WO2016002451A1 - Rotation movement detection device - Google Patents

Rotation movement detection device Download PDF

Info

Publication number
WO2016002451A1
WO2016002451A1 PCT/JP2015/066725 JP2015066725W WO2016002451A1 WO 2016002451 A1 WO2016002451 A1 WO 2016002451A1 JP 2015066725 W JP2015066725 W JP 2015066725W WO 2016002451 A1 WO2016002451 A1 WO 2016002451A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotation
detection sensor
dimmer
rotation axis
Prior art date
Application number
PCT/JP2015/066725
Other languages
French (fr)
Japanese (ja)
Inventor
紗矢香 小林
良一 片岡
弘智 斎藤
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2016002451A1 publication Critical patent/WO2016002451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick

Definitions

  • the present invention relates to a rotational movement detection device.
  • a lever switch device that is mounted mainly in the vicinity of a steering wheel of an automobile and is used for operations of a headlamp, a turn signal lamp, and the like is known.
  • a lever switch device an insertion hole is formed in a front end portion of a holder attached to an operation lever, and a driving body is slidably held in the insertion hole, and the driving body is attached to a cam surface of a case by a spring force. Press contact.
  • a pair of guide grooves extending in the axial direction is formed at both upper and lower ends of the inner peripheral surface of the insertion hole, and the guide grooves are positioned in a plane orthogonal to the sliding direction with respect to the cam surface of the driving body.
  • a pair of guide protrusions extending in the axial direction are formed on the outer peripheral surface of the first driving body, and the guide protrusions are inserted into the guide grooves of the insertion holes while maintaining a slight clearance.
  • the lever can be tilted in two directions (see Patent Document 1).
  • a first rotating body and a second rotating body that rotate in response to the swinging operation of the outer lever are provided as non-contact detection of the two crossing movements caused by the tilting operation of the lever.
  • the magnetism of the two mounted magnets is detected by two magnetic detection elements provided corresponding to the respective magnets, and the control means detects the rotation angle of each rotating body from this detection signal, and according to this
  • a lever switch device configured to output an operation signal (see Patent Document 2).
  • the lever switch device of Patent Document 1 detects the movement of the sliding contact due to the tilting operation of the lever, and has problems in reliability, durability, and the like.
  • the lever switch device of Patent Document 2 has a problem in that two magnets are required for each movement in order to detect movements in two intersecting directions caused by a tilting operation of the lever using a magnetic detection element.
  • An object of the present invention is to provide a rotational movement detection device that can detect movement in two directions with a single magnet in a non-contact manner.
  • a rotational movement detection device is arranged on a rotating member that rotates around a rotation axis and generates a magnetic field that is plane-symmetric with respect to a plane that includes the rotation axis, and a rotation surface of the substrate. Obtained by projecting a rotation member onto a straight line passing through the intersection of the rotation axis and the arrangement surface and the arrangement surface, detecting a rotation angle detection unit for detecting the rotation angle of the member, approaching and leaving the rotation member and the arrangement surface.
  • the first detection unit arranged at the intersection with the outer periphery of the mapping, and the approach and separation between the rotating member and the arrangement surface are detected, and the first detection unit arranged in a plane symmetric with the first detection unit with respect to the plane 2 detection units.
  • a rotational movement detection device that can detect movement in two directions with a single magnet in a non-contact manner.
  • FIG. 1 is a schematic diagram of the interior of a vehicle on which a lever switch device according to an embodiment is mounted.
  • FIG. 2 is a perspective view showing an appearance of the lever switch device according to the embodiment.
  • FIG. 3 is an exploded perspective view of the lever switch device according to the embodiment.
  • 4 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 5A is a perspective view showing a magnet according to the embodiment.
  • FIG. 5B is a DD cross-sectional view of FIG. 5A.
  • 5C is a top view of the magnet viewed from the direction of arrow F in FIG. 5A.
  • FIG. 6A is an explanatory diagram illustrating a positional relationship between a mapping obtained by projecting the magnet according to the embodiment onto the arrangement surface, the first dimmer detection sensor, and the second dimmer detection sensor.
  • FIG. 6B is a side view showing the magnet.
  • FIG. 6C is a block diagram illustrating the lever switch device.
  • FIG. 7A is a top view showing rotation of the magnet by a right turn operation of the lever switch device according to the exemplary embodiment.
  • FIG. 7B is a top view showing the magnet when the lever is in the neutral position.
  • FIG. 7C is a top view showing rotation of the magnet by a left turn operation.
  • FIG. 8A shows the detection value S 2 of the first dimmer detection sensor, the detection value S 3 of the second dimmer detection sensor according to the embodiment, and the added value obtained by adding the detection value S 2 and the detection value S 3 (S 2 + S 3 ).
  • FIG. 8B is a graph for explaining detection of a dimmer operation by the first dimmer detection sensor and the second dimmer detection sensor.
  • FIG. 8C is a graph showing the relationship between the arrangement angle ⁇ 1 and the magnetic flux density of the first dimmer detection sensor and the second dimmer detection sensor.
  • FIG. 8D is a graph showing a detected value S 2 , a detected value S 3, and an added value (S 2 + S 3 ) in a comparative example.
  • FIG. 9A is a plan view showing a moving state of the operation lever and the magnet at the time of a right turn operation (operation in the direction of arrow TR) seen from the direction B of FIG.
  • FIG. 9B is a plan view showing a moving state of the operation lever and the magnet in the neutral position as seen from the direction B of FIG.
  • FIG. 9C is a plan view showing a moving state of the operation lever and the magnet in the left turn operation (operation in the arrow TL direction) as viewed from the B direction in FIG. 2.
  • FIG. 10A is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow D in the AA cross section of FIG. FIG.
  • FIG. 10B is a partial cross-sectional view showing a moving state of the operation lever and the magnet at the neutral position in the AA cross section of FIG.
  • FIG. 10C is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow P in the AA cross section of FIG.
  • the rotational movement detection device is disposed on a rotation member that rotates around a rotation axis and generates a magnetic field that is plane-symmetric with respect to a plane including the rotation axis, Rotation angle detection unit that detects the rotation angle, approach and separation due to relative movement between the rotating member and the placement surface are detected, and the rotation member is projected onto the straight line passing through the intersection of the rotation axis and the placement surface and the placement surface.
  • the first detection unit arranged at the intersection with the outer periphery of the mapping to be detected, and the approach and separation between the rotating member and the arrangement surface are detected, and the first detection unit is arranged in a plane-symmetrical position with respect to the plane.
  • a second detection unit is arranged at the intersection with the outer periphery of the mapping to be detected, and the approach and separation between the rotating member and the arrangement surface are detected, and the first detection unit is arranged in a plane-symmetrical position with respect to the plane.
  • FIG. 1 is an explanatory view showing the inside of a vehicle on which the lever switch device according to the embodiment is mounted.
  • FIG. 2 is a perspective view showing an appearance of the lever switch device according to the embodiment.
  • FIG. 5B is a cross-sectional view taken along DD of FIG. 5A, and
  • FIG. 5C is a top view of the magnet.
  • FIG. 6A is an explanatory diagram illustrating a positional relationship between a mapping obtained by projecting the magnet according to the embodiment onto the arrangement surface, the first dimmer detection sensor, and the second dimmer detection sensor
  • FIG. 6B is a side view illustrating the magnet
  • FIG. 6C is a block diagram illustrating the lever switch device. Note that, in each drawing according to the embodiment described below, the ratio between figures may be different from the actual ratio. In FIG. 6C, main signals and information flows are indicated by arrows.
  • the lever switch device 1 as the rotational movement detection device is an operation device capable of operating a turn signal (direction indicator) and a headlamp of the vehicle 5 as shown in FIG. As shown in FIG. 1, the lever switch device 1 is mounted in the vicinity of the steering 6 of the vehicle, and is disposed so as to protrude from a steering column cover 7 that covers the steering column.
  • the lever switch device 1 disposed so as to protrude rightward on the paper surface of FIG. 1 operates, for example, a direction indicator and a headlamp.
  • a lever switch device 1 capable of operating a direction indicator and the like protruding to the right side on the premise of a right-hand drive vehicle will be described.
  • the lever switch device 1 rotates around the third rotation axis L ⁇ b> 3 and has a magnetic field (symmetric to a plane (plane 503) including the third rotation axis L ⁇ b> 3).
  • a rotating member that generates a magnetic field 500 a rotation angle detection unit that is arranged on the arrangement surface of the base material and detects a rotation angle ⁇ of the rotation member, and detects approach and separation due to relative movement between the rotation member and the arrangement surface.
  • the intersection (intersection 911) between the straight line (straight line 506) passing through the intersection (intersection 801) between the third rotation axis L3 and the arrangement plane and the outer periphery of the map (mapping 505) obtained by projecting the rotating member onto the arrangement plane.
  • the rotating member is, for example, a magnet 50.
  • the arrangement surface of the base material is an arrangement surface 101 of the substrate 100 which is a printed wiring board.
  • the rotation angle detection unit is a turn detection sensor 80 as an example.
  • the first detector and the second detector are, for example, a first dimmer detection sensor 91 and a second dimmer detection sensor 92 (see FIG. 6A).
  • the lever switch device 1 is configured to perform a first rotation operation about the first rotation axis L1 and a second rotation operation about the second rotation axis L2 intersecting the first rotation axis L1.
  • a possible operation unit a first conversion unit that converts the first rotation operation performed on the operation unit into a rotation around the third rotation axis L3 of the magnet 50, and a second rotation operation performed on the operation unit And a second conversion unit that converts relative movement between the magnet 50 and the arrangement surface 101.
  • the operation unit is an operation lever 10 as an example.
  • the 1st conversion part is bracket 30 as an example.
  • the 2nd conversion part is holder 40 as an example.
  • the lever switch apparatus 1 has the housing
  • the direction of the first rotation operation around the first rotation axis L1 shown in FIG. 3 indicates the operation in the arrow TL direction shown in FIG. 2 and the operation in the arrow TR direction which is opposite to the arrow TL direction. ing.
  • the operation in the direction of the arrow TL is, for example, a left turn operation for blinking the left turn signal (direction indicator) of the vehicle 5.
  • the operation in the direction of the arrow TR is, for example, a right turn operation for blinking the right turn signal (direction indicator). That is, the first rotation operation is a winker (direction indicator) operation for left or right turn, and is a turn operation of the operation lever 10.
  • the direction of the second rotation operation around the second rotation axis L2 shown in FIG. 3 indicates the operation in the arrow D direction shown in FIG. 2 and the operation in the arrow P direction opposite to the arrow D direction.
  • the operation in the direction of arrow D is, for example, an operation (dimmer HU operation) for switching the optical axis of the headlamp of the vehicle 5 upward.
  • the operation in the arrow P direction is, for example, an operation (passing operation) for switching the optical axis of the headlight upward while maintaining the operation.
  • the lever switch device 1 is configured as a momentary switch that returns to the neutral position after the operation is completed for the operation in the direction of the arrow P.
  • the lever switch device 1 does not return to the neutral position after the operation is completed, but maintains the state in which the operation lever 10 is operated in the direction of the arrow D. It is configured. That is, the second rotation operation is an operation of switching the optical axis of the headlamp, and is a dimmer operation of the operation lever 10.
  • the first operation direction described above is operated in the vertical direction of FIG. 2 as viewed from the operator. It becomes the direction to do.
  • the upward operation is an operation in the arrow TL direction
  • the downward operation is an operation in the arrow TR direction.
  • the second operation direction is a direction to operate in the front-rear direction as viewed from the operator.
  • This forward operation is an operation in the direction of arrow P, and is an operation that pulls the operation lever 10 toward the operator.
  • the backward operation is an operation in the direction of arrow D, and is an operation that moves the operation lever 10 away from the operator.
  • the operation surface formed by the operation lever 10 by the operation in the arrow TL direction and the arrow TR direction intersects with the operation surface formed by the operation lever 10 by the operation in the arrow D direction and the arrow P direction. Orthogonal.
  • the operation lever 10 is accommodated in the bracket 30 and can be rotated and moved around the first rotation axis L1 integrally with the bracket 30 by a turn operation, and the second rotation axis L2 intersecting the first rotation axis L1. It is constructed and arranged so as to be able to rotate and move independently of the bracket 30 in the direction of the dimmer operation around.
  • the operation lever 10 includes an insertion portion 11 that is inserted and accommodated in the bracket 30, a lever main body 12 that is held by an operator for turn operation and dimmer operation, and between the insertion portion 11 and the lever main body 12.
  • the rotary shaft portion 13 is located and serves as a rotation center for the dimmer operation of the operation lever 10.
  • the rotary shaft portion 13 is formed to protrude in both directions of the second rotary shaft L ⁇ b> 2, and the insertion portion 11 is inserted into the bracket 30, whereby the support hole portion 33 of the bracket 30. Is rotatably supported.
  • a driving projection 14 is formed to protrude so as to engage with a holder 40 described later and slide the holder 40 during a dimmer operation.
  • An insertion hole 15 into which the moderation piece 16 is inserted via a spring 17 is formed at the distal end of the insertion portion 11.
  • the moderation piece 16 is urged toward the moderation block 25 by the spring 17 in a state where the operation lever 10 is assembled to the bracket 30 and the housing 20. Thereby, the moderation feeling required at the time of turn operation and dimmer operation can be provided.
  • the casing 20 is composed of an upper casing 21 and a lower casing 22 as shown in FIGS.
  • a moderation block 25 is attached to the upper housing 21 corresponding to the moderation piece 16.
  • the magnet holder 70 and the substrate 100 are fixed to the lower housing 22 from below.
  • the upper housing 21 and the lower housing 22 are locked and fixed to each other by the engagement of the locking portion 21a and the locking projection 22a.
  • the upper housing 21 has a box shape that can accommodate the bracket 30 and the like therein. As shown in FIG. 4, a support hole portion 21 b that rotatably supports the rotating shaft portion 31 of the bracket 30 is formed on the inner upper surface.
  • the upper housing 21 rotatably supports the upper portion of the bracket 30, and the lower housing 22 rotatably supports the lower portion of the bracket 30 so that the bracket 30 is sandwiched between the upper housing 21 and the lower housing 22.
  • Accommodate Inside the upper housing 21, an internal space is formed so that the bracket 30 can be rotated and moved around the support hole portion 21b by a predetermined angle (an angle necessary for the turn operation).
  • a moderation block 25 is mounted inside the upper housing 21 as shown in FIG.
  • the moderation block 25 gives a feeling of moderation required at the time of turn operation and dimmer operation by the urged moderation piece 16 and the moderation groove 25a.
  • the lower housing 22 has a box shape that can accommodate the bracket 30 and the like therein. As shown in FIG. 4, an annular groove portion 22 b that rotatably supports the annular wall portion 32 of the bracket 30 is formed on the inner lower surface. Similar to the upper casing 21, an inner space is formed in the lower casing 22 so that the bracket 30 can rotate and move around the annular groove 22b by a predetermined angle (an angle necessary for the turn operation).
  • the magnet holder 70 and the substrate 100 are fixed to the lower housing 22 from the lower side.
  • bracket 30 (Configuration of bracket 30)
  • the bracket 30 is formed with a rotating shaft portion 31 protruding from the first rotating shaft L1, and an annular wall portion 32 is formed as shown in FIG. Thereby, the bracket 30 is accommodated in the housing 20 in a state in which the bracket 30 can be rotated about the first rotation axis L1 by a predetermined angle (an angle necessary for the turn operation).
  • the bracket 30 is formed with a support hole portion 33 that is rotatably fitted to and supported by the rotation shaft portion 13 of the operation lever 10 on the second rotation shaft L2. Thereby, the bracket 30 accommodates the operation lever 10 in a state in which the bracket 30 can rotate and move independently of the bracket 30 in the direction of the dimmer operation around the second rotation axis L2.
  • the bracket 30 has a drive projection 34 for rotationally driving the magnet 50 described above at a position spaced from the first rotation axis L1.
  • the drive protrusion 34 rotates by a predetermined angle together with the bracket 30 around the first rotation axis L ⁇ b> 1 when the operation lever 10 is turned.
  • the holder 40 can be rotated and moved around the first rotation axis L1 integrally with the bracket 30 by the turning operation of the operating lever 10, and can be slidably moved with respect to the bracket 30 by the dimmer operation of the operating lever 10.
  • the bracket 30 is housed.
  • the holder 40 is formed with a fitting groove 41 in the upper portion of the holder 40 in which the drive protrusion 14 of the operation lever 10 is fitted.
  • the fitting groove 41 is configured so that the holder 40 follows only the vertical movement of the drive protrusion 14 when the operation lever 10 is operated around the second rotation axis L2, and the second rotation axis L2. It is formed as a groove not to follow the movement in the intersecting direction.
  • the holder 40 holds the magnet 50 in the lower part of the holder 40 and moves it up and down when the operation lever 10 is operated around the second rotation axis L2.
  • the holding groove 42 is formed.
  • the holding groove 42 is formed as a groove that does not follow the movement around the first rotation axis L1 when the operation lever 10 is turned around the first rotation axis L1.
  • the magnet 50 is, for example, a magnetic material such as ferrite, neodymium, samakoba, and samarium iron nitrogen, and a synthetic resin material such as polystyrene, polyethylene, polyamide, acrylonitrile / butadiene / styrene (ABS), It is a plastic magnet formed by mixing and molding into a desired shape.
  • the rotating member may be, for example, an electromagnet that forms a magnetic field similar to the magnet 50.
  • the magnet 50 includes a disc portion 51, a protruding portion 54, and a cylindrical portion 56.
  • the magnet 50 is magnetized in a direction intersecting the third rotation axis L3 of the magnet 50, and one of the protrusions 54 provided is an S pole and the other is an N pole. It has become. 5B and 5C, the magnetic flux is radiated from the N pole of the magnet 50 toward the S pole, and the magnetic flux radiated from the N pole in the radial direction is converged on the S pole.
  • the magnetic field 500 is formed. Note that the magnetization direction may be reversed.
  • a cylindrical portion 56 is provided on the upper surface 52 of the disc portion 51, and an inclination 530 is provided on the lower surface 53.
  • the disk portion 51 is provided with a protruding portion 54 so as to protrude from the side surface in the radial direction of the magnet 50.
  • the cylindrical portion 56 is provided with a circumferential groove portion 560 in the circumferential direction. As described above, the circumferential groove portion 560 is slidably fitted in the holding groove 42 of the holder 40.
  • the magnet 50 is provided with a through hole 57 that penetrates the disc portion 51 and the cylindrical portion 56.
  • a magnet support shaft 72 of a magnet holder 70 to be described later is inserted into the through hole 57. The magnet 50 rotates around the magnet support shaft 72.
  • the protrusion 54 is formed with a U-shaped recess 55 having an open tip.
  • the drive projection 34 of the bracket 30 is inserted into the recess 55.
  • the magnet 50 is driven into the recess 55 when the bracket 30 rotates about the first rotation axis L1 in the direction of the arrow TL or the direction of the arrow TR via the operation lever 10 by the turning operation performed on the operation lever 10. Since the protrusion 34 moves along a circle centered on the first rotation axis L1, the magnet support shaft 72 inserted into the through hole 57 rotates as the third rotation axis L3.
  • the magnet 50 has a plane 504 in which the thickness T 1 of the portion facing the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is orthogonal to the plane 503 in the range of the predetermined rotation angle ⁇ .
  • the first dimmer detection sensor 91 and the second dimmer detection sensor 92 have a shape that is thinner than the thickness T 2 of the portion facing the position on the arrangement surface 101 that is plane-symmetrical.
  • the predetermined range of the rotation angle ⁇ is a rotation range of the magnet 50 based on the turning operation of the operation lever 10, and as an example, a range of 45 ° or more and 135 ° or less.
  • the relationship between the thickness T 1 and the second thickness T 2 is satisfied in at least the range.
  • the thickness T 1 is, for example, half the thickness T 2 .
  • the rotation angle ⁇ of the magnet 50 when the operation lever 10 is in the neutral position is 90 °.
  • an inclination 530 is formed on the lower surface 53 of the magnet 50.
  • the inclination 530 is formed so as to incline toward the side surface farthest from the through hole 57 from the vicinity of the boundary between the N pole and the S pole of the lower surface 53. That is, the magnet 50 has a smaller volume at the N-pole portion than at the S-pole portion, resulting in a smaller volume.
  • the thickness T 1 is, for example, half the thickness T 2 .
  • This inclination 530 is provided in order to make the magnetic flux density of the magnetic field 500 acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 lower than the magnetic flux density when there is no inclination. That is, the inclination 530 is provided to reduce the influence of the rotation of the magnet 50 on the detection of the vertical movement of the magnet 50.
  • the magnet holder 70 is positioned and fixed to the lower housing 22 while being fixed to the substrate 100.
  • the magnet holder 70 has a bottom 71, a magnet support shaft 72 formed to project from the bottom 71 toward the magnet 50, and a projecting toward the magnet 50 from the bottom 71 and concentric with the magnet support shaft 72. Wall part 73 etc. formed in the shape.
  • the magnet holder 70 is integrally formed of resin (nonmagnetic material).
  • the magnet support shaft 72 is formed to fit in the through hole 57 of the magnet 50 so as to be rotatable and slidable.
  • the third support shaft 72 is provided.
  • the magnet 50 is supported to move up and down along the rotation axis L3.
  • the wall portion 73 is provided along the outer periphery of the magnet 50, but the magnet 50 is mainly supported by the magnet support shaft 72.
  • the lever switch device 1 has a configuration in which the through hole 57 of the magnet 50 and the magnet support shaft 72 of the magnet holder 70 are not formed, and the magnet 50 is supported by the wall portion 73 so as to be rotatable and vertically movable. It is good also as a structure made.
  • the operation lever 10, the housing 20, the bracket 30, and the holder 40 described above are disposed near the magnet 50, it is preferable that the operation lever 10, the housing 20, the bracket 30, and the holder 40 be formed of a nonmagnetic material such as resin.
  • the turn detection sensor 80 is configured using, for example, a magnetic detection element such as a Hall element and a magnetoresistive element that detects a change in the magnetic field 500 accompanying the rotation of the magnet 50.
  • a Hall element is used.
  • the turn detection sensor 80 is arranged on the arrangement surface 101 of the substrate 100 so that the third rotation axis L3 passes through the center of the detection surface 800.
  • the detection surface 800 is a surface that reacts to a change in the magnetic field 500, for example.
  • the magnetic detection element can be arranged at a place other than the center of the chip. There is sex.
  • the center of the chip does not coincide with the center of the detection surface.
  • the first dimmer detection sensor 91 and the second dimmer detection sensor 92 are, for example, the approach and separation between the magnet 50 and the arrangement surface 101 associated with the dimmer operation performed on the operation lever 10, that is, in the vertical direction of the paper surface of FIG.
  • a magnetic detection element such as a Hall element and a magnetoresistive element that detects a change in the magnetic field 500 accompanying the movement of the magnet 50 is used. In the present embodiment, a Hall element is used.
  • the first dimmer detection sensor 91 has a mapping 505 obtained by projecting the magnet 50 onto the straight line 506 passing through the intersection 801 between the third rotation axis L3 and the placement surface 101 and the placement surface 101.
  • the center of the detection surface 910 is located at the intersection 911 with the outer periphery of the.
  • the second dimmer detection sensor 92 has a detection surface at the intersection 921 between the straight line 507 passing through the intersection 801 between the third rotation axis L3 and the arrangement surface 101 and the outer periphery of the mapping 505. It arrange
  • the second dimmer detection sensor 92 is disposed at a position symmetrical to the first dimmer detection sensor 91 with respect to the plane 503 shown in FIG. 6A. That is, the angle formed by the straight line 506 and the plane 503 is the same as the angle formed by the straight line 507 and the plane 503 (arrangement angle ⁇ 1 ).
  • the plane 503 is a plane that includes the third rotation axis L3 and separates the magnets 50 so as to be mirror images of each other.
  • First dimmer detection sensor 91 outputs a detection value S 2
  • the second dimmer detection sensor 92 outputs a detection value S 3.
  • the first dimmer detection sensor 91 and the second dimmer detection sensor 92 are arranged so that the arrangement angle ⁇ 1 is such that the sum of the detection value S 2 and the detection value S 3 is substantially constant.
  • the magnet 50 moves to three operation positions (D position, neutral position, and P position) according to the dimmer operation of the operation lever 10.
  • the upward movement amount is +1.5 mm.
  • the magnet 50 moves from the neutral position to the downward direction (P position).
  • the downward movement amount is? 1.5 mm.
  • First dimmer detection sensor 91 and the second dimmer detection sensor 92 detects the magnetic flux density of the magnetic field 500 of the magnet 50 in the three operating positions, output to the control unit 150 as a detection value S 2 and a detection value S 3 To do.
  • the control unit 150 includes, for example, a CPU (Central Processing Unit) that performs operations and processing on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. Microcomputer. For example, a program for operating the control unit 150 is stored in the ROM. For example, the RAM is used as a storage area for temporarily storing calculation results and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the controller 150 is connected to the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92, as shown in FIG. 6C.
  • the control unit 150 has a threshold value 151.
  • Control unit 150 is configured to calculate the rotation angle of the magnet 50 on the basis of the detected values S 1 to turn detection sensor 80 has output.
  • the control unit 150 determines an operation performed on the operation lever 10 based on the acquired detection values S 1 to S 3 and generates operation information S 4 .
  • Control unit 150 for example, operation information S 4 through the connector 110 provided on the substrate 100 is configured to output to the vehicle control unit of the vehicle 5.
  • FIG. 7A is a top view showing rotation of the magnet by a right turn operation of the lever switch device according to the embodiment
  • FIG. 7B is a top view showing the magnet when the lever is in the neutral position
  • 7C is a top view showing the rotation of the magnet by the left turn operation.
  • the rotation angle ⁇ 2 of the magnet 50 is shown to be 0 ° to 180 ° counterclockwise from the upper side of the drawing.
  • FIG. 8A shows the detection value S 2 of the first dimmer detection sensor, the detection value S 3 of the second dimmer detection sensor according to the embodiment, and the added value obtained by adding the detection value S 2 and the detection value S 3 (S 2 + S 3 )
  • FIG. 8B is a graph for explaining the detection of the dimmer operation by the first dimmer detection sensor and the second dimmer detection sensor
  • FIG. 8C is the first dimmer detection sensor.
  • FIG. 8D is a graph showing the relationship between the arrangement angle ⁇ 1 of the detection sensor and the second dimmer detection sensor and the magnetic flux density
  • FIG. 8D shows the detection value S 2 , the detection value S 3 and the addition value (S 2 + S 3 ) in the comparative example. It is a graph which shows.
  • the vertical axis represents the magnetic flux density (mT), and the horizontal axis represents the rotation angle ⁇ 2 (deg) of the magnet 50.
  • the left and right vertical axes are the magnetic flux density (mT), and the horizontal axis is the arrangement angle ⁇ 1 (deg).
  • the left vertical axis is for illustrating the difference in magnetic flux density
  • the right vertical axis is for illustrating the sum of the maximum values of magnetic flux density.
  • 8A to 8D illustrate the results of simulation using ANSYS Emag.
  • FIG. 8D shows a detection value S 2 , a detection value S 3, and an addition value (S 2 + S 3 ) of a cylindrical magnet with no inclination formed as a comparative example.
  • the arrangement of the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is the same as that in FIG. 6A.
  • the magnet portion facing the second dimmer detection sensor 92 has an N pole and an S pole. Near the boundary.
  • the magnet portion facing the second dimmer detection sensor 92 is near the center of the N pole. Accordingly, the magnetic flux density of the magnetic field acting on the second dimmer detection sensor 92 is lower as the rotation angle ⁇ 2 is larger, contrary to the first dimmer detection sensor 91. Therefore, the detection value S 3, as shown in FIG. 8D, a steadily declining curve.
  • the absolute value of the difference between the maximum value and the minimum value of the detected value S 2 and a detection value S 3 is approximately 36mT, respectively.
  • the detection value S 2 of the first dimmer detection sensor 91 and the detection of the second dimmer detection sensor 92 are detected at the neutral position.
  • the portions facing the first dimmer detection sensor 91 and the second dimmer detection sensor 92 are thinner than the S pole portion, that is, the volume. Therefore, the magnetic flux density detected by the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is lower than that of the comparative example. Therefore, even if the dimmer detection sensor is positioned in the vicinity of the boundary between the N pole and the S pole as the magnet 50 rotates, the detected magnetic flux density is lower than that in the comparative example, and the maximum value is obtained as shown in FIG. 8A. And the absolute value of the difference between the minimum value and the minimum value becomes small (approximately 10 mT).
  • the absolute value of the difference between the maximum value and the minimum value of the added value (S 2 + S 3 ) is approximately 8 mT, which is less than half of the absolute value of the difference of the comparative example (approximately 20 mT). Is closer to a straight line. That the difference of the added value (S 2 + S 3 ) is close to a straight line means that the magnetic flux density of the magnetic field acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 hardly changes due to the rotation of the magnet 50. That is, the influence of rotation of the magnet 50 on the detection of the dimmer operation is small. Accordingly, the first dimmer detection sensor 91 and the second dimmer detection sensor 92 can detect the vertical movement of the magnet 50 due to the dimmer operation without being influenced by the rotation of the magnet 50.
  • FIG. 8C shows that the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the maximum value of the addition value are determined by the arrangement angle ⁇ 1 of the first dimmer detection sensor 91 and the second dimmer detection sensor 92. It is the graph which showed how it changes.
  • the symbol “ ⁇ ” in FIG. 8C is the absolute value (magnetic flux max-min) of the difference between the maximum value and the minimum value of the magnetic flux density in the comparative example in which the magnet is not tilted.
  • the symbol is the absolute value (S 2 + S 3 max) of the added value (S 2 + S 3 ).
  • 8C is the absolute value (magnetic flux max-min) of the difference between the maximum value and the minimum value of the magnetic flux density when the magnet is inclined, and the symbol “ ⁇ ” It is the absolute value (S 2 + S 3 max) of the added value (S 2 + S 3 ).
  • the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the added value decrease as the arrangement angle ⁇ 1 increases.
  • the difference between the absolute values of the difference between the maximum value and the minimum value of the magnetic flux density is about 5 mT.
  • the difference between the absolute values of the added values is approximately 34 mT.
  • the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the change in the absolute value of the added value (S 2 + S 3 ) are changed. Is slight. Specifically, the difference in absolute value between the maximum value and the minimum value of the magnetic flux density is approximately 1 mT. The difference between the absolute values of the added values is approximately 7 mT. That is, the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the added value (S 2 + S 3 ) are within the range of about one-fifth of the comparative example when there is a slope. ing.
  • FIG. 8B shows magnetic flux densities corresponding to three operation positions by the dimmer operation of the operation lever 10.
  • FIG. 10 is an upper plan view with the upper housing 21 removed.
  • FIG. 9B shows a neutral position when the operation lever 10 is not rotated. In this position state, since the operation lever 10 and the bracket 30 are not rotated, the magnet 50 is not rotated either. As a result, the direction of the magnetic field 500 passing through the turn detection sensor 80 does not change.
  • FIG. 10A is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow D in the AA cross section of FIG. 2
  • FIG. 10B is a neutral view in the AA cross section of FIG.
  • FIG. 10C is a partial cross-sectional view showing the moving state of the operating lever and the magnet during the dimmer operation in the direction of arrow P in the AA cross section of FIG. It is.
  • FIG. 10A when the operating lever 10 is operated in the direction of arrow D by a dimmer operation, the operating lever 10 rotates around the second rotation axis L2. Since the drive protrusion 14 of the operation lever 10 moves upward, the holder 40 slides upward via the fitting groove 41 that fits into the drive protrusion 14. The magnet 50 held in the holding groove 42 of the holder 40 is supported by the magnet support shaft 72 and slides upward. As a result, the magnetic flux density of the magnetic field 500 that passes through the first dimmer detection sensor 91 and the second dimmer detection sensor 92 disposed below the magnet 50 changes.
  • the added value (S 2 + S 3 ) when the turn is operated at the position of the operation lever 10 is shown by a solid line in FIG. 8B as an example.
  • FIG. 10B shows a neutral position when the operation lever 10 is not rotated.
  • the operation lever 10 does not rotate, and the holder 40 does not slide, so the magnet 50 does not slide.
  • the magnetic flux density of the magnetic field 500 that passes through the first dimmer detection sensor 91 and the second dimmer detection sensor 92 disposed below the magnet 50 does not change.
  • the added value (S 2 + S 3 ) when the turn is operated at the position of the operation lever 10 is indicated by a dotted line in FIG. 8B as an example.
  • the lever switch device 1 can detect movement in two directions in a non-contact manner with one magnet. Specifically, in the lever switch device 1, the magnet 50 rotates around the third rotation axis L3 by the turning operation of the operation lever 10, and the magnet 50 is rotated by the third rotation axis L3 by the dimmer operation of the operation lever 10. It is comprised so that it may move along. Further, the lever switch device 1 detects the rotation of the magnet 50 with the turn detection sensor 80, and detects the vertical movement of the magnet 50 with the first dimmer detection sensor 91 and the second dimmer detection sensor 92. Therefore, the lever switch device 1 can detect the movement in the two directions of the turn operation and the dimmer operation in a non-contact manner with one magnet.
  • Lever switch device 1 is the sum of the detected value S 2 and a detection value S 3 of the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is arranged so as to be constant, the influence of rotation of the magnet Suppressed and accurate detection is possible.
  • the lever switch device 1 is configured so that the centers of the detection surface 910 and the detection surface 920 are positioned on the mapping 505 in which the first dimmer detection sensor 91 and the second dimmer detection sensor 92 project the magnet 50 onto the arrangement surface 101. Since it is arranged, a change in magnetic flux density can be detected more efficiently than when the center of the detection surface is not located.
  • the magnet 50 has an inclination 530. Since the magnet 50 has the inclination 530, the magnetic flux density of the magnetic field 500 acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is changed to the lower magnetic flux on the opposite side of the portion where the inclination 530 is formed. Since the density can be made lower than the density, the detection of the dimmer operation is hardly affected by the rotation of the magnet 50 and can be detected with high accuracy.
  • the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92 are arranged on the same arrangement surface 101 of the substrate 100. Compared to the case, the positioning of the magnet 50, the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92 is easy.
  • the magnet 50 may have an inclining 530 that is bulged or recessed, and is formed only in the vicinity of a portion that faces the first dimmer detection sensor 91 and the second dimmer detection sensor 92. Also good. Further, as another modified example, the magnet 50, with rotation, always formed thinner than dimmer detection sensor 90 of the opposing portions to the thickness T 1 is the second thickness T 2, the magnetic flux density of the second thickness T 2 Any shape that is lower than the portion may be used.
  • the present invention can be applied to a lever switch device used for operating a turn signal and a headlamp of a vehicle.

Landscapes

  • Switches With Compound Operations (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

Provided is a rotation movement detection device that is capable of detecting, via a single magnet and without contact, movements in two directions. A lever switch device (1) comprises: a magnet (50) which rotates around a third rotation axis (L3) and generating a magnetic field (500) plane symmetrical with respect to a plane (503) containing the third rotation axis (L3); a turn detection sensor (80), arranged on the arrangement surface (101) of a base plate (100), for detecting the magnet (50) rotation angle (θ); a first dimmer detection sensor (91) for detecting the approach and separation between the magnet (50) and the arrangement surface (101) due to relative movement therebetween, said first dimmer detection sensor (91) being disposed at the intersection (911) between a straight line (506), which passes through the intersection (801) between the third rotation axis (L3) and the arrangement surface (101), and the outer periphery of an image (505) of the magnet (50) projected onto the arrangement surface (101); and a second dimmer detection sensor (92) for detecting the approach and separation between the magnet (50) and the arrangement surface (101), said second dimmer detection sensor (92) being disposed at a position that is plane symmetrical to the first dimmer detection sensor with respect to the plane (503).

Description

回転移動検出装置Rotational movement detector
本発明は、回転移動検出装置に関する。 The present invention relates to a rotational movement detection device.
主に自動車のステアリングホイール近傍に装着され、ヘッドランプやターンシグナルランプ等の操作に用いられるレバースイッチ装置が知られている。例えば、レバースイッチ装置は、操作レバーに取付けられたホルダの前端部に挿入孔を形成し、この挿入孔に駆動体をスライド可能に保持すると共に、この駆動体をスプリング力によってケースのカム面に圧接する。挿入孔の内周面の上下両端に軸線方向へ延びる一対のガイド溝を形成し、ガイド溝を駆動体のカム面に対する摺動方向と直交する面内に位置させる。一方、第1の駆動体の外周面に軸線方向へ延びる一対のガイド突起を形成し、これらガイド突起を微少クリアランスを保って挿入孔のガイド溝に挿入する構成とする。これにより、レバーの2方向の傾倒操作を可能としている(特許文献1参照)。 A lever switch device that is mounted mainly in the vicinity of a steering wheel of an automobile and is used for operations of a headlamp, a turn signal lamp, and the like is known. For example, in a lever switch device, an insertion hole is formed in a front end portion of a holder attached to an operation lever, and a driving body is slidably held in the insertion hole, and the driving body is attached to a cam surface of a case by a spring force. Press contact. A pair of guide grooves extending in the axial direction is formed at both upper and lower ends of the inner peripheral surface of the insertion hole, and the guide grooves are positioned in a plane orthogonal to the sliding direction with respect to the cam surface of the driving body. On the other hand, a pair of guide protrusions extending in the axial direction are formed on the outer peripheral surface of the first driving body, and the guide protrusions are inserted into the guide grooves of the insertion holes while maintaining a slight clearance. Thus, the lever can be tilted in two directions (see Patent Document 1).
また、レバーの傾倒操作による交差する2方向の動きを非接触で検出するものとして、外レバーの揺動操作に応じて回転する第一の回転体と第二の回転体を設け、この中央に装着された2つの磁石の磁気をそれぞれの磁石に対応して設けられた2つの磁気検出素子で検出すると共に、制御手段がこの検出信号から各回転体の回転角度を検出し、これに応じた操作信号を出力する構成とされたレバースイッチ装置がある(特許文献2参照)。 In addition, a first rotating body and a second rotating body that rotate in response to the swinging operation of the outer lever are provided as non-contact detection of the two crossing movements caused by the tilting operation of the lever. The magnetism of the two mounted magnets is detected by two magnetic detection elements provided corresponding to the respective magnets, and the control means detects the rotation angle of each rotating body from this detection signal, and according to this There is a lever switch device configured to output an operation signal (see Patent Document 2).
特開2001-6494号公報JP 2001-6494 A 特開2008-218067号公報JP 2008-218067 A
特許文献1のレバースイッチ装置は、レバーの傾倒操作による摺動接点の移動を検出するものであり、信頼性、耐久性等に問題があった。また、特許文献2のレバースイッチ装置は、レバーの傾倒操作による交差する2方向の動きを磁気検出素子で検出するために、それぞれの動きに対応して2つの磁石を要するという問題があった。 The lever switch device of Patent Document 1 detects the movement of the sliding contact due to the tilting operation of the lever, and has problems in reliability, durability, and the like. In addition, the lever switch device of Patent Document 2 has a problem in that two magnets are required for each movement in order to detect movements in two intersecting directions caused by a tilting operation of the lever using a magnetic detection element.
本発明の目的は、1つの磁石で2方向の動きを非接触で検出できる回転移動検出装置を提供することにある。 An object of the present invention is to provide a rotational movement detection device that can detect movement in two directions with a single magnet in a non-contact manner.
本発明の一実施態様による回転移動検出装置は、回転軸の周りを回転し、回転軸を含む平面に対して面対称な磁場を生成する回転部材と、基材の配置面に配置され、回転部材の回転角を検出する回転角検出部と、回転部材と配置面との接近及び離脱を検出し、回転軸と配置面との交点を通る直線と配置面に回転部材を投影して得られる写像の外周との交点に配置された第1の検出部と、回転部材と配置面との接近及び離脱を検出し、平面に対して第1の検出部と面対称な位置に配置された第2の検出部と、を有する。 A rotational movement detection device according to an embodiment of the present invention is arranged on a rotating member that rotates around a rotation axis and generates a magnetic field that is plane-symmetric with respect to a plane that includes the rotation axis, and a rotation surface of the substrate. Obtained by projecting a rotation member onto a straight line passing through the intersection of the rotation axis and the arrangement surface and the arrangement surface, detecting a rotation angle detection unit for detecting the rotation angle of the member, approaching and leaving the rotation member and the arrangement surface The first detection unit arranged at the intersection with the outer periphery of the mapping, and the approach and separation between the rotating member and the arrangement surface are detected, and the first detection unit arranged in a plane symmetric with the first detection unit with respect to the plane 2 detection units.
本発明の一実施形態によれば、1つの磁石で2方向の動きを非接触で検出できる回転移動検出装置を提供することができる。 According to one embodiment of the present invention, it is possible to provide a rotational movement detection device that can detect movement in two directions with a single magnet in a non-contact manner.
図1は、実施の形態に係るレバースイッチ装置が搭載された車両内部の概略図である。FIG. 1 is a schematic diagram of the interior of a vehicle on which a lever switch device according to an embodiment is mounted. 図2は、実施の形態に係るレバースイッチ装置の外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of the lever switch device according to the embodiment. 図3は、実施の形態に係るレバースイッチ装置の分解斜視図である。FIG. 3 is an exploded perspective view of the lever switch device according to the embodiment. 図4は、図2のA-A断面図である。4 is a cross-sectional view taken along the line AA in FIG. 図5Aは、実施の形態に係るマグネットを示す斜視図である。FIG. 5A is a perspective view showing a magnet according to the embodiment. 図5Bは、図5AのD-D断面図である。FIG. 5B is a DD cross-sectional view of FIG. 5A. 図5Cは、マグネットを図5Aの矢印F方向から見た上面図である。5C is a top view of the magnet viewed from the direction of arrow F in FIG. 5A. 図6Aは、実施の形態に係るマグネットを配置面に投影した写像と第1のディマ検出センサ及び第2のディマ検出センサとの位置関係を示す説明図である。FIG. 6A is an explanatory diagram illustrating a positional relationship between a mapping obtained by projecting the magnet according to the embodiment onto the arrangement surface, the first dimmer detection sensor, and the second dimmer detection sensor. 図6Bは、マグネットを示す側面図である。FIG. 6B is a side view showing the magnet. 図6Cは、レバースイッチ装置を説明するブロック図である。FIG. 6C is a block diagram illustrating the lever switch device. 図7Aは、実施の形態に係るレバースイッチ装置の右方向のターン操作によるマグネットの回転を示す上面図である。FIG. 7A is a top view showing rotation of the magnet by a right turn operation of the lever switch device according to the exemplary embodiment. 図7Bは、レバーが中立位置にあるときのマグネットを示す上面図である。FIG. 7B is a top view showing the magnet when the lever is in the neutral position. 図7Cは、左方向のターン操作によるマグネットの回転を示す上面図である。FIG. 7C is a top view showing rotation of the magnet by a left turn operation. 図8Aは、実施の形態に係る第1のディマ検出センサの検出値S、第2のディマ検出センサの検出値S、及び検出値Sと検出値Sを加算した加算値(S+S)を示すグラフである。FIG. 8A shows the detection value S 2 of the first dimmer detection sensor, the detection value S 3 of the second dimmer detection sensor according to the embodiment, and the added value obtained by adding the detection value S 2 and the detection value S 3 (S 2 + S 3 ). 図8Bは、第1のディマ検出センサ及び第2のディマ検出センサによるディマ操作の検出を説明するためのグラフである。FIG. 8B is a graph for explaining detection of a dimmer operation by the first dimmer detection sensor and the second dimmer detection sensor. 図8Cは、第1のディマ検出センサ及び第2のディマ検出センサの配置角θと磁束密度の関係を示すグラフである。FIG. 8C is a graph showing the relationship between the arrangement angle θ 1 and the magnetic flux density of the first dimmer detection sensor and the second dimmer detection sensor. 図8Dは、比較例における検出値S、検出値S及び加算値(S+S)を示すグラフである。FIG. 8D is a graph showing a detected value S 2 , a detected value S 3, and an added value (S 2 + S 3 ) in a comparative example. 図9Aは、図2のB方向から見た右折操作(矢印TR方向の操作)時の操作レバー、マグネットの移動状態を示す平面図である。FIG. 9A is a plan view showing a moving state of the operation lever and the magnet at the time of a right turn operation (operation in the direction of arrow TR) seen from the direction B of FIG. 図9Bは、図2のB方向から見た中立時の操作レバー、マグネットの移動状態を示す平面図である。FIG. 9B is a plan view showing a moving state of the operation lever and the magnet in the neutral position as seen from the direction B of FIG. 図9Cは、図2のB方向から見た左折操作(矢印TL方向の操作)時の操作レバー、マグネットの移動状態を示す平面図である。FIG. 9C is a plan view showing a moving state of the operation lever and the magnet in the left turn operation (operation in the arrow TL direction) as viewed from the B direction in FIG. 2. 図10Aは、図2のA-A断面において、矢印D方向のディマ操作時の操作レバー、マグネットの移動状態を示す部分断面図である。FIG. 10A is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow D in the AA cross section of FIG. 図10Bは、図2のA-A断面において、中立時の操作レバー、マグネットの移動状態を示す部分断面図である。FIG. 10B is a partial cross-sectional view showing a moving state of the operation lever and the magnet at the neutral position in the AA cross section of FIG. 図10Cは、図2のA-A断面において、矢印P方向のディマ操作時の操作レバー、マグネットの移動状態を示す部分断面図である。FIG. 10C is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow P in the AA cross section of FIG.
(実施の形態の要約)
実施の形態に係る回転移動検出装置は、回転軸の周りを回転し、回転軸を含む平面に対して面対称な磁場を生成する回転部材と、基材の配置面に配置され、回転部材の回転角を検出する回転角検出部と、回転部材と配置面との相対移動による接近及び離脱を検出し、回転軸と配置面との交点を通る直線と配置面に回転部材を投影して得られる写像の外周との交点に配置された第1の検出部と、回転部材と配置面との接近及び離脱を検出し、平面に対して第1の検出部と面対称な位置に配置された第2の検出部と、を有する。
(Summary of embodiment)
The rotational movement detection device according to the embodiment is disposed on a rotation member that rotates around a rotation axis and generates a magnetic field that is plane-symmetric with respect to a plane including the rotation axis, Rotation angle detection unit that detects the rotation angle, approach and separation due to relative movement between the rotating member and the placement surface are detected, and the rotation member is projected onto the straight line passing through the intersection of the rotation axis and the placement surface and the placement surface. The first detection unit arranged at the intersection with the outer periphery of the mapping to be detected, and the approach and separation between the rotating member and the arrangement surface are detected, and the first detection unit is arranged in a plane-symmetrical position with respect to the plane. A second detection unit.
[実施の形態]
(レバースイッチ装置1の全体構成)
図1は、実施の形態に係るレバースイッチ装置が搭載された車両内部を示す説明図である。図2は、実施の形態に係るレバースイッチ装置の外観を示す斜視図である。図3は、実施の形態に係るレバースイッチ装置を示す分解斜視図である。図4は、図2のA-A断面図である。図5Aは、実施の形態に係るマグネットを示す斜視図であり、図5Bは、図5AのD-D断面図であり、図5Cは、マグネットの上面図である。図6Aは、実施の形態に係るマグネットを配置面に投影した写像と第1のディマ検出センサ及び第2のディマ検出センサとの位置関係を示す説明図であり、図6Bは、マグネットを示す側面図であり、図6Cは、レバースイッチ装置を説明するブロック図である。なお、以下に記載する実施の形態に係る各図において、図形間の比率は、実際の比率とは異なる場合がある。また図6Cでは、主な信号や情報の流れを矢印で示している。
[Embodiment]
(Overall configuration of lever switch device 1)
FIG. 1 is an explanatory view showing the inside of a vehicle on which the lever switch device according to the embodiment is mounted. FIG. 2 is a perspective view showing an appearance of the lever switch device according to the embodiment. FIG. 3 is an exploded perspective view showing the lever switch device according to the embodiment. 4 is a cross-sectional view taken along the line AA in FIG. 5A is a perspective view showing a magnet according to the embodiment, FIG. 5B is a cross-sectional view taken along DD of FIG. 5A, and FIG. 5C is a top view of the magnet. FIG. 6A is an explanatory diagram illustrating a positional relationship between a mapping obtained by projecting the magnet according to the embodiment onto the arrangement surface, the first dimmer detection sensor, and the second dimmer detection sensor, and FIG. 6B is a side view illustrating the magnet. FIG. 6C is a block diagram illustrating the lever switch device. Note that, in each drawing according to the embodiment described below, the ratio between figures may be different from the actual ratio. In FIG. 6C, main signals and information flows are indicated by arrows.
回転移動検出装置としてのレバースイッチ装置1は、例えば、図1に示されるように、車両5のウインカー(方向指示器)やヘッドランプを操作することが可能な操作装置である。このレバースイッチ装置1は、図1に示されるように、車両のステアリング6の近傍に装着され、ステアリングコラムを覆うステアリングコラムカバー7から突出するように配置されている。 The lever switch device 1 as the rotational movement detection device is an operation device capable of operating a turn signal (direction indicator) and a headlamp of the vehicle 5 as shown in FIG. As shown in FIG. 1, the lever switch device 1 is mounted in the vicinity of the steering 6 of the vehicle, and is disposed so as to protrude from a steering column cover 7 that covers the steering column.
図1の紙面において右側に突出して配置されたレバースイッチ装置1は、例えば、方向指示器及びヘッドランプ等を操作するものである。本実施の形態では、右ハンドルの車両を前提とし、右側に突出した方向指示器等を操作することが可能なレバースイッチ装置1について説明する。 The lever switch device 1 disposed so as to protrude rightward on the paper surface of FIG. 1 operates, for example, a direction indicator and a headlamp. In the present embodiment, a lever switch device 1 capable of operating a direction indicator and the like protruding to the right side on the premise of a right-hand drive vehicle will be described.
レバースイッチ装置1は、図2及び図3に示されるように、第3の回転軸L3の周りを回転し、第3の回転軸L3を含む平面(平面503)に対して面対称な磁場(磁場500)を生成する回転部材と、基材の配置面に配置され、回転部材の回転角θを検出する回転角検出部と、回転部材と配置面との相対移動による接近及び離脱を検出し、第3の回転軸L3と配置面との交点(交点801)を通る直線(直線506)と配置面に回転部材を投影して得られる写像(写像505)の外周との交点(交点911)に配置された第1の検出部と、回転部材と配置面101との接近及び離脱を検出し、平面(平面503)に対して第1の検出部と面対称な位置に配置された第2の検出部と、を有する。 As shown in FIGS. 2 and 3, the lever switch device 1 rotates around the third rotation axis L <b> 3 and has a magnetic field (symmetric to a plane (plane 503) including the third rotation axis L <b> 3). A rotating member that generates a magnetic field 500), a rotation angle detection unit that is arranged on the arrangement surface of the base material and detects a rotation angle θ of the rotation member, and detects approach and separation due to relative movement between the rotation member and the arrangement surface. The intersection (intersection 911) between the straight line (straight line 506) passing through the intersection (intersection 801) between the third rotation axis L3 and the arrangement plane and the outer periphery of the map (mapping 505) obtained by projecting the rotating member onto the arrangement plane. The first detection unit arranged in the first position, and the approach and separation between the rotating member and the arrangement surface 101 are detected, and the second detection unit is arranged in a plane symmetric with the first detection unit with respect to the plane (plane 503). And a detecting unit.
回転部材は、一例として、マグネット50である。基材の配置面は、一例として、プリント配線基板である基板100の配置面101である。回転角検出部は、一例として、ターン検出センサ80である。第1の検出部及び第2の検出部は、一例として、第1のディマ検出センサ91及び第2のディマ検出センサ92である(図6A参照)。 The rotating member is, for example, a magnet 50. For example, the arrangement surface of the base material is an arrangement surface 101 of the substrate 100 which is a printed wiring board. The rotation angle detection unit is a turn detection sensor 80 as an example. The first detector and the second detector are, for example, a first dimmer detection sensor 91 and a second dimmer detection sensor 92 (see FIG. 6A).
また、レバースイッチ装置1は、第1の回転軸L1を軸とする第1の回転操作、及び第1の回転軸L1と交差する第2の回転軸L2を軸とする第2の回転操作が可能な操作部と、操作部になされた第1の回転操作をマグネット50の第3の回転軸L3の周りの回転に変換する第1の変換部と、操作部になされた第2の回転操作をマグネット50と配置面101との相対移動に変換する第2の変換部と、を有する。 Further, the lever switch device 1 is configured to perform a first rotation operation about the first rotation axis L1 and a second rotation operation about the second rotation axis L2 intersecting the first rotation axis L1. A possible operation unit, a first conversion unit that converts the first rotation operation performed on the operation unit into a rotation around the third rotation axis L3 of the magnet 50, and a second rotation operation performed on the operation unit And a second conversion unit that converts relative movement between the magnet 50 and the arrangement surface 101.
操作部は、一例として、操作レバー10である。第1の変換部は、一例として、ブラケット30である。第2の変換部は、一例として、ホルダ40である。 The operation unit is an operation lever 10 as an example. The 1st conversion part is bracket 30 as an example. The 2nd conversion part is holder 40 as an example.
また、レバースイッチ装置1は、図3に示されるように、筐体20と、ブラケット30と、マグネットホルダ70と、を有する。 Moreover, the lever switch apparatus 1 has the housing | casing 20, the bracket 30, and the magnet holder 70, as FIG. 3 shows.
ここで、図3で示す第1の回転軸L1の回りの第1の回転操作の方向は、図2に示す矢印TL方向、及び矢印TL方向とは逆方向となる矢印TR方向の操作を示している。この矢印TL方向の操作は、例えば、車両5の左側のウインカー(方向指示器)を点滅させる左折操作である。また矢印TR方向の操作は、例えば、右側のウインカー(方向指示器)を点滅させる右折操作である。すなわち、第1の回転操作は、左折又は右折のためのウインカー(方向指示器)操作であり、操作レバー10のターン操作である。 Here, the direction of the first rotation operation around the first rotation axis L1 shown in FIG. 3 indicates the operation in the arrow TL direction shown in FIG. 2 and the operation in the arrow TR direction which is opposite to the arrow TL direction. ing. The operation in the direction of the arrow TL is, for example, a left turn operation for blinking the left turn signal (direction indicator) of the vehicle 5. The operation in the direction of the arrow TR is, for example, a right turn operation for blinking the right turn signal (direction indicator). That is, the first rotation operation is a winker (direction indicator) operation for left or right turn, and is a turn operation of the operation lever 10.
一方、図3で示す第2の回転軸L2の回りの第2の回転操作の方向は、図2に示す矢印D方向、及び矢印D方向とは逆方向となる矢印P方向の操作を示している。この矢印D方向の操作は、例えば、車両5のヘッドランプの光軸を上向きに切り替える操作(ディマHU操作)である。また矢印P方向の操作は、例えば、操作を維持している間、ヘッドライトの光軸を上向きに切り替える操作(パッシング操作)である。レバースイッチ装置1は、例えば、矢印P方向の操作に対しては、操作が終了した後に中立位置に復帰するモーメンタリースイッチとして構成されている。またレバースイッチ装置1は、例えば、矢印D方向の操作に対しては、操作が終了した後、中立位置に復帰せず、矢印D方向に操作レバー10が操作された状態が維持されるように構成されている。すなわち、第2の回転操作は、ヘッドランプの光軸を切り替える操作であり、操作レバー10のディマ操作である。 On the other hand, the direction of the second rotation operation around the second rotation axis L2 shown in FIG. 3 indicates the operation in the arrow D direction shown in FIG. 2 and the operation in the arrow P direction opposite to the arrow D direction. Yes. The operation in the direction of arrow D is, for example, an operation (dimmer HU operation) for switching the optical axis of the headlamp of the vehicle 5 upward. The operation in the arrow P direction is, for example, an operation (passing operation) for switching the optical axis of the headlight upward while maintaining the operation. For example, the lever switch device 1 is configured as a momentary switch that returns to the neutral position after the operation is completed for the operation in the direction of the arrow P. In addition, for example, for the operation in the direction of the arrow D, the lever switch device 1 does not return to the neutral position after the operation is completed, but maintains the state in which the operation lever 10 is operated in the direction of the arrow D. It is configured. That is, the second rotation operation is an operation of switching the optical axis of the headlamp, and is a dimmer operation of the operation lever 10.
上述の第1の操作方向は、図2に示すレバースイッチ装置1の上部筐体21が、操作者に向くように車両5に配置されるので、操作者から見て図2の上下方向に操作する方向となる。この上方向の操作は、矢印TL方向の操作であり、下方向の操作は、矢印TR方向の操作である。また第2の操作方向は、操作者から見て前後方向に操作する方向となる。この前方向の操作は、矢印P方向の操作であり、操作レバー10を操作者側に引き寄せるような操作となる。また後方向の操作とは、矢印D方向の操作であり、操作レバー10を操作者から遠ざけるような操作となる。 Since the upper casing 21 of the lever switch device 1 shown in FIG. 2 is arranged in the vehicle 5 so as to face the operator, the first operation direction described above is operated in the vertical direction of FIG. 2 as viewed from the operator. It becomes the direction to do. The upward operation is an operation in the arrow TL direction, and the downward operation is an operation in the arrow TR direction. In addition, the second operation direction is a direction to operate in the front-rear direction as viewed from the operator. This forward operation is an operation in the direction of arrow P, and is an operation that pulls the operation lever 10 toward the operator. The backward operation is an operation in the direction of arrow D, and is an operation that moves the operation lever 10 away from the operator.
なお、この矢印TL方向及び矢印TR方向の操作により操作レバー10が形成する操作面と、矢印D方向及び矢印P方向の操作により操作レバー10が形成する操作面とは、交差し、実質的に直交する。 The operation surface formed by the operation lever 10 by the operation in the arrow TL direction and the arrow TR direction intersects with the operation surface formed by the operation lever 10 by the operation in the arrow D direction and the arrow P direction. Orthogonal.
(操作レバー10の構成)
操作レバー10は、ブラケット30に収容され、ターン操作によりブラケット30と一体となって第1の回転軸L1の回りに回転移動可能で、第1の回転軸L1と交差する第2の回転軸L2の回りのディマ操作の方向にブラケット30と独立に回転移動可能に構成、配置されている。
(Configuration of operation lever 10)
The operation lever 10 is accommodated in the bracket 30 and can be rotated and moved around the first rotation axis L1 integrally with the bracket 30 by a turn operation, and the second rotation axis L2 intersecting the first rotation axis L1. It is constructed and arranged so as to be able to rotate and move independently of the bracket 30 in the direction of the dimmer operation around.
操作レバー10は、ブラケット30の中に挿入されて収容される挿入部11、操作者がターン操作やディマ操作のために把持するレバー本体12、及び、挿入部11とレバー本体12との間に位置し、操作レバー10のディマ操作の回転中心となる回転軸部13を有する。 The operation lever 10 includes an insertion portion 11 that is inserted and accommodated in the bracket 30, a lever main body 12 that is held by an operator for turn operation and dimmer operation, and between the insertion portion 11 and the lever main body 12. The rotary shaft portion 13 is located and serves as a rotation center for the dimmer operation of the operation lever 10.
回転軸部13は、図3に示されるように、第2の回転軸L2の両方向に突出して形成され、挿入部11がブラケット30の中に挿入されることにより、ブラケット30の支持穴部33に回転可能に支持される。 As shown in FIG. 3, the rotary shaft portion 13 is formed to protrude in both directions of the second rotary shaft L <b> 2, and the insertion portion 11 is inserted into the bracket 30, whereby the support hole portion 33 of the bracket 30. Is rotatably supported.
挿入部11の先端側には、後述するホルダ40と係合して、ディマ操作時にホルダ40をスライド移動させるための駆動突起部14が突出して形成されている。 On the distal end side of the insertion portion 11, a driving projection 14 is formed to protrude so as to engage with a holder 40 described later and slide the holder 40 during a dimmer operation.
挿入部11の先端には、節度ピース16がスプリング17を介して挿入される挿入穴15が形成されている。この節度ピース16は、操作レバー10がブラケット30及び筐体20に組み付けられた状態で、スプリング17により節度ブロック25へ向かって付勢される。これにより、ターン操作、ディマ操作時に必要な節度感を付与することができる。 An insertion hole 15 into which the moderation piece 16 is inserted via a spring 17 is formed at the distal end of the insertion portion 11. The moderation piece 16 is urged toward the moderation block 25 by the spring 17 in a state where the operation lever 10 is assembled to the bracket 30 and the housing 20. Thereby, the moderation feeling required at the time of turn operation and dimmer operation can be provided.
(筐体20の構成)
筐体20は、図2及び3に示されるように、上部筐体21と下部筐体22とから構成されている。上部筐体21には、節度ブロック25が節度ピース16に対応して装着される。また、下部筐体22には、マグネットホルダ70、基板100が下側から固定される。上部筐体21と下部筐体22は、係止部21aと係止突起部22aとが係合することにより互いに係止されて固定される。
(Configuration of the housing 20)
The casing 20 is composed of an upper casing 21 and a lower casing 22 as shown in FIGS. A moderation block 25 is attached to the upper housing 21 corresponding to the moderation piece 16. In addition, the magnet holder 70 and the substrate 100 are fixed to the lower housing 22 from below. The upper housing 21 and the lower housing 22 are locked and fixed to each other by the engagement of the locking portion 21a and the locking projection 22a.
上部筐体21は、内部にブラケット30等を収容可能とする箱形状とされている。図4に示されるように、内部上面にはブラケット30の回転軸部31を回転可能に支持する支持穴部21bが形成されている。上部筐体21はブラケット30の上部を回転可能に支持し、下部筐体22がブラケット30の下部を回転可能に支持して、上部筐体21と下部筐体22とでブラケット30を挟み込むように収容する。上部筐体21の内部は、ブラケット30が支持穴部21bの回りに所定角度(ターン操作に必要な角度)だけ回転移動できるように内部空間が形成されている。 The upper housing 21 has a box shape that can accommodate the bracket 30 and the like therein. As shown in FIG. 4, a support hole portion 21 b that rotatably supports the rotating shaft portion 31 of the bracket 30 is formed on the inner upper surface. The upper housing 21 rotatably supports the upper portion of the bracket 30, and the lower housing 22 rotatably supports the lower portion of the bracket 30 so that the bracket 30 is sandwiched between the upper housing 21 and the lower housing 22. Accommodate. Inside the upper housing 21, an internal space is formed so that the bracket 30 can be rotated and moved around the support hole portion 21b by a predetermined angle (an angle necessary for the turn operation).
上部筐体21の内部には、図4に示されるように、節度ブロック25が装着されている。節度ブロック25は、付勢された節度ピース16と節度溝25aにより、ターン操作、ディマ操作時に必要な節度感を付与する。 A moderation block 25 is mounted inside the upper housing 21 as shown in FIG. The moderation block 25 gives a feeling of moderation required at the time of turn operation and dimmer operation by the urged moderation piece 16 and the moderation groove 25a.
下部筐体22は、内部にブラケット30等を収容可能とする箱形状とされている。図4に示されるように、内部下面にはブラケット30の環状壁部32を回転可能に支持する環状溝部22bが形成されている。上部筐体21と同様に、下部筐体22の内部は、ブラケット30が環状溝部22bの回りに所定角度(ターン操作に必要な角度)だけ回転移動できるように内部空間が形成されている。 The lower housing 22 has a box shape that can accommodate the bracket 30 and the like therein. As shown in FIG. 4, an annular groove portion 22 b that rotatably supports the annular wall portion 32 of the bracket 30 is formed on the inner lower surface. Similar to the upper casing 21, an inner space is formed in the lower casing 22 so that the bracket 30 can rotate and move around the annular groove 22b by a predetermined angle (an angle necessary for the turn operation).
下部筐体22は、図3に示されるように、下側から、マグネットホルダ70、基板100が固定されている。 As shown in FIG. 3, the magnet holder 70 and the substrate 100 are fixed to the lower housing 22 from the lower side.
(ブラケット30の構成)
ブラケット30は、第1の回転軸L1に、回転軸部31が突出して形成され、また、図4に示されるように、環状壁部32が形成されている。これにより、ブラケット30は、第1の回転軸L1の回りに所定角度(ターン操作に必要な角度)だけ回転移動可能な状態で筐体20の中に収容される。
(Configuration of bracket 30)
The bracket 30 is formed with a rotating shaft portion 31 protruding from the first rotating shaft L1, and an annular wall portion 32 is formed as shown in FIG. Thereby, the bracket 30 is accommodated in the housing 20 in a state in which the bracket 30 can be rotated about the first rotation axis L1 by a predetermined angle (an angle necessary for the turn operation).
ブラケット30には、第2の回転軸L2に、操作レバー10の回転軸部13と回転可能に嵌合して支持する支持穴部33が形成されている。これにより、ブラケット30は、内部に、第2の回転軸L2の回りのディマ操作の方向にブラケット30と独立に回転移動可能な状態で、操作レバー10を収容する。 The bracket 30 is formed with a support hole portion 33 that is rotatably fitted to and supported by the rotation shaft portion 13 of the operation lever 10 on the second rotation shaft L2. Thereby, the bracket 30 accommodates the operation lever 10 in a state in which the bracket 30 can rotate and move independently of the bracket 30 in the direction of the dimmer operation around the second rotation axis L2.
ブラケット30は、第1の回転軸L1から離間した位置に、上述するマグネット50を回転駆動するための駆動突起部34が形成されている。この駆動突起部34は、操作レバー10のターン操作により、第1の回転軸L1の回りに、ブラケット30と共に所定角度だけ回転移動する。 The bracket 30 has a drive projection 34 for rotationally driving the magnet 50 described above at a position spaced from the first rotation axis L1. The drive protrusion 34 rotates by a predetermined angle together with the bracket 30 around the first rotation axis L <b> 1 when the operation lever 10 is turned.
(ホルダ40の構成)
ホルダ40は、操作レバー10のターン操作によりブラケット30と一体となって第1の回転軸L1の回りに回転移動可能で、操作レバー10のディマ操作によりブラケット30に対してスライド移動可能な状態で、ブラケット30の中に収容されている。
(Configuration of holder 40)
The holder 40 can be rotated and moved around the first rotation axis L1 integrally with the bracket 30 by the turning operation of the operating lever 10, and can be slidably moved with respect to the bracket 30 by the dimmer operation of the operating lever 10. The bracket 30 is housed.
ホルダ40は、図3に示されるように、ホルダ40の上部に、操作レバー10の駆動突起部14が嵌合する嵌合溝41が形成されている。この嵌合溝41は、操作レバー10が第2の回転軸L2の回りにディマ操作がされた場合に、駆動突起部14の上下移動にのみホルダ40が追従し、第2の回転軸L2に交差する方向への動きに追従しないための溝として形成されている。 As shown in FIG. 3, the holder 40 is formed with a fitting groove 41 in the upper portion of the holder 40 in which the drive protrusion 14 of the operation lever 10 is fitted. The fitting groove 41 is configured so that the holder 40 follows only the vertical movement of the drive protrusion 14 when the operation lever 10 is operated around the second rotation axis L2, and the second rotation axis L2. It is formed as a groove not to follow the movement in the intersecting direction.
また、ホルダ40は、図3に示されるように、ホルダ40の下部に、操作レバー10が第2の回転軸L2の回りにディマ操作された場合に、マグネット50を保持して上下移動させるための保持溝42が形成されている。この保持溝42は、操作レバー10が第1の回転軸L1の回りにターン操作がされた場合に、第1の回転軸L1の回りへの動きに追従しないための溝として形成されている。 Further, as shown in FIG. 3, the holder 40 holds the magnet 50 in the lower part of the holder 40 and moves it up and down when the operation lever 10 is operated around the second rotation axis L2. The holding groove 42 is formed. The holding groove 42 is formed as a groove that does not follow the movement around the first rotation axis L1 when the operation lever 10 is turned around the first rotation axis L1.
(マグネット50の構成)
マグネット50は、例えば、フェライト系、ネオジム系、サマコバ系、サマリウム鉄窒素系等の磁性体材料と、ポリスチレン系、ポリエチレン系、ポリアミド系、アクリロニトリル/ブタジエン/スチレン(ABS)等の合成樹脂材料と、を混合して所望の形状に成形したプラスチックマグネットである。なお、変形例として、回転部材は、例えば、マグネット50と似た磁場を形成する電磁石等であっても良い。
(Configuration of magnet 50)
The magnet 50 is, for example, a magnetic material such as ferrite, neodymium, samakoba, and samarium iron nitrogen, and a synthetic resin material such as polystyrene, polyethylene, polyamide, acrylonitrile / butadiene / styrene (ABS), It is a plastic magnet formed by mixing and molding into a desired shape. As a modification, the rotating member may be, for example, an electromagnet that forms a magnetic field similar to the magnet 50.
マグネット50は、図5A~5Cに示されるように、円板部51と、突出部54と、円筒部56と、を有する。このマグネット50は、図5Aに示されるように、マグネット50の第3の回転軸L3に交差する方向に着磁され、突出部54が設けられている一方がS極となり、他方がN極となっている。この着磁により、図5B及び図5Cに示されるように、磁束がマグネット50のN極からS極に向かって放射され、N極から径方向に向かって放射された磁束がS極に収束される磁場500を形成する。なお、着磁方向は、逆向きであっても良い。 As shown in FIGS. 5A to 5C, the magnet 50 includes a disc portion 51, a protruding portion 54, and a cylindrical portion 56. As shown in FIG. 5A, the magnet 50 is magnetized in a direction intersecting the third rotation axis L3 of the magnet 50, and one of the protrusions 54 provided is an S pole and the other is an N pole. It has become. 5B and 5C, the magnetic flux is radiated from the N pole of the magnet 50 toward the S pole, and the magnetic flux radiated from the N pole in the radial direction is converged on the S pole. The magnetic field 500 is formed. Note that the magnetization direction may be reversed.
円板部51の上面52には、円筒部56が設けられ、下面53には、傾斜530が設けられている。また、円板部51には、側面からマグネット50の径方向に突出するように突出部54が設けられている。 A cylindrical portion 56 is provided on the upper surface 52 of the disc portion 51, and an inclination 530 is provided on the lower surface 53. The disk portion 51 is provided with a protruding portion 54 so as to protrude from the side surface in the radial direction of the magnet 50.
円筒部56は、周方向に周溝部560が設けられている。この周溝部560は、上述のように、ホルダ40の保持溝42にスライド可能に嵌り込んでいる。ディマ操作が操作レバー10になされた場合、操作レバー10を介してホルダ40がディマ操作の方向に従って上下に移動し、このホルダ40の移動に伴って、保持溝42に嵌るマグネット50がホルダ40と共に上下に移動する。なお、特に断らない限り、マグネット50の上下の移動とは、図5Bの紙面の中立位置(Z=0)からの上方向(D位置:Z=+1.5)及び下方向(P位置:Z=-1.5)の移動を示している。 The cylindrical portion 56 is provided with a circumferential groove portion 560 in the circumferential direction. As described above, the circumferential groove portion 560 is slidably fitted in the holding groove 42 of the holder 40. When the dimmer operation is performed on the operation lever 10, the holder 40 moves up and down according to the direction of the dimmer operation via the operation lever 10, and the magnet 50 that fits in the holding groove 42 is moved together with the holder 40 along with the movement of the holder 40. Move up and down. Unless otherwise specified, the vertical movement of the magnet 50 means upward (D position: Z = + 1.5) and downward (P position: Z) from the neutral position (Z = 0) in FIG. 5B. = -1.5).
また、マグネット50は、円板部51及び円筒部56を貫通する貫通孔57が設けられている。この貫通孔57には、後述するマグネットホルダ70のマグネット支持軸72が挿入される。マグネット50は、このマグネット支持軸72を中心に回転する。 In addition, the magnet 50 is provided with a through hole 57 that penetrates the disc portion 51 and the cylindrical portion 56. A magnet support shaft 72 of a magnet holder 70 to be described later is inserted into the through hole 57. The magnet 50 rotates around the magnet support shaft 72.
突出部54には、先端が開放されたU字形状の凹部55が形成されている。この凹部55には、ブラケット30の駆動突起部34が挿入されている。マグネット50は、操作レバー10になされたターン操作により、操作レバー10を介してブラケット30が矢印TL方向又は矢印TR方向に第1の回転軸L1を軸として回転すると、凹部55に挿入された駆動突起部34が第1の回転軸L1を中心とした円に沿って移動するので、貫通孔57に挿入されたマグネット支持軸72を第3の回転軸L3として回転する。 The protrusion 54 is formed with a U-shaped recess 55 having an open tip. The drive projection 34 of the bracket 30 is inserted into the recess 55. The magnet 50 is driven into the recess 55 when the bracket 30 rotates about the first rotation axis L1 in the direction of the arrow TL or the direction of the arrow TR via the operation lever 10 by the turning operation performed on the operation lever 10. Since the protrusion 34 moves along a circle centered on the first rotation axis L1, the magnet support shaft 72 inserted into the through hole 57 rotates as the third rotation axis L3.
また、マグネット50は、予め定められた回転角θの範囲において、第1のディマ検出センサ91及び第2のディマ検出センサ92と対向する部分の厚さTが、平面503に直交する平面504に対して第1のディマ検出センサ91及び第2のディマ検出センサ92と面対称となる配置面101上の位置に対向する部分の厚さTよりも薄くなる形状を有している。 Further, the magnet 50 has a plane 504 in which the thickness T 1 of the portion facing the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is orthogonal to the plane 503 in the range of the predetermined rotation angle θ. On the other hand, the first dimmer detection sensor 91 and the second dimmer detection sensor 92 have a shape that is thinner than the thickness T 2 of the portion facing the position on the arrangement surface 101 that is plane-symmetrical.
この予め定められた回転角θの範囲とは、操作レバー10のターン操作に基づく、マグネット50の回転範囲であり、一例として、45°以上135°以下の範囲である。この厚さT及び厚さTの関係は、少なくとも当該範囲内で成り立つ。また、厚さTは、一例として、厚さTの半分の厚みとなっている。なお、操作レバー10が中立位置にある際のマグネット50の回転角θを90°としている。 The predetermined range of the rotation angle θ is a rotation range of the magnet 50 based on the turning operation of the operation lever 10, and as an example, a range of 45 ° or more and 135 ° or less. The relationship between the thickness T 1 and the second thickness T 2 is satisfied in at least the range. In addition, the thickness T 1 is, for example, half the thickness T 2 . The rotation angle θ of the magnet 50 when the operation lever 10 is in the neutral position is 90 °.
この厚さT及び厚さTの関係を成立させるために、マグネット50の下面53には、傾斜530が形成されている。この傾斜530は、例えば、図6A及び6Bに示されるように、下面53のN極とS極との境界近傍から貫通孔57に最も遠い側面に向かって傾斜するように形成されている。つまり、マグネット50は、S極部分よりもN極部分の方が薄くなって、体積が小さくなっている。なお、厚さTは、一例として、厚さTの半分の厚みである。 In order to establish the relationship between the thickness T 1 and the thickness T 2 , an inclination 530 is formed on the lower surface 53 of the magnet 50. For example, as shown in FIGS. 6A and 6B, the inclination 530 is formed so as to incline toward the side surface farthest from the through hole 57 from the vicinity of the boundary between the N pole and the S pole of the lower surface 53. That is, the magnet 50 has a smaller volume at the N-pole portion than at the S-pole portion, resulting in a smaller volume. The thickness T 1 is, for example, half the thickness T 2 .
この傾斜530は、第1のディマ検出センサ91及び第2のディマ検出センサ92に作用する磁場500の磁束密度を、傾斜がない場合の磁束密度よりも低くするために設けられている。つまり、傾斜530は、マグネット50の回転がマグネット50の上下移動の検出に与える影響を小さくするために設けられている。 This inclination 530 is provided in order to make the magnetic flux density of the magnetic field 500 acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 lower than the magnetic flux density when there is no inclination. That is, the inclination 530 is provided to reduce the influence of the rotation of the magnet 50 on the detection of the vertical movement of the magnet 50.
(マグネットホルダ70の構成)
マグネットホルダ70は、基板100に固定された状態で、下部筐体22に位置決めされて固定される。マグネットホルダ70は、底部71、底部71からマグネット50の方向に向かって突設して形成されたマグネット支持軸72、底部71からマグネット50の方向に向かって突設してマグネット支持軸72と同心円状に形成された壁部73等を有している。このマグネットホルダ70は、樹脂(非磁性材料)により一体に形成されている。
(Configuration of magnet holder 70)
The magnet holder 70 is positioned and fixed to the lower housing 22 while being fixed to the substrate 100. The magnet holder 70 has a bottom 71, a magnet support shaft 72 formed to project from the bottom 71 toward the magnet 50, and a projecting toward the magnet 50 from the bottom 71 and concentric with the magnet support shaft 72. Wall part 73 etc. formed in the shape. The magnet holder 70 is integrally formed of resin (nonmagnetic material).
マグネット支持軸72は、マグネット50の貫通孔57と回転及びスライド可能に嵌合するように形成され、操作レバー10が第2の回転軸L2の回りにディマ操作がされた場合に、第3の回転軸L3に沿ってマグネット50が上下移動するのを支持する。なお、壁部73は、マグネット50の外周に沿って設けられているが、マグネット50の支持は主にマグネット支持軸72で行われる。なお、変形例として、レバースイッチ装置1は、マグネット50の貫通孔57とマグネットホルダ70のマグネット支持軸72とが形成されない構成を有し、マグネット50が壁部73により回転及び上下移動可能に支持される構成としても良い。 The magnet support shaft 72 is formed to fit in the through hole 57 of the magnet 50 so as to be rotatable and slidable. When the operation lever 10 is operated around the second rotation axis L2, the third support shaft 72 is provided. The magnet 50 is supported to move up and down along the rotation axis L3. The wall portion 73 is provided along the outer periphery of the magnet 50, but the magnet 50 is mainly supported by the magnet support shaft 72. As a modification, the lever switch device 1 has a configuration in which the through hole 57 of the magnet 50 and the magnet support shaft 72 of the magnet holder 70 are not formed, and the magnet 50 is supported by the wall portion 73 so as to be rotatable and vertically movable. It is good also as a structure made.
上記説明した操作レバー10、筐体20、ブラケット30、ホルダ40は、マグネット50の近くに配置されるので、マグネットホルダ70と同様に樹脂等の非磁性材料により形成されるのが好ましい。 Since the operation lever 10, the housing 20, the bracket 30, and the holder 40 described above are disposed near the magnet 50, it is preferable that the operation lever 10, the housing 20, the bracket 30, and the holder 40 be formed of a nonmagnetic material such as resin.
(ターン検出センサ80の構成)
ターン検出センサ80は、例えば、マグネット50の回転に伴う磁場500の変化を検出するホール素子及び磁気抵抗素子等の磁気検出素子を用いて構成されている。本実施の形態では、ホール素子を用いている。
(Configuration of turn detection sensor 80)
The turn detection sensor 80 is configured using, for example, a magnetic detection element such as a Hall element and a magnetoresistive element that detects a change in the magnetic field 500 accompanying the rotation of the magnet 50. In the present embodiment, a Hall element is used.
ターン検出センサ80は、例えば、図6A及び6Bに示されるように、第3の回転軸L3が検出面800の中心を通るように基板100の配置面101に配置される。この検出面800とは、例えば、磁場500の変化に反応する面である。 For example, as shown in FIGS. 6A and 6B, the turn detection sensor 80 is arranged on the arrangement surface 101 of the substrate 100 so that the third rotation axis L3 passes through the center of the detection surface 800. The detection surface 800 is a surface that reacts to a change in the magnetic field 500, for example.
ターン検出センサ80は、例えば、信号を増幅する増幅部や信号を処理する処理部等を含んで1つのチップとしてパッケージされている場合、磁気検出素子がチップの中心以外の場所に配置される可能性がある。本実施の形態におけるターン検出センサ80、第1のディマ検出センサ91及び第2のディマ検出センサ92は、チップの中心と検出面の中心とが一致しないとしている。 For example, when the turn detection sensor 80 is packaged as one chip including an amplification unit that amplifies a signal, a processing unit that processes a signal, and the like, the magnetic detection element can be arranged at a place other than the center of the chip. There is sex. In the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92 in the present embodiment, the center of the chip does not coincide with the center of the detection surface.
(第1のディマ検出センサ91及び第2のディマ検出センサ92の構成)
第1のディマ検出センサ91及び第2のディマ検出センサ92は、例えば、操作レバー10になされたディマ操作に伴うマグネット50と配置面101との接近及び離脱、つまり、図5Bの紙面上下方向のマグネット50の移動に伴う磁場500の変化を検出するホール素子及び磁気抵抗素子等の磁気検出素子を用いて構成されている。本実施の形態では、ホール素子を用いている。
(Configuration of the first dimmer detection sensor 91 and the second dimmer detection sensor 92)
The first dimmer detection sensor 91 and the second dimmer detection sensor 92 are, for example, the approach and separation between the magnet 50 and the arrangement surface 101 associated with the dimmer operation performed on the operation lever 10, that is, in the vertical direction of the paper surface of FIG. A magnetic detection element such as a Hall element and a magnetoresistive element that detects a change in the magnetic field 500 accompanying the movement of the magnet 50 is used. In the present embodiment, a Hall element is used.
第1のディマ検出センサ91は、図6Aに示されるように、第3の回転軸L3と配置面101との交点801を通る直線506と配置面101にマグネット50を投影して得られる写像505の外周との交点911に、検出面910の中心が位置するように配置されている。 As shown in FIG. 6A, the first dimmer detection sensor 91 has a mapping 505 obtained by projecting the magnet 50 onto the straight line 506 passing through the intersection 801 between the third rotation axis L3 and the placement surface 101 and the placement surface 101. The center of the detection surface 910 is located at the intersection 911 with the outer periphery of the.
また、第2のディマ検出センサ92は、図6Aに示されるように、第3の回転軸L3と配置面101との交点801を通る直線507と写像505の外周との交点921に、検出面920の中心が位置するように配置されている。言い換えるなら、第2のディマ検出センサ92は、図6Aに示す平面503に対して第1のディマ検出センサ91と面対称な位置に配置されている。つまり、直線506と平面503とのなす角と直線507と平面503とのなす角とは、同じである(配置角θ)。なお、平面503は、第3の回転軸L3を含むと共に、相互に鏡像となるようにマグネット50を分ける平面である。 Further, as shown in FIG. 6A, the second dimmer detection sensor 92 has a detection surface at the intersection 921 between the straight line 507 passing through the intersection 801 between the third rotation axis L3 and the arrangement surface 101 and the outer periphery of the mapping 505. It arrange | positions so that the center of 920 may be located. In other words, the second dimmer detection sensor 92 is disposed at a position symmetrical to the first dimmer detection sensor 91 with respect to the plane 503 shown in FIG. 6A. That is, the angle formed by the straight line 506 and the plane 503 is the same as the angle formed by the straight line 507 and the plane 503 (arrangement angle θ 1 ). The plane 503 is a plane that includes the third rotation axis L3 and separates the magnets 50 so as to be mirror images of each other.
第1のディマ検出センサ91は、検出値Sを出力し、第2のディマ検出センサ92は、検出値Sを出力する。第1のディマ検出センサ91及び第2のディマ検出センサ92は、検出値S及び検出値Sの和が実質的に一定となるような配置角θとなるように配置される。 First dimmer detection sensor 91 outputs a detection value S 2, the second dimmer detection sensor 92 outputs a detection value S 3. The first dimmer detection sensor 91 and the second dimmer detection sensor 92 are arranged so that the arrangement angle θ 1 is such that the sum of the detection value S 2 and the detection value S 3 is substantially constant.
マグネット50は、例えば、図5Bに示されるように、操作レバー10のディマ操作に応じて、3つの操作位置(D位置、中立位置、P位置)に移動する。マグネット50は、例えば、操作レバー10が矢印D方向に操作されると、中立位置(Z=0)から上方向(D位置)に移動する。この上方向の移動量は、一例として、+1.5mmである。また、マグネット50は、例えば、操作レバー10が矢印P方向に操作されると、中立位置から下方向(P位置)に移動する。この下方向の移動量は、一例として、?1.5mmである。第1のディマ検出センサ91及び第2のディマ検出センサ92は、この3つの操作位置におけるマグネット50の磁場500の磁束密度を検出し、検出値S及び検出値Sとして制御部150に出力する。 For example, as shown in FIG. 5B, the magnet 50 moves to three operation positions (D position, neutral position, and P position) according to the dimmer operation of the operation lever 10. For example, when the operation lever 10 is operated in the arrow D direction, the magnet 50 moves from the neutral position (Z = 0) to the upward direction (D position). As an example, the upward movement amount is +1.5 mm. Further, for example, when the operation lever 10 is operated in the arrow P direction, the magnet 50 moves from the neutral position to the downward direction (P position). As an example, the downward movement amount is? 1.5 mm. First dimmer detection sensor 91 and the second dimmer detection sensor 92 detects the magnetic flux density of the magnetic field 500 of the magnet 50 in the three operating positions, output to the control unit 150 as a detection value S 2 and a detection value S 3 To do.
(制御部150の構成)
制御部150は、例えば、記憶されたプログラムに従って、取得したデータに演算、加工等を行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)等から構成されるマイクロコンピュータである。このROMには、例えば、制御部150が動作するためのプログラムが格納されている。RAMは、例えば、一時的に演算結果等を格納する記憶領域として用いられる。
(Configuration of control unit 150)
The control unit 150 includes, for example, a CPU (Central Processing Unit) that performs operations and processing on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. Microcomputer. For example, a program for operating the control unit 150 is stored in the ROM. For example, the RAM is used as a storage area for temporarily storing calculation results and the like.
制御部150は、図6Cに示されるように、ターン検出センサ80、第1のディマ検出センサ91及び第2のディマ検出センサ92と接続されている。また、制御部150は、しきい値151を有している。 The controller 150 is connected to the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92, as shown in FIG. 6C. The control unit 150 has a threshold value 151.
制御部150は、ターン検出センサ80が出力した検出値Sに基づいてマグネット50の回転角を算出するように構成されている。 Control unit 150 is configured to calculate the rotation angle of the magnet 50 on the basis of the detected values S 1 to turn detection sensor 80 has output.
また、制御部150は、第1のディマ検出センサ91が出力した検出値Sと第2のディマ検出センサ92が出力した検出値Sとを加算し、加算した加算値としきい値151とを比較し、ディマ操作による上述の3つの操作位置を検出するように構成されている。 The control unit 150, and a detection value S 3 in which the detected value S 2 of the first dimmer detection sensor 91 has output the second dimmer detection sensor 92 has output the sum, the sum and threshold values 151 obtained by adding And the above-mentioned three operation positions by the dimmer operation are detected.
制御部150は、取得した検出値S~検出値Sに基づいて操作レバー10になされた操作を判定して操作情報Sを生成する。制御部150は、例えば、基板100に設けられたコネクタ110を介して操作情報Sを車両5の車両制御部に出力するように構成されている。 The control unit 150 determines an operation performed on the operation lever 10 based on the acquired detection values S 1 to S 3 and generates operation information S 4 . Control unit 150, for example, operation information S 4 through the connector 110 provided on the substrate 100 is configured to output to the vehicle control unit of the vehicle 5.
(マグネット50の傾斜530とディマ検出センサの配置について)
図7Aは、実施の形態に係るレバースイッチ装置の右方向のターン操作によるマグネットの回転を示す上面図であり、図7Bは、レバーが中立位置にあるときのマグネットを示す上面図であり、図7Cは、左方向のターン操作によるマグネットの回転を示す上面図である。図7A~7Cでは、紙面の上側から左回りに、マグネット50の回転角θが0°~180°となるように示している。
(About the arrangement of the inclination 530 of the magnet 50 and the dimmer detection sensor)
FIG. 7A is a top view showing rotation of the magnet by a right turn operation of the lever switch device according to the embodiment, and FIG. 7B is a top view showing the magnet when the lever is in the neutral position. 7C is a top view showing the rotation of the magnet by the left turn operation. 7A to 7C, the rotation angle θ 2 of the magnet 50 is shown to be 0 ° to 180 ° counterclockwise from the upper side of the drawing.
図8Aは、実施の形態に係る第1のディマ検出センサの検出値S、第2のディマ検出センサの検出値S、及び検出値Sと検出値Sを加算した加算値(S+S)のを示すグラフであり、図8Bは、第1のディマ検出センサ及び第2のディマ検出センサによるディマ操作の検出を説明するためのグラフであり、図8Cは、第1のディマ検出センサ及び第2のディマ検出センサの配置角θと磁束密度の関係を示すグラフであり、図8Dは、比較例における検出値S、検出値S及び加算値(S+S)を示すグラフである。図8A、8B及び8Dは、縦軸が磁束密度(mT)であり、横軸がマグネット50の回転角θ(deg)である。図8Cは、左右の縦軸が磁束密度(mT)であり、横軸が配置角θ(deg)である。また、図8Cは、左側の縦軸が磁束密度の差を図示するためのものであり、右側の縦軸が磁束密度の最大値の和を図示するためのものである。図8A~8Dは、ANSYS Emagを用いてシミュレーションした結果を図示したものである。 FIG. 8A shows the detection value S 2 of the first dimmer detection sensor, the detection value S 3 of the second dimmer detection sensor according to the embodiment, and the added value obtained by adding the detection value S 2 and the detection value S 3 (S 2 + S 3 ), FIG. 8B is a graph for explaining the detection of the dimmer operation by the first dimmer detection sensor and the second dimmer detection sensor, and FIG. 8C is the first dimmer detection sensor. FIG. 8D is a graph showing the relationship between the arrangement angle θ 1 of the detection sensor and the second dimmer detection sensor and the magnetic flux density, and FIG. 8D shows the detection value S 2 , the detection value S 3 and the addition value (S 2 + S 3 ) in the comparative example. It is a graph which shows. 8A, 8B, and 8D, the vertical axis represents the magnetic flux density (mT), and the horizontal axis represents the rotation angle θ 2 (deg) of the magnet 50. In FIG. 8C, the left and right vertical axes are the magnetic flux density (mT), and the horizontal axis is the arrangement angle θ 1 (deg). 8C, the left vertical axis is for illustrating the difference in magnetic flux density, and the right vertical axis is for illustrating the sum of the maximum values of magnetic flux density. 8A to 8D illustrate the results of simulation using ANSYS Emag.
図8Dは、比較例として、傾斜が形成されていない円柱形状のマグネットの検出値S、検出値S及び加算値(S+S)を示している。この比較例では、第1のディマ検出センサ91及び第2のディマ検出センサ92の配置は、図6Aと同じであるものとする。 FIG. 8D shows a detection value S 2 , a detection value S 3, and an addition value (S 2 + S 3 ) of a cylindrical magnet with no inclination formed as a comparative example. In this comparative example, the arrangement of the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is the same as that in FIG. 6A.
操作レバー10が右方向(矢印TR方向)にターン操作されると、図7Aに示されるように、第1のディマ検出センサ91に対向するマグネットの部分は、N極の中心近傍となる。また、操作レバー10が左方向(矢印TL方向)にターン操作されると、図7Cに示されるように、第1のディマ検出センサ91に対向するマグネットの部分は、N極とS極の境界近傍となる。従って、第1のディマ検出センサ91に作用する磁場の磁束密度は、回転角θが大きくなるにつれて高くなる。よって、検出値Sは、図8Dに示されるように、右肩上がりの曲線となる。なお、図8A~8Dでは、磁束密度の符号を負としている。 When the operation lever 10 is turned rightward (arrow TR direction), as shown in FIG. 7A, the portion of the magnet facing the first dimmer detection sensor 91 is near the center of the N pole. Further, when the operation lever 10 is turned in the left direction (arrow TL direction), as shown in FIG. 7C, the magnet portion facing the first dimmer detection sensor 91 has a boundary between the N pole and the S pole. It becomes a neighborhood. Therefore, the magnetic flux density of the magnetic field acting on the first dimmer detection sensor 91 increases as the rotation angle θ 2 increases. Therefore, the detection value S 2, as shown in FIG. 8D, the soaring of the curve. In FIGS. 8A to 8D, the sign of the magnetic flux density is negative.
同様に、操作レバー10が右方向(矢印TR方向)にターン操作されると、図7Aに示されるように、第2のディマ検出センサ92に対向するマグネットの部分は、N極とS極の境界近傍となる。また、操作レバー10が左方向(矢印TL方向)にターン操作されると、図7Cに示されるように、第2のディマ検出センサ92に対向するマグネットの部分は、N極の中心近傍となる。従って、第2のディマ検出センサ92に作用する磁場の磁束密度は、第1のディマ検出センサ91とは逆に、回転角θが大きくなるにつれて低くなる。よって、検出値Sは、図8Dに示されるように、左肩上がりの曲線となる。比較例では、検出値S及び検出値Sの最大値と最小値の差の絶対値は、それぞれおよそ36mTである。なお、以下において、検出値S及び検出値Sが正の場合は、絶対値を取る必要はない。 Similarly, when the operation lever 10 is turned to the right (arrow TR direction), as shown in FIG. 7A, the magnet portion facing the second dimmer detection sensor 92 has an N pole and an S pole. Near the boundary. When the operation lever 10 is turned leftward (in the direction of the arrow TL), as shown in FIG. 7C, the magnet portion facing the second dimmer detection sensor 92 is near the center of the N pole. . Accordingly, the magnetic flux density of the magnetic field acting on the second dimmer detection sensor 92 is lower as the rotation angle θ 2 is larger, contrary to the first dimmer detection sensor 91. Therefore, the detection value S 3, as shown in FIG. 8D, a steadily declining curve. In the comparative example, the absolute value of the difference between the maximum value and the minimum value of the detected value S 2 and a detection value S 3 is approximately 36mT, respectively. In the following, the detection value S 2 and a detection value S 3 for positive, no need to take the absolute value.
この検出値Sと検出値Sの和を計算すると、図8Dに示す加算値(S+S)となる。この加算値は、最大値と最小値の差の絶対値が、およそ20mTとなっている。 When the sum of the detection value S 2 and the detection value S 3 is calculated, an addition value (S 2 + S 3 ) shown in FIG. 8D is obtained. This added value has an absolute value of the difference between the maximum value and the minimum value of approximately 20 mT.
ここで、マグネット50に傾斜530が形成されている場合、図8Aに示されるように、中立位置において、第1のディマ検出センサ91の検出値S、及び第2のディマ検出センサ92の検出値Sの絶対値がおよそ36mTであり、比較例の検出値の絶対値がおよそ55mTであることから、傾斜530が形成されている方が、中立位置において検出される磁束密度が低くなっている。 Here, when the magnet 50 has an inclination 530, as shown in FIG. 8A, the detection value S 2 of the first dimmer detection sensor 91 and the detection of the second dimmer detection sensor 92 are detected at the neutral position. an absolute value of approximately 36mT value S 3, since the absolute value of the detected value of the comparative example is approximately 55MT, who inclined 530 is formed, is low flux density detected in the neutral position Yes.
また、マグネット50が右方向及び左方向に回転しても、第1のディマ検出センサ91及び第2のディマ検出センサ92に対向する部分は、S極の部分よりも厚みが薄い、つまり、体積が小さいので、比較例と比べて、第1のディマ検出センサ91及び第2のディマ検出センサ92により検出される磁束密度が低い。従って、マグネット50が回転してN極とS極との境界近傍にディマ検出センサが位置しても検出される磁束密度が比較例と比べて低くなり、図8Aに示されるように、最大値と最小値の差の絶対値が小さくなる(およそ10mT)。 Even when the magnet 50 rotates in the right direction and the left direction, the portions facing the first dimmer detection sensor 91 and the second dimmer detection sensor 92 are thinner than the S pole portion, that is, the volume. Therefore, the magnetic flux density detected by the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is lower than that of the comparative example. Therefore, even if the dimmer detection sensor is positioned in the vicinity of the boundary between the N pole and the S pole as the magnet 50 rotates, the detected magnetic flux density is lower than that in the comparative example, and the maximum value is obtained as shown in FIG. 8A. And the absolute value of the difference between the minimum value and the minimum value becomes small (approximately 10 mT).
加算値(S+S)の最大値と最小値の差の絶対値は、図8Aに示されるように、およそ8mTであり、比較例の差の絶対値(およそ20mT)の半分以下となって、より直線に近くなっている。加算値(S+S)の差が直線に近くなることは、第1のディマ検出センサ91及び第2のディマ検出センサ92に作用する磁場の磁束密度がマグネット50の回転によって殆ど変化しない、つまり、マグネット50の回転がディマ操作の検出に与える影響が小さいということを示している。従って、第1のディマ検出センサ91及び第2のディマ検出センサ92は、マグネット50の回転に左右されることなく、ディマ操作によるマグネット50の上下の移動を検出可能である。 As shown in FIG. 8A, the absolute value of the difference between the maximum value and the minimum value of the added value (S 2 + S 3 ) is approximately 8 mT, which is less than half of the absolute value of the difference of the comparative example (approximately 20 mT). Is closer to a straight line. That the difference of the added value (S 2 + S 3 ) is close to a straight line means that the magnetic flux density of the magnetic field acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 hardly changes due to the rotation of the magnet 50. That is, the influence of rotation of the magnet 50 on the detection of the dimmer operation is small. Accordingly, the first dimmer detection sensor 91 and the second dimmer detection sensor 92 can detect the vertical movement of the magnet 50 due to the dimmer operation without being influenced by the rotation of the magnet 50.
図8Cは、磁束密度の最大値と最小値の差の絶対値、及び加算値の最大値の絶対値が、第1のディマ検出センサ91及び第2のディマ検出センサ92の配置角θによってどのように変化するのかを示したグラフである。なお、図8Cにおける「○」の記号は、マグネットに傾斜が形成されていない比較例における、磁束密度の最大値と最小値の差の絶対値(磁束max-min)であり、「△」の記号は、加算値(S+S)の絶対値(S+Smax)である。また図8Cにおける「□」の記号は、マグネットに傾斜が形成された場合における、磁束密度の最大値と最小値の差の絶対値(磁束max-min)であり、「◇」の記号は、加算値(S+S)の絶対値(S+Smax)である。 FIG. 8C shows that the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the maximum value of the addition value are determined by the arrangement angle θ 1 of the first dimmer detection sensor 91 and the second dimmer detection sensor 92. It is the graph which showed how it changes. The symbol “◯” in FIG. 8C is the absolute value (magnetic flux max-min) of the difference between the maximum value and the minimum value of the magnetic flux density in the comparative example in which the magnet is not tilted. The symbol is the absolute value (S 2 + S 3 max) of the added value (S 2 + S 3 ). The symbol “□” in FIG. 8C is the absolute value (magnetic flux max-min) of the difference between the maximum value and the minimum value of the magnetic flux density when the magnet is inclined, and the symbol “◇” It is the absolute value (S 2 + S 3 max) of the added value (S 2 + S 3 ).
マグネットに傾斜が形成されていない場合、配置角θが大きくなるに従って、磁束密度の最大値と最小値の差の絶対値、及び加算値(S+S)の絶対値は、小さくなる。具体的には、磁束密度の最大値と最小値の差の絶対値の差は、およそ5mTである。また、加算値の絶対値の差は、およそ34mTである。 When the magnet is not inclined, the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the added value (S 2 + S 3 ) decrease as the arrangement angle θ 1 increases. Specifically, the difference between the absolute values of the difference between the maximum value and the minimum value of the magnetic flux density is about 5 mT. The difference between the absolute values of the added values is approximately 34 mT.
一方、マグネットに傾斜が形成されている場合、配置角θが変化しても、磁束密度の最大値と最小値の差の絶対値、及び加算値(S+S)の絶対値の変化は、僅かである。具体的には、磁束密度の最大値と最小値の差の絶対値の差は、およそ1mTである。また、加算値の絶対値の差は、およそ7mTである。つまり、磁束密度の最大値と最小値の差の絶対値、及び加算値(S+S)の絶対値は、傾斜がある方が、比較例の五分の一程度の幅の中に収まっている。従って、傾斜がある方が、ディマ検出センサの配置のばらつきによる、磁束密度の最大値と最小値の差の絶対値、及び加算値(S+S)の絶対値の変化を抑制する。 On the other hand, when the magnet is inclined, even if the arrangement angle θ 1 changes, the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the change in the absolute value of the added value (S 2 + S 3 ) are changed. Is slight. Specifically, the difference in absolute value between the maximum value and the minimum value of the magnetic flux density is approximately 1 mT. The difference between the absolute values of the added values is approximately 7 mT. That is, the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the added value (S 2 + S 3 ) are within the range of about one-fifth of the comparative example when there is a slope. ing. Therefore, when there is an inclination, changes in the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density and the absolute value of the added value (S 2 + S 3 ) due to variations in the arrangement of the dimmer detection sensors are suppressed.
つまり、傾斜530がマグネット50に形成されることにより、第1のディマ検出センサ91及び第2のディマ検出センサ92の配置がばらついても、磁束密度の最大値と最小値の差の絶対値、及び加算値の最大値の絶対値のばらつきに与える影響が小さいことを示している。 That is, by forming the slope 530 in the magnet 50, the absolute value of the difference between the maximum value and the minimum value of the magnetic flux density, even if the arrangement of the first dimmer detection sensor 91 and the second dimmer detection sensor 92 varies, It shows that the influence on the variation in the absolute value of the maximum value of the addition value is small.
図8Bは、操作レバー10のディマ操作による3つの操作位置に応じた磁束密度を示している。上述のように、加算値の最小値と最大値の絶対値の幅が狭い場合、図8Bに示されるように、操作位置に応じた加算値がマグネット50の回転による影響を受けにくいので、操作位置を判定するためのしきい値151の設定が容易になると共に、しきい値151がばらついたとしても、正確な位置の判定が可能となる。 FIG. 8B shows magnetic flux densities corresponding to three operation positions by the dimmer operation of the operation lever 10. As described above, when the absolute value of the minimum value and the maximum value of the addition value is narrow, the addition value corresponding to the operation position is not easily affected by the rotation of the magnet 50 as shown in FIG. Setting of the threshold value 151 for determining the position is facilitated, and even if the threshold value 151 varies, the accurate position can be determined.
(レバースイッチ装置1の動作)
以下では、本実施の形態に係るレバースイッチ装置1の動作を、ターン操作とディマ操作とに分けて説明する。
(Operation of lever switch device 1)
Below, operation | movement of the lever switch apparatus 1 which concerns on this Embodiment is divided and demonstrated to turn operation and dimmer operation.
(ターン操作について)
図9Aは、図2のB方向から見た右折操作(矢印TR方向の操作)時の操作レバー、マグネットの移動状態を示す平面図であり、図9Bは、図2のB方向から見た中立時の操作レバー、マグネットの移動状態を示す平面図であり、図9Cは、図2のB方向から見た左折操作(矢印TL方向の操作)時の操作レバー、マグネットの移動状態を示す平面図である。なお、図10は、上部筐体21を取り除いて見た上平面図である。
(About turn operation)
9A is a plan view showing the moving state of the operating lever and the magnet during a right turn operation (operation in the direction of arrow TR) seen from the direction B in FIG. 2, and FIG. 9B is a neutral view seen from the direction B in FIG. 9C is a plan view showing the moving state of the operating lever and the magnet at the time, and FIG. 9C is a plan view showing the moving state of the operating lever and the magnet at the time of the left turn operation (operation in the arrow TL direction) seen from the B direction in FIG. It is. FIG. 10 is an upper plan view with the upper housing 21 removed.
図9Aにおいて、ターン操作により、操作レバー10が矢印TR方向に操作されると、操作レバー10は、第1の回転軸L1の回りに回転移動する。ブラケット30は、操作レバー10と一体となって回転し、駆動突起部34も第1の回転軸L1の回りに回転移動する。マグネット50は、凹部55が駆動突起部34に嵌合しているので、操作レバー10の回転操作に伴って、マグネット支持軸72(第3の回転軸L3)の回りに回転移動する。これにより、ターン検出センサ80を通過する磁場500の方向が変化する。 In FIG. 9A, when the operation lever 10 is operated in the direction of the arrow TR by a turn operation, the operation lever 10 rotates about the first rotation axis L1. The bracket 30 rotates integrally with the operation lever 10, and the drive protrusion 34 also rotates around the first rotation axis L1. Since the concave portion 55 is fitted to the drive protrusion 34, the magnet 50 rotates around the magnet support shaft 72 (third rotation axis L3) as the operation lever 10 rotates. As a result, the direction of the magnetic field 500 passing through the turn detection sensor 80 changes.
図9Bは、操作レバー10が回転操作されていない中立時の位置状態を示す。この位置状態では、操作レバー10、ブラケット30は、回転していないので、マグネット50も回転しない。これにより、ターン検出センサ80を通過する磁場500の方向は変化しない。 FIG. 9B shows a neutral position when the operation lever 10 is not rotated. In this position state, since the operation lever 10 and the bracket 30 are not rotated, the magnet 50 is not rotated either. As a result, the direction of the magnetic field 500 passing through the turn detection sensor 80 does not change.
図9Cにおいて、ターン操作により、操作レバー10が矢印TL方向に操作されると、操作レバー10は、第1の回転軸L1の回りに回転移動する。ブラケット30は、操作レバー10と一体となって回転し、駆動突起部34も第1の回転軸L1の回りに回転移動する。マグネット50は、凹部55が駆動突起部34に嵌合しているので、操作レバー10の回転操作に伴って、マグネット支持軸72(第3の回転軸L3)の回りに回転移動する。これにより、ターン検出センサ80を通過する磁場500の方向が変化する。なお、この磁場500の方向の変化は、操作レバー10の矢印TR方向への操作時と逆方向である。 In FIG. 9C, when the operation lever 10 is operated in the arrow TL direction by the turn operation, the operation lever 10 rotates around the first rotation axis L1. The bracket 30 rotates integrally with the operation lever 10, and the drive protrusion 34 also rotates around the first rotation axis L1. Since the concave portion 55 is fitted to the drive protrusion 34, the magnet 50 rotates around the magnet support shaft 72 (third rotation axis L3) as the operation lever 10 rotates. As a result, the direction of the magnetic field 500 passing through the turn detection sensor 80 changes. Note that the change in the direction of the magnetic field 500 is opposite to that when the operation lever 10 is operated in the arrow TR direction.
(ディマ操作について)
図10Aは、図2のA-A断面において、矢印D方向のディマ操作時の操作レバー、マグネットの移動状態を示す部分断面図であり、図10Bは、図2のA-A断面において、中立時の操作レバー、マグネットの移動状態を示す部分断面図であり、図10Cは、図2のA-A断面において、矢印P方向のディマ操作時の操作レバー、マグネットの移動状態を示す部分断面図である。
(Dima operation)
10A is a partial cross-sectional view showing a moving state of the operation lever and the magnet during the dimmer operation in the direction of arrow D in the AA cross section of FIG. 2, and FIG. 10B is a neutral view in the AA cross section of FIG. FIG. 10C is a partial cross-sectional view showing the moving state of the operating lever and the magnet during the dimmer operation in the direction of arrow P in the AA cross section of FIG. It is.
図10Aにおいて、ディマ操作により、操作レバー10が矢印D方向に操作されると、操作レバー10は第2の回転軸L2の回りに回転移動する。ホルダ40は、操作レバー10の駆動突起部14が上方向に移動することから、この駆動突起部14に嵌合する嵌合溝41を介して上方向にスライド移動する。ホルダ40の保持溝42で保持されているマグネット50は、マグネット支持軸72に支持されて上方向にスライド移動する。これにより、マグネット50の下方に配置された第1のディマ検出センサ91及び第2のディマ検出センサ92を通過する磁場500の磁束密度が変化する。この操作レバー10の位置でターン操作した場合の加算値(S+S)は、一例として、図8Bに実線で示される。 In FIG. 10A, when the operating lever 10 is operated in the direction of arrow D by a dimmer operation, the operating lever 10 rotates around the second rotation axis L2. Since the drive protrusion 14 of the operation lever 10 moves upward, the holder 40 slides upward via the fitting groove 41 that fits into the drive protrusion 14. The magnet 50 held in the holding groove 42 of the holder 40 is supported by the magnet support shaft 72 and slides upward. As a result, the magnetic flux density of the magnetic field 500 that passes through the first dimmer detection sensor 91 and the second dimmer detection sensor 92 disposed below the magnet 50 changes. The added value (S 2 + S 3 ) when the turn is operated at the position of the operation lever 10 is shown by a solid line in FIG. 8B as an example.
図10Bは、操作レバー10が回転操作されていない中立時の位置状態を示す。この状態では、操作レバー10は回転せず、また、ホルダ40はスライド移動していないので、マグネット50もスライド移動しない。これにより、マグネット50の下方に配置された第1のディマ検出センサ91及び第2のディマ検出センサ92を通過する磁場500の磁束密度は、変化しない。この操作レバー10の位置でターン操作した場合の加算値(S+S)は、一例として、図8Bに点線で示される。 FIG. 10B shows a neutral position when the operation lever 10 is not rotated. In this state, the operation lever 10 does not rotate, and the holder 40 does not slide, so the magnet 50 does not slide. As a result, the magnetic flux density of the magnetic field 500 that passes through the first dimmer detection sensor 91 and the second dimmer detection sensor 92 disposed below the magnet 50 does not change. The added value (S 2 + S 3 ) when the turn is operated at the position of the operation lever 10 is indicated by a dotted line in FIG. 8B as an example.
図10Cにおいて、ディマ操作により、操作レバー10が矢印P方向に操作されると、操作レバー10は第2の回転軸L2の回りに回転移動する。ホルダ40は、操作レバー10の駆動突起部14が下方向に移動することから、この駆動突起部14に嵌合する嵌合溝41を介して下方向にスライド移動する。ホルダ40の保持溝42で保持されているマグネット50は、マグネット支持軸72に支持されて下方向にスライド移動する。これにより、マグネット50の下方に配置された第1のディマ検出センサ91及び第2のディマ検出センサ92を通過する磁場500の磁束密度が変化する。この操作レバー10の位置でターン操作した場合の加算値(S+S)は、一例として、図8Bに一点鎖線で示される。 In FIG. 10C, when the operation lever 10 is operated in the direction of the arrow P by a dimmer operation, the operation lever 10 rotates around the second rotation axis L2. Since the drive protrusion 14 of the operation lever 10 moves downward, the holder 40 slides downward through the fitting groove 41 that is fitted to the drive protrusion 14. The magnet 50 held in the holding groove 42 of the holder 40 is supported by the magnet support shaft 72 and slides downward. As a result, the magnetic flux density of the magnetic field 500 that passes through the first dimmer detection sensor 91 and the second dimmer detection sensor 92 disposed below the magnet 50 changes. The added value (S 2 + S 3 ) when the turn is operated at the position of the operation lever 10 is indicated by a one-dot chain line in FIG. 8B as an example.
(実施の形態の効果)
本実施の形態に係るレバースイッチ装置1は、1つの磁石で2方向の動きを非接触で検出できる。具体的には、レバースイッチ装置1は、操作レバー10のターン操作によりマグネット50が第3の回転軸L3の周りを回転すると共に、操作レバー10のディマ操作によりマグネット50が第3の回転軸L3に沿って移動するように構成されている。また、レバースイッチ装置1は、マグネット50の回転をターン検出センサ80で検出し、マグネット50の上下移動を第1のディマ検出センサ91及び第2のディマ検出センサ92で検出する。従って、レバースイッチ装置1は、1つの磁石で、ターン操作及びディマ操作の2方向の動きを非接触で検出できる。
(Effect of embodiment)
The lever switch device 1 according to the present embodiment can detect movement in two directions in a non-contact manner with one magnet. Specifically, in the lever switch device 1, the magnet 50 rotates around the third rotation axis L3 by the turning operation of the operation lever 10, and the magnet 50 is rotated by the third rotation axis L3 by the dimmer operation of the operation lever 10. It is comprised so that it may move along. Further, the lever switch device 1 detects the rotation of the magnet 50 with the turn detection sensor 80, and detects the vertical movement of the magnet 50 with the first dimmer detection sensor 91 and the second dimmer detection sensor 92. Therefore, the lever switch device 1 can detect the movement in the two directions of the turn operation and the dimmer operation in a non-contact manner with one magnet.
レバースイッチ装置1は、第1のディマ検出センサ91及び第2のディマ検出センサ92の検出値S及び検出値Sの和が一定となるように配置されるので、マグネットの回転の影響が抑制され、精度の良い検出ができる。 Lever switch device 1 is the sum of the detected value S 2 and a detection value S 3 of the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is arranged so as to be constant, the influence of rotation of the magnet Suppressed and accurate detection is possible.
レバースイッチ装置1は、第1のディマ検出センサ91及び第2のディマ検出センサ92が、マグネット50を配置面101に投影した写像505に、検出面910及び検出面920の中心が位置するように配置されるので、検出面の中心が位置しない場合と比べて、効率的に磁束密度の変化を検出することができる。 The lever switch device 1 is configured so that the centers of the detection surface 910 and the detection surface 920 are positioned on the mapping 505 in which the first dimmer detection sensor 91 and the second dimmer detection sensor 92 project the magnet 50 onto the arrangement surface 101. Since it is arranged, a change in magnetic flux density can be detected more efficiently than when the center of the detection surface is not located.
レバースイッチ装置1は、マグネット50が傾斜530を有している。マグネット50は、傾斜530を有することで、第1のディマ検出センサ91及び第2のディマ検出センサ92に作用する磁場500の磁束密度を、傾斜530が形成された部分の反対側の下方の磁束密度よりも低くすることができるので、ディマ操作の検出において、マグネット50の回転の影響を受け難く、精度の良い検出ができる。 In the lever switch device 1, the magnet 50 has an inclination 530. Since the magnet 50 has the inclination 530, the magnetic flux density of the magnetic field 500 acting on the first dimmer detection sensor 91 and the second dimmer detection sensor 92 is changed to the lower magnetic flux on the opposite side of the portion where the inclination 530 is formed. Since the density can be made lower than the density, the detection of the dimmer operation is hardly affected by the rotation of the magnet 50 and can be detected with high accuracy.
レバースイッチ装置1は、ターン検出センサ80、第1のディマ検出センサ91及び第2のディマ検出センサ92が基板100の同じ配置面101に配置されているので、マグネットの側面から上下位置を検出する場合と比べて、マグネット50とターン検出センサ80、第1のディマ検出センサ91及び第2のディマ検出センサ92との位置決めが容易である。 In the lever switch device 1, the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92 are arranged on the same arrangement surface 101 of the substrate 100. Compared to the case, the positioning of the magnet 50, the turn detection sensor 80, the first dimmer detection sensor 91, and the second dimmer detection sensor 92 is easy.
ここで、変形例として、マグネット50は、傾斜530が膨らむ、又は凹んでいても良く、また、第1のディマ検出センサ91及び第2のディマ検出センサ92に対向する部分近傍のみに形成されても良い。また、他の変形例として、マグネット50は、回転に伴って、常にディマ検出センサ90に対向する部分の厚さTが厚さTよりも薄く形成され、磁束密度が厚さTの部分よりも低くなる形状であれば良い。 Here, as a modification, the magnet 50 may have an inclining 530 that is bulged or recessed, and is formed only in the vicinity of a portion that faces the first dimmer detection sensor 91 and the second dimmer detection sensor 92. Also good. Further, as another modified example, the magnet 50, with rotation, always formed thinner than dimmer detection sensor 90 of the opposing portions to the thickness T 1 is the second thickness T 2, the magnetic flux density of the second thickness T 2 Any shape that is lower than the portion may be used.
以上、本発明のいくつかの実施の形態及び変形例を説明したが、これらの実施の形態及び変形例は、一例に過ぎず、特許請求の範囲に係る発明を限定するものではない。これら新規な実施の形態及び変形例は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施の形態及び変形例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施の形態及び変形例は、発明の範囲及び要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment and modification of this invention were demonstrated, these embodiment and modification are only examples, and do not limit the invention based on a claim. These novel embodiments and modifications can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. In addition, not all combinations of features described in these embodiments and modifications are necessarily essential to the means for solving the problems of the invention. Furthermore, these embodiments and modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
本発明は、車両のウインカー(方向指示器)及びヘッドランプを操作するのに用いられるレバースイッチ装置に適用できる。 The present invention can be applied to a lever switch device used for operating a turn signal and a headlamp of a vehicle.
1 レバースイッチ装置
10 操作レバー
13、31 回転軸部
30 ブラケット
40 ホルダ
50 マグネット
51 円板部
57 貫通孔
70 マグネットホルダ
72 マグネット支持軸
80 ターン検出センサ
91 第1のディマ検出センサ
92 第2のディマ検出センサ
100 基板
101 配置面
503、504 平面
505 写像
506 直線
801、911、921 交点
DESCRIPTION OF SYMBOLS 1 Lever switch apparatus 10 Operation lever 13, 31 Rotation shaft part 30 Bracket 40 Holder 50 Magnet 51 Disk part 57 Through-hole 70 Magnet holder 72 Magnet support shaft 80 Turn detection sensor 91 1st dimmer detection sensor 92 2nd dimmer detection Sensor 100 Substrate 101 Arrangement surface 503, 504 Plane 505 Mapping 506 Straight line 801, 911, 921 Intersection

Claims (8)

  1. 回転軸の周りを回転し、前記回転軸を含む平面に対して面対称な磁場を生成する回転部材と、
    基材の配置面に配置され、前記回転部材の回転角を検出する回転角検出部と、
    前記回転部材と前記配置面との相対移動による接近及び離脱を検出し、前記回転軸と前記配置面との交点を通る直線と前記配置面に前記回転部材を投影して得られる写像の外周との交点に配置された第1の検出部と、
    前記回転部材と前記配置面との前記接近及び前記離脱を検出し、前記平面に対して前記第1の検出部と面対称な位置に配置された第2の検出部と、を有する回転移動検出装置。
    A rotating member that rotates around a rotation axis and generates a magnetic field that is plane-symmetric with respect to a plane including the rotation axis;
    A rotation angle detection unit that is arranged on the arrangement surface of the substrate and detects a rotation angle of the rotation member;
    Detecting approach and separation due to relative movement between the rotating member and the arrangement surface, a straight line passing through the intersection of the rotation axis and the arrangement surface, and an outer periphery of a map obtained by projecting the rotating member on the arrangement surface A first detector arranged at the intersection of
    Rotational movement detection comprising: a second detection unit that detects the approach and the separation between the rotation member and the arrangement surface and is arranged in a plane-symmetrical position with the first detection unit with respect to the plane. apparatus.
  2. 前記第1の検出部から出力された第1の検出値と前記第2の検出部から出力された第2の検出値とを加算した加算値に基づいて前記回転部材と前記配置面との前記接近及び前記離脱を判定する判定部を更に有する、請求項1に記載の回転移動検出装置。 Based on an addition value obtained by adding the first detection value output from the first detection unit and the second detection value output from the second detection unit, the rotation member and the arrangement surface The rotational movement detection device according to claim 1, further comprising a determination unit configured to determine approach and separation.
  3. 前記回転部材は、予め定められた回転角の範囲において、前記第1の検出部及び前記第2の検出部と対向する部分の厚みが、前記平面に直交する平面に対して前記第1の検出部及び前記第2の検出部と面対称となる前記配置面上の位置に対向する部分の厚みよりも薄い、請求項1又は2に記載の回転移動検出装置。 In the rotation member, the first detection unit detects a thickness of a portion facing the first detection unit and the second detection unit within a predetermined rotation angle range with respect to a plane orthogonal to the plane. 3. The rotational movement detection device according to claim 1, wherein the rotational movement detection device is thinner than a thickness of a portion facing a position on the arrangement surface that is symmetrical with respect to the second detection unit and the second detection unit.
  4. 第1の回転軸を軸とする第1の回転操作、及び前記第1の回転軸と交差する第2の回転軸を軸とする第2の回転操作が可能な操作部と、
    前記操作部になされた前記第1の回転操作を前記回転部材の前記回転軸の周りの回転に変換する第1の変換部と、
    前記操作部になされた前記第2の回転操作を前記回転部材と前記配置面との相対移動に変換する第2の変換部とを更に有する、請求項1~3のいずれか1項に記載の回転移動検出装置。
    An operation unit capable of performing a first rotation operation about the first rotation axis and a second rotation operation about the second rotation axis intersecting the first rotation axis;
    A first conversion unit that converts the first rotation operation performed on the operation unit into rotation around the rotation axis of the rotating member;
    The second conversion unit according to any one of claims 1 to 3, further comprising: a second conversion unit that converts the second rotation operation performed on the operation unit into a relative movement between the rotation member and the arrangement surface. Rotational movement detector.
  5. 前記回転部材は、中心にマグネット支持軸の挿入を許容する貫通穴が形成される円板部を有するマグネットを含む、請求項1~4のいずれか1項に記載の回転移動検出装置。 The rotational movement detecting device according to any one of claims 1 to 4, wherein the rotating member includes a magnet having a disk portion in which a through hole that allows insertion of a magnet support shaft is formed in the center.
  6. 前記回転部材は、中心にマグネット支持軸の挿入を許容する貫通穴が形成される円板部を有するマグネットを含み、
    前記マグネットは、前記操作部の前記第1の回転操作に伴い前記貫通穴に前記マグネット支持軸が挿入された状態で前記円板部が前記マグネット支持軸の回りに回転移動する、請求項4に記載の回転移動検出装置。
    The rotating member includes a magnet having a disc portion in which a through hole allowing insertion of a magnet support shaft is formed at the center,
    5. The magnet according to claim 4, wherein the disk portion rotates around the magnet support shaft in a state where the magnet support shaft is inserted into the through hole in accordance with the first rotation operation of the operation portion. The rotational movement detection apparatus as described.
  7. 前記回転部材は、中心にマグネット支持軸の挿入を許容する貫通穴が形成される円板部を有するマグネットを含み、
    前記マグネットは、前記操作部の前記第2の回転操作に伴い前記貫通穴に前記マグネット支持軸が挿入された状態で前記円板部が前記マグネット支持軸に沿ってスライド移動する、請求項4に記載の回転移動検出装置。
    The rotating member includes a magnet having a disc portion in which a through hole allowing insertion of a magnet support shaft is formed at the center,
    5. The magnet according to claim 4, wherein the disk portion slides along the magnet support shaft in a state where the magnet support shaft is inserted into the through hole in accordance with the second rotation operation of the operation portion. The rotational movement detection apparatus as described.
  8. 前記第1の検出部及び前記第2の検出部は、前記回転角検出部と同一の前記配置面に配置される、請求項1~7のいずれか1項に記載の回転移動検出装置。 The rotational movement detection device according to any one of claims 1 to 7, wherein the first detection unit and the second detection unit are arranged on the same arrangement plane as the rotation angle detection unit.
PCT/JP2015/066725 2014-06-30 2015-06-10 Rotation movement detection device WO2016002451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135199A JP6282945B2 (en) 2014-06-30 2014-06-30 Rotational movement detector
JP2014-135199 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002451A1 true WO2016002451A1 (en) 2016-01-07

Family

ID=55019000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066725 WO2016002451A1 (en) 2014-06-30 2015-06-10 Rotation movement detection device

Country Status (2)

Country Link
JP (1) JP6282945B2 (en)
WO (1) WO2016002451A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319278A (en) * 2003-04-16 2004-11-11 Yazaki Corp Combination switch
JP2011027627A (en) * 2009-07-28 2011-02-10 Alps Electric Co Ltd Position detecting device
JP2011119177A (en) * 2009-12-07 2011-06-16 Hosiden Corp Combined operation input device
JP2011129460A (en) * 2009-12-21 2011-06-30 Tokai Rika Co Ltd Input device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319278A (en) * 2003-04-16 2004-11-11 Yazaki Corp Combination switch
JP2011027627A (en) * 2009-07-28 2011-02-10 Alps Electric Co Ltd Position detecting device
JP2011119177A (en) * 2009-12-07 2011-06-16 Hosiden Corp Combined operation input device
JP2011129460A (en) * 2009-12-21 2011-06-30 Tokai Rika Co Ltd Input device

Also Published As

Publication number Publication date
JP2016015204A (en) 2016-01-28
JP6282945B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP4629591B2 (en) Shift device
JP6023011B2 (en) Position detection device
US10176944B2 (en) Rotational movement detection device
JP2011027627A (en) Position detecting device
JP6230069B2 (en) Lever switch device
JP6420687B2 (en) Position detection device
WO2010026947A1 (en) Shift device
JP6271355B2 (en) Rotational movement detector
WO2016002451A1 (en) Rotation movement detection device
JP5600528B2 (en) Rotation angle detector
JP2009199806A (en) Turn switch
JP2017016920A (en) Lever switch apparatus
JP2016012465A (en) Lever switch device
JP6778168B2 (en) Shift device
JP2017036949A (en) Magnetic detection device
JP2017178060A (en) Shifter
JP2010040177A (en) Lever switch device
WO2019087740A1 (en) Shift device
JP2010114002A (en) Proximity sensor
JP2016139477A (en) Lever operation device
JP2017037740A (en) Lever switch device
JP2017190051A (en) Shift device
JP2018016207A (en) Shift device
JP2016009661A (en) Lever switch device
JP2005195471A (en) Rotation angle detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814543

Country of ref document: EP

Kind code of ref document: A1