WO2016002282A1 - Gel buffer solution for electrophoresis and polyacrylamide gel for electrophoresis - Google Patents

Gel buffer solution for electrophoresis and polyacrylamide gel for electrophoresis Download PDF

Info

Publication number
WO2016002282A1
WO2016002282A1 PCT/JP2015/060426 JP2015060426W WO2016002282A1 WO 2016002282 A1 WO2016002282 A1 WO 2016002282A1 JP 2015060426 W JP2015060426 W JP 2015060426W WO 2016002282 A1 WO2016002282 A1 WO 2016002282A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
electrophoresis
acid
buffer
pka
Prior art date
Application number
PCT/JP2015/060426
Other languages
French (fr)
Japanese (ja)
Inventor
弘子 藤生
篤 浅川
入江 勉
Original Assignee
アトー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アトー株式会社 filed Critical アトー株式会社
Priority to JP2016531146A priority Critical patent/JP6453326B2/en
Publication of WO2016002282A1 publication Critical patent/WO2016002282A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to a gel buffer for electrophoresis and a polyacrylamide gel for electrophoresis.
  • Bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris) gel recently invented by Updyke et al. Is a neutral gel buffer, a neutral electrophoresis buffer (Tris-MOPS). Since the system is combined with a buffer solution or a Tris-MES buffer solution, gels can be stored for a long period of time, and the environment during electrophoresis can be kept neutral (Patent Document 1). On the other hand, an electrophoretic gel has been developed that can be stored for a long time just by neutralizing the pH of the gel buffer (Tris) of the Laemmli method (Patent Document 2), but Tris-HEPES is used as the electrophoresis buffer.
  • electrophoresis includes an ampholyte composed of Tris, glycine, and a coexisting ampholyte having a base dissociation constant pKb of 8.3 ⁇ pKb ⁇ 9.6.
  • a polyacrylamide precast gel for use is disclosed in Patent Document 3, and this precast gel has no change in gel shape and electrophoretic image from half a year to one year or more.
  • a technique relating to high-speed electrophoretic separation under high voltage and / or high current conditions is not disclosed.
  • the quality can be stably maintained over a long period of time of refrigerated for more than half a year, and various electrophoresis buffers including Laemmli electrophoresis buffer and other buffers (Tris-MOPS etc.) are used for electrophoresis.
  • various electrophoresis buffers including Laemmli electrophoresis buffer and other buffers (Tris-MOPS etc.) are used for electrophoresis.
  • Tris-MOPS etc. Laemmli electrophoresis buffer and other buffers
  • the present inventors have intensively studied to solve the above problems, and using glycine as an amphoteric electrolyte for electrophoresis gel buffer, combined with it, the acid dissociation constant pKa is 9.6 ⁇ pKa ⁇ 11. It has been found that when different types of zwitterions are used, high resolution can be obtained without causing an interface on the gel even when high-speed electrophoresis is performed under high voltage and / or high current conditions.
  • the numerical value of the acid dissociation constant pKa of the zwitterion in this specification is determined based on the description in CRC handbook of Chemistry and Physics, 90 th edition, internet version 2010. The present invention is as follows.
  • a gel buffer for electrophoresis wherein the buffer is selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine
  • a gel buffer for electrophoresis having a pH of 5.5 to 7; and an agent; glycine and at least one zwitterion having an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11; and at least one acid
  • a gel buffer for electrophoresis that is between .5.
  • the gel buffer for electrophoresis according to any one of items 1 to 3, further comprising one or more additives selected from sugars, polyhydric alcohols, and salts.
  • a buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; glycine and an acid dissociation constant pKa of 9
  • a polyacrylamide gel for electrophoresis comprising: at least one zwitterion satisfying 6 ⁇ pKa ⁇ 11; and at least one acid.
  • a method for producing a polyacrylamide gel for electrophoresis which comprises polymerizing in the presence of an agent.
  • the gel buffer of the present invention and the gel for electrophoresis prepared using the gel buffer are stable for a long period of time, a large amount of precast gel that maintains uniform and long-term stable quality is produced and stored. I can do it. Therefore, it is possible to supply the precast gel quickly when necessary.
  • the conventionally used Laemmli method electrophoresis buffer can be used, so data accumulated so far in the Laemmli method (similar fractional molecular weight range, molecular mobility). Therefore, the reliability of the data is improved.
  • an electrophoresis buffer other than the Laemmli method can be used, it is excellent in versatility.
  • the polyacrylamide gel prepared using the gel buffer of the present invention does not disturb the shape and / or pattern of the electrophoresis band even under high voltage and / or high current conditions, and the interface on the gel is not affected. High resolution can be obtained without causing it.
  • FIG. 2 shows electrophoresis patterns of zwitterion-containing gels having different acid dissociation constants.
  • A Gel conforming to Laemmli method
  • B Zwitterion-free gel
  • C Serine-containing gel
  • D Taurine-containing gel
  • E Alanine-containing gel
  • F Proline-containing gel
  • G 6-aminocaproic acid-containing gel
  • c chicken muscle extract
  • p human plasma sample
  • m molecular weight marker.
  • Figure 5 shows the interface on the gel resulting from electrophoresis using zwitterion-containing gels with pKa ⁇ 9.6.
  • C ′ serine-containing gel
  • D ′ taurine-containing gel
  • E ′ alanine-containing gel.
  • Electrophoresis patterns migrated under constant voltage conditions of 150V, 300V, and 500V are shown. A is energized at 150V for 80 minutes, B is energized at 300V for 30 minutes, and C is energized at 500V for 15 minutes.
  • c chicken muscle extract
  • m molecular weight marker
  • p human plasma sample.
  • composition and method of use of the gel buffer for electrophoresis of the present invention and the composition and method of use of the polyacrylamide gel for electrophoresis produced using the gel buffer for electrophoresis will be described. .
  • the gel buffer for electrophoresis of the present invention is a buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; Glycine and at least one zwitterion with an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11; and at least one acid; and the pH of the gel buffer for electrophoresis is 5.5 to 7.5 Between.
  • tris (hydroxymethyl) aminomethane is preferable.
  • concentration of tris (hydroxymethyl) aminomethane may be usually 50 mM to 300 mM, preferably 70 mM to 150 mM, more preferably 80 mM to 100 mM in the gel buffer. If the Tris concentration contained in the gel buffer is high, the low molecular region cannot be detected, and the current increases, so that the gel undergoing electrophoresis becomes hot and the band shape is disturbed.
  • Glycine and at least one zwitterion having an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11 are both amphoteric electrolytes.
  • the acidic functional group is positively charged and becomes a cation
  • the basic functional group is negatively charged and behaves as an anion.
  • the acid contained in the electrophoresis gel is ionized and moves to the anode side, and the pH of the gel increases when the gel escapes from the electrophoresis buffer. Then, the ampholyte starts to move to the anode because it is negatively charged at a pH higher than its own pKa value.
  • the amphoteric electrolyte with a lower pKa value starts moving to the anode side earlier. Since the pKa value of glycine contained in the gel of the present invention is 9.6, if the pKa value of the coexisting zwitterion is larger than 9.6, it will move to the anode side later than glycine. Thus, it is considered that electrophoresis without causing an interface is possible without the potential gradient in the gel reaching equilibrium.
  • the concentration of glycine is usually 10 mM to 1000 mM in the gel buffer, preferably 100 mM to 500 mM, more preferably 180 mM to 300 mM.
  • concentration of glycine contained in the gel buffer is extremely low, the fractionation range is narrowed and the separation of the high molecular weight region is improved, but the separation of the low molecular weight region is deteriorated.
  • concentration of glycine occupies 10% or more, preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more of the ampholyte in the gel buffer in molar ratio.
  • the at least one zwitterion may be a compound having an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11 or a derivative thereof, specifically, alanine, arginine, cysteine, aspartic acid, glutamic acid, proline,
  • Examples include amino acids such as ⁇ -carboxyglutamic acid, ⁇ -aminobutyric acid, 2-aminoisobutyric acid, 6-aminocaproic acid, CAPS (3- (cyclohexylamino) -1-propanesulfonic acid), and combinations thereof. It is not limited.
  • the concentration of the at least one zwitterion is usually between 10 mM and 200 mM, preferably between 20 mM and 100 mM, more preferably between 20 mM and 50 mM in the gel buffer.
  • the acid dissociation constant pKa of zwitterion is 9.6 ⁇ pKa ⁇ 11
  • the amphoteric electrolyte is formed on the gel in the separation by high-speed electrophoresis under high voltage and / or high current conditions. High resolution can be obtained without causing the resulting interface.
  • the acid dissociation constant pKa of the zwitterion is preferably 9.6 ⁇ pKa ⁇ 11.
  • At least one acid contained in the gel buffer of the present invention keeps the pH of the gel buffer from weakly acidic to a neutral region and at the same time sharpens the shape of the band and improves the control of the electrophoresis speed and the separation of the band.
  • Acids include, but are not limited to, weak acids such as citric acid, glycolic acid, maleic acid, phosphoric acid, acetic acid and boric acid, and strong acids such as hydrochloric acid, sulfuric acid and nitric acid. A combination of one or two or more weak acids and weak acids, weak acids and strong acids, or strong acids and strong acids may be used.
  • acetic acid, sulfuric acid, and hydrochloric acid are preferable, and a combination of acetic acid and hydrochloric acid is most preferable.
  • at least one acid may be added as a salt of the buffer. Since the acid is used to adjust the pH of the gel buffer, the concentration is not particularly limited, but is usually 10 mM to 300 mM in the gel buffer. The coexisting concentrations are preferably in the range of 10 mM to 50 mM acetic acid and 10 mM to 100 mM hydrochloric acid, for example.
  • the pH of the gel buffer solution neutralized with acid may be in the range of 5.5 to 7.5, preferably pH 5.5 to 7.0, more preferably pH 6.0 to 6.5. Fit in. pH 7. If it is higher than 5, hydrolysis of the polyacrylamide gel tends to proceed, and the shelf life cannot be extended. When the pH is lower than 5.5, the hydrolysis of the polyacrylamide gel hardly proceeds, but the molecular migration image becomes unclear. By adjusting the pH to 5.5 to 7.5, the hydrolysis rate of acrylamide is decreased, and the performance and shape of the gel are stable for a long period of time of refrigeration for more than half a year, particularly for more than one year.
  • the content ratio of the buffering agent and at least one acid is preferably 15: 1 to 1: 3 by weight.
  • the total content of glycine and at least one zwitterion satisfying 9.6 ⁇ pKa ⁇ 11 and the content ratio of at least one acid are preferably 25: 1 to 2.5: 1 by weight.
  • the gel buffer of the present invention includes a sugar (eg, sucrose, glucose, galactose, fructose, sorbitol, trehalose, dextran), a polyhydric alcohol (eg, glycerol, ethylene glycol, propylene glycol), a salt containing an organic salt and an inorganic salt.
  • a sugar eg, sucrose, glucose, galactose, fructose, sorbitol, trehalose, dextran
  • a polyhydric alcohol eg, glycerol, ethylene glycol, propylene glycol
  • a salt containing an organic salt and an inorganic salt e.g., sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, and potassium phosphate, sodium citrate, sodium acetate, magnesium sulfate, calcium chloride, ammonium chloride, ammonium sulfate), etc. May be included.
  • the present invention also includes a polyacrylamide gel for electrophoresis prepared using the gel buffer for electrophoresis of the present invention described above.
  • Polyacrylamide gels for electrophoresis include precast gels that are provided to users in the form of pre-formed gels.
  • Such polyacrylamide gel for electrophoresis contains the buffer, glycine, at least one zwitterion having an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11, and at least one acid.
  • the method for producing the polyacrylamide gel for electrophoresis of the present invention can be produced according to a conventionally known method for producing polyacrylamide gel for electrophoresis using the gel buffer of the present invention.
  • the polyacrylamide gel for electrophoresis comprises acrylamide, a crosslinking agent, a buffer, glycine and at least one zwitterion with an acid dissociation constant pKa of 9.6 ⁇ pKa ⁇ 11, and at least one Is prepared by polymerizing in the presence of a polymerization initiator under conditions where the pH is in the range of 5.5 to 7.5.
  • the crosslinking agent is added for the purpose of crosslinking acrylamide.
  • crosslinking acrylamide For example, N, N '-methylenebisacrylamide (BIS), N, N'-allyltartaric acid amide (DATD), dihydroxyethylene-bisacrylamide (DHEBA). Water-soluble divinyl compounds such as) can be used.
  • Buffer, glycine and at least one zwitterion, and at least one acid are as described above for the gel buffer for electrophoresis.
  • Polymerization initiators that are catalysts for polymerizing gels include oxidizing agents such as ammonium persulfate (APS) and potassium persulfate (KPS) and N, N, N ′, N′-tetramethylethylenediamine (TEMED) and the like. Although a reducing agent can be used together, it is not limited to these. Further, photopolymerization using riboflavin or the like may be performed together with polymerization by a polymerization initiator.
  • the oxidizing agent and reducing agent are usually used in an amount of 0.05% to 5% (weight / volume) based on the total amount of monomers to be polymerized.
  • the above mixture may contain a water-soluble polymer which is a carrier added for the purpose of giving elasticity and strength to the gel.
  • a water-soluble polymer examples include agarose, polyvinyl alcohol, polyethylene glycol, Polyvinyl pyrrolidone, polymethyl vinyl ether and the like are included.
  • the type of support for producing the gel is not particularly limited. Examples include glass, plastic, and ceramic.
  • Various types of gel preparation plates are commercially available as supports for preparing gels, and there are a variety of materials and chemical modification of the surface.
  • the composition of the optimal gel solution often varies depending on the type of gel preparation plate, but the gel buffer of the present invention can be used in any gel preparation plate and is highly versatile.
  • the electrophoresis buffer is composed of a combination of an amine buffer and an ampholyte, and may contain a surfactant.
  • SDS Laemmli's tris-glycine-sodium dodecyl sulfate (SDS) buffer, tris, triethanolamine, tricine, 3-morpholinopropanesulfonic acid (MOPS), 2-morpholinoethanesulfonic acid (MES), N- ( 2-acetamido) -2-aminoethanesulfonic acid (ACES), 2-hydroxy-3-morpholinopropanesulfonic acid (MOPSO), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 2-hydroxy-N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPSO),
  • the present invention also includes a method for separating a polypeptide, protein or nucleic acid using the polyacrylamide gel for electrophoresis of the present invention described above.
  • a combination of 2 or more and 50 or less amino acids is referred to as a polypeptide, and a combination of 51 or more amino acids is referred to as a protein.
  • Nucleic acids include DNA and RNA.
  • the polyacrylamide gel for electrophoresis of the present invention can be stored for a long period of time, and is suitable for separation of polypeptides, proteins or nucleic acids.
  • electrophoresis performed under high voltage and / or high current conditions molecules move at a higher speed than in the past, but even in this case, the shape and / or pattern of the electrophoresis band is not disturbed, and the interface is formed on the gel. High resolution can be obtained without causing it.
  • the “high voltage condition” means that the electrophoresis voltage is 20 V / cm or more per unit length between the electrodes of the gel. Although the upper limit of a voltage is not specifically limited, Usually, it is 80 V / cm or less.
  • “High current condition” means that the electrophoretic current is 40 mA / cm 2 or more per unit cross-sectional area of the current-carrying surface of the gel.
  • the upper limit of the current is not particularly limited, but is usually 250 mA / cm 2 or less.
  • Example 1 Acid dissociation constant
  • an electrophoresis gel containing zwitterions with a pKa of 9 to 11 was prepared and electrophoresed. Compared with.
  • the concentrated gel consists of the gel buffer shown in Table 1, acrylamide and bis-acrylamide (4.5% T / 3% C), and was prepared by polymerization by adding 0.08% APS and 0.03% TEMED. .
  • electrophoresis buffer 25 mM Tris, 192 mM glycine, and 0.1% SDS (based on the Laemmli method) were used. Electrophoresis was performed using an electrophoresis apparatus (AE6530) manufactured by Atto Co., Ltd., and energized for 30 to 35 minutes at a constant voltage of 300 V (the electrophoresis voltage was 34 V / per unit length between the gel electrodes). cm, the electrophoretic current corresponds to 40 to 75 mA / cm 2 per unit cross-sectional area of the current-carrying surface of the gel).
  • the protein sample was treated with EzLabel FluoroNeo (Ato Inc., WSE-7010) to produce fluorescently labeled protein and unlabeled protein.
  • the gel after electrophoresis was stained with EzStain AQUA (Ato, AE-1340) after obtaining a fluorescent image excited with a blue LED.
  • the dyed gel was analyzed with CS Analyzer (Atto Corporation) after capturing an image with a scanner.
  • the relative mobility Rf (%) was calculated by (distance from top of separation gel to each band position) / (distance from top of separation gel to electrophoresis tip) ⁇ 100.
  • the electrophoretic results are shown in FIG. 1, and the relative mobility (%) of the molecular weight marker protein is shown in Table 2.
  • 1A to D are Laemmli gels (A) as controls, trisglycine gels (B) not containing zwitterions, gels (C) containing serine (pKa: 9.15) having a pKa of less than 9.6, And the result of the taurine (pKa: 9.06) containing gel (D) is shown.
  • (E) to (G) are zwitterion-containing gels having a pKa of 9.6 to 11, and (E) is alanine (pKa: 9.6) and (F) is proline (pKa: 10.6), respectively.
  • (G) is a result of electrophoresis of a gel containing 6-aminocaproic acid (pKa: 10.8) at a concentration of 30 mM.
  • Samples were chicken muscle extract (c), human plasma (p), and molecular weight marker (m) (chicken muscle-derived myosin: 220 kDa, E. coli-derived ⁇ -galactosidase: 116 kDa, rabbit muscle-derived phosphorylase B: 97 kDa, derived from bovine serum.
  • Albumin 66 kDa, chicken egg-derived ovalbumin: 45 kDa, bovine blood cell-derived carbonyl anhydrase: 30 kDa, soybean-derived trypsin inhibitor: 20 kDa, bovine milk-derived ⁇ -lactalbumin: 14.4 kDa).
  • Gels (E)-(G) containing zwitterions with a pKa of 9.6 to 11 show an electrophoresis pattern equivalent to that of Laemmli method gels, and have the same molecular weight range and protein mobility. In addition, an interface caused by zwitterions did not occur on the gel (E ′ in FIG. 2), and separation by electrophoresis at a high voltage was good.
  • Example 2 In order to verify the change in protein mobility depending on the concentration of alanine, which is one of zwitterions, a gel was prepared using the gel buffer described in Table 3, and the same as in Example 1 was performed. Electrophoresis was performed by the method. As shown in the relative mobility (%) of molecular weight markers in Table 4 and the electrophoresis pattern (photograph is not shown), the electrophoretic pattern is not affected even when the alanine concentration is changed from 25 mM to 100 mM. The Laemmli method The same molecular weight range and protein mobility as those of the gel were observed, and good separation was observed.
  • Example 3 In order to verify the change in protein mobility dependent on the Tris concentration, a gel was prepared using the gel buffers described in Table 5 and Table 7, and electrophoresis was performed in the same manner as in Example 1. It was. Table 6 shows the results when the Tris concentration was changed from 50 mM to 80 mM, and Table 8 shows the results when the Tris concentration was 80 mM or more. As shown in the relative mobility and electrophoresis pattern (photos not shown) in Tables 6 and 8, good separation was observed in both cases. However, when the Tris concentration was 70 mM or less, the molecular weight on the low molecule side was observed. Since the range of the image was expanded, the 45 kDa band of the molecular weight marker was divided into two (A to C).
  • the phosphorylated and dephosphorylated band may be separated.
  • Tris with a concentration of 80 mM or more showed a fractional molecular weight range and protein mobility equivalent to the Laemmli gel (E to H), but gradually increased separation on the polymer side as the Tris concentration increased (G, H).
  • G, H Tris concentration
  • addition of sulfuric acid as an acid other than acetic acid (E to H) did not significantly affect the electrophoresis pattern.
  • Example 4 In order to verify the change in protein mobility dependent on glycine concentration, a gel was prepared using the gel buffer described in Table 9, and electrophoresis was performed in the same manner as in Example 1. As shown in the relative mobility of Table 10 and the electrophoresis pattern of FIG. 5 (the gel photo is not shown), the separation of the polymer region is better when the glycine concentration is high, and low when the glycine concentration is low. It was found that the separation of the molecular side region was improved. In this way, the protein mobility changes depending on the glycine concentration.By selecting the glycine concentration that matches the target molecular region, it is possible to separate and detect the band of the target molecular region in more detail. is there. In addition, in the gel (CF) containing glycine at a concentration of 100 mM or more, the electrophoresis pattern and relative mobility of the protein were the same as those of the Laemmli method gel, and good separation was observed.
  • Example 5 In order to verify the change in protein mobility depending on the acetic acid concentration, a gel was prepared using the gel buffer described in Table 11, and electrophoresis was performed in the same manner as in Example 1. As a result, as shown in Table 12 relative mobility and electrophoresis pattern (gel photo is not shown), the protein migration pattern and relative mobility are the same as the Laemmli gel, and good separation is observed. It was done. In addition, it was shown that as the acetic acid concentration was increased, the separation on the polymer side was slightly improved, the band became sharper, and the migration speed gradually decreased.
  • Example 6 In order to verify the effect of adding additives to a gel consisting of tris, glycine, zwitterion, acid, triethanolamine (TEA, pKa: 7.76), ⁇ - A gel was prepared using a gel buffer to which aminobutyric acid (GABA, pKa: 10.43) was added, and electrophoresis was performed in the same manner as in Example 1. As a result, as shown in Table 14 and the electrophoresis pattern (gel photograph not shown), good separation was observed in both cases. The addition of GABA had almost no effect on the electrophoretic pattern and mobility (C), but the addition of TEA showed that the fractional area on the low molecular side was narrowed slightly (B, D). ).
  • Example 7 Further, in order to verify the influence of sucrose or glycerol often used as an additive in the gel, a gel was prepared using the gel buffer described in Table 15, and electricity was obtained in the same manner as in Example 1. Electrophoresis was performed. As shown in the relative mobility and electrophoretic pattern in Table 16 (the gel photo is not shown), all showed good separation, almost no effect from the addition of glycerol and sucrose, equivalent to the Laemmli gel. The molecular weight range and protein mobility were shown.
  • Example 8 In order to verify long-term storage stability, heat treatment was performed at 4 ° C., 37 ° C., and 50 ° C., and an accelerated stability test of the gel was performed. It has been shown that a one day warming treatment at 37 ° C. is equivalent to a one month warming treatment at 4 ° C., which is a typical storage temperature.
  • 10% T3% C acrylamide and 10% T3.3% C acrylamide gels were prepared using the gel buffer described in Table 17 and heated at 4 ° C., 37 ° C., 50 ° C. for 1 week. (Table 18), electrophoresis was performed in the same manner as in Example 1.
  • Example 9 In the same manner as in Example 8, in order to verify long-term storage stability, the gels were heated at 4 ° C., 37 ° C., and 50 ° C., and an accelerated stability test was performed on the gel. Equivalent to one month at °C). A 10% T3.3% C acrylamide gel was prepared using the gel buffer described in Table 20 and heated at 4 ° C., 37 ° C., 50 ° C. for 9 days and 14 days (Table 21). ) And electrophoresis was performed in the same manner as in Example 1.
  • Example 10 In order to investigate the influence of the voltage when performing electrophoresis, a gel was prepared with the composition shown in Table 23, and electrophoresis was performed in the same manner as described above under constant voltage conditions of 150 V, 300 V, and 500 V. As shown in FIG. 3, there is no difference in the patterns electrophoresed for 80 minutes at a commonly used voltage of 150 V and for 30 minutes at a high voltage of 300 V, and the band shape and mobility are the same. It was done. When electrophoresis was performed at a higher voltage of 500 V, the mobility was slightly affected, but the band shape and pattern were the same. Therefore, it was shown that it can be separated into a clear and sharp band similar to the normal voltage even under high voltage conditions.
  • the gel for electrophoresis can be stably stored for a long period of time by using the gel buffer of the present invention, a uniform and excellent quality precast gel can be produced, and such a precast gel can be produced. Can be produced in large quantities. Since mass production and long-term storage are possible, it is possible to provide the same lot and obtain highly accurate and reproducible data. Furthermore, if the prepared gel is used, high-speed electrophoresis can be performed under high voltage and / or high current conditions, and bands can be separated with high resolution, leading to a reduction in analysis time.

Abstract

This gel buffer solution for electrophoresis contains: a buffering agent selected from among tris(hydroxymethyl)- aminomethane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)- methane, monoethanolamine, diethanolamine and triethanolamine; glycine and at least one zwitter ion having an acid dissociation constant (pKa) satisfying 9.6 ≤ pKa ≤ 11; and at least one acid. This gel buffer solution for electrophoresis has a pH within the range from 5.5 to 7.5.

Description

電気泳動用ゲル緩衝液及び電気泳動用ポリアクリルアミドゲルGel buffer for electrophoresis and polyacrylamide gel for electrophoresis
(関連分野の相互参照)
 本願は、2014年7月4日に出願した特願2014-139196号明細書(その全体が参照により本明細書中に援用される)の優先権の利益を主張するものである。
(技術分野)
 本発明は、電気泳動用ゲル緩衝液及び電気泳動用ポリアクリルアミドゲルに関する。
(Cross-reference of related fields)
This application claims the benefit of priority of Japanese Patent Application No. 2014-139196 filed on Jul. 4, 2014, the entirety of which is incorporated herein by reference.
(Technical field)
The present invention relates to a gel buffer for electrophoresis and a polyacrylamide gel for electrophoresis.
 ポリペプチド、タンパク質または核酸などの分子をポリアクリルアミドゲル電気泳動で分離する手法は、当該分子を分子量の大きさに応じて分離する基本的なシステムであり、生命科学研究に欠かせない基盤技術である。電気泳動システムは1960年代にOrnstein(非特許文献1)やDavis(非特許文献2)により発明され、その後Laemmliにより改良され(非特許文献3)、Laemmli法は現在最も使用されるSDS(ドデシル硫酸ナトリウム)-ポリアクリルアミドゲル電気泳動システムになった。しかしLaemmli法のゲルは分離ゲルが375mM Tris/pH8.8の塩基性のゲル緩衝液から成り、ゲルの主成分であるアクリルアミドが塩基性条件下では不安定で加水分解されてしまうため長期保存には適さなかった。 Separation of molecules such as polypeptides, proteins or nucleic acids by polyacrylamide gel electrophoresis is a fundamental system that separates the molecules according to their molecular weight, and is a fundamental technology indispensable for life science research. is there. The electrophoretic system was invented by Ornstein (Non-patent Document 1) and Davis (Non-patent Document 2) in the 1960s, and later improved by Laemmli (Non-patent Document 3). The Laemmli method is currently the most used SDS (dodecyl sulfate). Sodium) -polyacrylamide gel electrophoresis system. However, the Laemmli method gel consists of a basic gel buffer solution of 375 mM Tris / pH 8.8, and the main component of the gel, acrylamide, is unstable and hydrolyzed under basic conditions. Was not suitable.
 近年になってUpdykeらにより発明されたビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)ゲルは中性のゲル緩衝液であり、中性の電気泳動緩衝液(Tris-MOPS緩衝液あるいはTris-MES緩衝液)と組み合わせたシステムであるため、ゲルの長期保存が可能になった上に泳動中の環境を中性に保つことが可能になった(特許文献1)。一方、Laemmli法のゲル緩衝液(Tris)のpHをただ中性にしただけで長期保存が可能になった電気泳動ゲルも開発されたが(特許文献2)、泳動緩衝液にはTris-HEPES緩衝液を使用する必要があった。このように、いずれのシステムも従来使用されてきたLaemmli法の泳動用緩衝液を用いて分子を分離することはできず、泳動中の環境が中性なため、還元処理したタンパク質が再酸化されないように還元剤を添加する必要がある。またタンパク質の移動度や分画分子量範囲に関してはLaemmli法のシステムとは一致しないため、これまで蓄積されてきたデータとの相関性を容易にとることができない。 Bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris) gel recently invented by Updyke et al. Is a neutral gel buffer, a neutral electrophoresis buffer (Tris-MOPS). Since the system is combined with a buffer solution or a Tris-MES buffer solution, gels can be stored for a long period of time, and the environment during electrophoresis can be kept neutral (Patent Document 1). On the other hand, an electrophoretic gel has been developed that can be stored for a long time just by neutralizing the pH of the gel buffer (Tris) of the Laemmli method (Patent Document 2), but Tris-HEPES is used as the electrophoresis buffer. It was necessary to use a buffer. In this way, the molecules cannot be separated using the Laemmli electrophoresis buffer that has been used in any of the systems, and the reduced protein is not reoxidized because the environment during the migration is neutral. Thus, it is necessary to add a reducing agent. In addition, protein mobility and fractional molecular weight ranges do not match those of the Laemmli system, and thus cannot be easily correlated with data accumulated so far.
 そこで、Laemmli法の泳動用緩衝液を使用できる弱酸性ゲルとして、トリス、グリシンと塩基解離定数pKbが8.3<pKb<9.6の範囲の共存両性電解質とから成る両性電解質を含む電気泳動用ポリアクリルアミドプレキャストゲルが特許文献3に開示されており、このプレキャストゲルは、半年から1年以上ゲルの形状、泳動像に変化が無いとある。しかし、高電圧および/または高電流条件下での高速泳動分離に関する技術は開示されていない。 Therefore, as a weakly acidic gel that can use Laemmli's electrophoresis buffer, electrophoresis includes an ampholyte composed of Tris, glycine, and a coexisting ampholyte having a base dissociation constant pKb of 8.3 <pKb <9.6. A polyacrylamide precast gel for use is disclosed in Patent Document 3, and this precast gel has no change in gel shape and electrophoretic image from half a year to one year or more. However, a technique relating to high-speed electrophoretic separation under high voltage and / or high current conditions is not disclosed.
米国特許第5578180号US Pat. No. 5,578,180 米国特許第6733647号U.S. Pat. No. 6,733,647 特許第3942001号Patent No. 394001
 実際に特許文献3に記載のゲルを使用して高電圧条件下で高速泳動を行ったところ、ゲル上に界面が生じ、バンドの形状が乱れることが判明した。高電圧および/または高電流条件下での高速泳動分離技術は、泳動中にゲルおよび泳動緩衝液が高温下にさらされるため、バンドの形状と移動度を維持した高い分離能を得ることは決して容易ではない。 Actually, when the gel described in Patent Document 3 was used for high-speed electrophoresis under high voltage conditions, it was found that an interface was formed on the gel and the shape of the band was disturbed. High-speed electrophoretic separation technology under high voltage and / or high current conditions will never get high resolution while maintaining band shape and mobility because gels and running buffers are exposed to high temperatures during electrophoresis. It's not easy.
 そこで本発明では、冷蔵で半年以上という長期間にわたり品質が安定に保持できると共に、電気泳動にLaemmli法の泳動緩衝液およびその他の緩衝液(Tris-MOPS等)を含む種々の泳動緩衝液を用いることができ、かつ高電圧および/または高電流泳動条件下でゲル上に界面を生じさせずに高い分離能が得られるゲル緩衝液および該ゲル緩衝液を使用して作製した電気泳動用ゲルを提供する。 Therefore, in the present invention, the quality can be stably maintained over a long period of time of refrigerated for more than half a year, and various electrophoresis buffers including Laemmli electrophoresis buffer and other buffers (Tris-MOPS etc.) are used for electrophoresis. A gel buffer solution that can be obtained and that provides high resolution without causing an interface on the gel under high voltage and / or high current electrophoresis conditions, and an electrophoresis gel prepared using the gel buffer provide.
 本発明者らは、上記課題を解決するために鋭意検討し、グリシンを電気泳動用ゲル緩衝液の両性電解質として用い、それと組み合わせて酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオンを用いた場合に、高電圧および/または高電流条件下での高速泳動を行った場合でもゲル上に界面を生じさせることなく、高い分離能が得られることを見出した。
 なお、本明細書における双性イオンの酸解離定数pKaの数値はCRC handbook of Chemistry and Physics, 90th edition, internet version 2010の記載に基づいて定めている。
 本発明は以下の通りである。
The present inventors have intensively studied to solve the above problems, and using glycine as an amphoteric electrolyte for electrophoresis gel buffer, combined with it, the acid dissociation constant pKa is 9.6 ≦ pKa ≦ 11. It has been found that when different types of zwitterions are used, high resolution can be obtained without causing an interface on the gel even when high-speed electrophoresis is performed under high voltage and / or high current conditions.
In addition, the numerical value of the acid dissociation constant pKa of the zwitterion in this specification is determined based on the description in CRC handbook of Chemistry and Physics, 90 th edition, internet version 2010.
The present invention is as follows.
 [1]電気泳動用ゲル緩衝液であって、トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含み、電気泳動用ゲル緩衝液のpHが5.5~7.5の間である、電気泳動用ゲル緩衝液。 [1] A gel buffer for electrophoresis, wherein the buffer is selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine A gel buffer for electrophoresis having a pH of 5.5 to 7; and an agent; glycine and at least one zwitterion having an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11; and at least one acid A gel buffer for electrophoresis that is between .5.
 [2]前記緩衝剤の濃度が50mM~300mMであり、前記グリシンの濃度が10mM~1000mMであり、前記少なくとも1種類の双性イオンの濃度が10mM~200mMである項1に記載の電気泳動用ゲル緩衝液。 [2] The electrophoresis according to Item 1, wherein the concentration of the buffer is 50 mM to 300 mM, the concentration of the glycine is 10 mM to 1000 mM, and the concentration of the at least one zwitterion is 10 mM to 200 mM. Gel buffer.
 [3]前記双性イオンはアラニン、アルギニン、システイン、アスパラギン酸、グルタミン酸、プロリン、γ-カルボキシグルタミン酸、γ-アミノ酪酸、2-アミノイソ酪酸、6-アミノカプロン酸、およびCAPSから選択される項1または2に記載の電気泳動用ゲル緩衝液。 [3] Item 1 or 2 wherein the zwitterion is selected from alanine, arginine, cysteine, aspartic acid, glutamic acid, proline, γ-carboxyglutamic acid, γ-aminobutyric acid, 2-aminoisobutyric acid, 6-aminocaproic acid, and CAPS. 2. A gel buffer for electrophoresis as described in 2.
 [4]糖、多価アルコール、および塩から選択される1または複数の添加物をさらに含む項1~3のいずれか一項に記載の電気泳動用ゲル緩衝液。 [4] The gel buffer for electrophoresis according to any one of items 1 to 3, further comprising one or more additives selected from sugars, polyhydric alcohols, and salts.
 [5]項1~4のいずれか一項に記載の電気泳動用ゲル緩衝液を用いて製造される電気泳動用ポリアクリルアミドゲル。 [5] A polyacrylamide gel for electrophoresis produced using the gel buffer solution for electrophoresis according to any one of items 1 to 4.
 [6]トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含む、電気泳動用ポリアクリルアミドゲル。 [6] A buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; glycine and an acid dissociation constant pKa of 9 A polyacrylamide gel for electrophoresis, comprising: at least one zwitterion satisfying 6 ≦ pKa ≦ 11; and at least one acid.
 [7]プレキャストゲルである項5または6に記載の電気泳動用ポリアクリルアミドゲル。 [7] The polyacrylamide gel for electrophoresis according to item 5 or 6, which is a precast gel.
 [8]項5~7のいずれか一項に記載の電気泳動用ポリアクリルアミドゲルを用いたポリペプチド、タンパク質または核酸の分離方法。 [8] A method for separating a polypeptide, protein or nucleic acid using the polyacrylamide gel for electrophoresis according to any one of items 5 to 7.
 [9]アクリルアミド;架橋剤;トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含む混合物を、pHが5.5~7.5の範囲にある条件で重合開始剤の存在下で重合することを特徴とする電気泳動用ポリアクリルアミドゲルの製造方法。 [9] Acrylamide; Crosslinker; Buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; glycine and acid Polymerization of a mixture containing at least one zwitterion with a dissociation constant pKa of 9.6 ≦ pKa ≦ 11; and at least one acid under the condition that the pH is in the range of 5.5 to 7.5 A method for producing a polyacrylamide gel for electrophoresis, which comprises polymerizing in the presence of an agent.
 本発明のゲル緩衝液および該ゲル緩衝液を使用して作製した電気泳動用ゲルは長期間安定であるため、均一で長期間安定した品質を保つプレキャストゲルを、大量に生産し保存しておくことが出来る。よって、プレキャストゲルを必要時に迅速に供給することが可能である。 Since the gel buffer of the present invention and the gel for electrophoresis prepared using the gel buffer are stable for a long period of time, a large amount of precast gel that maintains uniform and long-term stable quality is produced and stored. I can do it. Therefore, it is possible to supply the precast gel quickly when necessary.
 また、本発明のゲル緩衝液を用いれば、従来使用されてきたLaemmli法の泳動緩衝液を使用できるため、Laemmli法においてこれまで蓄積されてきたデータ(同様の分画分子量範囲、分子の移動度、泳動パターン)との相関性もとれるため、データの信頼性が向上する。また、Laemmli法以外の泳動緩衝液をも使用できるため、汎用性にも優れている。 In addition, if the gel buffer of the present invention is used, the conventionally used Laemmli method electrophoresis buffer can be used, so data accumulated so far in the Laemmli method (similar fractional molecular weight range, molecular mobility). Therefore, the reliability of the data is improved. In addition, since an electrophoresis buffer other than the Laemmli method can be used, it is excellent in versatility.
 さらには、本発明のゲル緩衝液を用いて作成されたポリアクリルアミドゲルは、高電圧および/または高電流条件下でも、電気泳動のバンドの形状および/またはパターンが乱れず、ゲル上に界面を生じさせずに高い分離能が得られる。 Furthermore, the polyacrylamide gel prepared using the gel buffer of the present invention does not disturb the shape and / or pattern of the electrophoresis band even under high voltage and / or high current conditions, and the interface on the gel is not affected. High resolution can be obtained without causing it.
酸解離定数が異なる双性イオン含有ゲルの電気泳動パターンを示す。A:Laemmli法に準拠したゲル、B:双性イオン不含ゲル、C:セリン含有ゲル、D:タウリン含有ゲル、E:アラニン含有ゲル、F:プロリン含有ゲル、G:6-アミノカプロン酸含有ゲル。c:ニワトリ筋肉抽出液、p:ヒト血漿サンプル、m:分子量マーカー。矢印:界面を示す。2 shows electrophoresis patterns of zwitterion-containing gels having different acid dissociation constants. A: Gel conforming to Laemmli method, B: Zwitterion-free gel, C: Serine-containing gel, D: Taurine-containing gel, E: Alanine-containing gel, F: Proline-containing gel, G: 6-aminocaproic acid-containing gel . c: chicken muscle extract, p: human plasma sample, m: molecular weight marker. Arrow: indicates an interface. pKa<9.6の双性イオン含有ゲルを使用した電気泳動で生じるゲル上の界面を示す。C′:セリン含有ゲル、D′:タウリン含有ゲル、E′:アラニン含有ゲル。四角(破線):C′及びD′では界面を示す。E′には界面がない。Figure 5 shows the interface on the gel resulting from electrophoresis using zwitterion-containing gels with pKa <9.6. C ′: serine-containing gel, D ′: taurine-containing gel, E ′: alanine-containing gel. Square (broken line): C ′ and D ′ indicate interfaces. E ′ has no interface. 150V、300V、500Vの定電圧条件で泳動した電気泳動パターンを示す。Aは150Vで80分間、Bは300Vで30分間、Cは500Vで15分間通電。c:ニワトリ筋肉抽出液、m:分子量マーカー、p:ヒト血漿サンプル。Electrophoresis patterns migrated under constant voltage conditions of 150V, 300V, and 500V are shown. A is energized at 150V for 80 minutes, B is energized at 300V for 30 minutes, and C is energized at 500V for 15 minutes. c: chicken muscle extract, m: molecular weight marker, p: human plasma sample.
 以下、本発明の電気泳動用ゲル緩衝液の組成および使用方法、ならびにかかる電気泳動用ゲル緩衝液を用いて製造される電気泳動用ポリアクリルアミドゲルの組成および使用方法について、その好ましい態様を説明する。 Hereinafter, preferred embodiments of the composition and method of use of the gel buffer for electrophoresis of the present invention and the composition and method of use of the polyacrylamide gel for electrophoresis produced using the gel buffer for electrophoresis will be described. .
 本発明の電気泳動用ゲル緩衝液は、トリス(ヒドロキシメチル)アミノメタン、 ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含み、電気泳動用ゲル緩衝液のpHが5.5~7.5の間である。 The gel buffer for electrophoresis of the present invention is a buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; Glycine and at least one zwitterion with an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11; and at least one acid; and the pH of the gel buffer for electrophoresis is 5.5 to 7.5 Between.
 緩衝剤としてはトリス(ヒドロキシメチル)アミノメタンが好ましい。トリス(ヒドロキシメチル)アミノメタンの濃度はゲル緩衝液中で通常50mM~300mMの間であれば良く、好ましくは70mM~150mM、より好ましくは80mM~100mMの間である。ゲル緩衝液に含有されるトリス濃度が高いと低分子領域が検出できなくなり、電流が多くなるため泳動中のゲルが高温になり、バンドの形状が乱れる結果となる。 As the buffer, tris (hydroxymethyl) aminomethane is preferable. The concentration of tris (hydroxymethyl) aminomethane may be usually 50 mM to 300 mM, preferably 70 mM to 150 mM, more preferably 80 mM to 100 mM in the gel buffer. If the Tris concentration contained in the gel buffer is high, the low molecular region cannot be detected, and the current increases, so that the gel undergoing electrophoresis becomes hot and the band shape is disturbed.
 グリシンと酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオンとは、いずれも両性電解質である。両性電解質は、分子内に酸性の官能基と塩基性の官能基を有するものであり、pH=pKa値では官能基が解離して正と負の荷電量が等しくなり電気的に中性になる。またpKa値より低いpHでは酸性の官能基が正に荷電して陽イオンとして、pKa値より高いpHでは塩基性の官能基が負に荷電して陰イオンとして挙動する双性イオンである。通電開始後、電気泳動ゲル内に含まれる酸が電離して陽極側に移動し、ゲルから泳動緩衝液に抜けるとゲルのpHが高くなる。すると、両性電解質は自身のpKa値より高いpHでは負に荷電するため陽極へ移動を開始する。pKa値が低い両性電解質ほど、早く陽極側への移動を開始する。本発明のゲル内に含有されるグリシンのpKa値は9.6であるため、共存する双性イオンのpKa値が9.6よりも大きければ、グリシンよりも遅れて陽極側に移動するようになり、ゲル内の電位勾配が平衡に達することもなく界面を生じない電気泳動が可能になると考えられる。 Glycine and at least one zwitterion having an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11 are both amphoteric electrolytes. The ampholyte has an acidic functional group and a basic functional group in the molecule, and at pH = pKa value, the functional group dissociates and the positive and negative charge amounts become equal to become electrically neutral. . At pH lower than the pKa value, the acidic functional group is positively charged and becomes a cation, and at pH higher than the pKa value, the basic functional group is negatively charged and behaves as an anion. After the start of energization, the acid contained in the electrophoresis gel is ionized and moves to the anode side, and the pH of the gel increases when the gel escapes from the electrophoresis buffer. Then, the ampholyte starts to move to the anode because it is negatively charged at a pH higher than its own pKa value. The amphoteric electrolyte with a lower pKa value starts moving to the anode side earlier. Since the pKa value of glycine contained in the gel of the present invention is 9.6, if the pKa value of the coexisting zwitterion is larger than 9.6, it will move to the anode side later than glycine. Thus, it is considered that electrophoresis without causing an interface is possible without the potential gradient in the gel reaching equilibrium.
 グリシンの濃度はゲル緩衝液中で通常10mM~1000mMの間であれば良く、好ましくは100mM~500mM、より好ましくは180mM~300mMの間である。ゲル緩衝液に含有されるグリシン濃度が極端に低いと分画範囲が狭くなり、高分子量領域の分離は良くなるが、低分子量領域の分離が悪くなる結果となる。グリシンの濃度はモル比でゲル緩衝液中の両性電解質のうちの10%以上、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上を占める。 The concentration of glycine is usually 10 mM to 1000 mM in the gel buffer, preferably 100 mM to 500 mM, more preferably 180 mM to 300 mM. When the concentration of glycine contained in the gel buffer is extremely low, the fractionation range is narrowed and the separation of the high molecular weight region is improved, but the separation of the low molecular weight region is deteriorated. The concentration of glycine occupies 10% or more, preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more of the ampholyte in the gel buffer in molar ratio.
 少なくとも1種類の双性イオンは酸解離定数pKaが9.6≦pKa≦11である化合物及びそれらの誘導体であればよく、具体的には、アラニン、アルギニン、システイン、アスパラギン酸、グルタミン酸、プロリン、γ-カルボキシグルタミン酸、γ-アミノ酪酸、2-アミノイソ酪酸、6-アミノカプロン酸などのアミノ酸、CAPS(3-(シクロヘキシルアミノ)-1-プロパンスルホン酸)、ならびにそれらの組み合わせなどが挙げられるがこれらに限定されない。少なくとも1種類の双性イオンの濃度はゲル緩衝液中で通常10mM~200mM、好ましくは20mM~100mM、より好ましくは20mM~50mMの間である。本発明によれば、双性イオンの酸解離定数pKaが9.6≦pKa≦11である場合に、高電圧および/または高電流条件下での高速泳動による分離において、ゲル上に両性電解質に起因する界面を生じさせずに高い分離能が得られる。双性イオンの酸解離定数pKaは好ましくは9.6<pKa<11である。 The at least one zwitterion may be a compound having an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11 or a derivative thereof, specifically, alanine, arginine, cysteine, aspartic acid, glutamic acid, proline, Examples include amino acids such as γ-carboxyglutamic acid, γ-aminobutyric acid, 2-aminoisobutyric acid, 6-aminocaproic acid, CAPS (3- (cyclohexylamino) -1-propanesulfonic acid), and combinations thereof. It is not limited. The concentration of the at least one zwitterion is usually between 10 mM and 200 mM, preferably between 20 mM and 100 mM, more preferably between 20 mM and 50 mM in the gel buffer. According to the present invention, when the acid dissociation constant pKa of zwitterion is 9.6 ≦ pKa ≦ 11, the amphoteric electrolyte is formed on the gel in the separation by high-speed electrophoresis under high voltage and / or high current conditions. High resolution can be obtained without causing the resulting interface. The acid dissociation constant pKa of the zwitterion is preferably 9.6 <pKa <11.
 本発明のゲル緩衝液に含まれる少なくとも1種類の酸は、ゲル緩衝液のpHを弱酸性から中性領域に保つと同時にバンドの形状をシャープにし、泳動速度のコントロールおよびバンドの分離を良くする働きがある。酸にはクエン酸、グリコール酸、マレイン酸、リン酸、酢酸、ホウ酸などの弱酸や、塩酸、硫酸、硝酸などの強酸が挙げられるが、これらに限定されない。1種または2種以上の弱酸と弱酸、弱酸と強酸および強酸と強酸の組み合わせでもよい。特に酢酸、硫酸、塩酸が好ましく、酢酸と塩酸の組合せが最も好ましい。また、少なくとも1種類の酸は上記緩衝剤の塩として添加されてもよい。酸はゲル緩衝液のpH調製のために使用されるため、濃度は特に限定されないが、ゲル緩衝液中で通常10mM~300mMである。共存する濃度は、例えば酢酸が10mM~50mMで塩酸が10mM~100mMの範囲内であることが好ましい。 At least one acid contained in the gel buffer of the present invention keeps the pH of the gel buffer from weakly acidic to a neutral region and at the same time sharpens the shape of the band and improves the control of the electrophoresis speed and the separation of the band. There is work. Acids include, but are not limited to, weak acids such as citric acid, glycolic acid, maleic acid, phosphoric acid, acetic acid and boric acid, and strong acids such as hydrochloric acid, sulfuric acid and nitric acid. A combination of one or two or more weak acids and weak acids, weak acids and strong acids, or strong acids and strong acids may be used. In particular, acetic acid, sulfuric acid, and hydrochloric acid are preferable, and a combination of acetic acid and hydrochloric acid is most preferable. Further, at least one acid may be added as a salt of the buffer. Since the acid is used to adjust the pH of the gel buffer, the concentration is not particularly limited, but is usually 10 mM to 300 mM in the gel buffer. The coexisting concentrations are preferably in the range of 10 mM to 50 mM acetic acid and 10 mM to 100 mM hydrochloric acid, for example.
 ゲル緩衝液を酸で中和した際のpHは5.5~7.5の範囲内であればよく、好ましくはpH5.5~7.0、より好ましくはpH6.0~6.5の範囲内に合わせる。pH7 .5よりも高い場合、ポリアクリルアミドゲルの加水分解が進行し易くなり、保存期限を長くのばすことが出来ない。pH5.5より低い場合、ポリアクリルアミドゲルの加水分解は進行しにくいが、分子の泳動像が不鮮明となる。pHを5.5~7.5にすることにより、アクリルアミドの加水分解速度が減少し、冷蔵で半年以上、特には1年以上の長期間ゲルの性能および形状は安定である。 The pH of the gel buffer solution neutralized with acid may be in the range of 5.5 to 7.5, preferably pH 5.5 to 7.0, more preferably pH 6.0 to 6.5. Fit in. pH 7. If it is higher than 5, hydrolysis of the polyacrylamide gel tends to proceed, and the shelf life cannot be extended. When the pH is lower than 5.5, the hydrolysis of the polyacrylamide gel hardly proceeds, but the molecular migration image becomes unclear. By adjusting the pH to 5.5 to 7.5, the hydrolysis rate of acrylamide is decreased, and the performance and shape of the gel are stable for a long period of time of refrigeration for more than half a year, particularly for more than one year.
 また、緩衝剤と少なくとも1種類の酸の含有量比は、重量比で、好ましくは15:1~1:3である。グリシンおよび9.6≦pKa≦11である少なくとも1種類の双性イオンの総和と少なくとも1種類の酸の含有量比は、重量比で、好ましくは25:1~2.5:1である。 The content ratio of the buffering agent and at least one acid is preferably 15: 1 to 1: 3 by weight. The total content of glycine and at least one zwitterion satisfying 9.6 ≦ pKa ≦ 11 and the content ratio of at least one acid are preferably 25: 1 to 2.5: 1 by weight.
 本発明のゲル緩衝液は、糖(例:スクロース、グルコース、ガラクトース、フルクトース、ソルビトール、トレハロース、デキストラン)、多価アルコール(例:グリセロール、エチレングリコール、プロピレングリコール)、有機塩および無機塩を含む塩(例:塩化ナトリウム、硫酸ナトリウム、リン酸ナトリウム、塩化カリウム、及びリン酸カリウム、クエン酸ナトリウム、酢酸ナトリウム、硫酸マグネシウム、塩化カルシウム、塩化アンモニウム、硫酸アンモニウム)、等の1または複数の添加物をさらに含んでもよい。 The gel buffer of the present invention includes a sugar (eg, sucrose, glucose, galactose, fructose, sorbitol, trehalose, dextran), a polyhydric alcohol (eg, glycerol, ethylene glycol, propylene glycol), a salt containing an organic salt and an inorganic salt. (E.g., sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, and potassium phosphate, sodium citrate, sodium acetate, magnesium sulfate, calcium chloride, ammonium chloride, ammonium sulfate), etc. May be included.
 本発明には、上記の本発明の電気泳動用ゲル緩衝液を用いて作製される電気泳動用ポリアクリルアミドゲルも包含される。電気泳動用ポリアクリルアミドゲルには、成形済みゲルの形でユーザーに提供されるプレキャストゲルが含まれる。 The present invention also includes a polyacrylamide gel for electrophoresis prepared using the gel buffer for electrophoresis of the present invention described above. Polyacrylamide gels for electrophoresis include precast gels that are provided to users in the form of pre-formed gels.
 かかる電気泳動用ポリアクリルアミドゲルは、上記緩衝剤、グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン、ならびに少なくとも1種類の酸を含む。 Such polyacrylamide gel for electrophoresis contains the buffer, glycine, at least one zwitterion having an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11, and at least one acid.
 本発明の電気泳動用ポリアクリルアミドゲルの製造方法は、本発明のゲル緩衝液を用いて、従来公知の電気泳動用ポリアクリルアミドゲルの製造方法に従って製造することができる。 The method for producing the polyacrylamide gel for electrophoresis of the present invention can be produced according to a conventionally known method for producing polyacrylamide gel for electrophoresis using the gel buffer of the present invention.
 一つの実施形態において、電気泳動用ポリアクリルアミドゲルは、アクリルアミド、架橋剤、緩衝剤、グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン、ならびに少なくとも1種類の酸を含む混合物を、pHが5.5~7.5の範囲にある条件で重合開始剤の存在下で重合することにより製造される。 In one embodiment, the polyacrylamide gel for electrophoresis comprises acrylamide, a crosslinking agent, a buffer, glycine and at least one zwitterion with an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11, and at least one Is prepared by polymerizing in the presence of a polymerization initiator under conditions where the pH is in the range of 5.5 to 7.5.
 架橋剤は、アクリルアミドの架橋を目的として添加されるが、例えばN , N ' - メチレンビスアクリルアミド(BIS)、N,N '- アリル酒石酸アミド(DATD)、ジヒロドキシエチレン-ビスアクリルアミド(DHEBA)等の水溶性ジビニル化合物を使用することができる。 The crosslinking agent is added for the purpose of crosslinking acrylamide. For example, N, N '-methylenebisacrylamide (BIS), N, N'-allyltartaric acid amide (DATD), dihydroxyethylene-bisacrylamide (DHEBA). Water-soluble divinyl compounds such as) can be used.
 緩衝剤、グリシンおよび少なくとも1種類の双性イオン、ならびに少なくとも1種類の酸については上述した電気泳動用ゲル緩衝液の説明の通りである。 Buffer, glycine and at least one zwitterion, and at least one acid are as described above for the gel buffer for electrophoresis.
 ゲルを重合する際の触媒である重合開始剤には、過硫酸アンモニウム(APS)や過硫酸カリウム(KPS)などの酸化剤とN,N,N',N'-テトラメチルエチレンジアミン(TEMED)などの還元剤が併用できるが、これらに限定されない。また、重合開始剤による重合とともにリボフラビンなどを使用した光重合を行っても良い。酸化剤及び還元剤は重合される全モノマーに対し、通常0.05%~5%(重量/ 容量)が使用される。 Polymerization initiators that are catalysts for polymerizing gels include oxidizing agents such as ammonium persulfate (APS) and potassium persulfate (KPS) and N, N, N ′, N′-tetramethylethylenediamine (TEMED) and the like. Although a reducing agent can be used together, it is not limited to these. Further, photopolymerization using riboflavin or the like may be performed together with polymerization by a polymerization initiator. The oxidizing agent and reducing agent are usually used in an amount of 0.05% to 5% (weight / volume) based on the total amount of monomers to be polymerized.
 なお、上記混合物は、ゲルに弾力性や強度を持たせることを目的として添加される担体である水溶性ポリマーを含んでもよく、そのような水溶性ポリマーには例えばアガロースやポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ポリメチルビニルエーテル等が含まれる。 The above mixture may contain a water-soluble polymer which is a carrier added for the purpose of giving elasticity and strength to the gel. Examples of such a water-soluble polymer include agarose, polyvinyl alcohol, polyethylene glycol, Polyvinyl pyrrolidone, polymethyl vinyl ether and the like are included.
 ゲルを作製する際の支持体の種類は、特に限定されない。ガラス、プラスチック、セラミックなどが挙げられる。ゲルを作製する支持体としては様々な種類のゲル作製用プレートが市販されており、材質および表面の化学修飾は多様である。最適なゲル溶液の組成はしばしばゲル作製用プレートの種類により異なるが、本発明のゲル緩衝液は、いずれのゲル作製用プレートにおいても使用可能で、汎用性が高いものである。 The type of support for producing the gel is not particularly limited. Examples include glass, plastic, and ceramic. Various types of gel preparation plates are commercially available as supports for preparing gels, and there are a variety of materials and chemical modification of the surface. The composition of the optimal gel solution often varies depending on the type of gel preparation plate, but the gel buffer of the present invention can be used in any gel preparation plate and is highly versatile.
 泳動用緩衝液はアミン緩衝剤と両性電解質の組合せから成り、そこに界面活性剤が含有されていても良い。Laemmli法のトリス-グリシン-ドデシル硫酸ナトリウム(SDS)緩衝液のほかに、トリス、トリエタノールアミン、トリシン、3-モルホリノプロパンスルホン酸(MOPS)、2-モルホリノエタンスルホン酸(MES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES) 、2-ヒドロキシ-3-モルホリノプロパンスルホン酸(MOPSO) 、N-〔トリス(ヒドロキシメチル)メチル〕-2-アミノエタンスルホン酸(TES)、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸(HEPES)、2-ヒドロキシ-N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(TAPSO)、酢酸、ホウ酸およびこれらの組合せを含む緩衝液、ならびにこれらに界面活性剤がさらに添加された緩衝液などが使用できるがこれらに限定されない。泳動用緩衝液を構成する両性電解質としては、グリシンや上記の双性イオンを初めとして、公知の両性電解質を用いることが可能である。 The electrophoresis buffer is composed of a combination of an amine buffer and an ampholyte, and may contain a surfactant. In addition to Laemmli's tris-glycine-sodium dodecyl sulfate (SDS) buffer, tris, triethanolamine, tricine, 3-morpholinopropanesulfonic acid (MOPS), 2-morpholinoethanesulfonic acid (MES), N- ( 2-acetamido) -2-aminoethanesulfonic acid (ACES), 2-hydroxy-3-morpholinopropanesulfonic acid (MOPSO), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 2-hydroxy-N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPSO), acetic acid, boric acid And buffers containing these and combinations thereof, and interfaces therewith Such as sexual agent further the added buffer is not limited to be used. As the amphoteric electrolyte constituting the electrophoresis buffer, known amphoteric electrolytes such as glycine and the above zwitterions can be used.
 本発明には、上記の本発明の電気泳動用ポリアクリルアミドゲルを用いたポリペプチド、タンパク質または核酸の分離方法も包含される。本明細書では、2個以上50個以下のアミノ酸が結合したものをポリペプチドと称し、51個以上のアミノ酸が結合したものをタンパク質と称する。核酸にはDNAおよびRNAが含まれる。 The present invention also includes a method for separating a polypeptide, protein or nucleic acid using the polyacrylamide gel for electrophoresis of the present invention described above. In the present specification, a combination of 2 or more and 50 or less amino acids is referred to as a polypeptide, and a combination of 51 or more amino acids is referred to as a protein. Nucleic acids include DNA and RNA.
 本発明の電気泳動用ポリアクリルアミドゲルは長期保存が可能であり、またポリペプチド、タンパク質または核酸の分離に適している。また、高電圧および/または高電流条件下で行う電気泳動では、従来よりも高速で分子が移動するが、この場合でも電気泳動のバンドの形状および/またはパターンが乱れず、ゲル上に界面を生じさせずに高い分離能が得られる。なお、「高電圧条件」とは、ゲルの電極間の単位長さあたり、電気泳動の電圧が20V/cm以上であることを指す。電圧の上限は特に限定されないが、通常80V/cm以下である。「高電流条件」とは、ゲルの通電面の単位断面積当たり、電気泳動の電流が40mA/cm2以上であることを指す。電流の上限は特に限定されないが、通常250mA/cm2以下である。 The polyacrylamide gel for electrophoresis of the present invention can be stored for a long period of time, and is suitable for separation of polypeptides, proteins or nucleic acids. In addition, in electrophoresis performed under high voltage and / or high current conditions, molecules move at a higher speed than in the past, but even in this case, the shape and / or pattern of the electrophoresis band is not disturbed, and the interface is formed on the gel. High resolution can be obtained without causing it. The “high voltage condition” means that the electrophoresis voltage is 20 V / cm or more per unit length between the electrodes of the gel. Although the upper limit of a voltage is not specifically limited, Usually, it is 80 V / cm or less. “High current condition” means that the electrophoretic current is 40 mA / cm 2 or more per unit cross-sectional area of the current-carrying surface of the gel. The upper limit of the current is not particularly limited, but is usually 250 mA / cm 2 or less.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例1
 酸解離定数 pKaがタンパク質の移動度や電気泳動パターンに与える影響を調べるために、pKaが9~11の双性イオンを含有する電気泳動用ゲルを作製して電気泳動を行い、Laemmli法のゲルと比較した。
Example 1
Acid dissociation constant In order to investigate the effect of pKa on the mobility and electrophoresis pattern of proteins, an electrophoresis gel containing zwitterions with a pKa of 9 to 11 was prepared and electrophoresed. Compared with.
 分離ゲルは表1に示したゲル緩衝液とアクリルアミドとビス-アクリルアミド(10%T/3%C、T=アクリルアミドとN , N ' - メチレンビスアクリルアミド(BIS)の質量の合計%、C=アクリルアミドとBISの合計に対するBISの割合、以下同じ)とから成り、0.08%APSおよび0.03%TEMEDの添加により重合を開始して作製した。濃縮ゲルは表1に示したゲル緩衝液とアクリルアミドとビス-アクリルアミド(4.5%T/3%C)から成り、0.08%APSおよび0.03%TEMEDの添加により重合させて作製した。また泳動用緩衝液は25mM トリス、192mM グリシン、0.1%SDS(Laemmli法に準拠)を使用した。電気泳動はアトー株式会社製の電気泳動装置(AE6530)を使用し、300Vの定電圧で30~35分間通電して行った(ゲルの電極間の単位長さあたり、電気泳動の電圧が34V/cm、ゲルの通電面の単位断面積当たり、電気泳動の電流が40~75mA/cm2に相当)。 The separation gel is the gel buffer shown in Table 1, acrylamide and bis-acrylamide (10% T / 3% C, T = acrylamide and the total mass of N, N′-methylenebisacrylamide (BIS), C = acrylamide. And the ratio of BIS to the total of BIS, the same applies hereinafter), and polymerization was started by adding 0.08% APS and 0.03% TEMED. The concentrated gel consists of the gel buffer shown in Table 1, acrylamide and bis-acrylamide (4.5% T / 3% C), and was prepared by polymerization by adding 0.08% APS and 0.03% TEMED. . As the electrophoresis buffer, 25 mM Tris, 192 mM glycine, and 0.1% SDS (based on the Laemmli method) were used. Electrophoresis was performed using an electrophoresis apparatus (AE6530) manufactured by Atto Co., Ltd., and energized for 30 to 35 minutes at a constant voltage of 300 V (the electrophoresis voltage was 34 V / per unit length between the gel electrodes). cm, the electrophoretic current corresponds to 40 to 75 mA / cm 2 per unit cross-sectional area of the current-carrying surface of the gel).
 タンパク質サンプルはEzLabel FluoroNeo(アトー株式会社、WSE-7010)で処理し、蛍光ラベルしたタンパク質と未ラベルのタンパク質を作製した。電気泳動後のゲルは青色LED で励起した蛍光画像を取得した後に、EzStain AQUA(アトー株式会社、AE-1340)で染色した。染色後のゲルはスキャナーで画像を取り込んだ後にCS Analyzer(アトー株式会社)で解析した。相対移動度Rf (%)は(分離ゲル上端から各バンド位置までの距離)/(分離ゲル上端から泳動先端までの距離)×100で計算した。 The protein sample was treated with EzLabel FluoroNeo (Ato Inc., WSE-7010) to produce fluorescently labeled protein and unlabeled protein. The gel after electrophoresis was stained with EzStain AQUA (Ato, AE-1340) after obtaining a fluorescent image excited with a blue LED. The dyed gel was analyzed with CS Analyzer (Atto Corporation) after capturing an image with a scanner. The relative mobility Rf (%) was calculated by (distance from top of separation gel to each band position) / (distance from top of separation gel to electrophoresis tip) × 100.
 電気泳動した結果を図1に、また分子量マーカーのタンパク質の相対移動度(%)を表2に示す。図1AからDはコントロールとしてのLaemmli法のゲル(A)、双性イオンを含有しないトリスグリシンゲル(B)、pKaが9.6未満のセリン(pKa:9.15)含有ゲル(C)、およびタウリン(pKa:9.06)含有ゲル(D)の結果を示している。(E)から(G)はpKaが9.6~11の双性イオン含有ゲルであり、それぞれ(E)はアラニン(pKa:9.6)、(F)はプロリン(pKa:10.6)、(G)は6-アミノカプロン酸(pKa:10.8)を30mMの濃度で含有したゲルの泳動結果である。 The electrophoretic results are shown in FIG. 1, and the relative mobility (%) of the molecular weight marker protein is shown in Table 2. 1A to D are Laemmli gels (A) as controls, trisglycine gels (B) not containing zwitterions, gels (C) containing serine (pKa: 9.15) having a pKa of less than 9.6, And the result of the taurine (pKa: 9.06) containing gel (D) is shown. (E) to (G) are zwitterion-containing gels having a pKa of 9.6 to 11, and (E) is alanine (pKa: 9.6) and (F) is proline (pKa: 10.6), respectively. , (G) is a result of electrophoresis of a gel containing 6-aminocaproic acid (pKa: 10.8) at a concentration of 30 mM.
 またサンプルはニワトリ筋肉抽出液(c)、ヒト血漿(p)、および分子量マーカー(m)(ニワトリ筋由来ミオシン:220kDa、大腸菌由来β-ガラクトシダーゼ:116kDa、ウサギ筋由来ホスホリラーゼB:97kDa、ウシ血清由来アルブミン:66kDa、ニワトリ卵由来オボアルブミン:45kDa、ウシ血球由来カルボニルアンヒドラーゼ:30kDa、大豆由来トリプシンインヒビター:20kDa、ウシミルク由来α-ラクトアルブミン:14.4kDa)を使用した。 Samples were chicken muscle extract (c), human plasma (p), and molecular weight marker (m) (chicken muscle-derived myosin: 220 kDa, E. coli-derived β-galactosidase: 116 kDa, rabbit muscle-derived phosphorylase B: 97 kDa, derived from bovine serum. Albumin: 66 kDa, chicken egg-derived ovalbumin: 45 kDa, bovine blood cell-derived carbonyl anhydrase: 30 kDa, soybean-derived trypsin inhibitor: 20 kDa, bovine milk-derived α-lactalbumin: 14.4 kDa).
 双性イオンを含有しない(B)のゲルは低分子領域が分離できなかった。セリン(pKa:9.15)含有ゲル(C)とタウリン(pKa:9.06)含有ゲル(D)では、Laemmli法のゲルと同様の電気泳動パターンを示しはしたが、ゲル上の45kDa付近に界面が生じ(図1の矢印部分、図2のC′とD′)、その前後のタンパク質の分離ができず、分離されたバンドの確認が困難な領域があった。 In the gel (B) containing no zwitterion, the low molecular region could not be separated. Serine (pKa: 9.15) -containing gel (C) and taurine (pKa: 9.06) -containing gel (D) showed the same electrophoretic pattern as the Laemmli method gel, but around 45 kDa on the gel. An interface was formed (arrow part in FIG. 1, C ′ and D ′ in FIG. 2), and the protein before and after that could not be separated, and it was difficult to confirm the separated band.
 pKaが9.6~11の双性イオンを含有するゲル(E)-(G)はLaemmli法のゲルと同等の電気泳動パターンを示し、分画分子量範囲およびタンパク質の移動度が同等であることが示された上、双性イオンに起因する界面がゲル上に生じず(図2のE′)、高電圧での電気泳動による分離が良好であった。 Gels (E)-(G) containing zwitterions with a pKa of 9.6 to 11 show an electrophoresis pattern equivalent to that of Laemmli method gels, and have the same molecular weight range and protein mobility. In addition, an interface caused by zwitterions did not occur on the gel (E ′ in FIG. 2), and separation by electrophoresis at a high voltage was good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例2
 双性イオンの一つであるアラニンの濃度依存的なタンパク質の移動度の変化を検証するために、表3に記載されたゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。表4の分子量マーカーの相対移動度(%)と電気泳動パターン(写真は非図示)に示されるように、アラニンの濃度を25mMから100mM まで変化させても電気泳動パターンは影響されず、Laemmli法のゲルと同等の分画分子量範囲とタンパク質の移動度を示し、良好な分離が観察された。
Example 2
In order to verify the change in protein mobility depending on the concentration of alanine, which is one of zwitterions, a gel was prepared using the gel buffer described in Table 3, and the same as in Example 1 was performed. Electrophoresis was performed by the method. As shown in the relative mobility (%) of molecular weight markers in Table 4 and the electrophoresis pattern (photograph is not shown), the electrophoretic pattern is not affected even when the alanine concentration is changed from 25 mM to 100 mM. The Laemmli method The same molecular weight range and protein mobility as those of the gel were observed, and good separation was observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例3
 トリス濃度依存的なタンパク質の移動度の変化を検証するために、表5および表7に記載されたゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。表6はトリス濃度を50mMから80mMまで変化させたときの結果、表8はトリス濃度を80mM以上にしたときの結果を示している。表6および表8の相対移動度ならびに電気泳動パターン(写真は非図示) に示されるように、いずれも良好な分離が観察されたが、トリス濃度が70mM以下の場合には低分子側の分画範囲が広がるため、分子量マーカーの45kDaのバンドが2本に分かれる結果となった(A~C)。45kDaのバンドはオボアルブミンでリン酸化タンパク質であるため、高濃度のアクリルアミドゲル等で低分子側の分離をよくすると、リン酸化状態と脱リン酸化状態のバンドが分かれる場合がある。80mM以上のトリスではLaemmli法のゲルと同等の分画分子量範囲とタンパク質の移動度を示した(E~H)が、トリス濃度が上がる(G,H)と徐々に高分子側の分離がよくなり、30kDa以下の低分子側の分画領域が狭くなる傾向がみられた。一方、酢酸以外の酸として硫酸を添加しても(E~H)、電気泳動パターンに顕著な影響を与えることはなかった。
Example 3
In order to verify the change in protein mobility dependent on the Tris concentration, a gel was prepared using the gel buffers described in Table 5 and Table 7, and electrophoresis was performed in the same manner as in Example 1. It was. Table 6 shows the results when the Tris concentration was changed from 50 mM to 80 mM, and Table 8 shows the results when the Tris concentration was 80 mM or more. As shown in the relative mobility and electrophoresis pattern (photos not shown) in Tables 6 and 8, good separation was observed in both cases. However, when the Tris concentration was 70 mM or less, the molecular weight on the low molecule side was observed. Since the range of the image was expanded, the 45 kDa band of the molecular weight marker was divided into two (A to C). Since the 45 kDa band is phosphorylated protein with ovalbumin, if the separation on the low molecular side is improved with a high concentration acrylamide gel or the like, the phosphorylated and dephosphorylated band may be separated. Tris with a concentration of 80 mM or more showed a fractional molecular weight range and protein mobility equivalent to the Laemmli gel (E to H), but gradually increased separation on the polymer side as the Tris concentration increased (G, H). Thus, there was a tendency for the fractional region on the low molecular side of 30 kDa or less to be narrowed. On the other hand, addition of sulfuric acid as an acid other than acetic acid (E to H) did not significantly affect the electrophoresis pattern.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例4
 グリシン濃度依存的なタンパク質の移動度の変化を検証するために、表9に記載されたゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。表10の相対移動度と図5の電気泳動パターン(ゲルの写真は非図示)に示されたように、グリシン濃度が高いときは高分子領域の分離がよくなり、グリシン濃度が低いときは低分子側領域の分離がよくなることが判明した。このようにグリシン濃度依存的にタンパク質の移動度が変化するため、ターゲットの分子領域に合わせたグリシン濃度を選択することにより、より詳細にターゲット分子領域のバンドを分離して検出することが可能である。また100mM以上の濃度のグリシンを含有するゲル(C~F)では、タンパク質の電気泳動パターンや相対移動度はLaemmli法のゲルと同等であり、良好な分離が観察された。
Example 4
In order to verify the change in protein mobility dependent on glycine concentration, a gel was prepared using the gel buffer described in Table 9, and electrophoresis was performed in the same manner as in Example 1. As shown in the relative mobility of Table 10 and the electrophoresis pattern of FIG. 5 (the gel photo is not shown), the separation of the polymer region is better when the glycine concentration is high, and low when the glycine concentration is low. It was found that the separation of the molecular side region was improved. In this way, the protein mobility changes depending on the glycine concentration.By selecting the glycine concentration that matches the target molecular region, it is possible to separate and detect the band of the target molecular region in more detail. is there. In addition, in the gel (CF) containing glycine at a concentration of 100 mM or more, the electrophoresis pattern and relative mobility of the protein were the same as those of the Laemmli method gel, and good separation was observed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例5
 酢酸濃度依存的なタンパク質の移動度の変化を検証するために、表11に記載されたゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。その結果、表12の相対移動度および電気泳動パターン(ゲルの写真は非図示)に示されるように、タンパク質の泳動パターンや相対移動度はLaemmli法のゲルと同等であり、良好な分離が観察された。また、酢酸濃度が上がるにつれて、高分子側の分離が若干よくなるとともにバンドがシャープになり、泳動速度が徐々に遅くなることが示された。
Example 5
In order to verify the change in protein mobility depending on the acetic acid concentration, a gel was prepared using the gel buffer described in Table 11, and electrophoresis was performed in the same manner as in Example 1. As a result, as shown in Table 12 relative mobility and electrophoresis pattern (gel photo is not shown), the protein migration pattern and relative mobility are the same as the Laemmli gel, and good separation is observed. It was done. In addition, it was shown that as the acetic acid concentration was increased, the separation on the polymer side was slightly improved, the band became sharper, and the migration speed gradually decreased.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
実施例6
 トリス、グリシン、双性イオン、酸から成るゲルに添加物を添加したときの影響を検証するために、表13に記載されたようにトリエタノールアミン(TEA、pKa:7.76) 、γ-アミノ酪酸 (GABA、pKa: 10.43)を添加したゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。その結果、表14ならびに電気泳動パターン(ゲルの写真は非図示)に示されるように、いずれも良好な分離が観察された。GABAの添加による電気泳動パターンや移動度への影響はほとんどなかった(C)が、TEAの添加により、若干ではあるが低分子側の分画領域が狭くなることが示された(B,D)。
Example 6
In order to verify the effect of adding additives to a gel consisting of tris, glycine, zwitterion, acid, triethanolamine (TEA, pKa: 7.76), γ- A gel was prepared using a gel buffer to which aminobutyric acid (GABA, pKa: 10.43) was added, and electrophoresis was performed in the same manner as in Example 1. As a result, as shown in Table 14 and the electrophoresis pattern (gel photograph not shown), good separation was observed in both cases. The addition of GABA had almost no effect on the electrophoretic pattern and mobility (C), but the addition of TEA showed that the fractional area on the low molecular side was narrowed slightly (B, D). ).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
実施例7
 さらにゲルに添加物としてよく使用されるスクロース(sucrose)やグリセロールの影響を検証するために表15に記載されたゲル緩衝液を使用してゲルを作製し、実施例1と同様の方法で電気泳動を行った。表16の相対移動度および電気泳動パターン(ゲルの写真は非図示)に示されるように、いずれも良好な分離が観察され、グリセロールおよびスクロースの添加による影響はほとんどなく、Laemmli法のゲルと同等の分画分子量範囲とタンパク質の移動度を示した。
Example 7
Further, in order to verify the influence of sucrose or glycerol often used as an additive in the gel, a gel was prepared using the gel buffer described in Table 15, and electricity was obtained in the same manner as in Example 1. Electrophoresis was performed. As shown in the relative mobility and electrophoretic pattern in Table 16 (the gel photo is not shown), all showed good separation, almost no effect from the addition of glycerol and sucrose, equivalent to the Laemmli gel. The molecular weight range and protein mobility were shown.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
実施例8
 長期保存性に関して検証するために4℃、37℃、50℃で加温処理し、ゲルの加速安定性試験を行った。37℃で1日間の加温処理は典型的な保存温度である4℃で1ヶ月加温処理した場合と同等であることが示されている。表17に記載されたゲル緩衝液を使用して10%T3%Cのアクリルアミドおよび10%T3.3%Cのアクリルアミドゲルを作製し、4℃、37℃、50℃で1週間加温処理をした後に(表18)、実施例1と同様の方法で電気泳動を行った。分子量マーカーの相対移動度(表19)および電気泳動パターン(ゲルの写真は非図示)に示されるように、各タンパク質の相対移動度はほとんど変わらず、また電気泳動パターンも高い分離能であり、加温処理による顕著な差は観察されなかった。
Example 8
In order to verify long-term storage stability, heat treatment was performed at 4 ° C., 37 ° C., and 50 ° C., and an accelerated stability test of the gel was performed. It has been shown that a one day warming treatment at 37 ° C. is equivalent to a one month warming treatment at 4 ° C., which is a typical storage temperature. 10% T3% C acrylamide and 10% T3.3% C acrylamide gels were prepared using the gel buffer described in Table 17 and heated at 4 ° C., 37 ° C., 50 ° C. for 1 week. (Table 18), electrophoresis was performed in the same manner as in Example 1. As shown in the relative mobility of the molecular weight marker (Table 19) and the electrophoresis pattern (the gel photo is not shown), the relative mobility of each protein is hardly changed, and the electrophoresis pattern is also highly resolvable, No significant difference due to the heating treatment was observed.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
実施例9
 実施例8と同様に、長期保存性に関して検証するために4℃、37℃、50℃で加温処理し、ゲルの加速安定性試験を行った(37℃で1日間の加温処理は4℃で1ヶ月に相当)。表20に記載されたゲル緩衝液を使用して10%T3.3%Cのアクリルアミドゲルを作製し、4℃、37℃、50℃で9日間および14日間加温処理をした後に(表21)、実施例1と同様の方法で電気泳動を行った。分子量マーカーの相対移動度(表22)および電気泳動パターン(ゲルの写真は非図示)に示されるように、各タンパク質の相対移動度はほとんど変わらず、また電気泳動パターンも高い分離能であり、加温処理による顕著な差は観察されなかった。
Example 9
In the same manner as in Example 8, in order to verify long-term storage stability, the gels were heated at 4 ° C., 37 ° C., and 50 ° C., and an accelerated stability test was performed on the gel. Equivalent to one month at ℃). A 10% T3.3% C acrylamide gel was prepared using the gel buffer described in Table 20 and heated at 4 ° C., 37 ° C., 50 ° C. for 9 days and 14 days (Table 21). ) And electrophoresis was performed in the same manner as in Example 1. As shown in the relative mobility of the molecular weight marker (Table 22) and the electrophoresis pattern (the gel photo is not shown), the relative mobility of each protein is hardly changed, and the electrophoresis pattern is also highly resolvable, No significant difference due to the heating treatment was observed.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
実施例10
 電気泳動を行う際の電圧の影響を調べるために、表23の組成でゲルを作製し、150V、300V、500Vの定電圧条件下で、上述と同様の方法で電気泳動を行った。図3に示したように、通常使用される電圧の150Vで80分間および高電圧条件の300Vで30分間電気泳動したパターンには違いがなく、バンドの形状や移動度も同じであることが示された。さらに高い電圧の500Vで泳動した場合は、移動度に若干の影響が見られるが、バンドの形状やパターンは同様であった。したがって、高電圧条件でも通常電圧と同様の明瞭でシャープなバンドに分離できることが示された。
Example 10
In order to investigate the influence of the voltage when performing electrophoresis, a gel was prepared with the composition shown in Table 23, and electrophoresis was performed in the same manner as described above under constant voltage conditions of 150 V, 300 V, and 500 V. As shown in FIG. 3, there is no difference in the patterns electrophoresed for 80 minutes at a commonly used voltage of 150 V and for 30 minutes at a high voltage of 300 V, and the band shape and mobility are the same. It was done. When electrophoresis was performed at a higher voltage of 500 V, the mobility was slightly affected, but the band shape and pattern were the same. Therefore, it was shown that it can be separated into a clear and sharp band similar to the normal voltage even under high voltage conditions.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 本発明のゲル緩衝液を使用して作製することにより、電気泳動用ゲルを長期間安定に保存可能であるため、均一で品質の優れたプレキャストゲルを製造でき、かつ、そのようなプレキャストゲルを大量に生産することができる。大量生産と長期保存が可能になるため、同一ロットの提供が可能になり、精度・再現性の高いデータ取得が可能になる。さらに作製したゲルを用いれば、高電圧および/または高電流条件下で高速泳動が可能になり、かつ高い分離能でバンドの分離を行えるようになるため、分析時間の短縮化につながる。 Since the gel for electrophoresis can be stably stored for a long period of time by using the gel buffer of the present invention, a uniform and excellent quality precast gel can be produced, and such a precast gel can be produced. Can be produced in large quantities. Since mass production and long-term storage are possible, it is possible to provide the same lot and obtain highly accurate and reproducible data. Furthermore, if the prepared gel is used, high-speed electrophoresis can be performed under high voltage and / or high current conditions, and bands can be separated with high resolution, leading to a reduction in analysis time.

Claims (9)

  1.  電気泳動用ゲル緩衝液であって、
     トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;
     グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに
     少なくとも1種類の酸;
    を含み、電気泳動用ゲル緩衝液のpHが5.5~7.5の間である、電気泳動用ゲル緩衝液。
    A gel buffer for electrophoresis,
    A buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine;
    Glycine and at least one zwitterion with an acid dissociation constant pKa of 9.6 ≦ pKa ≦ 11; and at least one acid;
    A gel buffer for electrophoresis, wherein the pH of the gel buffer for electrophoresis is between 5.5 and 7.5.
  2.  前記緩衝剤の濃度が50mM~300mMであり、前記グリシンの濃度が10mM~1000mMであり、前記少なくとも1種類の双性イオンの濃度が10~200mMである請求項1に記載の電気泳動用ゲル緩衝液。 The gel buffer for electrophoresis according to claim 1, wherein a concentration of the buffer is 50 mM to 300 mM, a concentration of the glycine is 10 mM to 1000 mM, and a concentration of the at least one zwitterion is 10 to 200 mM. liquid.
  3.  前記双性イオンはアラニン、アルギニン、システイン、アスパラギン酸、グルタミン酸、プロリン、γ-カルボキシグルタミン酸、γ-アミノ酪酸、2-アミノイソ酪酸、6-アミノカプロン酸、およびCAPSから選択される請求項1または2に記載の電気泳動用ゲル緩衝液。 3. The zwitterion according to claim 1 or 2, wherein the zwitterion is selected from alanine, arginine, cysteine, aspartic acid, glutamic acid, proline, γ-carboxyglutamic acid, γ-aminobutyric acid, 2-aminoisobutyric acid, 6-aminocaproic acid, and CAPS. The gel buffer for electrophoresis as described.
  4.  糖、多価アルコール、および塩から選択される1または複数の添加物をさらに含む請求項1~3のいずれか一項に記載の電気泳動用ゲル緩衝液。 The gel buffer for electrophoresis according to any one of claims 1 to 3, further comprising one or more additives selected from sugars, polyhydric alcohols, and salts.
  5.  請求項1~4のいずれか一項に記載の電気泳動用ゲル緩衝液を用いて製造される電気泳動用ポリアクリルアミドゲル。 A polyacrylamide gel for electrophoresis produced using the gel buffer for electrophoresis according to any one of claims 1 to 4.
  6.  トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含む、電気泳動用ポリアクリルアミドゲル。 A buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; glycine and acid dissociation constant pKa of 9.6 ≦ A polyacrylamide gel for electrophoresis comprising: at least one zwitterion with pKa ≦ 11; and at least one acid.
  7.  プレキャストゲルである請求項5または6に記載の電気泳動用ポリアクリルアミドゲル。 The polyacrylamide gel for electrophoresis according to claim 5, which is a precast gel.
  8.  請求項5~7のいずれか一項に記載の電気泳動用ポリアクリルアミドゲルを用いたポリペプチド、タンパク質または核酸の分離方法。 A method for separating a polypeptide, protein or nucleic acid using the polyacrylamide gel for electrophoresis according to any one of claims 5 to 7.
  9.  アクリルアミド;架橋剤;トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、モノエタノールアミン、ジエタノールアミン、及びトリエタノールアミンから選択される緩衝剤;グリシンおよび酸解離定数pKaが9.6≦pKa≦11である少なくとも1種類の双性イオン;ならびに少なくとも1種類の酸;を含む混合物を、pHが5.5~7.5の範囲にある条件で重合開始剤の存在下で重合することを特徴とする電気泳動用ポリアクリルアミドゲルの製造方法。 Acrylamide; crosslinker; buffer selected from tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, monoethanolamine, diethanolamine, and triethanolamine; glycine and acid dissociation constant pKa The presence of a polymerization initiator in a condition where the pH is in the range of 5.5 to 7.5, wherein at least one zwitterion with a 9.6 ≦ pKa ≦ 11; and at least one acid; A method for producing a polyacrylamide gel for electrophoresis, which is polymerized under the following conditions.
PCT/JP2015/060426 2014-07-04 2015-04-02 Gel buffer solution for electrophoresis and polyacrylamide gel for electrophoresis WO2016002282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531146A JP6453326B2 (en) 2014-07-04 2015-04-02 Gel buffer for electrophoresis and polyacrylamide gel for electrophoresis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-139196 2014-07-04
JP2014139196 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002282A1 true WO2016002282A1 (en) 2016-01-07

Family

ID=55018840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060426 WO2016002282A1 (en) 2014-07-04 2015-04-02 Gel buffer solution for electrophoresis and polyacrylamide gel for electrophoresis

Country Status (2)

Country Link
JP (1) JP6453326B2 (en)
WO (1) WO2016002282A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831313A (en) * 2017-10-16 2018-03-23 广州和实生物技术有限公司 The preparation and application of vertical aobvious protein electrophoresis pre-prepared colloid tablet
CN113325055A (en) * 2021-04-22 2021-08-31 中国人民解放军空军军医大学 Polyacrylamide gel electrophoresis buffer system and application thereof
CN114791458A (en) * 2022-04-25 2022-07-26 大连博格林生物科技有限公司 Gel for separating protein through electrophoresis, buffer solution used in cooperation with gel and kit of gel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502456A (en) * 1986-02-13 1988-09-14 フア−マシア・ア−・ベ− How to supply buffer solution for electrophoretic separation method
JPH04184163A (en) * 1990-11-19 1992-07-01 Hymo Corp Manufacture of polyacrylic amide gel for electrophoresis
JPH10510363A (en) * 1994-11-30 1998-10-06 ファルマシア・バイオテック・アクチボラグ A new buffer system for electrophoresis and its use
JP2001159621A (en) * 1999-12-02 2001-06-12 Hymo Corp Polyacrylamide precast gel for electrophoresis and method of manufacturing therefor and use of the same
JP2013125014A (en) * 2011-12-16 2013-06-24 Hymo Corp Precast gel for electrophoresis and methods for manufacturing and using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277438A (en) * 2001-03-22 2002-09-25 Hymo Corp Electrophoretic gel, method of making thereof and application thereof
JP2003004702A (en) * 2001-06-15 2003-01-08 Bio Meito:Kk Method for manufacturing gel for high resolution electrophresis
IL197398A0 (en) * 2009-03-04 2009-12-24 Gene Bio Applic Ltd Long-lasting precast electrophoresis gel
US20150041321A1 (en) * 2011-10-23 2015-02-12 John Lewis Andrews Polyacrylamide gel for use with traditional and non-traditional electrophoresis running buffers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502456A (en) * 1986-02-13 1988-09-14 フア−マシア・ア−・ベ− How to supply buffer solution for electrophoretic separation method
JPH04184163A (en) * 1990-11-19 1992-07-01 Hymo Corp Manufacture of polyacrylic amide gel for electrophoresis
JPH10510363A (en) * 1994-11-30 1998-10-06 ファルマシア・バイオテック・アクチボラグ A new buffer system for electrophoresis and its use
JP2001159621A (en) * 1999-12-02 2001-06-12 Hymo Corp Polyacrylamide precast gel for electrophoresis and method of manufacturing therefor and use of the same
JP2013125014A (en) * 2011-12-16 2013-06-24 Hymo Corp Precast gel for electrophoresis and methods for manufacturing and using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831313A (en) * 2017-10-16 2018-03-23 广州和实生物技术有限公司 The preparation and application of vertical aobvious protein electrophoresis pre-prepared colloid tablet
CN113325055A (en) * 2021-04-22 2021-08-31 中国人民解放军空军军医大学 Polyacrylamide gel electrophoresis buffer system and application thereof
CN114791458A (en) * 2022-04-25 2022-07-26 大连博格林生物科技有限公司 Gel for separating protein through electrophoresis, buffer solution used in cooperation with gel and kit of gel

Also Published As

Publication number Publication date
JP6453326B2 (en) 2019-01-23
JPWO2016002282A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11105769B2 (en) System for rapid high-resolution gel electrophoresis
Shi et al. One-dimensional polyacrylamide gel electrophoresis
JP5827262B2 (en) Hydrolysis resistant polyacrylamide gel
JP6453326B2 (en) Gel buffer for electrophoresis and polyacrylamide gel for electrophoresis
Cuono et al. Gel electrofocusing in a natural pH gradient of pH 3–10 generated by a 47‐component buffer mixture
JP5547751B2 (en) High performance electrophoresis gel with extended shelf life
JP3553604B2 (en) A new buffer system for electrophoresis and its use
EP2183583B1 (en) A buffer system for a long-lasting precast electrophoresis gel
JP3942001B2 (en) Polyacrylamide precast gel for electrophoresis, method for producing the same, and method for separating and analyzing proteins
US20140014514A1 (en) Aqueous transfer buffer
JP2002277438A (en) Electrophoretic gel, method of making thereof and application thereof
US20110308951A1 (en) Long-lasting precast electrophoresis gel
JP6461366B2 (en) Polyacrylamide gel
JP4599577B2 (en) Two-dimensional electrophoresis method
US20150041321A1 (en) Polyacrylamide gel for use with traditional and non-traditional electrophoresis running buffers
Shimura Capillary isoelectric focusing
JP6846420B2 (en) Electrophoretic gel with extended shelf life and high performance
JP4590615B2 (en) Two-dimensional electrophoresis method
JP5967751B2 (en) Precast gel for electrophoresis, production method and use thereof
JP3967516B2 (en) DNA electrophoresis
Bhat et al. Determination of Coat Protein Molecular Weight of Viruses
Tomioka et al. Different behavior of Ferguson plot between agarose and polyacrylamide gels
Berkelman et al. Mini-PROTEAN® TGX™ Precast Gel: A Gel for SDS-PAGE with Improved Stability—Comparison with Standard Laemmli Gels
JP2001242141A (en) Electrophotresis method for dna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815485

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016531146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815485

Country of ref document: EP

Kind code of ref document: A1