY) having a nozzle diameter of 25 μm. If this apparatus is used, the stage can be moved back and forth and right and left by placing the work on which the droplets are to be deposited on the work fixing table on the upper surface of the stage and controlling the stage controller. Observation of the flying state and landing state of the droplet was performed with a USB camera and confirmed on a personal computer screen.
As a result of the measurement, the wet diameter after dropping of the metal fine particle dispersion added with the surface conditioner was smaller than the wet diameter after dropping of the metal fine particle dispersion not added with the surface conditioner. This indicates that the contact angle is increased by the addition of the surface conditioner.
The contact angle of a droplet on a smooth substrate is explained by the balance of forces in the Young equation. FIG. 2 shows a balance diagram of forces in the Young equation. In general solutions, the smaller the surface tension of the liquid, the smaller the contact angle. From the measurement result of the above surface tension (FIG. 1), the surface tension decreased with the concentration of the surface conditioner when any surface conditioner was used. The difference in surface tension and contact angle depending on the type of surface modifier was considered from the molecular structure of the surface modifier as follows. Compound 4-1 has a polyethylene oxide chain in the structure and a small molecular weight. Compound 3-2 is terminated with a polyethylene oxide chain, and its molecular weight is larger than that of Compound 4-1. Siloxane groups and ethylene oxide units have hydrophilic properties, and aralkyl groups have hydrophobic properties. When compound 4-1 is added, the force of aggregating polyethylene oxide chains in the droplets acts, and the surface tension γ SL between the solid and liquid increases, so the contact angle is thought to have increased significantly.
<金属配線パターンの形成>
 次に、金属微粒子分散液を親液性ガラス基板に描画することで金属配線を形成し、表面調整剤の種類、初期表面調整剤濃度、および粘度が配線の外形および配線断面形状に及ぼす影響について検討した。
<Formation of metal wiring pattern>
Next, the effect of the type of surface conditioner, initial surface conditioner concentration, and viscosity on the external shape and cross-sectional shape of the wiring is formed by drawing the metal fine particle dispersion on the lyophilic glass substrate. investigated.
 金属微粒子分散液の描画には、上記の物性値の測定で用いたのと同様のインクジェット装置(CLUSTER TECHNOLOGY社製、商品名Desk Viewer)を用いた。ここでは、Desk Viewer専用ソフトウェア(CLUSTER TECHNOLOGY社製、商品名Desk Designer)上で描画パターンを作成し、コントローラの内部メモリに一旦データを転送した後、PCからの指令でプログラムデータを実行する内部プログラム描画という方法を用いた。
 配線断面形状の測定および配線外形の撮影には、超深度形状測定顕微鏡(KEYENCE社製、商品名VK-8510)と触針式表面形状測定装置(ULVAC社製、商品名DEKTAK 6M)を使用した。この超深度形状測定顕微鏡は、物体の表面形状を3次元で走査できるレーザ顕微鏡である。半導体レーザの波長は685nmであり、レーザの光学系は共焦点系である。測定原理は次の通りである。まず、対象物上の一点上に、対物レンズを通してレーザを鉛直に照射する。屈折率の異なる界面があればレーザは反射する。反射光の強度を受光素子により測定する。対物レンズを最小0.01μmピッチで上下させ、各対物レンズ位置で反射光の強度を測定すれば、反射光強度の鉛直分布が得られる。反射光強度が最大となる位置が、界面位置である。以上の界面位置特定法を、2次元に走査することで、3次元表面形状を得ることができる。測定時の鉛直方向最小分解能は0.01μmである。最大測定範囲は295μm×221μmである。一連の測定は、画角、分解能、入射光量、測定モード等の測定条件を入力すれば自動で行うことができる。また、ハロゲンライトを有しており、通常の実体顕微鏡として使用することもできる。実体顕微鏡として使用する場合、最大測定範囲は1479μm×1109μmである。一方、触針式表面形状測定装置は、ダイヤモンドの触針の下で精密な基準表面上を、サンプルステージが直線的に移動することで2次元のサンプル表面形状を物理的に測定するものである。サンプル表面の変化は触針の垂直方向の動きに交換され、差動トランスにより検出される。検出された信号は、積算型のA-Dコンバータによってアナログからデジタルに変換される。デジタル化された信号はコンピュータのメモリに保存され、水平調整・拡大などのデータ処理を行った後、表面状態がモニタに表示される。触針の先端半径は12.5μmで、60°の角度で太くなっている。触針圧は1~15mgの範囲でプログラムでき、50~30000μmの測定距離を300点/sで計測できる。最大サンプリングデータ数は60000点である。
For drawing the metal fine particle dispersion, an ink jet apparatus (product name: Desk Viewer, manufactured by CLUSTER TECHNOLOGY) similar to that used in the measurement of the above physical property values was used. Here, an internal program that creates drawing patterns on the Desk Viewer dedicated software (product name Desk Designer, manufactured by CLUSTER TECHNOLOGY), transfers the data to the internal memory of the controller, and then executes the program data in response to a command from the PC The method of drawing was used.
An ultra-deep shape measuring microscope (manufactured by KEYENCE, product name VK-8510) and a stylus type surface shape measuring device (manufactured by ULVAC, product name DEKTAK 6M) were used for the measurement of the wiring cross-sectional shape and the photographing of the wiring outer shape. . This ultra-deep shape measuring microscope is a laser microscope capable of scanning the surface shape of an object in three dimensions. The wavelength of the semiconductor laser is 685 nm, and the optical system of the laser is a confocal system. The measurement principle is as follows. First, a laser beam is irradiated vertically on an object on an object through an objective lens. If there are interfaces with different refractive indexes, the laser will reflect. The intensity of the reflected light is measured by the light receiving element. If the objective lens is moved up and down at a minimum pitch of 0.01 μm and the intensity of the reflected light is measured at each objective lens position, a vertical distribution of the reflected light intensity can be obtained. The position where the reflected light intensity is maximum is the interface position. A three-dimensional surface shape can be obtained by two-dimensionally scanning the above interface position specifying method. The minimum vertical resolution at the time of measurement is 0.01 μm. The maximum measurement range is 295 μm × 221 μm. A series of measurements can be automatically performed by inputting measurement conditions such as angle of view, resolution, incident light quantity, and measurement mode. Moreover, it has a halogen light and can also be used as a normal stereomicroscope. When used as a stereomicroscope, the maximum measurement range is 1479 μm × 1109 μm. On the other hand, the stylus type surface shape measuring apparatus physically measures a two-dimensional sample surface shape by moving a sample stage linearly on a precise reference surface under a diamond stylus. . Changes in the sample surface are exchanged for the vertical movement of the stylus and are detected by a differential transformer. The detected signal is converted from analog to digital by an integrating AD converter. The digitized signal is stored in the memory of the computer, and after performing data processing such as horizontal adjustment and enlargement, the surface state is displayed on the monitor. The tip radius of the stylus is 12.5 μm and is thick at an angle of 60 °. The stylus pressure can be programmed in the range of 1 to 15 mg, and a measurement distance of 50 to 30000 μm can be measured at 300 points / s. The maximum number of sampling data is 60000 points.
 質量量計としては、電子天秤(ER182A社製、商品名AND、最小秤量0.00001g)を用いた。また、ガラス基板には、UVオゾンクリーナー(Filgen社製、商品名UV253)を適用した。この装置は、極短波長(185nm)の光により酸素からオゾンを発生させ、短波長(254nm)の光がもつ化学結合解離効果との組み合わせにより、基板に付着している有機汚染物質を除去する仕組みになっている。発生したオゾンはオゾンキラー(Filgen社製)により分解した。 As a mass meter, an electronic balance (manufactured by ER182A, trade name AND, minimum weight 0.00001 g) was used. A UV ozone cleaner (manufactured by Filgen, trade name UV253) was applied to the glass substrate. This device generates ozone from oxygen by light with an extremely short wavelength (185 nm), and removes organic pollutants attached to the substrate in combination with the chemical bond dissociation effect of light with a short wavelength (254 nm). It is structured. The generated ozone was decomposed by an ozone killer (manufactured by Filgen).
 実験を行う前に、水平器を用いてステージ上の水平を確認した。ダスターを用いて実験装置周辺およびステージ上の埃を取り除いた。雰囲気温度を25℃に設定して60分ほど放置することで雰囲気温度が一定になるようにした。インクジェットヘッドをインクジェットドライバーに接続し、インクジェット装置のPIJ固定金具にスライドさせ挿入し、固定ねじを締め付け固定した。また、インクジェットドライバーの駆動波形はB、繰り返し周波数は1000Hzに固定して実験を行った。ステージの移動速度も同様に1500μm/sに固定して描画を実行した。実験開始前に有機汚染物質を除去するため、使用するガラス基板をUVオゾンクリーナーに入れ、UVO処理終了後30分以内に描画を開始できるように実験準備を行った。 Before the experiment, the level on the stage was confirmed using a leveler. Dust was used to remove dust around the experimental apparatus and on the stage. The ambient temperature was set constant by leaving the ambient temperature at 25 ° C. and leaving it for about 60 minutes. The ink jet head was connected to an ink jet driver, inserted into the PIJ fixing bracket of the ink jet apparatus by sliding, and the fixing screw was fastened and fixed. The experiment was performed with the inkjet driver driving waveform fixed at B and the repetition frequency at 1000 Hz. Similarly, the stage moving speed was fixed at 1500 μm / s to perform drawing. In order to remove organic pollutants before the start of the experiment, the glass substrate to be used was put in a UV ozone cleaner, and an experiment was prepared so that drawing could be started within 30 minutes after the completion of the UVO 3 treatment.
 溶媒としてγ-ブチロラクトン(GBL)を用い、金属微粒子として亜酸化銅(CuO)ナノ粒子(粒径10~20nm)を用い、表面調整剤として化合物3-2と化合物4-1を用いて金属微粒子分散液を調製した。ここで、表面調整剤の濃度は、溶媒に対して0質量%、0.05質量%または0.1質量%とした。また、これらと同じ組成の分散液に、増粘剤としてジエチレングリコールを配合した金属微粒子分散液も調製した。
 調製した各金属微粒子分散液を用いて、下記の手順により、インクジェットノズルにより30μmまたは50μmの滴下間隔で金属配線を3本形成した。
(1)フィルターを通してシリンジに金属微粒子分散液を吸い上げた。
(2)シリンジをカートリッジに接続し、金属微粒子分散液を充填した。
(3)金属微粒子分散液を充填しシリンジを接続したカートリッジを、PIJに接続した。
(4)カートリッジのチューブ内に気泡がないことを再度確認し、接続したシリンジでカートリッジ内の金属微粒子分散液を押し出してPIJに導入した。押し出し速度は金属微粒子分散液がカートリッジのチューブ内を1mm/sで進む程度で押し出した。
(5)ノズルから金属微粒子分散液が出たことを確認して、カートリッジからシリンジを静かに外した。PIJとカートリッジが水平になるようにヘッドを固定した。ノズルから金属微粒子分散液が出ていれば、溶媒で湿らせたキムワイプでノズル面を軽く拭って除いた。
(6)未処理のガラス基板上に金属微粒子分散液を連続吐出し、吐出状態を観察しながら、適当な吐出状態が得られるようにVoltageを変化させた。
(7)適当な吐出状態が1~2分保たれれば、連続吐出を停止し、USBカメラでノズル表面とワーク表面の 位置を確認しながら着滴距離を調節した。
(8)UVオゾンクリーナーから取り出したUVO処理後のガラス基板を未処理のガラス基板と入れ替え、予備吐出後、基板上に液滴間隔30μm、50μmで配線パターンを描画した。
(9)ガラス基板をホットプレート(ASONE社製)にて130℃で10分間ベークした。
(10)VK-8510またはDEKTAK 6Mで配線の外形および配線断面形状を測定した。
Using γ-butyrolactone (GBL) as a solvent, cuprous oxide (Cu 2 O) nanoparticles (particle size 10 to 20 nm) as metal fine particles, and using compound 3-2 and compound 4-1 as surface conditioners A metal fine particle dispersion was prepared. Here, the concentration of the surface conditioner was 0% by mass, 0.05% by mass or 0.1% by mass with respect to the solvent. In addition, a metal fine particle dispersion in which diethylene glycol was blended as a thickener in a dispersion having the same composition as these was also prepared.
Using each of the prepared metal fine particle dispersions, three metal wirings were formed by an inkjet nozzle at a dropping interval of 30 μm or 50 μm according to the following procedure.
(1) The fine metal particle dispersion was sucked into the syringe through the filter.
(2) A syringe was connected to the cartridge and filled with the metal fine particle dispersion.
(3) A cartridge filled with the metal fine particle dispersion and connected with a syringe was connected to PIJ.
(4) It was confirmed again that there were no air bubbles in the tube of the cartridge, and the metal fine particle dispersion in the cartridge was extruded with a connected syringe and introduced into the PIJ. The extrusion speed was such that the metal fine particle dispersion proceeded at 1 mm / s in the cartridge tube.
(5) After confirming that the metal fine particle dispersion was discharged from the nozzle, the syringe was gently removed from the cartridge. The head was fixed so that the PIJ and the cartridge were horizontal. If the metal fine particle dispersion came out of the nozzle, the nozzle surface was lightly wiped with a Kim wipe moistened with a solvent.
(6) The metal fine particle dispersion was continuously discharged onto an untreated glass substrate, and the voltage was changed so as to obtain an appropriate discharge state while observing the discharge state.
(7) When an appropriate discharge state was maintained for 1 to 2 minutes, continuous discharge was stopped, and the landing distance was adjusted while checking the positions of the nozzle surface and the workpiece surface with a USB camera.
(8) The glass substrate after UVO 3 treatment taken out from the UV ozone cleaner was replaced with an untreated glass substrate, and after preliminary ejection, a wiring pattern was drawn on the substrate with a droplet spacing of 30 μm and 50 μm.
(9) The glass substrate was baked at 130 ° C. for 10 minutes on a hot plate (manufactured by ASONE).
(10) The external shape and cross-sectional shape of the wiring were measured with VK-8510 or DEKTAK 6M.
 形成した各金属配線の断面形状および平面形状の測定結果を図3~図16に示す。ここで、各図において、A、Bは、それぞれ、3本の金属配線のいずれかを表しており、観測箇所が異なる。
 これらの測定結果から、表面調整剤種類の及ぼす影響、表面調整剤初期濃度の及ぼす影響、粘度の及ぼす影響を評価した。
3 to 16 show the measurement results of the cross-sectional shape and planar shape of each formed metal wiring. Here, in each figure, A and B each represent one of the three metal wirings, and the observation points are different.
From these measurement results, the effect of the surface modifier type, the effect of the initial concentration of the surface modifier, and the effect of the viscosity were evaluated.
 図3~図10に示す化合物4-1または化合物3-2を添加した微粒子分散液の測定結果と図11、12に示す表面調整剤無添加の微粒子分散液の測定結果との比較から、表面調整剤の添加により配線幅を縮小させられることがわかった。また、表面調整剤の種類によって配線幅の縮小に差があることがわかった。これは表面調整剤の添加によって接触角が大きくなったために、それにともなって配線幅が縮小したものであると考えられる。化合物3-2を0.05質量%添加した場合よりも、化合物4-1を0.05質量%添加した場合の方が配線幅が縮小したのは、上記の接触角の測定のところでも説明したように、化合物3-2においても化合物4-1と同様に接触角を上げるが、直鎖が長く、エチレンオキシドの構造に占める割合が小さいために、化合物4-1と比べ接触角の上昇が小さくなったためであると考えられる。
 また断面形状においては、表面調整剤を添加することで、リング形状を抑制することができた。従来の研究による平滑基板上における成膜実験においては、接触角が大きいほどリング形状が抑制されることが知られている。しかしながら最も配線幅が縮小した化合物4-1の0.05質量%においてもリング形状の配線が形成された。従来の研究によって、接触角同様、粘度が大きいほどリング形状が抑制されることも知られており、これは増粘剤を添加していない系では粘度が小さかったため、粘度の影響を大きく受けたと考えられる。
 また、表面調整剤の添加により配線幅の縮小とともに配線幅のばらつきが少なくなり安定した。これは、表面調整剤が界面に配向することでレベリング剤として働いたと考えられる。同時に形成された金属配線表面の平滑性が向上していることも確認できた。
From the comparison between the measurement results of the fine particle dispersion added with the compound 4-1 or the compound 3-2 shown in FIGS. 3 to 10 and the measurement results of the fine particle dispersion without addition of the surface modifier shown in FIGS. It was found that the wiring width can be reduced by adding a regulator. It was also found that there was a difference in the reduction of the wiring width depending on the type of the surface conditioner. This is thought to be due to the fact that the contact angle was increased by the addition of the surface conditioner, and accordingly the wiring width was reduced. The reason why the wiring width was reduced when 0.05% by mass of compound 4-1 was added compared to when 0.05% by mass of compound 3-2 was added was also explained in the measurement of the contact angle described above. Thus, the contact angle of compound 3-2 is increased as in the case of compound 4-1, but the contact angle is increased compared to compound 4-1, because the straight chain is long and the proportion of ethylene oxide in the structure is small. This is thought to be due to the small size.
In addition, in the cross-sectional shape, the ring shape could be suppressed by adding a surface conditioner. In film formation experiments on a smooth substrate according to conventional research, it is known that the ring shape is suppressed as the contact angle increases. However, ring-shaped wiring was formed even at 0.05% by mass of Compound 4-1 having the smallest wiring width. It is known from previous research that the ring shape is suppressed as the viscosity increases, as well as the contact angle. This is because the viscosity was small in the system to which no thickener was added, so it was greatly affected by the viscosity. Conceivable.
In addition, the addition of the surface conditioner was stable because the wiring width was reduced and the variation in the wiring width was reduced. This is considered that the surface conditioning agent worked as a leveling agent by orienting at the interface. It was also confirmed that the smoothness of the surface of the metal wiring formed at the same time was improved.
 図7~図10は、化合物3-2、化合物4-1の初期添加濃度を0.1質量%にした金属配線の測定結果である。物性変化から液量の変化が見られたが、配線断面形状は依然リング形状であり、初期添加濃度が0.05質量%の場合と傾向は変わらなかった。塗装用として表面調整剤を用いる場合において、表面調整剤濃度を高くすると、臨界ミセル濃度に達することによって溶質や粒子が凝集するということがおきる。それぞれ表面調整剤を0.1質量%添加して形成した配線の拡大画像からも0.05質量%添加時には見られなかった粒子が観察されたため、0.1質量%添加した場合、臨界ミセル濃度に達してしまい、表面調整剤の添加による影響が0.05質量%添加時と変わらなかったと考えられる。この結果から、表面調整剤の添加濃度を0.05質量%に固定し、増粘剤を配合した金属微粒子分散液を用いて、下記の金属配線の形成実験を行った。 7 to 10 show the measurement results of the metal wiring in which the initial concentration of compound 3-2 and compound 4-1 was 0.1% by mass. Although the change in the liquid amount was observed due to the change in physical properties, the cross-sectional shape of the wiring was still a ring shape, and the tendency was not different from the case where the initial addition concentration was 0.05 mass%. In the case of using a surface conditioner for coating, when the surface conditioner concentration is increased, the solute and particles are aggregated by reaching the critical micelle concentration. From the enlarged image of the wiring formed by adding 0.1% by mass of the surface conditioner, particles that were not seen when 0.05% by mass were added were observed. When 0.1% by mass was added, the critical micelle concentration It is considered that the influence of the addition of the surface conditioner was not different from the addition of 0.05% by mass. From this result, the following metal wiring formation experiment was conducted using a metal fine particle dispersion liquid in which the concentration of the surface conditioner was fixed at 0.05 mass% and a thickener was blended.
 図13~図14から示されるように、増粘剤を添加した系においても、化合物4-1を0.05質量%添加することで、平坦な断面形状をもつ配線を形成することができた。接触角および粘度を大きくすることでリング形状を抑制できたと考えられる。また配線表面の平滑性も向上しており、表面調整剤のレベリング効果も確認できた。
 本実験から、金属微粒子分散液に添加する表面調整剤の種類、初期添加濃度を調整することで金属配線の細線化が可能であり、粘度を最適化することで平坦な断面形状をもつ金属配線を形成することが可能であることが示された。
As shown in FIGS. 13 to 14, even in a system to which a thickener was added, a wiring having a flat cross-sectional shape could be formed by adding 0.05 mass% of compound 4-1. . It is considered that the ring shape could be suppressed by increasing the contact angle and viscosity. Moreover, the smoothness of the wiring surface was also improved, and the leveling effect of the surface conditioner could be confirmed.
From this experiment, it is possible to make the metal wiring finer by adjusting the type and initial concentration of the surface modifier added to the metal fine particle dispersion, and by optimizing the viscosity, the metal wiring has a flat cross-sectional shape. It was shown that it is possible to form
 以上のように、微粒子分散液に表面調整剤を添加すると、その添加濃度に応じて接触角が変化した。表面調整剤の種類によって表面張力を下げるとともに,接触角を大きくすることもできた。また、微粒子分散液に表面調整剤を添加することで、形成した金属配線の配線幅を縮小し、細線化を可能にした。さらに、表面調整剤のレベリング効果により,配線幅が安定化するとともに,配線表面の平滑性が向上した。これらの結果から、表面調整剤の種類、添加濃度および粘度を最適化することで、平坦な断面形状をもつ配線を形成できることが示された。 As described above, when the surface conditioner was added to the fine particle dispersion, the contact angle changed depending on the concentration of the addition. Depending on the type of surface conditioner, the surface tension could be lowered and the contact angle could be increased. In addition, by adding a surface conditioner to the fine particle dispersion, the wiring width of the formed metal wiring is reduced and thinning is possible. In addition, the leveling effect of the surface conditioner stabilizes the wiring width and improves the smoothness of the wiring surface. From these results, it was shown that a wiring having a flat cross-sectional shape can be formed by optimizing the type, addition concentration and viscosity of the surface conditioner.
[実施例2]
 実施例2では、銀ナノ粒子と混合溶媒を用いた場合について検討した。
<手順>
 実施例2においては、溶媒として水と有機溶媒を混合した溶媒を用い、金属粒子として銀ナノ粒子(DIC株式会社、JAGLT-01)を用いた。この粒子分散液に、本発明の表面調整剤(化合物4-1)を0.05質量%添加し、実施例1と同様な系にて、液滴滴下間隔50μm、100μmにてライン上に塗布を行った。なお、比較のため、表面調整剤を添加していない金属微粒子分散液も用意して同様に塗布した。
<結果>
 その結果、50μmの滴下間隔の条件では、表面調整剤無添加のサンプルは線幅が120μmであったのに対し、本発明の表面調整剤を添加したサンプルは70μmとより細い線幅のパターンが得られた。滴下間隔100μmの条件では表面調整剤無添加のサンプルは液滴がつながらずにドット状に点在したのに対し、本発明の表面調整剤を添加したサンプルは液滴がつながったライン状のパターンが見られた。なお、50μmの滴下間隔で得られたラインの抵抗値をテスターにて測定したところ、表面調整剤の添加有無での差は見られなかった。
 以上の結果から、本発明の表面調整剤を添加することにより線幅が細くなり微細な描画ができること、液滴のつながりが良化しよりスムーズなラインパターンが得られることが実証できた。
 また、銀ナノ粒子、銅ナノ粒子のどちらにおいても、表面調整剤として、アラルキル変性ポリメチルシロキサン(例えば、ビックケミー・ジャパン社製、商品名BYK322)を用いることでも液滴の繋がりを良化し、よりスムーズなラインパターンを形成できることが確認できた。
[Example 2]
In Example 2, the case where silver nanoparticles and a mixed solvent were used was examined.
<Procedure>
In Example 2, a solvent obtained by mixing water and an organic solvent was used as a solvent, and silver nanoparticles (DIC Corporation, JAGLT-01) were used as metal particles. To this particle dispersion, 0.05% by mass of the surface conditioning agent of the present invention (Compound 4-1) was added and applied onto the line in the same system as in Example 1 with droplet dropping intervals of 50 μm and 100 μm. Went. For comparison, a metal fine particle dispersion without addition of a surface conditioner was also prepared and applied in the same manner.
<Result>
As a result, under the condition of the drop interval of 50 μm, the sample without the surface conditioner had a line width of 120 μm, whereas the sample to which the surface conditioner of the present invention was added had a pattern with a thinner line width of 70 μm. Obtained. Under the condition where the drop interval is 100 μm, the sample without the surface conditioner was not connected to the liquid droplets, but the sample with the surface conditioner of the present invention was dotted with a line pattern. It was observed. In addition, when the resistance value of the line obtained at the dropping interval of 50 μm was measured with a tester, no difference was observed depending on whether or not the surface conditioner was added.
From the above results, it was proved that by adding the surface conditioner of the present invention, the line width is narrowed and fine drawing can be performed, the connection of droplets is improved, and a smoother line pattern can be obtained.
Also, in both silver nanoparticles and copper nanoparticles, the use of aralkyl-modified polymethylsiloxane (for example, BYK322, trade name BYK322) as a surface conditioner improves the connection of the droplets. It was confirmed that a smooth line pattern could be formed.
[実施例3]
 実施例3では、種々の表面調整剤を銀ナノ粒子とともに用いた場合について検討した。
<手順>
 実施例3においては、溶媒としてテトラデカンを用い、金属粒子として銀ナノ粒子(ハリマ化成株式会社、商品名NPS-JL)を用いた。テトラデカンに銀ナノ粒子を分散させた分散液(銀含有量52.5質量%)に、表面調整剤として、化合物4-1、化合物3-2、化合物5(ジメチルシロキサン、分子量10万;信越化学株式会社製、商品名KF96)、または化合物6(ポリエチレンオキシド鎖とアクリルポリマー鎖の両方をシロキサン骨格に有する化合物;ビックケミー・ジャパン社製、商品名BYK3550)を溶媒に対して2質量%添加して、金属微粒子分散液とした。また、比較のため、表面調整剤を添加していない金属微粒子分散液も用意した。実施例1と同様に径25μmのノズルを用いた系で液滴滴下間隔50μmにてライン上に塗布を行った。塗布直後、または、室温(20℃)で2分間放置した後に、150℃で60分間ベークした。
<結果>
 結果を図17および図18に示す。表面調整剤無添加のサンプルは、塗布直後にベークした場合は配線の線幅が460μmになり、塗布から2分後にベークした場合は線幅が600μm以上に広がった。これに対して、表面調整剤を添加したサンプルは、無添加のサンプルよりも線幅がいずれも細くなった。ポリアルキレンオキシド鎖を有する化合物4-1、化合物3-2、化合物6を添加したサンプルは、塗布直後にベークした場合の線幅が150μm以下、塗布から2分後にベークした場合の線幅が200μm以下であり、塗布後ベークするまでの時間による影響が小さかった。その中でも化合物3-2と化合物6を添加したサンプルは、塗布直から2分後にベークした場合の線幅が塗布直後にベークした場合の線幅とほとんど変わらず、いずれも80μm以下で好ましかった。化合物3-2は、いずれの場合の線幅も60μm以下で特に好ましかった。
 塗布後ベークするまでの時間による影響を受けにくいことは、表面調整剤を添加した金属微粒子分散液の取り扱いが容易で、適用範囲や応用範囲が広いことを意味している。
[Example 3]
In Example 3, the case where various surface conditioners were used together with silver nanoparticles was examined.
<Procedure>
In Example 3, tetradecane was used as the solvent, and silver nanoparticles (Harima Kasei Co., Ltd., trade name NPS-JL) were used as the metal particles. In a dispersion of silver nanoparticles dispersed in tetradecane (silver content 52.5 mass%), as a surface conditioner, compound 4-1, compound 3-2, compound 5 (dimethylsiloxane, molecular weight 100,000; Shin-Etsu Chemical) 2 mass% of a compound 6 (trade name KF96) or compound 6 (a compound having both a polyethylene oxide chain and an acrylic polymer chain in a siloxane skeleton; manufactured by BYK Japan Japan, trade name BYK3550) is added to the solvent. A metal fine particle dispersion was prepared. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed on the line at a droplet dropping interval of 50 μm in a system using a nozzle having a diameter of 25 μm. Immediately after application or after standing at room temperature (20 ° C.) for 2 minutes, baking was performed at 150 ° C. for 60 minutes.
<Result>
The results are shown in FIG. 17 and FIG. When the sample without the surface conditioner was baked immediately after application, the line width of the wiring was 460 μm, and when baked 2 minutes after application, the line width was increased to 600 μm or more. On the other hand, the line width of the sample to which the surface conditioner was added was thinner than that of the non-added sample. Samples added with compound 4-1, compound 3-2 and compound 6 having a polyalkylene oxide chain have a line width of 150 μm or less when baked immediately after coating, and a line width of 200 μm when baked 2 minutes after coating. The effect of the time until baking after application was small. Among them, in the sample to which compound 3-2 and compound 6 were added, the line width when baked 2 minutes after the application was almost the same as the line width when baked immediately after application, and both were preferred to be 80 μm or less. It was. Compound 3-2 was particularly preferred with a line width of 60 μm or less in any case.
Being less affected by the time until baking after coating means that the metal fine particle dispersion added with the surface conditioner is easy to handle and has a wide range of applications and applications.
[実施例4]
 実施例4では、表面調整剤の濃度により影響について検討した。
<手順>
 実施例4においては、溶媒としてテトラデカンを用い、金属粒子として銀ナノ粒子(ハリマ化成株式会社、商品名NPS-JL)を用いた。テトラデカンに銀ナノ粒子を分散させた分散液(銀含有量52.5質量%)に、表面調整剤として化合物4-1を溶媒に対して0.01質量%、0.10質量%、1.00質量%、2.00質量%添加して、金属微粒子分散液とした。また、比較のため、表面調整剤を添加していない金属微粒子分散液も用意した。実施例1と同様に径25μmのノズルを用いた系で液滴滴下間隔20μmにてライン上に塗布を行った。塗布直後に、150℃で60分間ベークした。
<結果>
 その結果、化合物4-1を溶媒に対して0.01質量%添加したサンプルは、化合物を添加していないサンプルよりも配線の線幅が幾分小さくなっていることが確認された。化合物4-1を溶媒に対して0.10質量%添加したサンプルでは線幅は実用レベルに細くなり、化合物4-1を溶媒に対して1.00質量%または2.00質量%添加したサンプルではともに極めて細い線幅を達成した。1.00質量%でも2.00質量%でも線幅がほぼ同等であったことから、実施例4の条件で化合物4-1を表面調整剤として用いる場合は、溶媒に対して1.00質量%添加すれば十分であることが示された。
[Example 4]
In Example 4, the influence was examined by the concentration of the surface conditioner.
<Procedure>
In Example 4, tetradecane was used as a solvent, and silver nanoparticles (Harima Kasei Co., Ltd., trade name NPS-JL) were used as metal particles. In a dispersion obtained by dispersing silver nanoparticles in tetradecane (silver content: 52.5% by mass), compound 4-1 as a surface conditioning agent was 0.01% by mass, 0.10% by mass, and 1. 00% by mass and 2.00% by mass were added to obtain a metal fine particle dispersion. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed on the line at a droplet dropping interval of 20 μm in a system using a nozzle having a diameter of 25 μm. Immediately after the application, baking was performed at 150 ° C. for 60 minutes.
<Result>
As a result, it was confirmed that the sample in which 0.01% by mass of the compound 4-1 was added with respect to the solvent had a somewhat smaller wiring line width than the sample to which no compound was added. The sample obtained by adding 0.10% by mass of the compound 4-1 to the solvent has a narrow line width, and the sample obtained by adding 1.00% by mass or 2.00% by mass of the compound 4-1 to the solvent. Both achieved extremely narrow line widths. Since the line width was almost the same at 1.00% by mass and 2.00% by mass, when compound 4-1 was used as the surface conditioner under the conditions of Example 4, it was 1.00% by mass with respect to the solvent. % Addition was shown to be sufficient.
[実施例5]
 実施例5では、ベーク後の比抵抗について検討した。
<手順>
 実施例5においては、溶媒としてテトラデカンを用い、金属粒子として銀ナノ粒子(株式会社イオックス製)を用いた。テトラデカンに銀ナノ粒子を分散させた分散液(銀含有量52.5質量%)に、表面調整剤として化合物3-2を溶媒に対して0.50質量%添加して、金属微粒子分散液とした。また、比較のため、表面調整剤を添加していない金属微粒子分散液も用意した。実施例1と同様に径25μmのノズルを用いた系で塗布を行った。塗布直後に、150℃、180℃、210℃、240℃の各温度で60分間ベークした。
<結果>
 ベーク後の配線表面の比抵抗を測定した結果を以下の表に示す。表から明らかなように、表面調整剤を添加することによって比抵抗は低下することが確認された。これは、表面調整剤を添加していないサンプルでは、ベーク後の表面にクラックが生じて導電パスが制限され、導電面積が小さくなっている一方で、表面調整剤を添加したサンプルでは、ベーク後の表面にクラックがほぼ認められず、導電パスの面積が増大しているためであると考えられる。
[Example 5]
In Example 5, the specific resistance after baking was examined.
<Procedure>
In Example 5, tetradecane was used as the solvent, and silver nanoparticles (manufactured by Iox Corporation) were used as the metal particles. To a dispersion liquid in which silver nanoparticles are dispersed in tetradecane (silver content: 52.5 mass%), 0.50 mass% of compound 3-2 as a surface conditioner is added to the solvent, did. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed using a system using a nozzle having a diameter of 25 μm. Immediately after the application, baking was performed at 150 ° C., 180 ° C., 210 ° C., and 240 ° C. for 60 minutes.
<Result>
The results of measuring the specific resistance of the wiring surface after baking are shown in the following table. As is apparent from the table, it was confirmed that the specific resistance was reduced by adding the surface conditioner. This is because, in the sample to which the surface conditioner is not added, cracks are generated on the surface after baking, the conductive path is limited, and the conductive area is reduced, while in the sample to which the surface conditioner is added, after baking. This is probably because cracks were hardly observed on the surface of the film, and the area of the conductive path was increased.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[実施例6]
 実施例6では、ベーク後の表面クラックについて検討した。
<手順>
 実施例6においては、溶媒としてテトラデカンを用い、金属粒子として銀ナノ粒子(株式会社イオックス製)を用いた。テトラデカンに銀ナノ粒子を分散させた分散液(銀含有量52.5質量%)に、表面調整剤として化合物3-2を溶媒に対して2.00質量%添加して、金属微粒子分散液とした。また、比較のため、表面調整剤を添加していない金属微粒子分散液も用意した。実施例1と同様に径25μmのノズルを用いた系で塗布を行った。塗布直後に、150℃で60分間ベークした。
<結果>
 ベーク後の配線表面状態を観測した結果を図19に示す。表面調整剤を添加していないサンプルでは、ベーク後の表面にクラックが認められたが、表面調整剤を添加したサンプルでは、ベーク後の表面にクラックは認められなかった。
[Example 6]
In Example 6, the surface crack after baking was examined.
<Procedure>
In Example 6, tetradecane was used as the solvent, and silver nanoparticles (manufactured by Iox Corporation) were used as the metal particles. To a dispersion liquid in which silver nanoparticles are dispersed in tetradecane (silver content: 52.5% by mass), 2.00% by mass of compound 3-2 as a surface conditioning agent is added to the solvent, did. For comparison, a metal fine particle dispersion without a surface conditioner was also prepared. In the same manner as in Example 1, coating was performed using a system using a nozzle having a diameter of 25 μm. Immediately after the application, baking was performed at 150 ° C. for 60 minutes.
<Result>
The result of observing the wiring surface state after baking is shown in FIG. In the sample to which no surface conditioner was added, cracks were observed on the surface after baking, but in the sample to which the surface conditioner was added, no cracks were observed on the surface after baking.
 本発明の微粒子分散液によれば、平坦性が高く、微細な薄膜を形成することができる。このため、本発明の微粒子分散液を用いれば、平坦性が高く、微細な配線パターンを高コストな真空・フォトリソグラフィプロセスとエッチングプロセスによらずに形成することができる。このため、本発明は電子部品等の配線形成に効果的に利用することができ、産業上の利用可能性が高い。 According to the fine particle dispersion of the present invention, the flatness is high and a fine thin film can be formed. For this reason, if the fine particle dispersion of the present invention is used, it is possible to form a fine wiring pattern with high flatness without using high-cost vacuum / photolithography process and etching process. For this reason, this invention can be utilized effectively for wiring formation, such as an electronic component, and its industrial applicability is high.

Claims (15)

  1.  微粒子と表面調整剤を含有する微粒子分散液であって、
     前記表面調整剤は、シロキサン結合を含む繰り返し単位を有するポリシロキサン鎖か、(メタ)アクリルポリマー鎖の少なくとも一方のポリマー鎖を有し、かつ、そのポリマー鎖の側鎖および末端の少なくともいずれかに親水性基を有する、微粒子分散液。
    A fine particle dispersion containing fine particles and a surface conditioner,
    The surface conditioning agent has a polysiloxane chain having a repeating unit containing a siloxane bond, or at least one polymer chain of a (meth) acrylic polymer chain, and at least one of a side chain and a terminal of the polymer chain. A fine particle dispersion having a hydrophilic group.
  2.  前記表面調整剤が、前記ポリマー鎖としてポリシロキサン鎖を有する請求項1に記載の微粒子分散液。 The fine particle dispersion according to claim 1, wherein the surface conditioner has a polysiloxane chain as the polymer chain.
  3.  前記表面調整剤が、下記一般式(1)で表される化合物である請求項1に記載の微粒子分散液。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、R~Rは、各々独立に置換基を表し、R~Rのうちの少なくとも1つは親水性基である。分子内に存在する複数のRおよび複数のRは、それぞれ互いに同じであっても異なっていてもよい。nは、3~50の整数である。]
    The fine particle dispersion according to claim 1, wherein the surface conditioner is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 to R 6 each independently represents a substituent, and at least one of R 1 to R 6 is a hydrophilic group. A plurality of R 1 and a plurality of R 2 present in the molecule may be the same as or different from each other. n is an integer of 3 to 50. ]
  4.  R~Rの少なくとも1つが、(メタ)アクリルポリマー鎖を含む置換基である請求項3に記載の微粒子分散液。 The fine particle dispersion according to claim 3, wherein at least one of R 1 to R 6 is a substituent containing a (meth) acrylic polymer chain.
  5.  分子内に存在する複数のRの一部または複数のRの一部が親水性基である請求項3または4に記載の微粒子分散液。 The fine particle dispersion according to claim 3 or 4, wherein a part of the plurality of R 1 or a part of the plurality of R 2 present in the molecule is a hydrophilic group.
  6.  前記親水性基は、下記一般式(2)で表される基である請求項1~5のいずれか1項に記載の微粒子分散液。
    一般式(2)
     -(O-R
    [一般式(2)において、Rは炭素数1~3のアルキレン基であり、mは20~30の整数である。]
    The fine particle dispersion according to any one of claims 1 to 5, wherein the hydrophilic group is a group represented by the following general formula (2).
    General formula (2)
    -(O-R 7 ) m-
    [In the general formula (2), R 7 is an alkylene group having 1 to 3 carbon atoms, and m is an integer of 20 to 30. ]
  7.  一般式(2)のRは、エチレン基である請求項6に記載の微粒子分散液。 The fine particle dispersion according to claim 6, wherein R 7 in the general formula (2) is an ethylene group.
  8.  増粘剤を、さらに含有する請求項1~7のいずれか1項に記載の微粒子分散液。 The fine particle dispersion according to any one of claims 1 to 7, further comprising a thickener.
  9.  前記増粘剤は、ジエチレングリコールである請求項8に記載の微粒子分散液。 The fine particle dispersion according to claim 8, wherein the thickener is diethylene glycol.
  10.  前記微粒子は、金属微粒子である請求項1~9のいずれか1項に記載の微粒子分散液。 The fine particle dispersion according to any one of claims 1 to 9, wherein the fine particles are metal fine particles.
  11.  前記微粒子は、導電性を有する微粒子である請求項1~10のいずれか1項に記載の微粒子分散液。 The fine particle dispersion according to any one of Claims 1 to 10, wherein the fine particles are conductive fine particles.
  12.  配線パターンの形成に用いられる請求項11に記載の微粒子分散液。 The fine particle dispersion according to claim 11, which is used for forming a wiring pattern.
  13.  請求項11に記載の微粒子分散液を用いて形成された配線パターン。 A wiring pattern formed using the fine particle dispersion according to claim 11.
  14.  請求項11に記載の微粒子分散液を配線パターン形成面に供給して塗膜を形成する工程と、該塗膜を乾燥することで導電層を形成する工程を有する配線パターンの形成方法。 A method for forming a wiring pattern, comprising: forming a coating film by supplying the fine particle dispersion according to claim 11 to a wiring pattern forming surface; and forming a conductive layer by drying the coating film.
  15.  前記微粒子分散液の供給方法が、インクジェット法である請求項14に記載の配線パターンの形成方法。 The method for forming a wiring pattern according to claim 14, wherein a method of supplying the fine particle dispersion is an inkjet method.
PCT/JP2015/069133 2014-07-02 2015-07-02 Fine particle dispersion liquid, wiring pattern and method for forming wiring pattern WO2016002881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531444A JPWO2016002881A1 (en) 2014-07-02 2015-07-02 Fine particle dispersion, wiring pattern, and method of forming wiring pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136713 2014-07-02
JP2014136713 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002881A1 true WO2016002881A1 (en) 2016-01-07

Family

ID=55019408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069133 WO2016002881A1 (en) 2014-07-02 2015-07-02 Fine particle dispersion liquid, wiring pattern and method for forming wiring pattern

Country Status (2)

Country Link
JP (1) JPWO2016002881A1 (en)
WO (1) WO2016002881A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527169A (en) * 2005-01-10 2008-07-24 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム Aqueous dispersion of metal nanoparticles
JP2010507727A (en) * 2006-10-25 2010-03-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Silver-containing aqueous formulations and their use to produce conductive or reflective coatings
JP2011241309A (en) * 2010-05-19 2011-12-01 Tosoh Corp Conductive ink composition, method for producing electrically conducting portion, and its application
JP2013175559A (en) * 2012-02-24 2013-09-05 Hitachi Chemical Co Ltd Composite layer composed of adhesive layer and wiring layer and adhesive layer forming ink for printing for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527169A (en) * 2005-01-10 2008-07-24 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム Aqueous dispersion of metal nanoparticles
JP2010507727A (en) * 2006-10-25 2010-03-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Silver-containing aqueous formulations and their use to produce conductive or reflective coatings
JP2011241309A (en) * 2010-05-19 2011-12-01 Tosoh Corp Conductive ink composition, method for producing electrically conducting portion, and its application
JP2013175559A (en) * 2012-02-24 2013-09-05 Hitachi Chemical Co Ltd Composite layer composed of adhesive layer and wiring layer and adhesive layer forming ink for printing for forming the same

Also Published As

Publication number Publication date
JPWO2016002881A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US20080210660A1 (en) Medium For Etching Oxidic, Transparent, Conductive Layers
Sefiane et al. Contact line motion and dynamic wetting of nanofluid solutions
Gebauer et al. Tailoring metal oxide nanoparticle dispersions for inkjet printing
US9469773B2 (en) Ink composition for making a conductive silver structure
Shin et al. Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces
JP5763295B2 (en) Ink composition
US20140035995A1 (en) Aerosol jet printable metal conductive inks, glass coated metal conductive inks and uv-curable dielectric inks and methods of preparing and printing the same
JP2003059940A (en) Substrate for microfabrication, production method therefor and image-shaped thin film forming method
CN104205247B (en) Electroconductive component and manufacture method thereof
Shi et al. Drying of ethanol/water droplets containing silica nanoparticles
JP2007106024A (en) Nozzle plate, inkjet head and inkjet device
Matavž et al. Inkjet printing of functional oxide nanostructures from solution-based inks
Bugakova et al. Comprehensive characterization of TiO2 inks and their application for inkjet printing of microstructures
Brasjen et al. Dip-coating of chemically patterned surfaces
Tao et al. Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment
Cummins et al. Optimization and characterization of drop-on-demand inkjet printing process for platinum organometallic inks
KR102056972B1 (en) Conductive ink
Wadhwa Run-time ink stability in pneumatic aerosol jet printing using a split stream solvent add back system
WO2016002881A1 (en) Fine particle dispersion liquid, wiring pattern and method for forming wiring pattern
JP6348241B1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
Grant et al. Inkjet printing of high-concentration particle-free platinum inks
Shi et al. Jetting and droplet formation of particle-loaded fluids
Katre et al. Stability and retention force factor for binary-nanofluid sessile droplets on an inclined substrate
KAZMIERSKI The Drying of Inkjet Printed Drops on Patterned Substrates
US20110209907A1 (en) Liquid-repellent film former, method for forming liquid-repellent film, method for forming fine wiring using the same, and substrate comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815560

Country of ref document: EP

Kind code of ref document: A1