WO2016002502A1 - Mass spectrometer and mass-spectrometry method - Google Patents

Mass spectrometer and mass-spectrometry method Download PDF

Info

Publication number
WO2016002502A1
WO2016002502A1 PCT/JP2015/067291 JP2015067291W WO2016002502A1 WO 2016002502 A1 WO2016002502 A1 WO 2016002502A1 JP 2015067291 W JP2015067291 W JP 2015067291W WO 2016002502 A1 WO2016002502 A1 WO 2016002502A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
voltage supplied
mass spectrometer
polarity
Prior art date
Application number
PCT/JP2015/067291
Other languages
French (fr)
Japanese (ja)
Inventor
山本 昭夫
正純 利根
渡辺 敏光
繁夫 大月
一樹 加島
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2016002502A1 publication Critical patent/WO2016002502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Definitions

  • the present invention relates to a mass spectrometer and a mass spectrometry method.
  • the present invention claims the priority of Japanese Patent Application No. 2014-138445 filed on July 4, 2014. For designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
  • Patent Document 1 discloses a high-voltage power supply device capable of reducing cost and higher reliability than the prior art, and capable of switching the polarity of the output voltage at a relatively high speed, and a mass spectrometer using such a power supply device. Is disclosed.
  • the mass spectrometer performs analysis by ionizing a sample. Whether the sample is ionized positively or negatively depends on the type of the sample. For this reason, when ionizing a sample, depending on the sample, ionization efficiency may be poor and an appropriate mass analysis result may not be obtained.
  • the voltage to be applied is switched depending on whether the analysis target is a positive ion or a negative ion. Therefore, depending on the analysis target, ionization efficiency may be poor and an appropriate mass analysis result may not be obtained. For example, a positive voltage is applied to an analyte to be positively ionized, and a negative voltage is applied to an analyte to be negatively ionized. Sometimes it is good.
  • an object of the present invention is to provide a technique for performing mass analysis with higher ionization efficiency and obtaining appropriate mass analysis results.
  • a mass spectrometer includes a first power source, an ionization unit that ionizes a sample with a voltage supplied from the first power source, and the sample ionized by the ionization unit.
  • An ion trap unit that captures ions of the ion, a detection unit that detects ions, a second power source, and ions captured by the ion trap unit are supplied to the detection unit by a voltage supplied from the second power source.
  • the polarity of the voltage supplied to the ionization unit and the polarity of the voltage supplied to the introduction unit are switched in the first period, and based on the detected amount of ions in the switched polarity, the first And a control unit that controls the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit in a second period following the period.
  • mass spectrometer as a device for determining a component of a trace substance contained in a sample.
  • the mass spectrometer ionizes molecules in a sample to be analyzed, performs mass separation using one or both of an electric field and a magnetic field, and detects the separated ions with a detector.
  • the polarity of ionization differs depending on the sample, such as illegal drugs are easily ionized and explosives are easily ionized.
  • the stationary type is generally a system in which components of an analysis object are separated in an LC (liquid chromatograph) part and qualitative and quantitative analysis is performed in an MS (mass spectrometry) part.
  • a method using ESI (electrospray method) or an APCI (atmospheric pressure chemical ionization method) is mainly used as an ion source.
  • a method using a barrier discharge which is an ion source advantageous for miniaturization and high efficiency, has begun to be studied.
  • a pulsed or sinusoidal high voltage is applied through a dielectric barrier to a discharge portion having an atmospheric pressure close to the atmospheric pressure at which the sample is introduced to ionize molecules in the sample.
  • FIG. 1 is a diagram illustrating a block configuration example of the mass spectrometer according to the first embodiment.
  • the mass spectrometer includes a capillary 1, a valve 2, an ionization unit 3, a mass analysis unit 4, a vacuum pump 5, an ion detection unit 6, a pressure detection unit 7, a barrier power source. 8, 9, switching units 10 and 13, introduction power supplies 11 and 12, CD (Conversion Dynode) power supply 14, scintillator power supply 15, control unit 16, and GUI (Graphical User Interface) 17.
  • the mass spectrometer shown in FIG. 11 is a portable device that ionizes a sample by barrier discharge, for example.
  • Atmosphere and sample to be analyzed are introduced into the capillary 1.
  • the atmosphere and the sample introduced into the capillary 1 are sent to the ionization unit 3 through the valve 2.
  • the valve 2 opens and closes and intermittently sends the air and sample introduced into the capillary 1 to the ionization unit 3.
  • the ionization unit 3 includes a dielectric container 3a and an electrode 3b. Air and a sample introduced into the capillary 1 are sent to the dielectric container 3a via the valve 2.
  • the electrode 3b is provided outside the dielectric container 3a and supplied with the voltage output from the switching unit 10.
  • the electrode 3b causes a discharge current to flow in the dielectric container 3a by the voltage supplied from the switching unit 10 and ionizes the sample introduced from the capillary 1. That is, the ionization unit 3 causes a discharge current to flow through the atmosphere introduced from the capillary 1 by barrier discharge, and ionizes the sample (generates reactive ions).
  • the mass analysis unit 4 includes a chamber 4a, an ion trap unit 4b, an incap electrode 4c, and an end cap electrode 4d.
  • the chamber 4a is a container for evacuating the inside, and has an ion trap portion 4b, an incap electrode 4c, and an end cap electrode 4d inside.
  • the ion trap part 4b supplements ions of a predetermined mass among the samples ionized by the ionization part 3.
  • the ion trap unit 4b can change (sweep) a predetermined mass of ions to be trapped.
  • the incap electrode 4c and the end cap electrode 4d form an electric field and accumulate ions in the ion trap portion 4b.
  • the vacuum pump 5 exhausts the inside of the dielectric container 3a of the ionization unit 3, the chamber 4a of the mass analysis unit 4, and the chamber 6a of the ion detection unit 6.
  • the ion detection unit 6 includes a chamber 6a, an introduction unit 6b, and a detection unit 6c.
  • the detection unit 6c includes a CD 6ca, a scintillator 6cb, and a photomultiplier tube 6cc.
  • the chamber 6a is a container for evacuating the inside, and has an introduction part 6b and a detection part 6c inside.
  • the introduction unit 6 b is, for example, a mesh (electrode), and a voltage is supplied from the switching unit 13.
  • the introduction unit 6b attracts ions captured by the ion trap unit 4b by the voltage supplied from the switching unit 13, and introduces the ions into the detection unit 6c.
  • the CD 6ca of the detection unit 6c emits secondary electrons corresponding to the amount of ions introduced by the introduction unit 6b.
  • the scintillator 6cb converts secondary electrons emitted by the CD 6ca into light.
  • the photomultiplier tube 6cc amplifies the light converted by the scintillator 6cb and converts it into an electrical signal. That is, ions trapped (captured) by the ion trap section 4b are introduced into the detection section 6c by the introduction section 6b. Then, the detection unit 6c detects the amount of ions captured by the ion trap unit 4b.
  • the electrical signal of the amount of ions detected by the detection unit 6 c is output to the control unit 16.
  • the pressure detector 7 detects the pressure in the dielectric container 3a and the chambers 4a and 6a.
  • the barrier power supplies 8 and 9 output a pulse voltage for causing discharge in the dielectric container 3a.
  • the barrier power supply 8 outputs a positive pulse voltage, for example, a pulse voltage of “+3 kV”.
  • the barrier power supply 9 outputs a negative pulse voltage, for example, a pulse voltage of “ ⁇ 3 kV”.
  • the switching unit 10 outputs one of the pulse voltages output from the barrier power supplies 8 and 9 to the electrode 3b under the control of the control unit 16. That is, either positive or negative pulse voltage is supplied to the electrode 3 b of the ionization unit 3.
  • the introduction power supplies 11 and 12 output a voltage for introducing ions from the ion trap section 4b to the detection section 6c.
  • the introduction power supply 11 outputs a positive voltage, for example, a voltage of “+1 kV”.
  • the introduction power supply 12 outputs a negative voltage, for example, a voltage of “ ⁇ 1 kV”.
  • the switching unit 13 outputs one of the voltages output from the introduction power supplies 11 and 12 to the introduction unit 6b under the control of the control unit 16. In other words, either positive or negative voltage is supplied to the introduction part 6 b of the ion detection part 6.
  • CD power supply 14 supplies voltage to CD6ca.
  • the CD power source 14 supplies a voltage of “ ⁇ 5 kV” to the CD 6 ca.
  • the scintillator power supply 15 supplies a voltage to the scintillator 6cb.
  • the scintillator power supply 15 supplies a voltage of “+5 kV” to the scintillator 6 cb.
  • the control unit 16 controls the overall operation of the mass spectrometer. For example, the control unit 16 controls the switching operation of the switching units 10 and 13 based on the amount of ions detected by the detection unit 6c. Moreover, the control part 16 controls the output timing of the voltage of CD power supply 14 and the scintillator power supply 15, for example. Moreover, the control part 16 controls operation
  • the GUI 17 accepts an operation from a user, for example, or displays predetermined information on a display device.
  • FIG. 2 is a flowchart for explaining the schematic operation of the mass spectrometer. For example, when the user gives an instruction to start analyzing a sample, the mass spectrometer executes the following flowchart. It is assumed that air and a sample are introduced into the capillary 1.
  • control unit 16 closes the valve 2 (step S1).
  • control unit 16 evacuates the dielectric container 3a and the chambers 4a and 6a with the vacuum pump 5 to make the pressure low (step S2). For example, the control unit 16 sets the inside of the dielectric container 3 a to “100 Pa” and the inside of the chambers 4 a and 6 a to “0.1 Pa” by the vacuum pump 5.
  • control unit 16 opens the valve 2 (step S3).
  • the atmosphere and the sample are introduced from the capillary 1 into the dielectric container 3a.
  • the control unit 16 performs barrier discharge when the inside of the dielectric container 3a reaches a predetermined atmospheric pressure (for example, a low pressure such as 1000 Pa) (step S4).
  • a predetermined atmospheric pressure for example, a low pressure such as 1000 Pa
  • the control unit 16 controls the switching unit 10 to output one voltage of the barrier power supplies 8 and 9 to the electrode 3b and perform barrier discharge (the polarity control of the voltage output to the electrode 3b is described below. To do).
  • the controller 16 performs barrier discharge in the dielectric container 3a to ionize the introduced low-pressure atmosphere (generate reaction ions), and ionize the sample with the reaction ions.
  • control unit 16 closes the bulb 2 after the start of the barrier discharge (step S5). Thereby, unnecessary air is discharged into the dielectric container 3a and the chambers 4a and 6a by the vacuum pump 5.
  • the sample ionized in the dielectric container 3a is introduced into the ion trap portion 4b and accumulated.
  • control unit 16 introduces the ions of the sample accumulated in the ion trap unit 4b into the detection unit 6c through the introduction unit 6b, and detects the mass of the ions (step S6).
  • control unit 16 controls the switching unit 13 to output one voltage of the introduction power supplies 11 and 12 to the introduction unit 6b, introduce ions accumulated in the ion trap unit 4b to the detection unit 6c, and (The polarity control of the voltage output to the introduction unit 6b will be described below).
  • the control part 16 can detect the drug etc. which are contained in the sample.
  • the mass spectrometer has two phases, a preamble period T1 and a measurement period T2.
  • the mass spectrometer performs one or more of the above schematic operations in each of the two phases.
  • the mass spectrometer proceeds to the process of step S3 after the process of step S6.
  • FIG. 3 is a diagram showing an example of a timing chart of the mass spectrometer.
  • the mass spectrometer has two phases of a preamble period T1 and a measurement period T2.
  • the mass spectrometer has a combination of voltage polarity for barrier discharge and ion introduction (a voltage polarity applied to the electrode 3b and a voltage polarity applied to the introduction portion 6b). Determine if ionization efficiency is best.
  • the mass spectrometer detects the mass of the sample in the measurement period T2 by a combination of the barrier discharge determined in the preamble period T1 and the voltage polarity of ion introduction.
  • the waveform W1 shown in FIG. 3 shows the on / off timing of the vacuum pump 5.
  • the vacuum pump 5 does not exhaust when “OFF” shown in the waveform W1 and exhausts when “ON”.
  • the waveform W2 indicates the opening / closing timing of the valve 2.
  • the valve 2 closes the valve by “closed” shown in the waveform W2, and opens the valve by “open”.
  • the waveform W3 indicates the timing of the pulse voltage that the switching unit 10 outputs to the electrode 3b of the ionization unit 3.
  • the switching unit 10 does not output the positive and negative pulse voltages output from the barrier power supplies 8 and 9 to the electrode 3b when “OFF” shown in the waveform W3.
  • the switching unit 10 outputs a positive pulse voltage output from the barrier power supply 8 to the plurality of electrodes 3b when “positive” shown in the waveform W3.
  • the switching unit 10 outputs a negative pulse voltage output from the barrier power supply 8 to the plurality of electrodes 3b when “negative” shown in the waveform W3.
  • “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 10 outputs a positive pulse voltage to the electrode 3b, and is a specific value.
  • Waveform W4 indicates the application timing of the voltage output from the CD power source 14 to CD6ca.
  • the CD power supply 14 does not output a voltage to the CD6ca when “OFF” shown in the waveform W4, and outputs a voltage of “ ⁇ 5 kV” to the CD6ca when “ ⁇ 5 kV”, for example.
  • Waveform W5 shows the timing of the voltage that the scintillator power supply 15 outputs to the scintillator 6cb.
  • the scintillator power supply 15 does not output a voltage to the scintillator 6cb when “OFF” shown in the waveform W5, and outputs a voltage of “+5 kV” to the scintillator 6cb when “+5 kV”, for example.
  • Waveform W6 indicates the timing of the voltage that the switching unit 13 outputs to the introduction unit 6b.
  • the switching unit 13 does not output positive and negative voltages output from the introduction power supplies 11 and 12 to the introduction unit 6b when “OFF” shown in the waveform W6.
  • the switching unit 13 outputs a positive voltage output from the introduction power supply 11 to the introduction unit 6b when “positive” shown in the waveform W6.
  • the switching unit 13 outputs a negative voltage output from the introduction power supply 11 to the introduction unit 6b when “negative” shown in the waveform W6.
  • “ ⁇ 1 kV” shown in the measurement period T2 of the waveform W6 indicates that the switching unit 13 outputs a negative voltage to the introduction unit 6b, and is a specific value.
  • Waveform W7 shows the timing for detecting the light from the photomultiplier tube 6cc.
  • the photomultiplier tube 6cc does not detect light when “OFF” shown in the waveform W7, and detects light when “ON”.
  • Waveform W8 indicates the state of atmospheric pressure in the dielectric container 3a and the chambers 4a and 6a.
  • the atmospheric pressure in the dielectric container 3a and the chambers 4a and 6a rises and falls according to the opening and closing of the valve 2 indicated by the waveform W2.
  • the vacuum pump 5 starts evacuating the dielectric container 3a and the chambers 4a and 6a at time t1 shown in FIG.
  • the vacuum pump 5 evacuates the dielectric container 3a and the chambers 4a and 6a after the start of evacuation until the mass analysis is completed, as indicated by “ON” of the waveform W1.
  • the air pressure in the dielectric container 3a and the chambers 4a and 6a decreases (the degree of vacuum increases) as indicated by a waveform W8.
  • the valve 2 When the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a reaches the threshold value th shown in the waveform W8, the valve 2 is opened for a certain period as shown in the waveform W2 at times t2 and t3. When the valve 2 is opened, the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a is lowered. During this period, air and a sample are introduced from the capillary 1 into the dielectric container 3a.
  • the valve 2 is closed after time t3, and the inside of the dielectric container 3a and the chambers 4a and 6a is evacuated again by the vacuum pump 5. As a result, the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a is increased again as shown at time t3 to time t6 of the waveform W8.
  • the valve 2 repeats the operation of opening for a certain period and then closing when the vacuum degree of the dielectric container 3a and the chambers 4a and 6a reaches the threshold th, as shown by the waveforms W2 and W8. Then, air and a sample are introduced from the capillary 1 into the dielectric container 3a.
  • the switching unit 10 outputs a pulse voltage to the electrode 3b from the second half of the “open” period of the valve 2 to the first half of the “closed” period, as indicated by the waveform W3 of the preamble period T1. Thereby, barrier discharge is performed in the dielectric container 3 a of the ionization unit 3. The sample ions ionized by the barrier discharge are trapped in the ion trap portion 4b.
  • Barrier discharge with positive and negative polarity voltages is performed in the preamble period T1, as shown by the waveform W3.
  • barrier discharge is performed with the polarity voltage determined in the preamble period T1.
  • an example (+3 kV) in which a positive polarity voltage is determined is shown.
  • the switching unit 13 outputs a voltage to the introduction unit 6b for a certain period after the end of the barrier discharge (after the completion of the voltage application to the electrode 3b) as indicated by the waveform W6 at times t4 and t5. Thereby, the ion trapped by the ion trap part 4b is introduce
  • the ion introduction by the positive and negative polarity voltages is performed in the preamble period T1, as shown by the waveform W6.
  • ion introduction is performed with the polarity voltage determined in the preamble period T1.
  • an example ( ⁇ 1 kV) in which a negative polarity voltage is determined is shown.
  • the CD power supply 14 outputs a voltage to the CD6ca for a certain period after the end of the barrier discharge, as indicated by a waveform W4 at times t4 and t5.
  • the scintillator power supply 15 outputs a voltage to the scintillator 6cb for a certain period after the end of the barrier discharge, as indicated by a waveform W5 at times t4 and t5.
  • the photomultiplier tube 6cc detects light after the end of the barrier discharge, as indicated by the waveform W7 at times t4 and t5.
  • the mass spectrometer repeats the operation described above when the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a again exceeds the threshold th as shown by the waveform W8 at time t6.
  • the ion trap unit 4b sweeps the mass of ions to be captured within a certain period from time t4 to time t5. Therefore, from the photomultiplier tube 6cc, the result of the amount of ions (ion intensity) for each swept mass is obtained.
  • FIG. 4 is a diagram showing an example of ion intensity obtained from the ion detector.
  • the ion trap unit 4b sweeps the mass of ions to be captured.
  • the ion trap unit 4b sweeps the mass of ions to be captured from the left side (small mass) to the right side (large mass) of the horizontal axis in FIG.
  • the control part 16 can determine the substance contained in a sample by measuring the ion intensity
  • control unit 16 controls the switching unit 10 to switch the polarity of the pulse voltage output from the barrier power supplies 8 and 9 to the electrode 3b.
  • control unit 16 controls the switching unit 13 in the preamble period T1 to switch the polarity of the voltage output from the introduction power supplies 11 and 12 to the introduction unit 6b.
  • control unit 16 sets the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, as indicated by dotted line frames D1 to D4 in FIG. Switching between four combinations of negative and positive, positive and positive, and negative and positive.
  • the control unit 16 When all the combinations of the voltage polarities of the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 are switched, the control unit 16 performs measurement following the preamble period T1 based on the detected amount of ions (ion intensity) in each switched polarity. In the period T2, the polarity of the voltage output to the electrode 3b and the introduction part 6b is determined.
  • the control unit 16 integrates the ion intensity output from the ion detection unit 6 in each voltage polarity combination of the dotted line frames D1 to D4 shown in FIG.
  • the ionic strength as shown in FIG. 4 is obtained in the combination of the voltage polarities of the dotted line frames D1 to D4 shown in FIG. 3 (the peak as shown in FIG. 4 does not appear depending on the combination of the voltage polarities).
  • the control unit 16 integrates the ion intensity obtained in each of the dotted line frames D1 to D4.
  • the control unit 16 determines whether or not the integrated value of each ion intensity in the dotted line frames D1 to D4 exceeds a predetermined threshold, and determines a combination of voltage polarities of the ion intensity exceeding the predetermined threshold. Then, the control unit 16 performs mass analysis of the sample in the measurement period T2 with the determined voltage polarity.
  • the control unit 16 sets the voltage polarity of the barrier discharge to “positive” (shown as “+3 kV” in FIG. 3), as indicated by the dotted frames D5 and D6 in the measurement period T2 in FIG.
  • the voltage polarity of the introduction is set to “negative” (shown as “ ⁇ 1 kV” in FIG. 3), and mass analysis of the sample is performed in the measurement period T2.
  • the polarity of the voltage output from the barrier power sources 8 and 9 and the introduction power sources 11 and 12 is switched because there are substances having different ionization efficiencies depending on the combination of the barrier discharge and the voltage polarity of the ion introduction.
  • a positive voltage is applied to the electrode 3b, depending on the substance, there are substances that are ionized into positive ions and substances that are ionized into negative ions.
  • a combination of the voltage polarity of the barrier discharge and the voltage polarity of the ion introduction yields the ion intensity as shown in FIG. 4, but the combination of the voltage polarity as shown in FIG. This is because the ionic strength of the substances A, B, and C may not show a large peak as shown in FIG.
  • the operation of mass spectrometry in the measurement period T2 is the same as the operation described in the preamble period T1.
  • mass analysis of the sample is performed by barrier discharge and ion introduction having the voltage polarity determined in the preamble period T1.
  • the control unit 16 does not integrate the ion amount output from the ion detection unit 6 as in the preamble period T1, and stores the ion amount for each mass in a storage device such as a memory.
  • the control unit 16 stores data as illustrated in FIG. 4 in the storage device.
  • the control part 16 determines the substance contained in the sample from the mass with much ion content. For example, when data as shown in FIG. 4 is obtained in the measurement period T2, the control unit 16 determines that the sample contains substances A, B, and C.
  • the mass spectrometer may perform mass spectrometry a plurality of times in the measurement period T2 in order to obtain an appropriate mass analysis result. For example, in FIG. 3, as shown by dotted line frames D5 and D6, the mass spectrometer performs mass analysis a plurality of times.
  • a plurality of combinations of voltage polarities determined in the preamble period T1 may be obtained.
  • the integrated value of the ion intensity may exceed a predetermined threshold in dotted line frames D1 and D3 shown in FIG.
  • the control unit 16 performs mass analysis of the sample in the measurement period T2 with the combination of the obtained plurality of voltage polarities. For example, when there are two combinations of voltage polarities in which ions are detected (for example, when there are voltage polarities of dotted line frames D1 and D3), the control unit 16 combines two voltage polarities in the measurement period T2. To perform mass spectrometry (for example, mass spectrometry is performed with two voltage polarities of dotted line frames D1 and D3). In addition, when ions are not detected in the preamble period T1, the control unit 16 may perform the preamble period T1 a plurality of times or terminate the measurement as it is.
  • control unit 16 determines the combination of voltage polarities depending on whether or not the integrated value of the ion intensity exceeds a predetermined threshold value
  • the present invention is not limited to this.
  • the control unit 16 determines the combination of voltage polarities having the largest ion intensity integral value among the ion intensity integral values in each of the dotted line frames D1 to D4 shown in FIG. Then, the control unit 16 may perform mass analysis of the sample in the measurement period T2 with a combination of voltage polarities having the largest integral value of ion intensity. In this case, there is one voltage polarity combination to be determined.
  • control unit 16 does not integrate the ion intensity, for example, depending on whether or not the largest ion intensity exceeds a predetermined threshold in each combination of voltage polarities of the dotted line frames D1 to D4 shown in FIG.
  • a combination of voltage polarities may be determined. For example, it is assumed that the ion intensity shown in FIG. 4 is obtained in the dotted frame D1. It is assumed that the ionic strength of the substance B in FIG. 4 exceeds a predetermined threshold value. In this case, the control unit 16 determines the voltage polarity (barrier discharge “positive”, ion introduction “negative” voltage polarity) of the dotted frame D1.
  • FIG. 5 is a flowchart showing an operation example of the mass spectrometer.
  • the mass spectrometer executes the processing of the flowchart shown in FIG. 5.
  • Steps S11 to S18 correspond to, for example, processing in the preamble period T1
  • steps S22 to S29 correspond to processing in the measurement period T2.
  • Steps S19 to S21 may be performed either at the end of the preamble period T1 or at the beginning of the measurement period T2.
  • control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction ⁇ ). Is switched (step S11).
  • the ion detector 6 detects ions in each mass (in the swept mass) at the voltage applied in step S11 (step S12).
  • the control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
  • control unit 16 outputs a negative pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge ⁇ ), and outputs a negative voltage to the introduction unit 6b (ion introduction ⁇ ). 13 is controlled (step S13).
  • the ion detector 6 detects ions at each mass at the voltage applied in step S13 (step S14).
  • the control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
  • control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a positive voltage to the introduction unit 6b (ion introduction +). 13 is controlled (step S15).
  • the ion detector 6 detects ions at each mass at the voltage applied in step S15 (step S16).
  • the control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
  • control unit 16 outputs a negative pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge ⁇ ), and outputs a positive voltage to the introduction unit 6b (ion introduction +). 13 is controlled (step S17).
  • the ion detector 6 detects ions at each mass at the voltage applied in step S17 (step S18).
  • the control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
  • the controller 16 determines whether or not ions are detected by the ion detector 6 (step S19). For example, the control unit 16 determines whether or not the ion amount integrated in steps S12, S14, S16, and S18 exceeds a predetermined threshold value. When it determines with the control part 16 having detected the ion (in the case of "Yes” in S19), it transfers to the process of step S21. When it determines with the control part 16 having not detected ion (in the case of "No" in S19), it transfers to the process of step S20. In addition, the control part 16 acquires the combination of the voltage polarity which was able to detect ion, when it determines with having detected ion.
  • step S19 the control unit 16 determines whether or not the processing of the preamble period T1 has been performed a predetermined number of times (step S20). That is, when the control unit 16 cannot detect ions, the control unit 16 performs processing of the preamble period T1 until a predetermined number of times is reached. When it is determined that the process of the preamble period T1 has been performed a predetermined number of times (in the case of “Yes” in S20), the control unit 16 ends the mass spectrometry process. If the control unit 16 determines that the process of the preamble period T1 is not performed a predetermined number of times (in the case of “No” in S20), the control unit 16 proceeds to the process of step S11.
  • step S19 If it is determined in step S19 that ions have been detected ("Yes” in S19), the control unit 16 determines whether or not there is only one combination of voltage polarities in which ions can be detected (step S21). . If the control unit 16 determines that the number of combinations of voltage polarities that can detect ions is one (“Yes” in S21), the control unit 16 proceeds to the process of step S22. If the control unit 16 determines that the number of combinations of voltage polarities that can detect ions is not one (a plurality), the process proceeds to step S26.
  • step S21 When it is determined in step S21 that there is only one combination of voltage polarities in which ions can be detected ("Yes" in S21), the control unit 16 has one voltage polarity acquired in step S19. The combination is set to be output from the switching units 10 and 13 in the measurement period T2 (step S22).
  • the ion detector 6 detects ions at each mass (step S23).
  • the ion amount (for example, data as shown in FIG. 4) of ions at each mass detected by the ion detection unit 6 is stored in a storage device such as a memory by the control unit 16.
  • control unit 16 determines whether or not mass spectrometry has been performed a predetermined number of times (step S24). When it is determined that the mass spectrometry has been performed a predetermined number of times (“Yes” in S24), the control unit 16 proceeds to the process of step S25. When it is determined that the mass spectrometry has not been performed a predetermined number of times (“No” in S24), the control unit 16 proceeds to the process of step S22.
  • step S24 When it is determined in step S24 that the mass spectrometry has been performed a predetermined number of times (in the case of “Yes” in S24), the control unit 16 outputs the ion amount stored in the storage device in step S23 (step S25). For example, the control unit 16 outputs the amount of ions at each mass (for example, a graph as shown in FIG. 4) to the display device.
  • step S21 When it is determined in step S21 that there are a plurality of combinations of voltage polarities in which ions can be detected (“No” in S21), the control unit 16 combines a plurality of voltage polarities acquired in step S19. Is set to be output from the switching units 10 and 13 during the measurement period T2 (step S26).
  • the ion detector 6 detects ions at each mass in each combination of a plurality of voltage polarities (step S27).
  • the ion amount (for example, data as shown in FIG. 4) of ions at each mass detected by the ion detection unit 6 is stored in a storage device such as a memory by the control unit 16.
  • control unit 16 determines whether or not mass spectrometry has been performed a predetermined number of times (step S28). When it is determined that the mass spectrometry has been performed a predetermined number of times (“Yes” in S28), the control unit 16 proceeds to the process of step S29. When it is determined that the mass analysis has not been performed a predetermined number of times (“No” in S28), the control unit 16 proceeds to the process of step S26.
  • step S28 When it is determined in step S28 that the mass spectrometry has been performed a predetermined number of times (“Yes” in S28), the control unit 16 outputs the ion amount stored in the storage device in step S27 (step S29). For example, the control unit 16 outputs the amount of ions at each mass (for example, a graph as shown in FIG. 4) to the display device.
  • FIG. 6 is a diagram illustrating a hardware configuration example of the control unit.
  • the control unit 16 and the GUI 17 include, for example, an arithmetic device 21 such as a CPU (Central Processing Unit), a main storage device 22 such as a RAM (Random Access Memory), an HDD (Hard Disk Drive), and the like as shown in FIG.
  • arithmetic device 21 such as a CPU (Central Processing Unit)
  • main storage device 22 such as a RAM (Random Access Memory), an HDD (Hard Disk Drive), and the like as shown in FIG.
  • Auxiliary storage device 23 a communication interface (I / F) 24 for connecting to a communication network by wire or wireless
  • an input device 25 such as a mouse, keyboard, touch sensor or touch panel
  • a display device 26 such as a liquid crystal display.
  • a read / write device 27 that reads / writes information from / to a portable storage medium such as a DVD (Digital Versatile Disk).
  • the function of the control unit 16 is realized by the arithmetic device 21 executing a predetermined program loaded from the auxiliary storage device 23 or the like to the main storage device 22.
  • the GUI 17 is realized, for example, when the arithmetic device 21 uses the input device 25. Further, the GUI 17 is realized, for example, when the arithmetic device 21 uses the display device 26. Communication between the control unit 16 and other devices is realized by the arithmetic device 21 using the communication I / F 24, for example.
  • the predetermined program may be installed from, for example, a storage medium read by the read / write device 27, or may be installed from a network via the communication I / F 24.
  • control unit 16 and the GUI 17 may be realized by, for example, an ASIC (Application Specific Integrated Circuit) including an arithmetic device, a storage device, a drive circuit, and the like.
  • ASIC Application Specific Integrated Circuit
  • the control unit 16 of the mass spectrometer switches the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, and based on the detected amount of ions in the switched polarity.
  • the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 is controlled.
  • the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
  • control unit 16 can realize the shortening of the measurement period T2 and the stabilization of the measurement by detecting ions in the measurement period T2 with the combination of the voltage polarities determined in the preamble period T1.
  • control unit 16 has four polarities of the voltages output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, which are positive and negative, negative and negative, positive and positive, and negative and positive. By switching in combination, for example, it is possible to detect various types of samples such as drugs, explosives, and chemical substances.
  • the mass spectrometer can perform mass analysis with higher ionization efficiency even on-site and obtain an appropriate mass analysis result.
  • the combination of the voltage polarity of the electrode 3b and the voltage polarity of the introduction portion 6b is performed in the order of steps S11, S13, S15, and S17.
  • the present invention is not limited to this. The same effect can be obtained even in the order.
  • control unit 16 may switch the polarity of the voltage supplied to the CD 6ca.
  • control unit 16 may supply the CD 6ca with a voltage having the same polarity as the voltage supplied to the introduction unit 6b. This also provides the same effect.
  • ion detection may be performed with a predetermined voltage polarity that is smaller than the four voltage polarities. For example, many illegal drugs are positively ionized.
  • the voltage polarity with the barrier discharge “positive” and the ion introduction “negative” and the voltage polarity with the barrier discharge “negative” and the ion introduction “negative” with two voltage polarities Ion detection may be performed.
  • the ion detection is divided into the preamble period T1 and the measurement period T2.
  • the present invention is not limited to this.
  • the same effect can be obtained even if the combinations of four voltage polarities in the preamble period T1 are continued as they are in the measurement period T2.
  • the mass spectrometer may repeat only the processing of the preamble period T1 shown in FIG. 3 a predetermined number of times.
  • control unit 16 may fix the voltage polarity of the CD 6ca by fixing the voltage of the introduction unit 6b to either positive or negative voltage.
  • introduction unit 6b, the introduction power supplies 11 and 12, and the switching unit 13 may be omitted, and the control unit 16 may change the voltage polarity of the CD 6ca. This also provides the same effect.
  • the frequency of the pulse voltage output to the electrode 3b of the ionization unit 3 is changed.
  • a different part from 1st Embodiment is demonstrated, and the part same as 1st Embodiment is demonstrated using the code
  • FIG. 7 is a diagram showing a circuit example of the barrier power supply according to the second embodiment.
  • the barrier power supply 8 includes a drive unit 31, a switching unit 32, a high voltage module 33, and a capacitor C3.
  • the driving unit 31 includes an amplifier A1, resistors R1 to R3, a transistor Tr1, and a capacitor C1.
  • the drive unit 31 changes the voltage of the primary side terminal (terminal connected to the emitter of the transistor Tr1) of the transformer T1 of the high-voltage module 33 according to the voltage input to the non-inverting input terminal of the amplifier A1. Controls the output voltage amplitude.
  • the switching unit 32 includes a capacitor C2 and a transistor Tr2.
  • a clock is input to the gate of the transistor Tr2 via the capacitor C2.
  • the clock is a repetitive pulse of a rectangular wave, and has a high level period (Ton) and a low level period (Toff) as shown in FIG.
  • the clock frequency f is expressed by the following equation (1) using “Ton” and “Toff”.
  • the clock is output from the control unit 16, for example.
  • the control unit 16 varies the frequency of the pulse voltage output from the barrier power supply 8 by changing “Ton” and “Toff” of the clock output to the barrier power supply 8.
  • the clock duty ratio D is expressed by the following equation (2).
  • the high voltage module 33 includes a transformer T1 and resistors R4 and R5.
  • the voltage on the primary side of the transformer T1 changes due to a change in current flowing in the “Ton” period and the “Toff” period.
  • the voltage on the primary side of the transformer T1 is transmitted to the secondary side of the transformer T1.
  • a pulse voltage corresponding to the winding ratio is output from the secondary side of the transformer T2.
  • the barrier power supply 8 can vary the amplitude of the pulse voltage to be output according to the voltage input to the drive unit 31. Further, the barrier power supply 8 can vary the frequency of the output pulse voltage according to the frequency of the clock input to the switching unit 32.
  • the barrier power supply 9 also has a circuit similar to that shown in FIG. 7, but the portion that outputs a negative pulse voltage is different.
  • the ionization efficiency varies depending on the frequency of the pulse voltage supplied to the electrode 3b. That is, the optimum pulse frequency varies depending on the sample. For this reason, when it is not known what components are contained in the sample, it is advantageous to perform ionization at a plurality of pulse frequencies in terms of increasing ionization efficiency and improving ion detection sensitivity.
  • FIG. 8 is a diagram showing an example of a timing chart of the mass spectrometer. In FIG. 8, a different part from FIG. 3 is demonstrated.
  • the barrier power supplies 8 and 9 vary the frequency of the pulse voltage output to the switching unit 10 according to the frequency of the clock output from the control unit 16. For example, the barrier power supplies 8 and 9 output pulse voltages having three types of frequencies of “10 kHz”, “20 kHz”, and “5 kHz”.
  • a waveform W11 shown in FIG. 8 indicates a waveform of a positive pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 11, pulse voltages having three kinds of frequencies are supplied to the electrode 3b.
  • a waveform W12 shown in FIG. 8 shows a waveform of a negative pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 12, the electrode 3b is supplied with pulse voltages having three kinds of frequencies.
  • the ion trap part 4b sweeps mass in each frequency of a pulse voltage.
  • the control unit 16 also outputs pulse voltages having a plurality of frequencies in each barrier discharge even in the measurement period 2. For example, in the example of FIG. 8, the control unit 16 outputs pulse voltages of three types of frequencies even in each barrier discharge in the measurement period 2. Further, in the measurement period 2, the control unit 16 stores, for example, the amount of ions having the highest ionization efficiency among the amounts of ions obtained at each frequency in the storage device.
  • FIG. 9 is a flowchart showing an operation example of the mass spectrometer. In FIG. 9, the same processes as those in FIG. In FIG. 9, processing different from FIG. 5 will be described.
  • step S11 the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction ⁇ ). , 13 is controlled, and in step S11a, control is performed so that pulse voltages having different frequencies are output from the barrier power supply 8.
  • step S11a control is performed so that pulse voltages having different frequencies are output from the barrier power supply 8.
  • the controller 16 also controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b in steps S13a, 15a, and 17a as described above.
  • the controller 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b in steps S22a and S26a. That is, the control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b even during the measurement period T2.
  • the ion detector 6 detects ions in each mass (swept mass) at each frequency in steps S23a and S27a.
  • the control unit 16 stores, in the storage device, the ion amount of the frequency with the highest ionization efficiency among the ion amounts in each mass at each frequency detected by the ion detection unit 6.
  • control unit 16 changes the frequency of the pulse voltage output to the electrode 3b of the ionization unit 3.
  • the mass spectrometer can appropriately detect various types of samples such as drugs, explosives, and chemical substances.
  • the pulse voltage frequency is switched between 10 kHz, 20 kHz, and 5 kHz.
  • the present invention is not limited to this, and other frequencies may be used.
  • FIG. 10 is a diagram showing a circuit example of the barrier power supply according to the third embodiment. 10, the same components as those in FIG. 7 are denoted by the same reference numerals. Below, a different part from FIG. 7 is demonstrated.
  • the barrier power supply 8 has a variable capacitor VC1 whose capacitance can be varied.
  • the capacity of the variable capacitor VC1 is varied by the control unit 16, for example.
  • the barrier power supply 8 can change the voltage waveform of the output pulse voltage according to the duty ratio of the clock input to the switching unit 32 and the capacity (resonance capacity) of the variable capacitor VC1.
  • the control unit 16 can vary the duty ratio of the clock by changing “Ton” and “Toff” of the clock output to the barrier power supply 8.
  • FIG. 11 is a diagram for explaining the voltage waveform of the pulse voltage output from the barrier power supply.
  • FIG. 11A shows an example of a single peak pulse waveform.
  • FIG. 11B shows an example of a bimodal pulse waveform.
  • FIG. 11C shows an example of a vibration pulse waveform.
  • the frequency of the clock input to the drive unit 31 is “f” and the duty ratio of the clock input to the drive unit 31 is “D”.
  • FIG. 12 is a diagram showing an example of a timing chart of the mass spectrometer. In FIG. 12, a different part from FIG. 3 is demonstrated.
  • the barrier power supplies 8 and 9 vary the voltage waveform of the pulse voltage output to the switching unit 10 according to the duty ratio and resonance capacity output from the control unit 16. For example, the barrier power supplies 8 and 9 output three types of pulse voltages of “single peak pulse waveform”, “double peak pulse waveform”, and “vibration pulse waveform”.
  • a waveform W21 shown in FIG. 12 indicates a waveform of a positive pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 21, the electrode 3b is supplied with pulse voltages having three types of voltage waveforms.
  • a waveform W22 shown in FIG. 12 indicates a waveform of a negative pulse voltage output from the switching unit 10 to the electrode 3b. As shown by the waveform 22, the electrode 3b is supplied with pulse voltages having three types of voltage waveforms.
  • the ion trap part 4b sweeps mass in each voltage waveform of a pulse voltage.
  • the control unit 16 outputs pulse voltages having a plurality of voltage waveforms in each barrier discharge. For example, in the example of FIG. 12, the control unit 16 outputs pulse voltages having three types of voltage waveforms even in each barrier discharge in the measurement period 2. Further, in the measurement period 2, the control unit 16 stores, for example, the ion amount of the voltage waveform having the highest ionization efficiency among the ion amounts obtained in each voltage waveform in the storage device.
  • FIG. 13 is a flowchart showing an operation example of the mass spectrometer. In FIG. 13, the same processes as those in FIG. In FIG. 13, processing different from that in FIG. 5 will be described.
  • step S11 the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction ⁇ ). , 13 is controlled, and in step S11b, the barrier power supply 8 is controlled to output pulse voltages having different voltage waveforms.
  • the barrier discharge of the dotted frame D1 shown in FIG. 12 a pulse voltage having a different voltage waveform as shown in the waveform W21 is output to the electrode 3b.
  • the controller 16 also controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b in steps S13b, 15b, and 17b as described above.
  • the control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b in steps S22b and S26b. That is, the control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b even during the measurement period T2.
  • the ion detector 6 detects ions at each mass (swept mass) in each voltage waveform in steps S23b and S27b.
  • the control unit 16 stores, in the storage device, the ion amount of the voltage waveform having the highest ionization efficiency among the ion amounts at each mass in each voltage waveform detected by the ion detection unit 6.
  • control unit 16 changes the voltage waveform of the pulse voltage output to the electrode 3b of the ionization unit 3.
  • the mass spectrometer can appropriately detect various types of samples such as drugs, explosives, and chemical substances.
  • control unit 16 may change the frequency to “10 kHz”, “20 kHz”, and “5 kHz” in each of the three voltage waveforms of the waveform W21 illustrated in FIG.
  • the voltage polarity of barrier discharge and ion introduction can be set by the user.
  • the frequency and voltage waveform of the barrier discharge can be set by the user.
  • FIG. 14 is a diagram showing a screen example of the display device according to the fourth embodiment. As shown in FIG. 14, setting units 41 to 44 and a button 45 are displayed on the display device 26 of the mass spectrometer. The screen example shown in FIG. 14 is displayed on the display device 26, for example, when the mass spectrometer is turned on.
  • the display device 26 is provided with a touch panel on the screen, for example.
  • the user can change the setting contents of the setting units 41 to 44 by tapping the touch panel on the screen.
  • the control unit 16 performs mass spectrometry with the setting contents set in the setting units 41 to 44.
  • the setting unit 41 receives the setting of the voltage polarity of the barrier discharge from the user.
  • the user can set the voltage polarity of the barrier discharge by tapping the “+” or “ ⁇ ” portion displayed in the setting unit 41. More specifically, when the user taps the leftmost “+” portion shown in the setting unit 41, “+” and “ ⁇ ” are displayed, and the voltage polarity to be set is selected from among them. Can do.
  • the leftmost “+” of the setting unit 41 sets, for example, the voltage polarity of the barrier discharge in the dotted frame D1 in FIG. 3, and the “ ⁇ ” next to the right indicates the voltage polarity of the barrier discharge in the dotted frame D2.
  • “+” Next to the right side sets the voltage polarity of the barrier discharge in the dotted line frame D3, and “ ⁇ ” on the rightmost side sets the voltage polarity of the barrier discharge in the dotted line frame D4.
  • the setting unit 42 receives the setting of the voltage polarity for ion introduction from the user.
  • the user can set the voltage polarity for ion introduction by tapping the “+” or “ ⁇ ” portion displayed in the setting unit 42. More specifically, when the user taps the leftmost “ ⁇ ” portion shown in the setting unit 42, “+” and “ ⁇ ” are displayed, and the voltage polarity to be set is selected from among them. Can do.
  • the leftmost “+” of the setting unit 42 sets, for example, the voltage polarity for ion introduction in the dotted frame D1 in FIG. 3, and the “ ⁇ ” next to the right indicates the voltage polarity for ion introduction in the dotted frame D2.
  • the “+” next to the right sets the voltage polarity for ion introduction in the dotted line frame D3, and the “ ⁇ ” on the rightmost side sets the voltage polarity for ion introduction in the dotted line frame D4.
  • the setting unit 43 receives the frequency of the pulse voltage of the barrier discharge from the user.
  • the user can set the frequency of the pulse voltage of the barrier discharge by tapping the “10 kHz”, “20 kHz”, or “5 kHz” portion displayed in the setting unit 43. More specifically, when the user taps the “10 kHz” portion shown in the setting unit 43, “10 kHz”, “20 kHz”, and “5 kHz” are displayed, and the pulse voltage to be set is displayed from among them. The frequency can be selected.
  • the leftmost “10 kHz” of the setting unit 43 sets the frequency of the pulse voltage on the left side of the waveforms W11 and W12 in FIG.
  • the setting unit 44 receives the voltage waveform of the barrier discharge pulse voltage from the user.
  • the user can set the voltage waveform of the pulse voltage of the barrier discharge by tapping the “single peak”, “double peak”, or “vibration” portion displayed in the setting unit 44.
  • the user taps the “single peak” portion shown in the setting unit 44, “single peak”, “double peak”, and “vibration” are displayed, and settings are made from among them.
  • the voltage waveform of the pulse voltage can be selected.
  • the leftmost “single peak” of the setting unit 44 sets the voltage waveform of the pulse voltage on the left side of the waveforms W21 and W22 in FIG.
  • the “double peak” on the right side of the setting unit 44 indicates the waveforms W21 and W22.
  • the voltage waveform of the pulse voltage in the middle part is set, and the rightmost “vibration” sets the voltage waveform of the pulse voltage in the right part of the waveforms W21 and W22.
  • control unit 16 When the user taps the button 45, the control unit 16 starts mass analysis and performs mass analysis with the setting contents set in the setting units 41 to 44. For example, the control unit 16 receives information input to the setting units 41 to 44 via the GUI 17.
  • all four sets of voltage polarity for barrier discharge and ion introduction need not be set.
  • the user may set combinations other than the four voltage polarities. The same applies to the frequency and voltage waveform of the barrier discharge.
  • FIG. 15 is a diagram illustrating a block configuration example of a mass spectrometer according to the fifth embodiment. 15 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • the introduction unit 6b is omitted in the introduction unit 6b, the introduction power supplies 11 and 12, and the switching unit 13 from the mass spectrometer of FIG. 15 includes a CD power source 51 and a switching unit 52.
  • the function of the introduction part 6b shown in FIG. 1 is given to the CD 6ca of the detection part 6c.
  • the CD power supply 51 outputs a positive voltage of “+5 kV”, for example.
  • the CD power supply 14 outputs a negative voltage of “ ⁇ 5 kV”, for example, as described in FIG.
  • the switching unit 52 outputs one of the voltages output from the CD power sources 14 and 51 to the CD 6 ca under the control of the control unit 16.
  • step S6 The general operation of the mass spectrometer shown in FIG. 15 will be described.
  • the general operation of the mass spectrometer of FIG. 15 is the same as the general operation shown in the flowchart of FIG. 2, but the operation of step S6 is different. Below, step S6 from which a process differs is demonstrated.
  • the control unit 16 introduces the sample ions accumulated in the ion trap unit 4b into the detection unit 6c, and detects the mass of the ions (step S6).
  • the control unit 16 controls the switching unit 52 to output one voltage of the CD power sources 14 and 51 to the CD 6 ca, introduce the ions accumulated in the ion trap unit 4 b to the detection unit 6 c, and the mass of the ions. (Voltage polarity control will be described below). Thereby, the control part 16 can detect the drug etc. which are contained in the sample.
  • FIG. 16 is a diagram showing an example of a timing chart of the mass spectrometer.
  • the mass spectrometer has two phases of a preamble period T1 and a measurement period T2.
  • the mass spectrometer determines which combination has the best ionization efficiency among the combinations of the voltage polarities of the barrier discharge and the ion introduction (electrode 3b and CD6ca).
  • the mass spectrometer detects the mass of the sample in the measurement period T2 by a combination of the barrier discharge determined in the preamble period T1 and the voltage polarity of ion introduction.
  • the waveforms W1, W2, W3, W5, W7, and W8 shown in FIG. 16 are the same as the waveforms W1, W2, W3, W5, W7, and W8 in FIG.
  • a waveform W4 in FIG. 16 indicates the timing of the voltage that the switching unit 52 outputs to the CD6ca.
  • the switching unit 52 does not output the positive and negative voltages output from the CD power sources 14 and 51 to the CD 6ca when “OFF” shown in the waveform W4.
  • the switching unit 52 outputs a negative voltage output from the CD power supply 14 to the CD6ca when “negative” shown in the waveform W4, and a positive output from the CD power supply 51 when “positive” shown in the waveform W4.
  • the voltage is output to CD6ca.
  • “ ⁇ 5 kV” shown in the measurement period T2 of the waveform W4 indicates that the switching unit 52 outputs a negative voltage to the CD6ca, and is a specific value.
  • control unit 16 controls the switching unit 10 to switch the polarity of the pulse voltage output from the barrier power supplies 8 and 9 to the electrode 3b.
  • control unit 16 controls the switching unit 52 in the preamble period T1 to switch the polarity of the voltage output from the CD power sources 14 and 51 to the CD 6ca.
  • control unit 16 sets the polarity of the voltage output from the barrier power sources 8 and 9 and the CD power sources 14 and 51 to positive, negative, and negative in the preamble period T1. Switching between four combinations of negative and positive, positive and positive, and negative and positive.
  • the control unit 16 When all the combinations of the voltage polarities of the barrier power supplies 8 and 9 and the CD power supplies 14 and 51 are switched, the control unit 16 performs measurement following the preamble period T1 based on the detected amount of ions (ion intensity) in each switched polarity. In the period T2, the polarity of the voltage output to the electrode 3b and the CD6ca is determined.
  • the control unit 16 integrates the ion intensity output from the ion detection unit 6 in each voltage polarity combination of the dotted line frames D1 to D4 shown in FIG. For example, in the combinations of the voltage polarities of the dotted line frames D1 to D4 shown in FIG. 16, the ion intensity as shown in FIG. 4 is obtained (the peak as shown in FIG. 4 does not appear depending on the combination of the voltage polarities).
  • the control unit 16 integrates the ion intensity obtained in each of the dotted line frames D1 to D4.
  • the control unit 16 determines whether or not the integrated value of each ion intensity in the dotted line frames D1 to D4 exceeds a predetermined threshold, and determines a combination of voltage polarities of the ion intensity exceeding the predetermined threshold. Then, the control unit 16 performs mass analysis of the sample in the measurement period T2 with the determined voltage polarity.
  • the control unit 16 sets the voltage polarity of the barrier discharge to “positive” (shown as “+3 kV” in FIG. 3) as shown by the dotted frames D5 and D6 in the measurement period T2 in FIG.
  • the voltage polarity of the introduction is set to “negative” (shown as “ ⁇ 5 kV” in FIG. 3), and mass analysis of the sample is performed in the measurement period T2.
  • the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit 3 and the voltage supplied to the CD6ca (electron emission unit) in the preamble period T1, and detects ions in the switched polarity. Based on the quantity, in the measurement period T2 subsequent to the preamble period T1, the polarity of the voltage supplied to the ionization unit 3 and the voltage supplied to the CD6ca is controlled. Thereby, the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
  • FIG. 17 is a diagram illustrating a block configuration example of a mass spectrometer according to the sixth embodiment.
  • the mass spectrometer shown in FIG. 17 is different from the system using the barrier discharge in the ion source of the mass spectrometer shown in FIG. 15 in that the ESI (Electrospray Ionization) is used.
  • ESI Electron-ray Ionization
  • ESI is a method of ion source that ionizes while vaporizing a liquid sample.
  • the mass spectrometer of FIG. 17 includes an ESI ion source 61 having a capillary 61a through which a liquid sample is passed, an introduction unit 62 that introduces a sample ionized by the ESI ion source 61 into the mass analysis unit 4, and an ESI power source 63. , 64, and a switching unit 65 that supplies the voltage output from the ESI power sources 63, 64 to the capillary 61 a in accordance with the control of the control unit 16.
  • the output voltages of the ESI power supplies 63 and 64 are switched by the switching unit 65 and applied to the capillary 61a.
  • the ESI power supply 63 supplies, for example, a negative voltage of “ ⁇ 3 kV” to the capillary 61a
  • the ESI power supply 64 supplies, for example, a positive voltage of “+3 kV” to the capillary 61a.
  • the timing chart of the mass spectrometer of FIG. 17 is the same as the timing chart of the mass spectrometer of FIG. 15 shown in FIG. However, in the mass spectrometer of FIG. 17, the waveform W ⁇ b> 3 of FIG. 16 indicates the timing of the voltage that the switching unit 65 outputs to the capillary 61 a of the ESI ion source 61.
  • the switching unit 65 does not output positive and negative voltages output from the ESI power sources 63 and 64 to the capillary 61a when “OFF” shown in the waveform W3.
  • the switching unit 65 outputs a positive voltage output from the ESI power supply 64 to the capillary 61a when “positive” shown in the waveform W3.
  • the switching unit 65 outputs a negative voltage output from the ESI power supply 63 to the capillary 61a when “negative” shown in the waveform W3.
  • “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 65 outputs a positive voltage to the capillary 61a, and is a specific value.
  • the control unit 16 has four polarities of voltages output from the ESI power supplies 63 and 64 and the CD power supplies 14 and 51: positive and negative, negative and negative, positive and positive, and negative and positive. Switching in combination.
  • the voltage applied to the ion source and the generated ions often have the same polarity. Therefore, in the method using ESI for the ion source, when the waveform W3 voltage is positive, the waveform W4 voltage is set to negative polarity, and when the waveform W3 voltage is negative polarity, the waveform W4 voltage is set to positive polarity. May be set. That is, the control unit 16 may switch the polarity of the voltage output from the ESI power supplies 63 and 64 and the CD power supplies 14 and 51 between the positive and negative, and the negative and positive in the preamble period T1.
  • the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit of the ESI and the voltage supplied to the CD6ca in the preamble period T1, and based on the detected amount of ions in the switched polarity.
  • the polarity of the voltage supplied to the ionization unit of the ESI and the voltage supplied to the CD6ca are controlled.
  • the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
  • the introduction unit 6b (for example, a mesh unit) is provided and the introduction power sources 11 and 12 are switched. Similar effects can be obtained.
  • FIG. 18 is a diagram illustrating a block configuration example of a mass spectrometer according to the seventh embodiment.
  • the mass spectrometer of FIG. 18 differs from the mass spectrometer of FIG. 15 in that the ion source is changed from a system using barrier discharge to a system using APCI (Atmospheric Pressure Chemical Ionization).
  • APCI Admospheric Pressure Chemical Ionization
  • APCI is a method of an ion source that vaporizes a liquid sample and ionizes it by corona discharge.
  • 18 includes a needle electrode 71, a counter electrode 72, a sample vaporization unit 73, an introduction unit 74 that introduces an ionized sample into the mass analysis unit 4, APCI power supplies 75 and 76, and a control unit.
  • a switching unit 77 that supplies the voltage output from the APCI power supplies 75 and 76 to the needle electrode 71 according to the control of 16.
  • the output voltages of the APCI power supplies 75 and 76 are switched by the switching unit 77 and applied to the needle electrode 71.
  • a corona discharge region A11 is formed between the needle electrode 71 and the counter electrode 72, and the sample introduced from the sample vaporization unit 73 is ionized in this region.
  • the APCI power source 75 supplies, for example, a negative voltage of “ ⁇ 3 kV” to the needle electrode 71
  • the APCI power source 76 supplies, for example, a positive voltage of “+3 kV” to the needle electrode 71.
  • the timing chart of the mass spectrometer of FIG. 18 is the same as the timing chart of the mass spectrometer of FIG. 15 shown in FIG. However, in the mass spectrometer of FIG. 18, the waveform W ⁇ b> 3 of FIG. 16 indicates the timing of the voltage that the switching unit 77 outputs to the needle electrode 71.
  • the switching unit 77 does not output the positive and negative voltages output from the APCI power supplies 75 and 76 to the needle electrode 71 when “OFF” shown in the waveform W3.
  • the switching unit 77 outputs a positive voltage output from the APCI power supply 76 to the needle electrode 71 when “positive” shown in the waveform W3.
  • the switching unit 77 outputs a negative voltage output from the APCI power supply 75 to the needle electrode 71 when “negative” shown in the waveform W3.
  • “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 77 outputs a positive voltage to the needle electrode 71, and is a specific value.
  • the control unit 16 has four polarities of the voltages output from the APCI power supplies 75 and 76 and the CD power supplies 14 and 51: positive and negative, negative and negative, positive and positive, and negative and positive. Switching in combination.
  • the voltage applied to the ion source and the generated ions often have the same polarity. Therefore, in the method using APCI for the ion source, when the waveform W3 voltage is positive, the waveform W4 voltage is set to negative polarity, and when the waveform W3 voltage is negative polarity, the waveform W4 voltage is set to positive polarity. May be set. That is, the control unit 16 may switch the polarity of the voltage output from the APCI power supplies 75 and 76 and the CD power supplies 14 and 51 in the preamble period T1 between two combinations of positive and negative and negative and positive.
  • the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit of the APCI and the voltage supplied to the CD6ca in the preamble period T1, and based on the detected amount of ions in the switched polarity.
  • the polarity of the voltage supplied to the ionization unit of the APCI and the voltage supplied to the CD6ca are controlled.
  • the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
  • the introduction unit 6b (for example, a mesh unit) is provided and the introduction power sources 11 and 12 are switched. Similar effects can be obtained.
  • the structure of a mass spectrometer is classified according to the main processing content in order to make an understanding of the structure of a mass spectrometer easy.
  • the present invention is not limited by the way of classification and names of the constituent elements.
  • the configuration of the mass spectrometer can be classified into more components depending on the processing content. Moreover, it can also classify
  • each processing unit in the above-described flowchart is divided according to the main processing contents in order to make the processing of the mass spectrometer easy to understand.
  • the present invention is not limited by the way of dividing the processing unit or the name.
  • the processing of the mass spectrometer can be divided into more processing units depending on the processing content. Moreover, it can also divide
  • the present invention can also be provided as a mass spectrometry method using a mass spectrometer.

Abstract

This invention obtains appropriate mass-spectrometry results by performing mass spectrometry in a state in which ionization efficiency is increased. Using a voltage supplied by barrier power supplies (8, 9), an ionization unit (3) ionizes a sample. An ion-trapping unit (4b) captures ions from the sample ionized by the ionization unit (3), and a detection unit (6c) detects said ions. Using a voltage supplied by introduction power supplies (11, 12), the ions captured by the ion-trapping unit (4b) are introduced into the detection unit (6c) by an introduction unit (6b). During a first period, a control unit (16) switches the polarities of the voltage supplied to the ionization unit (3) and the voltage supplied to the introduction unit (6b), and during a second period that follows the first period, the control unit (16) controls the polarities of the voltage supplied to the ionization unit (3) and the voltage supplied to the introduction unit (6b) on the basis of the number of ions detected using the switched polarities.

Description

質量分析装置および質量分析方法Mass spectrometer and mass spectrometry method
 本発明は、質量分析装置および質量分析方法に関するものである。本発明は2014年7月4日に出願された日本国特許の出願番号2014-138445の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a mass spectrometer and a mass spectrometry method. The present invention claims the priority of Japanese Patent Application No. 2014-138445 filed on July 4, 2014. For designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
 特許文献1には、従来よりもコストの低減が可能であって信頼性が高く、しかも出力電圧の極性の切り換えも比較的高速に行える高電圧電源装置と、こうした電源装置を用いた質量分析装置が開示されている。 Patent Document 1 discloses a high-voltage power supply device capable of reducing cost and higher reliability than the prior art, and capable of switching the polarity of the output voltage at a relatively high speed, and a mass spectrometer using such a power supply device. Is disclosed.
国際公開番号WO2007/029327号International Publication Number WO2007 / 029327
 質量分析装置は、試料をイオン化して分析を行うが、試料がプラスにイオン化されるかマイナスにイオン化されるかは試料の種類により異なる。そのため、試料をイオン化する際、試料によってはイオン化効率が悪く、適切な質量分析結果を得られない場合がある。 The mass spectrometer performs analysis by ionizing a sample. Whether the sample is ionized positively or negatively depends on the type of the sample. For this reason, when ionizing a sample, depending on the sample, ionization efficiency may be poor and an appropriate mass analysis result may not be obtained.
 なお、特許文献1では、分析対象が正イオンであるか負イオンであるかによって、印加する電圧を切替える。そのため、分析対象によっては、イオン化効率が悪く、適切な質量分析結果を得られない場合がある。例えば、正イオン化される分析対象には、正電圧を印加し、負イオン化される分析対象には、負電圧を印加するが、分析対象によっては、逆の電圧を印加した方が、イオン化効率がよい場合もある。 In Patent Document 1, the voltage to be applied is switched depending on whether the analysis target is a positive ion or a negative ion. Therefore, depending on the analysis target, ionization efficiency may be poor and an appropriate mass analysis result may not be obtained. For example, a positive voltage is applied to an analyte to be positively ionized, and a negative voltage is applied to an analyte to be negatively ionized. Sometimes it is good.
 そこで本発明は、イオン化効率がより高い状態で質量分析を行い、適切な質量分析結果を得る技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for performing mass analysis with higher ionization efficiency and obtaining appropriate mass analysis results.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。上記課題を解決すべく、本発明に係る質量分析装置は、第1の電源と、前記第1の電源から供給される電圧によって試料をイオン化するイオン化部と、前記イオン化部によってイオン化された前記試料のイオンを捕捉するイオントラップ部と、イオンを検出する検出部と、第2の電源と、前記イオントラップ部により捕捉されたイオンを、前記第2の電源から供給される電圧によって前記検出部に導入する導入部と、第1の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、前記第1の期間に続く第2の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を制御する制御部と、を有する。 The present application includes a plurality of means for solving at least a part of the above-described problems, and examples thereof are as follows. In order to solve the above problems, a mass spectrometer according to the present invention includes a first power source, an ionization unit that ionizes a sample with a voltage supplied from the first power source, and the sample ionized by the ionization unit. An ion trap unit that captures ions of the ion, a detection unit that detects ions, a second power source, and ions captured by the ion trap unit are supplied to the detection unit by a voltage supplied from the second power source. In the first period, the polarity of the voltage supplied to the ionization unit and the polarity of the voltage supplied to the introduction unit are switched in the first period, and based on the detected amount of ions in the switched polarity, the first And a control unit that controls the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit in a second period following the period.
 本発明では、イオン化効率がより高い状態で質量分析を行い、適切な質量分析結果を得ることができる。上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる。 In the present invention, it is possible to perform mass analysis with higher ionization efficiency and obtain an appropriate mass analysis result. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
第1の実施の形態に係る質量分析装置のブロック構成例を示した図である。It is the figure which showed the block structural example of the mass spectrometer which concerns on 1st Embodiment. 質量分析装置の概略動作を説明するフローチャートである。It is a flowchart explaining schematic operation | movement of a mass spectrometer. 質量分析装置のタイミングチャートの例を示した図である。It is the figure which showed the example of the timing chart of a mass spectrometer. イオン検出部から得られるイオン強度の例を示した図である。It is the figure which showed the example of the ion intensity | strength obtained from an ion detection part. 質量分析装置の動作例を示したフローチャートである。It is the flowchart which showed the operation example of the mass spectrometer. 制御部のハードウェア構成例を示した図である。It is the figure which showed the hardware structural example of the control part. 第2の実施の形態に係るバリア電源の回路例を示した図である。It is the figure which showed the circuit example of the barrier power supply which concerns on 2nd Embodiment. 質量分析装置のタイミングチャートの例を示した図である。It is the figure which showed the example of the timing chart of a mass spectrometer. 質量分析装置の動作例を示したフローチャートである。It is the flowchart which showed the operation example of the mass spectrometer. 第3の実施の形態に係るバリア電源の回路例を示した図である。It is the figure which showed the circuit example of the barrier power supply which concerns on 3rd Embodiment. バリア電源から出力されるパルス電圧の電圧波形を説明する図である。It is a figure explaining the voltage waveform of the pulse voltage output from a barrier power supply. 質量分析装置のタイミングチャートの例を示した図である。It is the figure which showed the example of the timing chart of a mass spectrometer. 質量分析装置の動作例を示したフローチャートである。It is the flowchart which showed the operation example of the mass spectrometer. 第4の実施の形態に係る表示装置の画面例を示した図である。It is the figure which showed the example of a screen of the display apparatus which concerns on 4th Embodiment. 第5の実施の形態に係る質量分析装置のブロック構成例を示した図である。It is the figure which showed the block structural example of the mass spectrometer which concerns on 5th Embodiment. 質量分析装置のタイミングチャートの例を示した図である。It is the figure which showed the example of the timing chart of a mass spectrometer. 第6の実施の形態に係る質量分析装置のブロック構成例を示した図である。It is the figure which showed the block structural example of the mass spectrometer which concerns on 6th Embodiment. 第7の実施の形態に係る質量分析装置のブロック構成例を示した図である。It is the figure which showed the block structural example of the mass spectrometer which concerns on 7th Embodiment.
 試料中に含まれる微量物質の成分を判定する装置として質量分析装置がある。近年では、質量分析装置は、オンサイトでの違法薬物や爆発物の探知装置としての市場が拡大している。質量分析装置は、分析対象である試料中の分子をイオン化し、電場および磁場の一方または両方を利用して質量分離して、分離されたイオンを検出器で検出する。一般的に、違法薬物は正イオン化されやすく、爆発物などは負イオン化されやすい等、試料によってイオン化の極性が異なる。 There is a mass spectrometer as a device for determining a component of a trace substance contained in a sample. In recent years, the market for mass spectrometers as on-site illegal drug and explosive detection devices is expanding. The mass spectrometer ionizes molecules in a sample to be analyzed, performs mass separation using one or both of an electric field and a magnetic field, and detects the separated ions with a detector. Generally, the polarity of ionization differs depending on the sample, such as illegal drugs are easily ionized and explosives are easily ionized.
 質量分析装置には、定量分析を行うための据え置き型や、オンサイトで迅速測定を行うための可搬型など、用途に応じていくつかの種類がある。据え置き型は、LC(液体クロマトグラフ)部で分析対象物の成分を分離し、MS(質量分析)部で定性および定量分析を行う方式が一般的である。また、据え置き型は、イオン源にESI(エレクトロスプレー法)を用いる方式やAPCI(大気圧化学イオン化法)を用いる方式が主流である。 There are several types of mass spectrometers depending on the application, such as a stationary type for quantitative analysis and a portable type for quick measurement on site. The stationary type is generally a system in which components of an analysis object are separated in an LC (liquid chromatograph) part and qualitative and quantitative analysis is performed in an MS (mass spectrometry) part. In the stationary type, a method using ESI (electrospray method) or an APCI (atmospheric pressure chemical ionization method) is mainly used as an ion source.
 一方、可搬型では、小型高効率化に有利なイオン源であるバリア放電を用いる方式が近年検討され始めている。このバリア放電は、試料を導入した大気圧に近い気圧の放電部に、誘電体バリアを介してパルス状あるいは正弦波状の高電圧を印加して放電電流を流し、試料中の分子をイオン化する。 On the other hand, in the portable type, in recent years, a method using a barrier discharge, which is an ion source advantageous for miniaturization and high efficiency, has begun to be studied. In this barrier discharge, a pulsed or sinusoidal high voltage is applied through a dielectric barrier to a discharge portion having an atmospheric pressure close to the atmospheric pressure at which the sample is introduced to ionize molecules in the sample.
 [第1の実施の形態]
 図1は、第1の実施の形態に係る質量分析装置のブロック構成例を示した図である。図1に示すように、質量分析装置は、キャピラリ1と、バルブ2と、イオン化部3と、質量分析部4と、真空ポンプ5と、イオン検出部6と、圧力検出部7と、バリア電源8,9と、切替え部10,13と、導入電源11,12と、CD(Conversion Dynode)電源14と、シンチレータ電源15と、制御部16と、GUI(Graphical User Interface)17とを有している。図11に示す質量分析装置は、例えば、バリア放電によって試料をイオン化する、可搬型の装置である。
[First Embodiment]
FIG. 1 is a diagram illustrating a block configuration example of the mass spectrometer according to the first embodiment. As shown in FIG. 1, the mass spectrometer includes a capillary 1, a valve 2, an ionization unit 3, a mass analysis unit 4, a vacuum pump 5, an ion detection unit 6, a pressure detection unit 7, a barrier power source. 8, 9, switching units 10 and 13, introduction power supplies 11 and 12, CD (Conversion Dynode) power supply 14, scintillator power supply 15, control unit 16, and GUI (Graphical User Interface) 17. Yes. The mass spectrometer shown in FIG. 11 is a portable device that ionizes a sample by barrier discharge, for example.
 キャピラリ1には、大気および分析する試料が導入される。キャピラリ1に導入された大気および試料は、バルブ2を介してイオン化部3に送られる。 Atmosphere and sample to be analyzed are introduced into the capillary 1. The atmosphere and the sample introduced into the capillary 1 are sent to the ionization unit 3 through the valve 2.
 バルブ2は、開閉して、キャピラリ1に導入された大気および試料を間欠的にイオン化部3に送る。 The valve 2 opens and closes and intermittently sends the air and sample introduced into the capillary 1 to the ionization unit 3.
 イオン化部3は、誘電体容器3aと、電極3bとを有している。誘電体容器3aには、バルブ2を介して、キャピラリ1に導入された大気および試料が送られる。 The ionization unit 3 includes a dielectric container 3a and an electrode 3b. Air and a sample introduced into the capillary 1 are sent to the dielectric container 3a via the valve 2.
 電極3bは、誘電体容器3aの外側に設けられ、切替え部10から出力される電圧が供給される。電極3bは、切替え部10から供給される電圧によって、誘電体容器3a内に放電電流を流し、キャピラリ1から導入された試料をイオン化する。すなわち、イオン化部3は、バリア放電によって、キャピラリ1から導入された大気に放電電流を流し、試料を電離(反応イオン生成)する。 The electrode 3b is provided outside the dielectric container 3a and supplied with the voltage output from the switching unit 10. The electrode 3b causes a discharge current to flow in the dielectric container 3a by the voltage supplied from the switching unit 10 and ionizes the sample introduced from the capillary 1. That is, the ionization unit 3 causes a discharge current to flow through the atmosphere introduced from the capillary 1 by barrier discharge, and ionizes the sample (generates reactive ions).
 質量分析部4は、チャンバー4aと、イオントラップ部4bと、インキャップ電極4cと、エンドキャップ電極4dとを有している。チャンバー4aは、内部を真空にするための容器であり、内部にイオントラップ部4bと、インキャップ電極4cと、エンドキャップ電極4dとを有している。 The mass analysis unit 4 includes a chamber 4a, an ion trap unit 4b, an incap electrode 4c, and an end cap electrode 4d. The chamber 4a is a container for evacuating the inside, and has an ion trap portion 4b, an incap electrode 4c, and an end cap electrode 4d inside.
 イオントラップ部4bは、イオン化部3によってイオン化された試料のうち、所定の質量のイオンを補足する。イオントラップ部4bは、捕捉するイオンの所定の質量を、可変(掃引)することができる。 The ion trap part 4b supplements ions of a predetermined mass among the samples ionized by the ionization part 3. The ion trap unit 4b can change (sweep) a predetermined mass of ions to be trapped.
 インキャップ電極4cおよびエンドキャップ電極4dは電界を形成し、イオントラップ部4b内にイオンを蓄積させる。 The incap electrode 4c and the end cap electrode 4d form an electric field and accumulate ions in the ion trap portion 4b.
 真空ポンプ5は、イオン化部3の誘電体容器3a、質量分析部4のチャンバー4a、およびイオン検出部6のチャンバー6aの内部を排気する。 The vacuum pump 5 exhausts the inside of the dielectric container 3a of the ionization unit 3, the chamber 4a of the mass analysis unit 4, and the chamber 6a of the ion detection unit 6.
 イオン検出部6は、チャンバー6aと、導入部6bと、検出部6cとを有している。検出部6cは、CD6caと、シンチレータ6cbと、光電子倍増管6ccとを有している。 The ion detection unit 6 includes a chamber 6a, an introduction unit 6b, and a detection unit 6c. The detection unit 6c includes a CD 6ca, a scintillator 6cb, and a photomultiplier tube 6cc.
 チャンバー6aは、内部を真空にするための容器であり、内部に導入部6bと、検出部6cとを有している。 The chamber 6a is a container for evacuating the inside, and has an introduction part 6b and a detection part 6c inside.
 導入部6bは、例えば、メッシュ(電極)であり、切替え部13から電圧が供給される。導入部6bは、イオントラップ部4bによって捕捉されたイオンを、切替え部13から供給される電圧によって引き付け、検出部6cへ導入する。 The introduction unit 6 b is, for example, a mesh (electrode), and a voltage is supplied from the switching unit 13. The introduction unit 6b attracts ions captured by the ion trap unit 4b by the voltage supplied from the switching unit 13, and introduces the ions into the detection unit 6c.
 検出部6cのCD6caは、導入部6bによって導入されたイオンのイオン量に応じた2次電子を放出する。シンチレータ6cbは、CD6caによって放出された2次電子を光に変換する。光電子倍増管6ccは、シンチレータ6cbによって変換された光を増幅し、電気信号に変換する。すなわち、イオントラップ部4bによってトラップ(捕捉)されたイオンは、導入部6bによって検出部6cに導入される。そして、検出部6cは、イオントラップ部4bによって捕捉されたイオンの量を検出する。検出部6cによって検出されたイオン量の電気信号は、制御部16へ出力される。 The CD 6ca of the detection unit 6c emits secondary electrons corresponding to the amount of ions introduced by the introduction unit 6b. The scintillator 6cb converts secondary electrons emitted by the CD 6ca into light. The photomultiplier tube 6cc amplifies the light converted by the scintillator 6cb and converts it into an electrical signal. That is, ions trapped (captured) by the ion trap section 4b are introduced into the detection section 6c by the introduction section 6b. Then, the detection unit 6c detects the amount of ions captured by the ion trap unit 4b. The electrical signal of the amount of ions detected by the detection unit 6 c is output to the control unit 16.
 圧力検出部7は、誘電体容器3aおよびチャンバー4a,6a内の圧力を検出する。 The pressure detector 7 detects the pressure in the dielectric container 3a and the chambers 4a and 6a.
 バリア電源8,9は、誘電体容器3a内で放電を起こすためのパルス電圧を出力する。バリア電源8は、正のパルス電圧を出力し、例えば、「+3kV」のパルス電圧を出力する。バリア電源9は、負のパルス電圧を出力し、例えば、「-3kV」のパルス電圧を出力する。 The barrier power supplies 8 and 9 output a pulse voltage for causing discharge in the dielectric container 3a. The barrier power supply 8 outputs a positive pulse voltage, for example, a pulse voltage of “+3 kV”. The barrier power supply 9 outputs a negative pulse voltage, for example, a pulse voltage of “−3 kV”.
 切替え部10は、制御部16の制御に応じて、バリア電源8,9から出力されるパルス電圧の一方を電極3bに出力する。すなわち、イオン化部3の電極3bには、正負のどちらか一方のパルス電圧が供給される。 The switching unit 10 outputs one of the pulse voltages output from the barrier power supplies 8 and 9 to the electrode 3b under the control of the control unit 16. That is, either positive or negative pulse voltage is supplied to the electrode 3 b of the ionization unit 3.
 導入電源11,12は、イオントラップ部4bから検出部6cにイオンを導入するための電圧を出力する。導入電源11は、正の電圧を出力し、例えば、「+1kV」の電圧を出力する。導入電源12は、負の電圧を出力し、例えば、「-1kV」の電圧を出力する。 The introduction power supplies 11 and 12 output a voltage for introducing ions from the ion trap section 4b to the detection section 6c. The introduction power supply 11 outputs a positive voltage, for example, a voltage of “+1 kV”. The introduction power supply 12 outputs a negative voltage, for example, a voltage of “−1 kV”.
 切替え部13は、制御部16の制御に応じて、導入電源11,12から出力される電圧の一方を導入部6bに出力する。すなわち、イオン検出部6の導入部6bには、正負のどちらか一方の電圧が供給される。 The switching unit 13 outputs one of the voltages output from the introduction power supplies 11 and 12 to the introduction unit 6b under the control of the control unit 16. In other words, either positive or negative voltage is supplied to the introduction part 6 b of the ion detection part 6.
 CD電源14は、CD6caに電圧を供給する。CD電源14は、例えば、「-5kV」の電圧をCD6caに供給する。 CD power supply 14 supplies voltage to CD6ca. For example, the CD power source 14 supplies a voltage of “−5 kV” to the CD 6 ca.
 シンチレータ電源15は、シンチレータ6cbに電圧を供給する。シンチレータ電源15は、例えば、「+5kV」の電圧をシンチレータ6cbに供給する。 The scintillator power supply 15 supplies a voltage to the scintillator 6cb. For example, the scintillator power supply 15 supplies a voltage of “+5 kV” to the scintillator 6 cb.
 制御部16は、質量分析装置の全体の動作を制御する。例えば、制御部16は、検出部6cによって検出されたイオン量に基づいて、切替え部10,13の切替え動作を制御する。また、制御部16は、例えば、CD電源14およびシンチレータ電源15の電圧の出力タイミングを制御する。また、制御部16は、例えば、バルブ2、イオン化部3、質量分析部4、真空ポンプ5、イオン検出部6、および圧力検出部7の動作を制御する。 The control unit 16 controls the overall operation of the mass spectrometer. For example, the control unit 16 controls the switching operation of the switching units 10 and 13 based on the amount of ions detected by the detection unit 6c. Moreover, the control part 16 controls the output timing of the voltage of CD power supply 14 and the scintillator power supply 15, for example. Moreover, the control part 16 controls operation | movement of the valve | bulb 2, the ionization part 3, the mass analysis part 4, the vacuum pump 5, the ion detection part 6, and the pressure detection part 7, for example.
 GUI17は、例えば、ユーザから操作を受付けたり、所定の情報を表示装置に表示したりする。 The GUI 17 accepts an operation from a user, for example, or displays predetermined information on a display device.
 図2は、質量分析装置の概略動作を説明するフローチャートである。質量分析装置は、例えば、ユーザから試料の分析開始の指示があると、以下のフローチャートを実行する。キャピラリ1には、大気および試料が導入されているとする。 FIG. 2 is a flowchart for explaining the schematic operation of the mass spectrometer. For example, when the user gives an instruction to start analyzing a sample, the mass spectrometer executes the following flowchart. It is assumed that air and a sample are introduced into the capillary 1.
 まず、制御部16は、バルブ2を閉じる(ステップS1)。 First, the control unit 16 closes the valve 2 (step S1).
 次に、制御部16は、真空ポンプ5によって、誘電体容器3aおよびチャンバー4a,6a内を排気し、低圧にする(ステップS2)。例えば、制御部16は、真空ポンプ5によって、誘電体容器3a内を「100Pa」にし、チャンバー4a,6a内を「0.1Pa」にする。 Next, the control unit 16 evacuates the dielectric container 3a and the chambers 4a and 6a with the vacuum pump 5 to make the pressure low (step S2). For example, the control unit 16 sets the inside of the dielectric container 3 a to “100 Pa” and the inside of the chambers 4 a and 6 a to “0.1 Pa” by the vacuum pump 5.
 次に、制御部16は、バルブ2を開く(ステップS3)。これにより、誘電体容器3aには、キャピラリ1から、大気および試料が導入される。 Next, the control unit 16 opens the valve 2 (step S3). As a result, the atmosphere and the sample are introduced from the capillary 1 into the dielectric container 3a.
 次に、制御部16は、ステップS3においてバルブ2を開いた後、誘電体容器3a内が所定の気圧(例えば、1000Pa等の低圧)になると、バリア放電を行う(ステップS4)。例えば、制御部16は、切替え部10を制御して、バリア電源8,9の一方の電圧を電極3bに出力し、バリア放電を行う(電極3bに出力する電圧の極性制御については以下で説明する)。制御部16は、誘電体容器3a内でバリア放電を行うことで、導入された低圧の大気を電離(反応イオン生成)し、この反応イオンにより試料をイオン化する。 Next, after opening the valve 2 in step S3, the control unit 16 performs barrier discharge when the inside of the dielectric container 3a reaches a predetermined atmospheric pressure (for example, a low pressure such as 1000 Pa) (step S4). For example, the control unit 16 controls the switching unit 10 to output one voltage of the barrier power supplies 8 and 9 to the electrode 3b and perform barrier discharge (the polarity control of the voltage output to the electrode 3b is described below. To do). The controller 16 performs barrier discharge in the dielectric container 3a to ionize the introduced low-pressure atmosphere (generate reaction ions), and ionize the sample with the reaction ions.
 次に、制御部16は、バリア放電の開始後、バルブ2を閉じる(ステップS5)。これにより、誘電体容器3aおよびチャンバー4a,6a内は、真空ポンプ5によって、不要な大気が排出される。また、誘電体容器3aでイオン化された試料は、イオントラップ部4bに導入され、蓄積される。 Next, the control unit 16 closes the bulb 2 after the start of the barrier discharge (step S5). Thereby, unnecessary air is discharged into the dielectric container 3a and the chambers 4a and 6a by the vacuum pump 5. The sample ionized in the dielectric container 3a is introduced into the ion trap portion 4b and accumulated.
 次に、制御部16は、イオントラップ部4bで蓄積された試料のイオンを、導入部6bを介して検出部6cに導入し、イオンの質量を検出する(ステップS6)。例えば、制御部16は、切替え部13を制御して、導入電源11,12の一方の電圧を導入部6bに出力し、イオントラップ部4bで蓄積されたイオンを検出部6cに導入し、イオンの質量を検出する(導入部6bに出力する電圧の極性制御については以下で説明する)。これにより、制御部16は、試料に含まれる薬物等を検出できる。 Next, the control unit 16 introduces the ions of the sample accumulated in the ion trap unit 4b into the detection unit 6c through the introduction unit 6b, and detects the mass of the ions (step S6). For example, the control unit 16 controls the switching unit 13 to output one voltage of the introduction power supplies 11 and 12 to the introduction unit 6b, introduce ions accumulated in the ion trap unit 4b to the detection unit 6c, and (The polarity control of the voltage output to the introduction unit 6b will be described below). Thereby, the control part 16 can detect the drug etc. which are contained in the sample.
 なお、以下で説明するが、質量分析装置は、プリアンブル期間T1と測定期間T2との2つのフェーズを有する。質量分析装置は、2つのフェーズのそれぞれにおいて、上記の概略動作を1または2以上実行する。質量分析装置は、上記の概略動作を2以上実行する場合は、ステップS6の処理の後、ステップS3の処理へ移行する。 As will be described below, the mass spectrometer has two phases, a preamble period T1 and a measurement period T2. The mass spectrometer performs one or more of the above schematic operations in each of the two phases. When performing two or more of the schematic operations described above, the mass spectrometer proceeds to the process of step S3 after the process of step S6.
 図3は、質量分析装置のタイミングチャートの例を示した図である。図3の一点鎖線に示すように、質量分析装置は、プリアンブル期間T1と測定期間T2との2つのフェーズを有する。質量分析装置は、プリアンブル期間T1において、バリア放電とイオン導入の電圧極性の組合せのうち(電極3bに印加する電圧極性と、導入部6bに印加する電圧極性の組合せのうち)、どの組合せにおいて、イオン化効率が最もよいかを判定する。質量分析装置は、プリアンブル期間T1において判定したバリア放電とイオン導入の電圧極性の組み合わせで、測定期間T2において、試料の質量を検出する。 FIG. 3 is a diagram showing an example of a timing chart of the mass spectrometer. As shown by the one-dot chain line in FIG. 3, the mass spectrometer has two phases of a preamble period T1 and a measurement period T2. In the preamble period T1, the mass spectrometer has a combination of voltage polarity for barrier discharge and ion introduction (a voltage polarity applied to the electrode 3b and a voltage polarity applied to the introduction portion 6b). Determine if ionization efficiency is best. The mass spectrometer detects the mass of the sample in the measurement period T2 by a combination of the barrier discharge determined in the preamble period T1 and the voltage polarity of ion introduction.
 図3に示す波形W1は、真空ポンプ5のオンおよびオフタイミングを示している。真空ポンプ5は、波形W1に示す「OFF」では排気を行わず、「ON」で排気を行う。 The waveform W1 shown in FIG. 3 shows the on / off timing of the vacuum pump 5. The vacuum pump 5 does not exhaust when “OFF” shown in the waveform W1 and exhausts when “ON”.
 波形W2は、バルブ2の開閉タイミングを示している。バルブ2は、波形W2に示す「閉」で弁を閉じ、「開」で弁を開く。 The waveform W2 indicates the opening / closing timing of the valve 2. The valve 2 closes the valve by “closed” shown in the waveform W2, and opens the valve by “open”.
 波形W3は、切替え部10がイオン化部3の電極3bに出力するパルス電圧のタイミングを示している。切替え部10は、波形W3に示す「OFF」のとき、バリア電源8,9から出力される正負のパルス電圧を電極3bに出力しない。切替え部10は、波形W3に示す「正」のとき、バリア電源8から出力される正のパルス電圧を複数電極3bに出力する。切替え部10は、波形W3に示す「負」のとき、バリア電源8から出力される負のパルス電圧を複数電極3bに出力する。なお、波形W3の測定期間T2に示す「+3kV」は、切替え部10が正のパルス電圧を電極3bに出力していることを示し、具体値で示したものである。 The waveform W3 indicates the timing of the pulse voltage that the switching unit 10 outputs to the electrode 3b of the ionization unit 3. The switching unit 10 does not output the positive and negative pulse voltages output from the barrier power supplies 8 and 9 to the electrode 3b when “OFF” shown in the waveform W3. The switching unit 10 outputs a positive pulse voltage output from the barrier power supply 8 to the plurality of electrodes 3b when “positive” shown in the waveform W3. The switching unit 10 outputs a negative pulse voltage output from the barrier power supply 8 to the plurality of electrodes 3b when “negative” shown in the waveform W3. Note that “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 10 outputs a positive pulse voltage to the electrode 3b, and is a specific value.
 波形W4は、CD電源14がCD6caに出力する電圧の印加タイミングを示している。CD電源14は、波形W4に示す「OFF」のとき、電圧をCD6caに出力せず、「-5kV」のとき、例えば、「-5kV」の電圧をCD6caに出力する。 Waveform W4 indicates the application timing of the voltage output from the CD power source 14 to CD6ca. The CD power supply 14 does not output a voltage to the CD6ca when “OFF” shown in the waveform W4, and outputs a voltage of “−5 kV” to the CD6ca when “−5 kV”, for example.
 波形W5は、シンチレータ電源15がシンチレータ6cbに出力する電圧のタイミングを示している。シンチレータ電源15は、波形W5に示す「OFF」のとき、電圧をシンチレータ6cbに出力せず、「+5kV」のとき、例えば、「+5kV」の電圧をシンチレータ6cbに出力する。 Waveform W5 shows the timing of the voltage that the scintillator power supply 15 outputs to the scintillator 6cb. The scintillator power supply 15 does not output a voltage to the scintillator 6cb when “OFF” shown in the waveform W5, and outputs a voltage of “+5 kV” to the scintillator 6cb when “+5 kV”, for example.
 波形W6は、切替え部13が導入部6bに出力する電圧のタイミングを示している。切替え部13は、波形W6に示す「OFF」のとき、導入電源11,12から出力される正負の電圧を導入部6bに出力しない。切替え部13は、波形W6に示す「正」のとき、導入電源11から出力される正の電圧を導入部6bに出力する。切替え部13は、波形W6に示す「負」のとき、導入電源11から出力される負の電圧を導入部6bに出力する。なお、波形W6の測定期間T2に示す「-1kV」は、切替え部13が負の電圧を導入部6bに出力していることを示し、具体値で示したものである。 Waveform W6 indicates the timing of the voltage that the switching unit 13 outputs to the introduction unit 6b. The switching unit 13 does not output positive and negative voltages output from the introduction power supplies 11 and 12 to the introduction unit 6b when “OFF” shown in the waveform W6. The switching unit 13 outputs a positive voltage output from the introduction power supply 11 to the introduction unit 6b when “positive” shown in the waveform W6. The switching unit 13 outputs a negative voltage output from the introduction power supply 11 to the introduction unit 6b when “negative” shown in the waveform W6. Note that “−1 kV” shown in the measurement period T2 of the waveform W6 indicates that the switching unit 13 outputs a negative voltage to the introduction unit 6b, and is a specific value.
 波形W7は、光電子倍増管6ccの光を検出するタイミングを示している。光電子倍増管6ccは、波形W7に示す「OFF」のとき、光を検出せず、「ON」のとき、光を検出する。 Waveform W7 shows the timing for detecting the light from the photomultiplier tube 6cc. The photomultiplier tube 6cc does not detect light when “OFF” shown in the waveform W7, and detects light when “ON”.
 波形W8は、誘電体容器3aおよびチャンバー4a,6a内の気圧の状態を示している。誘電体容器3aおよびチャンバー4a,6a内の気圧は、波形W2に示すバルブ2の開閉に応じて、上がったり下がったりしている。 Waveform W8 indicates the state of atmospheric pressure in the dielectric container 3a and the chambers 4a and 6a. The atmospheric pressure in the dielectric container 3a and the chambers 4a and 6a rises and falls according to the opening and closing of the valve 2 indicated by the waveform W2.
 真空ポンプ5は、図3に示す時刻t1において、誘電体容器3aおよびチャンバー4a,6aの排気を開始する。真空ポンプ5は、波形W1の「ON」に示すように、排気開始後、質量分析が終了するまで、誘電体容器3aおよびチャンバー4a,6aの排気を行う。真空ポンプ5が排気を開始すると、波形W8に示すように、誘電体容器3aおよびチャンバー4a,6a内の気圧は低下する(真空度は高くなる)。 The vacuum pump 5 starts evacuating the dielectric container 3a and the chambers 4a and 6a at time t1 shown in FIG. The vacuum pump 5 evacuates the dielectric container 3a and the chambers 4a and 6a after the start of evacuation until the mass analysis is completed, as indicated by “ON” of the waveform W1. When the vacuum pump 5 starts evacuation, the air pressure in the dielectric container 3a and the chambers 4a and 6a decreases (the degree of vacuum increases) as indicated by a waveform W8.
 誘電体容器3aおよびチャンバー4a,6aの真空度が、波形W8に示す閾値thに達すると、時刻t2,t3における波形W2に示すように、バルブ2が一定期間開く。バルブ2が開くことにより、誘電体容器3aおよびチャンバー4a,6aの真空度は低下する。そして、この期間において、キャピラリ1から誘電体容器3aに、大気および試料が導入される。 When the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a reaches the threshold value th shown in the waveform W8, the valve 2 is opened for a certain period as shown in the waveform W2 at times t2 and t3. When the valve 2 is opened, the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a is lowered. During this period, air and a sample are introduced from the capillary 1 into the dielectric container 3a.
 バルブ2は、時刻t3の後、閉じられ、誘電体容器3aおよびチャンバー4a,6aの内部は、真空ポンプ5によって再び排気される。これにより、誘電体容器3aおよびチャンバー4a,6aの真空度は、波形W8の時刻t3-時刻t6に示すように再び高くなる。 The valve 2 is closed after time t3, and the inside of the dielectric container 3a and the chambers 4a and 6a is evacuated again by the vacuum pump 5. As a result, the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a is increased again as shown at time t3 to time t6 of the waveform W8.
 なお、バルブ2は、その後においても、波形W2,W8に示すように、誘電体容器3aおよびチャンバー4a,6aの真空度が閾値thに達すると、一定期間開き、その後閉じるという動作を繰り返す。そして、キャピラリ1から誘電体容器3aに大気および試料が導入される。 The valve 2 repeats the operation of opening for a certain period and then closing when the vacuum degree of the dielectric container 3a and the chambers 4a and 6a reaches the threshold th, as shown by the waveforms W2 and W8. Then, air and a sample are introduced from the capillary 1 into the dielectric container 3a.
 切替え部10は、プリアンブル期間T1の波形W3に示すように、バルブ2の「開」期間の後半から、「閉」期間の前半にかけて、パルス電圧を電極3bに出力する。これにより、イオン化部3の誘電体容器3a内では、バリア放電が行われる。バリア放電によってイオン化された試料のイオンは、イオントラップ部4bにトラップされる。 The switching unit 10 outputs a pulse voltage to the electrode 3b from the second half of the “open” period of the valve 2 to the first half of the “closed” period, as indicated by the waveform W3 of the preamble period T1. Thereby, barrier discharge is performed in the dielectric container 3 a of the ionization unit 3. The sample ions ionized by the barrier discharge are trapped in the ion trap portion 4b.
 正および負の極性電圧によるバリア放電は、波形W3に示すように、プリアンブル期間T1において行われる。測定期間T2では、プリアンブル期間T1において判定された極性電圧でバリア放電が行われる。例えば、図3の測定期間T2では、正の極性電圧が判定された例(+3kV)を示している。 Barrier discharge with positive and negative polarity voltages is performed in the preamble period T1, as shown by the waveform W3. In the measurement period T2, barrier discharge is performed with the polarity voltage determined in the preamble period T1. For example, in the measurement period T2 of FIG. 3, an example (+3 kV) in which a positive polarity voltage is determined is shown.
 切替え部13は、時刻t4,t5における波形W6に示すように、バリア放電終了後(電極3bへの電圧印加の終了後)、一定期間電圧を導入部6bに出力する。これにより、イオントラップ部4bで捕捉されたイオンは、導入部6bによって、検出部6cに導入される。 The switching unit 13 outputs a voltage to the introduction unit 6b for a certain period after the end of the barrier discharge (after the completion of the voltage application to the electrode 3b) as indicated by the waveform W6 at times t4 and t5. Thereby, the ion trapped by the ion trap part 4b is introduce | transduced into the detection part 6c by the introduction part 6b.
 正および負の極性電圧によるイオン導入は、波形W6に示すように、プリアンブル期間T1において行われる。測定期間T2では、プリアンブル期間T1において判定された極性電圧でイオン導入が行われる。例えば、図3の測定期間T2では、負の極性電圧が判定された例(-1kV)を示している。 The ion introduction by the positive and negative polarity voltages is performed in the preamble period T1, as shown by the waveform W6. In the measurement period T2, ion introduction is performed with the polarity voltage determined in the preamble period T1. For example, in the measurement period T2 in FIG. 3, an example (−1 kV) in which a negative polarity voltage is determined is shown.
 CD電源14は、時刻t4,t5における波形W4に示すように、バリア放電の終了後、一定期間電圧をCD6caに出力する。同様に、シンチレータ電源15は、時刻t4,t5における波形W5に示すように、バリア放電の終了後、一定期間電圧をシンチレータ6cbに出力する。そして、光電子倍増管6ccは、時刻t4,t5における波形W7に示すように、バリア放電終了後、光を検出する。 The CD power supply 14 outputs a voltage to the CD6ca for a certain period after the end of the barrier discharge, as indicated by a waveform W4 at times t4 and t5. Similarly, the scintillator power supply 15 outputs a voltage to the scintillator 6cb for a certain period after the end of the barrier discharge, as indicated by a waveform W5 at times t4 and t5. Then, the photomultiplier tube 6cc detects light after the end of the barrier discharge, as indicated by the waveform W7 at times t4 and t5.
 質量分析装置は、時刻t6における波形W8に示すように、誘電体容器3aおよびチャンバー4a,6aの真空度が再び閾値thを超えると、上記で説明した動作を繰り返す。 The mass spectrometer repeats the operation described above when the degree of vacuum of the dielectric container 3a and the chambers 4a and 6a again exceeds the threshold th as shown by the waveform W8 at time t6.
 イオントラップ部4bは、時刻t4から時刻t5の一定期間内に、捕捉するイオンの質量を掃引する。従って、光電子倍増管6ccからは、掃引した各質量に対するイオン量(イオン強度)の結果が得られる。 The ion trap unit 4b sweeps the mass of ions to be captured within a certain period from time t4 to time t5. Therefore, from the photomultiplier tube 6cc, the result of the amount of ions (ion intensity) for each swept mass is obtained.
 図4は、イオン検出部から得られるイオン強度の例を示した図である。イオントラップ部4bは、上記したように、捕捉するイオンの質量を掃引する。例えば、イオントラップ部4bは、捕捉するイオンの質量を、図4の横軸の左側(質量小)から右側(質量大)へ掃引する。 FIG. 4 is a diagram showing an example of ion intensity obtained from the ion detector. As described above, the ion trap unit 4b sweeps the mass of ions to be captured. For example, the ion trap unit 4b sweeps the mass of ions to be captured from the left side (small mass) to the right side (large mass) of the horizontal axis in FIG.
 ここで、試料に物質A,B,Cが含まれているとする。この場合、図4に示すように、物質A,B,Cの質量におけるイオン強度は強くなる(イオン検出部6で検出されるイオン量は多くなる)。従って、制御部16は、イオントラップ部4bで捕捉された各質量に対するイオンのイオン強度を測定することにより、試料に含まれる物質を判定することができる。 Here, it is assumed that substances A, B, and C are included in the sample. In this case, as shown in FIG. 4, the ionic strength in the masses of the substances A, B, and C increases (the amount of ions detected by the ion detector 6 increases). Therefore, the control part 16 can determine the substance contained in a sample by measuring the ion intensity | strength of the ion with respect to each mass captured by the ion trap part 4b.
 図3の説明に戻る。制御部16は、プリアンブル期間T1において、切替え部10を制御し、バリア電源8,9から電極3bに出力するパルス電圧の極性を切替える。また、制御部16は、プリアンブル期間T1において、切替え部13を制御し、導入電源11,12から導入部6bに出力する電圧の極性を切替える。 Returning to the explanation of FIG. In the preamble period T1, the control unit 16 controls the switching unit 10 to switch the polarity of the pulse voltage output from the barrier power supplies 8 and 9 to the electrode 3b. In addition, the control unit 16 controls the switching unit 13 in the preamble period T1 to switch the polarity of the voltage output from the introduction power supplies 11 and 12 to the introduction unit 6b.
 例えば、制御部16は、図3の点線枠D1~D4に示すように、プリアンブル期間T1において、バリア電源8,9および導入電源11,12から出力される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替える。 For example, the control unit 16 sets the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, as indicated by dotted line frames D1 to D4 in FIG. Switching between four combinations of negative and positive, positive and positive, and negative and positive.
 制御部16は、バリア電源8,9および導入電源11,12の電圧極性の全ての組み合わせを切替えると、切替えた各極性でのイオンの検出量(イオン強度)に基づき、プリアンブル期間T1に続く測定期間T2において、電極3bおよび導入部6bに出力する電圧の極性を判定する。 When all the combinations of the voltage polarities of the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 are switched, the control unit 16 performs measurement following the preamble period T1 based on the detected amount of ions (ion intensity) in each switched polarity. In the period T2, the polarity of the voltage output to the electrode 3b and the introduction part 6b is determined.
 例えば、制御部16は、図3に示す点線枠D1~D4のそれぞれの電圧極性の組み合わせにおいて、イオン検出部6から出力されるイオン強度を積分する。例えば、図3に示す点線枠D1~D4のそれぞれの電圧極性の組み合わせにおいて、図4に示すようなイオン強度が得られ(電圧極性の組み合わせによっては、図4に示すようなピークが現れないものがある)、制御部16は、点線枠D1~D4のそれぞれで得られるイオン強度を、それぞれ積分する。制御部16は、点線枠D1~D4のそれぞれのイオン強度の積分値が、所定の閾値を超えたか否か判定し、所定の閾値を超えたイオン強度の電圧極性の組み合わせを判定する。そして、制御部16は、判定した電圧極性で、測定期間T2において試料の質量分析を行う。 For example, the control unit 16 integrates the ion intensity output from the ion detection unit 6 in each voltage polarity combination of the dotted line frames D1 to D4 shown in FIG. For example, the ionic strength as shown in FIG. 4 is obtained in the combination of the voltage polarities of the dotted line frames D1 to D4 shown in FIG. 3 (the peak as shown in FIG. 4 does not appear depending on the combination of the voltage polarities). The control unit 16 integrates the ion intensity obtained in each of the dotted line frames D1 to D4. The control unit 16 determines whether or not the integrated value of each ion intensity in the dotted line frames D1 to D4 exceeds a predetermined threshold, and determines a combination of voltage polarities of the ion intensity exceeding the predetermined threshold. Then, the control unit 16 performs mass analysis of the sample in the measurement period T2 with the determined voltage polarity.
 例えば、図3に示す点線枠D1の電圧極性の組み合わせにおいて、積分したイオン強度が所定の閾値を超えたとする。この場合、制御部16は、図3の測定期間T2の点線枠D5,D6に示すように、バリア放電の電圧極性を「正」(図3中では「+3kV」と図示)に設定し、イオン導入の電圧極性を「負」(図3中では「-1kV」と図示)に設定して、測定期間T2において試料の質量分析を行う。 For example, it is assumed that the integrated ion intensity exceeds a predetermined threshold in the combination of voltage polarities in the dotted frame D1 shown in FIG. In this case, the control unit 16 sets the voltage polarity of the barrier discharge to “positive” (shown as “+3 kV” in FIG. 3), as indicated by the dotted frames D5 and D6 in the measurement period T2 in FIG. The voltage polarity of the introduction is set to “negative” (shown as “−1 kV” in FIG. 3), and mass analysis of the sample is performed in the measurement period T2.
 このように、バリア電源8,9および導入電源11,12から出力される電圧の極性を切替えるのは、バリア放電およびイオン導入の電圧極性の組み合わせにより、イオン化効率の異なる物質があるためである。例えば、電極3bに正の電圧を印加した場合でも、物質によっては、正イオンにイオン化される物質と、負イオンにイオン化される物質とがあるためである。より具体的には、バリア放電の電圧極性とイオン導入の電圧極性のある組み合わせでは、図4に示したようなイオン強度が得られるが、別の電圧極性の組み合わせでは、図4に示したようなイオン強度が得られない場合があるためである(図4のように物質A,B,Cのイオン強度が大きなピークを示さない場合があるためである)。 As described above, the polarity of the voltage output from the barrier power sources 8 and 9 and the introduction power sources 11 and 12 is switched because there are substances having different ionization efficiencies depending on the combination of the barrier discharge and the voltage polarity of the ion introduction. For example, even when a positive voltage is applied to the electrode 3b, depending on the substance, there are substances that are ionized into positive ions and substances that are ionized into negative ions. More specifically, a combination of the voltage polarity of the barrier discharge and the voltage polarity of the ion introduction yields the ion intensity as shown in FIG. 4, but the combination of the voltage polarity as shown in FIG. This is because the ionic strength of the substances A, B, and C may not show a large peak as shown in FIG.
 なお、測定期間T2における質量分析の動作は、プリアンブル期間T1で説明した動作と同様である。ただし、測定期間T2では、プリアンブル期間T1で判定した電圧極性のバリア放電およびイオン導入で試料の質量分析を行う。また、制御部16は、イオン検出部6から出力されるイオン量を、プリアンブル期間T1のように積分せず、各質量に対するイオン量を、例えば、メモリなどの記憶装置に記憶する。例えば、制御部16は、図4に示したようなデータを記憶装置に記憶する。そして、制御部16は、イオン量の多かった質量から、試料に含まれている物質を判定する。例えば、制御部16は、測定期間T2において、図4に示すようなデータが得られた場合、試料には、物質A,B,Cが含まれていると判定する。 Note that the operation of mass spectrometry in the measurement period T2 is the same as the operation described in the preamble period T1. However, in the measurement period T2, mass analysis of the sample is performed by barrier discharge and ion introduction having the voltage polarity determined in the preamble period T1. Further, the control unit 16 does not integrate the ion amount output from the ion detection unit 6 as in the preamble period T1, and stores the ion amount for each mass in a storage device such as a memory. For example, the control unit 16 stores data as illustrated in FIG. 4 in the storage device. And the control part 16 determines the substance contained in the sample from the mass with much ion content. For example, when data as shown in FIG. 4 is obtained in the measurement period T2, the control unit 16 determines that the sample contains substances A, B, and C.
 また、質量分析装置は、適切な質量分析結果を得るため、測定期間T2において複数回質量分析を行ってよい。例えば、図3では、点線枠D5,D6に示すように、質量分析装置は、複数回質量分析を行っている。 In addition, the mass spectrometer may perform mass spectrometry a plurality of times in the measurement period T2 in order to obtain an appropriate mass analysis result. For example, in FIG. 3, as shown by dotted line frames D5 and D6, the mass spectrometer performs mass analysis a plurality of times.
 また、プリアンブル期間T1で判定される電圧極性の組み合わせは、複数得られる場合もある。例えば、所定の閾値を超えるイオン強度の積分値は、複数存在する場合もある。例えば、図3に示す点線枠D1,D3でイオン強度の積分値が所定の閾値を超える場合もある。 In addition, a plurality of combinations of voltage polarities determined in the preamble period T1 may be obtained. For example, there may be a plurality of integral values of ion intensity exceeding a predetermined threshold. For example, the integrated value of the ion intensity may exceed a predetermined threshold in dotted line frames D1 and D3 shown in FIG.
 この場合、制御部16は、得られた複数の電圧極性の組み合わせで、測定期間T2において試料の質量分析を行う。例えば、制御部16は、イオン検出された電圧極性の組み合わせが2通りあった場合(例えば、点線枠D1,D3の電圧極性があった場合)、測定期間T2では、2通りの電圧極性の組み合わせで質量分析を行う(例えば、点線枠D1,D3の2通りの電圧極性で質量分析を行う)。また、制御部16は、プリアンブル期間T1でイオンが検出されない場合は、プリアンブル期間T1を複数回実施するかまたはそのまま測定を終了してもよい。 In this case, the control unit 16 performs mass analysis of the sample in the measurement period T2 with the combination of the obtained plurality of voltage polarities. For example, when there are two combinations of voltage polarities in which ions are detected (for example, when there are voltage polarities of dotted line frames D1 and D3), the control unit 16 combines two voltage polarities in the measurement period T2. To perform mass spectrometry (for example, mass spectrometry is performed with two voltage polarities of dotted line frames D1 and D3). In addition, when ions are not detected in the preamble period T1, the control unit 16 may perform the preamble period T1 a plurality of times or terminate the measurement as it is.
 また、制御部16は、イオン強度の積分値が所定の閾値を超えたか否かによって、電圧極性の組み合わせを判定するとしたが、これに限られない。例えば、制御部16は、図3に示す点線枠D1~D4のそれぞれにおけるイオン強度の積分値のうち、イオン強度の積分値が最も大きかった電圧極性の組み合わせを判定する。そして、制御部16は、イオン強度の積分値の最も大きかった電圧極性の組み合わせで、測定期間T2において試料の質量分析を行ってもよい。この場合、判定される電圧極性の組み合わせは、1つとなる。 Further, although the control unit 16 determines the combination of voltage polarities depending on whether or not the integrated value of the ion intensity exceeds a predetermined threshold value, the present invention is not limited to this. For example, the control unit 16 determines the combination of voltage polarities having the largest ion intensity integral value among the ion intensity integral values in each of the dotted line frames D1 to D4 shown in FIG. Then, the control unit 16 may perform mass analysis of the sample in the measurement period T2 with a combination of voltage polarities having the largest integral value of ion intensity. In this case, there is one voltage polarity combination to be determined.
 また、制御部16は、イオン強度を積分せずに、例えば、図3に示す点線枠D1~D4のそれぞれの電圧極性の組み合わせにおいて、最も大きいイオン強度が所定の閾値を超えたか否かによって、電圧極性の組み合わせを判定してもよい。例えば、点線枠D1において、図4に示すイオン強度が得られたとする。図4の物質Bのイオン強度は、所定の閾値を超えているとする。この場合、制御部16は、点線枠D1の電圧極性(バリア放電「正」、イオン導入「負」の電圧極性)を判定する。 Further, the control unit 16 does not integrate the ion intensity, for example, depending on whether or not the largest ion intensity exceeds a predetermined threshold in each combination of voltage polarities of the dotted line frames D1 to D4 shown in FIG. A combination of voltage polarities may be determined. For example, it is assumed that the ion intensity shown in FIG. 4 is obtained in the dotted frame D1. It is assumed that the ionic strength of the substance B in FIG. 4 exceeds a predetermined threshold value. In this case, the control unit 16 determines the voltage polarity (barrier discharge “positive”, ion introduction “negative” voltage polarity) of the dotted frame D1.
 図5は、質量分析装置の動作例を示したフローチャートである。質量分析装置は、例えば、キャピラリ1に試料が導入され、ユーザからGUI17を介して、分析開始の指示があると、図5に示すフローチャートの処理を実行する。ステップS11~S18は、例えば、プリアンブル期間T1での処理に対応し、ステップS22~S29は、測定期間T2での処理に対応する。ステップS19~S21は、プリアンブル期間T1の最後または測定期間T2の最初のどちらで処理を行ってもよい。 FIG. 5 is a flowchart showing an operation example of the mass spectrometer. For example, when a sample is introduced into the capillary 1 and an instruction to start analysis is given from the user via the GUI 17, the mass spectrometer executes the processing of the flowchart shown in FIG. 5. Steps S11 to S18 correspond to, for example, processing in the preamble period T1, and steps S22 to S29 correspond to processing in the measurement period T2. Steps S19 to S21 may be performed either at the end of the preamble period T1 or at the beginning of the measurement period T2.
 まず、制御部16は、イオン化部3の電極3bに正のパルス電圧を出力し(バリア放電+)、導入部6bに負の電圧を出力するように(イオン導入-)、切替え部10,13の切替えを制御する(ステップS11)。 First, the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction −). Is switched (step S11).
 次に、イオン検出部6は、ステップS11で印加された電圧において、各質量における(掃引した質量における)イオンを検出する(ステップS12)。制御部16は、イオン検出部6で検出される、各質量におけるイオン量を積分する。 Next, the ion detector 6 detects ions in each mass (in the swept mass) at the voltage applied in step S11 (step S12). The control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
 次に、制御部16は、イオン化部3の電極3bに負のパルス電圧を出力し(バリア放電-)、導入部6bに負の電圧を出力(イオン導入-)するように、切替え部10,13の切替えを制御する(ステップS13)。 Next, the control unit 16 outputs a negative pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge −), and outputs a negative voltage to the introduction unit 6b (ion introduction −). 13 is controlled (step S13).
 次に、イオン検出部6は、ステップS13で印加された電圧において、各質量におけるイオンを検出する(ステップS14)。制御部16は、イオン検出部6で検出される、各質量におけるイオン量を積分する。 Next, the ion detector 6 detects ions at each mass at the voltage applied in step S13 (step S14). The control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
 次に、制御部16は、イオン化部3の電極3bに正のパルス電圧を出力し(バリア放電+)、導入部6bに正の電圧を出力(イオン導入+)するように、切替え部10,13の切替えを制御する(ステップS15)。 Next, the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a positive voltage to the introduction unit 6b (ion introduction +). 13 is controlled (step S15).
 次に、イオン検出部6は、ステップS15で印加された電圧において、各質量におけるイオンを検出する(ステップS16)。制御部16は、イオン検出部6で検出される、各質量におけるイオン量を積分する。 Next, the ion detector 6 detects ions at each mass at the voltage applied in step S15 (step S16). The control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
 次に、制御部16は、イオン化部3の電極3bに負のパルス電圧を出力し(バリア放電-)、導入部6bに正の電圧を出力(イオン導入+)するように、切替え部10,13の切替えを制御する(ステップS17)。 Next, the control unit 16 outputs a negative pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge −), and outputs a positive voltage to the introduction unit 6b (ion introduction +). 13 is controlled (step S17).
 次に、イオン検出部6は、ステップS17で印加された電圧において、各質量におけるイオンを検出する(ステップS18)。制御部16は、イオン検出部6で検出される、各質量におけるイオン量を積分する。 Next, the ion detector 6 detects ions at each mass at the voltage applied in step S17 (step S18). The control unit 16 integrates the ion amount at each mass detected by the ion detection unit 6.
 次に、制御部16は、イオン検出部6によって、イオンが検出されたか否か判定する(ステップS19)。例えば、制御部16は、ステップS12,S14,S16,S18で積分したイオン量が、所定の閾値を超えたか否か判定する。制御部16は、イオンを検出できたと判定した場合(S19にて「Yes」の場合)、ステップS21の処理へ移行する。制御部16は、イオンを検出できなかったと判定した場合(S19にて「No」の場合)、ステップS20の処理へ移行する。なお、制御部16は、イオン検出ができたと判定した場合、イオン検出ができた電圧極性の組み合わせを取得する。 Next, the controller 16 determines whether or not ions are detected by the ion detector 6 (step S19). For example, the control unit 16 determines whether or not the ion amount integrated in steps S12, S14, S16, and S18 exceeds a predetermined threshold value. When it determines with the control part 16 having detected the ion (in the case of "Yes" in S19), it transfers to the process of step S21. When it determines with the control part 16 having not detected ion (in the case of "No" in S19), it transfers to the process of step S20. In addition, the control part 16 acquires the combination of the voltage polarity which was able to detect ion, when it determines with having detected ion.
 制御部16は、ステップS19において、イオンを検出できなかったと判定した場合(S19にて「No」の場合)、プリアンブル期間T1の処理を所定回数行ったか否か判定する(ステップS20)。すなわち、制御部16は、イオンを検出できなかった場合、予め決められた所定回数に達するまで、プリアンブル期間T1の処理を行う。制御部16は、プリアンブル期間T1の処理を所定回数行ったと判定した場合(S20にて「Yes」の場合)、質量分析処理を終了する。制御部16は、プリアンブル期間T1の処理を所定回数行っていないと判定した場合(S20にて「No」の場合)、ステップS11の処理へ移行する。 When it is determined in step S19 that the ions have not been detected (“No” in S19), the control unit 16 determines whether or not the processing of the preamble period T1 has been performed a predetermined number of times (step S20). That is, when the control unit 16 cannot detect ions, the control unit 16 performs processing of the preamble period T1 until a predetermined number of times is reached. When it is determined that the process of the preamble period T1 has been performed a predetermined number of times (in the case of “Yes” in S20), the control unit 16 ends the mass spectrometry process. If the control unit 16 determines that the process of the preamble period T1 is not performed a predetermined number of times (in the case of “No” in S20), the control unit 16 proceeds to the process of step S11.
 制御部16は、ステップS19において、イオンを検出できたと判定した場合(S19にて「Yes」の場合)、イオン検出できた電圧極性の組み合わせが1つであるか否か判定する(ステップS21)。制御部16は、イオン検出できた電圧極性の組み合わせが1つであると判定した場合(S21にて「Yes」)、ステップS22の処理へ移行する。制御部16は、イオン検出できた電圧極性の組み合わせが1つでない(複数である)と判定した場合(S21にて「No」)、ステップS26の処理へ移行する。 If it is determined in step S19 that ions have been detected ("Yes" in S19), the control unit 16 determines whether or not there is only one combination of voltage polarities in which ions can be detected (step S21). . If the control unit 16 determines that the number of combinations of voltage polarities that can detect ions is one (“Yes” in S21), the control unit 16 proceeds to the process of step S22. If the control unit 16 determines that the number of combinations of voltage polarities that can detect ions is not one (a plurality), the process proceeds to step S26.
 制御部16は、ステップS21おいて、イオン検出ができた電圧極性の組み合わせが1つであると判定した場合(S21にて「Yes」の場合)、ステップS19にて取得した1つの電圧極性の組み合わせが、測定期間T2において、切替え部10,13から出力されるように設定する(ステップS22)。 When it is determined in step S21 that there is only one combination of voltage polarities in which ions can be detected ("Yes" in S21), the control unit 16 has one voltage polarity acquired in step S19. The combination is set to be output from the switching units 10 and 13 in the measurement period T2 (step S22).
 次に、イオン検出部6は、各質量におけるイオンを検出する(ステップS23)。イオン検出部6によって検出された、各質量におけるイオンのイオン量(例えば、図4に示すようなデータ)は、制御部16によって、例えば、メモリなどの記憶装置に記憶される。 Next, the ion detector 6 detects ions at each mass (step S23). The ion amount (for example, data as shown in FIG. 4) of ions at each mass detected by the ion detection unit 6 is stored in a storage device such as a memory by the control unit 16.
 次に、制御部16は、所定回数、質量分析を行ったか否か判定する(ステップS24)。制御部16は、所定回数、質量分析を行ったと判定した場合(S24にて「Yes」)、ステップS25の処理へ移行する。制御部16は、所定回数、質量分析を行っていないと判定した場合(S24にて「No」)、ステップS22の処理へ移行する。 Next, the control unit 16 determines whether or not mass spectrometry has been performed a predetermined number of times (step S24). When it is determined that the mass spectrometry has been performed a predetermined number of times (“Yes” in S24), the control unit 16 proceeds to the process of step S25. When it is determined that the mass spectrometry has not been performed a predetermined number of times (“No” in S24), the control unit 16 proceeds to the process of step S22.
 制御部16は、ステップS24において、所定回数、質量分析を行ったと判定した場合(S24にて「Yes」の場合)、ステップS23において記憶装置に記憶したイオン量を出力する(ステップS25)。例えば、制御部16は、各質量におけるイオン量(例えば、図4に示したようなグラフ)を表示装置に出力する。 When it is determined in step S24 that the mass spectrometry has been performed a predetermined number of times (in the case of “Yes” in S24), the control unit 16 outputs the ion amount stored in the storage device in step S23 (step S25). For example, the control unit 16 outputs the amount of ions at each mass (for example, a graph as shown in FIG. 4) to the display device.
 制御部16は、ステップS21おいて、イオン検出ができた電圧極性の組み合わせが複数であると判定した場合(S21にて「No」の場合)、ステップS19にて取得した複数の電圧極性の組み合わせが、測定期間T2において、切替え部10,13から出力されるように設定する(ステップS26)。 When it is determined in step S21 that there are a plurality of combinations of voltage polarities in which ions can be detected (“No” in S21), the control unit 16 combines a plurality of voltage polarities acquired in step S19. Is set to be output from the switching units 10 and 13 during the measurement period T2 (step S26).
 次に、イオン検出部6は、複数の電圧極性のそれぞれの組み合わせにおいて、各質量におけるイオンを検出する(ステップS27)。イオン検出部6によって検出された、各質量におけるイオンのイオン量(例えば、図4に示すようなデータ)は、制御部16によって、例えば、メモリなどの記憶装置に記憶される。 Next, the ion detector 6 detects ions at each mass in each combination of a plurality of voltage polarities (step S27). The ion amount (for example, data as shown in FIG. 4) of ions at each mass detected by the ion detection unit 6 is stored in a storage device such as a memory by the control unit 16.
 次に、制御部16は、所定回数、質量分析を行ったか否か判定する(ステップS28)。制御部16は、所定回数、質量分析を行ったと判定した場合(S28にて「Yes」)、ステップS29の処理へ移行する。制御部16は、所定回数、質量分析を行っていないと判定した場合(S28にて「No」)、ステップS26の処理へ移行する。 Next, the control unit 16 determines whether or not mass spectrometry has been performed a predetermined number of times (step S28). When it is determined that the mass spectrometry has been performed a predetermined number of times (“Yes” in S28), the control unit 16 proceeds to the process of step S29. When it is determined that the mass analysis has not been performed a predetermined number of times (“No” in S28), the control unit 16 proceeds to the process of step S26.
 制御部16は、ステップS28において、所定回数、質量分析を行ったと判定した場合(S28にて「Yes」の場合)、ステップS27において記憶装置に記憶したイオン量を出力する(ステップS29)。例えば、制御部16は、各質量におけるイオン量(例えば、図4に示したようなグラフ)を表示装置に出力する。 When it is determined in step S28 that the mass spectrometry has been performed a predetermined number of times (“Yes” in S28), the control unit 16 outputs the ion amount stored in the storage device in step S27 (step S29). For example, the control unit 16 outputs the amount of ions at each mass (for example, a graph as shown in FIG. 4) to the display device.
 図6は、制御部のハードウェア構成例を示した図である。制御部16およびGUI17は、例えば、図6に示すような、CPU(Central Processing Unit)等の演算装置21と、RAM(Random Access Memory)などの主記憶装置22と、HDD(Hard Disk Drive)等の補助記憶装置23と、有線又は無線により通信ネットワークと接続するための通信インターフェイス(I/F)24と、マウス、キーボード、タッチセンサーやタッチパネルなどの入力装置25と、液晶ディスプレイなどの表示装置26と、DVD(Digital Versatile Disk)などの持ち運び可能な記憶媒体に対する情報の読み書きを行う読み書き装置27と、を備えるコンピュータ20によって実現することができる。 FIG. 6 is a diagram illustrating a hardware configuration example of the control unit. The control unit 16 and the GUI 17 include, for example, an arithmetic device 21 such as a CPU (Central Processing Unit), a main storage device 22 such as a RAM (Random Access Memory), an HDD (Hard Disk Drive), and the like as shown in FIG. Auxiliary storage device 23, a communication interface (I / F) 24 for connecting to a communication network by wire or wireless, an input device 25 such as a mouse, keyboard, touch sensor or touch panel, and a display device 26 such as a liquid crystal display. And a read / write device 27 that reads / writes information from / to a portable storage medium such as a DVD (Digital Versatile Disk).
 例えば、制御部16の機能は、補助記憶装置23などから主記憶装置22にロードされた所定のプログラムを演算装置21が実行することで実現される。GUI17は、例えば、演算装置21が入力装置25を利用することで実現される。また、GUI17は、例えば、演算装置21が表示装置26を利用することで実現される。制御部16と、その他の機器との通信は、例えば、演算装置21が通信I/F24を利用することで実現される。 For example, the function of the control unit 16 is realized by the arithmetic device 21 executing a predetermined program loaded from the auxiliary storage device 23 or the like to the main storage device 22. The GUI 17 is realized, for example, when the arithmetic device 21 uses the input device 25. Further, the GUI 17 is realized, for example, when the arithmetic device 21 uses the display device 26. Communication between the control unit 16 and other devices is realized by the arithmetic device 21 using the communication I / F 24, for example.
 なお、上記の所定のプログラムは、例えば、読み書き装置27により読み取られた記憶媒体からインストールされてもよいし、通信I/F24を介してネットワークからインストールされてもよい。 The predetermined program may be installed from, for example, a storage medium read by the read / write device 27, or may be installed from a network via the communication I / F 24.
 また、制御部16およびGUI17の一部またはすべての機能は、例えば、演算装置、記憶装置、駆動回路などを備えるASIC(Application Specific Integrated Circuit)等により実現してもよい。 Further, some or all of the functions of the control unit 16 and the GUI 17 may be realized by, for example, an ASIC (Application Specific Integrated Circuit) including an arithmetic device, a storage device, a drive circuit, and the like.
 このように、質量分析装置の制御部16は、プリアンブル期間T1において、バリア電源8,9および導入電源11,12から出力される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、プリアンブル期間T1に続く測定期間T2において、バリア電源8,9および導入電源11,12から出力される電圧の極性を制御する。これにより、制御部16は、イオン化効率のより高い電圧極性の組み合わせを判定でき、判定した電圧極性で質量分析を行い、適切な質量分析結果を得ることができる。 As described above, the control unit 16 of the mass spectrometer switches the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, and based on the detected amount of ions in the switched polarity. In the measurement period T2 following the preamble period T1, the polarity of the voltage output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 is controlled. Thereby, the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
 また、制御部16は、プリアンブル期間T1で判定した電圧極性の組み合わせで、測定期間T2においてイオン検出することで、測定期間T2の短縮や測定の安定化を実現できる。 Further, the control unit 16 can realize the shortening of the measurement period T2 and the stabilization of the measurement by detecting ions in the measurement period T2 with the combination of the voltage polarities determined in the preamble period T1.
 また、制御部16は、プリアンブル期間T1において、バリア電源8,9および導入電源11,12から出力される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替えることで、例えば、薬物や爆発物、化学物質などの様々な種類の試料を検出することが可能である。 Further, the control unit 16 has four polarities of the voltages output from the barrier power supplies 8 and 9 and the introduction power supplies 11 and 12 in the preamble period T1, which are positive and negative, negative and negative, positive and positive, and negative and positive. By switching in combination, for example, it is possible to detect various types of samples such as drugs, explosives, and chemical substances.
 また、質量分析装置は、バリア放電によって試料をイオン化するので、オンサイトにおいてもイオン化効率がより高い状態で質量分析を行い、適切な質量分析結果を得ることができる。 Further, since the sample is ionized by the barrier discharge, the mass spectrometer can perform mass analysis with higher ionization efficiency even on-site and obtain an appropriate mass analysis result.
 なお、上記では、プリアンブル期間T1において、電極3bの電圧極性と導入部6bの電圧極性との組み合わせをステップS11,S13,S15,S17の順で行ったが、これに限るものではなく、他の順で行っても同様の効果が得られる。 In the above description, in the preamble period T1, the combination of the voltage polarity of the electrode 3b and the voltage polarity of the introduction portion 6b is performed in the order of steps S11, S13, S15, and S17. However, the present invention is not limited to this. The same effect can be obtained even in the order.
 また、制御部16は、CD6caに供給する電圧の極性を切替えるようにしてもよい。例えば、制御部16は、導入部6bに供給する電圧の極性と同じ極性の電圧をCD6caに供給するようにしてもよい。これによっても、同様の効果が得られる。 Further, the control unit 16 may switch the polarity of the voltage supplied to the CD 6ca. For example, the control unit 16 may supply the CD 6ca with a voltage having the same polarity as the voltage supplied to the introduction unit 6b. This also provides the same effect.
 また、質量分析する試料の対象が、例えば、予め決まっている場合には、4通りの電圧極性ではなく、これより少ない予め決められた電圧極性でイオン検出を行ってもよい。例えば、違法薬物は正イオン化するものが多い。この場合、例えば、バリア放電を「正」、イオン導入を「負」とした電圧極性と、バリア放電を「負」、イオン導入を「負」とした電圧極性との2通りの電圧極性で、イオン検出を行ってもよい。 For example, when the target of the sample to be subjected to mass spectrometry is determined in advance, ion detection may be performed with a predetermined voltage polarity that is smaller than the four voltage polarities. For example, many illegal drugs are positively ionized. In this case, for example, the voltage polarity with the barrier discharge “positive” and the ion introduction “negative” and the voltage polarity with the barrier discharge “negative” and the ion introduction “negative” with two voltage polarities, Ion detection may be performed.
 また、上記では、イオン検出を行うのに、プリアンブル期間T1と測定期間T2とに分けているが、これに限るものではない。例えば、プリアンブル期間T1の4通りの電圧極性の組み合わせを、測定期間T2においてもそのまま継続しても、同様の効果が得られる。より具体的には、質量分析装置は、図3に示したプリアンブル期間T1の処理のみを、所定回数繰り返すようにしてもよい。 In the above description, the ion detection is divided into the preamble period T1 and the measurement period T2. However, the present invention is not limited to this. For example, the same effect can be obtained even if the combinations of four voltage polarities in the preamble period T1 are continued as they are in the measurement period T2. More specifically, the mass spectrometer may repeat only the processing of the preamble period T1 shown in FIG. 3 a predetermined number of times.
 また、制御部16は、導入部6bの電圧を、正負の電圧のどちらか一方に固定し、CD6caの電圧極性を変えるようにしてもよい。または、導入部6b、導入電源11,12、および切替え部13を省略して、制御部16は、CD6caの電圧極性を変えるようにしてもよい。これによっても、同様の効果が得られる。 Further, the control unit 16 may fix the voltage polarity of the CD 6ca by fixing the voltage of the introduction unit 6b to either positive or negative voltage. Alternatively, the introduction unit 6b, the introduction power supplies 11 and 12, and the switching unit 13 may be omitted, and the control unit 16 may change the voltage polarity of the CD 6ca. This also provides the same effect.
 [第2の実施の形態]
 第2の実施の形態では、イオン化部3の電極3bに出力するパルス電圧の周波数を変更する。以下では、第1の実施の形態と異なる部分について説明し、第1の実施の形態と同じ部分については、第1の実施の形態の符号を用いて説明する。
[Second Embodiment]
In the second embodiment, the frequency of the pulse voltage output to the electrode 3b of the ionization unit 3 is changed. Below, a different part from 1st Embodiment is demonstrated, and the part same as 1st Embodiment is demonstrated using the code | symbol of 1st Embodiment.
 図7は、第2の実施の形態に係るバリア電源の回路例を示した図である。図7に示すように、バリア電源8は、駆動部31と、スイッチング部32と、高圧モジュール33と、コンデンサC3とを有している。 FIG. 7 is a diagram showing a circuit example of the barrier power supply according to the second embodiment. As shown in FIG. 7, the barrier power supply 8 includes a drive unit 31, a switching unit 32, a high voltage module 33, and a capacitor C3.
 駆動部31は、増幅器A1と、抵抗R1~R3と、トランジスタTr1と、コンデンサC1とを有している。駆動部31は、増幅器A1の非反転入力端子に入力される電圧によって、高圧モジュール33のトランスT1の1次側端子(トランジスタTr1のエミッタと接続されている端子)の電圧を変え、高圧モジュール33の出力電圧の振幅を制御する。 The driving unit 31 includes an amplifier A1, resistors R1 to R3, a transistor Tr1, and a capacitor C1. The drive unit 31 changes the voltage of the primary side terminal (terminal connected to the emitter of the transistor Tr1) of the transformer T1 of the high-voltage module 33 according to the voltage input to the non-inverting input terminal of the amplifier A1. Controls the output voltage amplitude.
 スイッチング部32は、コンデンサC2と、トランジスタTr2とを有している。トランジスタTr2のゲートには、コンデンサC2を介して、クロックが入力される。クロックは、矩形波の繰り返しパルスであり、図7に示すように、ハイレベル期間(Ton)とローレベル期間(Toff)とを有する。クロックの周波数fは、「Ton」と「Toff」を用いると、次の式(1)で示される。 The switching unit 32 includes a capacitor C2 and a transistor Tr2. A clock is input to the gate of the transistor Tr2 via the capacitor C2. The clock is a repetitive pulse of a rectangular wave, and has a high level period (Ton) and a low level period (Toff) as shown in FIG. The clock frequency f is expressed by the following equation (1) using “Ton” and “Toff”.
 f=1/(Ton/Toff) …(1) F = 1 / (Ton / Toff) (1)
 クロックは、例えば、制御部16から出力される。制御部16は、バリア電源8に出力するクロックの「Ton」および「Toff」を変えることにより、バリア電源8から出力されるパルス電圧の周波数を可変する。なお、クロックのデューティ比Dは、次の式(2)で示される。 The clock is output from the control unit 16, for example. The control unit 16 varies the frequency of the pulse voltage output from the barrier power supply 8 by changing “Ton” and “Toff” of the clock output to the barrier power supply 8. The clock duty ratio D is expressed by the following equation (2).
 D={Ton/(Ton+Toff)}×100 …(2) D = {Ton / (Ton + Toff)} × 100 (2)
 フライバック方式高圧回路では、「Ton」期間において、トランスT1の1次側端子tp1から、トランジスタTr2に電流が流れ、共振用のコンデンサC3に電荷がチャージされる。「Toff」期間になると、コンデンサC3にチャージされた電荷が、トランスT1の1次側端子tp1に向かって流れる。 In the flyback type high-voltage circuit, during the “Ton” period, a current flows from the primary side terminal tp1 of the transformer T1 to the transistor Tr2, and the resonance capacitor C3 is charged. In the “Toff” period, the charge charged in the capacitor C3 flows toward the primary side terminal tp1 of the transformer T1.
 高圧モジュール33は、トランスT1と、抵抗R4,R5とを有している。トランスT1の1次側の電圧は、「Ton」期間および「Toff」期間に流れる電流変化によって、電圧が変化する。トランスT1の1次側の電圧は、トランスT1の2次側に伝達される。トランスT2の2次側からは、巻線比に応じたパルス電圧が出力される。 The high voltage module 33 includes a transformer T1 and resistors R4 and R5. The voltage on the primary side of the transformer T1 changes due to a change in current flowing in the “Ton” period and the “Toff” period. The voltage on the primary side of the transformer T1 is transmitted to the secondary side of the transformer T1. A pulse voltage corresponding to the winding ratio is output from the secondary side of the transformer T2.
 すなわち、バリア電源8は、駆動部31に入力される電圧によって、出力するパルス電圧の振幅を可変することができる。また、バリア電源8は、スイッチング部32に入力されるクロックの周波数によって、出力するパルス電圧の周波数を可変することができる。なお、バリア電源9も、図7と同様の回路を有するが、負のパルス電圧を出力する部分が異なる。 That is, the barrier power supply 8 can vary the amplitude of the pulse voltage to be output according to the voltage input to the drive unit 31. Further, the barrier power supply 8 can vary the frequency of the output pulse voltage according to the frequency of the clock input to the switching unit 32. The barrier power supply 9 also has a circuit similar to that shown in FIG. 7, but the portion that outputs a negative pulse voltage is different.
 物質によっては、電極3bに供給されるパルス電圧の周波数によって、イオン化効率が異なってくる。すなわち、試料によっては、最適なパルス周波数が異なってくる。このため、試料にどのような成分が含まれているか分からない場合は、複数のパルス周波数でイオン化を行うことが、イオン化効率の高効率化やイオン検出感度の向上の点で有利である。 Depending on the substance, the ionization efficiency varies depending on the frequency of the pulse voltage supplied to the electrode 3b. That is, the optimum pulse frequency varies depending on the sample. For this reason, when it is not known what components are contained in the sample, it is advantageous to perform ionization at a plurality of pulse frequencies in terms of increasing ionization efficiency and improving ion detection sensitivity.
 図8は、質量分析装置のタイミングチャートの例を示した図である。図8では、図3と異なる部分について説明する。 FIG. 8 is a diagram showing an example of a timing chart of the mass spectrometer. In FIG. 8, a different part from FIG. 3 is demonstrated.
 バリア電源8,9は、制御部16から出力されるクロックの周波数に応じて、切替え部10に出力するパルス電圧の周波数を可変する。例えば、バリア電源8,9は、「10kHz」、「20kHz」、および「5kHz」の3種類の周波数のパルス電圧を出力する。 The barrier power supplies 8 and 9 vary the frequency of the pulse voltage output to the switching unit 10 according to the frequency of the clock output from the control unit 16. For example, the barrier power supplies 8 and 9 output pulse voltages having three types of frequencies of “10 kHz”, “20 kHz”, and “5 kHz”.
 図8に示す波形W11は、切替え部10から電極3bに出力される正のパルス電圧の波形を示している。波形11に示すように、電極3bには、3種類の周波数のパルス電圧が供給される。 A waveform W11 shown in FIG. 8 indicates a waveform of a positive pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 11, pulse voltages having three kinds of frequencies are supplied to the electrode 3b.
 図8に示す波形W12は、切替え部10から電極3bに出力される負のパルス電圧の波形を示している。波形12に示すように、電極3bには、3種類の周波数のパルス電圧が供給される。 A waveform W12 shown in FIG. 8 shows a waveform of a negative pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 12, the electrode 3b is supplied with pulse voltages having three kinds of frequencies.
 なお、イオントラップ部4bは、パルス電圧の各周波数において、質量を掃引する。また、制御部16は、測定期間2においても、各バリア放電において、複数の周波数のパルス電圧を出力する。例えば、図8の例の場合、制御部16は、測定期間2の各バリア放電においても、3種類の周波数のパルス電圧を出力する。また、制御部16は、測定期間2において、例えば、各周波数で得られたイオン量のうち、最もイオン化効率のよかった周波数のイオン量を記憶装置に記憶するようにする。 In addition, the ion trap part 4b sweeps mass in each frequency of a pulse voltage. The control unit 16 also outputs pulse voltages having a plurality of frequencies in each barrier discharge even in the measurement period 2. For example, in the example of FIG. 8, the control unit 16 outputs pulse voltages of three types of frequencies even in each barrier discharge in the measurement period 2. Further, in the measurement period 2, the control unit 16 stores, for example, the amount of ions having the highest ionization efficiency among the amounts of ions obtained at each frequency in the storage device.
 図9は、質量分析装置の動作例を示したフローチャートである。図9において、図5と同じ処理には同じ符号が付してある。図9では、図5と異なる処理について説明する。 FIG. 9 is a flowchart showing an operation example of the mass spectrometer. In FIG. 9, the same processes as those in FIG. In FIG. 9, processing different from FIG. 5 will be described.
 制御部16は、ステップS11において、イオン化部3の電極3bに正のパルス電圧を出力し(バリア放電+)、導入部6bに負の電圧を出力するように(イオン導入-)、切替え部10,13の切替えを制御した後、ステップS11aにおいて、バリア電源8から、異なる周波数のパルス電圧が出力されるように制御する。これにより、例えば、図8に示す点線枠D1のバリア放電では、波形W11に示すような異なる周波数のパルス電圧が電極3bに出力される。 In step S11, the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction −). , 13 is controlled, and in step S11a, control is performed so that pulse voltages having different frequencies are output from the barrier power supply 8. Thereby, for example, in the barrier discharge of the dotted frame D1 shown in FIG. 8, pulse voltages having different frequencies as shown in the waveform W11 are output to the electrode 3b.
 制御部16は、ステップS13a,15a,17aにおいても上記と同様に、異なる周波数のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。 The controller 16 also controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b in steps S13a, 15a, and 17a as described above.
 制御部16は、ステップS22a,S26aにおいて、異なる周波数のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。すなわち、制御部16は、測定期間T2においても、異なる周波数のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。 The controller 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b in steps S22a and S26a. That is, the control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different frequencies are output to the electrode 3b even during the measurement period T2.
 イオン検出部6は、ステップS23a,S27aにおいて、各周波数での各質量(掃引した質量)におけるイオンを検出する。制御部16は、例えば、イオン検出部6によって検出された各周波数での各質量におけるイオン量のうち、イオン化効率の最もよかった周波数のイオン量を記憶装置に記憶する。 The ion detector 6 detects ions in each mass (swept mass) at each frequency in steps S23a and S27a. For example, the control unit 16 stores, in the storage device, the ion amount of the frequency with the highest ionization efficiency among the ion amounts in each mass at each frequency detected by the ion detection unit 6.
 このように、制御部16は、イオン化部3の電極3bに出力されるパルス電圧の周波数を変更する。これにより、質量分析装置は、例えば、薬物や爆発物、化学物質などの様々な種類の試料を適切に検出することが可能となる。 Thus, the control unit 16 changes the frequency of the pulse voltage output to the electrode 3b of the ionization unit 3. Thereby, the mass spectrometer can appropriately detect various types of samples such as drugs, explosives, and chemical substances.
 なお、上記では、パルス電圧の周波数を10kHz、20kHz、および5kHzで切り替えるとしたが、これに限るものではなく、他の周波数を用いることもできる。 In the above description, the pulse voltage frequency is switched between 10 kHz, 20 kHz, and 5 kHz. However, the present invention is not limited to this, and other frequencies may be used.
 [第3の実施の形態]
 第3の実施の形態では、イオン化部3の電極3bに出力するパルス電圧の波形を変更する。以下では、第1、第2の実施の形態と異なる部分について説明し、第1、第2の実施の形態と同じ部分については、第1、第2の実施の形態の符号を用いて説明する。
[Third Embodiment]
In 3rd Embodiment, the waveform of the pulse voltage output to the electrode 3b of the ionization part 3 is changed. In the following, parts different from the first and second embodiments will be described, and the same parts as the first and second embodiments will be described using the reference numerals of the first and second embodiments. .
 図10は、第3の実施の形態に係るバリア電源の回路例を示した図である。図10において、図7と同じものには同じ符号が付してある。以下では、図7と異なる部分について説明する。 FIG. 10 is a diagram showing a circuit example of the barrier power supply according to the third embodiment. 10, the same components as those in FIG. 7 are denoted by the same reference numerals. Below, a different part from FIG. 7 is demonstrated.
 図10に示すように、バリア電源8は、容量を可変することができる可変容量コンデンサVC1を有している。可変容量コンデンサVC1の容量は、例えば、制御部16によって可変される。 As shown in FIG. 10, the barrier power supply 8 has a variable capacitor VC1 whose capacitance can be varied. The capacity of the variable capacitor VC1 is varied by the control unit 16, for example.
 バリア電源8は、スイッチング部32に入力されるクロックのデューティ比と、可変容量コンデンサVC1の容量(共振容量)とによって、出力するパルス電圧の電圧波形を変えることができる。制御部16は、バリア電源8に出力するクロックの「Ton」および「Toff」を変えることにより、クロックのデューティ比を可変することができる。 The barrier power supply 8 can change the voltage waveform of the output pulse voltage according to the duty ratio of the clock input to the switching unit 32 and the capacity (resonance capacity) of the variable capacitor VC1. The control unit 16 can vary the duty ratio of the clock by changing “Ton” and “Toff” of the clock output to the barrier power supply 8.
 図11は、バリア電源から出力されるパルス電圧の電圧波形を説明する図である。図11(A)には、単峰パルス波形の例が示してある。図11(B)には、双峰パルス波形の例が示してある。図11(C)には、振動パルス波形の例が示してある。 FIG. 11 is a diagram for explaining the voltage waveform of the pulse voltage output from the barrier power supply. FIG. 11A shows an example of a single peak pulse waveform. FIG. 11B shows an example of a bimodal pulse waveform. FIG. 11C shows an example of a vibration pulse waveform.
 図11(A)に示す単峰パルス波形は、例えば、図10の回路において、駆動部31に入力されるクロックの周波数を「f」、駆動部31に入力されるクロックのデューティ比を「D」、および可変容量コンデンサVC1の容量を「C」とすると、「f=10kHz」、「D=55%」、および「C=1000pF」とすることにより得られる。 11A, for example, in the circuit of FIG. 10, the frequency of the clock input to the drive unit 31 is “f” and the duty ratio of the clock input to the drive unit 31 is “D”. , And the capacitance of the variable capacitor VC1 is “C”, “f = 10 kHz”, “D = 55%”, and “C = 1000 pF”.
 図11(B)に示す双峰パルス波形は、例えば、図10の回路において、「f=10kHz」、「D=75%」、および「C=4700pF」とすることにより得られる。 The bimodal pulse waveform shown in FIG. 11B is obtained by setting “f = 10 kHz”, “D = 75%”, and “C = 4700 pF” in the circuit of FIG. 10, for example.
 図11(C)に示す振動パルス波形は、例えば、図10の回路において、「f=10kHz」、「D=90」、および「C=1000pF」とすることにより得られる。 The vibration pulse waveform shown in FIG. 11C is obtained by setting “f = 10 kHz”, “D = 90”, and “C = 1000 pF” in the circuit of FIG. 10, for example.
 なお、「f」、「D」、および「C」の設定はこれに限るものではなく、その他適当な設定値により、上記した3種類の波形を生成することができる。 Note that the setting of “f”, “D”, and “C” is not limited to this, and the above three types of waveforms can be generated by other appropriate setting values.
 図12は、質量分析装置のタイミングチャートの例を示した図である。図12では、図3と異なる部分について説明する。 FIG. 12 is a diagram showing an example of a timing chart of the mass spectrometer. In FIG. 12, a different part from FIG. 3 is demonstrated.
 バリア電源8,9は、制御部16から出力されるデューティ比および共振容量に応じて、切替え部10に出力するパルス電圧の電圧波形を可変する。例えば、バリア電源8,9は、「単峰パルス波形」、「双峰パルス波形」、および「振動パルス波形」の3種類のパルス電圧を出力する。 The barrier power supplies 8 and 9 vary the voltage waveform of the pulse voltage output to the switching unit 10 according to the duty ratio and resonance capacity output from the control unit 16. For example, the barrier power supplies 8 and 9 output three types of pulse voltages of “single peak pulse waveform”, “double peak pulse waveform”, and “vibration pulse waveform”.
 図12に示す波形W21は、切替え部10から電極3bに出力される正のパルス電圧の波形を示している。波形21に示すように、電極3bには、3種類の電圧波形のパルス電圧が供給される。 A waveform W21 shown in FIG. 12 indicates a waveform of a positive pulse voltage output from the switching unit 10 to the electrode 3b. As shown in the waveform 21, the electrode 3b is supplied with pulse voltages having three types of voltage waveforms.
 図12に示す波形W22は、切替え部10から電極3bに出力される負のパルス電圧の波形を示している。波形22に示すように、電極3bには、3種類の電圧波形のパルス電圧が供給される。 A waveform W22 shown in FIG. 12 indicates a waveform of a negative pulse voltage output from the switching unit 10 to the electrode 3b. As shown by the waveform 22, the electrode 3b is supplied with pulse voltages having three types of voltage waveforms.
 なお、イオントラップ部4bは、パルス電圧の各電圧波形において、質量を掃引する。また、制御部16は、測定期間2においても、各バリア放電において、複数の電圧波形のパルス電圧を出力する。例えば、図12の例の場合、制御部16は、測定期間2の各バリア放電においても、3種類の電圧波形のパルス電圧を出力する。また、制御部16は、測定期間2において、例えば、各電圧波形で得られたイオン量のうち、最もイオン化効率のよかった電圧波形のイオン量を記憶装置に記憶するようにする。 In addition, the ion trap part 4b sweeps mass in each voltage waveform of a pulse voltage. Further, also in the measurement period 2, the control unit 16 outputs pulse voltages having a plurality of voltage waveforms in each barrier discharge. For example, in the example of FIG. 12, the control unit 16 outputs pulse voltages having three types of voltage waveforms even in each barrier discharge in the measurement period 2. Further, in the measurement period 2, the control unit 16 stores, for example, the ion amount of the voltage waveform having the highest ionization efficiency among the ion amounts obtained in each voltage waveform in the storage device.
 図13は、質量分析装置の動作例を示したフローチャートである。図13において、図5と同じ処理には同じ符号が付してある。図13では、図5と異なる処理について説明する。 FIG. 13 is a flowchart showing an operation example of the mass spectrometer. In FIG. 13, the same processes as those in FIG. In FIG. 13, processing different from that in FIG. 5 will be described.
 制御部16は、ステップS11において、イオン化部3の電極3bに正のパルス電圧を出力し(バリア放電+)、導入部6bに負の電圧を出力するように(イオン導入-)、切替え部10,13の切替えを制御した後、ステップS11bにおいて、バリア電源8から、異なる電圧波形のパルス電圧が出力されるように制御する。これにより、例えば、図12に示す点線枠D1のバリア放電では、波形W21に示すような異なる電圧波形のパルス電圧が電極3bに出力される。 In step S11, the control unit 16 outputs a positive pulse voltage to the electrode 3b of the ionization unit 3 (barrier discharge +), and outputs a negative voltage to the introduction unit 6b (ion introduction −). , 13 is controlled, and in step S11b, the barrier power supply 8 is controlled to output pulse voltages having different voltage waveforms. Thereby, for example, in the barrier discharge of the dotted frame D1 shown in FIG. 12, a pulse voltage having a different voltage waveform as shown in the waveform W21 is output to the electrode 3b.
 制御部16は、ステップS13b,15b,17bにおいても上記と同様に、異なる電圧波形のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。 The controller 16 also controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b in steps S13b, 15b, and 17b as described above.
 制御部16は、ステップS22b,S26bにおいて、異なる電圧波形のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。すなわち、制御部16は、測定期間T2においても、異なる電圧波形のパルス電圧が電極3bに出力されるようにバリア電源8,9を制御する。 The control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b in steps S22b and S26b. That is, the control unit 16 controls the barrier power supplies 8 and 9 so that pulse voltages having different voltage waveforms are output to the electrode 3b even during the measurement period T2.
 イオン検出部6は、ステップS23b,S27bにおいて、各電圧波形での各質量(掃引した質量)におけるイオンを検出する。制御部16は、例えば、イオン検出部6によって検出された各電圧波形での各質量におけるイオン量のうち、イオン化効率の最もよかった電圧波形のイオン量を記憶装置に記憶する。 The ion detector 6 detects ions at each mass (swept mass) in each voltage waveform in steps S23b and S27b. For example, the control unit 16 stores, in the storage device, the ion amount of the voltage waveform having the highest ionization efficiency among the ion amounts at each mass in each voltage waveform detected by the ion detection unit 6.
 このように、制御部16は、イオン化部3の電極3bに出力されるパルス電圧の電圧波形を変更する。これにより、質量分析装置は、例えば、薬物や爆発物、化学物質などの様々な種類の試料を適切に検出することが可能となる。 Thus, the control unit 16 changes the voltage waveform of the pulse voltage output to the electrode 3b of the ionization unit 3. Thereby, the mass spectrometer can appropriately detect various types of samples such as drugs, explosives, and chemical substances.
 なお、第2の実施の形態および第3の実施の形態のそれぞれで、パルス電圧の周波数および電圧波形を変更する例を説明したが、これらを組み合わせることもできる。例えば、制御部16は、図12に示す波形W21の3つ電圧波形のそれぞれにおいて、周波数を「10kHz」、「20kHz」、および「5kHz」と変えるようにしてもよい。 In addition, although the example which changes the frequency and voltage waveform of a pulse voltage was demonstrated in each of 2nd Embodiment and 3rd Embodiment, these can also be combined. For example, the control unit 16 may change the frequency to “10 kHz”, “20 kHz”, and “5 kHz” in each of the three voltage waveforms of the waveform W21 illustrated in FIG.
 [第4の実施の形態]
 第4の実施の形態では、バリア放電およびイオン導入の電圧極性を、ユーザによって設定できるようにする。また、バリア放電の周波数および電圧波形を、ユーザによって設定できるようにする。
[Fourth Embodiment]
In the fourth embodiment, the voltage polarity of barrier discharge and ion introduction can be set by the user. In addition, the frequency and voltage waveform of the barrier discharge can be set by the user.
 図14は、第4の実施の形態に係る表示装置の画面例を示した図である。図14に示すように、質量分析装置の表示装置26には、設定部41~44と、ボタン45とが表示される。図14に示す画面例は、例えば、質量分析装置の電源を投入すると表示装置26に表示される。 FIG. 14 is a diagram showing a screen example of the display device according to the fourth embodiment. As shown in FIG. 14, setting units 41 to 44 and a button 45 are displayed on the display device 26 of the mass spectrometer. The screen example shown in FIG. 14 is displayed on the display device 26, for example, when the mass spectrometer is turned on.
 表示装置26は、例えば、画面上にタッチパネルが設けられている。ユーザは、画面上のタッチパネルをタップすることによって、設定部41~44の設定内容を変更することができる。また、制御部16は、開始のボタン45がタップされると、設定部41~44に設定された設定内容で質量分析を行う。 The display device 26 is provided with a touch panel on the screen, for example. The user can change the setting contents of the setting units 41 to 44 by tapping the touch panel on the screen. In addition, when the start button 45 is tapped, the control unit 16 performs mass spectrometry with the setting contents set in the setting units 41 to 44.
 設定部41は、ユーザから、バリア放電の電圧極性の設定を受付ける。例えば、ユーザは、設定部41内に表示されている「+」または「-」の部分をタップすることにより、バリア放電の電圧極性を設定することができる。より具体的には、ユーザは、設定部41に示している最左の「+」部分をタップすると、「+」および「-」が表示され、その中から、設定する電圧極性を選択することができる。なお、設定部41の最左の「+」は、例えば、図3の点線枠D1のバリア放電の電圧極性を設定し、その右隣の「-」は、点線枠D2のバリア放電の電圧極性を設定し、その右隣の「+」は、点線枠D3のバリア放電の電圧極性を設定し、最右の「-」は、点線枠D4のバリア放電の電圧極性を設定する。 The setting unit 41 receives the setting of the voltage polarity of the barrier discharge from the user. For example, the user can set the voltage polarity of the barrier discharge by tapping the “+” or “−” portion displayed in the setting unit 41. More specifically, when the user taps the leftmost “+” portion shown in the setting unit 41, “+” and “−” are displayed, and the voltage polarity to be set is selected from among them. Can do. The leftmost “+” of the setting unit 41 sets, for example, the voltage polarity of the barrier discharge in the dotted frame D1 in FIG. 3, and the “−” next to the right indicates the voltage polarity of the barrier discharge in the dotted frame D2. “+” Next to the right side sets the voltage polarity of the barrier discharge in the dotted line frame D3, and “−” on the rightmost side sets the voltage polarity of the barrier discharge in the dotted line frame D4.
 設定部42は、ユーザから、イオン導入の電圧極性の設定を受付ける。例えば、ユーザは、設定部42内に表示されている「+」または「-」の部分をタップすることにより、イオン導入の電圧極性を設定することができる。より具体的には、ユーザは、設定部42に示している最左の「-」部分をタップすると、「+」および「-」が表示され、その中から、設定する電圧極性を選択することができる。なお、設定部42の最左の「+」は、例えば、図3の点線枠D1のイオン導入の電圧極性を設定し、その右隣の「-」は、点線枠D2のイオン導入の電圧極性を設定し、その右隣の「+」は、点線枠D3のイオン導入の電圧極性を設定し、最右の「-」は、点線枠D4のイオン導入の電圧極性を設定する。 The setting unit 42 receives the setting of the voltage polarity for ion introduction from the user. For example, the user can set the voltage polarity for ion introduction by tapping the “+” or “−” portion displayed in the setting unit 42. More specifically, when the user taps the leftmost “−” portion shown in the setting unit 42, “+” and “−” are displayed, and the voltage polarity to be set is selected from among them. Can do. The leftmost “+” of the setting unit 42 sets, for example, the voltage polarity for ion introduction in the dotted frame D1 in FIG. 3, and the “−” next to the right indicates the voltage polarity for ion introduction in the dotted frame D2. The “+” next to the right sets the voltage polarity for ion introduction in the dotted line frame D3, and the “−” on the rightmost side sets the voltage polarity for ion introduction in the dotted line frame D4.
 設定部43は、ユーザから、バリア放電のパルス電圧の周波数を受付ける。例えば、ユーザは、設定部43内に表示されている「10kHz」、「20kHz」、または「5kHz」の部分をタップすることにより、バリア放電のパルス電圧の周波数を設定することができる。より具体的には、ユーザは、設定部43に示している「10kHz」の部分をタップすると、「10kHz」、「20kHz」、および「5kHz」が表示され、その中から、設定するパルス電圧の周波数を選択できる。なお、設定部43の最左の「10kHz」は、図8の波形W11,W12の左側部分のパルス電圧の周波数を設定し、その右隣の「20kHz」は、波形W11,W12の真中部分のパルス電圧の周波数を設定し、最右の「5kHz」は、波形W11,W12の右側部分のパルス電圧の周波数を設定する。 The setting unit 43 receives the frequency of the pulse voltage of the barrier discharge from the user. For example, the user can set the frequency of the pulse voltage of the barrier discharge by tapping the “10 kHz”, “20 kHz”, or “5 kHz” portion displayed in the setting unit 43. More specifically, when the user taps the “10 kHz” portion shown in the setting unit 43, “10 kHz”, “20 kHz”, and “5 kHz” are displayed, and the pulse voltage to be set is displayed from among them. The frequency can be selected. The leftmost “10 kHz” of the setting unit 43 sets the frequency of the pulse voltage on the left side of the waveforms W11 and W12 in FIG. 8, and the “20 kHz” on the right is the middle part of the waveforms W11 and W12. The frequency of the pulse voltage is set, and the rightmost “5 kHz” sets the frequency of the pulse voltage in the right part of the waveforms W11 and W12.
 設定部44は、ユーザから、バリア放電のパルス電圧の電圧波形を受付ける。例えば、ユーザは、設定部44内に表示されている「単峰」、「双峰」、または「振動」の部分をタップすることにより、バリア放電のパルス電圧の電圧波形を設定することができる。より具体的には、ユーザは、設定部44に示している「単峰」の部分をタップすると、「単峰」、「双峰」、および「振動」が表示され、その中から、設定するパルス電圧の電圧波形を選択できる。なお、設定部44の最左の「単峰」は、図12の波形W21,W22の左側部分のパルス電圧の電圧波形を設定し、その右隣の「双峰」は、波形W21,W22の真中部分のパルス電圧の電圧波形を設定し、最右の「振動」は、波形W21,W22の右側部分のパルス電圧の電圧波形を設定する。 The setting unit 44 receives the voltage waveform of the barrier discharge pulse voltage from the user. For example, the user can set the voltage waveform of the pulse voltage of the barrier discharge by tapping the “single peak”, “double peak”, or “vibration” portion displayed in the setting unit 44. . More specifically, when the user taps the “single peak” portion shown in the setting unit 44, “single peak”, “double peak”, and “vibration” are displayed, and settings are made from among them. The voltage waveform of the pulse voltage can be selected. The leftmost “single peak” of the setting unit 44 sets the voltage waveform of the pulse voltage on the left side of the waveforms W21 and W22 in FIG. 12, and the “double peak” on the right side of the setting unit 44 indicates the waveforms W21 and W22. The voltage waveform of the pulse voltage in the middle part is set, and the rightmost “vibration” sets the voltage waveform of the pulse voltage in the right part of the waveforms W21 and W22.
 制御部16は、ユーザによってボタン45がタップされると、質量分析を開始するとともに、設定部41~44に設定された設定内容で、質量分析を行う。制御部16は、例えば、GUI17を介して、設定部41~44に入力された情報を受付ける。 When the user taps the button 45, the control unit 16 starts mass analysis and performs mass analysis with the setting contents set in the setting units 41 to 44. For example, the control unit 16 receives information input to the setting units 41 to 44 via the GUI 17.
 このように、バリア放電およびイオン導入の電圧極性、バリア放電のパルス電圧の周波数、およびバリア放電のパルス電圧の電圧波形を切替え可能にすることにより、ユーザの使い勝手が向上する。 Thus, by making it possible to switch the voltage polarity of the barrier discharge and ion introduction, the frequency of the pulse voltage of the barrier discharge, and the voltage waveform of the pulse voltage of the barrier discharge, the usability for the user is improved.
 なお、バリア放電およびイオン導入の電圧極性の設定は、4組すべて設定しなくてもよい。例えば、質量分析する試料の対象が予め決まっている場合には、ユーザは、4通りの電圧極性ではなく、これより少ない組み合わせを設定するようにしてもよい。バリア放電の周波数および電圧波形についても同様である。 Note that all four sets of voltage polarity for barrier discharge and ion introduction need not be set. For example, when the target of the sample to be subjected to mass spectrometry is determined in advance, the user may set combinations other than the four voltage polarities. The same applies to the frequency and voltage waveform of the barrier discharge.
 [第5の実施の形態]
 図15は、第5の実施の形態に係る質量分析装置のブロック構成例を示した図である。図15において、図1と同じものには同じ符号を付し、その説明を省略する。
[Fifth Embodiment]
FIG. 15 is a diagram illustrating a block configuration example of a mass spectrometer according to the fifth embodiment. 15 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
 図15の質量分析装置は、図1の質量分析装置に対し、導入部6bと、導入電源11,12と、切替え部13とが省略されている。そして、図15の質量分析装置は、CD電源51と、切替え部52とを有している。図15の質量分析装置では、検出部6cのCD6caに、図1に示した導入部6bの機能を持たせている。 15 is omitted in the introduction unit 6b, the introduction power supplies 11 and 12, and the switching unit 13 from the mass spectrometer of FIG. 15 includes a CD power source 51 and a switching unit 52. In the mass spectrometer of FIG. 15, the function of the introduction part 6b shown in FIG. 1 is given to the CD 6ca of the detection part 6c.
 CD電源51は、例えば、「+5kV」の正の電圧を出力する。なお、CD電源14は、図1で説明したように、例えば、「-5kV」の負の電圧を出力する。 The CD power supply 51 outputs a positive voltage of “+5 kV”, for example. The CD power supply 14 outputs a negative voltage of “−5 kV”, for example, as described in FIG.
 切替え部52は、制御部16の制御に応じて、CD電源14,51から出力される電圧の一方をCD6caに出力する。 The switching unit 52 outputs one of the voltages output from the CD power sources 14 and 51 to the CD 6 ca under the control of the control unit 16.
 図15の質量分析装置の概略動作について説明する。図15の質量分析装置の概略動作は、図2のフローチャートに示す概略動作と同様であるが、ステップS6の動作が異なる。以下では、処理が異なるステップS6について説明する。 The general operation of the mass spectrometer shown in FIG. 15 will be described. The general operation of the mass spectrometer of FIG. 15 is the same as the general operation shown in the flowchart of FIG. 2, but the operation of step S6 is different. Below, step S6 from which a process differs is demonstrated.
 制御部16は、イオントラップ部4bで蓄積された試料のイオンを、検出部6cに導入し、イオンの質量を検出する(ステップS6)。例えば、制御部16は、切替え部52を制御して、CD電源14,51の一方の電圧をCD6caに出力し、イオントラップ部4bで蓄積されたイオンを検出部6cに導入し、イオンの質量を検出する(電圧の極性制御については以下で説明する)。これにより、制御部16は、試料に含まれる薬物等を検出できる。 The control unit 16 introduces the sample ions accumulated in the ion trap unit 4b into the detection unit 6c, and detects the mass of the ions (step S6). For example, the control unit 16 controls the switching unit 52 to output one voltage of the CD power sources 14 and 51 to the CD 6 ca, introduce the ions accumulated in the ion trap unit 4 b to the detection unit 6 c, and the mass of the ions. (Voltage polarity control will be described below). Thereby, the control part 16 can detect the drug etc. which are contained in the sample.
 図16は、質量分析装置のタイミングチャートの例を示した図である。図16の一点鎖線に示すように、質量分析装置は、プリアンブル期間T1と測定期間T2との2つのフェーズを有する。質量分析装置は、プリアンブル期間T1において、バリア放電とイオン導入(電極3bとCD6ca)の電圧極性の組合せのうち、どの組合せにおいて、イオン化効率が最もよいかを判定する。質量分析装置は、プリアンブル期間T1において判定したバリア放電とイオン導入の電圧極性の組み合わせで、測定期間T2において、試料の質量を検出する。 FIG. 16 is a diagram showing an example of a timing chart of the mass spectrometer. As shown by the one-dot chain line in FIG. 16, the mass spectrometer has two phases of a preamble period T1 and a measurement period T2. In the preamble period T1, the mass spectrometer determines which combination has the best ionization efficiency among the combinations of the voltage polarities of the barrier discharge and the ion introduction (electrode 3b and CD6ca). The mass spectrometer detects the mass of the sample in the measurement period T2 by a combination of the barrier discharge determined in the preamble period T1 and the voltage polarity of ion introduction.
 図16に示す波形W1,W2,W3,W5,W7,W8は、図3の波形W1,W2,W3,W5,W7,W8と同様である。図16の波形W4は、切替え部52がCD6caに出力する電圧のタイミングを示している。切替え部52は、波形W4に示す「OFF」のとき、CD電源14,51から出力される正負の電圧をCD6caに出力しない。切替え部52は、波形W4に示す「負」のとき、CD電源14から出力される負の電圧をCD6caに出力し、波形W4に示す「正」のとき、CD電源51から出力される正の電圧をCD6caに出力する。なお、波形W4の測定期間T2に示す「-5kV」は、切替え部52が負の電圧をCD6caに出力していることを示し、具体値で示したものである。 The waveforms W1, W2, W3, W5, W7, and W8 shown in FIG. 16 are the same as the waveforms W1, W2, W3, W5, W7, and W8 in FIG. A waveform W4 in FIG. 16 indicates the timing of the voltage that the switching unit 52 outputs to the CD6ca. The switching unit 52 does not output the positive and negative voltages output from the CD power sources 14 and 51 to the CD 6ca when “OFF” shown in the waveform W4. The switching unit 52 outputs a negative voltage output from the CD power supply 14 to the CD6ca when “negative” shown in the waveform W4, and a positive output from the CD power supply 51 when “positive” shown in the waveform W4. The voltage is output to CD6ca. Note that “−5 kV” shown in the measurement period T2 of the waveform W4 indicates that the switching unit 52 outputs a negative voltage to the CD6ca, and is a specific value.
 制御部16は、プリアンブル期間T1において、切替え部10を制御し、バリア電源8,9から電極3bに出力するパルス電圧の極性を切替える。また、制御部16は、プリアンブル期間T1において、切替え部52を制御し、CD電源14,51からCD6caに出力する電圧の極性を切替える。 In the preamble period T1, the control unit 16 controls the switching unit 10 to switch the polarity of the pulse voltage output from the barrier power supplies 8 and 9 to the electrode 3b. In addition, the control unit 16 controls the switching unit 52 in the preamble period T1 to switch the polarity of the voltage output from the CD power sources 14 and 51 to the CD 6ca.
 例えば、制御部16は、図16の点線枠D1~D4に示すように、プリアンブル期間T1において、バリア電源8,9およびCD電源14,51から出力される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替える。 For example, as shown by dotted line frames D1 to D4 in FIG. 16, the control unit 16 sets the polarity of the voltage output from the barrier power sources 8 and 9 and the CD power sources 14 and 51 to positive, negative, and negative in the preamble period T1. Switching between four combinations of negative and positive, positive and positive, and negative and positive.
 制御部16は、バリア電源8,9およびCD電源14,51の電圧極性の全ての組み合わせを切替えると、切替えた各極性でのイオンの検出量(イオン強度)に基づき、プリアンブル期間T1に続く測定期間T2において、電極3bおよびCD6caに出力する電圧の極性を判定する。 When all the combinations of the voltage polarities of the barrier power supplies 8 and 9 and the CD power supplies 14 and 51 are switched, the control unit 16 performs measurement following the preamble period T1 based on the detected amount of ions (ion intensity) in each switched polarity. In the period T2, the polarity of the voltage output to the electrode 3b and the CD6ca is determined.
 例えば、制御部16は、図16に示す点線枠D1~D4のそれぞれの電圧極性の組み合わせにおいて、イオン検出部6から出力されるイオン強度を積分する。例えば、図16に示す点線枠D1~D4のそれぞれの電圧極性の組み合わせにおいて、図4に示すようなイオン強度が得られ(電圧極性の組み合わせによっては、図4に示すようなピークが現れないものがある)、制御部16は、点線枠D1~D4のそれぞれで得られるイオン強度を、それぞれ積分する。制御部16は、点線枠D1~D4のそれぞれのイオン強度の積分値が、所定の閾値を超えたか否か判定し、所定の閾値を超えたイオン強度の電圧極性の組み合わせを判定する。そして、制御部16は、判定した電圧極性で、測定期間T2において試料の質量分析を行う。 For example, the control unit 16 integrates the ion intensity output from the ion detection unit 6 in each voltage polarity combination of the dotted line frames D1 to D4 shown in FIG. For example, in the combinations of the voltage polarities of the dotted line frames D1 to D4 shown in FIG. 16, the ion intensity as shown in FIG. 4 is obtained (the peak as shown in FIG. 4 does not appear depending on the combination of the voltage polarities). The control unit 16 integrates the ion intensity obtained in each of the dotted line frames D1 to D4. The control unit 16 determines whether or not the integrated value of each ion intensity in the dotted line frames D1 to D4 exceeds a predetermined threshold, and determines a combination of voltage polarities of the ion intensity exceeding the predetermined threshold. Then, the control unit 16 performs mass analysis of the sample in the measurement period T2 with the determined voltage polarity.
 例えば、図16に示す点線枠D1の電圧極性の組み合わせにおいて、積分したイオン強度が所定の閾値を超えたとする。この場合、制御部16は、図16の測定期間T2の点線枠D5,D6に示すように、バリア放電の電圧極性を「正」(図3中では「+3kV」と図示)に設定し、イオン導入の電圧極性を「負」(図3中では「-5kV」と図示)に設定して、測定期間T2において試料の質量分析を行う。 For example, it is assumed that the integrated ion intensity exceeds a predetermined threshold in the combination of voltage polarities in the dotted frame D1 shown in FIG. In this case, the control unit 16 sets the voltage polarity of the barrier discharge to “positive” (shown as “+3 kV” in FIG. 3) as shown by the dotted frames D5 and D6 in the measurement period T2 in FIG. The voltage polarity of the introduction is set to “negative” (shown as “−5 kV” in FIG. 3), and mass analysis of the sample is performed in the measurement period T2.
 このように、質量分析装置の制御部16は、プリアンブル期間T1において、イオン化部3に供給される電圧およびCD6ca(電子放出部)に供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、プリアンブル期間T1に続く測定期間T2において、イオン化部3に供給される電圧およびCD6caに供給される電圧の極性を制御する。これにより、制御部16は、イオン化効率のより高い電圧極性の組み合わせを判定でき、判定した電圧極性で質量分析を行い、適切な質量分析結果を得ることができる。 In this way, the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit 3 and the voltage supplied to the CD6ca (electron emission unit) in the preamble period T1, and detects ions in the switched polarity. Based on the quantity, in the measurement period T2 subsequent to the preamble period T1, the polarity of the voltage supplied to the ionization unit 3 and the voltage supplied to the CD6ca is controlled. Thereby, the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
 [第6の実施の形態]
 図17は、第6の実施の形態に係る質量分析装置のブロック構成例を示した図である。図17の質量分析装置は、図15の質量分析装置のイオン源を、バリア放電を用いる方式から、ESI(Electrospray Ionization:エレクトロスプレー法)を用いる方式にしているところが異なる。図17において、図15と同じものには同じ符号を付し、その説明を省略する。
[Sixth Embodiment]
FIG. 17 is a diagram illustrating a block configuration example of a mass spectrometer according to the sixth embodiment. The mass spectrometer shown in FIG. 17 is different from the system using the barrier discharge in the ion source of the mass spectrometer shown in FIG. 15 in that the ESI (Electrospray Ionization) is used. In FIG. 17, the same components as those in FIG. 15 are denoted by the same reference numerals, and the description thereof is omitted.
 ESIは、液体試料を気化させつつイオン化するイオン源の一手法である。図17の質量分析装置は、液体試料が通されるキャピラリ61aを備えたESIイオン源61と、ESIイオン源61でイオン化された試料を質量分析部4に導入する導入部62と、ESI電源63,64と、制御部16の制御に応じて、ESI電源63,64から出力される電圧をキャピラリ61aに供給する切替え部65とを有している。 ESI is a method of ion source that ionizes while vaporizing a liquid sample. The mass spectrometer of FIG. 17 includes an ESI ion source 61 having a capillary 61a through which a liquid sample is passed, an introduction unit 62 that introduces a sample ionized by the ESI ion source 61 into the mass analysis unit 4, and an ESI power source 63. , 64, and a switching unit 65 that supplies the voltage output from the ESI power sources 63, 64 to the capillary 61 a in accordance with the control of the control unit 16.
 ESI電源63,64の出力電圧は、切替え部65で切り替えられてキャピラリ61aに印加される。ESI電源63は、例えば、「-3kV」の負の電圧をキャピラリ61aに供給し、ESI電源64は、例えば、「+3kV」の正の電圧をキャピラリ61aに供給する。 The output voltages of the ESI power supplies 63 and 64 are switched by the switching unit 65 and applied to the capillary 61a. The ESI power supply 63 supplies, for example, a negative voltage of “−3 kV” to the capillary 61a, and the ESI power supply 64 supplies, for example, a positive voltage of “+3 kV” to the capillary 61a.
 図17の質量分析装置のタイミングチャートは、図16に示した図15の質量分析装置のタイミングチャートと同様である。ただし、図17の質量分析装置では、図16の波形W3は、切替え部65がESIイオン源61のキャピラリ61aに出力する電圧のタイミングを示す。 The timing chart of the mass spectrometer of FIG. 17 is the same as the timing chart of the mass spectrometer of FIG. 15 shown in FIG. However, in the mass spectrometer of FIG. 17, the waveform W <b> 3 of FIG. 16 indicates the timing of the voltage that the switching unit 65 outputs to the capillary 61 a of the ESI ion source 61.
 切替え部65は、波形W3に示す「OFF」のとき、ESI電源63,64から出力される正負の電圧をキャピラリ61aに出力しない。切替え部65は、波形W3に示す「正」のとき、ESI電源64から出力される正の電圧をキャピラリ61aに出力する。切替え部65は、波形W3に示す「負」のとき、ESI電源63から出力される負の電圧をキャピラリ61aに出力する。なお、波形W3の測定期間T2に示す「+3kV」は、切替え部65が正の電圧をキャピラリ61aに出力していることを示し、具体値で示したものである。 The switching unit 65 does not output positive and negative voltages output from the ESI power sources 63 and 64 to the capillary 61a when “OFF” shown in the waveform W3. The switching unit 65 outputs a positive voltage output from the ESI power supply 64 to the capillary 61a when “positive” shown in the waveform W3. The switching unit 65 outputs a negative voltage output from the ESI power supply 63 to the capillary 61a when “negative” shown in the waveform W3. Note that “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 65 outputs a positive voltage to the capillary 61a, and is a specific value.
 図16の波形W3では、制御部16は、ESI電源63,64およびCD電源14,51から出力される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替えている。しかし、イオン源にESIを用いる方式では、イオン源への印加電圧と生成イオンとが同極性になる場合が多いことが知られている。そこで、イオン源にESIを用いる方式では、波形W3の電圧が正極性の場合は、波形W4の電圧を負極性に設定し、波形W3の電圧が負極性の場合は、波形W4の電圧を正極に設定してもよい。すなわち、制御部16は、プリアンブル期間T1において、ESI電源63,64およびCD電源14,51から出力される電圧の極性を、正と負、負と正の2つの組み合わせで切り替えてもよい。 In the waveform W3 of FIG. 16, the control unit 16 has four polarities of voltages output from the ESI power supplies 63 and 64 and the CD power supplies 14 and 51: positive and negative, negative and negative, positive and positive, and negative and positive. Switching in combination. However, it is known that in the system using ESI for the ion source, the voltage applied to the ion source and the generated ions often have the same polarity. Therefore, in the method using ESI for the ion source, when the waveform W3 voltage is positive, the waveform W4 voltage is set to negative polarity, and when the waveform W3 voltage is negative polarity, the waveform W4 voltage is set to positive polarity. May be set. That is, the control unit 16 may switch the polarity of the voltage output from the ESI power supplies 63 and 64 and the CD power supplies 14 and 51 between the positive and negative, and the negative and positive in the preamble period T1.
 このように、質量分析装置の制御部16は、プリアンブル期間T1において、ESIのイオン化部に供給される電圧およびCD6caに供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、プリアンブル期間T1に続く測定期間T2において、ESIのイオン化部に供給される電圧およびCD6caに供給される電圧の極性を制御する。これにより、制御部16は、イオン化効率のより高い電圧極性の組み合わせを判定でき、判定した電圧極性で質量分析を行い、適切な質量分析結果を得ることができる。 As described above, the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit of the ESI and the voltage supplied to the CD6ca in the preamble period T1, and based on the detected amount of ions in the switched polarity. In the measurement period T2 following the preamble period T1, the polarity of the voltage supplied to the ionization unit of the ESI and the voltage supplied to the CD6ca are controlled. Thereby, the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
 なお、上記では、CD電源14,51を切り替える方式について説明したが、第1の実施の形態で示したように、導入部6b(たとえばメッシュ部)を備え、導入電源11,12を切り替える方式でも同様の効果が得られる。 In the above description, the method of switching the CD power sources 14 and 51 has been described. However, as shown in the first embodiment, the introduction unit 6b (for example, a mesh unit) is provided and the introduction power sources 11 and 12 are switched. Similar effects can be obtained.
 [第7の実施の形態]
 図18は、第7の実施の形態に係る質量分析装置のブロック構成例を示した図である。
図18の質量分析装置は、図15の質量分析装置のイオン源を、バリア放電を用いる方式から、APCI(Atmospheric Pressure Chemical Ionization:大気圧化学イオン化法)を用いる方式にしているところが異なる。図18において、図15と同じものには同じ符号を付し、その説明を省略する。
[Seventh Embodiment]
FIG. 18 is a diagram illustrating a block configuration example of a mass spectrometer according to the seventh embodiment.
The mass spectrometer of FIG. 18 differs from the mass spectrometer of FIG. 15 in that the ion source is changed from a system using barrier discharge to a system using APCI (Atmospheric Pressure Chemical Ionization). In FIG. 18, the same components as those in FIG.
 APCIは、液体試料を気化し、コロナ放電によりイオン化するイオン源の一手法である。図18の質量分析装置は、針電極71と、対向電極72と、試料気化部73と、イオン化された試料を質量分析部4に導入する導入部74と、APCI電源75,76と、制御部16の制御に応じて、APCI電源75,76から出力される電圧を針電極71に供給する切替え部77とを有している。 APCI is a method of an ion source that vaporizes a liquid sample and ionizes it by corona discharge. 18 includes a needle electrode 71, a counter electrode 72, a sample vaporization unit 73, an introduction unit 74 that introduces an ionized sample into the mass analysis unit 4, APCI power supplies 75 and 76, and a control unit. And a switching unit 77 that supplies the voltage output from the APCI power supplies 75 and 76 to the needle electrode 71 according to the control of 16.
 APCI電源75,76の出力電圧は、切替え部77で切り替えられて針電極71に印加される。針電極71と対向電極72との間にコロナ放電領域A11が形成され、試料気化部73から導入される試料をこの領域でイオン化する。APCI電源75は、例えば、「-3kV」の負の電圧を針電極71に供給し、APCI電源76は、例えば、「+3kV」の正の電圧を針電極71に供給する。 The output voltages of the APCI power supplies 75 and 76 are switched by the switching unit 77 and applied to the needle electrode 71. A corona discharge region A11 is formed between the needle electrode 71 and the counter electrode 72, and the sample introduced from the sample vaporization unit 73 is ionized in this region. The APCI power source 75 supplies, for example, a negative voltage of “−3 kV” to the needle electrode 71, and the APCI power source 76 supplies, for example, a positive voltage of “+3 kV” to the needle electrode 71.
 図18の質量分析装置のタイミングチャートは、図16に示した図15の質量分析装置のタイミングチャートと同様である。ただし、図18の質量分析装置では、図16の波形W3は、切替え部77が針電極71に出力する電圧のタイミングを示す。 The timing chart of the mass spectrometer of FIG. 18 is the same as the timing chart of the mass spectrometer of FIG. 15 shown in FIG. However, in the mass spectrometer of FIG. 18, the waveform W <b> 3 of FIG. 16 indicates the timing of the voltage that the switching unit 77 outputs to the needle electrode 71.
 切替え部77は、波形W3に示す「OFF」のとき、APCI電源75,76から出力される正負の電圧を針電極71に出力しない。切替え部77は、波形W3に示す「正」のとき、APCI電源76から出力される正の電圧を針電極71に出力する。切替え部77は、波形W3に示す「負」のとき、APCI電源75から出力される負の電圧を針電極71に出力する。なお、波形W3の測定期間T2に示す「+3kV」は、切替え部77が正の電圧を針電極71に出力していることを示し、具体値で示したものである。 The switching unit 77 does not output the positive and negative voltages output from the APCI power supplies 75 and 76 to the needle electrode 71 when “OFF” shown in the waveform W3. The switching unit 77 outputs a positive voltage output from the APCI power supply 76 to the needle electrode 71 when “positive” shown in the waveform W3. The switching unit 77 outputs a negative voltage output from the APCI power supply 75 to the needle electrode 71 when “negative” shown in the waveform W3. Note that “+3 kV” shown in the measurement period T2 of the waveform W3 indicates that the switching unit 77 outputs a positive voltage to the needle electrode 71, and is a specific value.
 図16の波形W3では、制御部16は、APCI電源75,76およびCD電源14,51から出力される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替えている。しかし、イオン源にAPCIを用いる方式では、イオン源への印加電圧と生成イオンとが同極性になる場合が多いことが知られている。そこで、イオン源にAPCIを用いる方式では、波形W3の電圧が正極性の場合は、波形W4の電圧を負極性に設定し、波形W3の電圧が負極性の場合は、波形W4の電圧を正極に設定してもよい。すなわち、制御部16は、プリアンブル期間T1において、APCI電源75,76およびCD電源14,51から出力される電圧の極性を、正と負、負と正の2つの組み合わせで切り替えてもよい。 In the waveform W3 of FIG. 16, the control unit 16 has four polarities of the voltages output from the APCI power supplies 75 and 76 and the CD power supplies 14 and 51: positive and negative, negative and negative, positive and positive, and negative and positive. Switching in combination. However, it is known that in the method using APCI for the ion source, the voltage applied to the ion source and the generated ions often have the same polarity. Therefore, in the method using APCI for the ion source, when the waveform W3 voltage is positive, the waveform W4 voltage is set to negative polarity, and when the waveform W3 voltage is negative polarity, the waveform W4 voltage is set to positive polarity. May be set. That is, the control unit 16 may switch the polarity of the voltage output from the APCI power supplies 75 and 76 and the CD power supplies 14 and 51 in the preamble period T1 between two combinations of positive and negative and negative and positive.
 このように、質量分析装置の制御部16は、プリアンブル期間T1において、APCIのイオン化部に供給される電圧およびCD6caに供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、プリアンブル期間T1に続く測定期間T2において、APCIのイオン化部に供給される電圧およびCD6caに供給される電圧の極性を制御する。これにより、制御部16は、イオン化効率のより高い電圧極性の組み合わせを判定でき、判定した電圧極性で質量分析を行い、適切な質量分析結果を得ることができる。 As described above, the control unit 16 of the mass spectrometer switches the polarity of the voltage supplied to the ionization unit of the APCI and the voltage supplied to the CD6ca in the preamble period T1, and based on the detected amount of ions in the switched polarity. In the measurement period T2 subsequent to the preamble period T1, the polarity of the voltage supplied to the ionization unit of the APCI and the voltage supplied to the CD6ca are controlled. Thereby, the control part 16 can determine the combination of voltage polarity with higher ionization efficiency, can perform mass analysis with the determined voltage polarity, and can obtain an appropriate mass spectrometry result.
 なお、上記では、CD電源14,51を切り替える方式について説明したが、第1の実施の形態で示したように、導入部6b(たとえばメッシュ部)を備え、導入電源11,12を切り替える方式でも同様の効果が得られる。 In the above description, the method of switching the CD power sources 14 and 51 has been described. However, as shown in the first embodiment, the introduction unit 6b (for example, a mesh unit) is provided and the introduction power sources 11 and 12 are switched. Similar effects can be obtained.
 以上、本発明について実施形態を用いて説明したが、質量分析装置の構成は、質量分析装置の構成を理解容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。質量分析装置の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。また、各構成要素の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。 As mentioned above, although this invention was demonstrated using embodiment, the structure of a mass spectrometer is classified according to the main processing content in order to make an understanding of the structure of a mass spectrometer easy. The present invention is not limited by the way of classification and names of the constituent elements. The configuration of the mass spectrometer can be classified into more components depending on the processing content. Moreover, it can also classify | categorize so that one component may perform more processes. Further, the processing of each component may be executed by one hardware or may be executed by a plurality of hardware.
 また、上述したフローチャートの各処理単位は、質量分析装置の処理を理解容易にするために、主な処理内容に応じて分割したものである。処理単位の分割の仕方や名称によって、本願発明が制限されることはない。質量分析装置の処理は、処理内容に応じて、さらに多くの処理単位に分割することもできる。また、1つの処理単位がさらに多くの処理を含むように分割することもできる。 In addition, each processing unit in the above-described flowchart is divided according to the main processing contents in order to make the processing of the mass spectrometer easy to understand. The present invention is not limited by the way of dividing the processing unit or the name. The processing of the mass spectrometer can be divided into more processing units depending on the processing content. Moreover, it can also divide | segment so that one process unit may contain many processes.
 また、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、本発明は、質量分析装置による質量分析方法として提供することもできる。 Further, the technical scope of the present invention is not limited to the scope described in the above embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be made to the above embodiment. The present invention can also be provided as a mass spectrometry method using a mass spectrometer.
 1:キャピラリ、2:バルブ、3:イオン化部、3a:誘電体容器、3b:電極、4:質量分析部、4a:チャンバー、4b:イオントラップ部、4c:インキャップ電極、4d:エンドキャップ電極、5:真空ポンプ、6:イオン検出部、6a:チャンバー、6b:導入部、6c:検出部、6ca:CD、6cb:シンチレータ、6cc:光電子倍増管、7:圧力検出部、8,9:バリア電源、10:切替え部、11,12:導入電源、13:切替え部、14:CD電源、15:シンチレータ電源、16:制御部、17:GUI、T1:プリアンブル期間、T2:測定期間、31:駆動部、32:スイッチング部、33:高圧モジュール、C1:コンデンサ、VC1:可変容量コンデンサ、51:CD電源、52:切替え部、61:ESIイオン源、61a:キャピラリ、62:導入部、63,64:ESI電源、65:切替え部、71:針電極、72:対向電極、73:試料気化部、74:導入部、75,76:APCI電源、77:切替え部。 1: capillary, 2: valve, 3: ionization unit, 3a: dielectric container, 3b: electrode, 4: mass analysis unit, 4a: chamber, 4b: ion trap unit, 4c: incap electrode, 4d: end cap electrode 5: Vacuum pump, 6: Ion detection section, 6a: Chamber, 6b: Introduction section, 6c: Detection section, 6ca: CD, 6cb: Scintillator, 6cc: Photomultiplier tube, 7: Pressure detection section, 8, 9: Barrier power source, 10: switching unit, 11, 12: introduction power source, 13: switching unit, 14: CD power source, 15: scintillator power source, 16: control unit, 17: GUI, T1: preamble period, T2: measurement period, 31 : Driving unit, 32: switching unit, 33: high voltage module, C1: capacitor, VC1: variable capacitor, 51: CD power supply, 52: switching unit, 61: ES Ion source, 61a: capillary, 62: introduction part, 63, 64: ESI power supply, 65: switching part, 71: needle electrode, 72: counter electrode, 73: sample vaporization part, 74: introduction part, 75, 76: APCI Power source, 77: switching unit.

Claims (11)

  1.  第1の電源と、
     前記第1の電源から供給される電圧によって試料をイオン化するイオン化部と、
     前記イオン化部によってイオン化された前記試料のイオンを捕捉するイオントラップ部と、
     イオンを検出する検出部と、
     第2の電源と、
     前記イオントラップ部により捕捉されたイオンを、前記第2の電源から供給される電圧によって前記検出部に導入する導入部と、
     第1の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、前記第1の期間に続く第2の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を制御する制御部と、
     を有することを特徴とする質量分析装置。
    A first power source;
    An ionization unit that ionizes a sample by a voltage supplied from the first power source;
    An ion trap section for capturing ions of the sample ionized by the ionization section;
    A detection unit for detecting ions;
    A second power source;
    An introduction unit that introduces ions captured by the ion trap unit into the detection unit by a voltage supplied from the second power source;
    In the first period, the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit is switched, and the second following the first period is based on the detected amount of ions in the switched polarity. In a period, a control unit for controlling the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit;
    A mass spectrometer characterized by comprising:
  2.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記第1の期間において、前記第1の電源から前記イオン化部に供給される電圧および前記第2の電源から前記導入部に供給される電圧の極性を、正と負、負と負、正と正、負と正の4つの組み合わせで切り替える、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    In the first period, the control unit is configured to change a polarity of a voltage supplied from the first power source to the ionization unit and a voltage supplied from the second power source to the introduction unit. Switching between four combinations of negative and positive, positive and positive, negative and positive,
    A mass spectrometer characterized by that.
  3.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を入力装置から受付ける、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The control unit receives from the input device the voltage supplied to the ionization unit and the polarity of the voltage supplied to the introduction unit,
    A mass spectrometer characterized by that.
  4.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記第1の期間および前記第2の期間において、前記イオン化部に供給される電圧の周波数を変更する、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The control unit changes a frequency of a voltage supplied to the ionization unit in the first period and the second period.
    A mass spectrometer characterized by that.
  5.  請求項4に記載の質量分析装置であって、
     前記制御部は、前記イオン化部に供給される電圧の周波数を入力装置から受付ける、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 4,
    The control unit receives a frequency of a voltage supplied to the ionization unit from an input device;
    A mass spectrometer characterized by that.
  6.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記第1の期間および前記第2の期間において、前記イオン化部に供給される電圧の電圧波形を変更する、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The control unit changes a voltage waveform of a voltage supplied to the ionization unit in the first period and the second period.
    A mass spectrometer characterized by that.
  7.  請求項6に記載の質量分析装置であって、
     前記制御部は、前記イオン化部に供給される電圧の電圧波形を入力装置から受付ける、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 6,
    The control unit receives a voltage waveform of a voltage supplied to the ionization unit from an input device;
    A mass spectrometer characterized by that.
  8.  請求項1に記載の質量分析装置であって、
     前記イオン化部は、バリア放電によって前記試料をイオン化する、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    The ionization unit ionizes the sample by barrier discharge.
    A mass spectrometer characterized by that.
  9.  請求項1に記載の質量分析装置であって、
     前記制御部は、前記第1の期間において、前記第1の電源から前記イオン化部に供給される電圧および前記第2の電源から前記導入部に供給される電圧の極性を、正と負、負と正の2つの組み合わせで切り替える、
     ことを特徴とする質量分析装置。
    The mass spectrometer according to claim 1,
    In the first period, the control unit is configured to change a polarity of a voltage supplied from the first power source to the ionization unit and a voltage supplied from the second power source to the introduction unit. And switching with two positive combinations,
    A mass spectrometer characterized by that.
  10.  第1の電源と、
     前記第1の電源から供給される電圧によって試料をイオン化するイオン化部と、
     前記イオン化部によってイオン化された前記試料のイオンを捕捉するイオントラップ部と、
     イオンを検出する検出部と、
     第2の電源と、
     前記イオントラップ部により捕捉されたイオンを、前記第2の電源から供給される電圧によって前記検出部に導入する導入部と、
     を有する質量分析装置の質量分析方法であって、
     制御部によって、第1の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、前記第1の期間に続く第2の期間において、前記イオン化部に供給される電圧および前記導入部に供給される電圧の極性を制御する、
     ことを特徴とする質量分析方法。
    A first power source;
    An ionization unit that ionizes a sample by a voltage supplied from the first power source;
    An ion trap section for capturing ions of the sample ionized by the ionization section;
    A detection unit for detecting ions;
    A second power source;
    An introduction unit that introduces ions captured by the ion trap unit into the detection unit by a voltage supplied from the second power source;
    A mass spectrometry method for a mass spectrometer having
    The control unit switches the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit in the first period, and in the first period based on the detected amount of ions in the switched polarity. In the subsequent second period, the polarity of the voltage supplied to the ionization unit and the voltage supplied to the introduction unit is controlled.
    A mass spectrometric method characterized by the above.
  11.  第1の電源と、
     前記第1の電源から供給される電圧によって試料をイオン化するイオン化部と、
     前記イオン化部によってイオン化された前記試料のイオンを捕捉するイオントラップ部と、
     第2の電源と、
     前記第2の電源から供給される電圧が供給され、前記イオントラップ部により捕捉されたイオンのイオン量に応じた2次電子を放出する電子放出部と、
     第1の期間において、前記イオン化部に供給される電圧および前記電子放出部に供給される電圧の極性を切り替え、切り替えた極性におけるイオンの検出量に基づいて、前記第1の期間に続く第2の期間において、前記イオン化部に供給される電圧および前記電子放出部に供給される電圧の極性を制御する制御部と、
     を有することを特徴とする質量分析装置。
    A first power source;
    An ionization unit that ionizes a sample by a voltage supplied from the first power source;
    An ion trap section for capturing ions of the sample ionized by the ionization section;
    A second power source;
    An electron emitter that is supplied with a voltage supplied from the second power source and emits secondary electrons according to the amount of ions of ions captured by the ion trap;
    In the first period, the polarity of the voltage supplied to the ionization unit and the voltage supplied to the electron emission unit is switched, and the second following the first period is based on the detected amount of ions in the switched polarity. A control unit that controls the polarity of the voltage supplied to the ionization unit and the voltage supplied to the electron emission unit in the period of
    A mass spectrometer characterized by comprising:
PCT/JP2015/067291 2014-07-04 2015-06-16 Mass spectrometer and mass-spectrometry method WO2016002502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-138445 2014-07-04
JP2014138445A JP2017174495A (en) 2014-07-04 2014-07-04 Mass spectrometer and mass spectrometry method

Publications (1)

Publication Number Publication Date
WO2016002502A1 true WO2016002502A1 (en) 2016-01-07

Family

ID=55019049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067291 WO2016002502A1 (en) 2014-07-04 2015-06-16 Mass spectrometer and mass-spectrometry method

Country Status (2)

Country Link
JP (1) JP2017174495A (en)
WO (1) WO2016002502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352365A (en) * 2023-12-04 2024-01-05 湖南豪思生物科技有限公司 Ionization current control device and mass spectrometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111526A (en) * 1998-09-30 2000-04-21 Hitachi Ltd Mass spectrometer
JP2003242925A (en) * 2002-02-18 2003-08-29 Hitachi High-Technologies Corp Mass spectrometer
JP2009014476A (en) * 2007-07-04 2009-01-22 Shimadzu Corp Mass spectrometer
WO2011089912A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Mass spectrometry device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111526A (en) * 1998-09-30 2000-04-21 Hitachi Ltd Mass spectrometer
JP2003242925A (en) * 2002-02-18 2003-08-29 Hitachi High-Technologies Corp Mass spectrometer
JP2009014476A (en) * 2007-07-04 2009-01-22 Shimadzu Corp Mass spectrometer
WO2011089912A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Mass spectrometry device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352365A (en) * 2023-12-04 2024-01-05 湖南豪思生物科技有限公司 Ionization current control device and mass spectrometer
CN117352365B (en) * 2023-12-04 2024-03-19 湖南豪思生物科技有限公司 Ionization current control device and mass spectrometer

Also Published As

Publication number Publication date
JP2017174495A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
EP1875486B1 (en) Method for controlling space charge-driven ion instabilities in electron impact ion sources
Ding et al. A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources
US9029763B2 (en) Ion deflection in time-of-flight mass spectrometry
JP6337970B2 (en) Mass spectrometer
EP2498272B1 (en) Mass spectrometric method and mass spectrometer
CA2955665A1 (en) Method for tandem mass spectrometry analysis in ion trap mass analyzer
US10991567B2 (en) Quadrupole devices
JP2008130469A (en) Mass spectrometer and mass spectrometry
US9899203B2 (en) Mass spectrometry method and mass spectrometer
EP3510628A1 (en) Quadrupole devices
JP2009174994A (en) Mass analyzing system
WO2016002502A1 (en) Mass spectrometer and mass-spectrometry method
JP4506260B2 (en) Method of ion selection in ion storage device
EP3066682A1 (en) Multiplexing of ions for improved sensitivity
JP2011108488A (en) Ion trap mass spectrometer
JP2009264949A (en) Ion attachment mass spectrometer and ion attachment mass spectrometry method thereof
CN107731655A (en) A kind of method based on quadrupole rod linear ion hydrazine tandem mass spectrometer ion fragmentation
WO2021059600A1 (en) Ion trap mass spectrometer, method for mass spectrometry, and control program
JP2021061108A (en) Linear ion trap and operating method therefor
EP4235745A1 (en) Method and apparatus of mass analysing positively charged ions and negatively charged ions
JP5206605B2 (en) Ion trap mass spectrometer
JP5759036B2 (en) Mass spectrometer
US20220381735A1 (en) Compensation voltage adjustment for ion mobility separation
JP6989009B2 (en) Time-of-flight mass spectrometer
JP2006092750A (en) Ion trap mass spectrometry and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP