WO2016001971A1 - Metal substrate for manufacturing electronic devices, and panel - Google Patents

Metal substrate for manufacturing electronic devices, and panel Download PDF

Info

Publication number
WO2016001971A1
WO2016001971A1 PCT/JP2014/067378 JP2014067378W WO2016001971A1 WO 2016001971 A1 WO2016001971 A1 WO 2016001971A1 JP 2014067378 W JP2014067378 W JP 2014067378W WO 2016001971 A1 WO2016001971 A1 WO 2016001971A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
steel material
electronic device
thickness
metal substrate
Prior art date
Application number
PCT/JP2014/067378
Other languages
French (fr)
Japanese (ja)
Inventor
山田 紀子
左和子 山口
Original Assignee
新日鉄住金マテリアルズ株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社, 新日鐵住金株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to PCT/JP2014/067378 priority Critical patent/WO2016001971A1/en
Priority to JP2016530696A priority patent/JP6208869B2/en
Publication of WO2016001971A1 publication Critical patent/WO2016001971A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal substrate for manufacturing an electronic device and a panel.
  • a metal substrate having an insulating film on its surface is expected to be applied to electronic paper, organic EL displays, organic EL lighting, solar cell device substrates, and the like.
  • heat resistance and insulation are important characteristics.
  • the substrate is exposed to a temperature of 500 ° C. or higher in the heating step of the manufacturing process. Even if the metal substrate itself is exposed to the CIGS process temperature, characteristics such as weight, Young's modulus, and hardness do not change, but the insulating film covering the metal substrate has heat resistance to a heating temperature of 500 ° C. or more. Becomes important.
  • the leakage current is measured with the configuration shown in FIG.
  • Reference numeral 101 denotes a steel material
  • 102 denotes an insulating film
  • 103 denotes an upper electrode
  • 104 denotes a voltmeter
  • 105 denotes an ammeter
  • 106 denotes a power source. Since there are film defects such as cracks in the insulating film 102, the leakage current often depends on the electrode area of the upper electrode 103. Therefore, the larger the electrode area, the higher the leak current and the more likely to be short-circuited. In addition, the higher the applied voltage, the higher the voltage applied to the thin film portion, which is a film defect, and a short circuit tends to occur.
  • a large area has a low leakage current when a high voltage is applied, for example, 1 ⁇ 10 ⁇ 6 A / cm 2 or less when a 50 V is applied at a 10 ⁇ 10 cm square, and 1 ⁇ 10 6 when a 200 V is applied at a 1 ⁇ 1 cm square. -8 A / cm 2 or less is required.
  • the required area and leakage current vary depending on the device to be manufactured, but one general index is that it is less than 1 ⁇ 10 ⁇ 6 A / cm 2 when applying 100 V at a 3 ⁇ 3 cm square.
  • Patent Document 1 discloses a stainless steel foil coated with an inorganic-organic hybrid having higher heat resistance than an organic resin.
  • the coated stainless steel foil disclosed in Patent Document 1 has a problem that when the upper electrode is 1 ⁇ 1 cm square, application of a low voltage of about 10 V causes a short circuit at 100 V even if insulation is maintained. .
  • Patent Document 2 discloses a stainless steel foil coated with a plurality of inorganic polymer films.
  • the insulation is maintained by applying a low voltage of about 5 V when the upper electrode is 1 ⁇ 1 cm square.
  • a short circuit occurs at 100V.
  • Non-Patent Document 1 describes that a methyl group-containing silica-based inorganic-organic hybrid film is used as an insulating film, but there is a problem in that cracks occur when the film thickness exceeds 1 ⁇ m.
  • the film thickness of the inorganic-organic hybrid film of Non-Patent Document 1 is 1 ⁇ m or less, it is difficult to make the leakage current when applying 100 V at 3 ⁇ 3 cm square to less than 1 ⁇ 10 ⁇ 6 A / cm 2. .
  • the stainless steel foil having the coating disclosed in Patent Document 1, Patent Document 2 and Non-Patent Document 1 has a leakage current of less than 1 ⁇ 10 ⁇ 6 A / cm 2 when 100 V is applied to the upper electrode 3 ⁇ 3 cm square. It is difficult to use as a metal substrate for manufacturing electronic devices.
  • Patent Document 3 discloses a substrate for an electronic material having a surface insulating layer on a substrate such as aluminum or titanium.
  • the substrate surface is anodized to form a film, and then a layer of a non-conductive substance is formed on the surface. To fill the pores of the anodized film.
  • Patent Document 3 does not teach a metal substrate for manufacturing an electronic device that satisfies a leakage current of less than 10 ⁇ 6 A / cm 2 when 100 V is applied to an upper electrode 3 ⁇ 3 cm square.
  • Patent Document 4 discloses a stainless steel foil with an insulating coating for a solar cell in which a two-layer insulating coating is formed on the stainless steel foil.
  • Patent Document 4 does not teach a metal substrate for producing an electronic device that satisfies a leakage current of less than 10 ⁇ 6 A / cm 2 when a 100 V voltage is applied to an upper electrode 3 ⁇ 3 cm square.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a metal substrate and a panel excellent in insulation that can be suitably used for manufacturing an electronic device.
  • the Al content is 0 to 13.0% by mass
  • the Si content is 0 to 5.0% by mass
  • the total content of Al and Si is A steel material of 0.5 to 18.0% by mass
  • a first insulating film covering the surface of the steel material and having a thickness of 0.2 ⁇ m to 2.0 ⁇ m
  • a second insulating film having a thickness of 0.3 ⁇ m to 5.0 ⁇ m, and a total thickness of the first insulating film and the second insulating film is 2 0.0 ⁇ m to 7.0 ⁇ m
  • the first insulating film is a thermal oxide film containing at least one of Al 2 O 3 and SiO 2
  • the second insulating film is a silica-based inorganic organic film
  • the Al content in the steel material is 0.5 to 13.0 mass%, and the Si content in the steel material is the Al content.
  • the first insulating film contains at least the Al 2 O 3 and contains a spinel mineral, and the first insulating film contains the Al 2 of the spinel mineral.
  • the abundance with respect to O 3 may be 3% or more and 11% or less by mass% ratio.
  • the Al 2 O 3 covers the surface of the steel material, and the spinel mineral is the steel material. The structure which does not coat
  • the Si content in the steel material is 0.5 to 5.0 mass%
  • the Al content in the steel material is the Si content.
  • the first insulating film contains at least the SiO 2 and also contains an olivine mineral.
  • Mg, Fe, And the ratio of the sum of the number of moles of Ca may be 1.2 or more and 2.0 or less.
  • the SiO 2 covers the surface of the steel material
  • the olivine mineral covers the surface of the steel material. The structure which does not coat
  • cover directly may be sufficient.
  • a second aspect of the present invention is a panel in which an electronic device is formed on the metal substrate for manufacturing an electronic device according to any one of (1) to (8).
  • the first insulating film is a graph showing the abundance of the mass% ratio Al 2 O 3 spinel mineral, the relationship between the leakage current (A / cm 2) and the surface roughness Ra (nm).
  • the graph which shows the relationship between the ratio of the sum of the number of moles of Mg, Fe, and Ca with respect to the number of moles of Si, the leakage current (A / cm 2 ), and the surface roughness Ra (nm) in the first insulating film. It is. It is a schematic diagram of a leak current measuring device.
  • the metal substrate can be used to produce an electronic device on it and obtain an electronic device mounting panel.
  • an electronic device mounting panel electronic paper, an organic EL display, organic EL illumination, a solar cell, etc. are mentioned. All of these panels are well known and will not be described in detail here.
  • FIG. 1 shows an example of a typical structure.
  • 141 is a substrate
  • 142 is a back electrode (lower electrode) such as Mo
  • 143 is a CuInGeSe 2 light absorption layer
  • 144 is a CdS buffer layer
  • 145 is a ZnO semi-insulating layer
  • 146 is a ZnO: Al window layer
  • 148 is a MgF 2 antireflection film.
  • film thickness examples are 0.8 ⁇ m, 1.7 ⁇ m, 50 nm, 0.1 ⁇ m, and 0.6 ⁇ m in order from the back electrode 142 to the ZnO: Al window layer 146.
  • a steel plate or stainless foil provided with an insulating film such as a methyl group-containing silica-based inorganic organic hybrid film can be used as the substrate 141.
  • the present inventors conducted experiments in which various steel materials were heat-treated at high temperatures to form oxide films (thermal oxide films) on the surface. .
  • a thermal oxide film 1011 mainly composed of Al 2 O 3 is formed on the surface of the stainless steel foil 1010 by heat-treating the stainless steel foil 1010 containing about 5% of Al under predetermined conditions.
  • the silica-based inorganic organic hybrid film 1012 is formed on the thermal oxide film 1011, the leakage current characteristics of the substrate are remarkably improved.
  • a stainless steel foil containing about 2.5% of Si is heat-treated under predetermined conditions to form a thermal oxide film mainly composed of SiO 2 on the surface of the stainless steel foil. It was also confirmed when a silica-based inorganic-organic hybrid film was formed on the film.
  • the thermal oxide film 1011 when only the thermal oxide film 1011 is formed on the surface of the stainless steel foil 1010 and the silica-based inorganic organic hybrid film 1012 is not formed, the thermal oxide film 1011 can be made thicker. No significant improvement in leakage current characteristics was observed.
  • FIG. 2C when only the silica-based inorganic organic hybrid film 1012 is formed on the surface of the stainless steel foil 1010 and the thermal oxide film 1011 is not formed, the film thickness of the silica-based inorganic organic hybrid film 1012 is reduced. Even when it was increased, no significant improvement in leakage current characteristics was observed.
  • the reason why the leakage current characteristics are particularly improved by combining the thermal oxide film 1011 and the silica-based inorganic / organic hybrid film 1012 is considered as follows.
  • (2) Increasing the film thickness of the silica-based inorganic-organic hybrid film 1012 can be considered, but (1) When increasing the film thickness of the thermal oxide film 1011, Since the thermal oxide film 1011 is an inorganic film, cracks C are likely to occur as shown in FIG. 2B, and there is a limit to the effect of improving insulation by increasing the film thickness. Further, (2) even if the film thickness of the silica-based inorganic / organic hybrid film 1012 is increased, as shown in FIG.
  • the coating liquid flows, so that the film thickness of the concave portion on the surface of the stainless steel foil 1010 is large.
  • the film thickness of the portion becomes small, and in some cases, sharp protrusions present on the surface of the stainless steel foil 1010 appear on the outermost layer. In this case, a region where the surface of the stainless steel foil 1010 cannot be formed is formed in a pinhole shape, resulting in poor insulation.
  • the film thickness of the silica-based inorganic organic hybrid film 1012 is too large, the film-forming component is thermally decomposed when the substrate is exposed to a temperature of 500 ° C. or higher in the heating step of the electronic device manufacturing process, Since gas is generated, the characteristics of the electronic device are adversely affected.
  • the thermal oxide film as the first insulating film, an area that cannot be formed into a pinhole is prevented, and an insulating film made of a silica-based inorganic-organic hybrid material is formed thereon.
  • the basic idea is to exhibit high insulation by forming as a second insulating film.
  • the present inventors have also found that when a predetermined amount of spinel mineral or olivine mineral is contained in the thermal oxide film, even higher insulation can be exhibited.
  • the metal substrate 1 for manufacturing an electronic device includes a steel material 10, a first insulating film 11 that covers the surface of the steel material 10, and the first insulating film. 11 and a second insulating film 12 covering the surface of 11.
  • the steel material 10 As the steel material 10, a stainless steel foil, a steel plate, or the like can be used. Since the steel material 10 is used as a base material of the metal substrate 1 for producing an electronic device, it only needs to have a thickness of 50 to 500 ⁇ m.
  • the stainless steel foil means a foil material having a Cr content of 19% by mass or more and a thickness of 150 ⁇ m or less.
  • the metal substrate 1 for manufacturing an electronic device fine protrusions on the surface of the steel material 10 are covered with a first insulating film 11 containing Al 2 O 3 and / or SiO 2 , and the surface is further covered.
  • the second insulating film 12 By forming the second insulating film 12, the surface roughness can be reduced and high insulation can be obtained.
  • Al 2 O 3 or SiO 2 contained in the first insulating film 11 is obtained by heat treatment of the steel material 10 containing Al or Si, the Al content and the Si content in the steel material 10 are in a predetermined range. It is necessary to stipulate.
  • “%” related to chemical components means “% by mass”.
  • an oxide scale Fe 2 O 3 , Fe 3 O 4
  • Al 2 O 3 and / or SiO 2 is included. It becomes difficult to form the first insulating film 11 with a predetermined thickness.
  • Al and / or Si having a stronger affinity for oxygen than Fe is preferentially oxidized by heat treatment, so Al and / or Si can be sufficiently supplied to the first insulating film 11.
  • the lower limit of the total content of Al and Si is 0.5%, more preferably 0.7%, and still more preferably 1.2%.
  • the metal substrate 1 for producing an electronic device according to the present embodiment at least one of Al 2 O 3 and SiO 2 only needs to be included in the first insulating film 11, and therefore each of Al and Si in the steel material 10.
  • the lower limit may be 0%. However, since Si and Al are used as a deoxidizer during steelmaking, the lower limit of each may be 0.001%.
  • the upper limit of the Al content in the steel material 10 is 13.0%, preferably 10.0%, and more preferably 8.0%.
  • Si content of the steel material 10 exceeds 5.0%, the hardness of the steel material 10 will raise remarkably and productivity will be impaired. Therefore, the upper limit of the Si content is 5.0%, preferably 3.0%, and more preferably 1.5%.
  • the upper limit of Al + Si is 18.0 mass, which is the sum of the upper limits.
  • the chemical components other than Al and Si in the steel material 10 do not have to be specifically limited in order to achieve the effects of the present invention, and may be chemical components and content ratios used in general steel materials.
  • the contents generally used for the four elements other than Si are as follows. C: 0.0005 to 1.0% Mn: 0.01 to 2.0% P: 0.001 to 0.02% S: 0.001 to 0.02%
  • the steel material 10 may contain Mg, Cr, and Ca in the following ranges. Mg: 0 to 1.5% Cr: 0 to 25% Ca: 0 to 0.1%
  • the Mg content in the steel material 10 may be 0% by mass.
  • MgAl 2 O 4 or olivine mineral which is a spinel mineral
  • Mg content is 0.1% or more It is preferable to contain 0.2% or more.
  • the upper limit is preferably 1.5% or less, and more preferably 1.2% or less.
  • the Cr content in the steel material 10 may be 0% by mass. However, if the steel material 10 contains Al, by incorporating the Cr steel material 10, it is possible to produce a CrAl 2 O 4 spinel mineral into the first insulating film 11 by a predetermined heat treatment . As will be described later, by including a predetermined amount of spinel mineral in the first insulating film 11, it becomes possible to obtain a much higher insulating property. For this reason, the Cr content is preferably 0.1% or more, and more preferably 0.2% or more. Since the steel material 10 in this invention can use a stainless steel material, it is good also considering the upper limit as about 25%.
  • the Ca content in the steel material 10 may be 0% by mass. However, if the steel material 10 containing Si, by incorporating the Ca in steel 10, it is possible to produce a Ca 2 SiO 4 which is olivine mineral in the first insulating film 11 by a predetermined heat treatment . As will be described later, by containing a predetermined amount of olivine mineral in the first insulating film 11, it becomes possible to obtain a much higher insulating property, so that the Ca content is 0.0001% or more. Preferably, it is more preferably 0.0005% or more. However, even if Ca exceeds 0.1%, the above effect is not changed, so the upper limit is made 0.1%.
  • the component composition of the steel material 10 may contain Ni, Mo, W, Cu, V, B, Ta, Nb, Y, Zr, Ti, and the like often used for alloy steel, in addition to the above-described elements. Further, the balance may be Fe and inevitable impurities. Since the steel material 10 contains Fe and Al and / or Si, the spinel mineral FeAl 2 O 4 or the olivine mineral Mg 2 SiO 4 is generated in the first insulating film 11 by a predetermined heat treatment. I can do it.
  • the first insulating film 11 covering the surface of the steel material 10 is a thermal oxide film containing Al 2 O 3 or SiO 2 .
  • This thermal oxide film is obtained by heat-treating the steel material 10 containing Al and / or Si under predetermined conditions, so that Al or Si on the surface of the steel material 10 is more stable with Al 2 O 3 or SiO 2 . It is obtained by doing.
  • the heat treatment conditions are not particularly limited as long as the desired thermal oxide film is obtained.
  • the apparatus which heat-processes is not specifically limited, The arbitrary apparatuses which can heat the steel material 10 to be processed to predetermined temperature in predetermined atmosphere can be utilized.
  • the thickness of the first insulating film 11 greatly depends on the heating temperature and the heating time during the heat treatment, and also depends on the Al concentration, the Si concentration, etc. in the steel material.
  • the stainless steel foil when a stainless steel foil having a thickness of 100 ⁇ m containing about 5% Al is used as the steel material 10, the stainless steel foil is subjected to a heat treatment at a temperature of 900 ° C. to 1200 ° C. for 1 hour in the atmosphere.
  • the first insulating film 11 having a thickness of about 0.4 to 1.4 ⁇ m can be formed on the surface of the stainless steel foil.
  • the steel plate when a steel plate having a thickness of 300 ⁇ m containing about 10% Al is used as the steel material 10, the steel plate is subjected to a heat treatment for 6 hours at a temperature of 900 ° C. to 1200 ° C. in the atmosphere.
  • a first insulating film 11 having a thickness of about 0.3 to 0.7 ⁇ m can be formed on the surface.
  • the stainless steel foil when a stainless steel foil having a thickness of 100 ⁇ m and containing about 2.5% Si is used as the steel material 10, the stainless steel foil is inert such as nitrogen adjusted to a dew point of 30 ° C. to 50 ° C. By subjecting to a heat treatment in a gas at a temperature of 900 to 1100 ° C. for 1 hour, the first insulating film 11 having a thickness of about 0.5 to 0.9 ⁇ m can be formed on the surface of the stainless steel foil.
  • the steel sheet 10 containing about 5% Si and having a thickness of 300 ⁇ m is used as the steel material 10
  • the steel sheet is 750 ° C. in an inert or reducing gas atmosphere adjusted to a dew point of 30 ° C. to 50 ° C.
  • the first insulating film 11 having a thickness of about 0.5 to 1.5 ⁇ m can be formed on the surface of the steel plate.
  • an inert gas or a reducing gas with a dew point adjusted can be used.
  • the first insulating film 11 exhibits an electric resistivity of 10 9 ⁇ cm or more, which is necessary as a characteristic of the insulating film.
  • the electrical resistivity is measured at room temperature (20 ° C.) by providing circular electrodes on the top and bottom of the inorganic oxide sheet according to JIS K 6911 (2006), and 500 V is applied between the electrodes to insulate the resistance value after 1 minute. Measure with an ohmmeter.
  • a film made of Al 2 O 3 or SiO 2 has an electric resistivity of 10 9 ⁇ cm or more. When the electrical resistance is smaller than this, it functions as a semiconductor and flows electricity, so it is not suitable for use as an insulating film material.
  • the electrical resistivity of the first insulating film 11 is preferably 10 10 ⁇ cm or more, more preferably 10 12 ⁇ cm or more.
  • the electrical resistivity of O 3 and Fe 3 O 4 is not sufficient, and it becomes difficult to achieve an electrical resistivity of 10 9 ⁇ cm or more. Therefore, it is important that the component of the first insulating film 11 is Al 2 O 3 and / or SiO 2 capable of realizing a sufficient electrical resistivity of 10 9 ⁇ cm or more.
  • the surface of the first insulating coating 11 has a high insulating silica.
  • a second insulating film 12 formed from the organic inorganic / organic hybrid material is formed. The second insulating film is combined with the first insulating film to enhance the insulating properties and to reduce the surface roughness of the steel material.
  • a thermal oxide film (first insulating film 11) containing Al 2 O 3 is formed on the surface of a steel material (steel material 10) containing 5% Al in FIG.
  • coat 12) formed from a system inorganic organic hybrid material was formed is shown.
  • the second insulating film 12 is formed from a silica-based inorganic / organic hybrid material.
  • the organic group of the silica-based inorganic organic hybrid material is a methyl group or a phenyl group.
  • the method for forming the second insulating film 12 is not particularly limited, and may be appropriately selected depending on the material to be used. Examples of the insulating film forming method that can be used include a coating method, a sputtering method, a printing method, a CVD method, and a sol-gel method.
  • the silica-based inorganic / organic hybrid material is, for example, a methyl group-containing silica-based inorganic / organic hybrid material.
  • the methyl group-containing silica-based inorganic organic hybrid material is a material having a siloxane skeleton modified with a methyl group, and has the following formula A, (SiO 2 ) x- (CH 3 SiO 3/2 ) (1-x) Formula A (In formula A, 0 ⁇ x ⁇ 1.0).
  • the smaller the x in Formula A the more the amount of methyl groups, and the more flexible the film, but the heat resistance tends to decrease.
  • a preferable range of x is 0.2 ⁇ x ⁇ 0.8, and further 0.4 ⁇ x ⁇ 0.6.
  • the second insulating film 12 made of a methyl group-containing silica-based inorganic / organic hybrid material can be produced by a sol-gel method. The manufacturing method will be described. At least one selected from tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and at least one selected from methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, and methyltributoxysilane. More than one kind of silane is mixed and hydrolyzed in an organic solvent.
  • the organic solvent methanol, ethanol, propanol, butanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, MEK, MIBK, or the like can be used alone or in combination. It is desirable that the water used for the hydrolysis is 0.3 to 3 mol times the total alkoxy groups.
  • a metal alkoxide catalyst other than silicon, an organic acid, or an inorganic acid may be used.
  • the sol coating solution thus prepared is applied onto the first insulating film 11 formed in advance on the surface of the steel material 10.
  • methods such as spin coating, dip coating, and roll coating can be used. After coating, it is dried at about 80 to 150 ° C. for 0.5 to 5 minutes and then heat treated at 400 to 600 ° C. in an inert gas such as nitrogen for 0.5 to 10 hours.
  • the second insulating film 12 made of the material can be obtained.
  • the thickness of the second insulating film 12 is such that the leakage current of the steel material 10 is less than 1 ⁇ 10 ⁇ 6 A / cm 2 when 100 V is applied at 3 ⁇ 3 cm square so as to be suitable for manufacturing an electronic device. It is preferable that For example, when the second insulating film 12 having a thickness of 1 ⁇ m is formed on the first insulating film 11 having a thickness of 0.7 ⁇ m with a methyl group-containing silica-based inorganic / organic hybrid material, the leakage current of the metal substrate 1 is It becomes about 1 ⁇ 10 ⁇ 9 A / cm 2 .
  • Leakage current depends not only on the thickness of the first insulating film 11 and the second insulating film 12 but also on the type of material thereof, but generally speaking, the second insulating film 12 If it is formed within the range of 0.3 to 5 ⁇ m, the above-mentioned leakage current requirement can be satisfied.
  • the second insulating film 12 preferably has a surface roughness Ra of less than 2 nm measured in an area of 1 ⁇ m square using an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the film thicknesses of the first insulating film 11 and the second insulating film 12 will be described.
  • the substrate and the electronic device must be electrically cut off by 2.0 ⁇ m or more. Therefore, the first insulating film 11 and the second insulating film 12 are formed so that the total film thickness becomes 2.0 ⁇ m or more.
  • the upper limit value of the total film thickness is a total value of 7.0 ⁇ m including the upper limit value of the film thickness of the first insulating film 11 and the upper limit value of the film thickness of the second insulating film 12 described below.
  • the first insulating film 11 has a thickness of 0.2 ⁇ m or more, preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the thickness of the first insulating film 11 is smaller than 0.2 ⁇ m, the effect of covering the surface of the steel material 10 cannot be sufficiently obtained.
  • the second insulating film 12 is formed, the coating of the steel convex portion becomes insufficient, and excellent insulating properties cannot be obtained.
  • the thickness of the first insulating film 11 by setting the thickness of the first insulating film 11 to 0.2 ⁇ m or more, the steel material 10 and the second insulating film 12 can be reliably separated so as not to contact each other. Insulation can be improved.
  • the second insulating film 12 causes fine protrusions on the surface of the steel material 10 to appear on the outermost surface, so that pinholes and repellency occur, and good insulation cannot be obtained.
  • the thickness of the first insulating film 11 exceeds 2.0 ⁇ m, not only the above-described effect is saturated, but also by the cooling step in the heat treatment process when the first insulating film 11 is formed, Warpage due to a difference in thermal expansion coefficient between the oxide and the steel material occurs in the steel material. If the substrate is warped, the electronic device characteristics vary greatly or cannot function as a device. Therefore, the upper limit is set to 2.0 ⁇ m.
  • the second insulating film 12 has a thickness of 0.3 ⁇ m or more, preferably 0.6 ⁇ m or more, and more preferably 0.8 ⁇ m or more. If the thickness of the second insulating film is less than 0.3 ⁇ m, the effect of supplementing the insulating property of the first insulating film 11 cannot be obtained. On the other hand, when the thickness of the second insulating film 12 exceeds 5.0 ⁇ m, the volatilization amount when exposed to the manufacturing process temperature (500 ° C. or higher) of the electronic device cannot be ignored. Degassing from the substrate adversely affects the characteristics of the electronic device as an impurity. Therefore, the upper limit of the thickness of the second insulating film 12 is 5.0 ⁇ m, preferably 3.0 ⁇ m, and more preferably 2.0 ⁇ m.
  • the first insulating film 11 contains Al 2 O 3
  • spinel mineral By containing spinel mineral, it is possible to suppress the coarsening of the Al 2 O 3 particles, easily generated 0.2 ⁇ 0.7 [mu] m approximately to the size of uniform Al 2 O 3 particles. That is, the deterioration of the surface roughness due to the coarsened Al 2 O 3 can be suppressed. Therefore, the surface roughness can be reduced.
  • a large amount of coarsened Al 2 O 3 is produced, roughened Al 2 O 3 irregularities appear on the surface of the second insulating film, and the surface roughness is reduced. The device characteristics formed on the insulating film are deteriorated.
  • the spinel mineral examples include MgAl 2 O 4 , FeAl 2 O 4 , Fe (Al, Cr) 2 O 4 and the like.
  • the amount of the spinel mineral with respect to Al 2 O 3 is 3% or more, preferably 5% or more in terms of mass%, so that the above effect can be suitably achieved.
  • the abundance of the spinel mineral with respect to Al 2 O 3 is more than 11% by mass ratio, voids increase at the grain boundary between the spinel mineral and Al 2 O 3. .
  • the mechanical strength of the first insulating film 11 becomes insufficient and peeling or the like occurs, so that the insulating property may be impaired.
  • the abundance of the spinel mineral with respect to Al 2 O 3 is preferably 11% or less, and more preferably 9% or less, in terms of mass ratio.
  • the steel material 10 In order for the first insulating film 11 to contain Al 2 O 3 and a spinel mineral, the steel material 10 needs to contain an Al content of 0.5 mass% or more. Moreover, it is preferable that Si content shall be 1/2 or less of Al content. Then, the steel material is subjected to heat treatment in the range of 900 ° C. to 1200 ° C., so that the abundance of the spinel mineral in the first insulating coating 11 with respect to Al 2 O 3 is 3% or more and 11% by mass ratio. It can be as follows. The abundance of the spinel mineral with respect to Al 2 O 3 greatly depends on the heat treatment atmosphere.
  • FIG. 5 shows an insulating film 11 having an Al 2 O 3 layer 11a formed so as to cover the surface layer of the steel material 10 and a layer 11b containing a spinel mineral formed so as to cover the Al 2 O 3 layer 11a.
  • a cross-sectional STEM image is shown.
  • the steel surface is coated with the Al 2 O 3 layer 11a, for further coated with a layer 11b comprising a spinel mineral the Al 2 O 3 layer 11a, it is possible to improve the insulation .
  • the structure of the first insulating film can be observed, for example, by scanning electron microscopy and composition analysis.
  • the first insulating film contains SiO 2
  • the olivine mineral By containing the olivine mineral, it is possible to increase the ratio of the olivine mineral to the amorphous SiO 2 and obtain sufficient adhesion. By increasing the adhesion, it is possible to suppress the occurrence of cracks and peeling due to the difference in thermal expansion coefficient, and it is possible to obtain better insulating properties.
  • olivine minerals include Mg 2 SiO 4 , Fe 2 SiO 4 , Ca 2 SiO 4 and the like.
  • the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is 1.2 or more, more preferably 1.4 or more. The effect of can be obtained.
  • the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si exceeds 2.0, in addition to the olivine mineral, Mg, Fe, and Ca There will be oxides, and these oxides may roughen the surface. Therefore, in the first insulating film, the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is preferably 2.0 or less, and more preferably 1.8 or less. .
  • the steel material 10 In order to contain the SiO 2 and the olivine mineral in the first insulating film 11, the steel material 10 needs to contain Si content of 0.5 mass% or more. Moreover, it is preferable that Al content shall be 1/2 or less of Si content. Then, by performing a heat treatment on the steel material in the range of 900 ° C. to 1200 ° C., the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is 1.2. It can be set to 2.0 or less.
  • the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is also adjusted by applying MgO slurry to the surface of the steel material before heat treatment, as will be described later. I can do it.
  • the SiO 2 and the olivine mineral are contained in the first insulating film 11 by such a heat treatment, the SiO 2 covers the surface of the steel material, and the olivine mineral does not directly cover the surface of the steel material. Therefore, excellent insulating properties can be obtained.
  • the steel material 10 on which the first insulating film 11 is formed is subjected to elemental analysis with an energy dispersive X-ray analyzer (EDS) to obtain the atomic percentage of each element present. Since the ratio of the number of atoms is a molar ratio, the ratio of the sum M (M + F + C) of the number of moles of Mg, Fe, and Ca to the number of moles M (S) of Si, that is, M (M + F + C) / M (S) is obtained. be able to.
  • EDS energy dispersive X-ray analyzer
  • MgAl 2 O 4 is particularly effective as a spinel mineral
  • Mg 2 SiO 4 is particularly effective as an olivine mineral.
  • the amount of Mg that can be contained in the steel material 10 is limited. Therefore, as a result of the inventors seeking to contain more Mg in the first insulating film 11, a slurry of magnesia (MgO) particles is applied to the surface of the steel material 10 prior to heat treatment. Was found to be effective.
  • a slurry of magnesia (MgO) particles is applied on the surface of the steel material 10 before heat treatment. It is preferable.
  • magnesia particles those having an average particle size of about 0.5 to 3 ⁇ m, preferably about 0.8 to 2 ⁇ m can be used.
  • the slurry can be prepared by dispersing magnesia particles in water or an organic solvent (such as various alcohols).
  • the slurry concentration is preferably 20 to 80 wt%. When the amount is less than 20 wt%, a region where MgO is not applied is generated.
  • the slurry concentration is preferably 25 to 70 wt%, more preferably 30 to 60 wt%.
  • the slurry can be applied by a method usually used for slurry application, for example, roll coating or bar coating so as to obtain a coating film thickness of about 1 to 5 ⁇ m. It is not practical to apply the slurry to a thickness of less than 1 ⁇ m, and if the application thickness is less than 1 ⁇ m, the effect of using the slurry is reduced. When the coating thickness exceeds 5 ⁇ m, a large amount of unreacted MgO is washed away, and an effect commensurate with the cost cannot be obtained.
  • MgAl 2 O 4 or Mg 2 SiO 4 is not only to improve the insulation characteristics, but also to heat-treat in particular by winding a steel plate in a coil shape.
  • the MgO slurry layer functions as a porous layer so that the atmospheric gas can easily reach the inside of the coil.
  • Table 1 shows the types, thickness ( ⁇ m), main components (mass%), and surface roughness Ra (nm) of the steel materials A to E.
  • the surface roughness Ra (nm) was measured based on JIS B 0601.
  • Steel materials A and B are Al-based steel materials in which the Al content is higher than the Si content.
  • the steel material C is a steel material (comparative example) with a small amount of Si + Al.
  • Steel materials D and E are Si-based steel materials in which the Si content is higher than the Al content.
  • the steel material A was heat-treated under predetermined heat treatment conditions to form a first insulating film.
  • the first insulating film was formed by heat-treating the steel material A (stainless foil) coated with MgO slurry on the surface with a thickness of 1.0 ⁇ m under predetermined heat treatment conditions. Specifically, the MgO slurry is coated on the surface of the steel material A with a thickness of 1.0 ⁇ m by using a roll coater, which is obtained by dispersing MgO particles having an average particle diameter of 0.5 ⁇ m in water at 30 wt%. It was done by doing.
  • the first insulating film was formed by performing heat treatment on the steel material B (steel plate) under predetermined heat treatment conditions.
  • the steel material C (steel plate) was heat-treated under predetermined heat treatment conditions.
  • the first insulating film was formed by heat-treating the steel material D (stainless steel foil) under predetermined heat treatment conditions.
  • the steel material E steel plate
  • the heat treatment conditions include a heat treatment atmosphere, a heating temperature (° C.), and a heating time (hr).
  • DA means dry air having a reduced water vapor content in the atmosphere and a dew point adjusted to ⁇ 50 ° C.
  • the properties of the first insulating film in Tables 2 and 3 are the thickness ( ⁇ m), the leakage current (A / cm 2 ) after the formation of the first insulating film, and the spinel mineral Al 2 O 3.
  • a leakage current (A / cm 2 ) after forming the first insulating film In order to obtain a leakage current (A / cm 2 ) after forming the first insulating film, a 1 ⁇ 1 cm square Pt upper electrode is formed on the surface of the first insulating film using an ion coater, and a metal substrate The leakage current was measured by applying 100 V as the lower electrode. A part of the surface thermal oxide film was shaved off for taking out the lower electrode. The value of the leak current is the minimum value of the leak current (A / cm 2 ) obtained by measuring at 20 locations.
  • the abundance (mass% ratio) of the spinel mineral with respect to Al 2 O 3 was calculated by performing thin film XRD measurement using Cu—K ⁇ rays on the first insulating film. More specifically, the spinel structure (MgAl 2 O 4 , FeAl 2 O 4, Fe (Al, Cr) 2 O) with respect to the diffraction intensity (Ic) of the peak attributed to the corundum structure ( ⁇ -Al 2 O 3 ). 4 and their solid solutions) and the like, based on the ratio (Is / Ic) of the diffraction intensity (Is) of the peaks attributed to them.
  • the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is present when the steel material with the first insulating film is subjected to elemental analysis with an energy dispersive X-ray analyzer (EDS).
  • EDS energy dispersive X-ray analyzer
  • the atomic percentage of each element to be obtained was determined from the ratio of the sum M (M + F + C) of the number of moles of Mg, Fe and Ca to the number of moles M (S) of Si, that is, M (M + F + C) / M (S). .
  • (A) Phenyl group-containing silica film After hydrolyzing phenyltriethoxysilane in ethanol with an equimolar amount of water with respect to all alkoxy groups using an acetic acid catalyst, a silica resin modified with a phenyl group by concentration with an evaporator is obtained. Produced. The resin was dissolved in toluene to prepare a coating solution for forming a phenyl group-containing silica film so that the viscosity was 10 mPa ⁇ s. After coating with a slit coater, heat treatment was performed at 400 ° C. for 5 minutes in nitrogen.
  • the surface roughness Ra (nm) is a value measured with an AFM (Atomic Force Microscope) in a 1 ⁇ 1 ⁇ m square field of view.
  • the total film thickness ( ⁇ m) is the total value of the thickness of the first insulating film and the thickness of the second insulating film.
  • the numerical value shown in the average (A / cm 2 ) of the leakage current is the leakage current when 100 V is applied between the metal substrate and the upper electrode formed in the 1 cm ⁇ 1 cm region on the surface of the second insulating film. Is an average value of leakage current (A / cm 2 ) obtained by measuring at 20 locations. The distribution evaluation of the leakage current is carried out with respect to the leakage current obtained by measuring at the above 20 locations.
  • leakage current ⁇ 1E-5 (A / cm 2 ) is even one point, Bad, If 1E-5 (A / cm 2 )> leakage current ⁇ 1E-8 (A / cm 2 ) is at least one point, If 1E-8 (A / cm 2 )> leakage current at all measurement points, Good It was evaluated.
  • the steel material used and the production conditions are appropriate, the first insulating film having the spinel mineral is formed with an appropriate thickness, and the second insulating film is further appropriate. It was formed with various thicknesses. Therefore, the metal substrate excellent in the insulation which can be used suitably for manufacture of an electronic device was able to be obtained.
  • the thickness of the first insulating film is constant at 0.9 ⁇ m and the thickness of the second insulating film is constant at 3.6 ⁇ m
  • the abundance of spinel mineral with respect to Al 2 O 3 (mass% ratio) )
  • FIG. 6 shows the mass% ratio (horizontal axis) of the abundance of spinel mineral to Al 2 O 3 in the first insulating film, leakage current (A / cm 2 ), and surface roughness Ra for these experimental examples. It is a graph which shows the relationship with (nm) (vertical axis). As can be seen from FIG. 6, when the abundance (mass% ratio) of the spinel mineral to Al 2 O 3 is 3% or more and 11% or less, the leakage current and the surface roughness can be reduced.
  • the steel materials used and the production conditions are appropriate, the first insulating film having olivine mineral is formed with an appropriate thickness, and the second insulating film is further formed with an appropriate thickness. Formed. Therefore, the metal substrate excellent in the insulation which can be used suitably for manufacture of an electronic device was able to be obtained.
  • the thickness of the first insulating film is constant at 0.7 ⁇ m
  • the thickness of the second insulating film is constant at 1.5 ⁇ m
  • the number of moles of Mg, Fe, and Ca with respect to the number of moles of Si. Is dispersed in a range of 1.1 to 2.1.
  • FIG. 7 shows the ratio of the sum of the number of moles of Mg, Fe and Ca to the number of moles of Si in the first insulating film (horizontal axis) and the leakage current (A / cm 2 ) for these experimental examples. It is a graph which shows the relationship with surface roughness Ra (nm) (vertical axis). As can be seen from FIG. 7, when the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is 1.2 to 2.0, the leakage current In addition, the surface roughness can be reduced.
  • Experiment No. 1 and 16 are comparative examples in which the thickness of the first insulating film is small. Since the convex portion of the steel material could not be completely covered with the first insulating film, the coating of the convex portion of the steel material was insufficient even when the second insulating film was formed, and the insulation was not obtained.
  • Experiment No. 21 is a comparative example in which an oxide scale film was generated due to the small amount of Si + Al in the steel material.
  • Experiment No. 12 and 20 are comparative examples in which the thickness of the first insulating film is large. In these comparative examples, warping due to the difference in thermal expansion coefficient between the thermal oxide and the steel material occurred in the steel material due to the cooling step in the heat treatment process when forming the first insulating film.
  • Experiment No. 14 is a comparative example in which the second film is too thick. Although a good leakage current was obtained after the formation of the second insulating film, a heat treatment at 500 ° C. was performed assuming an electronic device manufacturing process. As a result, defects were caused by the volatilization of the components of the second insulating film. The performance as a metal substrate for producing an electronic device could not be obtained.
  • Experiment No. 15 is a comparative example in which the thickness of the second insulating film is small, and high insulating properties could not be obtained.
  • Experiment No. 22 and 37 are comparative examples in which the thickness of the first insulating film is small. Since the convex portion of the steel material could not be completely covered with the first insulating film, the coating of the convex portion of the steel material was insufficient even when the second insulating film was formed, and the insulation was not obtained.
  • Experiment No. 36 and 41 are comparative examples in which the thickness of the first insulating film is large. In these comparative examples, warping due to the difference in thermal expansion coefficient between the thermal oxide and the steel material occurred in the steel material due to the cooling step in the heat treatment process when forming the first insulating film. If warpage occurs in the substrate, the characteristics of the electronic device formed on the substrate may vary greatly, or the device may not function as a comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

This metal substrate for manufacturing electronic devices comprises: a steel material having a total Al and Si content of 0.5%-18.0% by mass; a first insulating coating film having a thickness of 0.2-2.0 µm; and a second insulating coating film having a thickness of 0.3-5.0 µm. The total thickness of the first insulating coating film and the second insulating coating film is 2.0-7.0 µm. The first insulating coating film is a thermally oxidized coating film containing at least either Al2O3 or SiO2. The second insulating coating film is formed from a silica-based inorganic hybrid material.

Description

電子デバイス作製用金属基板及びパネルMetal substrate and panel for electronic device fabrication
 本発明は、電子デバイス作製用金属基板及びパネルに関する。 The present invention relates to a metal substrate for manufacturing an electronic device and a panel.
 絶縁性皮膜を表面に有した金属基板は、電子ペーパー、有機ELディスプレイ、有機EL照明、太陽電池のデバイス用基板などへの応用が期待されている。太陽電池基板では耐熱性並びに絶縁性が重要な特性になる。 A metal substrate having an insulating film on its surface is expected to be applied to electronic paper, organic EL displays, organic EL lighting, solar cell device substrates, and the like. In a solar cell substrate, heat resistance and insulation are important characteristics.
 特にCIGS(CuInGaSe)のような化合物半導体系太陽電池では、製造プロセスの加熱工程において、500℃以上の温度に基板が晒される。金属基板そのものはCIGSのプロセス温度に晒されても重量・ヤング率・硬さなどの特性に変化がないが、金属基板を被覆している絶縁性皮膜には500℃以上の加熱温度に対する耐熱性が重要になる。 Particularly in a compound semiconductor solar cell such as CIGS (CuInGaSe), the substrate is exposed to a temperature of 500 ° C. or higher in the heating step of the manufacturing process. Even if the metal substrate itself is exposed to the CIGS process temperature, characteristics such as weight, Young's modulus, and hardness do not change, but the insulating film covering the metal substrate has heat resistance to a heating temperature of 500 ° C. or more. Becomes important.
 太陽電池では、セル一つから得られる電圧や電流は小さいため、セルを直列或いは並列に複数個接続することが必要となる。金属材料を用いた太陽電池基板の場合、絶縁性皮膜を有する金属基板に直接セルを形成し基板ごと切断をして目的とするセル同士を導電性ワイヤなどで接続する方法と、絶縁性皮膜を有する金属基板をガラス基板と同様に扱ってセルを形成し集積型モジュールを作製する方法がある。後者は、モジュール構造がシンプルであるため生産性が高いが、皮膜の絶縁性が不十分であるとセルを複数個接続したときに設計通りの太陽電池特性が得られなくなる。従って、ピンホールなどの欠陥がない皮膜を作製することが重要である。 In solar cells, since the voltage and current obtained from one cell are small, it is necessary to connect a plurality of cells in series or in parallel. In the case of a solar cell substrate using a metal material, a method of forming cells directly on a metal substrate having an insulating film, cutting the entire substrate, and connecting the target cells to each other with a conductive wire, and an insulating film There is a method of manufacturing an integrated module by forming a cell by treating a metal substrate having the same as a glass substrate. The latter has high productivity because the module structure is simple, but if the insulation of the film is insufficient, the solar cell characteristics as designed cannot be obtained when a plurality of cells are connected. Therefore, it is important to produce a film free from defects such as pinholes.
 一般にリーク電流は図8のような構成で測定する。101は鋼材、102は絶縁性を有する皮膜、103は上部電極、104は電圧計、105は電流計、106は電源である。
 絶縁性を有する皮膜102中にはクラックなどの皮膜欠陥が存在するため、上部電極103の電極面積にリーク電流は依存することが多い。従って、電極面積が大きくなるほどリーク電流は高くなり短絡につながりやすい。また、印加電圧が高くなるほど皮膜欠陥である薄膜部に高い電圧がかかることになり、短絡が生じやすくなる。
In general, the leakage current is measured with the configuration shown in FIG. Reference numeral 101 denotes a steel material, 102 denotes an insulating film, 103 denotes an upper electrode, 104 denotes a voltmeter, 105 denotes an ammeter, and 106 denotes a power source.
Since there are film defects such as cracks in the insulating film 102, the leakage current often depends on the electrode area of the upper electrode 103. Therefore, the larger the electrode area, the higher the leak current and the more likely to be short-circuited. In addition, the higher the applied voltage, the higher the voltage applied to the thin film portion, which is a film defect, and a short circuit tends to occur.
 集積型デバイスを作製するには大面積で高電圧印加時に低リーク電流、例えば10×10cm角で50V印加時に1×10-6A/cm2以下、1×1cm角で200V印加時に1×10-8A/cm2以下であることが求められる。必要とされる面積とリーク電流は作製するデバイスによって異なるが、3×3cm角で100V印加時に1×10-6A/cm2未満であることが1つの汎用的な指標となる。 In order to fabricate an integrated device, a large area has a low leakage current when a high voltage is applied, for example, 1 × 10 −6 A / cm 2 or less when a 50 V is applied at a 10 × 10 cm square, and 1 × 10 6 when a 200 V is applied at a 1 × 1 cm square. -8 A / cm 2 or less is required. The required area and leakage current vary depending on the device to be manufactured, but one general index is that it is less than 1 × 10 −6 A / cm 2 when applying 100 V at a 3 × 3 cm square.
 特許文献1には有機樹脂より耐熱性が高い無機有機ハイブリッドで被覆されたステンレス箔が開示されている。しかし、特許文献1に開示されている皮膜付きステンレス箔では上部電極が1×1cm角のとき10V程度の低電圧の印加では絶縁性が維持されても100Vでは短絡をしてしまうという問題がある。 Patent Document 1 discloses a stainless steel foil coated with an inorganic-organic hybrid having higher heat resistance than an organic resin. However, the coated stainless steel foil disclosed in Patent Document 1 has a problem that when the upper electrode is 1 × 1 cm square, application of a low voltage of about 10 V causes a short circuit at 100 V even if insulation is maintained. .
 特許文献2には複数の無機ポリマー膜で被覆されたステンレス箔が開示されている。しかし、特許文献2に開示された皮膜付きステンレス箔では、無機ポリマー膜による被覆をステンレス箔に形成した場合、上部電極が1×1cm角のとき5V程度の低電圧の印加では絶縁性が維持されるが100Vでは短絡をしてしまうという問題がある。 Patent Document 2 discloses a stainless steel foil coated with a plurality of inorganic polymer films. However, in the stainless steel foil with a film disclosed in Patent Document 2, when the coating with the inorganic polymer film is formed on the stainless steel foil, the insulation is maintained by applying a low voltage of about 5 V when the upper electrode is 1 × 1 cm square. However, there is a problem that a short circuit occurs at 100V.
 非特許文献1に、メチル基含有シリカ系の無機有機ハイブリッド膜を絶縁性皮膜として用いることが記載されているが、膜厚を1μm超にしようとするとクラックが発生するという問題がある。一方、非特許文献1の無機有機ハイブリッド皮膜の膜厚を1μm以下とした場合、3×3cm角で100V印加時のリーク電流を1×10-6A/cm2未満とすることは困難である。 Non-Patent Document 1 describes that a methyl group-containing silica-based inorganic-organic hybrid film is used as an insulating film, but there is a problem in that cracks occur when the film thickness exceeds 1 μm. On the other hand, when the film thickness of the inorganic-organic hybrid film of Non-Patent Document 1 is 1 μm or less, it is difficult to make the leakage current when applying 100 V at 3 × 3 cm square to less than 1 × 10 −6 A / cm 2. .
 これらより、特許文献1、特許文献2並びに非特許文献1に開示された皮膜を有するステンレス箔は、上部電極3×3cm角において100V印加時のリーク電流を1×10-6A/cm2未満とすることは困難であり、電子デバイス作製用金属基板として用いるには不十分である。 Accordingly, the stainless steel foil having the coating disclosed in Patent Document 1, Patent Document 2 and Non-Patent Document 1 has a leakage current of less than 1 × 10 −6 A / cm 2 when 100 V is applied to the upper electrode 3 × 3 cm square. It is difficult to use as a metal substrate for manufacturing electronic devices.
 特許文献3にはアルミニウム、チタン等の基体上に表面絶縁層を有する電子材料用基板が開示され、基体表面は陽極酸化処理して皮膜を形成してから、その表面に非導電性物質の層を形成して陽極酸化皮膜のポアを補填している。 Patent Document 3 discloses a substrate for an electronic material having a surface insulating layer on a substrate such as aluminum or titanium. The substrate surface is anodized to form a film, and then a layer of a non-conductive substance is formed on the surface. To fill the pores of the anodized film.
 しかし、特許文献3にも、リーク電流が上部電極3×3cm角において100V印加時に10-6A/cm2未満であることを満足する電子デバイス作製用金属基板は教示されていない。 However, Patent Document 3 does not teach a metal substrate for manufacturing an electronic device that satisfies a leakage current of less than 10 −6 A / cm 2 when 100 V is applied to an upper electrode 3 × 3 cm square.
 特許文献4には、ステンレス箔に二層の絶縁性皮膜を形成する太陽電池用絶縁皮膜付きステンレス箔が開示されている。 Patent Document 4 discloses a stainless steel foil with an insulating coating for a solar cell in which a two-layer insulating coating is formed on the stainless steel foil.
 しかし、特許文献4にも、リーク電流が上部電極3×3cm角において100V印加時に10-6A/cm2未満であることを満足する電子デバイス作製用金属基板は教示されていない。 However, Patent Document 4 does not teach a metal substrate for producing an electronic device that satisfies a leakage current of less than 10 −6 A / cm 2 when a 100 V voltage is applied to an upper electrode 3 × 3 cm square.
日本国特許第3882008号公報Japanese Patent No. 3882008 日本国特許第4245394号公報Japanese Patent No. 4245394 日本国特開平11-229187号公報Japanese Unexamined Patent Publication No. 11-229187 日本国特開2013-89697号公報Japanese Unexamined Patent Publication No. 2013-89697
 本発明は、上記課題を解決すべくなされたものであって、電子デバイスの作製に好適に用いることができる絶縁性に優れた金属基板とパネルを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a metal substrate and a panel excellent in insulation that can be suitably used for manufacturing an electronic device.
 上記目的を達成する本発明の要旨は以下の通りである。
(1)本発明の第一の態様は、Al含有量が0~13.0質量%であり、Si含有量が0~5.0質量%であり、前記Al及び前記Siの合計含有量が0.5~18.0質量%である鋼材と;前記鋼材の表面を被覆し、厚さが0.2μm~2.0μmである第一の絶縁性皮膜と;前記第一の絶縁性皮膜の表面を被覆し、厚さが0.3μm~5.0μmである第二の絶縁性皮膜と;を備え、前記第一の絶縁性皮膜と前記第二の絶縁性皮膜との合計厚さが2.0μm~7.0μmであり、前記第一の絶縁性皮膜は、Al及びSiOの少なくとも一方を含有する熱酸化皮膜であり、前記第二の絶縁性皮膜は、シリカ系無機有機ハイブリッド材料から形成される電子デバイス作製用金属基板である。
(2)上記(1)に記載の電子デバイス作製用金属基板では、前記鋼材における前記Al含有量が0.5~13.0質量%であり、前記鋼材における前記Si含有量が前記Al含有量の1/2以下であり、前記第一の絶縁性皮膜は、前記Alを少なくとも含有すると共に、スピネル鉱物を含有し、前記第一の絶縁性皮膜では、前記スピネル鉱物の前記Alに対する存在量が質量%比で3%以上11%以下であってもよい。
(3)上記(2)に記載の電子デバイス作製用金属基板において、前記第一の絶縁性皮膜では、前記Alが前記鋼材の前記表面を被覆し、前記スピネル鉱物は前記鋼材の前記表面を直接被覆しない構成であってもよい。
(4)上記(1)に記載の電子デバイス作製用金属基板では、前記鋼材における前記Si含有量が0.5~5.0質量%であり、前記鋼材における前記Al含有量が前記Si含有量の1/2以下であり、前記第一の絶縁性皮膜は、前記SiOを少なくとも含有すると共に、オリビン鉱物を含有し、前記第一の絶縁性皮膜では、Siのモル数に対するMg、Fe、及びCaのモル数の和の比が1.2以上2.0以下であってもよい。
(5)上記(4)に記載の電子デバイス作製用金属基板において、前記第一の絶縁性皮膜では、前記SiOが前記鋼材の前記表面を被覆し、前記オリビン鉱物は前記鋼材の前記表面を直接被覆しない構成であってもよい。
(6)上記(1)~(5)のいずれか一項に記載の電子デバイス作製用金属基板では、前記第二の絶縁性皮膜の1μm四方の領域で測定した表面粗さRaが2nm未満であってもよい。
(7)上記(1)~(6)のいずれか一項に記載の電子デバイス作製用金属基板では、前記鋼材が、19質量%以上のCrを含有し、150μm以下の厚さを有するステンレス箔であってもよい。
(8)上記(1)~(7)のいずれか一項に記載の電子デバイス作製用金属基板では、前記シリカ系無機有機ハイブリッド材料の有機基が、メチル基またはフェニル基であってもよい。
(9)本発明の第二の態様は、上記(1)~(8)のいずれか一項に記載の電子デバイス作製用金属基板上に電子デバイスが形成されたパネルである。
The gist of the present invention for achieving the above object is as follows.
(1) In the first aspect of the present invention, the Al content is 0 to 13.0% by mass, the Si content is 0 to 5.0% by mass, and the total content of Al and Si is A steel material of 0.5 to 18.0% by mass; a first insulating film covering the surface of the steel material and having a thickness of 0.2 μm to 2.0 μm; A second insulating film having a thickness of 0.3 μm to 5.0 μm, and a total thickness of the first insulating film and the second insulating film is 2 0.0 μm to 7.0 μm, the first insulating film is a thermal oxide film containing at least one of Al 2 O 3 and SiO 2 , and the second insulating film is a silica-based inorganic organic film It is the metal substrate for electronic device manufacture formed from a hybrid material.
(2) In the metal substrate for manufacturing an electronic device according to (1), the Al content in the steel material is 0.5 to 13.0 mass%, and the Si content in the steel material is the Al content. And the first insulating film contains at least the Al 2 O 3 and contains a spinel mineral, and the first insulating film contains the Al 2 of the spinel mineral. The abundance with respect to O 3 may be 3% or more and 11% or less by mass% ratio.
(3) In the metal substrate for manufacturing an electronic device according to (2), in the first insulating film, the Al 2 O 3 covers the surface of the steel material, and the spinel mineral is the steel material. The structure which does not coat | cover the surface directly may be sufficient.
(4) In the metal substrate for producing an electronic device according to (1), the Si content in the steel material is 0.5 to 5.0 mass%, and the Al content in the steel material is the Si content. The first insulating film contains at least the SiO 2 and also contains an olivine mineral. In the first insulating film, Mg, Fe, And the ratio of the sum of the number of moles of Ca may be 1.2 or more and 2.0 or less.
(5) In the metal substrate for manufacturing an electronic device according to (4), in the first insulating film, the SiO 2 covers the surface of the steel material, and the olivine mineral covers the surface of the steel material. The structure which does not coat | cover directly may be sufficient.
(6) In the metal substrate for manufacturing an electronic device according to any one of (1) to (5), the surface roughness Ra measured in a 1 μm square region of the second insulating film is less than 2 nm. There may be.
(7) In the metal substrate for manufacturing an electronic device according to any one of (1) to (6), the steel material contains 19% by mass or more of Cr and has a thickness of 150 μm or less. It may be.
(8) In the metal substrate for manufacturing an electronic device according to any one of (1) to (7), the organic group of the silica-based inorganic-organic hybrid material may be a methyl group or a phenyl group.
(9) A second aspect of the present invention is a panel in which an electronic device is formed on the metal substrate for manufacturing an electronic device according to any one of (1) to (8).
 本発明の上記態様によれば、電子デバイスの製造に好適に用いることができる絶縁性に優れた金属基板とパネルとを提供できる。 According to the above aspect of the present invention, it is possible to provide a metal substrate and a panel excellent in insulation that can be suitably used for manufacturing an electronic device.
CIGS太陽電池を説明する模式図である。It is a schematic diagram explaining a CIGS solar cell. 鋼材に第一の絶縁性皮膜と第二の絶縁性皮膜を形成する場合の概略説明図である。It is a schematic explanatory drawing in the case of forming a first insulating film and a second insulating film on a steel material. 鋼材に第一の絶縁性皮膜のみを形成する場合の概略説明図である。It is a schematic explanatory drawing in the case of forming only the first insulating film on a steel material. 鋼材に第二の絶縁性皮膜のみを形成する場合の概略説明図である。It is a schematic explanatory drawing in the case of forming only a second insulating film on a steel material. 本実施形態に係る電子デバイス作製用金属基板の概略説明図である。It is a schematic explanatory drawing of the metal substrate for electronic device manufacture which concerns on this embodiment. 鋼材、第一の絶縁性皮膜、及び第二の絶縁性皮膜の断面構造を示すSEM写真である。It is a SEM photograph which shows the cross-sectional structure of steel materials, a 1st insulating film, and a 2nd insulating film. 鋼材、及び、鋼材表面に形成された第一の絶縁性皮膜の断面構造を示すSTEM像である。It is a STEM image which shows the cross-sectional structure of the steel material and the 1st insulating film formed in the steel material surface. 第一の絶縁性皮膜における、スピネル鉱物のAlに対する存在量の質量%比と、リーク電流(A/cm)及び表面粗さRa(nm)との関係を示すグラフである。In the first insulating film is a graph showing the abundance of the mass% ratio Al 2 O 3 spinel mineral, the relationship between the leakage current (A / cm 2) and the surface roughness Ra (nm). 第一の絶縁性皮膜における、Siのモル数に対するMg、Fe、及びCaのモル数の和の比と、リーク電流(A/cm)及び表面粗さRa(nm)との関係を示すグラフである。The graph which shows the relationship between the ratio of the sum of the number of moles of Mg, Fe, and Ca with respect to the number of moles of Si, the leakage current (A / cm 2 ), and the surface roughness Ra (nm) in the first insulating film. It is. リーク電流測定装置の模式図である。It is a schematic diagram of a leak current measuring device.
 金属基板は、その上に電子デバイスを作製して電子デバイス搭載パネルを得るのに利用することができる。そのような電子デバイス搭載パネルの例としては、電子ペーパー、有機ELディスプレイ、有機EL照明、太陽電池などが挙げられる。これらのパネル自体はいずれも広く知られたものであり、ここでの詳細な説明は省略する。 The metal substrate can be used to produce an electronic device on it and obtain an electronic device mounting panel. As an example of such an electronic device mounting panel, electronic paper, an organic EL display, organic EL illumination, a solar cell, etc. are mentioned. All of these panels are well known and will not be described in detail here.
 一例として、CIGS(CuInGaSe2)化合物半導体を用いた太陽電池(CIGS太陽電池)を簡単に説明する。図1にその典型的な構造の例を示す。図1において、141は基板、142はMo等の裏面電極(下部電極)、143はCuInGeSe2光吸収層、144はCdSバッファ層、145はZnO半絶縁層、146はZnO:Al窓層、147はAl上部電極、148はMgF2反射防止膜である。膜厚の例は、裏面電極142からZnO:Al窓層146まで順に、0.8μm、1.7μm、50nm、0.1μm、0.6μmである。基板141として、メチル基含有シリカ系無機有機ハイブリッド皮膜などの絶縁膜を設けた鋼板やステンレス箔を使用することができる。 As an example, a solar cell (CIGS solar cell) using a CIGS (CuInGaSe 2 ) compound semiconductor will be briefly described. FIG. 1 shows an example of a typical structure. In FIG. 1, 141 is a substrate, 142 is a back electrode (lower electrode) such as Mo, 143 is a CuInGeSe 2 light absorption layer, 144 is a CdS buffer layer, 145 is a ZnO semi-insulating layer, 146 is a ZnO: Al window layer, 147 Is an Al upper electrode, and 148 is a MgF 2 antireflection film. Examples of film thickness are 0.8 μm, 1.7 μm, 50 nm, 0.1 μm, and 0.6 μm in order from the back electrode 142 to the ZnO: Al window layer 146. As the substrate 141, a steel plate or stainless foil provided with an insulating film such as a methyl group-containing silica-based inorganic organic hybrid film can be used.
 本発明者らは、電子デバイスの作製に好適に用いることができる新たな金属基板の開発に当たり、種々の鋼材を高温で熱処理して表面に酸化膜(熱酸化膜)を形成する実験を行った。
 その結果、図2Aに示すように、Alを5%程度含有するステンレス箔1010を所定の条件で熱処理することにより、Alを主体とする熱酸化皮膜1011をステンレス箔1010の表面に形成し、更に、この熱酸化皮膜1011の上にシリカ系無機有機ハイブリッド皮膜1012を形成した場合に、基板のリーク電流特性が格段に向上することが分かった。このような現象については、Siを2.5%程度含有するステンレス箔を所定の条件で熱処理することによりSiOを主体とする熱酸化皮膜をステンレス箔の表面に形成し、更に、この熱酸化皮膜の上にシリカ系無機有機ハイブリッド皮膜を形成した場合にも確認できた。
In developing a new metal substrate that can be suitably used for manufacturing electronic devices, the present inventors conducted experiments in which various steel materials were heat-treated at high temperatures to form oxide films (thermal oxide films) on the surface. .
As a result, as shown in FIG. 2A, a thermal oxide film 1011 mainly composed of Al 2 O 3 is formed on the surface of the stainless steel foil 1010 by heat-treating the stainless steel foil 1010 containing about 5% of Al under predetermined conditions. Furthermore, it has been found that when the silica-based inorganic organic hybrid film 1012 is formed on the thermal oxide film 1011, the leakage current characteristics of the substrate are remarkably improved. For this phenomenon, a stainless steel foil containing about 2.5% of Si is heat-treated under predetermined conditions to form a thermal oxide film mainly composed of SiO 2 on the surface of the stainless steel foil. It was also confirmed when a silica-based inorganic-organic hybrid film was formed on the film.
 一方、図2Bに示すように、ステンレス箔1010の表面に熱酸化皮膜1011のみを形成し、シリカ系無機有機ハイブリッド皮膜1012を形成しない場合には、熱酸化皮膜1011の膜厚を大きくしても、リーク電流特性の顕著な向上は認められなかった。同様に、図2Cに示すように、ステンレス箔1010の表面にシリカ系無機有機ハイブリッド皮膜1012のみを形成し、熱酸化皮膜1011を形成しない場合にも、シリカ系無機有機ハイブリッド皮膜1012の膜厚を大きくしても、リーク電流特性の顕著な向上は認められなかった。すなわち、熱酸化皮膜1011とシリカ系無機有機ハイブリッド皮膜1012とを組み合わせることによってリーク電流特性が特段に向上したことが分かった。
 更に、ステンレス箔を鋼板に換えて実験を行ったところ、同様の結果が得られた。
On the other hand, as shown in FIG. 2B, when only the thermal oxide film 1011 is formed on the surface of the stainless steel foil 1010 and the silica-based inorganic organic hybrid film 1012 is not formed, the thermal oxide film 1011 can be made thicker. No significant improvement in leakage current characteristics was observed. Similarly, as shown in FIG. 2C, when only the silica-based inorganic organic hybrid film 1012 is formed on the surface of the stainless steel foil 1010 and the thermal oxide film 1011 is not formed, the film thickness of the silica-based inorganic organic hybrid film 1012 is reduced. Even when it was increased, no significant improvement in leakage current characteristics was observed. That is, it was found that the leakage current characteristics were particularly improved by combining the thermal oxide film 1011 and the silica-based inorganic / organic hybrid film 1012.
Furthermore, when the experiment was conducted by replacing the stainless steel foil with a steel plate, the same result was obtained.
 熱酸化皮膜1011とシリカ系無機有機ハイブリッド皮膜1012とを組み合わせることによってリーク電流特性が特段に向上する理由としては、下記のように考えられる。
 すなわち、絶縁性を高めるためには、
(1)熱酸化皮膜1011の膜厚を大きくする
(2)シリカ系無機有機ハイブリッド皮膜1012の膜厚を大きくする
ことが考えられるが、(1)熱酸化皮膜1011の膜厚を大きくする場合、熱酸化皮膜1011は無機膜であるため図2Bに示されるようにクラックCが発生しやすくなり、膜厚を大きくすることによる絶縁性の向上効果には限界がある。また、(2)シリカ系無機有機ハイブリッド皮膜1012の膜厚を大きくしても、図2Cに示されるように、塗布液が流れるために、ステンレス箔1010の表面の凹部の膜厚は大きく、凸部の膜厚は小さくなり、場合によってはステンレス箔1010の表面に存在する鋭い突起が最表層に出現する。その場合、ステンレス箔1010の表面を成膜出来ない領域がピンホール状に生じることになり、絶縁性が悪くなってしまう。更には、シリカ系無機有機ハイブリッド皮膜1012の膜厚を大きくし過ぎると、電子デバイスの製造プロセスの加熱工程において、500℃以上の温度に基板が晒される際に造膜成分が熱分解したり、ガスが発生したりするため、電子デバイスの特性に悪影響を及ぼす。
The reason why the leakage current characteristics are particularly improved by combining the thermal oxide film 1011 and the silica-based inorganic / organic hybrid film 1012 is considered as follows.
In other words, in order to increase insulation,
(1) Increasing the film thickness of the thermal oxide film 1011 (2) Increasing the film thickness of the silica-based inorganic-organic hybrid film 1012 can be considered, but (1) When increasing the film thickness of the thermal oxide film 1011, Since the thermal oxide film 1011 is an inorganic film, cracks C are likely to occur as shown in FIG. 2B, and there is a limit to the effect of improving insulation by increasing the film thickness. Further, (2) even if the film thickness of the silica-based inorganic / organic hybrid film 1012 is increased, as shown in FIG. 2C, the coating liquid flows, so that the film thickness of the concave portion on the surface of the stainless steel foil 1010 is large. The film thickness of the portion becomes small, and in some cases, sharp protrusions present on the surface of the stainless steel foil 1010 appear on the outermost layer. In this case, a region where the surface of the stainless steel foil 1010 cannot be formed is formed in a pinhole shape, resulting in poor insulation. Furthermore, if the film thickness of the silica-based inorganic organic hybrid film 1012 is too large, the film-forming component is thermally decomposed when the substrate is exposed to a temperature of 500 ° C. or higher in the heating step of the electronic device manufacturing process, Since gas is generated, the characteristics of the electronic device are adversely affected.
 そこで、本発明においては、熱酸化皮膜を第一の絶縁性皮膜として形成することでピンホール状に成膜できない領域が生じないようにし、更にその上にシリカ系無機有機ハイブリッド材料による絶縁性皮膜を第二の絶縁性皮膜として形成することで、高い絶縁性を発揮させることを基本思想とする。 Therefore, in the present invention, by forming the thermal oxide film as the first insulating film, an area that cannot be formed into a pinhole is prevented, and an insulating film made of a silica-based inorganic-organic hybrid material is formed thereon. The basic idea is to exhibit high insulation by forming as a second insulating film.
 更には、本発明者らは、熱酸化皮膜において、スピネル鉱物又はオリビン鉱物を所定量含有させた場合において、より一層高い絶縁性を発揮させることが出来ることも見出した。 Furthermore, the present inventors have also found that when a predetermined amount of spinel mineral or olivine mineral is contained in the thermal oxide film, even higher insulation can be exhibited.
 以下、上述の新たな知見に基づきなされた本発明を実施形態に基づき図面を参照しながら詳細に説明する。 Hereinafter, the present invention based on the above-described new knowledge will be described in detail with reference to the drawings based on the embodiments.
(金属基板1の構成)
 本実施形態に係る電子デバイス作製用金属基板1は、図3に示されるように、鋼材10と、この鋼材10の表面を被覆する第一の絶縁性皮膜11と、この第一の絶縁性皮膜11の表面を被覆する第二の絶縁性皮膜12と、を備える。
(Configuration of metal substrate 1)
As shown in FIG. 3, the metal substrate 1 for manufacturing an electronic device according to the present embodiment includes a steel material 10, a first insulating film 11 that covers the surface of the steel material 10, and the first insulating film. 11 and a second insulating film 12 covering the surface of 11.
(鋼材10の構成)
 鋼材10としては、ステンレス箔及び鋼板などを用いることができる。鋼材10は電子デバイス作製用金属基板1の基材として使用されることから、50~500μmの厚さを有していればよい。尚、本発明において、ステンレス箔とは、Cr含有量が19質量%以上であり、厚さが150μm以下である箔材を意味する。
(Configuration of steel 10)
As the steel material 10, a stainless steel foil, a steel plate, or the like can be used. Since the steel material 10 is used as a base material of the metal substrate 1 for producing an electronic device, it only needs to have a thickness of 50 to 500 μm. In the present invention, the stainless steel foil means a foil material having a Cr content of 19% by mass or more and a thickness of 150 μm or less.
 本実施形態に係る電子デバイス作製用金属基板1においては、鋼材10の表面の微細な突起をAl及び/又はSiOを含む第一の絶縁性皮膜11により被覆し、その表面に更に第二の絶縁性皮膜12を形成することで表面粗さを小さくし、高い絶縁性を得ることを可能とする。第一の絶縁性皮膜11中に含有されるAl又はSiOは、Al又はSiを含有する鋼材10の熱処理により得られるため、鋼材10におけるAl含有量及びSi含有量は所定の範囲に規定する必要がある。以下、特に説明が無い限り化学成分に関する%は質量%を意味する。 In the metal substrate 1 for manufacturing an electronic device according to the present embodiment, fine protrusions on the surface of the steel material 10 are covered with a first insulating film 11 containing Al 2 O 3 and / or SiO 2 , and the surface is further covered. By forming the second insulating film 12, the surface roughness can be reduced and high insulation can be obtained. Since Al 2 O 3 or SiO 2 contained in the first insulating film 11 is obtained by heat treatment of the steel material 10 containing Al or Si, the Al content and the Si content in the steel material 10 are in a predetermined range. It is necessary to stipulate. Hereinafter, unless otherwise specified, “%” related to chemical components means “% by mass”.
Al+Si:0.5~18.0%
Al:0~13.0%
Si:0~5.0%
 鋼材10におけるAlとSiの合計量が0.5%未満である場合、熱処理により酸化スケール(Fe、Fe)が生成するため、Al及び/又はSiOを含む第一の絶縁性皮膜11を所定の厚みで形成することが困難となる。換言すると、鋼材10におけるAlとSiの合計量が0.5%以上であれば、酸素との親和性がFeよりも強いAl及び/又はSiが熱処理により優先的に酸化するため、鋼板表面から第一の絶縁性皮膜11にAl及び/又はSiを十分に供給することが出来る。これにより、Al及び/又はSiOを含む第一の絶縁性皮膜11を所定の厚みで形成することが出来る。従って、Al及びSiの合計含有量の下限値は、0.5%、より好ましくは0.7%、更に好ましくは1.2%とする。
 本実施形態に係る電子デバイス作製用金属基板1においては、Al及びSiOのうち少なくとも一種が第一の絶縁性皮膜11に含まれていればよいため、鋼材10におけるAl及びSiそれぞれの下限値は0%であってもよい。ただし、Si及びAlは製鋼時の脱酸剤として使用されるため、それぞれの下限値を0.001%としてもよい。
 一方、鋼材10のAl含有量が13.0%を超える場合、鋼材10と第一の絶縁性皮膜11との間に金属間化合物が生成して脆化を引き起こす。従って、鋼材10におけるAl含有量の上限値は13.0%、好ましくは10.0%、更に好ましくは8.0%とする。
 また、鋼材10のSi含有量が5.0%を超える場合、鋼材10の硬度が著しく上昇し、生産性を損なう。従って、Si含有量の上限値は5.0%、好ましくは3.0%、より好ましくは1.5%とする。
 Al+Siの上限は、それぞれの上限値を足し合わせた18.0質量である。
Al + Si: 0.5 to 18.0%
Al: 0 to 13.0%
Si: 0 to 5.0%
When the total amount of Al and Si in the steel material 10 is less than 0.5%, an oxide scale (Fe 2 O 3 , Fe 3 O 4 ) is generated by the heat treatment, and thus Al 2 O 3 and / or SiO 2 is included. It becomes difficult to form the first insulating film 11 with a predetermined thickness. In other words, if the total amount of Al and Si in the steel material 10 is 0.5% or more, Al and / or Si having a stronger affinity for oxygen than Fe is preferentially oxidized by heat treatment, so Al and / or Si can be sufficiently supplied to the first insulating film 11. Thus, it is possible to form a first insulating film 11 containing Al 2 O 3 and / or SiO 2 at a predetermined thickness. Therefore, the lower limit of the total content of Al and Si is 0.5%, more preferably 0.7%, and still more preferably 1.2%.
In the metal substrate 1 for producing an electronic device according to the present embodiment, at least one of Al 2 O 3 and SiO 2 only needs to be included in the first insulating film 11, and therefore each of Al and Si in the steel material 10. The lower limit may be 0%. However, since Si and Al are used as a deoxidizer during steelmaking, the lower limit of each may be 0.001%.
On the other hand, when the Al content of the steel material 10 exceeds 13.0%, an intermetallic compound is generated between the steel material 10 and the first insulating film 11 to cause embrittlement. Therefore, the upper limit of the Al content in the steel material 10 is 13.0%, preferably 10.0%, and more preferably 8.0%.
Moreover, when Si content of the steel material 10 exceeds 5.0%, the hardness of the steel material 10 will raise remarkably and productivity will be impaired. Therefore, the upper limit of the Si content is 5.0%, preferably 3.0%, and more preferably 1.5%.
The upper limit of Al + Si is 18.0 mass, which is the sum of the upper limits.
 鋼材10のAl、Si以外の化学成分は本発明の効果を奏するためには特に限定する必要がなく、一般の鋼材に用いられる化学成分と含有率でよい。鋼の基本5元素の内、Si以外の4元素について、一般的に用いられる含有量は以下の通りである。
C:0.0005~1.0%
Mn:0.01~2.0%
P:0.001~0.02%
S:0.001~0.02%
The chemical components other than Al and Si in the steel material 10 do not have to be specifically limited in order to achieve the effects of the present invention, and may be chemical components and content ratios used in general steel materials. Among the basic five elements of steel, the contents generally used for the four elements other than Si are as follows.
C: 0.0005 to 1.0%
Mn: 0.01 to 2.0%
P: 0.001 to 0.02%
S: 0.001 to 0.02%
 鋼材10は、Mg、Cr、Caを下記の範囲で含有してもよい。
Mg:0~1.5%
Cr:0~25%
Ca:0~0.1%
The steel material 10 may contain Mg, Cr, and Ca in the following ranges.
Mg: 0 to 1.5%
Cr: 0 to 25%
Ca: 0 to 0.1%
 鋼材10におけるMg含有量は0質量%であってもよい。
 ただし、鋼材10はAl及び/又はSiを含有するため、鋼材10にMgを含有させることで、所定の熱処理により第一の絶縁性皮膜11中にスピネル鉱物であるMgAl又はオリビン鉱物であるMgSiOを生成させることが可能となる。後述するように、第一の絶縁性皮膜11中にスピネル鉱物又はオリビン鉱物を所定量含有させることで、一段と高い絶縁性を得ることが可能となるため、Mg含有量を0.1%以上含有させることが好ましく、0.2%以上含有させることが更に好ましい。
 一方、鋼材10のMg含有量を高め過ぎると、鋼材10の加工性を低下させることから、上限を1.5%以下にすることが好ましく、1.2%以下にすることが更に好ましい。
 尚、後述するように、鋼材の表面にMgスラリーを塗布することで、第一の絶縁性皮膜に取り込むMgの量を増加することが出来る。
The Mg content in the steel material 10 may be 0% by mass.
However, since the steel material 10 contains Al and / or Si, MgAl 2 O 4 or olivine mineral, which is a spinel mineral, is contained in the first insulating coating 11 by a predetermined heat treatment by containing Mg in the steel material 10. It becomes possible to produce a certain Mg 2 SiO 4 . As will be described later, by containing a predetermined amount of spinel mineral or olivine mineral in the first insulating film 11, it becomes possible to obtain further higher insulation, so Mg content is 0.1% or more It is preferable to contain 0.2% or more.
On the other hand, if the Mg content of the steel material 10 is excessively increased, the workability of the steel material 10 is lowered, so the upper limit is preferably 1.5% or less, and more preferably 1.2% or less.
As will be described later, by applying Mg slurry to the surface of the steel material, the amount of Mg taken into the first insulating film can be increased.
 鋼材10におけるCr含有量は0質量%であってもよい。
 ただし、鋼材10がAlを含有する場合、鋼材10にCrを含有させることで、所定の熱処理により第一の絶縁性皮膜11中にスピネル鉱物であるCrAlを生成させることが可能となる。後述するように、第一の絶縁性皮膜11中にスピネル鉱物を所定量含有させることで、一段と高い絶縁性を得ることが可能となる。そのため、Cr含有量を0.1%以上含有させることが好ましく、0.2%以上含有させることが更に好ましい。
 本発明における鋼材10はステンレス材を用いることができるので、その上限を25%程度としてもよい。
The Cr content in the steel material 10 may be 0% by mass.
However, if the steel material 10 contains Al, by incorporating the Cr steel material 10, it is possible to produce a CrAl 2 O 4 spinel mineral into the first insulating film 11 by a predetermined heat treatment . As will be described later, by including a predetermined amount of spinel mineral in the first insulating film 11, it becomes possible to obtain a much higher insulating property. For this reason, the Cr content is preferably 0.1% or more, and more preferably 0.2% or more.
Since the steel material 10 in this invention can use a stainless steel material, it is good also considering the upper limit as about 25%.
 鋼材10におけるCa含有量は0質量%であってもよい。
 ただし、鋼材10がSiを含有する場合、鋼材10にCaを含有させることで、所定の熱処理により第一の絶縁性皮膜11中にオリビン鉱物であるCaSiOを生成させることが可能となる。後述するように、第一の絶縁性皮膜11中にオリビン鉱物を所定量含有させることで、一段と高い絶縁性を得ることが可能となるため、Ca含有量を0.0001%以上含有させることが好ましく、0.0005%以上含有させることが更に好ましい。
 しかし、Caを0.1%を超えて含有しても上記効果は変わらないので上限を0.1%とする。
The Ca content in the steel material 10 may be 0% by mass.
However, if the steel material 10 containing Si, by incorporating the Ca in steel 10, it is possible to produce a Ca 2 SiO 4 which is olivine mineral in the first insulating film 11 by a predetermined heat treatment . As will be described later, by containing a predetermined amount of olivine mineral in the first insulating film 11, it becomes possible to obtain a much higher insulating property, so that the Ca content is 0.0001% or more. Preferably, it is more preferably 0.0005% or more.
However, even if Ca exceeds 0.1%, the above effect is not changed, so the upper limit is made 0.1%.
 鋼材10の成分組成は、上記の元素以外に、合金鋼によく用いられるNi、Mo、W、Cu、V、B、Ta、Nb、Y、Zr、Tiなどを含有してもよい。また、残部はFe及び不可避的不純物であってもよい。
 鋼材10はFeと、Al及び/又はSiとを含有するため、所定の熱処理によりスピネル鉱物であるFeAl又はオリビン鉱物であるMgSiOを第一の絶縁性皮膜11中に生成させることが出来る。
The component composition of the steel material 10 may contain Ni, Mo, W, Cu, V, B, Ta, Nb, Y, Zr, Ti, and the like often used for alloy steel, in addition to the above-described elements. Further, the balance may be Fe and inevitable impurities.
Since the steel material 10 contains Fe and Al and / or Si, the spinel mineral FeAl 2 O 4 or the olivine mineral Mg 2 SiO 4 is generated in the first insulating film 11 by a predetermined heat treatment. I can do it.
(第一の絶縁性皮膜及び第二の絶縁性皮膜の構成)
 鋼材10の表面を被覆する第一の絶縁性皮膜11は、Al又はSiOを含有する熱酸化皮膜である。この熱酸化皮膜は、Al及び/又はSiを含有する鋼材10を所定の条件で熱処理することで、鋼材10の表面におけるAl又はSiをより安定な酸化物であるAl又はSiOとすることで得られる。
 熱処理条件は、目的の熱酸化皮膜が得られる限り特に限定されるものではない。尚、熱処理を行う装置は、特に限定されず、処理対象の鋼材10を所定の雰囲気中で所定の温度まで加熱することができる任意の装置を利用することができる。
 第一の絶縁性皮膜11の厚みは、熱処理時の加熱温度及び加熱時間に大きく依存するとともに、鋼材中のAl濃度、Si濃度などにも依存する。
(Configuration of the first insulating film and the second insulating film)
The first insulating film 11 covering the surface of the steel material 10 is a thermal oxide film containing Al 2 O 3 or SiO 2 . This thermal oxide film is obtained by heat-treating the steel material 10 containing Al and / or Si under predetermined conditions, so that Al or Si on the surface of the steel material 10 is more stable with Al 2 O 3 or SiO 2 . It is obtained by doing.
The heat treatment conditions are not particularly limited as long as the desired thermal oxide film is obtained. In addition, the apparatus which heat-processes is not specifically limited, The arbitrary apparatuses which can heat the steel material 10 to be processed to predetermined temperature in predetermined atmosphere can be utilized.
The thickness of the first insulating film 11 greatly depends on the heating temperature and the heating time during the heat treatment, and also depends on the Al concentration, the Si concentration, etc. in the steel material.
 第一の例を挙げると、鋼材10として5%程度のAlを含有する厚さ100μmのステンレス箔を用いる場合、ステンレス箔を大気中900℃~1200℃の温度で1時間の熱処理に供することにより、ステンレス箔の表面に0.4~1.4μm程度の厚みを有する第一の絶縁性皮膜11を形成することが出来る。 As a first example, when a stainless steel foil having a thickness of 100 μm containing about 5% Al is used as the steel material 10, the stainless steel foil is subjected to a heat treatment at a temperature of 900 ° C. to 1200 ° C. for 1 hour in the atmosphere. The first insulating film 11 having a thickness of about 0.4 to 1.4 μm can be formed on the surface of the stainless steel foil.
 第二の例を挙げると、鋼材10として10%程度のAlを含有する厚さ300μmの鋼板を用いる場合、鋼板を大気中900℃~1200℃の温度で6時間の熱処理に供することにより、鋼板の表面に0.3~0.7μm程度の厚みを有する第一の絶縁性皮膜11を形成することが出来る。 As a second example, when a steel plate having a thickness of 300 μm containing about 10% Al is used as the steel material 10, the steel plate is subjected to a heat treatment for 6 hours at a temperature of 900 ° C. to 1200 ° C. in the atmosphere. A first insulating film 11 having a thickness of about 0.3 to 0.7 μm can be formed on the surface.
 第三の例を挙げると、鋼材10として、2.5%程度のSiを含有する厚さ100μmのステンレス箔を用いる場合、ステンレス箔を、露点30℃~50℃に調整した窒素などの不活性ガス中900~1100℃の温度で1時間の熱処理に供することにより、ステンレス箔の表面に0.5~0.9μm程度の厚みを有する第一の絶縁性皮膜11を形成することが出来る。 As a third example, when a stainless steel foil having a thickness of 100 μm and containing about 2.5% Si is used as the steel material 10, the stainless steel foil is inert such as nitrogen adjusted to a dew point of 30 ° C. to 50 ° C. By subjecting to a heat treatment in a gas at a temperature of 900 to 1100 ° C. for 1 hour, the first insulating film 11 having a thickness of about 0.5 to 0.9 μm can be formed on the surface of the stainless steel foil.
 第四の例を挙げると、鋼材10として5%程度のSiを含有する厚さ300μmの鋼板を用いる場合、鋼板を、露点30℃~50℃に調整した不活性ないし還元性ガス雰囲気中750℃~900℃の温度で1時間の熱処理に供することにより、鋼板の表面に0.5~1.5μm程度の厚みを有する第一の絶縁性皮膜11を形成することが出来る。 As a fourth example, when a steel sheet 10 containing about 5% Si and having a thickness of 300 μm is used as the steel material 10, the steel sheet is 750 ° C. in an inert or reducing gas atmosphere adjusted to a dew point of 30 ° C. to 50 ° C. By subjecting to a heat treatment at a temperature of ˜900 ° C. for 1 hour, the first insulating film 11 having a thickness of about 0.5 to 1.5 μm can be formed on the surface of the steel plate.
 尚、処理雰囲気中に酸素源としての水分を加える場合、露点を調整した不活性ガスあるいは還元性ガスを使用することができる。 In addition, when adding moisture as an oxygen source in the treatment atmosphere, an inert gas or a reducing gas with a dew point adjusted can be used.
 第一の絶縁性皮膜11は絶縁性皮膜の特性として必要な109Ωcm以上の電気抵抗率を示す。電気抵抗率の測定は、室温(20℃)において、JIS K 6911(2006年)に従って無機酸化物シートの上下に円形の電極を設け、電極間に500Vを印加し1分後の抵抗値を絶縁抵抗計で測定して行う。AlやSiOによる皮膜は、電気抵抗率が109Ωcm以上である。これより電気抵抗が小さい場合は、半導体として機能して電気を流すため絶縁膜材料として使用するのに適さない。第一の絶縁性皮膜11の電気抵抗率は、好ましくは1010Ωcm以上、より好ましくは1012Ωcm以上である。尚、上述のように、鋼材10におけるAlとSiの合計量が0.5%未満である場合、熱処理により酸化スケール、即ちFe、Feが発生してしまうが、Fe、Feの電気抵抗率は十分ではなく、109Ωcm以上の電気抵抗率とすることが困難となる。従って、第一の絶縁性皮膜11の成分は109Ωcm以上の十分な電気抵抗率を実現可能なAl及び/又はSiOであることが肝要である。 The first insulating film 11 exhibits an electric resistivity of 10 9 Ωcm or more, which is necessary as a characteristic of the insulating film. The electrical resistivity is measured at room temperature (20 ° C.) by providing circular electrodes on the top and bottom of the inorganic oxide sheet according to JIS K 6911 (2006), and 500 V is applied between the electrodes to insulate the resistance value after 1 minute. Measure with an ohmmeter. A film made of Al 2 O 3 or SiO 2 has an electric resistivity of 10 9 Ωcm or more. When the electrical resistance is smaller than this, it functions as a semiconductor and flows electricity, so it is not suitable for use as an insulating film material. The electrical resistivity of the first insulating film 11 is preferably 10 10 Ωcm or more, more preferably 10 12 Ωcm or more. As described above, when the total amount of Al and Si in the steel material 10 is less than 0.5%, the oxide scale by heat treatment, i.e. Fe 2 O 3, Fe 3 O 4 occurs but, Fe 2 The electrical resistivity of O 3 and Fe 3 O 4 is not sufficient, and it becomes difficult to achieve an electrical resistivity of 10 9 Ωcm or more. Therefore, it is important that the component of the first insulating film 11 is Al 2 O 3 and / or SiO 2 capable of realizing a sufficient electrical resistivity of 10 9 Ωcm or more.
 上述のように第一の絶縁性皮膜11を形成することにより、鋼材10の凹凸形状に因らず表面を均一な厚みで被覆することが可能となる。ただし、第一の絶縁性皮膜11だけでは、電子デバイス作製用金属基板1としての絶縁性を確保することが出来ないため、第一の絶縁性皮膜11の表面には、高い絶縁性を有するシリカ系無機有機ハイブリッド材料から形成される第二の絶縁性皮膜12が形成される。第二の絶縁性皮膜は第一の絶縁性皮膜と組み合わせることで絶縁性を高めるとともに、鋼材の表面粗さを小さくする効果も有する。
 一例として、図4に、5%のAlを含有する鋼材(鋼材10)の表面にAlを含有する熱酸化皮膜(第一の絶縁性皮膜11)を形成し、更にその上層にシリカ系無機有機ハイブリッド材料から形成される皮膜(第二の絶縁性皮膜12)を形成した構造のSEM写真を示す。
By forming the first insulating film 11 as described above, the surface can be coated with a uniform thickness regardless of the irregular shape of the steel material 10. However, since the insulating property as the electronic device manufacturing metal substrate 1 cannot be ensured only by the first insulating coating 11, the surface of the first insulating coating 11 has a high insulating silica. A second insulating film 12 formed from the organic inorganic / organic hybrid material is formed. The second insulating film is combined with the first insulating film to enhance the insulating properties and to reduce the surface roughness of the steel material.
As an example, a thermal oxide film (first insulating film 11) containing Al 2 O 3 is formed on the surface of a steel material (steel material 10) containing 5% Al in FIG. The SEM photograph of the structure in which the membrane | film | coat (2nd insulating membrane | film | coat 12) formed from a system inorganic organic hybrid material was formed is shown.
 第二の絶縁性皮膜12は、シリカ系無機有機ハイブリッド材料から形成される。好ましくは、シリカ系無機有機ハイブリッド材料の有機基はメチル基又はフェニル基である。
 第二の絶縁性皮膜12の形成方法は、特に限定されず、使用する材料に応じて適宜選択すればよい。利用可能な絶縁膜形成方法としては、塗布法、スパッタ法、印刷法、CVD法、ゾルゲル法などを挙げることができる。
The second insulating film 12 is formed from a silica-based inorganic / organic hybrid material. Preferably, the organic group of the silica-based inorganic organic hybrid material is a methyl group or a phenyl group.
The method for forming the second insulating film 12 is not particularly limited, and may be appropriately selected depending on the material to be used. Examples of the insulating film forming method that can be used include a coating method, a sputtering method, a printing method, a CVD method, and a sol-gel method.
 シリカ系無機有機ハイブリッド材料は、例えば、メチル基含有シリカ系無機有機ハイブリッド材料である。メチル基含有シリカ系無機有機ハイブリッド材料は、メチル基で修飾されたシロキサン骨格を有する材料であり、次の式A、
    (SiO2x-(CH3SiO3/2(1-x) ・・・式A
(式A中、0<x<1.0)で表すことができる。
 式A中のxが小さいほどメチル基の量が多くなるため皮膜が柔軟化されるが、耐熱性が低下する傾向がある。xの好適な範囲は0.2≦x≦0.8、更には0.4≦x≦0.6である。
The silica-based inorganic / organic hybrid material is, for example, a methyl group-containing silica-based inorganic / organic hybrid material. The methyl group-containing silica-based inorganic organic hybrid material is a material having a siloxane skeleton modified with a methyl group, and has the following formula A,
(SiO 2 ) x- (CH 3 SiO 3/2 ) (1-x) Formula A
(In formula A, 0 <x <1.0).
The smaller the x in Formula A, the more the amount of methyl groups, and the more flexible the film, but the heat resistance tends to decrease. A preferable range of x is 0.2 ≦ x ≦ 0.8, and further 0.4 ≦ x ≦ 0.6.
 メチル基含有シリカ系無機有機ハイブリッド材料による第二の絶縁性皮膜12はゾルゲル法により作製することができる。その作製方法について説明する。テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランから選ばれる少なくとも1種以上のシランと、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシランから選ばれる少なくとも1種以上のシランを有機溶媒中で混合し加水分解する。有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、MEK、MIBKなどをそれぞれ単独、あるいは混合して用いることができる。加水分解に使う水は全アルコキシ基に対して0.3モル~3モル倍であることが望ましい。加水分解時には、ケイ素以外の金属アルコキシド触媒、有機酸、無機酸を用いてもよい。こうして調製したゾルの塗布液を、鋼材10の表面に予め形成した第一の絶縁性皮膜11上に塗布する。塗布には、スピンコート、ディップコート、ロールコートなどの方法を用いることができる。塗布後、80~150℃程度で0.5~5分乾燥後、窒素などの不活性ガス中400~600℃で0.5~10時間熱処理をすることで、メチル基含有シリカ系無機有機ハイブリッド材料による第二の絶縁性皮膜12を得ることができる。 The second insulating film 12 made of a methyl group-containing silica-based inorganic / organic hybrid material can be produced by a sol-gel method. The manufacturing method will be described. At least one selected from tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and at least one selected from methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, and methyltributoxysilane. More than one kind of silane is mixed and hydrolyzed in an organic solvent. As the organic solvent, methanol, ethanol, propanol, butanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, MEK, MIBK, or the like can be used alone or in combination. It is desirable that the water used for the hydrolysis is 0.3 to 3 mol times the total alkoxy groups. At the time of hydrolysis, a metal alkoxide catalyst other than silicon, an organic acid, or an inorganic acid may be used. The sol coating solution thus prepared is applied onto the first insulating film 11 formed in advance on the surface of the steel material 10. For coating, methods such as spin coating, dip coating, and roll coating can be used. After coating, it is dried at about 80 to 150 ° C. for 0.5 to 5 minutes and then heat treated at 400 to 600 ° C. in an inert gas such as nitrogen for 0.5 to 10 hours. The second insulating film 12 made of the material can be obtained.
 第二の絶縁性皮膜12は、電子デバイス作製用に好適なように、3×3cm角で100V印加時の鋼材10のリーク電流を1×10-6A/cm2未満とするような厚さであることが好ましい。例えば、厚さ0.7μmの第一の絶縁性皮膜11上にメチル基含有シリカ系無機有機ハイブリッド材料で厚さ1μmの第二の絶縁性皮膜12を形成した場合、金属基板1のリーク電流は1×10-9A/cm2程度となる。リーク電流は第一の絶縁性皮膜11及び第二の絶縁性皮膜12の厚みだけでなく、それらの材料の種類などにも依存するが、一般的に言えば、第二の絶縁性皮膜12を0.3~5μmの範囲内で形成すれば、上記のリーク電流の要件を満たすことができる。 The thickness of the second insulating film 12 is such that the leakage current of the steel material 10 is less than 1 × 10 −6 A / cm 2 when 100 V is applied at 3 × 3 cm square so as to be suitable for manufacturing an electronic device. It is preferable that For example, when the second insulating film 12 having a thickness of 1 μm is formed on the first insulating film 11 having a thickness of 0.7 μm with a methyl group-containing silica-based inorganic / organic hybrid material, the leakage current of the metal substrate 1 is It becomes about 1 × 10 −9 A / cm 2 . Leakage current depends not only on the thickness of the first insulating film 11 and the second insulating film 12 but also on the type of material thereof, but generally speaking, the second insulating film 12 If it is formed within the range of 0.3 to 5 μm, the above-mentioned leakage current requirement can be satisfied.
 第二の絶縁性皮膜12は、原子間力顕微鏡(AFM)を用いて1μm四方の領域で測定した表面粗さRaが2nm未満であることが好ましい。この条件を満たすことにより、10~150nmの薄い層を積層する有機EL発光素子や有機薄膜太陽電池素子の構造であっても、途切れることなく薄い層で被覆することができるので素子性能を高くすることができる。 The second insulating film 12 preferably has a surface roughness Ra of less than 2 nm measured in an area of 1 μm square using an atomic force microscope (AFM). By satisfying this condition, even if the structure of an organic EL light emitting device or an organic thin film solar cell device in which a thin layer of 10 to 150 nm is laminated, it can be covered with a thin layer without interruption, so that the device performance is enhanced. be able to.
 以下、第一の絶縁性皮膜11と第二の絶縁性皮膜12の膜厚について説明する。
 電子デバイス作製用基板として機能させるためには、前提として、2.0μm以上、基板と電子デバイスとが電気的に遮断されている必要がある。従って、第一の絶縁性皮膜11と第二の絶縁性皮膜12は、その合計膜厚が2.0μm以上となるように形成される。合計膜厚の上限値は、下記に説明する第一の絶縁性皮膜11の膜厚の上限値と第二の絶縁性皮膜12の膜厚の上限値との合計値7.0μmである。
Hereinafter, the film thicknesses of the first insulating film 11 and the second insulating film 12 will be described.
In order to function as a substrate for manufacturing an electronic device, as a premise, the substrate and the electronic device must be electrically cut off by 2.0 μm or more. Therefore, the first insulating film 11 and the second insulating film 12 are formed so that the total film thickness becomes 2.0 μm or more. The upper limit value of the total film thickness is a total value of 7.0 μm including the upper limit value of the film thickness of the first insulating film 11 and the upper limit value of the film thickness of the second insulating film 12 described below.
 第一の絶縁性皮膜11は、0.2μm以上、好ましくは0.3μm以上、更に好ましくは0.5μm以上の厚さを有する。第一の絶縁性皮膜11の厚さが0.2μmより小さい場合、鋼材10の表面を被覆する効果を十分に得ることができない。その結果、第二の絶縁性皮膜12を形成したとしても鋼材凸部の被覆が不十分となり、優れた絶縁性を得ることが出来ない。言い換えると、第一の絶縁性皮膜11の厚さを0.2μm以上とすることで、鋼材10と第二の絶縁性皮膜12とが接触することがないように両者を確実に隔てさせることができ、絶縁性を高めることができる。第二の絶縁性皮膜12だけでは鋼材10の表面の微細な突起が最表面に出現するため、ピンホールやハジキが発生し、良好な絶縁性を得ることが出来ない。
 一方、第一の絶縁性皮膜11の厚さを2.0μm超としても、上述の効果は飽和するだけでなく、第一の絶縁性皮膜11を形成する際の熱処理プロセスにおける冷却工程により、熱酸化物と鋼材との間の熱膨張係数差に起因する反りが鋼材に発生する。基板に反りがあると電子デバイス特性に大きなばらつきが生じたり、デバイスとして機能できなかったりするため、上限を2.0μmとする。
The first insulating film 11 has a thickness of 0.2 μm or more, preferably 0.3 μm or more, more preferably 0.5 μm or more. When the thickness of the first insulating film 11 is smaller than 0.2 μm, the effect of covering the surface of the steel material 10 cannot be sufficiently obtained. As a result, even if the second insulating film 12 is formed, the coating of the steel convex portion becomes insufficient, and excellent insulating properties cannot be obtained. In other words, by setting the thickness of the first insulating film 11 to 0.2 μm or more, the steel material 10 and the second insulating film 12 can be reliably separated so as not to contact each other. Insulation can be improved. Only the second insulating film 12 causes fine protrusions on the surface of the steel material 10 to appear on the outermost surface, so that pinholes and repellency occur, and good insulation cannot be obtained.
On the other hand, even if the thickness of the first insulating film 11 exceeds 2.0 μm, not only the above-described effect is saturated, but also by the cooling step in the heat treatment process when the first insulating film 11 is formed, Warpage due to a difference in thermal expansion coefficient between the oxide and the steel material occurs in the steel material. If the substrate is warped, the electronic device characteristics vary greatly or cannot function as a device. Therefore, the upper limit is set to 2.0 μm.
 第二の絶縁性皮膜12は0.3μm以上、好ましくは0.6μm以上、更に好ましくは0.8μm以上の厚さを有する。第二の絶縁性皮膜の厚さが0.3μm未満では、第一の絶縁性皮膜11の絶縁性を補う効果を得ることが出来ない。
 一方、第二の絶縁性皮膜12の厚さが5.0μmを超える場合、電子デバイスの製造プロセス温度(500℃以上)に晒された際の揮発量が無視できなくなる。基板からの脱ガスは不純物として電子デバイスの特性に悪影響を及ぼす。従って、第二の絶縁性皮膜12の厚さの上限は5.0μm、好ましくは3.0μm、更に好ましくは2.0μmとする。
The second insulating film 12 has a thickness of 0.3 μm or more, preferably 0.6 μm or more, and more preferably 0.8 μm or more. If the thickness of the second insulating film is less than 0.3 μm, the effect of supplementing the insulating property of the first insulating film 11 cannot be obtained.
On the other hand, when the thickness of the second insulating film 12 exceeds 5.0 μm, the volatilization amount when exposed to the manufacturing process temperature (500 ° C. or higher) of the electronic device cannot be ignored. Degassing from the substrate adversely affects the characteristics of the electronic device as an impurity. Therefore, the upper limit of the thickness of the second insulating film 12 is 5.0 μm, preferably 3.0 μm, and more preferably 2.0 μm.
 第一の絶縁性皮膜11は、Alを含有する場合、スピネル鉱物を更に含有することが好ましい。スピネル鉱物を含有させることで、Al粒子の粗大化を抑えることが可能となり、0.2~0.7μm程度に大きさのそろったAl粒子が生成しやすくなる。すなわち、粗大化したAlに起因する表面粗さの悪化を抑えることができる。従って、表面粗さを小さくすることが可能となる。
 粗大化したAlが大量に生成すると、第二の絶縁性皮膜の表面に粗大化したAlの凹凸が発現することになり、表面粗さが低下してしまい、第二の絶縁性皮膜上に形成するデバイス特性が悪化する。特に有機EL素子や有機薄膜太陽電池のように薄膜を積層するデバイスの場合、基板の表面が粗いと積層構造が乱れるためデバイスとして機能できなくなる。
 スピネル鉱物としては、例えば、MgAl、FeAl、Fe(Al,Cr)などが挙げられる。
When the first insulating film 11 contains Al 2 O 3 , it is preferable to further contain a spinel mineral. By containing spinel mineral, it is possible to suppress the coarsening of the Al 2 O 3 particles, easily generated 0.2 ~ 0.7 [mu] m approximately to the size of uniform Al 2 O 3 particles. That is, the deterioration of the surface roughness due to the coarsened Al 2 O 3 can be suppressed. Therefore, the surface roughness can be reduced.
When a large amount of coarsened Al 2 O 3 is produced, roughened Al 2 O 3 irregularities appear on the surface of the second insulating film, and the surface roughness is reduced. The device characteristics formed on the insulating film are deteriorated. In particular, in the case of a device in which thin films are laminated, such as an organic EL element or an organic thin film solar cell, if the surface of the substrate is rough, the laminated structure is disturbed, so that the device cannot function.
Examples of the spinel mineral include MgAl 2 O 4 , FeAl 2 O 4 , Fe (Al, Cr) 2 O 4 and the like.
 より詳細には、第一の絶縁性皮膜11において、スピネル鉱物のAlに対する存在量を、質量%比で3%以上、好ましくは5%以上とすることで、上記の効果を好適に得ることができる。
 一方、第一の絶縁性皮膜11において、スピネル鉱物のAlに対する存在量が、質量%比で11%超である場合、スピネル鉱物とAlとの粒界に空隙が多くなる。その結果、第一の絶縁性皮膜11の機械的強度が不十分となり剥離などが発生するため絶縁性が損なわれる虞がある。従って、スピネル鉱物のAlに対する存在量を、質量%比で11%以下とすることが好ましく、9%以下とすることがより好ましい。
More specifically, in the first insulating film 11, the amount of the spinel mineral with respect to Al 2 O 3 is 3% or more, preferably 5% or more in terms of mass%, so that the above effect can be suitably achieved. Obtainable.
On the other hand, in the first insulating film 11, when the abundance of the spinel mineral with respect to Al 2 O 3 is more than 11% by mass ratio, voids increase at the grain boundary between the spinel mineral and Al 2 O 3. . As a result, the mechanical strength of the first insulating film 11 becomes insufficient and peeling or the like occurs, so that the insulating property may be impaired. Accordingly, the abundance of the spinel mineral with respect to Al 2 O 3 is preferably 11% or less, and more preferably 9% or less, in terms of mass ratio.
 第一の絶縁性皮膜11にAl及びスピネル鉱物を含有させるためには、鋼材10において、Al含有量を0.5質量%以上含有させる必要がある。また、Si含有量は、Al含有量の1/2以下とすることが好ましい。
 そして、この鋼材に対し、900℃~1200℃の範囲で熱処理を行うことにより、第一の絶縁性皮膜11におけるスピネル鉱物のAlに対する存在量を、質量%比で3%以上11%以下とすることができる。スピネル鉱物のAlに対する存在量は、熱処理雰囲気に大きく依存する。例えば、熱処理雰囲気以外の熱処理条件を揃えて同一の鋼材に熱処理を行う場合には、酸素分圧が高いほど、第一の絶縁性皮膜中のスピネル鉱物のAlに対する存在量を低くすることが可能となる。Alは酸化された時にスピネルとコランダムに分配されるが、酸素分圧が高いほど、コランダムへの分配係数が高くなる。これは、結晶学的に緻密な構造であるコランダムの方が高酸素分圧下で安定であるためと推察される。 尚、このような熱処理により第一の絶縁性皮膜11において、Alとスピネル鉱物を共に含有させる場合、Alが鋼材の表面を被覆し、スピネル鉱物は鋼材の表面には直接被覆しない構造とすることができる。図5に、鋼材10の表層を覆うように形成されたAl層11aと、Al層11aを覆うように形成されたスピネル鉱物を含む層11bとを有する絶縁性皮膜11の断面STEM像を示す。このような構造によれば、Al層11aにより鋼材表面を被覆し、更にAl層11aをスピネル鉱物を含む層11bにより被覆するため、絶縁性を向上させることが可能になる。
In order for the first insulating film 11 to contain Al 2 O 3 and a spinel mineral, the steel material 10 needs to contain an Al content of 0.5 mass% or more. Moreover, it is preferable that Si content shall be 1/2 or less of Al content.
Then, the steel material is subjected to heat treatment in the range of 900 ° C. to 1200 ° C., so that the abundance of the spinel mineral in the first insulating coating 11 with respect to Al 2 O 3 is 3% or more and 11% by mass ratio. It can be as follows. The abundance of the spinel mineral with respect to Al 2 O 3 greatly depends on the heat treatment atmosphere. For example, when heat treatment is performed on the same steel material under the same heat treatment conditions other than the heat treatment atmosphere, the higher the oxygen partial pressure, the lower the abundance of spinel mineral in the first insulating film with respect to Al 2 O 3 . It becomes possible. Al is distributed corundum with spinel when oxidized, but the higher the oxygen partial pressure, the higher the distribution coefficient to corundum. This is presumably because corundum having a crystallographically dense structure is more stable under a high oxygen partial pressure. In addition, when Al 2 O 3 and a spinel mineral are both contained in the first insulating film 11 by such heat treatment, the Al 2 O 3 coats the surface of the steel material, and the spinel mineral is directly applied to the surface of the steel material. It can be set as the structure which is not coat | covered. FIG. 5 shows an insulating film 11 having an Al 2 O 3 layer 11a formed so as to cover the surface layer of the steel material 10 and a layer 11b containing a spinel mineral formed so as to cover the Al 2 O 3 layer 11a. A cross-sectional STEM image is shown. According to this structure, the steel surface is coated with the Al 2 O 3 layer 11a, for further coated with a layer 11b comprising a spinel mineral the Al 2 O 3 layer 11a, it is possible to improve the insulation .
 第一の絶縁性皮膜の構造は、例えば走査電子顕微鏡検査と組成分析から観測することが可能である。 The structure of the first insulating film can be observed, for example, by scanning electron microscopy and composition analysis.
 第一の絶縁性皮膜11が形成された鋼材10をCu-Kα線を用いて薄膜X線回折装置で分析を行うと、2θ=25.58°、35.15°、52.55°、57.50°などに回折ピークを示すコランダム構造のAlと、2θ=19.03°、31.27°、36.85°、44.83°などに回折ピークを示すスピネルが検出される。コランダムのメインピークである2θ=35.15°の回折強度(Ic)に対するスピネルのメインピークである2θ=36.85°(Is)の回折強度の比(Is/Ic)からAlに対するスピネル鉱物の存在量を知ることができる。 When the steel material 10 on which the first insulating film 11 is formed is analyzed by a thin film X-ray diffractometer using Cu—Kα rays, 2θ = 25.58 °, 35.15 °, 52.55 °, 57 Corundum structure Al 2 O 3 showing a diffraction peak at .50 ° and spinel showing diffraction peaks at 2θ = 19.03 °, 31.27 °, 36.85 °, 44.83 °, etc. are detected. . From the ratio (Is / Ic) of the diffraction intensity of 2θ = 36.85 ° (Is), which is the main peak of spinel, to the diffraction intensity (Ic) of 2θ = 35.15 °, which is the main peak of corundum, to Al 2 O 3 You can know the abundance of spinel minerals.
 また、第一の絶縁性皮膜がSiOを含有する場合、オリビン鉱物を更に含有することが好ましい。オリビン鉱物は鋼材10との密着性に優れ絶縁性が高いので、オリビン鉱物を含むことは第一の絶縁性皮膜11の特性向上に寄与する。
 オリビン鉱物を含有させることで、非晶質のSiOに対するオリビン鉱物の割合を高め、十分な密着性を得ることが可能となる。密着性を高めることで、熱膨張係数差に起因するクラックや剥離の発生を抑えることができ、更に良好な絶縁性を得ることが可能となる。
 オリビン鉱物としては、例えばMgSiO、FeSiO、CaSiOなどが挙げられる。
Also, if the first insulating film contains SiO 2, preferably further contains an olivine mineral. Since the olivine mineral is excellent in adhesiveness with the steel material 10 and has high insulation, the inclusion of the olivine mineral contributes to the improvement of the characteristics of the first insulating film 11.
By containing the olivine mineral, it is possible to increase the ratio of the olivine mineral to the amorphous SiO 2 and obtain sufficient adhesion. By increasing the adhesion, it is possible to suppress the occurrence of cracks and peeling due to the difference in thermal expansion coefficient, and it is possible to obtain better insulating properties.
Examples of olivine minerals include Mg 2 SiO 4 , Fe 2 SiO 4 , Ca 2 SiO 4 and the like.
 より詳細には、第一の絶縁性皮膜において、Siのモル数に対するMg、Fe、及びCaのモル数の和の比を1.2以上、より好ましくは1.4以上とすることで、上記の効果を得ることができる。
 一方、第一の絶縁性皮膜において、Siのモル数に対するMg、Fe、及びCaのモル数の和の比が2.0超である場合には、オリビン鉱物の他にMg、Fe、Caの酸化物が存在することになり、それらの酸化物によって表面が粗くなる虞がある。従って、第一の絶縁性皮膜において、Siのモル数に対するMg、Fe、及びCaのモル数の和の比は、2.0以下であることが好ましく、1.8以下であることが更に好ましい。
More specifically, in the first insulating film, the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is 1.2 or more, more preferably 1.4 or more. The effect of can be obtained.
On the other hand, in the first insulating film, when the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si exceeds 2.0, in addition to the olivine mineral, Mg, Fe, and Ca There will be oxides, and these oxides may roughen the surface. Therefore, in the first insulating film, the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is preferably 2.0 or less, and more preferably 1.8 or less. .
 第一の絶縁性皮膜11にSiO及びオリビン鉱物を含有させるためには、鋼材10において、Si含有量を0.5質量%以上含有させる必要がある。また、Al含有量は、Si含有量の1/2以下とすることが好ましい。
 そして、この鋼材に対し、900℃~1200℃の範囲で熱処理を行うことにより、第一の絶縁性皮膜におけるSiのモル数に対するMg、Fe、及びCaのモル数の和の比を1.2以上2.0以下とすることが出来る。
 また、第一の絶縁性皮膜におけるSiのモル数に対するMg、Fe、及びCaのモル数の和の比は、後述するように、熱処理前の鋼材表面にMgOスラリーを塗布することによっても調整することが出来る。
 尚、このような熱処理により第一の絶縁性皮膜11において、SiOとオリビン鉱物を共に含有させる場合、SiOが鋼材の表面を被覆し、オリビン鉱物は鋼材の表面には直接被覆しない構成とすることができるため、優れた絶縁性を得ることが出来る。
In order to contain the SiO 2 and the olivine mineral in the first insulating film 11, the steel material 10 needs to contain Si content of 0.5 mass% or more. Moreover, it is preferable that Al content shall be 1/2 or less of Si content.
Then, by performing a heat treatment on the steel material in the range of 900 ° C. to 1200 ° C., the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is 1.2. It can be set to 2.0 or less.
Moreover, the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is also adjusted by applying MgO slurry to the surface of the steel material before heat treatment, as will be described later. I can do it.
In the case where both the SiO 2 and the olivine mineral are contained in the first insulating film 11 by such a heat treatment, the SiO 2 covers the surface of the steel material, and the olivine mineral does not directly cover the surface of the steel material. Therefore, excellent insulating properties can be obtained.
 第一の絶縁性皮膜11が形成された鋼材10について、エネルギー分散型X線分析装置(EDS)で元素分析を行い、存在する各元素の原子数百分率を求める。原子数の比はモル比になるので、Siのモル数M(S)に対するMg、Fe、およびCaのモル数の和M(M+F+C)の比、すなわちM(M+F+C)/M(S)を求めることができる。 The steel material 10 on which the first insulating film 11 is formed is subjected to elemental analysis with an energy dispersive X-ray analyzer (EDS) to obtain the atomic percentage of each element present. Since the ratio of the number of atoms is a molar ratio, the ratio of the sum M (M + F + C) of the number of moles of Mg, Fe, and Ca to the number of moles M (S) of Si, that is, M (M + F + C) / M (S) is obtained. be able to.
 尚、第一の絶縁性皮膜11中においては、スピネル鉱物としては特にMgAl24、オリビン鉱物としては特にMgSiO4が、絶縁特性の向上効果が大きい。
 しかし、鋼材10に含有させることが出来るMg量には限りがある。そこで、本発明者らが第一の絶縁性皮膜11中にMgをより多く含ませることを模索した結果、鋼材10の熱処理に先立ち、その表面にマグネシア(MgO)粒子のスラリーを塗布しておくことが有効であることを突き止めた。
In the first insulating film 11, MgAl 2 O 4 is particularly effective as a spinel mineral, and Mg 2 SiO 4 is particularly effective as an olivine mineral.
However, the amount of Mg that can be contained in the steel material 10 is limited. Therefore, as a result of the inventors seeking to contain more Mg in the first insulating film 11, a slurry of magnesia (MgO) particles is applied to the surface of the steel material 10 prior to heat treatment. Was found to be effective.
 従って、より多くのMgAl24又はMgSiO4を第一の絶縁性皮膜11中に存在させるために、マグネシア(MgO)粒子のスラリーを鋼材10の表面に予め塗布してから熱処理を行うことが好ましい。マグネシア粒子としては、平均粒径が0.5~3μm、好ましくは0.8~2μm程度のものを使用することができる。スラリーは、マグネシア粒子を水又は有機溶剤(各種アルコールなど)に分散させて調製することができる。スラリー濃度は20~80wt%が好適である。20wt%を下回ると、MgOが塗布できていない領域が生じる。80wt%を超えると、MgOの凝集が起き、局所的に粗大なMgSiO4粒子ができるため、熱処理後の鋼材10の平滑性が悪くなる。スラリー濃度は、好ましくは25~70wt%、より好ましくは30~60wt%である。スラリーの塗布は、スラリー塗布に通常用いられる方法、例えばロールコートあるいはバーコート法で、1~5μm程度の塗布膜厚となるように行うことができる。スラリーを1μm未満の厚さで塗布するのは実際的でなく、また塗布厚さが1μmに満たない場合、スラリーを使用する効果が薄くなる。塗布厚さが5μmを超えると、未反応のMgOを大量に洗い流すことになり、コストに見合った効果が得られない。 Therefore, in order to make more MgAl 2 O 4 or Mg 2 SiO 4 exist in the first insulating film 11, a slurry of magnesia (MgO) particles is applied on the surface of the steel material 10 before heat treatment. It is preferable. As the magnesia particles, those having an average particle size of about 0.5 to 3 μm, preferably about 0.8 to 2 μm can be used. The slurry can be prepared by dispersing magnesia particles in water or an organic solvent (such as various alcohols). The slurry concentration is preferably 20 to 80 wt%. When the amount is less than 20 wt%, a region where MgO is not applied is generated. If it exceeds 80 wt%, MgO agglomerates and locally coarse Mg 2 SiO 4 particles are formed, so that the smoothness of the steel material 10 after heat treatment becomes poor. The slurry concentration is preferably 25 to 70 wt%, more preferably 30 to 60 wt%. The slurry can be applied by a method usually used for slurry application, for example, roll coating or bar coating so as to obtain a coating film thickness of about 1 to 5 μm. It is not practical to apply the slurry to a thickness of less than 1 μm, and if the application thickness is less than 1 μm, the effect of using the slurry is reduced. When the coating thickness exceeds 5 μm, a large amount of unreacted MgO is washed away, and an effect commensurate with the cost cannot be obtained.
 MgOスラリーを利用して第一の絶縁性皮膜11中にMgAl24又はMgSiO4を存在させる目的は、絶縁特性の向上にあるだけでなく、特に鋼板をコイル状に巻いて熱処理する時に、MgOスラリー層をポーラスな層として機能させて雰囲気ガスをコイルの内部にまで届きやすくするためでもある。 The purpose of causing MgAl 2 O 4 or Mg 2 SiO 4 to be present in the first insulating film 11 using the MgO slurry is not only to improve the insulation characteristics, but also to heat-treat in particular by winding a steel plate in a coil shape. Sometimes, the MgO slurry layer functions as a porous layer so that the atmospheric gas can easily reach the inside of the coil.
 次に、実施例により本発明を更に説明する。本発明がここに提示した実施例に限定されないことは言うまでもない。 Next, the present invention will be further described with reference to examples. It goes without saying that the invention is not limited to the embodiments presented here.
 まず、電子デバイス作製用金属基板の鋼材として6種類の鋼材A~Eを準備した。表1に、鋼材A~Eの種類、厚さ(μm)、主要成分(質量%)、及び、表面粗さRa(nm)を示す。
 表面粗さRa(nm)は、JIS B 0601に基づき測定した。
 鋼材A、Bは、Al含有量がSi含有量よりも多いAl系鋼材である。
 鋼材Cは、Si+Al量が少ない鋼材(比較例)である。
 鋼材D、Eは、Si含有量がAl含有量よりも多いSi系鋼材である。
First, six types of steel materials A to E were prepared as steel materials for metal substrates for electronic device fabrication. Table 1 shows the types, thickness (μm), main components (mass%), and surface roughness Ra (nm) of the steel materials A to E.
The surface roughness Ra (nm) was measured based on JIS B 0601.
Steel materials A and B are Al-based steel materials in which the Al content is higher than the Si content.
The steel material C is a steel material (comparative example) with a small amount of Si + Al.
Steel materials D and E are Si-based steel materials in which the Si content is higher than the Al content.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実験No.1~12、14、15として、鋼材A(ステンレス箔)に対し所定の熱処理条件で熱処理を行うことで、第一の絶縁性皮膜を形成した。
 実験No.13として、表面にMgOスラリーを1.0μm厚で塗布した鋼材A(ステンレス箔)に対し所定の熱処理条件で熱処理を行うことで、第一の絶縁性皮膜を形成した。具体的には、MgOスラリーの塗布は、平均粒径0.5μmのMgO粒子を水に30wt%で分散させて得られたMgOスラリーをロールコーターで1.0μm厚で鋼材Aの表面に成膜することで行った。
Experiment No. As 1 to 12, 14, and 15, the steel material A (stainless foil) was heat-treated under predetermined heat treatment conditions to form a first insulating film.
Experiment No. No. 13, the first insulating film was formed by heat-treating the steel material A (stainless foil) coated with MgO slurry on the surface with a thickness of 1.0 μm under predetermined heat treatment conditions. Specifically, the MgO slurry is coated on the surface of the steel material A with a thickness of 1.0 μm by using a roll coater, which is obtained by dispersing MgO particles having an average particle diameter of 0.5 μm in water at 30 wt%. It was done by doing.
 実験No.16~20として、鋼材B(鋼板)に対し所定の熱処理条件で熱処理を行うことで、第一の絶縁性皮膜を形成した。
 実験No.21として、鋼材C(鋼板)に対し所定の熱処理条件で熱処理を行った。
Experiment No. 16 to 20, the first insulating film was formed by performing heat treatment on the steel material B (steel plate) under predetermined heat treatment conditions.
Experiment No. 21, the steel material C (steel plate) was heat-treated under predetermined heat treatment conditions.
 実験No.22~36として、鋼材D(ステンレス箔)に対し所定の熱処理条件で熱処理を行うことで、第一の絶縁性皮膜を形成した。鋼材No.23~36については、実験No.13と同様の手法でMgOスラリーを所定の厚みで塗布してから熱処理を行った。
 実験No.37~41として、鋼材E(鋼板)に対し所定の熱処理条件で熱処理を行うことで、第一の絶縁性皮膜を形成した。
Experiment No. As the materials 22 to 36, the first insulating film was formed by heat-treating the steel material D (stainless steel foil) under predetermined heat treatment conditions. Steel No. For Experiments 23 to 36, Experiment No. After the MgO slurry was applied in a predetermined thickness by the same method as in No. 13, heat treatment was performed.
Experiment No. As the materials 37 to 41, the steel material E (steel plate) was heat-treated under predetermined heat treatment conditions to form a first insulating film.
 表2、表3には、実験No.1~41に関し、使用鋼材、熱処理条件、及び、第一の絶縁性皮膜の性質を示す。
 より詳細には、熱処理条件として、熱処理雰囲気、加熱温度(℃)、及び、加熱時間(hr)を示す。
In Tables 2 and 3, Experiment No. Regarding 1-41, the steel materials used, the heat treatment conditions, and the properties of the first insulating film are shown.
More specifically, the heat treatment conditions include a heat treatment atmosphere, a heating temperature (° C.), and a heating time (hr).
 熱処理雰囲気に関し、「DA」は、大気の水蒸気含有量を少なくし、露点を-50℃に調整した乾燥空気(Dry Air)を意味する。また、例えばDA/O=80/20は体積比80:20の乾燥空気と酸素の混合ガスを意味する。 With respect to the heat treatment atmosphere, “DA” means dry air having a reduced water vapor content in the atmosphere and a dew point adjusted to −50 ° C. For example, DA / O 2 = 80/20 means a mixed gas of dry air and oxygen having a volume ratio of 80:20.
 表2、表3における第一の絶縁性皮膜の性質としては、厚さ(μm)、第一の絶縁性皮膜形成後のリーク電流(A/cm)、及び、スピネル鉱物のAlに対する存在量(質量%比)、又は、Siのモル数に対するMg、Fe、及びCaのモル数の和の比を示す。 The properties of the first insulating film in Tables 2 and 3 are the thickness (μm), the leakage current (A / cm 2 ) after the formation of the first insulating film, and the spinel mineral Al 2 O 3. The abundance (mass% ratio) with respect to or the ratio of the sum of the number of moles of Mg, Fe and Ca to the number of moles of Si.
 第一の絶縁性皮膜形成後のリーク電流(A/cm)を得るために、第一の絶縁性皮膜の表面にイオンコータを用いて1×1cm角のPt上部電極を形成し、金属基板そのものを下部電極として100Vを印加してリーク電流を測定した。
 下部電極の取り出しのために表面の熱酸化膜の一部を削り取った。リーク電流の値は20か所で測定して得られたリーク電流(A/cm)の最小値である。
In order to obtain a leakage current (A / cm 2 ) after forming the first insulating film, a 1 × 1 cm square Pt upper electrode is formed on the surface of the first insulating film using an ion coater, and a metal substrate The leakage current was measured by applying 100 V as the lower electrode.
A part of the surface thermal oxide film was shaved off for taking out the lower electrode. The value of the leak current is the minimum value of the leak current (A / cm 2 ) obtained by measuring at 20 locations.
 スピネル鉱物のAlに対する存在量(質量%比)は、第一の絶縁性皮膜に対しCu-Kα線を用いた薄膜XRD測定を行うことで算出した。より具体的には、コランダム構造(α-Al23)に帰属するピークの回析強度(Ic)に対する、スピネル構造(MgAl24,FeAl24、Fe(Al,Cr)およびそれらの固溶体など)に帰属するピークの回析強度(Is)の比(Is/Ic)に基づき算出した。
 Siのモル数に対するMg、Fe、及びCaのモル数の和の比は、第一の絶縁性皮膜が付いている鋼材について、エネルギー分散型X線分析装置(EDS)で元素分析を行い、存在する各元素の原子数百分率を求め、Siのモル数M(S)に対するMg、Fe、およびCaのモル数の和M(M+F+C)の比、すなわちM(M+F+C)/M(S)から求めた。
The abundance (mass% ratio) of the spinel mineral with respect to Al 2 O 3 was calculated by performing thin film XRD measurement using Cu—Kα rays on the first insulating film. More specifically, the spinel structure (MgAl 2 O 4 , FeAl 2 O 4, Fe (Al, Cr) 2 O) with respect to the diffraction intensity (Ic) of the peak attributed to the corundum structure (α-Al 2 O 3 ). 4 and their solid solutions) and the like, based on the ratio (Is / Ic) of the diffraction intensity (Is) of the peaks attributed to them.
The ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si is present when the steel material with the first insulating film is subjected to elemental analysis with an energy dispersive X-ray analyzer (EDS). The atomic percentage of each element to be obtained was determined from the ratio of the sum M (M + F + C) of the number of moles of Mg, Fe and Ca to the number of moles M (S) of Si, that is, M (M + F + C) / M (S). .
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 実験No.1~41について、熱処理後に、第二の絶縁性皮膜として
(A)フェニル基含有シリカ膜、
(B)ポリジメチルシロキサン系皮膜、及び
(C)メチル基含有シリカ膜
のいずれか一種を所定の厚さで形成した。具体的な形成方法を以下に示す。
Experiment No. For 1-4, after heat treatment, (A) a phenyl group-containing silica film as the second insulating film,
Any one of (B) a polydimethylsiloxane-based film and (C) a methyl group-containing silica film was formed with a predetermined thickness. A specific forming method is shown below.
(A)フェニル基含有シリカ膜
 フェニルトリエトキシシランをエタノール中で酢酸触媒を用いて全アルコキシ基に対して等モルの水で加水分解した後、エバポレータで濃縮してフェニル基で修飾されたシリカレジンを作製した。レジンをトルエンに溶かして粘度が10mPa・sになるようにフェニル基含有シリカ膜形成用の塗布液を調製した。スリットコータで塗布後、400℃で5分の熱処理を窒素中で行った。
(A) Phenyl group-containing silica film After hydrolyzing phenyltriethoxysilane in ethanol with an equimolar amount of water with respect to all alkoxy groups using an acetic acid catalyst, a silica resin modified with a phenyl group by concentration with an evaporator is obtained. Produced. The resin was dissolved in toluene to prepare a coating solution for forming a phenyl group-containing silica film so that the viscosity was 10 mPa · s. After coating with a slit coater, heat treatment was performed at 400 ° C. for 5 minutes in nitrogen.
(B)ポリジメチルシロキサン系皮膜
 エタノール中で重量平均分子量3000のシラノール末端ポリジメチルシロキサン1モルとチタニウムエトキシド2モルを混合し、2モルの水で加水分解を行って粘度が6mPa・sの塗布液を作製した。スリットコータで塗布後、大気中300℃で30分の熱処理を行った。
(B) Polydimethylsiloxane-based film 1 mol of silanol-terminated polydimethylsiloxane having a weight average molecular weight of 3,000 and 2 mol of titanium ethoxide are mixed in ethanol, hydrolyzed with 2 mol of water, and coated with a viscosity of 6 mPa · s. A liquid was prepared. After coating with a slit coater, heat treatment was performed in the atmosphere at 300 ° C. for 30 minutes.
(C)メチル基含有シリカ膜
 メチルトリエトキシシランとテトラメトキシシランを1:1のモル比で2-エトキシエタノール溶媒に加え、酢酸触媒下で全アルコキシ基に対して等モルの水で加水分解してゾルを作製した。得られたゾルの粘度は3.5mPa・sであった。スリットコータで塗布後、窒素中450℃で5分の熱処理を行った。
(C) Methyl group-containing silica film Methyltriethoxysilane and tetramethoxysilane are added to 2-ethoxyethanol solvent at a molar ratio of 1: 1, and hydrolyzed with equimolar water to all alkoxy groups under an acetic acid catalyst. A sol was prepared. The viscosity of the obtained sol was 3.5 mPa · s. After coating with a slit coater, heat treatment was performed at 450 ° C. for 5 minutes in nitrogen.
 表4、表5に、実験No.1~41について、第二の絶縁性皮膜の性質、表面粗さRa(nm)、皮膜合計厚さ(μm)、及び、第二の絶縁性皮膜形成後のリーク電流を示す。
 より詳細には、第二の絶縁性皮膜の性質として、厚さ(μm)、及び、種類を示す。
 また、第二の絶縁性皮膜形成後のリーク電流として、リーク電流の平均(A/cm)、及び、リーク電流の分布評価を示す。
In Tables 4 and 5, Experiment No. For 1-41, the properties of the second insulating film, the surface roughness Ra (nm), the total film thickness (μm), and the leakage current after forming the second insulating film are shown.
More specifically, the thickness (μm) and the type are shown as the properties of the second insulating film.
In addition, as a leakage current after forming the second insulating film, an average leakage current (A / cm 2 ) and evaluation of the distribution of leakage current are shown.
 表面粗さRa(nm)は、AFM(原子間力顕微鏡、Atomic Force Microscope)によって1×1μm角の視野で測定した値である。
 皮膜合計厚さ(μm)は、第一の絶縁性皮膜の厚さと第二の絶縁性皮膜の厚さとの合計値である。
 リーク電流の平均(A/cm)に示した数値は、第二の絶縁性皮膜の表面における1cm×1cmの領域に上部電極形成後、金属基板との間に100Vを印加した際のリーク電流を20か所で測定して得られたリーク電流(A/cm)の平均値である。
 リーク電流の分布評価は、上記20か所で測定して得られたリーク電流について、
 リーク電流≧1E-5(A/cm)が1点でもあればBad、
 1E-5(A/cm)>リーク電流≧1E-8(A/cm)が1点でもあればFair、
 すべての測定点で1E-8(A/cm)>リーク電流であればGood
と評価した。
The surface roughness Ra (nm) is a value measured with an AFM (Atomic Force Microscope) in a 1 × 1 μm square field of view.
The total film thickness (μm) is the total value of the thickness of the first insulating film and the thickness of the second insulating film.
The numerical value shown in the average (A / cm 2 ) of the leakage current is the leakage current when 100 V is applied between the metal substrate and the upper electrode formed in the 1 cm × 1 cm region on the surface of the second insulating film. Is an average value of leakage current (A / cm 2 ) obtained by measuring at 20 locations.
The distribution evaluation of the leakage current is carried out with respect to the leakage current obtained by measuring at the above 20 locations.
If the leakage current ≧ 1E-5 (A / cm 2 ) is even one point, Bad,
If 1E-5 (A / cm 2 )> leakage current ≧ 1E-8 (A / cm 2 ) is at least one point,
If 1E-8 (A / cm 2 )> leakage current at all measurement points, Good
It was evaluated.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 実験No.2~11、13、17~19では、使用した鋼材及び製造条件が適切であり、スピネル鉱物を有する第一の絶縁性皮膜を適切な厚さで形成し、更に第二の絶縁性皮膜を適切な厚さで形成した。従って、電子デバイスの作製に好適に用いることができる絶縁性に優れた金属基板を得ることが出来た。 Experiment No. In 2 to 11, 13, and 17 to 19, the steel material used and the production conditions are appropriate, the first insulating film having the spinel mineral is formed with an appropriate thickness, and the second insulating film is further appropriate. It was formed with various thicknesses. Therefore, the metal substrate excellent in the insulation which can be used suitably for manufacture of an electronic device was able to be obtained.
 特に、実験No.2~11では、第一の絶縁性皮膜の厚さが0.9μm、第二の絶縁性皮膜の厚さが3.6μmで一定あり、スピネル鉱物のAlに対する存在量(質量%比)が2.8~13.3の範囲で分散している。図6は、これらの実験例について、第一の絶縁性皮膜におけるスピネル鉱物のAlに対する存在量の質量%比(横軸)と、リーク電流(A/cm)及び表面粗さRa(nm)(縦軸)との関係を示すグラフである。この図6からわかるように、スピネル鉱物のAlに対する存在量(質量%比)が3%以上11%以下である場合には、リーク電流及び表面粗さを小さくすることができる。 In particular, Experiment No. 2 to 11, the thickness of the first insulating film is constant at 0.9 μm and the thickness of the second insulating film is constant at 3.6 μm, and the abundance of spinel mineral with respect to Al 2 O 3 (mass% ratio) ) Are dispersed in the range of 2.8 to 13.3. FIG. 6 shows the mass% ratio (horizontal axis) of the abundance of spinel mineral to Al 2 O 3 in the first insulating film, leakage current (A / cm 2 ), and surface roughness Ra for these experimental examples. It is a graph which shows the relationship with (nm) (vertical axis). As can be seen from FIG. 6, when the abundance (mass% ratio) of the spinel mineral to Al 2 O 3 is 3% or more and 11% or less, the leakage current and the surface roughness can be reduced.
 実験No.23~35、38~40では、使用した鋼材及び製造条件が適切であり、オリビン鉱物を有する第一の絶縁性皮膜を適切な厚さで形成し、更に第二の絶縁性皮膜を適切な厚さで形成した。従って、電子デバイスの作製に好適に用いることができる絶縁性に優れた金属基板を得ることが出来た。 Experiment No. In Nos. 23 to 35 and 38 to 40, the steel materials used and the production conditions are appropriate, the first insulating film having olivine mineral is formed with an appropriate thickness, and the second insulating film is further formed with an appropriate thickness. Formed. Therefore, the metal substrate excellent in the insulation which can be used suitably for manufacture of an electronic device was able to be obtained.
 特に、実験No.23~32では、第一の絶縁性皮膜の厚さが0.7μm、第二の絶縁性皮膜の厚さが1.5μmで一定あり、Siのモル数に対するMg、Fe、及びCaのモル数の和の比が1.1~2.1の範囲で分散している。図7は、これらの実験例について、第一の絶縁性皮膜における、Siのモル数に対するMg、Fe、及びCaのモル数の和の比(横軸)と、リーク電流(A/cm)及び表面粗さRa(nm)(縦軸)との関係を示すグラフである。
 この図7からわかるように、第一の絶縁性皮膜における、Siのモル数に対するMg、Fe、及びCaのモル数の和の比が1.2~2.0である場合には、リーク電流及び表面粗さを小さくすることができる。
In particular, Experiment No. 23 to 32, the thickness of the first insulating film is constant at 0.7 μm, the thickness of the second insulating film is constant at 1.5 μm, and the number of moles of Mg, Fe, and Ca with respect to the number of moles of Si. Is dispersed in a range of 1.1 to 2.1. FIG. 7 shows the ratio of the sum of the number of moles of Mg, Fe and Ca to the number of moles of Si in the first insulating film (horizontal axis) and the leakage current (A / cm 2 ) for these experimental examples. It is a graph which shows the relationship with surface roughness Ra (nm) (vertical axis).
As can be seen from FIG. 7, when the ratio of the sum of the number of moles of Mg, Fe, and Ca to the number of moles of Si in the first insulating film is 1.2 to 2.0, the leakage current In addition, the surface roughness can be reduced.
 実験No.1、16は、第一の絶縁性皮膜の厚みが小さい比較例である。第一の絶縁性皮膜により鋼材の凸部を完全に被覆しきれないため、第二の絶縁性皮膜を形成しても鋼材凸部の被覆が不十分となり、絶縁性が得られなかった。
 実験No.21は、鋼材におけるSi+Al量が小さいことに起因して酸化スケール皮膜が生成した比較例である。
 実験No.12、20は、第一の絶縁性皮膜の厚みが大きい比較例である。これらの比較例では、第一の絶縁性皮膜を形成する際の熱処理プロセスにおける冷却工程により、熱酸化物と鋼材との間の熱膨張係数差に起因する反りが鋼材に発生した。基板に反りが発生するとその上に形成する電子デバイス特性に大きなばらつきが生じたり、デバイスとして機能できなかったりするため比較例としている。
 実験No.14は、第二の皮膜が厚すぎる比較例である。第二の絶縁性皮膜を形成後には良好なリーク電流が得られたものの、電子デバイスの製造プロセスを想定した500℃の熱処理を行ったところ、第二の絶縁性皮膜の成分の揮発により欠陥が発生し、電子デバイス作製用金属基板としての性能を得ることができなかった。
 実験No.15は、第二の絶縁性皮膜の厚みが小さい比較例であり、高い絶縁性を得ることができなかった。
Experiment No. 1 and 16 are comparative examples in which the thickness of the first insulating film is small. Since the convex portion of the steel material could not be completely covered with the first insulating film, the coating of the convex portion of the steel material was insufficient even when the second insulating film was formed, and the insulation was not obtained.
Experiment No. 21 is a comparative example in which an oxide scale film was generated due to the small amount of Si + Al in the steel material.
Experiment No. 12 and 20 are comparative examples in which the thickness of the first insulating film is large. In these comparative examples, warping due to the difference in thermal expansion coefficient between the thermal oxide and the steel material occurred in the steel material due to the cooling step in the heat treatment process when forming the first insulating film. If warpage occurs in the substrate, the characteristics of the electronic device formed on the substrate may vary greatly, or the device may not function as a comparative example.
Experiment No. 14 is a comparative example in which the second film is too thick. Although a good leakage current was obtained after the formation of the second insulating film, a heat treatment at 500 ° C. was performed assuming an electronic device manufacturing process. As a result, defects were caused by the volatilization of the components of the second insulating film. The performance as a metal substrate for producing an electronic device could not be obtained.
Experiment No. 15 is a comparative example in which the thickness of the second insulating film is small, and high insulating properties could not be obtained.
 実験No.22、37は第一の絶縁性皮膜の厚みが小さい比較例である。第一の絶縁性皮膜により鋼材の凸部を完全に被覆しきれないため、第二の絶縁性皮膜を形成しても鋼材凸部の被覆が不十分となり、絶縁性が得られなかった。
 実験No.36、41は、第一の絶縁性皮膜の厚みが大きい比較例である。これらの比較例では、第一の絶縁性皮膜を形成する際の熱処理プロセスにおける冷却工程により、熱酸化物と鋼材との間の熱膨張係数差に起因する反りが鋼材に発生した。基板に反りが発生するとその上に形成する電子デバイス特性に大きなばらつきが生じたり、デバイスとして機能できなかったりするため比較例としている。
Experiment No. 22 and 37 are comparative examples in which the thickness of the first insulating film is small. Since the convex portion of the steel material could not be completely covered with the first insulating film, the coating of the convex portion of the steel material was insufficient even when the second insulating film was formed, and the insulation was not obtained.
Experiment No. 36 and 41 are comparative examples in which the thickness of the first insulating film is large. In these comparative examples, warping due to the difference in thermal expansion coefficient between the thermal oxide and the steel material occurred in the steel material due to the cooling step in the heat treatment process when forming the first insulating film. If warpage occurs in the substrate, the characteristics of the electronic device formed on the substrate may vary greatly, or the device may not function as a comparative example.
 本発明によれば、電子デバイスの製造に好適に用いることができる絶縁性に優れた金属基板とパネルとを提供できる。 According to the present invention, it is possible to provide a metal substrate and a panel excellent in insulation that can be suitably used for manufacturing an electronic device.
 1 電子デバイス作製用金属基板
 10 鋼材
 11 第一の絶縁性皮膜
 11a Al
 11b スピネル鉱物を含む層
 12 第二の絶縁性皮膜
 101 鋼材
 102 絶縁性を有する皮膜
 103 上部電極
 104 電圧計
 105 電流計
 106 電源
 141 基板
 142 裏面電極
 143 光吸収層
 144 バッファ層
 145 半絶縁層
 146 窓層
 147 上部電極
 148 反射防止膜
 1010 ステンレス箔
 1011 熱酸化皮膜
 1012 シリカ系無機有機ハイブリッド皮膜
1 electronic device fabrication metal substrate 10 steel member 11 first insulating film 11a Al 2 O 3 layer 11b coating 103 upper electrode 104 voltmeter 105 having a layer 12 second insulating film 101 steel 102 an insulating containing spinel mineral Ammeter 106 Power supply 141 Substrate 142 Back electrode 143 Light absorption layer 144 Buffer layer 145 Semi-insulating layer 146 Window layer 147 Upper electrode 148 Antireflection film 1010 Stainless steel foil 1011 Thermal oxide film 1012 Silica-based inorganic / organic hybrid film

Claims (9)

  1.  Al含有量が0~13.0質量%であり、Si含有量が0~5.0質量%であり、前記Al及び前記Siの合計含有量が0.5~18.0質量%である鋼材と;
     前記鋼材の表面を被覆し、厚さが0.2μm~2.0μmである第一の絶縁性皮膜と;
     前記第一の絶縁性皮膜の表面を被覆し、厚さが0.3μm~5.0μmである第二の絶縁性皮膜と;
    を備え、
     前記第一の絶縁性皮膜と前記第二の絶縁性皮膜との合計厚さが2.0μm~7.0μmであり、
     前記第一の絶縁性皮膜は、Al及びSiOの少なくとも一方を含有する熱酸化皮膜であり、
     前記第二の絶縁性皮膜は、シリカ系無機有機ハイブリッド材料から形成される
    ことを特徴とする電子デバイス作製用金属基板。
    Steel material having an Al content of 0 to 13.0 mass%, an Si content of 0 to 5.0 mass%, and a total content of Al and Si of 0.5 to 18.0 mass% When;
    A first insulating film covering the surface of the steel material and having a thickness of 0.2 μm to 2.0 μm;
    A second insulating film covering the surface of the first insulating film and having a thickness of 0.3 μm to 5.0 μm;
    With
    The total thickness of the first insulating film and the second insulating film is 2.0 μm to 7.0 μm;
    The first insulating film is a thermal oxide film containing at least one of Al 2 O 3 and SiO 2 ,
    Said 2nd insulating film is formed from a silica type inorganic organic hybrid material, The metal substrate for electronic device preparation characterized by the above-mentioned.
  2.  前記鋼材における前記Al含有量が0.5~13.0質量%であり、
     前記鋼材における前記Si含有量が前記Al含有量の1/2以下であり、
     前記第一の絶縁性皮膜は、前記Alを少なくとも含有すると共に、スピネル鉱物を含有し、
     前記第一の絶縁性皮膜では、前記スピネル鉱物の前記Alに対する存在量が質量%比で3%以上11%以下である
    ことを特徴とする請求項1に記載の電子デバイス作製用金属基板。
    The Al content in the steel material is 0.5 to 13.0 mass%,
    The Si content in the steel material is ½ or less of the Al content,
    The first insulating film contains at least the Al 2 O 3 and contains a spinel mineral,
    2. The metal for manufacturing an electronic device according to claim 1, wherein in the first insulating film, the abundance of the spinel mineral with respect to the Al 2 O 3 is 3% or more and 11% or less by mass% ratio. substrate.
  3.  前記第一の絶縁性皮膜では、前記Alが前記鋼材の前記表面を被覆し、前記スピネル鉱物は前記鋼材の前記表面を直接被覆しない
    ことを特徴とする請求項2に記載の電子デバイス作製用金属基板。
    3. The electronic device according to claim 2, wherein in the first insulating film, the Al 2 O 3 covers the surface of the steel material, and the spinel mineral does not directly cover the surface of the steel material. Metal substrate for production.
  4.  前記鋼材における前記Si含有量が0.5~5.0質量%であり、
     前記鋼材における前記Al含有量が前記Si含有量の1/2以下であり、
     前記第一の絶縁性皮膜は、前記SiOを少なくとも含有すると共に、オリビン鉱物を含有し、
     前記第一の絶縁性皮膜では、Siのモル数に対するMg、Fe、及びCaのモル数の和の比が1.2以上2.0以下である
    ことを特徴とする請求項1に記載の電子デバイス作製用金属基板。
    The Si content in the steel material is 0.5 to 5.0 mass%,
    The Al content in the steel material is 1/2 or less of the Si content,
    The first insulating film contains at least the SiO 2 and contains an olivine mineral,
    2. The electron according to claim 1, wherein in the first insulating film, a ratio of a sum of moles of Mg, Fe, and Ca to moles of Si is 1.2 or more and 2.0 or less. Metal substrate for device fabrication.
  5.  前記第一の絶縁性皮膜では、前記SiOが前記鋼材の前記表面を被覆し、前記オリビン鉱物は前記鋼材の前記表面を直接被覆しない
    ことを特徴とする請求項4に記載の電子デバイス作製用金属基板。
    5. The electronic device manufacturing method according to claim 4, wherein in the first insulating film, the SiO 2 covers the surface of the steel material, and the olivine mineral does not directly cover the surface of the steel material. Metal substrate.
  6.  前記第二の絶縁性皮膜の1μm四方の領域で測定した表面粗さRaが2nm未満である
    ことを特徴とする請求項1に記載の電子デバイス作製用金属基板。
    2. The metal substrate for manufacturing an electronic device according to claim 1, wherein a surface roughness Ra measured in a 1 μm square region of the second insulating film is less than 2 nm.
  7.  前記鋼材が、19質量%以上のCrを含有し、150μm以下の厚さを有するステンレス箔である
    ことを特徴とする請求項1に記載の電子デバイス作製用金属基板。
    2. The metal substrate for manufacturing an electronic device according to claim 1, wherein the steel material is a stainless steel foil containing 19% by mass or more of Cr and having a thickness of 150 μm or less.
  8.  前記シリカ系無機有機ハイブリッド材料の有機基が、メチル基またはフェニル基である
    ことを特徴とする請求項1に記載の電子デバイス作製用金属基板。
    The metal substrate for producing an electronic device according to claim 1, wherein the organic group of the silica-based inorganic-organic hybrid material is a methyl group or a phenyl group.
  9.  請求項1~8のいずれか一項に記載の電子デバイス作製用金属基板上に電子デバイスが形成された
    ことを特徴とするパネル。
    A panel comprising an electronic device formed on the metal substrate for producing an electronic device according to any one of claims 1 to 8.
PCT/JP2014/067378 2014-06-30 2014-06-30 Metal substrate for manufacturing electronic devices, and panel WO2016001971A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/067378 WO2016001971A1 (en) 2014-06-30 2014-06-30 Metal substrate for manufacturing electronic devices, and panel
JP2016530696A JP6208869B2 (en) 2014-06-30 2014-06-30 Metal substrate and panel for electronic device fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067378 WO2016001971A1 (en) 2014-06-30 2014-06-30 Metal substrate for manufacturing electronic devices, and panel

Publications (1)

Publication Number Publication Date
WO2016001971A1 true WO2016001971A1 (en) 2016-01-07

Family

ID=55018573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067378 WO2016001971A1 (en) 2014-06-30 2014-06-30 Metal substrate for manufacturing electronic devices, and panel

Country Status (2)

Country Link
JP (1) JP6208869B2 (en)
WO (1) WO2016001971A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054441A1 (en) * 2018-09-12 2020-03-19 東洋製罐グループホールディングス株式会社 Substrate for flexible devices
WO2020137783A1 (en) 2018-12-28 2020-07-02 Jfeスチール株式会社 Film laminate metal sheet, substrate for flexible devices, and substrate for organic el devices
WO2021168492A1 (en) * 2020-02-28 2021-09-02 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Method for producing a multilayered functional component, and also functional component
WO2022202771A1 (en) 2021-03-23 2022-09-29 Jfeスチール株式会社 Film-laminated metal sheet, method for manufacturing same, substrate for flexible electronics, and organic el substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216587A (en) * 1984-04-12 1985-10-30 Kawasaki Steel Corp Substrate for solar cell
JP2010108924A (en) * 2008-09-30 2010-05-13 Dainippon Printing Co Ltd Insulating laminated body and manufacturing method for the same
JP2013087310A (en) * 2011-10-14 2013-05-13 Nippon Steel & Sumikin Materials Co Ltd Stainless foil with coating for organic el
JP2013199674A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Stainless steel material with good insulation and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216587A (en) * 1984-04-12 1985-10-30 Kawasaki Steel Corp Substrate for solar cell
JP2010108924A (en) * 2008-09-30 2010-05-13 Dainippon Printing Co Ltd Insulating laminated body and manufacturing method for the same
JP2013087310A (en) * 2011-10-14 2013-05-13 Nippon Steel & Sumikin Materials Co Ltd Stainless foil with coating for organic el
JP2013199674A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Stainless steel material with good insulation and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054441A1 (en) * 2018-09-12 2020-03-19 東洋製罐グループホールディングス株式会社 Substrate for flexible devices
JPWO2020054441A1 (en) * 2018-09-12 2021-09-24 東洋製罐グループホールディングス株式会社 Flexible device board
TWI808256B (en) * 2018-09-12 2023-07-11 日商東洋製罐集團控股股份有限公司 Substrate for flexible device
JP7501366B2 (en) 2018-09-12 2024-06-18 東洋製罐グループホールディングス株式会社 Substrates for flexible devices
WO2020137783A1 (en) 2018-12-28 2020-07-02 Jfeスチール株式会社 Film laminate metal sheet, substrate for flexible devices, and substrate for organic el devices
WO2021168492A1 (en) * 2020-02-28 2021-09-02 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Method for producing a multilayered functional component, and also functional component
WO2022202771A1 (en) 2021-03-23 2022-09-29 Jfeスチール株式会社 Film-laminated metal sheet, method for manufacturing same, substrate for flexible electronics, and organic el substrate

Also Published As

Publication number Publication date
JP6208869B2 (en) 2017-10-04
JPWO2016001971A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6208869B2 (en) Metal substrate and panel for electronic device fabrication
US8586190B2 (en) Inorganic—organic hybrid-film-coated stainless-steel foil
JP6011774B2 (en) Coating composition and method for producing alumina thin film
KR20140019432A (en) Metal substrate having insulating layer, method for manufacturing same, and semiconductor device
Dave et al. Nanostructured hydrophobic DC sputtered inorganic oxide coating for outdoor glass insulators
JP5932132B2 (en) Steel aluminum composite foil
Kondratiev et al. Low temperature sol-gel technique for processing Al-doped Zinc Oxide films
JP2013163296A (en) Gas barrier laminated film
JP2006095783A (en) Transparent gas barrier film and substrate for display using it
KR101581879B1 (en) Insulating film-coated metal foil
JP5863380B2 (en) Stainless steel foil with insulating coating for solar cell and method for producing the same
JP2009006568A (en) Resin substrate
JP2003247078A (en) Inorganic-organic hybrid film-coated stainless foil
TWI530587B (en) Metallic substrate for producing electronic device and panel
JP5967997B2 (en) Stainless steel material excellent in insulation and its manufacturing method
JP6655938B2 (en) Metal laminated substrate for organic EL element and method for producing the same
TWI623433B (en) Gas barrier film and method for producing gas barrier film
JP2018140552A (en) Laminate
JP5995478B2 (en) Stainless steel material with good insulation and its manufacturing method
TW201617217A (en) Gas barrier film, electronic device using same, and method for producing gas barrier film
JP6593072B2 (en) Gas barrier film and electronic device
JP6872864B2 (en) Metal substrate for organic EL element
JP5982904B2 (en) Gas barrier laminate film and method for producing gas barrier laminate film
JP2018052040A (en) Laminate
KR20240098294A (en) Titanuim plate for bipolar plate with excellent surface electrical conductivity and durability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896846

Country of ref document: EP

Kind code of ref document: A1