WO2016001201A1 - Circuit optoelectronique a diodes electroluminescentes - Google Patents

Circuit optoelectronique a diodes electroluminescentes Download PDF

Info

Publication number
WO2016001201A1
WO2016001201A1 PCT/EP2015/064799 EP2015064799W WO2016001201A1 WO 2016001201 A1 WO2016001201 A1 WO 2016001201A1 EP 2015064799 W EP2015064799 W EP 2015064799W WO 2016001201 A1 WO2016001201 A1 WO 2016001201A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
threshold
sets
light
assembly
Prior art date
Application number
PCT/EP2015/064799
Other languages
English (en)
Inventor
Frédéric MERCIER
Original Assignee
Aledia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aledia filed Critical Aledia
Priority to EP15733435.0A priority Critical patent/EP3162166A1/fr
Priority to US15/321,810 priority patent/US10178724B2/en
Priority to CN201580035655.5A priority patent/CN106664757B/zh
Publication of WO2016001201A1 publication Critical patent/WO2016001201A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present description relates to an optoelectronic circuit, in particular an optoelectronic circuit comprising light-emitting diodes.
  • an optoelectronic circuit comprising light-emitting diodes with an alternating voltage, in particular a sinusoidal voltage, for example the mains voltage.
  • FIG. 1 represents an example of an optoelectronic circuit 10 comprising input terminals IN 1 and I 2 between which an alternating voltage j 1 is applied.
  • the optoelectronic circuit 10 further comprises a rectifying circuit 12 having a diode bridge 14, receiving the voltage VJ and supplying a rectified voltage LJJ ⁇ which supplies light-emitting diodes 16, for example, connected in series with a resistor 15. calls IALIM current passing through light emitting diodes 16.
  • FIG. 2 is a timing diagram of the supply voltage and the supply current for an example in which the ac voltage V i corresponds to a sinusoidal voltage.
  • a disadvantage is that as long as the voltage ⁇ M is less than the sum of the threshold voltages of the light-emitting diodes 16, no light is emitted by the optoelectronic circuit 10. An observer can perceive this absence of light emission when the duration of each OFF phase of absence of light emission between two ON phases of light emission is too important. One possibility to increase the duration of each ON phase is to reduce the number of light-emitting diodes 16. A disadvantage is that the electrical power lost in the resistance is important.
  • the publication US 2012/0056559 discloses an optoelectronic circuit in which the number of light-emitting diodes receiving the supply voltage LJJ increases gradually during a phase of growth of the supply voltage and decreases progressively during a phase of decrease of the supply voltage. This is achieved by a switching circuit adapted to short-circuit a larger or smaller number of light-emitting diodes according to the evolution of the voltage VRL W This reduces the duration of each phase of absence of light emission .
  • a disadvantage of the optoelectronic circuit described in the publication US 2012/0056559 is that the supply current of the light-emitting diodes does not vary continuously, that is to say that there are sudden interruptions of current flow at during the variation of the voltage. This causes variations over time in the light intensity provided by electroluminescent diodes that can be perceived by an observer. This also causes a deterioration in the harmonic distortion rate of the current supplying the light-emitting diodes of the optoelectronic circuit.
  • a current limiting circuit may be interposed between the rectifier circuit and the light emitting diodes to maintain the supply current at a substantially constant level.
  • the structure of the optoelectronic circuit can then be relatively complex and the size of the optoelectronic circuit can be large.
  • An object of an embodiment is to overcome all or some of the disadvantages of the optoelectronic circuits described above.
  • Another object of an embodiment is to reduce the duration of the phases of absence of light emission by the optoelectronic circuit.
  • Another object of an embodiment is that the current supplying the light-emitting diodes varies substantially continuously.
  • Another object of an embodiment is to reduce the size of the optoelectronic circuit.
  • an embodiment provides an optoelectronic circuit for receiving a variable voltage containing an alternation of increasing and decreasing phases, the optoelectronic circuit comprising:
  • a comparison module adapted to compare the voltage at one of the terminals of the assembly, and / or a voltage depending on said voltage at one of the terminals of the set, at least a first threshold and optionally at a second threshold;
  • control module connected to the comparison modules and adapted, during each increasing phase, to interrupt the flow of a current in each set among certain sets of the plurality of sets when said voltage of said set goes above the second threshold or when said voltage of the assembly, adjacent to said assembly and traversed by the current, passes above the first threshold and, during each decreasing phase, to control the flow of a current in each set among certain sets of the plurality sets when said voltage of the assembly, adjacent to said assembly and traversed by the current, passes below the first threshold.
  • the optoelectronic circuit comprises:
  • control module is adapted, for each set among certain sets of the plurality of assemblies, to command the closing of the switch associated with said set when said voltage of the assembly, adjacent to said set and traversed by the current, passes below the first threshold in each decreasing phase.
  • control module is adapted, for each set of certain sets of the plurality of sets, to control the closing of the switch associated with said set when said set voltage, adjacent to said set and traversed by the current, passes above the second threshold in each increasing phase.
  • control module is adapted, after closing the switch associated with said assembly, to control the opening of the switch associated with said adjacent set.
  • the control module is adapted, for each set of certain sets of the plurality of sets, to control the opening of the switch associated with said set when said set voltage, adjacent to said set, goes above the first threshold in each increasing phase.
  • the optoelectronic circuit comprises, for each set, a current source, the control module being adapted, for each set, to control the activation of the current source associated with said set when said voltage of the together, adjacent to said assembly and traversed by the current, passes above the second threshold in each increasing phase and passes below the first threshold in each decreasing phase.
  • control module is further adapted, after activation of the current source associated with said set, to control the deactivation of the current source associated with said adjacent set.
  • the optoelectronic circuit further comprises a full-wave rectifier circuit adapted to supply said voltage.
  • At least one of the light-emitting diodes is a planar light-emitting diode comprising a stack of layers resting on a plane face, of which at least one active layer adapted to emit light.
  • the light-emitting diodes of at least one of the light-emitting diode assemblies comprise three-dimensional semiconductor elements in the form of microwires, nanowires, or pyramids, each semiconductor element being covered with an active layer adapted to electroluminescence. emit light.
  • the optoelectronic circuit comprises a first integrated circuit comprising the control module and at least one second integrated circuit, distinct from the first integrated circuit and fixed to the first circuit. integrated, and comprising at least one of the sets of light-emitting diodes.
  • the second integrated circuit comprises all sets of light-emitting diodes.
  • the circuit opto ⁇ e further comprises a third integrated circuit, distinct from the first integrated circuit and the second integrated circuit and attached to the first integrated circuit, and comprising at least one of the sets of light emitting diodes .
  • An embodiment also relates to a method for controlling a plurality of diode assemblies adoslumines ⁇ Centes, said assemblies being connected in series and powered by a variable voltage containing an alternating increasing and decreasing phases, the method comprising:
  • a current source is connected, for each set, to said terminal of said assembly via a switch, the method further comprising, for each set of certain sets of the plurality of sets, the closure of the switch associated with said set when said tension of the assembly, adjacent to said assembly and traversed by the current, passes below the first threshold in each decreasing phase.
  • the method comprises, for each set of certain sets of the plurality of sets, the closing of the switch associated with said set when said voltage of the set, adjacent to said set and traversed by the current, passes above the second threshold in each increasing phase.
  • the method further comprises, after the closure of the switch associated with said assembly, the opening of the switch associated with said adjacent set.
  • the method comprises, for each set of certain sets of the plurality of sets, the opening of the switch associated with said set when said set voltage, adjacent to said set, passes over the set. first threshold in each increasing phase.
  • a current source is connected to said set, the method comprising, for each set, the activation of the current source associated with said set when said set voltage, adjacent to said set and traversed by the current, passes above the second threshold in each increasing phase and passes below the first threshold in each decreasing phase.
  • the method further comprises, after activation of the current source associated with said set, deactivating the current source associated with said adjacent set.
  • FIG. 1 previously described, is an electrical diagram of an example of an optoelectronic circuit comprising light-emitting diodes
  • FIG. 2 previously described, is a timing diagram of the voltage and the supply current of the light-emitting diodes of the optoelectronic circuit of FIG. 1;
  • FIG. 3 represents an electrical diagram of an embodiment of an optoelectronic circuit comprising light-emitting diodes
  • FIGs 4 and 5 illustrate two arrangements of light emitting diodes of the optoelectronic circuit of Figure 3;
  • FIGS 6 and 7 are diagrams of more detailed embodiments of parts of the optoelectronic circuit of Figure 3;
  • FIG. 8 is a timing diagram of voltages of the optoelectronic circuit of FIG. 3;
  • FIG. 9 represents a circuit diagram of another embodiment of an optoelectronic circuit comprising light-emitting diodes
  • FIGS. 10 and 11 are figures similar to FIGS. 6 and 7, respectively, and show electrical diagrams of more detailed embodiments of parts of the optoelectronic circuit of FIG. 9;
  • FIG. 12 represents an electrical diagram of another embodiment of an optoelectronic circuit comprising light-emitting diodes.
  • Figures 13 and 14 are partial sectional and schematic views of two embodiments of an optoelectronic circuit comprising light emitting diodes.
  • the input voltage V j may be a sinusoidal voltage whose frequency is, for example, between 10 Hz and 1 MHz.
  • the voltage V j corresponds, for example, to the mains voltage.
  • the circuit 20 may comprise a full-wave rectifier circuit 22 comprising, for example, a diode bridge, formed for example of four diodes 14.
  • the rectifier circuit 22 receives the supply voltage V j ⁇ between the terminals IN ] _ and I3 ⁇ 4 and provides a voltage V dd rectified f between nodes a] _ and A2.
  • the circuit 20 can directly receive a rectified voltage, the rectifier circuit may then not be present.
  • the optoelectronic circuit 20 comprises N series sets of elementary light-emitting diodes, called global light-emitting diodes Dj_ in the following description, where i is an integer ranging from 1 to N and where N is an integer between 2 and 200.
  • each global emitting diode D] _ 3 ⁇ 4 comprises at least one elementary emitting diode and is preferably composed of the series connection and / or in parallel at least two elementary light emitting diodes.
  • the overall N LEDs are connected in series, the cathode of the global LED J being connected to the anode of the overall light emitting diode D 1 + , for i ranging from 1 to Nl.
  • the anode of the overall light-emitting diode D] _ is connected to the node A] _.
  • the global light-emitting diodes Dj 1, i ranging from 1 to N, may comprise the same number of elementary light emitting diodes or different numbers of elementary light-emitting diodes.
  • FIG. 4 shows an embodiment of the global light-emitting diode D 1 in which the global light-emitting diode D 1 comprises R branches 26 connected in parallel, each branch comprising S elementary light-emitting diodes 27 connected in series in the same direction passing, R and S being integers greater than or equal to 1.
  • FIG. 5 shows another embodiment of the overall light-emitting diode D1 in which the overall light-emitting diode D1 comprises P blocks 28 connected in series, each block comprising Q elementary light-emitting diodes 27 connected in parallel, P and Q being integers greater than or equal to 1 and Q may vary from block to block.
  • Others% D2 overall light emitting diodes may have a structure similar to the recent global beachlumines diode ⁇ D] _ shown in Figure 4 or 5.
  • the elementary light-emitting diodes 27 are, for example, planar light-emitting diodes, each comprising a stack of layers resting on a plane face, of which at least one active layer adapted to emit light.
  • Elementary LEDs 27 are, for example, planar light emitting diodes of diode electro ⁇ luminescent formed from three dimensional semiconductor elements, in particular micro-wires, nanowires or pyramids, including, for example, a semiconductor material of a compound preferably comprising at least one group III element and a group V element (for example gallium nitride GaN), hereinafter referred to as III-V compound, or comprising at least one Group II element and a Group VI element (eg zinc oxide ZnO), hereinafter referred to as II-VI compound.
  • III-V compound for example gallium nitride GaN
  • II-VI compound Group VI element
  • Each three-dimensional semiconductor element is covered with at least one active layer adapted to emit light.
  • the optoelectronic circuit 20 comprises a current source 30, one terminal of which is connected to the node A2 and whose other terminal is connected to a node A3.
  • VQ5 is the voltage across the current source 30 and the current supplied by the current source 30.
  • the optoelectronic circuit 20 may comprise a circuit, not shown, for supplying a reference voltage for supplying the current source, possibly obtained from the voltage fd .
  • the circuit 20 includes N controllable switches SW ] _ to Si3 ⁇ 4. Each switch SW i , i ranging from 1 to N, is mounted between the node A3 and the cathode of the global light emitting diode D j _. Each switch SW j , i varying from 1 to N, is controlled by a signal Sj_.
  • the signal Sj_ is a binary signal and the switch SWj_ is open when the signal Sj_ is in a first state, for example the low state, and the switch SWj_ is closed when the signal Sj_ is in a second state, for example the high state.
  • the voltage between the cathode of the global light emitting diode Dj_ and the node A2 is called VQJ_.
  • the switch SW j _ is, for example, a switch based on at least one transistor, in particular a metal oxide oxide or MOS transistor field effect transistor, enriched (normally closed) or depleted (normally open). ).
  • the optoelectronic circuit 20 further comprises N comparison modules COMP j _, i varying from 1 to N, each adapted to receive the voltage VQJ_ and to provide a signal H j _ and a signal Lj_.
  • the optoelectronic circuit 20 further comprises a control module 32 receiving the signals L ] _ to L ⁇ and H ] _ to] 3 ⁇ 4 and providing the signals S ] _ to control the switches SW ] _ to Si3 ⁇ 4.
  • the control module 32 preferably corresponds to a dedicated circuit.
  • the control module 32 is adapted to control the closing or opening of the switches SW 1, i varying from 1 to N, as a function of the value of the voltage VQJ_ at the cathode of each global light-emitting diode Dj_.
  • each COMPj_ comparison module i varying from 1 to N, is adapted to compare the voltage VQJ_ to the cathode of the global light emitting diode Dj_ at at least two thresholds Vhighj_ and Vlow-j_.
  • the signal Lj_ is a binary signal which is at a first state when the voltage VQJ_ is lower than the threshold Vlow-j_ and which is at a second state when the voltage VQJ_ is greater than the threshold Vlow-j_.
  • the signal Hj_ is a binary signal which is at a first state when the voltage VQJ_ is lower than the threshold Vhighj_ and which is at a second state when the voltage VQJ_ is greater than the threshold Vhighj_.
  • the first states of the binary signals H 1 and L 1 may be equal or different and the second states of the binary signals H 1 and L 1 may be equal or different.
  • FIG. 6 represents a circuit diagram of a more detailed embodiment of a portion of the optoelectronic circuit 20.
  • each comparator COMP j comprises a first operational amplifier 40, operating as a comparator, whose inverting input (-) is connected to the cathode of the global light-emitting diode Dj_, and whose non-inverting input (+) receives the voltage threshold Vhigh j _ which is supplied by a module 42.
  • the comparator 40 supplies the signal Hj_ .
  • Each comparator COMPj_ furthermore comprises a second operational amplifier 44, operating as a comparator, whose inverting input (-) is connected to the cathode of the global light-emitting diode Dj_, and whose non-inverting input (+) receives the voltage threshold Vlow-j_ which is provided by a module 46.
  • the comparator 44 provides the signal L j _.
  • Fig. 7 shows a circuit diagram of a more detailed embodiment of the current source 30 and the switch SW j _.
  • the current source 30 comprises an ideal current source 50 having a terminal connected to a first source of a reference potential VREF.
  • the other terminal of the current source 50 is connected to the drain of a diode-mounted N-channel transistor MOS 52.
  • the source of the MOS transistor 52 is connected to the node A2.
  • the gate of the transistor MOS 52 is connected to the drain of the MOS transistor 52.
  • the reference potential VREF can be supplied from the voltage LJJ. It can be constant or vary depending on the voltage dd ⁇ f.
  • the intensity of the current supplied by the current source 30 may be constant or vary, for example vary according to the voltage dd ⁇ f.
  • the current source 30 comprises an N-channel MOS transistor 54 whose gate is connected to the gate of the transistor 52 and whose source is connected to the node A2.
  • the MOS transistors 52 and 54 form a current mirror, the current 1 ⁇ 5 supplied by the current source 50 being reproduced, possibly with a multiplicative factor.
  • the switch SW j _ comprises an N-channel MOS transistor 56 whose drain is connected to the cathode of the global light-emitting diode Dj_ and whose source is connected to the drain of the transistor 54.
  • the applied voltage to the gate of transistor 56 corresponds to the signal Sj_ described above.
  • FIG. 8 shows timing diagrams of the supply voltage V dd and f Vçj_ voltages measured by each comparator COMP j _, i varying from 1 to N, illustrating the operation of the optoelectronic circuit 20 according to the embodiment shown in Figure 3 in the case where N is equal to 4 and in the case where each global electroluminescent diode Dj_ comprises the same number of elementary light emitting diodes arranged in the same configuration, and therefore has the same threshold voltage Vled.
  • tg at t20 successive instants.
  • the voltage ⁇ JM supplied by the rectifier bridge 100 is a rectified sinusoidal voltage comprising a succession of cycles in each of which the voltage ⁇ JM increases from the null value, passes through a maximum and decreases to the value nothing.
  • two successive cycles of the voltage dd ⁇ f are shown in Figure 8.
  • the switch SW ] _ is closed and all the switches SWj_, i ranging from 2 to N, are open.
  • the voltage V ⁇ jj f rises from the zero value by being distributed between the global light-emitting diode D ] _, the switch SW] _ and the current source 30.
  • the voltage V LJJ being less than the threshold voltage Vled of the global light emitting diode D ] _, there is no light emission (phase Pg) and the voltage Vc ] remains substantially equal to zero.
  • the voltage across the global light emitting diode D ] _ exceeds the threshold voltage Vled, the overall light emitting diode D ] _ becomes on (phase P ] _).
  • the voltage across the global light-emitting diode D 1 then remains substantially constant and the voltage V 1 continues to increase with the voltage L 1.
  • the current 1 ⁇ 5 circulates in the overall light-emitting diode D] _ which emits light.
  • the voltage Q 5, when the current source 30 is in operation is preferably substantially constant.
  • the module 32 At time t2, when the voltage VQ ] _ exceeds the threshold Vhigh ] _, the module 32 successively controls the closing of the switch SW2 and the opening of the switch SW ] _.
  • the voltage V ALIM is then distributed between the total light-emitting diodes D] _ and D2, the switch SW2 and the current source 30.
  • the threshold Vhigh ] _ is chosen substantially equal to the sum of the threshold voltage of the global light-emitting diode D2 and the operating voltage V Q 5 of the current source 30 so that, on closing of the SW2 switch, the global light emitting diode D2 is traversed by the current 1 ⁇ 5 and emits light.
  • Phase P2 corresponds to a light emitting phase by the overall light-emitting diodes D] _ and D2.
  • the module 32 In general, during an upward phase of the supply voltage LJJ, for i varying from 1 to Nl, while the switch SWj is closed and the other switches are open, the module 32 successively controls the closing the switch SW j _ +] _ and then opening the switch SW j _ when the voltage Vcj_ exceeds the threshold Vhighj_. Voltage dd ⁇ f is then distributed between the total light-emitting diodes D] _ to D j + _] _, the switch SW j + _] _ and the current source 30.
  • the Vhighj_ threshold is chosen substantially equal to the sum of the threshold voltage of the global light-emitting diode Dj_ +] _ and the operating voltage VQ5 of the current source 30 so that, when the switch SWj_ +] _ is closed, the overall light-emitting diode Dj_ +] _ is crossed by the current 1 ⁇ 5 and emits light.
  • P i + phase corresponds to the light emission from the overall light-emitting diodes D] _ to D j + _] _.
  • the fact that the switch SW j _ +] _ is closed before opening the switch SWj_ ensures that there is no interruption of the current flow in the global light-emitting diodes D ] _ to Dj_.
  • the module 32 controls the closing of the switch SW3 and the opening of the switch SW2 ⁇
  • the phase P3 corresponds to the emission of light by the global light emitting diodes D ] _, D2 and D3.
  • the module 32 controls the closing of the switch SW4 and the opening of the switch SW3.
  • Phase P4 corresponds to the light emission from the overall light-emitting diodes D] _, D 2, D 3 and D 4.
  • the supply voltage V H ⁇ M. reaches its maximum value at time t5 during phase P4 in FIG. 8 and initiates a downward phase.
  • the module 32 successively controls the closing of the switch SW3 and the opening of the switch SW4.
  • the voltage V ⁇ jj f is then distributed between the global light-emitting diodes D ] _, D2 and D3, the switch SW3 and the current source 30.
  • the threshold VI0W4 is chosen substantially equal to the sum of the voltage V Q 5 of operation of the current source 30 and the minimum operating voltage of the switch SW4 so that, when the switch SW3 is closed, there is no interruption of the flow of current.
  • the module 32 In general, during a downward phase of the supply voltage LJJ, for i varying from 2 to N, when the voltage VQJ_ decreases below the threshold Vlow-j_, the module 32 successively controls the closing of the 'switch SWj__] _ and the opening of the switch SW j _. The voltage V dd f is then distributed between the total light-emitting diodes D] _ to Dj__] _, the switch SWj__] _ and the current source 30.
  • the Vlow-j_ threshold is chosen substantially equal to the sum the operating voltage VQ5 of the current source 30 and the minimum operating voltage of the switch SWj_ so that at the closing of the switch SW j __ ] _, there is no interruption of the circulation of the current.
  • the module 32 controls the closing of the switch SW2 and the opening of the switch SW3.
  • the module 32 controls the closing of the switch SW2 and the opening of the switch SW ] _.
  • the voltage VQ ] _ is canceled so that the overall light-emitting diode D ] _ is no longer on and the current source 30 is off.
  • the tension ⁇ jj f is canceled and a new cycle begins.
  • comparator COMP ] _ may have a simpler structure than comparators COMPj_, i ranging from 2 to N, since the threshold Vlow ] _ is not used.
  • each comparator COMPj_ of the optoelectronic circuit 20 only supplies the signal Lj_.
  • An advantage of this embodiment is that the structure of the comparator COMP j _ can be simplified. Indeed, the comparator COMP j may not include the operational amplifier 40.
  • the operation of the optoelectronic circuit according to this other embodiment is then identical to what has been previously described except that the switches SW i, i varying from 1 to Nl are initially closed and that, in an increasing phase of the voltage of When the voltage V.sub.jj.sub.i is turned off, the switch SW.sub.j is switched off when the voltage V.sub.j is greater than the threshold Vlow.sub.-1. Indeed, this means that current begins to flow through the switch SW j _.
  • the module 32 controls the opening of the switch SWj __] _.
  • an increase in the voltage V Q J means that the voltage across the electroluminescent diode Dj_ becomes greater than the threshold voltage of the light emitting diode Dj_ and that it becomes conductive.
  • the operation of the optoelectronic circuit according to this other embodiment in a decreasing phase of the supply voltage ⁇ f may be identical to that described above for the optoelectronic circuit 20.
  • FIG. 9 represents a circuit diagram of another embodiment of an optoelectronic circuit 60.
  • the set of elements common to the optoelectronic circuit 20 are designated by the same references.
  • the optoelectronic circuit 60 does not include the switch Si3 ⁇ 4.
  • the optoelectronic circuit 60 comprises a resistor 62j_ provided between the node A3 and the switch SWj_, and the optoelectronic circuit 60 comprises a resistor 62 ⁇ provided between the node A3 and the cathode of the global light emitting diode 3 ⁇ 4.
  • Bj_ is a node between the resistor 62j_ and the switch SWj_, for i ranging from 1 to Nl, and BJJ a node between the resistor 62 ⁇ and the cathode of the global light emitting diode 3 ⁇ 4.
  • each comparator COMP j _ i varying from 1 to N, receives, in addition, the voltage at the node Bj_.
  • the signal Hj_ is then a binary signal which is at a first state when the voltage at the node Bj_ is below a threshold MINj_ and which is at a second state when the voltage at the node Bj_ is greater than the threshold MINj_.
  • FIG. 10 represents a circuit diagram of a more detailed embodiment of a portion of the optoelectronic circuit 60.
  • the comparator COMP j comprises all the elements of the comparator COMP j represented in FIG. that the operational amplifier 40 is replaced by a comparator 64 hysteresis receiving the voltage across the resistor 62j_ and providing the signal Hj_.
  • FIG. 11 shows a circuit diagram of a more detailed embodiment of the current source 30 and of the switch SWj for the optoelectronic circuit 60.
  • the current source 30 comprises all the elements of the represented power source.
  • the resistor 62j is interposed between the MOS transistor 54 and the node Bj_, one terminal of the resistor 62j being connected to the drain of the transistor 54 and the other terminal of the resistor 62j being connected to the node Bj_.
  • the operation of the optoelectronic circuit 60 may be identical to the operation of the optoelectronic circuit 20 described above except that, in an increasing phase of the supply voltage JM, the switch SW j _ is open when current starts to flow in the resistance 62j_ +] _.
  • the switches SW i, i varying from 1 to Nl are initially closed.
  • the light emitting diodes D] _ to Dj__] _ are conductive and the light emitting diodes to% Dj_ blocked when the voltage across the electroluminescent diode Dj_ becomes greater than the threshold voltage of the light emitting diode Dj_, the latter becomes conductive and a current begins to flow in the resistor 62j_.
  • the module 32 controls the closing of the switch SW j __ ] _.
  • the operation of the optoelectronic circuit 60 in a decreasing phase of the supply voltage LJJ may be identical to that previously described for the optoelectronic circuit 20.
  • the optoelectronic circuit 60 has the advantage that the thresholds MIN1 and Vlow-j can be independent of the characteristics of the light-emitting diodes Dj_. In particular, they do not depend on the threshold voltage of each light-emitting diode Dj_.
  • FIG. 12 represents a circuit diagram of another embodiment of an optoelectronic circuit 70.
  • the set of elements common to the optoelectronic circuit 20 are designated by the same references.
  • the optoelectronic circuit 70 comprises, for each global light-emitting diode Dj 2, a current source 72 i, i varying from 1 to N, associated with the global light-emitting diode Dj_.
  • a terminal of the current source 72j, i varying from 1 to N, is connected to the node A2 and the other terminal is connected to the cathode of the global light emitting diode Di.
  • Each current source 72j is controlled by a signal S'j_ supplied by the control module 32.
  • the signal S'j_ is a binary signal and the current source 72j_ is activated when the signal S'j_ is in a first state and the current source 72j_ is inactivated when the signal S'j_ is in a second state.
  • the operation of the optoelectronic circuit 70 may be identical to the operation of the optoelectronic circuit 20 described above except that the opening and Switches SWj_ of the optoelectronic circuit 20 are replaced respectively by activation and deactivation steps of the current sources 72j.
  • the module 32 successively controls the power supply. activation of the current source 72 j _ +] _ then deactivation of the current source 72j_ when the voltage VQJ_ exceeds the threshold Vhighj_. J ⁇ M Vp voltage is then distributed between the total light-emitting diodes D] _ to Dj_ +] _ and the current source 72j_ +] _.
  • the threshold Vhighj_ is chosen substantially equal to the threshold voltage of the global light-emitting diode Dj_ +] _ so that at the activation of the current source 72j_ +] _, the global light-emitting diode Dj_ +] _ is crossed by the current 1 ⁇ 5 and emits light.
  • the fact that the current source 72j_ +] _ is activated before the current source 72j_ is turned off ensures that there is no interruption in the flow of current in the global light-emitting diodes D ] _ to Dj_.
  • the module 32 in a decreasing phase of the supply voltage ⁇ M, for i varying from 2 to N, when the voltage VQJ_ decreases below the threshold Vlow-j_, the module 32 successively controls the activation of the source of current 72j ] then deactivating the current source 72j.
  • the voltage YALJM is then distributed between the global light emitting diodes D ] _DJ__ ] _ and the current source 72j_ +] _.
  • the fact that the current source 72 is activated before the power source is deactivated 72j_ ensures the absence of interruption of the current flow in the overall light-emitting diodes D] _ to D j __] _.
  • FIG. 13 is a partial schematic sectional view of another embodiment of an optoelectronic circuit 80 whose equivalent electrical diagram can correspond to one of the diagrams shown in FIGS. 3, 9 or 12.
  • each diode electro ⁇ overall luminescent D] _ 3 ⁇ 4 is formed on a monolithic circuit 82 separate.
  • the other components of the optoelectronic circuit 80 are formed in another integrated circuit 84.
  • Each monolithic circuit 82 is connected to the integrated circuit 84, for example by a flip-chip link.
  • Each global emitting diode D] _ 3 ⁇ 4 may correspond to a planar light-emitting diode or a light emitting diode formed from three-dimensional elements including semiconductor nanowires or microwires.
  • At least one of the monolithic circuits 82 may comprise more than one global light emitting diode.
  • FIG. 14 is a partial schematic sectional view of another embodiment of an optoelectronic circuit 90 whose equivalent electrical diagram can correspond to one of the diagrams shown in FIGS. 3, 9 or 12.
  • the electro luminescent diode ⁇ global D] _ D ⁇ are integrally formed on a circuit separate 92.
  • the other components of the optoelectronic circuit 90 are formed in another integrated circuit 94.
  • the integrated circuit 92 is connected to the integrated circuit 94, for example by a flip-chip link.
  • Each global electroluminescent diode at 3 ⁇ 4 may correspond to a planar light emitting diode or to a light emitting diode formed from three-dimensional elements, in particular semiconductor microwires or nanowires.
  • each global emitting diode D] _ 3 ⁇ 4 may correspond to a planar light-emitting diode or a light emitting diode formed from three-dimensional elements including semiconductor nanowires or microwires.
  • each global emitting diode D] _ to may be a discrete component, including a protective housing of the LED.
  • Each component is, for example, attached to a support, in particular a printed circuit, on which are fixed the other components of the optoelectronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

L'invention concerne un circuit optoélectronique (20) recevant une tension variable (VALIM) contenant une alternance de phases croissantes et décroissantes et comprenant des ensembles (D1) de diodes électroluminescentes montés en série, pour chaque ensemble, un module de comparaison (COMP1) de la tension (VCi) à l'une des bornes de l'ensemble à au moins un premier seuil (Vlowi) et un module de commande (32) relié aux modules de comparaison et adapté, lors de chaque phase croissante, à interrompre la circulation d'un courant (les) dans chaque ensemble lorsque ladite tension dudit ensemble passe au-dessus du deuxième seuil ou lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du premier seuil et, lors de chaque phase décroissante, à commander la circulation d'un courant (ICS) dans chaque ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil.

Description

CIRCUIT OPTOELECTRONIQUE A DIODES ELECTROLUMINESCENTES
La présente demande de brevet revendique la priorité de la demande de brevet français FR14/56180 qui sera considérée comme faisant partie intégrante de la présente description.
Domaine
La présente description concerne un circuit optoélectronique, notamment un circuit optoélectronique comprenant des diodes électroluminescentes .
Exposé de l'art antérieur
Il est souhaitable de pouvoir alimenter un circuit optoélectronique comprenant des diodes électroluminescentes avec une tension alternative, notamment une tension sinusoïdale, par exemple la tension du secteur.
La figure 1 représente un exemple de circuit optoélectronique 10 comprenant des bornes d'entrée IN]_ et I¾ entre lesquelles est appliquée une tension alternative j^. Le circuit optoélectronique 10 comprend, en outre, un circuit redresseur 12 comportant un pont de diodes 14, recevant la tension VJ et fournissant une tension ^LJJ^ redressée qui alimente des diodes électroluminescentes 16, par exemple montées en série avec une résistance 15. On appelle IALIM courant traversant les diodes électroluminescentes 16. La figure 2 est un chronogramme de la tension d'alimentation ^jjf et du courant d'alimentation I^LL Pour un exemple dans lequel la tension alternative Vj^ correspond à une tension sinusoïdale. Lorsque la tension V^jjf est supérieure à la somme des tensions de seuil des diodes électroluminescentes 16, les diodes électroluminescentes 16 deviennent passantes. Le courant d'alimentation I^LIM suit alors la tension d'alimentation V"ALIM- Il y a donc une alternance de phases OFF d'absence d'émission de lumière et de phases ON d'émission de lumière.
Un inconvénient est que tant que la tension ^JM est inférieure à la somme des tensions de seuil des diodes électroluminescentes 16, aucune lumière n'est émise par le circuit optoélectronique 10. Un observateur peut percevoir cette absence d'émission de lumière lorsque la durée de chaque phase OFF d'absence d'émission de lumière entre deux phases ON d'émission de lumière est trop importante. Une possibilité pour augmenter la durée de chaque phase ON est de diminuer le nombre de diodes électroluminescentes 16. Un inconvénient est alors que la puissance électrique perdue dans la résistance est importante.
La publication US 2012/0056559 décrit un circuit optoélectronique dans lequel le nombre de diodes électroluminescentes recevant la tension d' alimentation ^LJJ^ augmente progressivement lors d'une phase de croissance de la tension d'alimentation et diminue progressivement lors d'une phase de décroissance de la tension d'alimentation. Ceci est réalisé par un circuit de commutation adapté à court-circuiter un nombre plus ou moins important de diodes électroluminescentes en fonction de l'évolution de la tension VRL W Ceci permet de réduire la durée de chaque phase d'absence d'émission de lumière.
Un inconvénient du circuit optoélectronique décrit dans la publication US 2012/0056559 est que le courant d'alimentation des diodes électroluminescentes ne varie pas de façon continue, c'est-à-dire qu'il y a de brusques interruptions de circulation du courant au cours de la variation de la tension. Ceci entraîne des variations dans le temps de l'intensité lumineuse fournie par les diodes électroluminescentes qui peuvent être perçues par un observateur. Ceci entraîne, en outre, une dégradation du taux de distorsion harmonique du courant alimentant les diodes électroluminescentes du circuit optoélectronique.
Un circuit de limitation de courant peut être interposé entre le circuit redresseur et les diodes électroluminescentes pour maintenir le courant d'alimentation à un niveau sensiblement constant. La structure du circuit optoélectronique peut alors être relativement complexe et l'encombrement du circuit optoélec- tronique peut être important. En outre, il peut être difficile de réaliser, au moins en partie, le circuit redresseur et le circuit de limitation de courant de façon intégrée avec les diodes électroluminescentes pour réduire encore davantage l'encombrement du circuit optoélectronique.
Résumé
Un objet d'un mode de réalisation est de palier tout ou partie des inconvénients des circuits optoélectroniques décrits précédemment .
Un autre objet d'un mode de réalisation est de réduire la durée des phases d'absence d'émission de lumière par le circuit optoélectronique .
Un autre objet d'un mode de réalisation est que le courant alimentant les diodes électroluminescentes varie de façon sensiblement continue.
Un autre objet d'un mode de réalisation est de réduire l'encombrement du circuit optoélectronique.
Ainsi, un mode de réalisation prévoit un circuit optoélectronique destiné à recevoir une tension variable contenant une alternance de phases croissantes et décroissantes, le circuit optoélectronique comprenant :
une pluralité d'ensembles de diodes électrolumines¬ centes, lesdits ensembles étant montés en série ;
pour chaque ensemble, un module de comparaison adapté à comparer la tension à l'une des bornes de l'ensemble, et/ou une tension dépendant de ladite tension à l'une des bornes de l'ensemble, à au moins un premier seuil et éventuellement à un deuxième seuil ; et
un module de commande relié aux modules de comparaison et adapté, lors de chaque phase croissante, à interrompre la circulation d'un courant dans chaque ensemble parmi certains ensembles de la pluralité d'ensembles lorsque ladite tension dudit ensemble passe au-dessus du deuxième seuil ou lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du premier seuil et, lors de chaque phase décroissante, à commander la circulation d'un courant dans chaque ensemble parmi certains ensembles de la pluralité d'ensembles lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil.
Selon un mode de réalisation, le circuit optoélectronique comprend :
une source de courant ;
pour chaque ensemble, un interrupteur reliant la source de courant à ladite borne dudit ensemble,
et le module de commande est adapté, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil dans chaque phase décroissante.
Selon un mode de réalisation, le module de commande est adapté, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au- dessus du deuxième seuil dans chaque phase croissante.
Selon un mode de réalisation, le module de commande est adapté, après la fermeture de l'interrupteur associé audit ensemble, à commander l'ouverture de l'interrupteur associé audit ensemble adjacent. Selon un mode de réalisation, le module de commande est adapté, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander l'ouverture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble, passe au-dessus du premier seuil dans chaque phase croissante.
Selon un mode de réalisation, le circuit optoélectronique comprend, pour chaque ensemble, une source de courant, le module de commande étant adapté, pour chaque ensemble, à commander l'activation de la source de courant associée audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du deuxième seuil dans chaque phase croissante et passe au-dessous du premier seuil dans chaque phase décroissante.
Selon un mode de réalisation, le module de commande est, en outre, adapté, après l'activation de la source de courant associée audit ensemble, à commander la désactivation de la source de courant associée audit ensemble adjacent.
Selon un mode de réalisation, le circuit optoélec- tronique comprend, en outre, un circuit redresseur double alternance adapté à fournir ladite tension.
Selon un mode de réalisation, au moins l'une des diodes électroluminescentes est une diode électroluminescente planaire comprenant un empilement de couches reposant sur une face plane, dont au moins une couche active adaptée à émettre de la lumière.
Selon un mode de réalisation, les diodes électroluminescentes d'au moins l'un des ensembles de diodes électroluminescentes comprennent des éléments semiconducteurs tridimensionnels en forme de microfils, de nanofils, ou de pyramides, chaque élément semiconducteur étant recouvert d'une couche active adaptée à émettre de la lumière .
Selon un mode de réalisation, le circuit optoélectronique comprend un premier circuit intégré comprenant le module de commande et au moins un deuxième circuit intégré, distinct du premier circuit intégré et fixé au premier circuit intégré, et comprenant au moins l'un des ensembles de diodes électroluminescentes .
Selon un mode de réalisation, le deuxième circuit intégré comprend tous les ensembles de diodes électro- luminescentes .
Selon un mode de réalisation, le circuit opto¬ électronique comprend, en outre, un troisième circuit intégré, distinct du premier circuit intégré et du deuxième circuit intégré et fixé au premier circuit intégré, et comprenant au moins l'un des ensembles de diodes électroluminescentes.
Un mode de réalisation vise également un procédé de commande d'une pluralité d'ensembles de diodes électrolumines¬ centes, lesdits ensembles étant montés en série et alimentés par une tension variable, contenant une alternance de phases croissantes et décroissantes, le procédé comprenant :
pour chaque ensemble, comparer la tension à l'une des bornes de l'ensemble, et/ou une tension dépendant de ladite tension à l'une des bornes de l'ensemble, à au moins un premier seuil et éventuellement à un deuxième seuil ; et
lors de chaque phase croissante, interrompre la circulation de courant dans chaque ensemble parmi certains ensembles de la pluralité d'ensembles lorsque ladite tension dudit ensemble passe au-dessus du deuxième seuil ou lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du premier seuil, et, lors de chaque phase décroissante, commander la circulation d'un courant dans chaque ensemble parmi certains ensembles de la pluralité d'ensembles lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil.
Selon un mode de réalisation, une source de courant est reliée, pour chaque ensemble, à ladite borne dudit ensemble via un interrupteur, le procédé comprenant, en outre, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil dans chaque phase décroissante .
Selon un mode de réalisation, le procédé comprend, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du deuxième seuil dans chaque phase croissante.
Selon un mode de réalisation, le procédé comprend, en outre, après la fermeture de l'interrupteur associé audit ensemble, l'ouverture de l'interrupteur associé audit ensemble adj acent .
Selon un mode de réalisation, le procédé comprend, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, l'ouverture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble, passe au-dessus du premier seuil dans chaque phase croissante.
Selon un mode de réalisation, pour chaque ensemble, une source de courant est reliée audit ensemble, le procédé comprenant, pour chaque ensemble, l'activation de la source de courant associée audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du deuxième seuil dans chaque phase croissante et passe au-dessous du premier seuil dans chaque phase décroissante.
Selon un mode de réalisation, le procédé comprend, en outre, après l'activation de la source de courant associée audit ensemble, la désactivation de la source de courant associée audit ensemble adjacent.
Brève description des dessins
Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, décrite précédemment, est un schéma électrique d'un exemple d'un circuit optoélectronique comprenant des diodes électroluminescentes ;
la figure 2, décrite précédemment, est un chronogramme de la tension et du courant d'alimentation des diodes électroluminescentes du circuit optoélectronique de la figure 1 ;
la figure 3 représente un schéma électrique d'un mode de réalisation d'un circuit optoélectronique comprenant des diodes électroluminescentes ;
les figures 4 et 5 illustrent deux agencements des diodes électroluminescentes du circuit optoélectronique de la figure 3 ;
les figures 6 et 7 sont des schémas électriques de modes de réalisation plus détaillés de parties du circuit optoélectronique de la figure 3 ;
la figure 8 est un chronogramme de tensions du circuit optoélectronique de la figure 3 ;
la figure 9 représente un schéma électrique d'un autre mode de réalisation d'un circuit optoélectronique comprenant des diodes électroluminescentes ;
les figures 10 et 11 sont des figures analogues respectivement aux figures 6 et 7 et représentent des schémas électriques de modes de réalisation plus détaillés de parties du circuit optoélectronique de la figure 9 ;
la figure 12 représente un schéma électrique d'un autre mode de réalisation d'un circuit optoélectronique comprenant des diodes électroluminescentes ; et
les figures 13 et 14 sont des vues en coupe, partielles et schématiques, de deux modes de réalisation d'un circuit optoélectronique comprenant des diodes électroluminescentes.
Description détaillée
Par souci de clarté, de mêmes éléments ont été désignés par de mêmes références aux différentes figures et, de plus, les diverses figures ne sont pas tracées à l'échelle. Dans la suite de la description, sauf indication contraire, les termes "sensiblement", "environ" et "de l'ordre de" signifient "à 10 % près" .
La figure 3 représente un schéma électrique d'un mode de réalisation d'un circuit optoélectronique 20 comprenant deux bornes d'entrée IN]_ et I¾ recevant la tension d'entrée Vjj^. A titre d'exemple, la tension d'entrée Vj^ peut être une tension sinusoïdale dont la fréquence est, par exemple, comprise entre 10 Hz et 1 MHz. La tension Vj^ correspond, par exemple, à la tension du secteur.
Le circuit 20 peut comprendre un circuit redresseur double alternance 22 comprenant, par exemple, un pont de diodes, formé par exemple de quatre diodes 14. Le circuit redresseur 22 reçoit la tension d'alimentation Vj^ entre les bornes IN]_ et I¾ et fournit une tension V^jjf redressée entre des noeuds A]_ et A2. A titre de variante, le circuit 20 peut recevoir directement une tension redressée, le circuit redresseur pouvant alors ne pas être présent .
Le circuit optoélectronique 20 comprend N ensembles en série de diodes électroluminescentes élémentaires, appelés diodes électroluminescentes globales Dj_ dans la suite de la description, où i est un nombre entier variant de 1 à N et où N est un nombre entier compris entre 2 et 200. Chaque diode électroluminescente globale D]_ à ¾ comprend au moins une diode électroluminescente élémentaire et est, de préférence, composée de la mise en série et/ou en parallèle d'au moins deux diodes électroluminescentes élémentaires. Dans le présent mode de réalisation, les N diodes électroluminescentes globales Dj_ sont connectées en série, la cathode de la diode électroluminescente globale Dj_ étant reliée à l'anode de la diode électroluminescente globale Dj_+]_, pour i variant de 1 à N-l. L'anode de la diode électroluminescente globale D]_ est reliée au noeud A]_ . Les diodes électroluminescentes globales Dj_, i variant de 1 à N, peuvent comprendre le même nombre de diodes électroluminescentes élémentaires ou des nombres différents de diodes électroluminescentes élémentaires. La figure 4 représente un mode de réalisation de la diode électroluminescente globale D]_ dans lequel la diode électroluminescente globale D]_ comprend R branches 26 montées en parallèle, chaque branche comprenant S diodes électrolumines- centes élémentaires 27 montées en série dans le même sens passant, R et S étant des nombres entiers supérieurs ou égaux à 1.
La figure 5 représente un autre mode de réalisation de la diode électroluminescente globale D]_ dans lequel la diode électroluminescente globale D]_ comprend P blocs 28 montés en série, chaque bloc comprenant Q diodes électroluminescentes élémentaires 27 montées en parallèle, P et Q étant des nombres entiers supérieurs ou égaux à 1 et Q pouvant varier d'un bloc à 1' autre .
Les autres diodes électroluminescentes globales D2 à % peuvent avoir une structure analogue à la diode électrolumines¬ cente globale D]_ représentée en figure 4 ou 5.
Les diodes électroluminescentes élémentaires 27 sont, par exemple, des diodes électroluminescentes planes, comprenant chacune un empilement de couches reposant sur une face plane, dont au moins une couche active adaptée à émettre de la lumière. Les diodes électroluminescentes élémentaires 27 sont, par exemple, des diodes électroluminescentes planes des diodes électro¬ luminescentes formées à partir d' éléments semiconducteurs tridimensionnels, notamment des microfils, des nanofils ou des pyramides, comprenant, par exemple, un matériau semiconducteur à base d'un composé comportant ma oritairement au moins un élément du groupe III et un élément du groupe V (par exemple du nitrure de gallium GaN) , appelé par la suite composé III-V, ou comportant ma oritairement au moins un élément du groupe II et un élément du groupe VI (par exemple de l'oxyde de zinc ZnO) , appelé par la suite composé II-VI. Chaque élément semiconducteur tridimensionnel est recouvert d'au moins une couche active adaptée à émettre de la lumière.
En revenant à la figure 3, le circuit optoélectronique 20 comprend une source de courant 30 dont une borne est reliée au noeud A2 et dont l'autre borne est reliée à un noeud A3. On appelle VQ5 la tension aux bornes de la source de courant 30 et 1^5 le courant fourni par la source de courant 30 . Le circuit optoélectronique 20 peut comprendre un circuit, non représenté, de fourniture d'une tension de référence pour l'alimentation de la source de courant, éventuellement obtenue à partir de la tension ^jjf.
Le circuit 2 0 comprend N interrupteurs commandables SW]_ à Si¾. Chaque interrupteur SWj_, i variant de 1 à N, est monté entre le noeud A3 et la cathode de la diode électroluminescente globale Dj_ . Chaque interrupteur SWj_, i variant de 1 à N, est commandé par un signal Sj_. A titre d'exemple, le signal Sj_ est un signal binaire et l'interrupteur SWj_ est ouvert lorsque le signal Sj_ est dans un premier état, par exemple l'état bas, et l'interrupteur SWj_ est fermé lorsque le signal Sj_ est dans un deuxième état, par exemple l'état haut. On appelle VQJ_ la tension entre la cathode de la diode électroluminescente globale Dj_ et le noeud A2. Dans la suite de la description, sauf indication contraire, les tensions sont référencées par rapport au noeud A2. L'interrupteur SWj_ est, par exemple, un interrupteur à base d'au moins un transistor, notamment un transistor à effet de champ à grille métal-oxyde ou transistor MOS, à enrichissement (normalement fermé) ou à appauvrissement (normalement ouvert) .
Le circuit optoélectronique 20 comprend, en outre, N modules de comparaison COMPj_, i variant de 1 à N, adaptés à recevoir chacun la tension VQJ_ et à fournir un signal Hj_ et un signal Lj_. Le circuit optoélectronique 20 comprend, en outre, un module de commande 32 recevant les signaux L]_ à L^ et H]_ à ]¾ et fournissant les signaux S]_ à de commande des interrupteurs SW]_ à Si¾. Le module de commande 32 correspond, de préférence, à un circuit dédié.
Le module de commande 32 est adapté à commander la fermeture ou l'ouverture des interrupteurs SWj_, i variant de 1 à N, en fonction de la valeur de la tension VQJ_ à la cathode de chaque diode électroluminescente globale Dj_ . Dans ce but, chaque module de comparaison COMPj_, i variant de 1 à N, est adapté à comparer la tension VQJ_ à la cathode de la diode électroluminescente globale Dj_ à au moins deux seuils Vhighj_ et Vlow-j_. A titre d'exemple, le signal Lj_ est un signal binaire qui est à un premier état lorsque la tension VQJ_ est inférieure au seuil Vlow-j_ et qui est à un deuxième état lorsque la tension VQJ_ est supérieure au seuil Vlow-j_ . A titre d'exemple, le signal Hj_ est un signal binaire qui est à un premier état lorsque la tension VQJ_ est inférieure au seuil Vhighj_ et qui est à un deuxième état lorsque la tension VQJ_ est supérieure au seuil Vhighj_. Les premiers états des signaux binaires Hj_ et Lj_ peuvent être égaux ou différents et les deuxièmes états des signaux binaires Hj_ et Lj_ peuvent être égaux ou différents.
La figure 6 représente un schéma électrique d'un mode de réalisation plus détaillé d'une partie du circuit optoélectronique 20. Selon le présent mode de réalisation, chaque comparateur COMPj_ comprend un premier amplificateur opérationnel 40, fonctionnant en comparateur, dont l'entrée inverseuse (-) est reliée à la cathode de la diode électroluminescente globale Dj_, et dont l'entrée non inverseuse (+) reçoit le seuil de tension Vhighj_ qui est fourni par un module 42. Le comparateur 40 fournit le signal Hj_. Chaque comparateur COMPj_ comprend, en outre, un deuxième amplificateur opérationnel 44, fonctionnant en comparateur, dont l'entrée inverseuse (-) est reliée à la cathode de la diode électroluminescente globale Dj_, et dont l'entrée non inverseuse (+ ) reçoit le seuil de tension Vlow-j_ qui est fourni par un module 46. Le comparateur 44 fournit le signal Lj_.
La figure 7 représente un schéma électrique d'un mode de réalisation plus détaillé de la source de courant 30 et de l'interrupteur SWj_ . Dans le présent mode de réalisation, la source de courant 30 comprend une source de courant idéale 50 dont une borne est reliée à une première source d'un potentiel de référence VREF. L'autre borne de la source de courant 50 est reliée au drain d'un transistor 52 MOS à canal N monté en diode. La source du transistor MOS 52 est reliée au noeud A2. La grille du transistor MOS 52 est reliée au drain du transistor MOS 52. Le potentiel de référence VREF peut être fourni à partir de la tension ^LJJ^. Il peut être constant ou varier en fonction de la tension ^jjf. L'intensité du courant fourni par la source de courant 30 peut être constante ou être variable, par exemple varier en fonction de la tension ^jjf.
Pour chaque diode électroluminescente globale Dj_, la source de courant 30 comprend un transistor MOS 54 à canal N dont la grille est reliée à la grille du transistor 52 et dont la source est reliée au noeud A2. Les transistors MOS 52 et 54 forment un miroir de courant, le courant 1^5 fourni par la source de courant 50 étant reproduit, éventuellement avec un facteur multiplicatif.
Selon le présent mode de réalisation, l'interrupteur SWj_ comprend un transistor MOS 56 à canal N dont le drain est relié à la cathode de la diode électroluminescente globale Dj_ et dont la source est reliée au drain du transistor 54. La tension appliquée à la grille du transistor 56 correspond au signal Sj_ décrit précédemment .
La figure 8 représente des chronogrammes de la tension d'alimentation V^jjf et des tensions Vçj_ mesurées par chaque comparateur COMPj_, i variant de 1 à N, illustrant le fonctionnement du circuit optoélectronique 20 selon le mode de réalisation représenté en figure 3 dans le cas où N est égal à 4 et dans le cas où chaque diode électroluminescente globale Dj_ comprend le même nombre de diodes électroluminescentes élémentaires agencées dans la même configuration, et a donc la même tension de seuil Vled. On appelle tg à t20 des instants successifs .
A titre d'exemple, la tension ^JM fournie par le pont redresseur 100 est une tension sinusoïdale rectifiée comprenant une succession de cycles dans chacun desquels la tension ^JM augmente depuis la valeur nulle, passe par un maximum et diminue jusqu'à la valeur nulle. A titre d'exemple, deux cycles successifs de la tension ^jjf sont représentés en figure 8. A l'instant tg, au début d'un cycle, l'interrupteur SW]_ est fermé et tous les interrupteurs SWj_, i variant de 2 à N, sont ouverts. La tension V^jjf s'élève depuis la valeur nulle en se répartissant entre la diode électroluminescente globale D]_, l'interrupteur SW]_ et la source de courant 30 . La tension V^LJJ^ étant inférieure à la tension de seuil Vled de la diode électroluminescente globale D]_, il n'y a pas émission de lumière (phase Pg) et la tension Vç]_ reste sensiblement égale à zéro.
A l'instant t]_, lorsque la tension aux bornes de la diode électroluminescente globale D]_ dépasse la tension de seuil Vled, la diode électroluminescente globale D]_ devient passante (phase P]_) . La tension aux bornes de la diode électroluminescente globale D]_ reste alors sensiblement constante et la tension VQ]_ continue à augmenter avec la tension ^LJJ^. Dès que la tension d'alimentation VQ]_ est suffisamment élevée pour permettre l'activation de la source de courant 30 , le courant 1^5 circule dans la diode électroluminescente globale D]_ qui émet de la lumière. A titre d'exemple, la tension Q5, lorsque la source de courant 30 est en fonctionnement, est de préférence sensiblement constante.
A l'instant t2, lorsque la tension VQ]_ dépasse le seuil Vhigh]_, le module 32 commande successivement la fermeture de l'interrupteur SW2 puis l'ouverture de l'interrupteur SW]_ . La tension VALIM se répartit alors entre les diodes électroluminescentes globales D]_ et D2, l'interrupteur SW2 et la source de courant 30 . De préférence, le seuil Vhigh]_ est choisi sensiblement égal à la somme de la tension de seuil de la diode électroluminescente globale D2 et de la tension VQ5 de fonctionnement de la source de courant 30 de sorte que, à la fermeture de l'interrupteur SW2, la diode électroluminescente globale D2 est traversée par le courant 1^5 et émet de la lumière. Le fait que l'interrupteur SW2 est fermé avant l'ouverture de l'interrupteur SW]_ assure l'absence d'interruption de la circulation du courant dans la diode électroluminescente globale D]_ . La phase P2 correspond à une phase d'émission de lumière par les diodes électroluminescentes globales D]_ et D2 .
De façon générale, lors d'une phase ascendante de la tension d'alimentation ^LJJ^, pour i variant de 1 à N-l, alors que l'interrupteur SWj_ est fermé et que les autres interrupteurs sont ouverts, le module 32 commande successivement la fermeture de l'interrupteur SWj_+]_ puis l'ouverture de l'interrupteur SWj_ lorsque la tension Vçj_ dépasse le seuil Vhighj_. La tension ^jjf se répartit alors entre les diodes électroluminescentes globales D]_ à Dj_+]_, l'interrupteur SWj_+]_ et la source de courant 30. De préférence, le seuil Vhighj_ est choisi sensiblement égal à la somme de la tension de seuil de la diode électroluminescente globale Dj_+]_ et de la tension VQ5 de fonctionnement de la source de courant 30 de sorte que, à la fermeture de l'interrupteur SWj_+]_, la diode électroluminescente globale Dj_+]_ est traversée par le courant 1^5 et émet de la lumière. La phase P +i correspond à l'émission de lumière par les diodes électroluminescentes globales D]_ à Dj_+]_. Le fait que l'interrupteur SWj_+]_ est fermé avant l'ouverture de l'interrupteur SWj_ assure l'absence d'interruption de la circulation du courant dans les diodes électroluminescentes globales D]_ à Dj_ .
Ainsi, à l'instant t3, le module 32 commande la fermeture de l'interrupteur SW3 et l'ouverture de l'interrupteur SW2 · La phase P3 correspond à l'émission de lumière par les diodes électroluminescentes globales D]_, D2 et D3. A l'instant tq, le module 32 commande la fermeture de l'interrupteur SW4 et l'ouverture de l'interrupteur SW3. La phase P4 correspond à l'émission de lumière par les diodes électroluminescentes globales D]_ , D2, D3 et D4.
La tension d'alimentation Vpj^ M. atteint sa valeur maximale à l'instant t5 au cours de la phase P4 en figure 8 et amorce une phase descendante.
A l'instant tg, lorsque la tension VQ4 diminue en dessous du seuil VI0W4, le module 32 commande successivement la fermeture de l'interrupteur SW3 et l'ouverture de l'interrupteur SW4. La tension V^jjf se répartit alors entre les diodes électroluminescentes globales D]_, D2 et D3, l'interrupteur SW3 et la source de courant 30. De préférence, le seuil VI0W4 est choisi sensiblement égal à la somme de la tension VQ5 de fonctionnement de la source de courant 30 et de la tension minimale de fonctionnement de l'interrupteur SW4 de sorte que, à la fermeture de l'interrupteur SW3, il n'y a pas d'interruption de la circulation du courant.
De façon générale, lors d'une phase descendante de la tension d'alimentation ^LJJ^, pour i variant de 2 à N, lorsque la tension VQJ_ diminue en dessous du seuil Vlow-j_, le module 32 commande successivement la fermeture de l'interrupteur SWj__]_ et l'ouverture de l'interrupteur SWj_ . La tension V^jjf se répartit alors entre les diodes électroluminescentes globales D]_ à Dj__]_, l'interrupteur SWj__]_ et la source de courant 30. De préférence, le seuil Vlow-j_ est choisi sensiblement égal à la somme de la tension VQ5 de fonctionnement de la source de courant 30 et de la tension minimale de fonctionnement de l'interrupteur SWj_ de sorte qu'à la fermeture de l'interrupteur SWj__]_, il n'y a pas d'interruption de la circulation du courant.
Ainsi, à l'instant ίη , le module 32 commande la fermeture de l'interrupteur SW2 et l'ouverture de l'interrupteur SW3. A l'instant tg, le module 32 commande la fermeture de l'interrupteur SW2 et l'ouverture de l'interrupteur SW]_ . A l'instant tg, la tension VQ]_ s'annule de sorte que la diode électroluminescente globale D]_ n' est plus passante et la source de courant 30 est éteinte. A l'instant t]_g, la tension ^jjf s'annule et un nouveau cycle commence. Les instants t]_i à t20 sont analogues respectivement aux instants t]_ à t]_o- Dans le présent mode de réalisation, le comparateur COMP]_ peut avoir une structure plus simple que les comparateurs COMPj_, i variant de 2 à N, dans la mesure où le seuil Vlow]_ n'est pas utilisé.
Selon un autre mode de réalisation du circuit optoélectronique 20, chaque comparateur COMPj_ du circuit optoélectronique 20 ne fournit que le signal Lj_ . Un avantage de ce mode de réalisation est que la structure du comparateur COMPj_ peut être simplifiée. En effet, le comparateur COMPj_ peut ne pas comprendre l'amplificateur opérationnel 40.
Le fonctionnement du circuit optoélectronique selon cet autre mode de réalisation est alors identique à ce qui a été décrit précédemment à la différence que les interrupteurs SWj_, i variant de 1 à N-l sont initialement fermés et que, dans une phase croissante de la tension d'alimentation ^LJJ^, l'interrupteur SWj__]_ est ouvert lorsque la tension Vçj_ est supérieure au seuil Vlow-j_. En effet, ceci signifie que du courant commence à circuler au travers de 1 ' interrupteur SWj_ .
Plus précisément, dans une phase croissante de la tension d'alimentation ^LJJ^, pour i variant de 1 à N-l, alors que les diodes électroluminescentes D]_ à Dj__]_ sont passantes et que les diodes électroluminescentes Dj_ à ¾ sont bloquées, lorsque la tension VQJ_ passe au-dessus du seuil Vlow-j_, le module 32 commande l'ouverture de l'interrupteur SWj__]_. En effet, une élévation de la tension VQJ_ signifie que la tension aux bornes de la diode électroluminescente Dj_ devient supérieure à la tension de seuil de la diode électroluminescente Dj_ et que celle-ci devient passante.
Le fonctionnement du circuit optoélectronique selon cet autre mode de réalisation dans une phase décroissante de la tension d'alimentation ^jjf peut être identique à ce qui a été décrit précédemment pour le circuit optoélectronique 20.
La figure 9 représente un schéma électrique d'un autre mode de réalisation d'un circuit optoélectronique 60. L'ensemble des éléments communs avec le circuit optoélectronique 20 sont désignés par les mêmes références. A la différence du circuit optoélectronique 20, le circuit optoélectronique 60 ne comprend pas l'interrupteur Si¾. De plus, à la différence du circuit optoélectronique 20, pour i variant de 1 à N-l, le circuit optoélectronique 60 comprend une résistance 62j_ prévue entre le noeud A3 et l'interrupteur SWj_, et le circuit optoélectronique 60 comprend une résistance 62^ prévue entre le noeud A3 et la cathode de la diode électroluminescente globale ¾. On appelle Bj_ un noeud entre la résistance 62j_ et l'interrupteur SWj_, pour i variant de 1 à N-l, et BJJ un noeud entre la résistance 62^ et la cathode de la diode électroluminescente globale ¾. En outre, chaque comparateur COMPj_, i variant de 1 à N, reçoit, en outre, la tension au noeud Bj_ . Le signal Hj_ est alors un signal binaire qui est à un premier état lorsque la tension au noeud Bj_ est inférieure à un seuil MINj_ et qui est à un deuxième état lorsque la tension au noeud Bj_ est supérieure au seuil MINj_ .
La figure 10 représente un schéma électrique d'un mode de réalisation plus détaillé d'une partie du circuit optoélectronique 60. Dans le présent mode de réalisation, le comparateur COMPj_ comprend l'ensemble des éléments du comparateur COMPj_ représenté en figure 6 à la différence que l'amplificateur opérationnel 40 est remplacé par un comparateur 64 à hystérésis recevant la tension aux bornes de la résistance 62j_ et fournissant le signal Hj_ .
La figure 11 représente un schéma électrique d'un mode de réalisation plus détaillé de la source de courant 30 et de l'interrupteur SWj_ pour le circuit optoélectronique 60. La source de courant 30 comprend l'ensemble des éléments de la source de courant représentée en figure 7. La résistance 62j_ est interposée entre le transistor MOS 54 et le noeud Bj_, une borne de la résistance 62j_ étant reliée au drain du transistor 54 et l'autre borne de la résistance 62j_ étant reliée au noeud Bj_ .
Le fonctionnement du circuit optoélectronique 60 peut être identique au fonctionnement du circuit optoélectronique 20 décrit précédemment à la différence que, dans une phase croissante de la tension d'alimentation ^JM, l'interrupteur SWj_ est ouvert lorsque du courant commence à circuler dans la résistance 62j_+]_.
Plus précisément, les interrupteurs SWj_, i variant de 1 à N-l, sont initialement fermés. Dans une phase croissante de la tension d'alimentation ^LJJ^, pour i variant de 1 à N-l, alors que les diodes électroluminescentes D]_ à Dj__]_ sont passantes et que les diodes électroluminescentes Dj_ à % sont bloquées, lorsque la tension aux bornes de la diode électroluminescente Dj_ devient supérieure à la tension de seuil de la diode électroluminescente Dj_, celle-ci devient passante et un courant commence à circuler dans la résistance 62j_. Ceci se traduit par une élévation de la tension au noeud Bj_ . Dès que la tension au noeud Bj_ s'élève au- dessus du seuil MINj_, le module 32 commande la fermeture de l'interrupteur SWj__]_.
Le fonctionnement du circuit optoélectronique 60 dans une phase décroissante de la tension d'alimentation ^LJJ^ peut être identique à ce qui a été décrit précédemment pour le circuit optoélectronique 20.
Le circuit optoélectronique 60 présente l'avantage que les seuils MINj_ et Vlow-j_ peuvent être indépendants des caractéristiques des diodes électroluminescentes Dj_. En particulier, ils ne dépendent pas de la tension de seuil de chaque diode électroluminescente Dj_ .
La figure 12 représente un schéma électrique d'un autre mode de réalisation d'un circuit optoélectronique 70. L'ensemble des éléments communs avec le circuit optoélectronique 20 sont désignés par les mêmes références. Le circuit optoélectronique 70 comprend, pour chaque diode électroluminescente globale Dj_, une source de courant 72j_, i variant de 1 à N, associée à la diode électroluminescente globale Dj_ . Une borne de la source de courant 72j_, i variant de 1 à N, est reliée au noeud A2 et l'autre borne est reliée à la cathode de la diode électroluminescente globale Di.
Chaque source de courant 72j_, i variant de 1 à N, est commandée par un signal S'j_ fourni par le module de commande 32. A titre d'exemple, le signal S'j_ est un signal binaire et la source de courant 72j_ est activée lorsque le signal S'j_ est dans un premier état et la source de courant 72j_ est inactivée lorsque le signal S'j_ est dans un deuxième état.
Le fonctionnement du circuit optoélectronique 70 peut être identique au fonctionnement du circuit optoélectronique 20 décrit précédemment à la différence que les étapes d'ouverture et de fermeture d'interrupteurs SWj_ du circuit optoélectronique 20 sont remplacées respectivement par des étapes d' activation et de désactivation des sources de courant 72j_.
Plus précisément, dans une phase croissante de la tension d'alimentation ^LJJ^, pour i variant de 1 à N-l, alors que la source de courant 72j_ est activée et que les autres sources de courant sont désactivés, le module 32 commande successivement l' activation de la source de courant 72j_+]_ puis la désactivation de la source de courant 72j_ lorsque la tension VQJ_ dépasse le seuil Vhighj_. La tension Vpj^ M se répartit alors entre les diodes électroluminescentes globales D]_ à Dj_+]_ et la source de courant 72j_+]_. De préférence, le seuil Vhighj_ est choisi sensiblement égal à la tension de seuil de la diode électroluminescente globale Dj_+]_ de sorte qu'à l' activation de la source de courant 72j_+]_, la diode électroluminescente globale Dj_+]_ est traversée par le courant 1^5 et émet de la lumière. Le fait que la source de courant 72j_+]_ est activée avant que la source de courant 72j_ ne soit désactivée assure l'absence d'interruption de la circulation du courant dans les diodes électroluminescentes globales D]_ à Dj_.
De façon générale, dans une phase décroissante de la tension d' alimentation ^JM, pour i variant de 2 à N, lorsque la tension VQJ_ diminue en dessous du seuil Vlow-j_, le module 32 commande successivement l' activation de la source de courant 72j__]_ puis la désactivation de la source de courant 72j_. La tension YALJM se répartit alors entre les diodes électroluminescentes globales D]_ à Dj__]_ et la source de courant 72j_+]_. Le fait que la source de courant 72 est activée avant que la source de courant 72j_ ne soit désactivée assure l'absence d'interruption de la circulation du courant dans les diodes électroluminescentes globales D]_ à Dj__]_.
La figure 13 est une vue en coupe, partielle et schématique, d'un autre mode de réalisation d'un circuit optoélectronique 80 dont le schéma électrique équivalent peut correspondre à l'un des schémas représentés sur les figures 3, 9 ou 12. Dans ce mode de réalisation, chaque diode électro¬ luminescente globale D]_ à ¾ est formée sur un circuit monolithique 82 distinct. Les autres composants du circuit optoélectronique 80 sont formés dans un autre circuit intégré 84. Chaque circuit monolithique 82 est relié au circuit intégré 84, par exemple par une liaison du type puce retournée (en anglais flip-chip) . Chaque diode électroluminescente globale D]_ à ¾ peut correspondre à une diode électroluminescente plane ou à une diode électroluminescente formée à partir d'éléments tridimensionnels, notamment des microfils ou nanofils semiconducteurs.
Selon une variante, au moins l'un des circuits monolithiques 82 peut comprendre plus d'une diode électroluminescente globale.
La figure 14 est une vue en coupe, partielle et schématique, d'un autre mode de réalisation d'un circuit optoélectronique 90 dont le schéma électrique équivalent peut correspondre à l'un des schémas représentés sur les figures 3, 9 ou 12. Dans ce mode de réalisation, les diodes électro¬ luminescentes globales D]_ à D^ sont formées de façon intégrée sur un circuit 92 distinct. Les autres composants du circuit optoélectronique 90 sont formés dans un autre circuit intégré 94. Le circuit intégrée 92 est relié au circuit intégré 94, par exemple par une liaison du type puce retournée (en anglais flip-chip) . Chaque diode électroluminescente globale à ¾ peut correspondre à une diode électroluminescente plane ou à une diode électroluminescente formée à partir d'éléments tridimensionnels, notamment des microfils ou nanofils semiconducteurs.
Selon un autre mode de réalisation, tous les composants du circuit optoélectronique selon l'un des schémas électriques équivalents représentés sur les figures 3, 9 ou 12 sont réalisés sur un même circuit intégré. Chaque diode électroluminescente globale D]_ à ¾ peut correspondre à une diode électroluminescente plane ou à une diode électroluminescente formée à partir d'éléments tridimensionnels, notamment des microfils ou nanofils semiconducteurs. Selon un autre mode de réalisation, chaque diode électroluminescente globale D]_ à peut correspondre à un composant discret, comprenant notamment un boîtier de protection de la diode électroluminescente. Chaque composant est, par exemple, fixé à un support, notamment un circuit imprimé, sur lequel sont fixés les autres composants du dispositif optoélectronique .
Divers modes de réalisation avec diverses variantes ont été décrits ci-dessus. On notera que l'homme de l'art pourra combiner divers éléments de ces divers modes de réalisation et variantes sans faire preuve d'activité inventive.

Claims

REVENDICATIONS
1. Circuit optoélectronique (20) destiné à recevoir une tension variable (vZLIM) contenant une alternance de phases croissantes et décroissantes, le circuit optoélectronique comprenant :
une pluralité d'ensembles (Dj_) de diodes électroluminescentes, lesdits ensembles étant montés en série ;
pour chaque ensemble, un module de comparaison (COMPjJ adapté à comparer la tension (Vçj_) à l'une des bornes de l'ensemble, et/ou une tension dépendant de ladite tension à l'une des bornes de l'ensemble, à au moins un premier seuil (Vlow-jJ et éventuellement à un deuxième seuil (VhighjJ ;
une source de courant (30) ;
pour chaque ensemble (Dj_) , un interrupteur (SWj_) reliant la source de courant à ladite borne dudit ensemble ; et
un module de commande (32) relié aux modules de comparaison et adapté, lors de chaque phase croissante, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander la fermeture de l'interrupteur relié audit ensemble lorsque ladite tension dudit ensemble passe au- dessus du deuxième seuil ou lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au- dessus du premier seuil et, lors de chaque phase décroissante, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander l'ouverture de l'interrupteur relié audit ensemble, lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil .
2. Circuit optoélectronique selon la revendication 1, dans lequel le module de commande (32) est adapté, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du deuxième seuil dans chaque phase croissante.
3. Circuit optoélectronique selon la revendication 1 ou 2, dans lequel le module de commande (32) est adapté, après la fermeture de l'interrupteur associé audit ensemble, à commander l'ouverture de l'interrupteur associé audit ensemble adjacent.
4. Circuit optoélectronique selon la revendication 1, dans lequel le module de commande (32) est adapté, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, à commander l'ouverture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble, passe au-dessus du premier seuil dans chaque phase croissante.
5. Circuit optoélectronique selon l'une des revendications 1 à 4, comprenant, en outre, un circuit (12) redresseur double alternance adapté à fournir ladite tension
(VALIM) ·
6. Circuit optoélectronique selon l'une des revendications 1 à 5, dans lequel au moins l'une des diodes électroluminescentes (27) est une diode électroluminescente planaire comprenant un empilement de couches reposant sur une face plane, dont au moins une couche active adaptée à émettre de la lumière.
7. Circuit optoélectronique selon l'une des revendications 1 à 5, dans lequel les diodes électroluminescentes d'au moins l'un des ensembles (Dj_) de diodes électroluminescentes comprennent des éléments semiconducteurs tridimensionnels en forme de microfils, de nanofils, ou de pyramides, chaque élément semiconducteur étant recouvert d'une couche active adaptée à émettre de la lumière.
8. Circuit optoélectronique selon l'une des revendications 1 à 7, comprenant un premier circuit intégré (84 ; 94) comprenant le module de commande (32) et au moins un deuxième circuit intégré (82 ; 92), distinct du premier circuit intégré et fixé au premier circuit intégré, et comprenant au moins l'un des ensembles (Dj_) de diodes électroluminescentes.
9. Circuit optoélectronique selon la revendication 8, dans lequel le deuxième circuit intégré (92) comprend tous les ensembles (Dj_) de diodes électroluminescentes.
10. Circuit optoélectronique selon la revendication 8, comprenant, en outre, un troisième circuit intégré (82) , distinct du premier circuit intégré (84) et du deuxième circuit intégré et fixé au premier circuit intégré, et comprenant au moins l'un des ensembles (Dj_) de diodes électroluminescentes.
11. Procédé de commande d'une pluralité d'ensembles (Dj_) de diodes électroluminescentes, lesdits ensembles étant montés en série et alimentés par une tension variable (V^LJM) , contenant une alternance de phases croissantes et décroissantes, une source de courant (30) étant reliée, pour chaque ensemble (Dj_) , à ladite borne dudit ensemble via un interrupteur (SWj_) , le procédé comprenant les étapes suivantes :
pour chaque ensemble, comparer la tension (VQJ_) à l'une des bornes de l'ensemble, et/ou une tension dépendant de ladite tension à l'une des bornes de l'ensemble, à au moins un premier seuil (Vlow-jJ et éventuellement à un deuxième seuil (VhighjJ ; et lors de chaque phase croissante, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, commander l'ouverture de l'interrupteur relié audit ensemble lorsque ladite tension dudit ensemble passe au-dessus du deuxième seuil ou lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du premier seuil, et, lors de chaque phase décroissante, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, commander la fermeture de l'interrupteur relié audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessous du premier seuil.
12. Procédé selon la revendication 11, comprenant, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, la fermeture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble et traversé par le courant, passe au-dessus du deuxième seuil dans chaque phase croissante.
13. Procédé selon la revendication 11 ou 12, comprenant, en outre, après la fermeture de l'interrupteur associé audit ensemble, l'ouverture de l'interrupteur associé audit ensemble adj acent .
14. Procédé selon la revendication 13, comprenant, pour chaque ensemble parmi certains ensembles de la pluralité d'ensembles, l'ouverture de l'interrupteur associé audit ensemble lorsque ladite tension de l'ensemble, adjacent audit ensemble, passe au-dessus du premier seuil dans chaque phase croissante.
PCT/EP2015/064799 2014-06-30 2015-06-30 Circuit optoelectronique a diodes electroluminescentes WO2016001201A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15733435.0A EP3162166A1 (fr) 2014-06-30 2015-06-30 Circuit optoélectronique à diodes électroluminescentes
US15/321,810 US10178724B2 (en) 2014-06-30 2015-06-30 Optoelectronic circuit having light-emitting diodes
CN201580035655.5A CN106664757B (zh) 2014-06-30 2015-06-30 具有发光二极管的光电子电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1456180 2014-06-30
FR1456180A FR3023119B1 (fr) 2014-06-30 2014-06-30 Circuit optoelectronique a diodes electroluminescentes

Publications (1)

Publication Number Publication Date
WO2016001201A1 true WO2016001201A1 (fr) 2016-01-07

Family

ID=52016672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/064799 WO2016001201A1 (fr) 2014-06-30 2015-06-30 Circuit optoelectronique a diodes electroluminescentes

Country Status (5)

Country Link
US (1) US10178724B2 (fr)
EP (1) EP3162166A1 (fr)
CN (1) CN106664757B (fr)
FR (1) FR3023119B1 (fr)
WO (1) WO2016001201A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162982A1 (fr) 2016-03-24 2017-09-28 Aledia Circuit optoelectronique comprenant des diodes electroluminescentes
WO2019229329A1 (fr) 2018-06-01 2019-12-05 Aledia Circuit optoelectronique comprenant des diodes electroluminescentes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194298A1 (en) * 2008-10-30 2010-08-05 Fuji Electric Systems Co., Ltd. Led drive device, led drive method and lighting system
US20130127354A1 (en) * 2010-12-07 2013-05-23 Iml International Two-terminal current controller and related led lighting device
EP2670217A1 (fr) * 2012-06-01 2013-12-04 Jinone Incorporation Appareil de commande de chaîne de DEL

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398411B2 (ja) * 2005-07-12 2010-01-13 株式会社小糸製作所 車両用灯具の点灯制御装置
US7880400B2 (en) * 2007-09-21 2011-02-01 Exclara, Inc. Digital driver apparatus, method and system for solid state lighting
US8410717B2 (en) * 2009-06-04 2013-04-02 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices
US8305005B2 (en) * 2010-09-08 2012-11-06 Integrated Crystal Technology Inc. Integrated circuit for driving high-voltage LED lamp
WO2012035243A1 (fr) * 2010-09-14 2012-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a base de nanofils pour l'émission de lumière
TWI435654B (zh) * 2010-12-07 2014-04-21 安恩國際公司 雙端電流控制器及相關發光二極體照明裝置
CN103548419B (zh) * 2011-05-19 2016-10-26 皇家飞利浦有限公司 发光设备
DE102012207456B4 (de) * 2012-05-04 2013-11-28 Osram Gmbh Ansteuerung von Halbleiterleuchtelementen
KR101901320B1 (ko) * 2012-05-22 2018-09-21 삼성전자주식회사 발광소자 및 그 제조방법
KR101474082B1 (ko) * 2012-12-28 2014-12-17 삼성전기주식회사 발광 다이오드 구동 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194298A1 (en) * 2008-10-30 2010-08-05 Fuji Electric Systems Co., Ltd. Led drive device, led drive method and lighting system
US20130127354A1 (en) * 2010-12-07 2013-05-23 Iml International Two-terminal current controller and related led lighting device
EP2670217A1 (fr) * 2012-06-01 2013-12-04 Jinone Incorporation Appareil de commande de chaîne de DEL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162982A1 (fr) 2016-03-24 2017-09-28 Aledia Circuit optoelectronique comprenant des diodes electroluminescentes
WO2019229329A1 (fr) 2018-06-01 2019-12-05 Aledia Circuit optoelectronique comprenant des diodes electroluminescentes

Also Published As

Publication number Publication date
US10178724B2 (en) 2019-01-08
CN106664757B (zh) 2019-12-31
FR3023119B1 (fr) 2019-08-02
EP3162166A1 (fr) 2017-05-03
US20170156182A1 (en) 2017-06-01
CN106664757A (zh) 2017-05-10
FR3023119A1 (fr) 2016-01-01

Similar Documents

Publication Publication Date Title
WO2016001201A1 (fr) Circuit optoelectronique a diodes electroluminescentes
EP3010133B1 (fr) Circuit de redressement contrôlé
EP3223590B1 (fr) Circuit optoélectronique comprenant des diodes électroluminescentes
EP3332608B1 (fr) Circuit optoélectronique à diodes électroluminescentes
EP3241408A1 (fr) Circuit optoélectronique a diodes électroluminescentes
EP3108719A1 (fr) Circuit optoélectronique à diodes électroluminescentes
EP3332607A1 (fr) Circuit optoelectronique à diodes electroluminescentes
EP3302003B1 (fr) Circuit optoélectronique comprenant des diodes électroluminescentes
EP3223589B1 (fr) Circuit optoélectronique comprenant des diodes électroluminescentes
WO2017162982A1 (fr) Circuit optoelectronique comprenant des diodes electroluminescentes
CA2869170C (fr) Generateur de courant et procede de generation d'impulsions de courant
FR3042377B1 (fr) Circuit optoelectronique a diodes electroluminescentes
WO2017060657A1 (fr) Circuit optoelectronique a diodes electroluminescentes
EP3398408A1 (fr) Circuit optoélectronique à diodes électroluminescentes
WO2017060658A1 (fr) Circuit optoelectronique a diodes electroluminescentes
FR2946827A1 (fr) Circuit de commande d'un dispositif d'eclairage a diodes electroluminescentes.
FR3060934A1 (fr) Circuit optoelectronique comprenant des diodes electroluminescentes
EP3398410A1 (fr) Circuit optoélectronique à diodes électroluminescentes
FR3023671A1 (fr) Procede d’alimentation et systeme d’eclairage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15733435

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015733435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015733435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE