WO2016000607A1 - Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides - Google Patents

Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides Download PDF

Info

Publication number
WO2016000607A1
WO2016000607A1 PCT/CN2015/082894 CN2015082894W WO2016000607A1 WO 2016000607 A1 WO2016000607 A1 WO 2016000607A1 CN 2015082894 W CN2015082894 W CN 2015082894W WO 2016000607 A1 WO2016000607 A1 WO 2016000607A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial
frame
waveguide structure
radiating elements
antenna device
Prior art date
Application number
PCT/CN2015/082894
Other languages
French (fr)
Inventor
Halim Boutayeb
Paul Watson
Toby Kemp
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/319,981 external-priority patent/US9502765B2/en
Priority claimed from US14/319,884 external-priority patent/US9490535B2/en
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2016000607A1 publication Critical patent/WO2016000607A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present invention relates to antenna design, and, in particular embodiments, to an apparatus and assembling method for a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides.
  • Modern wireless transmitters of radio frequency (RF) signals or antennas perform beamsteering to manipulate the direction of a main lobe of a radiation pattern and achieve enhanced spatial selectivity.
  • Conventional beamsteering techniques rely on manipulating the phase of RF signals through a series of phase shifters and RF switches.
  • the inclusion of phase shifters, RF switches, and other complex components increase the manufacturing cost and design complexity of agile antennas. Accordingly, less complex agile antenna designs are desired.
  • an antenna device comprising a first waveguide structure, a first line feed a second radial waveguide, a second line feed and a plurality of radiating elements.
  • the first line feed is connected substantially at the center of a surface of the first radial waveguide structure.
  • the second waveguide structure which may be radial and similar to the first radial waveguide structure, is coupled to the first waveguide structure.
  • the second waveguide structure is substantially parallel to and faces the first radial waveguide structure.
  • the second line feed is connected at substantially a center of a surface of the second waveguide structure, wherein the first line feed of the first radial waveguide structure faces the second line feed of the second waveguide structure.
  • the plurality of radiating elements are positioned between the first radial waveguide structure and the second waveguide structure.
  • the radiating elements are distributed radially around a circumference of the first radial waveguide structure and a circumference of the second radial waveguide structure.
  • each of the first radial waveguide structure and the second radial waveguide structure comprises: a first and second radial plate as well as a plurality of conductive elements.
  • the first radial plate is connected to one of the first line feed and the second line feed.
  • the second radial plate is substantially in parallel with the first radial plate on an opposite side from the one of the first line feed and the second line feed.
  • Conductive elements are connected to a plurality of tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between the first line feed and the radiating elements.
  • the first radial frame encloses the first radial waveguide structure, the first radial frame comprises a conductive gasket positioned around an inside wall of the first radial frame and in contact with the first radial plate and the second radial plate of the first radial waveguide structure.
  • the second radial frame encloses the second radial waveguide structure, the second radial frame comprises a second conductive gasket positioned around an inside wall of the second radial frame and in contact with the first radial plate and the second radial plate of the second radial waveguide structure.
  • the antenna device also includes a plurality of direct current (DC) switches coupled to the first radial waveguide structure and the second radial waveguide structure, and configured to activate and deactivate selected tunable elements in the plurality of tunable elements in the first radial waveguide structure and the second radial waveguide structure simultaneously, wherein the activation or deactivation directs propagation and beam steering of a radio frequency (RF) signal.
  • DC direct current
  • RF radio frequency
  • at least one of the DC switches is connected to a corresponding grouping of the tunable elements.
  • the tunable elements include at least one of PIN diodes and micro-electromechanical systems (MEMS) .
  • at least one of the first line feed and the second line feed are coupled to a radio frequency (RF) signal source.
  • an antenna device In a second aspect of the present invention, there is provided an antenna device.
  • the antenna device has first and second waveguide structures, first and second frames and a plurality of radiating elements.
  • the first frame is a radial frame that enclosed the first waveguide, which is also radial.
  • the second waveguide structure may be radial, and similar in structure to the first waveguide structure in some embodiments.
  • the second frame encloses the second waveguide structure and is coupled substantially in parallel to the first radial frame.
  • the radiating elements are s positioned between the first radial frame and the second frame, and distributed radially around a circumference of the first radial frame and a circumference of the second frame, wherein the radiating elements are connected to the first radial waveguide structure and to the second radial waveguide structure through the second radial frame.
  • a conductive gasket positioned around an inside inner wall of each one of the first radial frame and the second radial frame.
  • each of the first radial frame and the second radial frame comprises a plurality of cylindrical holders, a plurality of slots and guide ribs.
  • the plurality of cylindrical holders are distributed radially around a circumference of an outer surface of each one of the first radial frame and the second radial frame.
  • the slots are distributed radially around the circumference and configured to fit edge probes at endings of the radiating elements.
  • the guide ribs are on both sides of each one of the slots, and are configured to hold the radiating elements vertical to the outer surface. There may optionally also be one or more frame alignment markers on the outer surface of the frame.
  • each of the first and second waveguide structures comprises a first radial plate connected to the radiating elements through one of the first radial frame and the second radial frame, a second radial plate substantially in parallel with the first radial plate, wherein the first radial plate and the second radial plate are in contact with the conductive gasket, and a plurality of metallic posts connected to tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between substantially a center of the second radial plate and the radiating elements.
  • the first line feed is connected at substantially a center of a surface of the first radial waveguide structure through the first radial frame
  • the first coaxial cable is connected to the first line feed and connected to a radio frequency (RF) signal source through an opening between the radiating elements
  • the second line feed is connected at substantially a center of a surface of the second radial waveguide structure through the first radial frame and the second coaxial cable connected to the second line feed and connected to the RF signal source through the opening between the radiating elements.
  • the antenna device can further comprise first and second multi-pin cables.
  • the first multi-pin cable is connected, via a connector, to the surface of the first radial waveguide structure through the first radial frame, and connected, through an opening between the radiating elements, to a plurality of direct current (DC) switches and a controller.
  • the second multi-pin cable connected, via a second connector, to the surface of the second radial waveguide structure through the second radial frame, and connected, through a second opening between the radiating elements, to the DC switches and the controller.
  • the first fastening loop loosely fastens the first coaxial cable to an edge of the first radial frame and the second fastening loop loosely fastens the multi-pin cable to a second edge of the first radial frame.
  • the antenna device can further include a plurality of standoffs, a radial base, and a cover.
  • the standoffs are positioned between the first radial frame and the second frame, and distributed radially around the circumference of the frames.
  • the radial base is coupled to a surface the first radial frame opposite to the second radial frame.
  • the cover encloses frames, the radiating elements and standoffs between the frames, and the radial base.
  • the antenna device comprises a connector board coupled to the surface of the first radial frame and positioned between the radial base and the first radial frame, wherein the connector board connects the first multi-pin cable and the second multi-pin cable to the DC switches and the controller.
  • the radial base comprises a base alignment markers on a surface of the radial base, an opening for each one of the first coaxial cable and the second coaxial cable, a corresponding cable label on each opening; a cover locking rib at an edge of the radial base, and a plurality of cover snap tabs around a bottom circumference of the radial base.
  • the cover can further comprise a top plate connected to a surface of the cover, a base locking notch at an edge of the cover that fits the cover locking rib of the radial base, and a radial groove around a circumference at the edge of the base, wherein the radial groove provides a fastening mechanism with the cover snap tabs and allows a uniform thickness shape of the cover.
  • the radiating element of the antenna may comprise a conductive feed path, a path connected to a surface and edge probes.
  • the conductive feed paths are on the surface that the path is connected to on each of the radiating elements.
  • the edge probes are on both ends of each one of the radiating elements, the edge probes having trapezoid cut ends.
  • each of the radiating elements has a shape with step wise edges and cut off corners on both sides at both ends, and wherein the step wise edges provides a self-aligning mechanism with corresponding guide ribs on a surface of each one of the first radial frame and the second radial frame.
  • a method for assembling a dual port waveguide antenna comprises encasing a first radial waveguide structure into a first frame, encasing a second radial waveguide structure into a second frame, connecting a first radio frequency (RF) source coaxial cable to the first radial waveguide structure through the first frame, and a second RF source coaxial cable to the second radial waveguide structure through the second frame, connecting a first direct current (DC) switch multi-pin cable to the first radial waveguide structure through the first frame, and a second DC switch multi-pin cable to the second radial waveguide structure through the second frame, placing a plurality of radiating elements and a plurality of standoffs between the first frame and the second frame, wherein the radiating elements and the standoffs are radially distributed around a circumference of each one of the first frame and the second frame, connecting a base at a surface of one of the first frame opposite to the second frame and placing a cover
  • RF radio frequency
  • the method includes connecting both the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure to a radio frequency signal source trough openings in the radiating elements, and connecting both the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure to a DC switch controller, through second openings in the radiating elements.
  • the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure are connected to the radio frequency signal source through corresponding openings in the base, and wherein the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure are connected to the DC switch controller via a connector board in the base.
  • FIG. 1 illustrates a diagram of a wireless network for communicating data
  • FIG. 2 is a side view of a dual port waveguide antenna according to an embodiment of the disclosure
  • FIG. 3 is an isometric view of a radial waveguide of the dual port waveguide antenna of FIG. 2;
  • FIG. 4 is a side view of a DC control system for the radial waveguide of the dual port waveguide antenna according to an embodiment of the disclosure
  • FIG. 5 is a top view of groups of tunable elements in the radial waveguide of the dual port waveguide antenna according to an embodiment of the disclosure.
  • FIG. 6 is a side cross-section view of an antenna assembly of the dual port waveguide antenna according to an embodiment of the disclosure.
  • FIG. 7 is an isometric view of the antenna assembly of FIG. 6;
  • FIG. 8 is an isometric view of a cover of the antenna of FIG. 6;
  • FIG. 9 is an isometric view of a frame assembly of FIG. 6;
  • FIG. 10 is an isometric view of further components of the frame assembly of FIG. 6;
  • FIG. 11 is an isometric view of further components of the frame assembly of FIG. 6;
  • FIG. 12 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 13 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 14 is an isometric view of a second frame assembly of FIG. 6;
  • FIG. 15 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 16 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 17 is an isometric view of a base assembly of FIG. 6;
  • FIG. 18 is an isometric view of further components of the base assembly of FIG. 6;
  • FIG. 19 is an isometric view of further components of the base assembly of FIG. 6;
  • FIG. 20 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 21 is an isometric view of further components of the cover assembly of FIG. 6;
  • FIG. 22 is an isometric view of further components of the cover assembly of FIG. 6;
  • FIG. 23 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 24 is an isometric view of further components of the antenna assembly of FIG. 6;
  • FIG. 25 is an illustration of a plurality of examples for achieving different beam radiation patterns and orientations by controlling a power divider of the antenna;
  • FIG. 26 illustrates a flowchart of an embodiment method for assembling the dual port waveguide antenna
  • FIG. 27 illustrates a block diagram of an embodiment communications device
  • FIG. 28 shows a top view of an embodiment of an upper power divider configuration of the antenna
  • FIG. 29 shows a top view of an embodiment of a lower power divider configuration of the antenna
  • FIGs. 30A and 30B show an embodiment of a DC logic PIN configuration for a 40 PINs connector for the antenna
  • FIG. 31 shows an embodiment of a radiating element of the antenna including edge probes at the ends of the radiating element
  • FIG. 32 shows an embodiment of an edge probe and a feed path of a radiating element of the antenna.
  • an agile antenna that beamsteers wireless transmissions, e.g., RF or microwave signals, by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches.
  • the antenna is a dual polarized agile antenna comprising two radial waveguides with electronically controlled power dividers and suitable for broadband transmissions, e.g., in the RF or microwave frequency range.
  • RF frequencies and RF signals is used to represent frequencies and signals, respectively, in the RF, microwave, and other suitable regions of the spectrum for wireless communications.
  • FIG. 1 illustrates a network 100 for communicating data.
  • the network 100 comprises an access point (AP) 110 having a coverage area 112, a plurality of user equipments (UEs) 120, and a backhaul network 130.
  • the AP 110 may comprise any component capable of providing wireless access, e.g., to establish uplink (dashed line) and/or downlink (dotted line) connections with the UEs 120.
  • Examples of the AP 110 include a base station (nodeB) , an enhanced base station (eNB) , a femtocell, and other wirelessly enabled devices.
  • the UEs 120 may comprise any components capable of establishing a wireless connection with the AP 110.
  • the backhaul network 130 may be any component or collection of components that allow data to be exchanged between the AP 110 and a remote end (not shown) .
  • the network 100 may comprise various other wireless devices, such as relays, femtocells, etc.
  • the AP 110 or other wireless communication devices of the network 100 may comprise an agile antenna device as described below. The agile antenna is used to transmit/receive the wireless or RF signals with the other devices such as for cellular and/or WiFi communications.
  • FIG. 2 shows an embodiment of a dual polarized agile antenna 200, also referred to herein as a dual port waveguide antenna.
  • the dual port waveguide antenna 200 comprises a first radial waveguide structure 205 (e.g., at the bottom or base of the antenna) and a second radial waveguide structure 206 (e.g., at the top of the antenna) , which are similar.
  • Each waveguide structure is composed of two parallel radial surfaces separated from each other by a suitable distance.
  • the parallel radial surfaces/plates 211 are electrically connected via a conductive means 213 forming a short circuit, which reduces radiation loss compared to open circuit.
  • the parallel palates 211 are separated by a predetermined height, H, that promotes broadband operation of the antenna.
  • the conductive means 213 is a conductive gasket placed around the edges of both plates 211, as described further below.
  • a series of radiating elements 230 is distributed between the first radial waveguide structure 205 and the second radial waveguide structure 206 around the circumference of the two radial waveguides.
  • the radiating elements 230 comprise conductive feed paths 231.
  • a patch 232 is coupled to an outer surface of each radiating element 230.
  • the edges (both bottom and top edges) of the radiating elements 230 form edge probes 233 that electrically connect the radiating elements 230 to the first radial waveguide structure 205 and the second radial waveguide structure 206.
  • the edge probes 233 are parts of the radiating elements 230 and printed with the radiating elements 230 in the fabrication process, which simplifies the manufacturing process of the radiating elements 230 and the edge probes 233.
  • Each radial waveguide also includes a series of ground pins 214 between the two surfaces/plates 211.
  • the edge probes 233 are distributed around the circumference of the radial waveguide and close to the edge probes 233 of the radiating elements 230.
  • Each ground pin 214 may be placed about equal distances from an adjacent pair of edge probes 233.
  • FIG. 31 shows an embodiment of the radiating element 230 including integrated edge probes 233 at both ends of the radiating elements 230.
  • the radiating elements 230 including the feed path 231 are fabricated on a printed circuit board (PCB) .
  • the PCB is cut in the shape shown in FIG. 31 so that the edges probes 233 have trapezoid like ends.
  • the shape of the probe ends facilitates the assembly of the antenna, as described further below.
  • the shape also includes step wise edges due to cut off corners at each end of the radiating element 230. This provides openings between two adjacent radiating elements and further simplifies the assembly, as described below.
  • the feed path 231 is also shown to extend along the length of the radiating element 230 between the ends of each of the probes 233.
  • each edge probe 233 becomes part of the feed path 231 as illustrated in FIG. 32 (the shape details of the edge probe 233 are not shown) .
  • FIG. 3 shows an embodiment of a radial waveguide structure design 300 corresponding to the first radial waveguide structure 205 or the second radial waveguide structure 206.
  • the figure shows the conductive means 213 (e.g., the conductive gasket) , portions of the edge probes 233 (at one end of the radiating elements 230) , and the ground pins 214.
  • the radial waveguide structure is coupled to a line feed 210 and comprises a plurality of conductive elements 220 connected to tunable elements (PIN diodes or micro-electromechanical systems (MEMS) ) and RF chokes 208.
  • PIN diodes or micro-electromechanical systems (MEMS)
  • the line feed 210 is placed on top of an exposed surface of one of the radial plates 211 (shown partially) , at the center of the plate 211.
  • the conductive elements 220 are positioned vertically between the radial plates 211, and interspersed horizontally between the line feed 210 and the radiating elements 230, as shown.
  • the RF choke 208 is connected to an end of the tunable element which is connected to and end of the conductive element 220 via a micro-strip line at the surface/plate 211.
  • the tunable element may be any component or collection of components that has the ability to (collectively or independently) change the flow of current over the radial waveguide structure 205.
  • tunable elements include tunable elements that rely on a source of energy (e.g., DC power) to change the flow of current, such as (for example) a PIN diode.
  • tunable elements include electromechanical components that change the flow of current using moving parts or electrical connections, such as (for example) MEMS components.
  • the RF chokes 208 are connected to tunable elements which are connected to the top of the respective conductive elements 220 by micro-strips 209.
  • the components are designed along with the height H between the plates 211 of the radial waveguide structures 205/206 to allow broadband operation of the antenna.
  • the line feed 210 is coupled to and positioned at the center of one the plates 211 of the radial waveguide structure 300. As such, the line feed 210 provides an electrical signal, which radiates outwardly (e.g., as a RF signal) over the radial waveguide structure 300.
  • the conductive elements 220 are distributed between the radial waveguide surfaces/plates 211, and are interspersed between the line feed 210 and the radiating elements 230 (of which only the edge probes 233 are shown) .
  • the tunable elements which are connected to the conductive elements 220 may be selectively activated/deactivated for the purpose of directing propagation of the RF signal towards selected radiating elements 230.
  • the structure with tunable elements and conductive elements 220 act as a power divider which steers the RF beam for wireless transmissions of the antenna. More details regarding the components of the radial waveguide structure 300 are described in U.S. Application No.
  • the dual port waveguide antenna 200 includes two radial waveguide structures 205 and 206 (or dual polarization ports) that provide increased agility, better power efficiency, and improved interference mitigation.
  • the dual polarization port waveguides are similar, as described above, and can be controlled similarly to achieve matching polarization thereby substantially doubling the radiation power or signal-to-noise ratio and achieving the improvements above.
  • Such antenna can be used for media-based modulation, for example.
  • the dual port waveguide antenna 200 also is capable of providing broadband operation.
  • FIG. 4 shows an embodiment of a DC control system 400 for the radial waveguide of the dual port waveguide antenna.
  • the system 400 utilizes DC switches (driven by DC current) for beamsteering control of the agile antenna.
  • DC switches driven by DC current
  • Such control system makes the antenna less complex than conventional agile antennas (which rely on phase shifters and RF switches to effectuate beamsteering) .
  • a group of diodes PIN diodes
  • the beamsteering related processing in the agile antenna is based on manipulating the group of PIN diodes, and therefore may be far less complex than the baseband processing (e.g., computing phase/amplitude shifts, etc.) inherent to conventional agile antennas.
  • the microcontroller may be of lower complexity and consumes less power than the processors included in conventional agile antenna designs. Also shown is a coaxial line feed at the center of the radial waveguide. The coaxial line feed is connected to a RF signal source (not shown) .
  • the number of DC switches required to effectuate beamsteering is reduced by using a common switch to activate groups of tunable elements.
  • FIG. 5 shows groups of tunable elements in the agile antenna 200 can be controlled by a common switch. The groups of tunable elements (as indicated by the dashed lines) are controlled by the same switch such that fewer switches (e.g., twenty switches in FIG. 6) are used to control beamsteering.
  • FIG. 6 shows an embodiment of an antenna assembly 600 of the dual port waveguide antenna.
  • the assembly 600 includes a cover 620 enclosing the radial waveguide structure 205 and 206 and the radiating elements 230 between them.
  • the assembly 600 also includes a frame 602 for each waveguide structure.
  • the frames 602 hold the corresponding waveguide structure at the top and bottom of the antenna.
  • the bottom waveguide structure 205 in the frame 602 is placed on a base 630.
  • the line feeds 210 of the radial waveguide structure 205 and 206 are connected to respective coaxial or SMA cables 1120, as described further below.
  • FIG. 7 is another view of the antenna assembly 600 further showing a series of round standoffs 710, e.g., nylon standoffs, distributed around the antenna between the top and bottom frames 602.
  • the round standoffs 710 serve to hold the frames together and hold the remaining components between them.
  • FIG. 8 shows the cover 620 which has a cylindrical like form. Other forms can also be used, such as a dome like (e.g., radome shaped) cover or variations thereof.
  • FIG. 9 shows a frame assembly 900 for the antenna assembly 600.
  • the frame assembly 900 includes a conductive gasket 910 positioned around the inside wall of the radial frame 602.
  • the conductive gasket 910 comes in contact with and electrically connects the two surfaces 211 of the radial waveguide structure 205 or 206.
  • FIG. 10 shows assembling the frame 602 with the radial waveguide 205 or 206, via a plurality of screws 1010 (e.g., four metal screws as shown) .
  • the assembly of the frame 602 is similar for both radial waveguides 205 and 206.
  • a RF connector (SMA connector) 1020 and a multi-pin connector 1030 are also connected to the surface 211 facing the frame 602.
  • FIG. 11 shows further components of the assembly of the top frame 602 comprising the top radial waveguide structure 206.
  • the SMA connector 1020 and the multi-pin connector 1030 are exposed through corresponding openings in the frame 602. This allows the connection of a SMA cable 1120 to the SMA connector 1020 and the connection of a multi-pin cable 1130 to the multi-pin connector 1030 through the frame 602.
  • the SMA cable 1120 is used to provide an electrical signal to the line feed 210.
  • the electrical signal is converted by the line feed 210 into a RF wireless signal.
  • the multi-pin cable 1130 is used to provide the control to the PIN diodes, e.g., from a microcontroller via a series of DC switches.
  • One or more markers 1110 are also placed on the exposed surface of each frame 602 in order to facilitate aligning the two facing frames 602 with each other during the assembly.
  • the markers 1110 are part of the frame structure 602, and are realized on the surface of the frame 602 during the fabrication (e.g., molding) of the frame.
  • FIG. 12 shows the placing of the round standoffs 710 in the top frame 602 comprising the top waveguide structure 206.
  • Each standoff 710 is affixed into a corresponding cylindrical holder 1220 protruding at the edge of the frame 602 by a screw 1230 inserted from the opposite side of the frame 602.
  • the cylindrical holders 1220 are part of the frame 602 structure.
  • FIG. 13 shows the placing of the radiating elements 230 on the top frame 602. Although shown in the bottom of the FIG. 13, the frame 602 will represent the top frame at the end of the assembly process, as shown further below.
  • the radiating elements 230 are inserted into corresponding slots 1320 and between guide ribs 1330 around the circumference of the frame 602.
  • the edge probes 233 of the radiating elements 230 are inserted into the slots 1320.
  • the guide ribs 1330 are positioned next to both edges of each slot 1320, and serve to hold the radiating elements 230 vertically.
  • the slots 1320 and guide ribs 1330 are part of the frame 602.
  • the edge probes 233 are designed, as shown in FIG. 31 and 32, during the fabrication process to obtain a probe geometry with trapezoid like ends that facilitate the insertion of the radiating elements into the slots 1320.
  • the radiating elements 230 are also designed as shown in FIG. 31 with cut off corners producing step wise edges which facilitate the alignment of the radiating elements 1320 and provide an opening 1310 between each adjacent pair of inserted radiating elements 230.
  • the SMA cable 1120 and the multi-pin cable 1130 are then passed through two of the openings 1310 as shown. Two specific openings can be chosen to align with fastener loops 1410 for tying the cables as described below.
  • FIG. 14 shows the assembly of a bottom frame 602 to the bottom radial waveguide structure 205.
  • the bottom waveguide structure 205 is placed in the frame 602 as shown in FIGs 9 to 10 above.
  • the SMA cable 1120 and the multi-pin cable 1130 protruding from the bottom waveguide structure 205 through the bottom frame 602 are loosely fastened at the edge of the frame 602 via corresponding fastener loops 1410 that are wrapped around the respective cables and attached to the surface of the frame 602.
  • the cables can extend outside the bottom frame 602 and closely wrap around the frame 602’s surface and edge.
  • FIG. 15 shows the placing of the bottom frame 602 comprising the bottom waveguide structure 205 on the assembled components of FIG. 13.
  • the bottom frame 602 is shown at the top of the FIG. 15 in an intermediate assembly step where the antenna assembly 600 is held upside down to simplify the assembly process.
  • the bottom frame 602 is rotated to align properly with the top frame 602 (comprising the top waveguide structure 206) by aligning the one or more markers 1110 on the edges of the two frames 602 with each other.
  • the standoffs 710 previously affixed to the top frame 602 are inserted into respective cylindrical holder 1220 of the bottom frame 602 and affixed via respective screws 1230.
  • the exposed edge probes 233 at the end of the radiating elements 230 are inserted into respective slots 1320 in the bottom frame 602 and the sides of the radiating elements 230 are slid between the guide ribs 1330 of the bottom frame 602.
  • the guide ribs 1330 and the cut corners on both sides at end of the radiating elements 230 serve to create a self-aligning structure which makes assembly easier.
  • the SMA cables 1120 and the two multi-pin cables 1130 of the two frames 602 are extended outside the assembled antenna (close to the bottom frame 602) between adjacent pairs of radiating elements 230.
  • FIG. 16 shows the placing of solder elements 1610 around the slots 1320 and at the junctions of the radiating elements 230 and the ground plane side of a parallel plate 511 at the bottom side of the bottom radial waveguide structure 206 after the assembly in FIG. 15.
  • the solder elements 1610 serve to electrically connect the radiating elements 230 to the bottom plane 511.
  • FIG. 17 shows the assembly of the base 630.
  • a connector board 1720 is placed on the base 630 and fixed via a plurality of screws 1730.
  • the connector board 1720 includes to edge connectors 1730 on one surface (top surface) and a center bottom connector 1740 (shown in FIG. 18) on the opposite surface (bottom surface) .
  • a base marker 1710 which is part of the surface of the base 630, is used to orient the connector board 1720 properly on the base 630.
  • FIG. 18 shows the placing of the base 630 onto the bottom frame 602 (comprising the radial waveguide structure 205) . Further, the ends 1830 of the two SMA cables 1120, which protrude from the antenna assembly, are inserted into two respective openings 1820 in the base 630.
  • FIG. 19 shows the assembly at the bottom surface of the base 630.
  • a second base marker 1910 is used to align the base 630 properly with the bottom frame 602.
  • the base 630 is fixed to the bottom frame 602 (not shown) via a plurality of screws 1930.
  • the openings for the ends 1830 are labeled by corresponding labels 1920 that distinguish between the SMA cables of the bottom radial waveguide structure 205 and the radial waveguide structure 206.
  • FIG. 20 shows the resulting antenna assembly 600.
  • the ends of the multi-pin cables 1130, which protrude from the antenna assembly 600, are fixed to the base 630 via respective edge connectors 1730.
  • the multi-pin cables 1130 and the SMA cables 1120 are ready to be connected to corresponding control systems from the bottom surface side of the base 630.
  • FIG. 21 shows the assembly of the cover 620.
  • a top plate 2120 can be affixed to the top of the cover 620 via a plurality of screws 2130. The top plate 2120 can be added to display the manufacturer’s name for example.
  • FIG. 22 shows the bottom edge of the cover 2120. The edge includes a radial groove 2240 at the edge circumference of the cover 620, and at least one notch 2210 that serves to properly align the cover 620 on the antenna assembly 600.
  • FIG. 23 shows a rib 2310 at the edge of the base 630 that fits the notch 2210. The cover 620 is properly placed on the antenna assembly 600 by locking the notch 2210 onto the rib 2310.
  • FIG. 24 shows the bottom surface of the base 630 after placing the cover 620.
  • a plurality of fasteners 2330 are inserted into respective openings 2310 in the bottom surface to lock corresponding snap tabs 2320 into the groove 2240 of the cover 620.
  • the head of a fastener 2320 prevents a corresponding tab 2320 from being able to flex back out of the groove 2240.
  • the tab 2320 locks the cover 620 to the base 630.
  • Having a groove allows the cover structure to have a uniform thickness in front of the antenna elements. A screw boss created in the cover would cause a local thickness change (despite the relative steep side of the cover 620) .
  • FIG. 25 illustrates various beam radiation patterns and orientations achievable by controlling a power divider of the antenna, as described above.
  • the patterns include various orientation of the beam (at different angles, e.g., 0, 10°, 20°, 30°) , various beam shapes (e.g., wider beam, more wider beam) , and various numbers of simulated radiated beams (e.g., in one or more directions) .
  • the various beam formations above can be achieved using the same waveguide structures (the same dual port antenna) by tuning ON/OFF different groups of diodes (for different tunable elements) .
  • FIG. 26 shows an embodiment method 3700 for assembling the dual port waveguide antenna described above, e.g., as shown in the antenna assembly 600.
  • a first radial waveguide structure is encased into a first frame
  • a second waveguide structure is encased into a second frame, e.g., as described in FIGs. 9 and 10.
  • a first coaxial cable is connected to the first radial waveguide structure through the first frame
  • a second coaxial cable is connected to the second radial waveguide structure through the second frame, e.g., as described in FIGs. 11 and 14.
  • a first multi-pin cable is connected to the first radial waveguide structure through the first frame, and a second mutli-pin cable is connected to the second radial waveguide structure through the second frame, e.g., as described in FIGs 11 and 14.
  • a plurality of radiating elements and a plurality of standoffs are placed onto the first frame, wherein the radiating elements and the standoffs are radially distributed around a circumference of the first frame, e.g., as described in FIG.s 12 and 13.
  • the second frame is coupled to the exposed ends of the radiating elements and the standoffs, wherein the radiating elements and the standoffs are radially distributed around a circumference of the second frame, e.g., as described in FIGs. 15 and 16.
  • a base is connected to a surface of the first frame opposite to the second frame, e.g., as described in FIGs. 17 to 20.
  • a cover is placed over the first frame, the second frames, the radiating elements and standoffs between the first frame and the second frame, and the base, e.g., as described in FIGs. 21, 22, and 24.
  • Both the first coaxial cable from the first radial waveguide structure and the second coaxial cable from the second radial waveguide structure are subsequently connected to a radio frequency signal source trough openings in the radiating elements and through corresponding openings in the base.
  • Both the first multi-pin cable from the first radial waveguide structure and the second multi-pin cable from the second radial waveguide structure are connected to a DC switch controller, through second openings in the radiating elements and via a connector board in the base.
  • FIG. 27 illustrates a block diagram of an embodiment of a communications device 3800 including a processor 3804, a memory 3806, and a switching interface 3814, which may (or may not) be arranged as shown in FIG. 38.
  • the processor 3804 may be any component capable of performing computations and/or other processing related tasks, and may be equivalent to the microcontroller 250 (discussed above) .
  • the memory 3806 may be any component capable of storing programming and/or instructions for the processor 3804.
  • the switching interface 3814 may be any component or collection of components that allows the processor 3804 to manipulate or otherwise control a series of DC switches for the purpose of effectuating beamsteering on an agile antenna.
  • FIG. 28 shows a top view of an embodiment of an upper power divider configuration of the antenna.
  • the top view corresponds to the surface of the radial waveguide structure 206 (at the top of the antenna assembly 600) .
  • the surface is connected to a line feed 210 and faces a similar surface of the radial waveguide structure 205 (at the bottom of the antenna assembly 600) .
  • different groups of activated tunable elements connected to conductive elements 220 of the radial waveguide structure act as a power divider which steers the RF beam of the antenna in different directions.
  • the different groups of tunable elements are labeled from A to R for the radial waveguide structure 206 in a counter-clockwise direction from the view perspective of FIG. 28.
  • FIG. 28 also shows a plurality of desired beamsteering or emission directions that can be achieved by activating the different groups of tunable elements.
  • the directions are distributed radially with respect to the antenna assembly and are labeled in a clockwise direction from 1 to 12.
  • FIG. 29 shows a top view of an embodiment of a lower power divider configuration of the antenna.
  • the top view corresponds to the surface of the radial waveguide structure 205.
  • the surface is connected to a line feed 210 and faces the surface of the radial waveguide structure 206 in FIG. 28.
  • the upper and lower power divider configurations of FIGs. 28 and 29 are similar which facilitates the fabrication process.
  • the lower power divider configuration is a mirror reflection of the upper power divider configuration, and the labels for the groups of tunable elements in the lower radial waveguide structure 205 are labeled from A to R in a clock-wise direction from the view perspective of FIG. 29.
  • the same beamsteering directions are shown for both power divider configurations in FIGs 28 and 29.
  • FIGs. 30A and 30B show an embodiment of a DC logic PIN-out for a connector with 40 PINs.
  • the shown PIN configuration can be used to control, simultaneously, the upper and lower power dividers described above, and thus control beamsteering, via a DC control system (e.g., the DC control system 400) and the multi-pin cables 1130.
  • the configuration shows the mapping between the directions above (1 to 12) and the pins (labeled 1 to 20) .
  • the pins indicated by 1 are switched ON (or OFF) to achieve the corresponding beamsteering direction.
  • the pins 1 and 2 are grounded and the pins 3 to 20 are used to control the lower power divider, via its corresponding multi-pin cable 1130.
  • the pins 21 and 22 are also grounded and the pins 23 to 40 are used to control the upper power divider, via its corresponding multi-pin cable 1130.
  • the pins for the upper and lower power dividers that correspond to the same direction are switch ON (or OFF) simultaneously.
  • the pins for the same direction are connected to and thus activate (or deactivate) the same groups of tunable elements in the upper and lower power dividers.
  • other suitable configurations for the upper and lower power dividers and corresponding PIN settings can be used.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Embodiments are provided for an agile antenna that beamsteers radio frequency (RF) signals by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches. The agile antenna device comprises a first radial waveguide structure encased in a first frame, a first line feed connected to the first waveguide structure, a second encased radial waveguide structure similar and coupled to the first waveguide structure. The two waveguide structures include the tunable elements controlled by the DC switches. A second line feed is connected to the second waveguide structure. The two line feeds provide the RF signal to the antenna. The antenna device also includes a plurality of radiating elements positioned between the first radial waveguide structure and the second radial waveguide structure, and distributed radially around a circumference of the first radial waveguide structure and a circumference of the second radial waveguide structure.

Description

Apparatus and Assembling Method of a Dual Polarized Agile Cylindrical Antenna Array with Reconfigurable Radial Waveguides
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to US Patent Application Number 14/319,884 entitled “Apparatus and Assembling Method of a Dual Polarized Agile Cylindrical Antenna Array with Reconfigurable Radial Waveguides” filed June 30, 2014, and to US Patent Application Number 14/319,981 entitled “Apparatus and Method of a Dual Polarized Broadband Agile Cylindrical Antenna Array with Reconfigurable Radial Waveguides” filed June 30, 2014, the contents of both of which are expressly incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to antenna design, and, in particular embodiments, to an apparatus and assembling method for a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides.
BACKGROUND
Modern wireless transmitters of radio frequency (RF) signals or antennas perform beamsteering to manipulate the direction of a main lobe of a radiation pattern and achieve enhanced spatial selectivity. Conventional beamsteering techniques rely on manipulating the phase of RF signals through a series of phase shifters and RF switches. The inclusion of phase shifters, RF switches, and other complex components increase the manufacturing cost and design complexity of agile antennas. Accordingly, less complex agile antenna designs are desired.
SUMMARY
It is an object of the present invention to obviate or mitigate problems of the prior art.
In a first aspect of the present invention, there is provided an antenna device. The device comprises a first waveguide structure, a first line feed a second radial waveguide, a second line feed and a plurality of radiating elements. The first line feed is connected  substantially at the center of a surface of the first radial waveguide structure. The second waveguide structure, which may be radial and similar to the first radial waveguide structure, is coupled to the first waveguide structure. The second waveguide structure is substantially parallel to and faces the first radial waveguide structure. The second line feed is connected at substantially a center of a surface of the second waveguide structure, wherein the first line feed of the first radial waveguide structure faces the second line feed of the second waveguide structure. The plurality of radiating elements are positioned between the first radial waveguide structure and the second waveguide structure. The radiating elements are distributed radially around a circumference of the first radial waveguide structure and a circumference of the second radial waveguide structure.
In embodiments of the first aspect, each of the first radial waveguide structure and the second radial waveguide structure comprises: a first and second radial plate as well as a plurality of conductive elements. The first radial plate is connected to one of the first line feed and the second line feed. The second radial plate is substantially in parallel with the first radial plate on an opposite side from the one of the first line feed and the second line feed. Conductive elements are connected to a plurality of tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between the first line feed and the radiating elements. In further embodiments, there are first and second radial frames. The first radial frame encloses the first radial waveguide structure, the first radial frame comprises a conductive gasket positioned around an inside wall of the first radial frame and in contact with the first radial plate and the second radial plate of the first radial waveguide structure. The second radial frame encloses the second radial waveguide structure, the second radial frame comprises a second conductive gasket positioned around an inside wall of the second radial frame and in contact with the  first radial plate and the second radial plate of the second radial waveguide structure. In another embodiment of the first aspect of the present invention, the antenna device also includes a plurality of direct current (DC) switches coupled to the first radial waveguide structure and the second radial waveguide structure, and configured to activate and deactivate selected tunable elements in the plurality of tunable elements in the first radial waveguide structure and the second radial waveguide structure simultaneously, wherein the activation or deactivation directs propagation and beam steering of a radio frequency (RF) signal. In a further embodiment, at least one of the DC switches is connected to a corresponding grouping of the tunable elements. In another embodiment, the tunable elements include at least one of PIN diodes and micro-electromechanical systems (MEMS) . In other embodiments, at least one of the first line feed and the second line feed are coupled to a radio frequency (RF) signal source.
In a second aspect of the present invention, there is provided an antenna device. The antenna device has first and second waveguide structures, first and second frames and a plurality of radiating elements. The first frame is a radial frame that enclosed the first waveguide, which is also radial. The second waveguide structure may be radial, and similar in structure to the first waveguide structure in some embodiments. The second frame encloses the second waveguide structure and is coupled substantially in parallel to the first radial frame. The radiating elements are s positioned between the first radial frame and the second frame, and distributed radially around a circumference of the first radial frame and a circumference of the second frame, wherein the radiating elements are connected to the first radial waveguide structure and to the second radial waveguide structure through the second radial frame. In an embodiment of the second aspect of the present invention, there is provided a conductive gasket positioned around an inside inner wall of each one of the first  radial frame and the second radial frame. In a further embodiment, each of the first radial frame and the second radial frame comprises a plurality of cylindrical holders, a plurality of slots and guide ribs. The plurality of cylindrical holders are distributed radially around a circumference of an outer surface of each one of the first radial frame and the second radial frame. The slots are distributed radially around the circumference and configured to fit edge probes at endings of the radiating elements. The guide ribs are on both sides of each one of the slots, and are configured to hold the radiating elements vertical to the outer surface. There may optionally also be one or more frame alignment markers on the outer surface of the frame.
In another embodiment, each of the first and second waveguide structures comprises a first radial plate connected to the radiating elements through one of the first radial frame and the second radial frame, a second radial plate substantially in parallel with the first radial plate, wherein the first radial plate and the second radial plate are in contact with the conductive gasket, and a plurality of metallic posts connected to tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between substantially a center of the second radial plate and the radiating elements.
In a further embodiment, the first line feed is connected at substantially a center of a surface of the first radial waveguide structure through the first radial frame, the first coaxial cable is connected to the first line feed and connected to a radio frequency (RF) signal source through an opening between the radiating elements, the second line feed is connected at substantially a center of a surface of the second radial waveguide structure through the first radial frame and the second coaxial cable connected to the second line feed and connected to the RF signal source through the opening between the radiating elements. In another  embodiment, the antenna device can further comprise first and second multi-pin cables. The first multi-pin cable is connected, via a connector, to the surface of the first radial waveguide structure through the first radial frame, and connected, through an opening between the radiating elements, to a plurality of direct current (DC) switches and a controller. The second multi-pin cable connected, via a second connector, to the surface of the second radial waveguide structure through the second radial frame, and connected, through a second opening between the radiating elements, to the DC switches and the controller. Optionally, there can be first and second fastening loops. The first fastening loop loosely fastens the first coaxial cable to an edge of the first radial frame and the second fastening loop loosely fastens the multi-pin cable to a second edge of the first radial frame.
The antenna device can further include a plurality of standoffs, a radial base, and a cover. The standoffs are positioned between the first radial frame and the second frame, and distributed radially around the circumference of the frames. The radial base is coupled to a surface the first radial frame opposite to the second radial frame. The cover encloses frames, the radiating elements and standoffs between the frames, and the radial base. In another embodiment, the antenna device comprises a connector board coupled to the surface of the first radial frame and positioned between the radial base and the first radial frame, wherein the connector board connects the first multi-pin cable and the second multi-pin cable to the DC switches and the controller. In a further embodiment, the radial base comprises a base alignment markers on a surface of the radial base, an opening for each one of the first coaxial cable and the second coaxial cable, a corresponding cable label on each opening; a cover locking rib at an edge of the radial base, and a plurality of cover snap tabs around a bottom circumference of the radial base. The cover can further comprise a top plate connected to a surface of the cover, a base locking notch at an edge of the cover that fits the cover locking  rib of the radial base, and a radial groove around a circumference at the edge of the base, wherein the radial groove provides a fastening mechanism with the cover snap tabs and allows a uniform thickness shape of the cover.
The radiating element of the antenna may comprise a conductive feed path, a path connected to a surface and edge probes. The conductive feed paths are on the surface that the path is connected to on each of the radiating elements. The edge probes are on both ends of each one of the radiating elements, the edge probes having trapezoid cut ends. In another embodiment, each of the radiating elements has a shape with step wise edges and cut off corners on both sides at both ends, and wherein the step wise edges provides a self-aligning mechanism with corresponding guide ribs on a surface of each one of the first radial frame and the second radial frame.
In a further aspect of the present invention, there is provided a method for assembling a dual port waveguide antenna. The method comprises encasing a first radial waveguide structure into a first frame, encasing a second radial waveguide structure into a second frame, connecting a first radio frequency (RF) source coaxial cable to the first radial waveguide structure through the first frame, and a second RF source coaxial cable to the second radial waveguide structure through the second frame, connecting a first direct current (DC) switch multi-pin cable to the first radial waveguide structure through the first frame, and a second DC switch multi-pin cable to the second radial waveguide structure through the second frame, placing a plurality of radiating elements and a plurality of standoffs between the first frame and the second frame, wherein the radiating elements and the standoffs are radially distributed around a circumference of each one of the first frame and the second frame, connecting a base at a surface of one of the first frame opposite to the second frame  and placing a cover over the first frame, the second frames, the radiating elements and the standoffs between the first frame and the second frame.
In embodiments of the further aspect of the present invention, the method includes connecting both the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure to a radio frequency signal source trough openings in the radiating elements, and connecting both the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure to a DC switch controller, through second openings in the radiating elements.
In another embodiment, the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure are connected to the radio frequency signal source through corresponding openings in the base, and wherein the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure are connected to the DC switch controller via a connector board in the base.
The foregoing has outlined rather broadly the features of an embodiment of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
FIG. 1 illustrates a diagram of a wireless network for communicating data;
FIG. 2 is a side view of a dual port waveguide antenna according to an embodiment of the disclosure;
FIG. 3 is an isometric view of a radial waveguide of the dual port waveguide antenna of FIG. 2;
FIG. 4 is a side view of a DC control system for the radial waveguide of the dual port waveguide antenna according to an embodiment of the disclosure;
FIG. 5 is a top view of groups of tunable elements in the radial waveguide of the dual port waveguide antenna according to an embodiment of the disclosure.
FIG. 6 is a side cross-section view of an antenna assembly of the dual port waveguide antenna according to an embodiment of the disclosure;
FIG. 7 is an isometric view of the antenna assembly of FIG. 6;
FIG. 8 is an isometric view of a cover of the antenna of FIG. 6;
FIG. 9 is an isometric view of a frame assembly of FIG. 6;
FIG. 10 is an isometric view of further components of the frame assembly of FIG. 6;
FIG. 11 is an isometric view of further components of the frame assembly of FIG. 6;
FIG. 12 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 13 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 14 is an isometric view of a second frame assembly of FIG. 6;
FIG. 15 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 16 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 17 is an isometric view of a base assembly of FIG. 6;
FIG. 18 is an isometric view of further components of the base assembly of FIG. 6;
FIG. 19 is an isometric view of further components of the base assembly of FIG. 6;
FIG. 20 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 21 is an isometric view of further components of the cover assembly of FIG. 6;
FIG. 22 is an isometric view of further components of the cover assembly of FIG. 6;
FIG. 23 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 24 is an isometric view of further components of the antenna assembly of FIG. 6;
FIG. 25 is an illustration of a plurality of examples for achieving different beam radiation patterns and orientations by controlling a power divider of the antenna;
FIG. 26 illustrates a flowchart of an embodiment method for assembling the dual port waveguide antenna;
FIG. 27 illustrates a block diagram of an embodiment communications device;
FIG. 28 shows a top view of an embodiment of an upper power divider configuration of the antenna;
FIG. 29 shows a top view of an embodiment of a lower power divider configuration of the antenna;
FIGs. 30A and 30B show an embodiment of a DC logic PIN configuration for a 40 PINs connector for the antenna;
FIG. 31 shows an embodiment of a radiating element of the antenna including edge probes at the ends of the radiating element; and
FIG. 32 shows an embodiment of an edge probe and a feed path of a radiating element of the antenna.
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Disclosed herein are embodiments for an agile antenna that beamsteers wireless transmissions, e.g., RF or microwave signals, by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches. The antenna is a dual polarized agile antenna comprising two radial waveguides with electronically controlled power dividers and suitable for broadband transmissions, e.g., in the RF or microwave frequency range. As used herein, the term RF frequencies and RF signals is used to represent frequencies and signals, respectively, in the RF, microwave, and other suitable regions of the spectrum for wireless communications.
FIG. 1 illustrates a network 100 for communicating data. The network 100 comprises an access point (AP) 110 having a coverage area 112, a plurality of user equipments (UEs) 120, and a backhaul network 130. The AP 110 may comprise any component capable of providing wireless access, e.g., to establish uplink (dashed line) and/or downlink (dotted line) connections with the UEs 120. Examples of the AP 110 include a base station (nodeB) , an enhanced base station (eNB) , a femtocell, and other wirelessly enabled devices. The UEs 120 may comprise any components capable of establishing a wireless connection with the AP 110. The backhaul network 130 may be any component or collection of components that allow data to be exchanged between the AP 110 and a remote end (not shown) . In some embodiments, the network 100 may comprise various other wireless devices, such as relays, femtocells, etc. The AP 110 or other wireless communication devices of the network 100 may comprise an agile antenna device as described below. The agile antenna is used to transmit/receive the wireless or RF signals with the other devices such as for cellular and/or WiFi communications.
FIG. 2 shows an embodiment of a dual polarized agile antenna 200, also referred to herein as a dual port waveguide antenna. The dual port waveguide antenna 200 comprises a first radial waveguide structure 205 (e.g., at the bottom or base of the antenna) and a second  radial waveguide structure 206 (e.g., at the top of the antenna) , which are similar. Each waveguide structure is composed of two parallel radial surfaces separated from each other by a suitable distance. The parallel radial surfaces/plates 211 are electrically connected via a conductive means 213 forming a short circuit, which reduces radiation loss compared to open circuit. The parallel palates 211 are separated by a predetermined height, H, that promotes broadband operation of the antenna. In an embodiment, the conductive means 213 is a conductive gasket placed around the edges of both plates 211, as described further below. A series of radiating elements 230 is distributed between the first radial waveguide structure 205 and the second radial waveguide structure 206 around the circumference of the two radial waveguides. The radiating elements 230 comprise conductive feed paths 231. Further, a patch 232 is coupled to an outer surface of each radiating element 230. The edges (both bottom and top edges) of the radiating elements 230 form edge probes 233 that electrically connect the radiating elements 230 to the first radial waveguide structure 205 and the second radial waveguide structure 206. The edge probes 233 are parts of the radiating elements 230 and printed with the radiating elements 230 in the fabrication process, which simplifies the manufacturing process of the radiating elements 230 and the edge probes 233. Each radial waveguide also includes a series of ground pins 214 between the two surfaces/plates 211. The edge probes 233 are distributed around the circumference of the radial waveguide and close to the edge probes 233 of the radiating elements 230. Each ground pin 214 may be placed about equal distances from an adjacent pair of edge probes 233.
FIG. 31 shows an embodiment of the radiating element 230 including integrated edge probes 233 at both ends of the radiating elements 230. The radiating elements 230 including the feed path 231 are fabricated on a printed circuit board (PCB) . The PCB is cut in the shape shown in FIG. 31 so that the edges probes 233 have trapezoid like ends. The shape of the probe ends facilitates the assembly of the antenna, as described further below. The shape also includes step wise edges due to cut off corners at each end of the radiating element 230. This provides openings between two adjacent radiating elements and further simplifies the assembly, as described below. The feed path 231 is also shown to extend along the length of the radiating element 230 between the ends of each of the probes 233. Thus, each edge probe 233 becomes part of the feed path 231 as illustrated in FIG. 32 (the shape details of the edge probe 233 are not shown) .
FIG. 3 shows an embodiment of a radial waveguide structure design 300 corresponding to the first radial waveguide structure 205 or the second radial waveguide structure 206. The figure shows the conductive means 213 (e.g., the conductive gasket) , portions of the edge probes 233 (at one end of the radiating elements 230) , and the ground pins 214. The radial waveguide structure is coupled to a line feed 210 and comprises a plurality of conductive elements 220 connected to tunable elements (PIN diodes or micro-electromechanical systems (MEMS) ) and RF chokes 208. The line feed 210 is placed on top of an exposed surface of one of the radial plates 211 (shown partially) , at the center of the plate 211. The conductive elements 220 are positioned vertically between the radial plates 211, and interspersed horizontally between the line feed 210 and the radiating elements 230, as shown. The RF choke 208 is connected to an end of the tunable element which is connected to and end of the conductive element 220 via a micro-strip line at the surface/plate 211. The tunable element may be any component or collection of components that has the ability to (collectively or independently) change the flow of current over the radial waveguide structure 205. In an embodiment, tunable elements include tunable elements that rely on a source of energy (e.g., DC power) to change the flow of current, such as (for example) a PIN diode. In the same or other embodiments, tunable elements include electromechanical components that change the flow of current using moving parts or electrical connections, such as (for example) MEMS components.
The RF chokes 208 are connected to tunable elements which are connected to the top of the respective conductive elements 220 by micro-strips 209. The components are designed along with the height H between the plates 211 of the radial waveguide structures 205/206 to allow broadband operation of the antenna. The line feed 210 is coupled to and positioned at the center of one the plates 211 of the radial waveguide structure 300. As such, the line feed 210 provides an electrical signal, which radiates outwardly (e.g., as a RF signal) over the radial waveguide structure 300. The conductive elements 220 are distributed between the radial waveguide surfaces/plates 211, and are interspersed between the line feed 210 and the radiating elements 230 (of which only the edge probes 233 are shown) . The tunable elements which are connected to the conductive elements 220 may be selectively activated/deactivated for the purpose of directing propagation of the RF signal towards selected radiating elements 230. As such, the structure with tunable elements and conductive elements 220 act as a power divider which steers the RF beam for wireless transmissions of  the antenna. More details regarding the components of the radial waveguide structure 300 are described in U.S. Application No. 13/760,980 filed on February 6, 2013 by Halim Boutayeb and entitled “Electronically Steerable Antenna Using Reconfigurable Power Divider Based on Cylindrical Electromagnetic Band Gap (CEBG) Structure, ” which is hereby incorporated herein by reference as if reproduced in its entirety.
However, unlike the omni-directional antenna design of the reference application above, the dual port waveguide antenna 200 includes two radial waveguide structures 205 and 206 (or dual polarization ports) that provide increased agility, better power efficiency, and improved interference mitigation. The dual polarization port waveguides are similar, as described above, and can be controlled similarly to achieve matching polarization thereby substantially doubling the radiation power or signal-to-noise ratio and achieving the improvements above. Such antenna can be used for media-based modulation, for example. The dual port waveguide antenna 200 also is capable of providing broadband operation.
FIG. 4 shows an embodiment of a DC control system 400 for the radial waveguide of the dual port waveguide antenna. The system 400 utilizes DC switches (driven by DC current) for beamsteering control of the agile antenna. Such control system makes the antenna less complex than conventional agile antennas (which rely on phase shifters and RF switches to effectuate beamsteering) . As shown, a group of diodes (PIN diodes) are controlled by a microcontroller via a series of DC switches. The beamsteering related processing in the agile antenna is based on manipulating the group of PIN diodes, and therefore may be far less complex than the baseband processing (e.g., computing phase/amplitude shifts, etc.) inherent to conventional agile antennas. The microcontroller may be of lower complexity and consumes less power than the processors included in conventional agile antenna designs. Also shown is a coaxial line feed at the center of the radial waveguide. The coaxial line feed is connected to a RF signal source (not shown) .
In some configurations, the number of DC switches required to effectuate beamsteering is reduced by using a common switch to activate groups of tunable elements. FIG. 5 shows groups of tunable elements in the agile antenna 200 can be controlled by a common switch. The groups of tunable elements (as indicated by the dashed lines) are controlled by the same switch such that fewer switches (e.g., twenty switches in FIG. 6) are used to control beamsteering.
FIG. 6 shows an embodiment of an antenna assembly 600 of the dual port waveguide antenna. The assembly 600 includes a cover 620 enclosing the  radial waveguide structure  205 and 206 and the radiating elements 230 between them. The assembly 600 also includes a frame 602 for each waveguide structure. The frames 602 hold the corresponding waveguide structure at the top and bottom of the antenna. The bottom waveguide structure 205 in the frame 602 is placed on a base 630. Also shown are the line feeds 210 of the  radial waveguide structure  205 and 206. The line feeds face each other are connected to respective coaxial or SMA cables 1120, as described further below. FIG. 7 is another view of the antenna assembly 600 further showing a series of round standoffs 710, e.g., nylon standoffs, distributed around the antenna between the top and bottom frames 602. The round standoffs 710 serve to hold the frames together and hold the remaining components between them. FIG. 8 shows the cover 620 which has a cylindrical like form. Other forms can also be used, such as a dome like (e.g., radome shaped) cover or variations thereof.
FIG. 9 shows a frame assembly 900 for the antenna assembly 600. The frame assembly 900 includes a conductive gasket 910 positioned around the inside wall of the radial frame 602. When the  radial waveguide structure  205 or 206 is placed inside the frame 602, the conductive gasket 910 comes in contact with and electrically connects the two surfaces 211 of the  radial waveguide structure  205 or 206. FIG. 10 shows assembling the frame 602 with the  radial waveguide  205 or 206, via a plurality of screws 1010 (e.g., four metal screws as shown) . The assembly of the frame 602 is similar for both  radial waveguides  205 and 206. A RF connector (SMA connector) 1020 and a multi-pin connector 1030 are also connected to the surface 211 facing the frame 602.
FIG. 11 shows further components of the assembly of the top frame 602 comprising the top radial waveguide structure 206. When the radial waveguide structure 206 is inserted inside the frame 602, the SMA connector 1020 and the multi-pin connector 1030 are exposed through corresponding openings in the frame 602. This allows the connection of a SMA cable 1120 to the SMA connector 1020 and the connection of a multi-pin cable 1130 to the multi-pin connector 1030 through the frame 602. The SMA cable 1120 is used to provide an electrical signal to the line feed 210. The electrical signal is converted by the line feed 210 into a RF wireless signal. The multi-pin cable 1130 is used to provide the control to the PIN diodes, e.g., from a microcontroller via a series of DC switches. One or more markers 1110 are also placed on the exposed surface of each frame 602 in order to facilitate  aligning the two facing frames 602 with each other during the assembly. The markers 1110 are part of the frame structure 602, and are realized on the surface of the frame 602 during the fabrication (e.g., molding) of the frame.
FIG. 12 shows the placing of the round standoffs 710 in the top frame 602 comprising the top waveguide structure 206. Each standoff 710 is affixed into a corresponding cylindrical holder 1220 protruding at the edge of the frame 602 by a screw 1230 inserted from the opposite side of the frame 602. The cylindrical holders 1220 are part of the frame 602 structure. FIG. 13 shows the placing of the radiating elements 230 on the top frame 602. Although shown in the bottom of the FIG. 13, the frame 602 will represent the top frame at the end of the assembly process, as shown further below. The radiating elements 230 are inserted into corresponding slots 1320 and between guide ribs 1330 around the circumference of the frame 602. Specifically, the edge probes 233 of the radiating elements 230 are inserted into the slots 1320. The guide ribs 1330 are positioned next to both edges of each slot 1320, and serve to hold the radiating elements 230 vertically. The slots 1320 and guide ribs 1330 are part of the frame 602. The edge probes 233 are designed, as shown in FIG. 31 and 32, during the fabrication process to obtain a probe geometry with trapezoid like ends that facilitate the insertion of the radiating elements into the slots 1320. The radiating elements 230 are also designed as shown in FIG. 31 with cut off corners producing step wise edges which facilitate the alignment of the radiating elements 1320 and provide an opening 1310 between each adjacent pair of inserted radiating elements 230. The SMA cable 1120 and the multi-pin cable 1130 are then passed through two of the openings 1310 as shown. Two specific openings can be chosen to align with fastener loops 1410 for tying the cables as described below.
FIG. 14 shows the assembly of a bottom frame 602 to the bottom radial waveguide structure 205. The bottom waveguide structure 205 is placed in the frame 602 as shown in FIGs 9 to 10 above. The SMA cable 1120 and the multi-pin cable 1130 protruding from the bottom waveguide structure 205 through the bottom frame 602 are loosely fastened at the edge of the frame 602 via corresponding fastener loops 1410 that are wrapped around the respective cables and attached to the surface of the frame 602. As such, the cables can extend outside the bottom frame 602 and closely wrap around the frame 602’s surface and edge.
FIG. 15 shows the placing of the bottom frame 602 comprising the bottom waveguide structure 205 on the assembled components of FIG. 13. The bottom frame 602 is shown at the top of the FIG. 15 in an intermediate assembly step where the antenna assembly 600 is held upside down to simplify the assembly process. The bottom frame 602 is rotated to align properly with the top frame 602 (comprising the top waveguide structure 206) by aligning the one or more markers 1110 on the edges of the two frames 602 with each other. To place the bottom frame 602, the standoffs 710 previously affixed to the top frame 602 (in FIGs. 12 and 13) are inserted into respective cylindrical holder 1220 of the bottom frame 602 and affixed via respective screws 1230. The exposed edge probes 233 at the end of the radiating elements 230 are inserted into respective slots 1320 in the bottom frame 602 and the sides of the radiating elements 230 are slid between the guide ribs 1330 of the bottom frame 602. The guide ribs 1330 and the cut corners on both sides at end of the radiating elements 230 serve to create a self-aligning structure which makes assembly easier. As shown, the SMA cables 1120 and the two multi-pin cables 1130 of the two frames 602 are extended outside the assembled antenna (close to the bottom frame 602) between adjacent pairs of radiating elements 230.
FIG. 16 shows the placing of solder elements 1610 around the slots 1320 and at the junctions of the radiating elements 230 and the ground plane side of a parallel plate 511 at the bottom side of the bottom radial waveguide structure 206 after the assembly in FIG. 15. The solder elements 1610 serve to electrically connect the radiating elements 230 to the bottom plane 511.
FIG. 17 shows the assembly of the base 630. A connector board 1720 is placed on the base 630 and fixed via a plurality of screws 1730. The connector board 1720 includes to edge connectors 1730 on one surface (top surface) and a center bottom connector 1740 (shown in FIG. 18) on the opposite surface (bottom surface) . A base marker 1710, which is part of the surface of the base 630, is used to orient the connector board 1720 properly on the base 630. FIG. 18 shows the placing of the base 630 onto the bottom frame 602 (comprising the radial waveguide structure 205) . Further, the ends 1830 of the two SMA cables 1120, which protrude from the antenna assembly, are inserted into two respective openings 1820 in the base 630. The ends 1830 comprising threads are then affixed in the openings 1820 via respective nuts 1810. FIG. 19 shows the assembly at the bottom surface of the base 630. A second base marker 1910 is used to align the base 630 properly with the bottom frame 602.  The base 630 is fixed to the bottom frame 602 (not shown) via a plurality of screws 1930. The openings for the ends 1830 are labeled by corresponding labels 1920 that distinguish between the SMA cables of the bottom radial waveguide structure 205 and the radial waveguide structure 206. FIG. 20 shows the resulting antenna assembly 600. The ends of the multi-pin cables 1130, which protrude from the antenna assembly 600, are fixed to the base 630 via respective edge connectors 1730. Thus, the multi-pin cables 1130 and the SMA cables 1120 are ready to be connected to corresponding control systems from the bottom surface side of the base 630.
FIG. 21 shows the assembly of the cover 620. A top plate 2120 can be affixed to the top of the cover 620 via a plurality of screws 2130. The top plate 2120 can be added to display the manufacturer’s name for example. FIG. 22 shows the bottom edge of the cover 2120. The edge includes a radial groove 2240 at the edge circumference of the cover 620, and at least one notch 2210 that serves to properly align the cover 620 on the antenna assembly 600. FIG. 23 shows a rib 2310 at the edge of the base 630 that fits the notch 2210. The cover 620 is properly placed on the antenna assembly 600 by locking the notch 2210 onto the rib 2310. FIG. 24 shows the bottom surface of the base 630 after placing the cover 620. A plurality of fasteners 2330 (e.g., barbed push fastener) are inserted into respective openings 2310 in the bottom surface to lock corresponding snap tabs 2320 into the groove 2240 of the cover 620. The head of a fastener 2320 prevents a corresponding tab 2320 from being able to flex back out of the groove 2240. Thus, the tab 2320 locks the cover 620 to the base 630. Having a groove, for example instead of a screw boss, allows the cover structure to have a uniform thickness in front of the antenna elements. A screw boss created in the cover would cause a local thickness change (despite the relative steep side of the cover 620) .
FIG. 25 illustrates various beam radiation patterns and orientations achievable by controlling a power divider of the antenna, as described above. The patterns include various orientation of the beam (at different angles, e.g., 0, 10°, 20°, 30°) , various beam shapes (e.g., wider beam, more wider beam) , and various numbers of simulated radiated beams (e.g., in one or more directions) . The various beam formations above can be achieved using the same waveguide structures (the same dual port antenna) by tuning ON/OFF different groups of diodes (for different tunable elements) .
FIG. 26 shows an embodiment method 3700 for assembling the dual port waveguide antenna described above, e.g., as shown in the antenna assembly 600. At step 3710, a first radial waveguide structure is encased into a first frame, and a second waveguide structure is encased into a second frame, e.g., as described in FIGs. 9 and 10. At step 3720, a first coaxial cable is connected to the first radial waveguide structure through the first frame, and a second coaxial cable is connected to the second radial waveguide structure through the second frame, e.g., as described in FIGs. 11 and 14. At step 3730, a first multi-pin cable is connected to the first radial waveguide structure through the first frame, and a second mutli-pin cable is connected to the second radial waveguide structure through the second frame, e.g., as described in FIGs 11 and 14. At step 3740, a plurality of radiating elements and a plurality of standoffs are placed onto the first frame, wherein the radiating elements and the standoffs are radially distributed around a circumference of the first frame, e.g., as described in FIG.s 12 and 13. At step 3750, the second frame is coupled to the exposed ends of the radiating elements and the standoffs, wherein the radiating elements and the standoffs are radially distributed around a circumference of the second frame, e.g., as described in FIGs. 15 and 16. At step 3760, a base is connected to a surface of the first frame opposite to the second frame, e.g., as described in FIGs. 17 to 20. At step 3770, a cover is placed over the first frame, the second frames, the radiating elements and standoffs between the first frame and the second frame, and the base, e.g., as described in FIGs. 21, 22, and 24. Both the first coaxial cable from the first radial waveguide structure and the second coaxial cable from the second radial waveguide structure are subsequently connected to a radio frequency signal source trough openings in the radiating elements and through corresponding openings in the base. Both the first multi-pin cable from the first radial waveguide structure and the second multi-pin cable from the second radial waveguide structure are connected to a DC switch controller, through second openings in the radiating elements and via a connector board in the base.
FIG. 27 illustrates a block diagram of an embodiment of a communications device 3800 including a processor 3804, a memory 3806, and a switching interface 3814, which may (or may not) be arranged as shown in FIG. 38. The processor 3804 may be any component capable of performing computations and/or other processing related tasks, and may be equivalent to the microcontroller 250 (discussed above) . The memory 3806 may be any component capable of storing programming and/or instructions for the processor 3804. The switching interface 3814 may be any component or collection of components that allows  the processor 3804 to manipulate or otherwise control a series of DC switches for the purpose of effectuating beamsteering on an agile antenna.
FIG. 28 shows a top view of an embodiment of an upper power divider configuration of the antenna. The top view corresponds to the surface of the radial waveguide structure 206 (at the top of the antenna assembly 600) . The surface is connected to a line feed 210 and faces a similar surface of the radial waveguide structure 205 (at the bottom of the antenna assembly 600) . As described above, different groups of activated tunable elements connected to conductive elements 220 of the radial waveguide structure act as a power divider which steers the RF beam of the antenna in different directions. The different groups of tunable elements are labeled from A to R for the radial waveguide structure 206 in a counter-clockwise direction from the view perspective of FIG. 28. FIG. 28 also shows a plurality of desired beamsteering or emission directions that can be achieved by activating the different groups of tunable elements. The directions are distributed radially with respect to the antenna assembly and are labeled in a clockwise direction from 1 to 12.
FIG. 29 shows a top view of an embodiment of a lower power divider configuration of the antenna. The top view corresponds to the surface of the radial waveguide structure 205. The surface is connected to a line feed 210 and faces the surface of the radial waveguide structure 206 in FIG. 28. The upper and lower power divider configurations of FIGs. 28 and 29 are similar which facilitates the fabrication process. As such, the lower power divider configuration is a mirror reflection of the upper power divider configuration, and the labels for the groups of tunable elements in the lower radial waveguide structure 205 are labeled from A to R in a clock-wise direction from the view perspective of FIG. 29. For this purpose, the same beamsteering directions are shown for both power divider configurations in FIGs 28 and 29.
FIGs. 30A and 30B show an embodiment of a DC logic PIN-out for a connector with 40 PINs. The shown PIN configuration can be used to control, simultaneously, the upper and lower power dividers described above, and thus control beamsteering, via a DC control system (e.g., the DC control system 400) and the multi-pin cables 1130. The configuration shows the mapping between the directions above (1 to 12) and the pins (labeled 1 to 20) . The pins indicated by 1 are switched ON (or OFF) to achieve the corresponding beamsteering direction. In this embodiment, the  pins  1 and 2 are grounded and the pins 3 to 20 are used to  control the lower power divider, via its corresponding multi-pin cable 1130. The  pins  21 and 22 are also grounded and the pins 23 to 40 are used to control the upper power divider, via its corresponding multi-pin cable 1130. The pins for the upper and lower power dividers that correspond to the same direction are switch ON (or OFF) simultaneously. The pins for the same direction are connected to and thus activate (or deactivate) the same groups of tunable elements in the upper and lower power dividers. In other embodiments, other suitable configurations for the upper and lower power dividers and corresponding PIN settings can be used.
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.

Claims (27)

  1. An antenna device comprising:
    a first radial waveguide structure;
    a first line feed connected at substantially a center of a surface of the first radial waveguide structure;
    a second waveguide structure coupled to the first waveguide structure, wherein the second radial waveguide structure is substantially parallel to and faces the first radial waveguide structure;
    a second line feed connected at substantially a center of a surface of the second waveguide structure, wherein the first line feed of the first radial waveguide structure faces the second line feed of the second waveguide structure; and
    a plurality of radiating elements positioned between the first radial waveguide structure and the second waveguide structure, and distributed radially around a circumference of the first radial waveguide structure and a circumference of the second waveguide structure.
  2. The antenna device of claim 1 wherein the second waveguide structure is a radial waveguide structure similar to the first radial waveguide structure.
  3. The antenna device of claim 2, wherein each one of the first radial waveguide structure and the second radial waveguide structure comprises:
    a first radial plate connected to one of the first line feed and the second line feed;
    a second radial plate substantially in parallel with the first radial plate on an opposite side from the one of the first line feed and the second line feed; and
    a plurality of conductive elements connected to a plurality of tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between the first line feed and the radiating elements.
  4. The antenna device of claim 3 further comprising:
    a first radial frame enclosing the first radial waveguide structure, the first radial frame comprising a conductive gasket positioned around an inside wall of the first radial frame and in contact with the first radial plate and the second radial plate of the first radial waveguide structure; and
    a second radial frame enclosing the second radial waveguide structure, the second radial frame comprising a second conductive gasket positioned around an inside wall of the second radial frame and in contact with the first radial plate and the second radial plate of the second radial waveguide structure.
  5. The antenna device of claim 3 further comprising a plurality of direct current (DC) switches coupled to the first radial waveguide structure and the second radial waveguide structure, and configured to activate and deactivate selected tunable elements in the plurality of tunable elements in the first radial waveguide structure and the second radial waveguide structure simultaneously, wherein the activation or deactivation directs propagation and beam steering of a radio frequency (RF) signal.
  6. The antenna device of claim 5, wherein at least one of the DC switches is connected to a corresponding grouping of the tunable elements.
  7. The antenna device of claim 3, wherein the tunable elements include at least one of PIN diodes and micro-electromechanical systems (MEMS) .
  8. The antenna device of claim 1, wherein at least one of the first line feed and the second line feed are coupled to a radio frequency (RF) signal source.
  9. An antenna device comprising:
    a first radial waveguide structure;
    a first radial frame enclosing the first radial waveguide structure
    a second waveguide structure;
    a second frame enclosing the second waveguide structure and coupled substantially in parallel to the first radial frame; and
    a plurality of radiating elements positioned between the first radial frame and the second frame, and distributed radially around a circumference of the first radial frame and a circumference of the second frame, wherein the radiating elements are connected to the first radial waveguide structure and to the second waveguide structure through the second frame.
  10. The antenna device of claim 9 wherein the second waveguide is a radial waveguide similar to the first waveguide structure.
  11. The antenna device of claim 9 wherein the second frame is a radial frame and is similar to the first radial frame.
  12. The antenna device of claim 9 further comprising a conductive gasket positioned around an inside inner wall of each one of the first radial frame and the second frame.
  13. The antenna device of claim 12, wherein the second frame is a radial frame and each one of the first radial frame and the second frame comprises:
    a plurality of cylindrical holders distributed radially around a circumference of an outer surface the frame;
    a plurality of slots distributed radially around the circumference and configured to fit edge probes at endings of the radiating elements; and
    guide ribs on both sides of each one of the slots, the guide ribs configured to hold the radiating elements vertical to the outer surface.
  14. The antenna device of claim 13 wherein the first and second frames each further comprise a frame alignment marker on an outer surface of the frame.
  15. The antenna device of claim 13, wherein each one of the first radial waveguide structure and the second waveguide structure comprises:
    a first radial plate connected to the radiating elements through one of the first radial frame and the second frame;
    a second radial plate substantially in parallel with the first radial plate, wherein the first radial plate and the second radial plate are in contact with the conductive gasket; and
    a plurality of metallic posts connected to tunable elements and positioned vertically between the first radial plate and the second radial plate, and interspersed horizontally between substantially a center of the second radial plate and the radiating elements.
  16. The antenna device of claim 9 further comprising:
    a first line feed connected at substantially a center of a surface of the first radial waveguide structure through the first radial frame;
    a first coaxial cable connected to the first line feed and connected to a radio frequency (RF) signal source through an opening between the radiating elements;
    a second line feed connected at substantially a center of a surface of the second waveguide structure through the first radial frame; and
    a second coaxial cable connected to the second line feed and connected to the RF signal source through the opening between the radiating elements.
  17. The antenna device of claim 16 further comprising:
    a first multi-pin cable connected, via a connector, to the surface of the first radial waveguide structure through the first radial frame, and connected, through an opening between the radiating elements, to a plurality of direct current (DC) switches and a controller; and
    a second multi-pin cable connected, via a second connector, to the surface of the second waveguide structure through the second frame, and connected, through a second opening between the radiating elements, to the DC switches and the controller.
  18. The antenna device of claim 17 further comprising:
    a first fastening loop that loosely fastens the first coaxial cable to an edge of the first radial frame; and
    a second fastening loop that loosely fastens the multi-pin cable to a second edge of the first radial frame.
  19. The antenna device of claim 17 further comprising:
    a plurality of standoffs positioned between the first radial frame and the second frame, and distributed radially around the circumference of the first radial frame and the circumference of the second frame;
    a radial base coupled to a surface the first radial frame opposite to the second radial frame; and
    a cover enclosing the first radial frame, the second radial frame, the radiating elements and standoffs between the first radial frame and the second frame, and the radial base.
  20. The antenna device of claim 19 further comprising a connector board coupled to the surface of the first radial frame and positioned between the radial base and the first radial  frame, wherein the connector board connects the first multi-pin cable and the second multi-pin cable to the DC switches and the controller.
  21. The antenna device of claim 19, wherein the radial base comprises:
    one or more base alignment markers on a surface of the radial base;
    an opening for each one of the first coaxial cable and the second coaxial cable;
    a corresponding cable label on each opening;
    a cover locking rib at an edge of the radial base; and
    a plurality of cover snap tabs around a bottom circumference of the radial base.
  22. The antenna device of claim 21, wherein the cover comprises:
    a top plate connected to a surface of the cover; and
    a base locking notch at an edge of the cover, the base locking notch fits the cover locking rib of the radial base; and
    a radial groove around a circumference at the edge of the base, wherein the radial groove provides a fastening mechanism with the cover snap tabs and allows a uniform thickness shape of the cover.
  23. The antenna device of claim 9, wherein each one of the radiating elements comprises:
    conductive feed paths on a surface of each one of the radiating elements;
    a patch connected to the surface; and
    edge probes on both ends of each one of the radiating elements, the edge probes having trapezoid cut ends.
  24. The antenna device of claim 9, wherein each one of the radiating elements has a shape with step wise edges and cut off corners on both sides at both ends, and wherein the step wise edges provides a self-aligning mechanism with corresponding guide ribs on a surface of each one of the first radial frame and the second radial frame.
  25. A method for assembling a dual port waveguide antenna, the method comprising:
    encasing a first radial waveguide structure into a first frame;
    encasing a second radial waveguide structure into a second frame;
    connecting a first radio frequency (RF) source coaxial cable to the first radial waveguide structure through the first frame, and a second RF source coaxial cable to the second radial waveguide structure through the second frame;
    connecting a first direct current (DC) switch multi-pin cable to the first radial waveguide structure through the first frame, and a second DC switch multi-pin cable to the second radial waveguide structure through the second frame;
    placing a plurality of radiating elements and a plurality of standoffs between the first frame and the second frame, wherein the radiating elements and the standoffs are radially distributed around a circumference of each one of the first frame and the second frame;
    connecting a base at a surface of one of the first frame opposite to the second frame; and
    placing a cover over the first frame, the second frames, the radiating elements and the standoffs between the first frame and the second frame.
  26. The method of claim 25 further comprising:
    connecting both the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure to a radio frequency signal source trough openings in the radiating elements; and
    connecting both the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure to a DC switch controller, through second openings in the radiating elements.
  27. The method of claim 26, wherein the first RF source coaxial cable from the first radial waveguide structure and the second RF source coaxial cable from the second radial waveguide structure are connected to the radio frequency signal source through corresponding openings in the base, and wherein the first DC switch multi-pin cable from the first radial waveguide structure and the second DC switch multi-pin cable from the second radial waveguide structure are connected to the DC switch controller via a connector board in the base.
PCT/CN2015/082894 2014-06-30 2015-06-30 Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides WO2016000607A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/319,981 2014-06-30
US14/319,884 2014-06-30
US14/319,981 US9502765B2 (en) 2014-06-30 2014-06-30 Apparatus and method of a dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides
US14/319,884 US9490535B2 (en) 2014-06-30 2014-06-30 Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides

Publications (1)

Publication Number Publication Date
WO2016000607A1 true WO2016000607A1 (en) 2016-01-07

Family

ID=55018446

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/082586 WO2016000577A1 (en) 2014-06-30 2015-06-27 Appratus and method of dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides
PCT/CN2015/082894 WO2016000607A1 (en) 2014-06-30 2015-06-30 Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082586 WO2016000577A1 (en) 2014-06-30 2015-06-27 Appratus and method of dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides

Country Status (3)

Country Link
EP (1) EP3130037B1 (en)
CN (1) CN105874648B (en)
WO (2) WO2016000577A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201620121D0 (en) * 2016-11-28 2017-01-11 Plasma Antennas Ltd A surface array antenna
US10454184B2 (en) * 2017-01-27 2019-10-22 Huawei Technologies Co., Ltd. Reconfigurable radial-line slot antenna array
US10903569B2 (en) * 2018-06-15 2021-01-26 Huawei Technologies Co., Ltd. Reconfigurable radial waveguides with switchable artificial magnetic conductors
US10938124B2 (en) * 2018-11-15 2021-03-02 Huawei Technologies Co., Ltd. Switchable lens antenna with integrated frequency selective structure
CN110208609B (en) * 2019-05-31 2021-08-17 Oppo广东移动通信有限公司 Detection device and detection method thereof
CN111541036B (en) * 2020-05-21 2021-06-01 电子科技大学 Array antenna aperture field based on radial waveguide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196350A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Array antenna equipment
CN1412890A (en) * 2001-10-19 2003-04-23 B.E.R.集团股份有限公司 Planar antenna
CN102576937A (en) * 2009-10-01 2012-07-11 高通股份有限公司 Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
CN102832432A (en) * 2012-08-30 2012-12-19 北京遥测技术研究所 Radial linear power divider/synthesizer
US20130342424A1 (en) * 2012-06-25 2013-12-26 Electronics And Telecommunications Research Institute Direction control antenna and method of controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1459373A (en) * 1964-11-02 1966-04-29 Hughes Aircraft Co Antenna system
US3852761A (en) * 1973-04-23 1974-12-03 Rca Corp Lens fed antenna array system
US4072951A (en) * 1976-11-10 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Notch fed twin electric micro-strip dipole antennas
US4605932A (en) * 1984-06-06 1986-08-12 The United States Of America As Represented By The Secretary Of The Navy Nested microstrip arrays
JPH0661739A (en) * 1992-08-05 1994-03-04 Toppan Printing Co Ltd Linearly polarized wave radial line slot antenna
US5767807A (en) * 1996-06-05 1998-06-16 International Business Machines Corporation Communication system and methods utilizing a reactively controlled directive array
WO2002023672A2 (en) * 2000-09-15 2002-03-21 Raytheon Company Microelectromechanical phased array antenna
EP1729146A1 (en) * 2005-06-01 2006-12-06 BAE SYSTEMS (Defence Systems) Limited Direction finder antenna receiver system
WO2010141745A1 (en) * 2009-06-03 2010-12-09 Spx Corporation Circularly-polarized antenna
CN103811849B (en) * 2012-11-12 2016-02-17 摩比天线技术(深圳)有限公司 Broadband dual-polarization antenna radiation unit and antenna thereof
CN103390795B (en) * 2013-07-22 2015-08-19 电子科技大学 A kind of directional diagram has the antenna of multiple restructural characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196350A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Array antenna equipment
CN1412890A (en) * 2001-10-19 2003-04-23 B.E.R.集团股份有限公司 Planar antenna
CN102576937A (en) * 2009-10-01 2012-07-11 高通股份有限公司 Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
US20130342424A1 (en) * 2012-06-25 2013-12-26 Electronics And Telecommunications Research Institute Direction control antenna and method of controlling the same
CN102832432A (en) * 2012-08-30 2012-12-19 北京遥测技术研究所 Radial linear power divider/synthesizer

Also Published As

Publication number Publication date
EP3130037A1 (en) 2017-02-15
WO2016000577A1 (en) 2016-01-07
EP3130037B1 (en) 2019-08-14
CN105874648B (en) 2020-04-21
CN105874648A (en) 2016-08-17
EP3130037A4 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US9490535B2 (en) Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides
US9502765B2 (en) Apparatus and method of a dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides
WO2016000607A1 (en) Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides
US9887457B2 (en) Electronically steerable antenna using reconfigurable power divider based on cylindrical electromagnetic band gap (CEBG) structure
CN107925168B (en) Wireless electronic device
KR101609665B1 (en) Antenna of mobile communication station
CN107112631B (en) Radiation integrated antenna unit and multi-array antenna
US6956537B2 (en) Co-located antenna array for passive beam forming
EP1782499B1 (en) System and method for an omnidirectional planar antenna apparatus with selectable elements
EP3560035B1 (en) Reconfigurable radial-line slot antenna array
KR101905507B1 (en) Antenna device and electronic device with the same
EP2893593B1 (en) Multiband monopole antenna apparatus with ground plane aperture
CN107785665B (en) Mixed structure dual-frequency dual-beam three-column phased array antenna
KR20120086841A (en) Base station antenna structure having multi-band dipole element array improved in isolation-characteristics
US9509062B2 (en) Alford loop antennas with parasitic elements
US20210194153A1 (en) Antenna system for a wireless communication device
EP4280382A1 (en) Antenna structure and electronic device comprising same
KR102004294B1 (en) Base Station Antenna Radiator Having Stable Polarization Characteristic
US20230099560A1 (en) Antenna structure and electronic device comprising same
KR102131845B1 (en) Dual-polarized antenna and antenna array
US20230155303A1 (en) Dual-band dual-polarized antenna radiation device
KR102125971B1 (en) Dual Polarization Base Station Antenna
EP4354658A1 (en) Antenna module
US20240120636A1 (en) Connection structure using elastic member and electronic device including the same
EP3598843B1 (en) Apparatus, method and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814692

Country of ref document: EP

Kind code of ref document: A1