WO2016002570A1 - レーザ加工用マスク - Google Patents
レーザ加工用マスク Download PDFInfo
- Publication number
- WO2016002570A1 WO2016002570A1 PCT/JP2015/067942 JP2015067942W WO2016002570A1 WO 2016002570 A1 WO2016002570 A1 WO 2016002570A1 JP 2015067942 W JP2015067942 W JP 2015067942W WO 2016002570 A1 WO2016002570 A1 WO 2016002570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mask
- laser
- laser processing
- pinhole
- laser beam
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/066—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
Definitions
- the present invention relates to a mask used in a laser processing apparatus.
- Patent Document 1 laser light emitted from a laser light source is reflected by a reflecting mirror, passed through a mask, then reflected again by a reflecting mirror, condensed by a lens, and then covered.
- a laser processing apparatus for irradiating a workpiece is known.
- a plurality of masks are attached to the rotating plate in the circumferential direction, and by rotating the rotating plate, the mask along the processing purpose is arranged on the optical axis of the laser beam.
- the mask 60 described in Patent Document 1 is screwed into a hole 71 of a slider 70 that is attached to a rotating plate so that the position of the mask 60 can be adjusted.
- a flange portion 61 is formed on the laser beam incident side of the mask 60, and a pinhole 63 serving as a mask pattern is formed in the center portion.
- a conical tapered surface 62 is formed on the end surface of the flange portion 61 on the laser light incident side, and the tapered surface 62 is plated or mirror-finished to improve reflection efficiency. Part of the laser light L passes through the pinhole 63, the remaining laser light is reflected by the tapered surface 62, and the energy of the reflected light is absorbed by the donut-shaped beam damper 72.
- the end surface of the mask 60 is processed into the conical tapered surface 62.
- this mask 60 is irradiated with laser light L, return light La in the direction opposite to the incident direction of the laser light is generated at the R portion or the flat portion 62a. Therefore, there is a problem that the laser oscillation becomes unstable, and the mode deterioration of the laser beam and the oscillation output are reduced.
- Patent Document 2 discloses a structure in which a flat mask is inclined at a certain angle to reflect laser light, the laser light is reflected at a certain angle with respect to incident light, and the reflected light is absorbed by an absorber.
- a mask apparatus has been proposed.
- FIG. 6 shows an example of the mask 80 in Patent Document 2.
- a circular mask hole 81 is formed in the thin film mask 80, and the mask 80 is arranged to be inclined with respect to the optical axis of the laser beam L.
- the surface of the mask 80 can be formed flat, the reflected light L1 is in one direction, and the generation of return light can be prevented.
- the axis of the mask hole 81 and the optical axis of the incident laser light L are not parallel, the cross-sectional shape S of the laser light L2 that has passed through the mask hole 81 is distorted into an ellipse. That is, the shape of the mask hole 81 and the cross-sectional shape of the laser beam L2 that has passed through the mask hole 81 do not match, and high-precision processing cannot be performed.
- An object of the present invention is to provide a mask for laser processing that can substantially eliminate return light from the mask during laser irradiation and can prevent mode deterioration of the laser light and decrease in oscillation output.
- the present invention is a laser processing mask provided with a mask main body and a pinhole formed in the mask main body so as to allow laser light to pass therethrough.
- the axis of the pinhole and the optical axis of the laser beam are parallel, and a flat portion is provided on the laser beam incident side of the mask body. This flat portion is at a certain angle ⁇ (0 ⁇ ⁇
- the reflecting surface is inclined at 90 ° and reflects the laser beam.
- the mask of the present invention is not a conical reflecting surface as in Patent Document 1, but has a planar reflecting surface inclined at a constant angle. Since the reflection surface is a plane inclined with respect to the axis of the pinhole, the reflection direction of the laser light is one direction different from the incident direction of the laser light. Therefore, it is possible to prevent the return light from being generated around the pinhole, and it is possible to prevent the mode deterioration of the laser light and the decrease in the oscillation output. Such a flat reflecting surface can be easily formed by polishing or grinding.
- the mask body is made of metal and the plane portion is ground or polished.
- the mask body is preferably made of a metal having a high reflectivity of the laser to be used.
- a metal having a high reflectivity of the laser to be used For example, when a UV laser is used as the laser beam to be irradiated, aluminum having a high reflectivity in the wavelength range of the UV laser can be adopted. .
- a mask for UV laser a mask material coated with metal may be used, but there is a problem that it takes time and effort to coat. On the other hand, if the edge of the mask body made of a metal material is ground or polished in an oblique direction as in the present invention, the coating becomes unnecessary, so that the cost can be reduced.
- the flat part is ground or polished, and the flat part after the grinding or polishing may be coated with a reflective film.
- the reflective film is preferably made of a metal having a high reflectivity of the laser to be used.
- the mask body is preferably made of a material having high thermal conductivity, and for example, copper having high thermal conductivity can be adopted. In this way, if the mask body is ground or polished and a reflective film is separately formed on the flat portion, the mask body and the surface of the flat portion can be formed of different materials. Therefore, it is possible to realize the optimal combination of coating material and mask body material.
- the beam damper that absorbs the laser light reflected by the flat portion is on the side facing the flat portion of the mask and the optical axis of the incident laser light. It may be arranged only on one side. In this case, since it is not necessary to use a donut-shaped damper as in Patent Document 1, the damper can be reduced in size, and the laser processing apparatus can be reduced in size and cost.
- one end surface of a columnar part having a pinhole at the center may be processed in an oblique direction, or a pinhole inclined to the thickness direction is formed in a plate-like part having a constant thickness. You may have done.
- the axis of the pinhole and the optical axis of the laser beam are parallel to each other, and there is a plane portion on the laser beam incident side of the mask body, and this plane portion is the axis of the pinhole.
- the laser beam can be shaped into a desired shape, and the return light from the mask during laser irradiation can be almost eliminated. It is possible to prevent light mode deterioration and oscillation output drop.
- FIG. 1 It is the schematic of an example of the laser processing apparatus which concerns on this invention. It is the front view and right view of an example of a mask. It is a figure which shows an example of the processing method of a mask. It is the front view and right view of another example of a mask. It is a figure which shows an example of the mask in patent document 1. FIG. It is a figure which shows an example of the mask in patent document 2. FIG.
- FIG. 1 shows a schematic diagram of an example of a laser processing apparatus using a mask according to the present invention.
- the laser processing apparatus 1 includes a laser oscillator 10, which is a laser light source, a lens 20, a damper 30, and a mask 40, and a workpiece (not shown) is irradiated with laser light L2 that has passed through the mask 40.
- a mirror, a condensing lens, etc. can be suitably arrange
- the laser light L for example, an arbitrary laser such as a UV laser, a YAG laser, or a CO 2 laser is used.
- the mask 40 of this embodiment has a cylindrical mask main body 41 as shown in FIG. 2, and a pinhole 42 having a circular cross section is formed through the center thereof.
- the cross-sectional shape of the pinhole 42 is not limited to a circle.
- the diameter of the mask body 41 is set larger than the maximum incident beam diameter of the laser light L.
- the orientation of the mask body 41 is set so that the axis of the pinhole 42 and the optical axis of the laser beam L are parallel.
- a flat surface portion 43 is formed on the laser beam incident side of the mask body 41, and the flat surface portion 43 is inclined at a constant angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the axis of the pinhole 42.
- the angle ⁇ is preferably selected from the range of 60 to 85 °.
- the flat portion 43 is ground or polished, and is a reflecting surface that reflects the laser light L. From the viewpoint of releasing heat from the laser light, it is desirable to use a metal (aluminum, gold, silver, copper, etc.) having high thermal conductivity as the material of the mask body 41. From the viewpoint of increasing the reflectance of the laser beam, it is desirable to use a metal (aluminum, gold) having a high reflectance.
- the mask main body 41 and the surface of the flat portion 43 may be made of different materials.
- the mask main body 41 may be formed of a metal such as copper and the flat portion 43 may be ground or polished, and then the surface of the flat portion 43 may be coated with a reflective film such as aluminum or gold.
- the laser light is not limited to parallel light but may be convergent light or divergent light.
- the laser beam L1 reflected by the flat portion 43 of the mask 40 is reflected in one direction in a direction different from the incident direction of the laser beam L.
- the energy of the reflected laser beam L1 is absorbed by a damper 30 that is appropriately cooled by water cooling or the like. Therefore, it is possible to prevent the reflected laser light L1 from exerting a thermal effect on the peripheral components.
- the damper 30 since the damper 30 is provided only on one side (upper side in FIG. 1) of the optical axis of the incident laser light L, the damper 30 can be reduced in size.
- the laser light generated by the laser oscillator 10 passes through the lens 20 and is applied to the flat portion 43 of the mask 40.
- a part of the laser light L2 passes through the pinhole 42, but the remaining laser light L1 is reflected by the flat portion 43.
- the flat portion 43 is a reflecting surface inclined at a constant angle, the reflected light does not return to the laser oscillator 10, but is reflected toward the damper 30.
- the laser beam can be shaped into a desired shape, and the mode degradation of the laser beam and the decrease in oscillation output can be prevented.
- FIG. 3 shows an example of a method for processing the mask 40.
- a base 50 that can be tilted around a fulcrum 51 is prepared, and a raw material 41 ′ of the mask body 41 is fixed on the base 50 by a chuck 52.
- the raw material 41 ′ is a cylindrical part having a pinhole 42 at its center.
- the base 50 is tilted by a predetermined angle about the fulcrum 51 and moved in the horizontal direction with respect to the grinding wheel 53 rotating about the horizontal axis.
- the top portion of the raw material 41 ′ is ground or polished by friction with the grinding wheel 53, and a flat portion 43 inclined by a certain angle is formed.
- the mask 40 is tilted by a predetermined angle as shown in FIG. Examples of the polishing process include buffing, lapping, polishing and the like.
- FIG. 4 shows a second embodiment of the mask.
- a pinhole 47 inclined at an angle ⁇ with respect to the thickness direction is formed in a plate-like mask body 46 having a flat surface.
- the mask 45 can be easily manufactured by drilling the pin hole 47 with a drill or the like so that the pin body 47 has an inclination angle ⁇ with respect to the thickness direction of the mask body 46 having a constant thickness.
- a side surface of the mask 45 on the laser beam incident side is a flat portion 48 that reflects the laser beam.
- the plane portion 48 is inclined at a constant angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the axis of the pinhole 47 as in the first embodiment.
- the mask main body 46 by setting the orientation of the mask main body 46 so that the axis of the pinhole 47 and the optical axis of the laser light L are parallel, a part of the laser light incident on the flat surface portion 48 can be obtained.
- the remaining laser light passes through the pinhole 47 and is reflected by the plane portion 48 in a direction different from the incident direction. For this reason, the reflected light is not returned light toward the laser oscillator, and the mode deterioration of the laser light and the oscillation output can be prevented from decreasing.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
レーザ照射中のマスクからの戻り光をほぼ無くすことができ、レーザ光のモード劣化や発振出力の低下を防止できる、レーザ加工用のマスクを提供するために、レーザ光を通過させるためにマスク本体(41)にピンホール(42)を貫通形成したレーザ加工用マスク(40)であって、ピンホール(42)の軸線とレーザ光L の光軸とが平行であり、マスク本体(41)のレーザ光の入射側に平面部(43)を有し、平面部(43)がピンホールの(42)の軸線に対して一定角度θ(0<θ<90°)で傾斜し、かつ、レーザ光を反射する反射面であるレーザ加工用マスク。
Description
本発明は、レーザ加工装置に用いられるマスクに関するものである。
従来、例えば特許文献1に記載のように、レーザ光源から出射されたレーザ光を反射ミラーで反射させ、マスクの中を通過させた後、再度反射ミラーで反射させ、レンズで集光して被加工物上に照射するレーザ加工装置が知られている。マスクは回転板に周方向に複数個取り付けられており、回転板を回転させることにより、加工目的に沿ったマスクがレーザ光の光軸上に配置される。
特許文献1に記載のマスク60は、図5に示すように、回転板に位置調整可能に取り付けられたスライダ70の穴71に螺着されている。マスク60のレーザ光入射側にはフランジ部61が形成され、中心部にはマスクパターンとなるピンホール63が形成されている。フランジ部61のレーザ光入射側の端面には円錐状のテーパ面62が形成されており、このテーパ面62には反射効率を向上させるためのメッキあるいは鏡面加工が施されている。レーザ光Lの一部はピンホール63を通過し、残りのレーザ光はテーパ面62で反射し、反射光のエネルギーがドーナツ状のビームダンパ72で吸収される。
上述のようにマスク60の端面が円錐状テーパ面62に加工されているが、実際にはテーパ面62の頂部(ピンホール63の内周縁)にダレによる極小のR部もしくは平坦部62aが存在する。このマスク60にレーザ光Lを照射した場合、R部もしくは平坦部62aでレーザ光の入射方向と対向方向の戻り光Laが発生する。そのため、レーザ発振が不安定になり、レーザ光のモード劣化や発振出力の低下が生じるという問題がある。
一方、特許文献2には、レーザ光を反射させるため平坦なマスクを一定角度で傾斜させ、レーザ光を入射光に対してある角度をもたせて反射させて、反射光を吸収体で吸収させる構造のマスク装置が提案されている。
図6は、特許文献2におけるマスク80の例を示す。図6に示すように、薄膜状マスク80に円形のマスク穴81が形成されており、そのマスク80がレーザ光Lの光軸に対して傾斜させて配置されている。この場合は、マスク80の表面を平坦に形成できるので、反射光L1が一方向になり、戻り光の発生を防止することが可能である。しかし、マスク穴81の軸線と入射レーザ光Lの光軸とが非平行となるので、マスク穴81を通過したレーザ光L2の断面形状Sは楕円形に歪んでしまう。つまり、マスク穴81の形状と、マスク穴81を通過したレーザ光L2の断面形状とが一致せず、高精度な加工が行えない。
本発明の目的は、レーザ照射中のマスクからの戻り光をほぼ無くすことができ、レーザ光のモード劣化や発振出力の低下を防止できる、レーザ加工用マスクを提供することにある。
本発明は、マスク本体と、レーザ光を通過させるためにマスク本体に貫通形成されたピンホールとを備えたレーザ加工用マスクである。ピンホールの軸線とレーザ光の光軸とが平行であり、マスク本体のレーザ光の入射側に平面部を有し、この平面部がピンホールの軸線に対して一定角度θ(0<θ<90°)で傾斜し、かつレーザ光を反射する反射面とされている。
本発明のマスクは、特許文献1のような円錐状の反射面ではなく、一定角度で傾斜した平面状の反射面を有する。反射面はピンホールの軸線に対して傾斜した平面であるため、レーザ光の反射方向がレーザ光の入射方向とは異なる一方向になる。そのため、ピンホールの周辺部で戻り光が発生するのを防止でき、レーザ光のモード劣化や発振出力の低下を防止できる。このような平坦な反射面は、研磨加工又は研削加工で容易に形成できる。特許文献2とは異なり、ピンホールの軸線とレーザ光の光軸とが平行であるため、ピンホールを通過するレーザ光の形状がピンホールの断面形状と同一になり、精度の高いレーザ光を生成できる。
マスク本体の材質が金属であり、平面部が研削又は研磨加工されているものが望ましい。マスク本体は、使用するレーザの反射率の高い金属とするのが好ましく、例えば、照射するレーザ光としてUVレーザを使用する場合、UVレーザの波長域において反射率の高いアルミニウムを採用することができる。UVレーザ用マスクとしては、マスク素材に金属をコーティングしたものが使用される場合もあるが、コーティングする手間がかかるなどの問題がある。それに対し、本発明のように、金属素材からなるマスク本体の端部を斜め方向に研削又は研磨加工するとコーティングが不要になるので、コスト低減が図れる。
また、平面部は研削又は研磨加工されており、研削又は研磨加工後の平面部は反射膜によりコーティングされていてもよい。反射膜は使用するレーザの反射率の高い金属とするのが好ましく、例えば、照射するレーザ光としてCO2レーザを使用する場合、CO2レーザの波長域において反射率の高い金を採用することができる。一方、マスク本体は熱伝導率の高い材質とするのが好ましく、例えば、熱伝導率の高い銅を採用することができる。このように、マスク本体を研削又は研磨加工した上で、平面部に別途反射膜を形成すれば、マスク本体と平面部の表面とを異なる材質で形成できるので、反射率と熱伝導率の観点からコーティング材とマスク本体の材質を最適な組み合わせで実現することができる。
本発明にかかるレーザ加工用マスクを使用したレーザ加工装置では、平面部で反射されたレーザ光を吸収するビームダンパが、マスクの平面部と対向する側であって、かつ入射レーザ光の光軸の片側にのみ配置されているものとしてもよい。この場合は、特許文献1のようなドーナツ形状のダンパを使用する必要がないので、ダンパを小型化でき、レーザ加工装置の小型化、低コスト化が可能である。
マスク本体の形状としては、例えば中心にピンホールを有する柱状部品の一端面を斜め方向に加工したものでもよいし、一定厚みの板状部品に、その厚み方向に対して傾けたピンホールを形成したものでもよい。
以上のように、本発明によれば、ピンホールの軸線とレーザ光の光軸とが平行であり、マスク本体のレーザ光の入射側に平面部を有し、この平面部がピンホールの軸線に対して一定角度で傾斜し、かつレーザ光を反射する反射面とされているので、レーザ光を所望の形状に成形でき、レーザ照射中のマスクからの戻り光をほぼ無くすことができ、レーザ光のモード劣化や発振出力の低下を防止できる。
-第1実施例-
図1は本発明に係るマスクを用いたレーザ加工装置の一例の概略図を示す。レーザ加工装置1は、レーザ光源であるレーザ発振器10、レンズ20、ダンパ30、及びマスク40を備え、マスク40を通過したレーザ光L2は図示しない被加工物に照射される。なお、レーザ光Lの光軸の途中に、ミラーや集光レンズなどを適宜配置することができる。レーザ光Lとしては、例えばUVレーザ、YAGレーザ、CO2レーザなど任意のレーザが使用される。
図1は本発明に係るマスクを用いたレーザ加工装置の一例の概略図を示す。レーザ加工装置1は、レーザ光源であるレーザ発振器10、レンズ20、ダンパ30、及びマスク40を備え、マスク40を通過したレーザ光L2は図示しない被加工物に照射される。なお、レーザ光Lの光軸の途中に、ミラーや集光レンズなどを適宜配置することができる。レーザ光Lとしては、例えばUVレーザ、YAGレーザ、CO2レーザなど任意のレーザが使用される。
この実施例のマスク40は、図2に示すように円柱形のマスク本体41を有し、その中心部に断面円形のピンホール42が貫通形成されている。なお、ピンホール42の断面形状は円形に限らない。マスク本体41の直径は、レーザ光Lの入射ビーム最大径より大きく設定されている。ピンホール42の軸線とレーザ光Lの光軸とが平行となるように、マスク本体41の向きが設定されている。マスク本体41のレーザ光の入射側には平面部43が形成されており、この平面部43がピンホール42の軸線に対して一定角度θ(0<θ<90°)で傾斜している。具体的には、角度θは60~85°の範囲から選択するのが好ましい。平面部43は研削又は研磨加工されており、レーザ光Lを反射する反射面とされている。レーザ光からの熱を逃がすという観点では、マスク本体41の素材として熱伝導率の高い金属(アルミニウム、金、銀、銅など)を使用するのが望ましい。また、レーザ光の反射率を高めるという観点では、反射率の高い金属(アルミニウム、金)などを使用するのが望ましい。なお、マスク本体41と平面部43の表面とは異なる材質であってもよい。例えば、マスク本体41を銅などの金属で形成し、平面部43を研削又は研磨加工した後、平面部43の表面をアルミニウムや金などの反射膜でコーティングしてもよい。レーザ光は、平行光に限らず、収束光や発散光でもよい。
マスク40の平面部43で反射したレーザ光L1は、レーザ光Lの入射方向とは異なる方向に一方向に反射する。反射したレーザ光L1は、水冷などにより適宜冷却されたダンパ30でそのエネルギーが吸収される。そのため、反射レーザ光L1が周辺部品などに熱影響を及ぼすのを防止できる。この実施例では、ダンパ30が入射レーザ光Lの光軸の片側(図1では上側)にのみ設けられているため、ダンパ30を小型化できる。
上記のように、レーザ発振器10で生成されたレーザ光は、レンズ20を通り、マスク40の平面部43に照射される。ここで、一部のレーザ光L2はピンホール42を通過するが、残りのレーザ光L1は平面部43で反射する。平面部43は一定角度で傾斜した反射面であるため、反射光はレーザ発振器10方向への戻り光とならず、すべてダンパ30に向かって反射する。その結果、レーザ光を所望の形状に成形できると共に、レーザ光のモード劣化や発振出力の低下を防止できる。
図3は、マスク40の加工方法の一例を示す。支点51を中心として傾動可能なベース50を準備し、ベース50上にマスク本体41の原材料41'をチャック52によって固定する。原材料41'は、その中心にピンホール42を有する円柱形部品である。次に、ベース50を支点51を中心として所定角度だけ傾け、水平軸を中心として回転する研削砥石53に対して水平方向に移動させる。研削砥石53との摩擦により原材料41'の頂部が研削又は研磨加工され、一定角度傾斜した平面部43が形成される。研磨加工する場合も、図3に示すように所定の角度だけマスク40を傾けて加工する。研磨加工の例としては、バフ研磨、ラッピング、ポリッシング等が挙げられる。
-第2実施例-
図4は、マスクの第2実施例を示す。このマスク45は、表面が平坦な板状のマスク本体46に、厚み方向に対して角度αで傾けたピンホール47が形成されている。この実施例の場合には、一定厚みのマスク本体46に対し、ピンホール47をその厚み方向に対して傾き角αとなるようにドリルなどで穿孔すれば、簡単にマスク45を作製できる。マスク45のレーザ光入射側の側面が、レーザ光を反射する平面部48とされている。ピンホール47の軸線に対して平面部48は、第1実施例と同様に、一定角度θ(0<θ<90°)で傾斜している。
図4は、マスクの第2実施例を示す。このマスク45は、表面が平坦な板状のマスク本体46に、厚み方向に対して角度αで傾けたピンホール47が形成されている。この実施例の場合には、一定厚みのマスク本体46に対し、ピンホール47をその厚み方向に対して傾き角αとなるようにドリルなどで穿孔すれば、簡単にマスク45を作製できる。マスク45のレーザ光入射側の側面が、レーザ光を反射する平面部48とされている。ピンホール47の軸線に対して平面部48は、第1実施例と同様に、一定角度θ(0<θ<90°)で傾斜している。
この実施例の場合も、ピンホール47の軸線とレーザ光Lの光軸とが平行となるように、マスク本体46の向きを設定することで、平面部48に入射したレーザ光の一部がピンホール47を通過し、残りのレーザ光が平面部48で入射方向とは異なる向きに反射する。そのため、反射光はレーザ発振器方向への戻り光とならず、レーザ光のモード劣化や発振出力の低下を防止できる。
1 レーザ加工装置
10 レーザ発振器
20 レンズ
30 ダンパ
40 マスク
41 マスク本体
42 ピンホール
43 平面部
10 レーザ発振器
20 レンズ
30 ダンパ
40 マスク
41 マスク本体
42 ピンホール
43 平面部
Claims (4)
- マスク本体と、レーザ光を通過させるために前記マスク本体に貫通形成されたピンホールとを備えたレーザ加工用マスクにおいて、
前記ピンホールの軸線と前記レーザ光の光軸とが平行であり、前記マスク本体のレーザ光の入射側に平面部を有し、前記平面部が前記ピンホールの軸線に対して一定角度θ(0<θ<90°)で傾斜し、かつ前記レーザ光を反射する反射面とされている、レーザ加工用マスク。 - 前記マスク本体の材質が金属であり、前記平面部が研削又は研磨加工されていることを特徴とする、請求項1に記載のレーザ加工用マスク。
- 前記平面部は研削又は研磨加工されており、研削又は研磨加工後の前記平面部は反射膜によりコーティングされていることを特徴とする、請求項1に記載のレーザ加工用マスク。
- 請求項1乃至3のいずれか1項に記載のレーザ加工用マスクを使用したレーザ加工装置であって、
前記平面部で反射されたレーザ光を吸収するダンパが、前記マスクの平面部と対向する側であって、かつ入射レーザ光の光軸の片側にのみ配置されている、レーザ加工装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014135653 | 2014-07-01 | ||
JP2014-135653 | 2014-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002570A1 true WO2016002570A1 (ja) | 2016-01-07 |
Family
ID=55019114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067942 WO2016002570A1 (ja) | 2014-07-01 | 2015-06-23 | レーザ加工用マスク |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016002570A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021121231A1 (zh) * | 2019-12-20 | 2021-06-24 | 深圳市帝迈生物技术有限公司 | 光学检测装置及应用其的蛋白检测装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03263386A (ja) * | 1990-01-24 | 1991-11-22 | Hitachi Ltd | レーザ発振器及びレーザ共振器並びに半導体加工装置 |
JPH08111551A (ja) * | 1994-10-11 | 1996-04-30 | Sumitomo Metal Mining Co Ltd | レーザ用アパーチャ及びそれを用いたレーザ発振器 |
-
2015
- 2015-06-23 WO PCT/JP2015/067942 patent/WO2016002570A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03263386A (ja) * | 1990-01-24 | 1991-11-22 | Hitachi Ltd | レーザ発振器及びレーザ共振器並びに半導体加工装置 |
JPH08111551A (ja) * | 1994-10-11 | 1996-04-30 | Sumitomo Metal Mining Co Ltd | レーザ用アパーチャ及びそれを用いたレーザ発振器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021121231A1 (zh) * | 2019-12-20 | 2021-06-24 | 深圳市帝迈生物技术有限公司 | 光学检测装置及应用其的蛋白检测装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5832412B2 (ja) | 光学系及びレーザ加工装置 | |
US6016227A (en) | Apparatus and method for producing an improved laser beam | |
KR20160010397A (ko) | 평판 기판의 레이저-기반 기계가공을 위한 방법 및 장치 | |
CN110753596B (zh) | 用于对透明易碎的工件进行基于激光的分离的装置和方法 | |
EP1855831A2 (en) | Method and apparatus for laser processing | |
JP2009178725A (ja) | レーザ加工装置及びレーザ加工方法 | |
US11000919B2 (en) | Laser processing apparatus | |
US20160151862A1 (en) | Device for laser processing of a surface of a workpiece or for post-treatment of a coating on the outside or the inside of a workpiece | |
CN110961780B (zh) | 激光处理设备 | |
JP2006229075A (ja) | レーザ加熱装置 | |
CN111058029A (zh) | 一种能够同时进行预热回火的激光熔覆头及其激光覆熔方法 | |
US20100314364A1 (en) | Optical scanner and its applications | |
WO2016002570A1 (ja) | レーザ加工用マスク | |
CN108581189B (zh) | 激光切割方法 | |
JP6213678B6 (ja) | レーザ加工用マスク | |
JPWO2016002643A6 (ja) | レーザ加工用マスク | |
KR102615739B1 (ko) | 레이저 가공 장치 | |
JP2003275888A (ja) | レーザ加工装置及び加工方法 | |
JP2021142546A (ja) | 光学ユニット、レーザー加工装置及びレーザー加工方法 | |
CN103898281B (zh) | 整体叶盘遮蔽部位激光冲击强化用激光头 | |
JP2000288766A (ja) | レーザ加工装置 | |
JP2009229686A (ja) | 形状可変ミラーおよびその形状可変ミラーを用いたレーザ加工装置 | |
JPH04143092A (ja) | レーザ加工装置 | |
CN207557590U (zh) | 激光光束整形器和新型激光光源 | |
US20200147721A1 (en) | Laser light source module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815288 Country of ref document: EP Kind code of ref document: A1 |