WO2016000108A1 - 训练序列生成装置、设备及方法 - Google Patents

训练序列生成装置、设备及方法 Download PDF

Info

Publication number
WO2016000108A1
WO2016000108A1 PCT/CN2014/081091 CN2014081091W WO2016000108A1 WO 2016000108 A1 WO2016000108 A1 WO 2016000108A1 CN 2014081091 W CN2014081091 W CN 2014081091W WO 2016000108 A1 WO2016000108 A1 WO 2016000108A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
training sequence
training
subcarriers
total number
Prior art date
Application number
PCT/CN2014/081091
Other languages
English (en)
French (fr)
Inventor
杨洋
唐小虎
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/081091 priority Critical patent/WO2016000108A1/zh
Priority to CN201480079808.1A priority patent/CN106464630B/zh
Publication of WO2016000108A1 publication Critical patent/WO2016000108A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a training sequence generating apparatus, device, and method. Background technique
  • the WLAN Wireless Local Area Networks
  • IEEE 802.11ac IEEE 802.11ac standard
  • channel estimation is performed using the VHT-LTF ( Very High Throughout Long Training Field) of the preamble.
  • the VHT-LTF sequence is obtained by cascading and symmetric inversion.
  • the subcarriers of the placement base sequences LTFleft and LTFright are symmetrically distributed on both sides of the DC subcarrier; other subcarriers with values are also symmetrically Distributed on both sides of the DC subcarrier and the values are opposite.
  • the inventors have found that the prior art has at least the following problems: In order to obtain better channel estimation performance, power boosting of the WLAN signal is required, and this requires the VHT-LTF to have a lower PAPR (Peak to Average Power Ratio, peak average power ratio).
  • PAPR Peak to Average Power Ratio, peak average power ratio
  • the existing VHT-LTF sequence is obtained by cascading and symmetric inversion, and its PAPR is higher, resulting in lower channel estimation performance of the system. Summary of the invention
  • the embodiment of the present invention provides a training sequence generating apparatus and device. And methods.
  • the technical solution is as follows:
  • a training series generating device comprising:
  • a sequence length determining module configured to determine a sequence length N according to a total number of subcarriers of the system
  • a first sequence generating module configured to generate a Gray sequence of length N
  • a second sequence generating module configured to generate a training sequence b based on the Gray sequence
  • a first power ratio calculation module configured to calculate a peak-to-average power ratio PAPR of the training sequence b; a threshold detection module, configured to detect whether the PAPR is smaller than a peak-average power ratio threshold ⁇ ; The detection result of the threshold detection module is that the PAPR is small At ⁇ , the training sequence b is determined to be a long training sequence of the system.
  • the second sequence generating module includes: a first generating unit, configured to generate the training sequence b according to the following formula:
  • the second sequence generating module includes: a location determining unit, configured to determine a location of a DC subcarrier and a protection subcarrier in the system; Setting an element corresponding to the DC subcarrier and the guard subcarrier position in the Golay sequence to 0, to obtain a training sequence c;
  • a sequence generating unit configured to generate the training sequence b according to the training sequence c.
  • the sequence generating unit includes: a first sequence determining subunit, or the sequence generating unit includes: a position determining subunit, a pilot setting subunit, and a second sequence determining subunit;
  • the first sequence determining subunit is configured to determine the training sequence c as the training sequence b; the location determining subunit, configured to determine a location of a pilot subcarrier in the system;
  • the pilot setting subunit is configured to set an element corresponding to the pilot subcarrier position in the training sequence C to a preset pilot value of the system, to obtain a training sequence d;
  • the second sequence determining subunit is configured to determine the training sequence d as the training sequence b.
  • the sequence length determining module is configured to obtain the total number of subcarriers of the system, and determine the obtained total number of subcarriers as the sequence length N.
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • a training series generating device in a second aspect, includes: a bus, and a processor and memory connected to the bus;
  • the memory is for storing a plurality of instructions, the instructions being configured to be executed by the processor;
  • the processor is configured to determine a sequence length N according to a total number of subcarriers of the system, generate a Gray sequence of length N, generate a training sequence b based on the Gray sequence, and calculate a peak average power ratio PAPR of the training sequence b, Detecting whether the PAPR is smaller than a peak average power ratio threshold ⁇ . If the detection result of the threshold detection module is that the PAPR is less than ⁇ , determining that the training sequence b is a long training sequence of the system.
  • the processor is configured to generate the training sequence b according to the following formula:
  • the processor is configured to determine a location of a DC subcarrier and a protection subcarrier in the system, and set an element corresponding to the DC subcarrier and the protection subcarrier position in the Gray sequence to 0 to obtain a training sequence.
  • the training sequence b is generated according to the training sequence c.
  • the processor is configured to determine the training sequence c as the training sequence b;
  • the processor is configured to determine a location of a pilot subcarrier in the system, and set an element corresponding to the pilot subcarrier position in the training sequence c as a preset pilot value of the system, to obtain training.
  • Sequence d, the training sequence d is determined as the training sequence b.
  • the processor is configured to obtain a total number of subcarriers of the system, and determine the obtained total number of subcarriers as the sequence length N.
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • a training series generating method where the method includes:
  • the generating the training sequence b based on the Gray sequence includes:
  • the training sequence b is generated according to the following formula:
  • the generating the training sequence b based on the Gray sequence includes:
  • the training sequence b is generated according to the training sequence c.
  • the generating the training sequence b according to the training sequence c includes:
  • the training sequence d is determined as the training sequence b.
  • the determining the sequence length N according to the total number of subcarriers of the system includes: Obtaining a total number of subcarriers of the system, and determining the obtained total number of subcarriers as the sequence length N.
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • a training series generating device comprising:
  • a sequence length determining module configured to determine a sequence length N according to a total number of subcarriers of the system
  • a first sequence group generating module configured to generate a Gray sequence group, where the Gray sequence group includes a Gray sequence with a length of N;
  • a second sequence group generating module configured to generate a training sequence group, where the training sequence group includes a training sequence generated based on each of the Gray sequence in the Gray sequence group;
  • a second power ratio calculation module configured to calculate a peak average power ratio PAPR of each training sequence in the training sequence group
  • a second sequence determining module configured to determine, in the training sequence group, one or more training sequences with the lowest PAPR as the long training sequence of the system.
  • a training series generating device where the device includes:
  • bus a bus, and a processor and memory connected to the bus;
  • the memory is for storing a plurality of instructions, the instructions being configured to be executed by the processor;
  • the processor is configured to determine a sequence length N according to a total number of subcarriers of the system, and generate a Gray sequence group, where the Gray sequence group includes a plurality of Gray sequences of length N; generate a training sequence group, and the training sequence The group includes a training sequence generated based on each of the Gray sequences in the Gray sequence group; calculating a peak average power ratio PAPR of each training sequence in the training sequence group; and the lowest PAPR in the training sequence group One or more training sequences are determined to be a long training sequence of the system.
  • a training series generating method includes: Determining the sequence length N according to the total number of subcarriers of the system;
  • the Golay sequence group includes a plurality of Golay sequences of length N; generating a training sequence group, wherein the training sequence group includes a training sequence generated based on each of the Golay sequences in the Golay sequence group ;
  • One or more training sequences having the lowest PAPR in the training sequence group are determined as long training sequences of the system.
  • the long training sequence because the Gray sequence has a low PAPR nature, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR property of the Golay sequence, and solves the VHT-LTF sequence ⁇ ij PAPR in the prior art. Higher, resulting in a lower channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • FIG. 1 is a structural diagram of a device for generating a training sequence according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a device for generating a training sequence according to another embodiment of the present invention
  • FIG. 3 is a training diagram of an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a device configuration of a training sequence generating device according to another embodiment of the present invention
  • FIG. 5 is a flowchart of a method for generating a training sequence according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a device for generating a training sequence according to an embodiment of the present invention
  • FIG. 1 is a structural diagram of a device for generating a training sequence according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a device for generating a training sequence according to another embodiment of the present invention
  • FIG. 3 is a training
  • FIG. 8 is a training sequence generating device according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for generating a training sequence according to an embodiment of the present invention. detailed description The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
  • the training sequence generating means can be used to generate a long training sequence of the WLAN system.
  • the training sequence generating device can include:
  • the sequence length determining module 101 is configured to determine a sequence length N according to the total number of subcarriers of the system; the first sequence generating module 102 is configured to generate a Golay sequence of length N; and the second sequence generating module 103 is configured to The Gray sequence generates a training sequence b;
  • the first power ratio calculation module 104 is configured to calculate a peak average power ratio PAPR of the training sequence b;
  • a threshold detection module 105 configured to detect whether the PAPR is smaller than a peak average power ratio threshold ⁇ ; the first sequence determining module 106 is configured to determine, if the detection result of the threshold detection module 105 is that the PAP is less than ⁇ Training sequence b is a long training sequence of the system.
  • Golay sequences have the property of low PAPR.
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit the original low PAPR property of the Golay sequence.
  • the WLAN signal is boosted, better channel estimation performance can be obtained.
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the length of the sequence, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • FIG. 2 shows a device structure diagram of a training sequence generating apparatus according to another embodiment of the present invention.
  • the training sequence generating means can be used to generate a long training sequence of the WLAN system.
  • the training sequence generating means may include: a sequence length determining module 201, a first sequence generating module 202, a second sequence generating module 203, a first power ratio calculating module 204, a threshold detecting module 205, and a first sequence determining module 206;
  • the sequence length determining module 201 is configured to determine a sequence length N according to the total number of subcarriers of the system;
  • the sequence length determining module may be specifically configured to obtain the total number of subcarriers of the system, and determine the obtained total number of subcarriers as the sequence length N.
  • the system bandwidth may be 20MHz or 80MHz, but N is equal to 256 regardless of the system bandwidth.
  • a second sequence generating module 203 configured to generate a training sequence b based on the Gray sequence
  • the second sequence generating module 203 may include: a first generating unit 203a;
  • the first generating unit 203a is configured to generate the training sequence b according to the following formula:
  • the second sequence generating module 203 may further include: a location determining unit 203b, a zeroing unit 203c, and a sequence determining unit 203d;
  • a location determining unit 203b configured to determine locations of the DC subcarriers and the protection subcarriers in the system
  • the zeroing unit 203c is configured to set an element corresponding to the DC subcarrier and the protection subcarrier position in the Gray sequence to 0, to obtain a training sequence c;
  • the sequence generating unit 203d is configured to generate the training sequence b according to the training sequence c.
  • the specified position in the Gray sequence may be set to 0 to generate the training sequence b.
  • the training sequence b obtained after setting 0 is:
  • the designated location may also be determined based on the location of the DC subcarriers and the guard subcarriers in the system. specific.
  • the position of the DC subcarrier and the protection subcarrier in the system may be determined first, and an element corresponding to the position of the DC subcarrier and the protection subcarrier in the Gray sequence is set to 0, and the training sequence c is obtained;
  • the training sequence c generates a training sequence b.
  • the length of the long training sequence and the generated Gray sequence of the system is also 64, and the DC subcarrier in the system corresponds to the 33rd element of the long training sequence, in the system.
  • the protection subcarrier corresponds to the first 6 elements and the last 5 elements of the long training sequence. At this time, it can be determined that the first 6 elements, the 33rd element, and the last 5 elements in the Gray sequence correspond to the DC subcarrier and protection.
  • the element of the subcarrier, the first 6 elements, the 33rd element, and the last 5 elements in the Golay sequence are set to 0 to obtain the training sequence b.
  • the sequence generating unit 203d includes: a first sequence determining subunit 203dl;
  • the first sequence determining subunit 203dl is configured to determine the training sequence c as the training sequence J' J b.
  • the Gray sequence after setting 0 can be directly determined as the training sequence ⁇ ' J b.
  • sequence generating unit 203d may further include: a location determining subunit 203d2, a pilot setting subunit 203d3, and a second sequence determining subunit 203d4;
  • the location determining sub-unit 203d2 is configured to determine a location of a pilot subcarrier in the system, and a pilot setting subunit 203d3, configured to: use an element corresponding to the pilot subcarrier position in the training sequence c Set to the preset pilot value of the system to obtain the training sequence d;
  • the second sequence determining subunit 203d4 is configured to determine the training sequence d as the training sequence b.
  • the training sequence including the pilot value can be directly generated. Specifically, the corresponding correspondence in the system can be determined first. At the position of the pilot subcarrier of the pilot element, the element corresponding to the position of the pilot subcarrier in the training sequence is set to 0 after the Gray sequence is set to the preset pilot value of the system, and the pilot value is set. The training sequence is determined as training sequence b.
  • the developer can use the existing pilot values, or set each of the Gray sequences in advance. After setting a suitable pilot value, after setting the training sequence c to the Gray sequence, the corresponding pilot value can be queried according to the generated Gray sequence, and the designated position in the training sequence c is replaced by the queried pilot value. Element, the specified location is determined based on the location of the pilot subcarriers in the system.
  • a first power ratio calculation module 204 configured to calculate a peak average power ratio PAPR of the training sequence b;
  • the threshold detection module 205 is configured to detect whether the PAPR is smaller than a peak average power ratio threshold ⁇ ; wherein the peak average power ratio threshold ⁇ can be determined according to a total number of subcarriers of the system, for example: when the total number of subcarriers of the system is 64. When it is determined that ⁇ is ⁇ ⁇ 7 or , it can be determined that ⁇ is the peak average power ratio of the long training sequence in the existing WLAN system with a total number of subcarriers of 64, that is, 3.5766 dB;
  • is ⁇ 2
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 128. , ie 5.6317 dB;
  • is ⁇ 3 , or ⁇ can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 256. , ie 8.6268dB;
  • is ⁇ 4
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 512. , ie 8.6268 dB.
  • the ⁇ wide ⁇ 4 may be a threshold value preset by the developer according to actual needs, and the preset threshold value may be smaller than the existing peak average power ratio under the corresponding broadband demand.
  • the first sequence determining module 206 is configured to determine that the training sequence b is a long training sequence of the system if the detection result of the threshold detecting module 205 is that the PAP is less than ⁇ .
  • the threshold value may not be set in advance, but all Golay sequences of length N are traversed, and the training sequence b is generated according to the above method, and the PAPR values of all the generated training sequences b are calculated.
  • the one or more training sequences b with the lowest PAPR value are selected as the long training sequence of the system.
  • the Golay sequence is set to 0 to generate the training sequence b.
  • This embodiment provides the following long training sequences that conform to the low PAPR.
  • the long training sequence is: (0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1 ,-1,-1,1,1 ,-1,-1,1,1 ,-1,-1,1,1 ,-1,-1,1,1 ,1,1 ,-1,1,1,,-1,-1,1,1,,-1,-1,1,1,1, ,-1), or,
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit Golay.
  • the original low PAPR nature of the sequence enables better channel estimation performance when power is applied to the WLAN signal.
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the length of the sequence, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the nature of the present invention solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, resulting in low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating apparatus provided by the embodiment of the present invention generates a training sequence based on a Gray sequence of a specified length. Since the number of Gray sequences conforming to a specified length is large, for a given length of 2 m , there are H m+1 -m!/2 The Gray sequence defined on the H-element of the unit circle can construct more long training sequences that satisfy the condition, thereby expanding system capacity and improving system performance.
  • FIG. 3 shows a device configuration diagram of a training sequence generating device according to an embodiment of the present invention.
  • the training sequence generation device 300 can be used to generate a long training sequence of the WLAN system.
  • the training sequence generating apparatus 300 can include a bus 305, and a processor 301, a memory 302, a transmitter 303, and a receiver 304 connected to the bus 305.
  • the memory 302 is configured to store a plurality of instructions, which are configured to be executed by the processor 301;
  • the processor 301 is configured to determine a sequence length N according to a total number of subcarriers of the system, and generate a length. Generating, according to the Gray sequence, a training sequence b, calculating a peak-to-average power ratio PAPR of the training sequence b, and detecting whether the PAPR is smaller than a peak-average power ratio threshold ⁇ , if the threshold detection module detects The result is that the PAPR is less than ⁇ , then the training sequence b is determined to be a long training sequence of the system.
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit Golay.
  • the original low PAPR nature of the sequence enables better channel estimation performance when power is applied to the WLAN signal.
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the sequence length, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • FIG. 4 shows a device configuration diagram of a training sequence generating device according to another embodiment of the present invention.
  • the training sequence generation device 400 can be used to generate a long training sequence for the WLAN system.
  • the training sequence generation device 400 can include a bus 405, and a processor 401, a memory 402, a transmitter 403, and a receiver 404 coupled to the bus 405.
  • the memory 402 is configured to store a plurality of instructions configured to be executed by the processor 401;
  • the processor 401 is configured to determine a sequence length N according to the total number of subcarriers of the system, generate a Gray sequence of length N, generate a training sequence b based on the Gray sequence, and calculate a peak average power ratio PAPR of the training sequence b. And detecting whether the PAPR is smaller than a peak average power ratio threshold ⁇ . If the detection result of the threshold detection module is that the PAPR is less than ⁇ , determining that the training sequence b is a long training sequence of the system.
  • the processor 401 is specifically configured to obtain the total number of subcarriers of the system, and determine the obtained total number of subcarriers as the sequence length N.
  • the length of the Golay sequence on the unit circle currently known is ⁇ 1 ⁇ , where m, n, 1 are non-negative integers, which can be obtained by an iterative method.
  • Golay sequences of length 2 m can also be constructed directly using generalized Boolean functions.
  • N 2 m , , d m ) e Z H
  • H is an even number
  • any substitution of ⁇ 1 , 2, ... , m ⁇ to itself
  • the binary expansion of a non-negative integer t is
  • a set S1 containing all Gray sequences of length N can be generated.
  • the peak average power ratio threshold ⁇ can also be determined according to the total number of subcarriers of the system, for example: When the total number of subcarriers of the system is 64, it can be determined that ⁇ is ⁇ ⁇ 7 or ⁇ can be determined as existing The peak average power ratio of the long training sequence in the WLAN system with a total number of subcarriers of 64, ie, 3.5766 dB;
  • is ⁇ 2
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 128. , ie 5.6317 dB;
  • is ⁇ 3 , or ⁇ can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 256. , ie 8.6268dB;
  • is ⁇ 4
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 512. , ie 8.6268 dB.
  • the ⁇ wide ⁇ 4 may be a threshold value preset by the developer according to actual needs, and the preset threshold value may be smaller than the existing peak average power ratio under the corresponding broadband demand.
  • the threshold value may not be set in advance, but all Golay sequences of length ⁇ are traversed, and the training sequence b is generated according to the above method, and the PAPR values of all the generated training sequences b are calculated.
  • the one or more training sequences b with the lowest PAPR value are selected as the long training sequence of the system.
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit Golay.
  • the original low PAPR nature of the sequence, for WLAN Better signal estimation performance can be obtained when the signal is boosted.
  • the processor 401 is configured to generate the training sequence b according to the following formula:
  • the processor 401 is further configured to determine a location of a DC subcarrier and a protection subcarrier in the system, where an element corresponding to the DC subcarrier and the protection subcarrier position in the Gray sequence is set to
  • the specified bit in the Gray sequence may be set to 0 to generate the training sequence b.
  • the obtained training sequence b is:
  • the designated location may also be determined based on the location of the DC subcarriers and the guard subcarriers in the system. specific.
  • the position of the DC subcarrier and the protection subcarrier in the system may be determined first, and an element corresponding to the position of the DC subcarrier and the protection subcarrier in the Gray sequence is set to 0, and the training sequence c is obtained;
  • the training sequence c generates a training sequence b.
  • the length of the long training sequence and the generated Gray sequence of the system is also 64, and the DC subcarrier in the system corresponds to the 33rd element of the long training sequence, in the system.
  • the protection subcarrier corresponds to the first 6 elements and the last 5 elements of the long training sequence. At this time, it can be determined that the first 6 elements, the 33rd element, and the last 5 elements in the Gray sequence correspond to the DC subcarrier and protection.
  • the element of the subcarrier, the first 6 elements, the 33rd element, and the last 5 elements in the Golay sequence are set to 0 to obtain the training sequence b.
  • the processor 401 may be configured to determine the training sequence c as the training sequence b; wherein, when the training sequence b is generated, the set Gray sequence may be directly determined as the training sequence J' J b.
  • the processor 401 may be further configured to determine a location of a pilot subcarrier in the system, and set an element corresponding to the pilot subcarrier position in the training sequence c as a preset by a system.
  • the frequency value is obtained, and the training sequence d is obtained, and the training sequence d is determined as the training sequence b.
  • the training sequence including the pilot value may be directly generated. Specifically, the position of the pilot subcarrier corresponding to the pilot element in the system may be first determined, and the training is performed after setting the Gray sequence to 0. The element corresponding to the position of the pilot subcarrier in the sequence is set as the pilot value preset by the system, and the training sequence after setting the pilot value is determined as the training sequence b.
  • the developer can use the existing pilot value, or set an appropriate pilot value for each Gray sequence in advance. After setting the training sequence c to the Gray sequence, the corresponding setting can be queried according to the generated Gray sequence.
  • the pilot value and replaces the element of the specified position in the training sequence c with the queried pilot value, which is determined according to the position of the pilot subcarrier in the system.
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • the long training sequence is:
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the sequence length, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the nature of the present invention solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, resulting in low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating device provided by the embodiment of the present invention generates a training sequence based on the Gray sequence of the specified length. Since the number of Gray sequences conforming to the specified length is large, for a given length of 2 m , there are H m+1 -m!/2 The Gray sequence defined on the H-element of the unit circle can construct more long training sequences that satisfy the condition, thereby expanding system capacity and improving system performance.
  • FIG. 5 illustrates a method for generating a training sequence according to an embodiment of the present invention. Flow chart.
  • the training sequence generation method is for generating a long training sequence in a WLAN system.
  • the training sequence generation method may include:
  • Step 502 determining a sequence length N according to the total number of subcarriers of the system
  • Step 504 generating a Golay sequence of length N;
  • Step 506 generating a training sequence b based on the Gray sequence
  • Step 508 calculating a peak average power ratio of the training sequence b, and detecting whether the PAPR is smaller than a peak average power ratio threshold ⁇ ;
  • Step 510 If the PAPR is less than ⁇ , determine that the training sequence b is a long training sequence of the system.
  • Golay sequences have the property of low PAPR.
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit the original low PAPR property of the Golay sequence.
  • the WLAN signal is boosted, better channel estimation performance can be obtained.
  • the training sequence generating method determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the length of the sequence, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the nature of the present invention solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, resulting in low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • FIG. 6 a flowchart of a method for generating a training sequence according to another embodiment of the present invention is shown.
  • the training sequence generation method is for generating a long training sequence in a WLAN system.
  • the training sequence generation method may include:
  • Step 602 determining a sequence length N according to the total number of subcarriers of the system
  • the total number of subcarriers in the system may be obtained, and the total number of subcarriers obtained is determined as the sequence length N.
  • Step 604 generating a Gray sequence of length N;
  • the length of the Golay sequence on the unit circle currently known is ⁇ 1 ⁇ , where m, n, 1 are non-negative integers, which can be obtained by an iterative method.
  • Step 606 setting a specified position in the Gray sequence to 0, and generating a training sequence according to the sequence obtained by setting 0;
  • the training sequence b obtained after the Gray sequence is set to 0 is:
  • b (0, 0, 0, 0, 0, 0, s (6) ⁇ s (N/2-1 ), 0, s (N/2+1 ) ⁇ s (N-6), 0, 0 , 0, 0, 0).
  • the designated location may also be determined based on the location of the DC subcarriers and the guard subcarriers in the system. specific.
  • the position of the DC subcarrier and the protection subcarrier in the system may be determined first, and an element corresponding to the position of the DC subcarrier and the protection subcarrier in the Gray sequence is set to 0, and the training sequence c is obtained;
  • the training sequence c generates a training sequence b.
  • the length of the long training sequence and the generated Gray sequence of the system is also 64, and the DC subcarrier in the system corresponds to the 33rd element of the long training sequence, in the system.
  • the protection subcarrier corresponds to the first 6 elements and the last 5 elements of the long training sequence. At this time, it can be determined that the first 6 elements, the 33rd element, and the last 5 elements in the Gray sequence correspond to the DC subcarrier and protection.
  • the element of the subcarrier, the first 6 elements, the 33rd element, and the last 5 elements in the Golay sequence are set to 0 to obtain the training sequence b.
  • the training sequence c when the training sequence b is generated according to the training sequence c, the training sequence c can be determined as the training sequence b;
  • the Gray sequence after setting 0 can be directly determined as the training sequence ⁇ ' J b.
  • the training sequence b when the training sequence b is generated according to the training sequence c, the position of the pilot subcarrier in the system may be determined; and the element corresponding to the pilot subcarrier position in the training sequence c is set as a system preset.
  • the pilot value is obtained, and the training sequence d is obtained; the training sequence d is determined as the training sequence b.
  • the training sequence including the pilot value can be directly generated. Specifically, the corresponding correspondence in the system can be determined first. At the position of the pilot subcarrier of the pilot element, the element corresponding to the position of the pilot subcarrier in the training sequence is set to 0 after the Gray sequence is set to the preset pilot value of the system, and the pilot value is set. The training sequence is determined as training sequence b.
  • the developer can use the existing pilot value, or set an appropriate pilot value for each Gray sequence in advance. After setting the training sequence c to the Gray sequence, the corresponding setting can be queried according to the generated Gray sequence.
  • the pilot value and replaces the element of the specified position in the training sequence c with the queried pilot value, which is determined according to the position of the pilot subcarrier in the system.
  • Step 608 calculating a peak average power ratio of the training sequence b, and detecting whether the PAPR is smaller than a peak average power ratio threshold ⁇ ;
  • the peak average power ratio threshold ⁇ can be determined according to the total number of subcarriers of the system, for example: When the total number of subcarriers of the system is 64, it can be determined that ⁇ is ⁇ ⁇ 7 or ⁇ can be determined as an existing WLAN.
  • is ⁇ 2
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 128. , ie 5.6317 dB;
  • is ⁇ 3 , or ⁇ can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 256. , ie 8.6268dB;
  • is ⁇ 4
  • can be determined as the peak average power ratio of the long training sequence in the existing WLAN system with the total number of subcarriers being 512. , ie 8.6268 dB.
  • the ⁇ wide ⁇ 4 may be a threshold value preset by the developer according to actual needs, and the preset threshold value may be smaller than the existing peak average power ratio under the corresponding broadband demand.
  • Step 610 If the PAPR is less than ⁇ , determine that the training sequence b is a long training sequence of the system. It should be noted that, in practical applications, the threshold value may not be set in advance, but all Golay sequences of length N are traversed, and the training sequence b is generated according to the above method, and the PAPR values of all the generated training sequences b are calculated. Select one or more training sequences b with the lowest PAPR value as the system Long training sequence.
  • the Golay sequence is set to 0 to generate the training sequence b.
  • This embodiment provides the following long training sequences that conform to the low PAPR.
  • the long training sequence can be:
  • the above two sequences have a PAPR value of approximately 2.8652 dB, which is less than 3.5766 dB (the existing PAPR value of VHT-LTF with a length of 64).
  • the long training sequence is:
  • the above two sequences have a PAPR value of approximately 3.4332 dB, which is less than 5.6317 dB (the existing PAPR value of the VHT-LTF with a length of 128).
  • the long training sequence is:
  • the long training sequence is:
  • the PAPR value of the above sequence is approximately 3.3808 dB, which is less than 8.6268 dB (the existing PAPR value of VHT-LTF with a length of 512).
  • a Golay sequence of a corresponding length is first generated according to the total number of subcarriers of the system, and a long training sequence of the Golay sequence generation system is generated, and the generated long training sequence can inherit the original low PAPR property of the Golay sequence.
  • the WLAN signal is boosted, better channel estimation performance can be obtained.
  • the training sequence generating method determines a sequence length according to the total number of subcarriers of the system and generates a Gray sequence according to the length of the sequence, generates a training sequence based on the Gray sequence, and detects a PAPR of the training sequence. Whether it is less than the preset threshold, and if so, it is determined that the training series is a long training sequence of the system. Since the Gray sequence has a low PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence. Nature, solution In the prior art, the VPR-LTF sequence has a high PAPR, which results in a problem that the channel estimation performance of the system is low, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating method provided by the embodiment of the present invention generates a training sequence based on a Gray sequence of a specified length. Since the number of Gray sequences that meet the specified length is large, for a given length of 2 m , there are H m+1 -m!/2 The Gray sequence defined on the H-element of the unit circle can construct more long training sequences that satisfy the condition, thereby expanding system capacity and improving system performance.
  • FIG. 7 shows a device structure diagram of a training sequence generating apparatus according to an embodiment of the present invention.
  • the training sequence generating means can be used to generate a long training sequence of the WLAN system.
  • the training sequence generating apparatus may include: a sequence length determining module 701, a first sequence group generating module 702, a second sequence group generating module 703, a second power ratio calculating module 704, and a second sequence determining module 705;
  • the module 701 is configured to determine the sequence length N according to the total number of subcarriers of the system. For the method for determining the sequence length N according to the total number of subcarriers of the system, refer to step 602 in the embodiment of the training sequence generation method shown in FIG. I will not repeat them here.
  • the first sequence group generation module 702 is configured to generate a gray sequence group, where the gray sequence group includes a plurality of Gray sequences of length N;
  • the first sequence group generation module 702 can generate all the Gray sequences of length N, and add all the generated Gray sequences to the Gray sequence group; or, the first sequence group generation module 702 can generate all the Grace sequences of length N. Part of this will be generated by adding this part of the Gray sequence to the Gray sequence group.
  • step 604 For the method of generating the Golay sequence, refer to the description in step 604 in the embodiment of the training sequence generation method shown in FIG. 6, and details are not described herein again.
  • the second sequence group generation module 703 is configured to generate a training sequence group, where the training sequence group includes a training sequence generated based on each of the Gray sequence in the Gray sequence group;
  • the second sequence group generating module 703 generates a training sequence according to each of the Gray sequences in the Gray sequence group.
  • the method of generating the training sequence according to the Gray sequence refer to step 606 in the training sequence generation method embodiment shown in FIG. The description is not repeated here.
  • the second power ratio calculation module 704 is configured to calculate a peak average power ratio PAPR of each training sequence in the training sequence group;
  • the second sequence determining module 705 is configured to determine one or more training sequences with the lowest PAPR in the training sequence group as a long training sequence of the system.
  • the second sequence determining module 705 compares the peak average power ratio (PAPR) corresponding to each training sequence in the training sequence group, obtains a PAP minimum value, and determines one or more training sequences corresponding to the PAPR minimum value in the training sequence group as the length of the system. Training sequence.
  • PAPR peak average power ratio
  • the training sequence is determined as a long training sequence of the system; when the PAPR minimum value corresponds to multiple training sequences in the training sequence group, The plurality of training sequences are all determined to be long training sequences of the system.
  • all of the training sequences in the training sequence group may be arranged in descending order of respective PAPRs, and one or more training sequences at the end of the queue obtained by the arrangement are determined as long training sequences of the system.
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system, and generates a Gray sequence group according to the length of the sequence, generates a training sequence group based on the Gray sequence group, and trains One or more training series with the smallest PAPR in the sequence group is determined as the long training sequence of the system. Since the Gray sequence has a lower PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the utility model solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, thereby causing low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating apparatus provided by the embodiment of the present invention generates a training sequence based on a Gray sequence of a specified length. Since the number of Gray sequences conforming to a specified length is large, for a given length of 2 m , there are H m+1 -m!/2 The Gray sequence defined on the H-element of the unit circle can construct more long training sequences that satisfy the condition, thereby expanding system capacity and improving system performance.
  • FIG. 8 a device configuration diagram of a training sequence generating device according to an embodiment of the present invention is shown.
  • the training sequence generation device 800 can be used to generate a long training sequence of the WLAN system.
  • the training sequence generation device 800 can include a bus 805, and a processor 801, a memory 802, a transmitter 803, and a receiver 804 coupled to the bus 805.
  • the memory 802 is configured to store a plurality of instructions, the instructions being configured to be executed by the processor 801;
  • the processor 801 is configured to determine a sequence length N according to a total number of subcarriers of the system, and generate a Golay sequence group, where the Golay sequence group includes a plurality of Gray sequences of length N; generate a training sequence group, and the training The sequence group includes a training sequence generated based on each Gray sequence in the Gray sequence group; calculating a peak average power ratio PAPR of each training sequence in the training sequence group; and the PAPR is the lowest in the training sequence group One or more training sequences determined to be the length of the system Training sequence.
  • step 602 For the method of determining the sequence length N according to the total number of subcarriers of the system, refer to step 602 in the embodiment of the training sequence generation method shown in FIG. 6, which is not described here.
  • step 604 For the method of generating the Golay sequence, refer to the description in step 604 in the embodiment of the training sequence generation method shown in FIG. 6, and details are not described herein again.
  • a training sequence may be generated according to each of the Gray sequences in the Gray sequence group.
  • the method of generating the training sequence according to the Gray sequence refer to step 606 in the embodiment of the training sequence generation method shown in FIG.
  • the generated training sequence b it will not be described here.
  • the processor 801 may compare the peak average power ratio (PAPR) corresponding to each training sequence in the training sequence group, obtain a PAP minimum value, and select one or more training sequences corresponding to the PAPR minimum value in the training sequence group. Determined as a long training sequence for the system.
  • PAPR peak average power ratio
  • the training sequence is determined as a long training sequence of the system; when the PAPR minimum value corresponds to multiple training sequences in the training sequence group, The plurality of training sequences are all determined to be long training sequences of the system.
  • all of the training sequences in the training sequence group may be arranged in descending order of respective PAPRs, and one or more training sequences at the end of the queue obtained by the arrangement are determined as long training sequences of the system.
  • the training sequence generating apparatus determines a sequence length according to the total number of subcarriers of the system, and generates a Gray sequence group according to the sequence length, generates a training sequence group based on the Gray sequence group, and trains One or more training series with the smallest PAPR in the sequence group is determined as the long training sequence of the system. Since the Gray sequence has a lower PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the utility model solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, thereby causing low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating device provided by the embodiment of the present invention generates a training sequence based on the Gray sequence of the specified length. Since the number of Gray sequences conforming to the specified length is large, for a given length of 2 m , there are H m+1 -m!/2 Define the Gray sequence on the H-element of the unit circle, which can construct more lengths that satisfy the condition. Train sequences to expand system capacity and improve system performance.
  • FIG. 9 is a flowchart of a method for generating a training sequence according to an embodiment of the present invention.
  • the training sequence generation method is for generating a long training sequence in a WLAN system.
  • the training sequence generation method may include:
  • Step 902 determining a sequence length N according to the total number of subcarriers of the system
  • step 602 For the method of determining the sequence length N according to the total number of subcarriers of the system, refer to step 602 in the embodiment of the training sequence generation method shown in FIG. 6, which is not described here.
  • Step 904 generating a Gray sequence group, where the Gray sequence group includes a plurality of Gray sequences of length N;
  • step 604 For the method of generating the Golay sequence, refer to the description in step 604 in the embodiment of the training sequence generation method shown in FIG. 6, and details are not described herein again.
  • Step 906 generating a training sequence group, where the training sequence group includes a training sequence generated based on each Gray sequence in the Gray sequence group;
  • a training sequence may be generated according to each of the Gray sequences in the Gray sequence group.
  • the method for generating the training sequence according to the Gray sequence may be referred to in step 606 in the embodiment of the training sequence generation method shown in FIG.
  • the description of generating the training sequence b is not described here.
  • Step 908 Calculate a peak average power ratio PAPR of each training sequence in the training sequence group.
  • Step 910 Determine one or more training sequences with the lowest PAPR in the training sequence group as a long training sequence of the system.
  • the peak average power ratio corresponding to each training sequence in the training sequence group may be compared, and the PAP minimum value is obtained, and one or more training sequences corresponding to the PAPR of the training sequence group are selected. Determined as a long training sequence for the system.
  • the training sequence is determined as a long training sequence of the system; when the PAPR minimum value corresponds to multiple training sequences in the training sequence group, The plurality of training sequences are all determined to be long training sequences of the system.
  • all training sequences in the training sequence group can also be in accordance with the respective PAPR from large to small.
  • the order is arranged to determine one or more training sequences at the end of the queue obtained by the arrangement as a long training sequence of the system.
  • the training sequence generating method determines a sequence length according to the total number of subcarriers of the system, and generates a Gray sequence group according to the length of the sequence, generates a training sequence group based on the Gray sequence group, and performs training.
  • One or more training series with the smallest PAPR in the sequence group is determined as the long training sequence of the system. Since the Gray sequence has a lower PAPR property, the long training sequence based on the Golay sequence generation system can inherit the original low PAPR of the Golay sequence.
  • the utility model solves the problem that the PPR of the VHT-LTF sequence in the prior art is high, thereby causing low channel estimation performance of the system, thereby achieving the effect of improving channel estimation performance.
  • the training sequence generating method provided by the embodiment of the present invention generates a training sequence based on a Gray sequence of a specified length. Since the number of Gray sequences that meet the specified length is large, for a given length of 2 m , there are H m+1 -m!/2
  • the Gray sequence defined on the H-element of the unit circle can construct more long training sequences that satisfy the condition, thereby expanding system capacity and improving system performance.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Abstract

本发明实施例提供了一种训练序列生成装置、设备及方法,涉及无线通信领域,所述装置包括:序列长度确定模块、第一序列生成模块、第二序列生成模块、第一功率比计算模块、门限检测模块和第一序列确定模块。本发明通过根据系统的总子载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训练序列并检测该训练序列的PAPR是否小于预设的门限,若是,则确定该训练系列为系统的长训练序列,由于格雷序列具有较低的PAPR的性质,基于Golay序列生成系统的长训练序列能够继承Golay序列原有的低PAPR 的性质,可以达到提高信道估计性能的效果。

Description

训练序列生成装置、 设备及方法 技术领域
本发明涉及无线通信领域,特别涉及一种训练序列生成装置、设备及方法。 背景技术
目前, 以 IEEE 802.11为代表的 WLAN ( Wireless Local Area Networks , 无 线局域网) 系统得到了广泛的应用。 在 IEEE 802.11ac标准中, 使用前导部分 的 VHT-LTF ( Very High Throughout Long Training Field, 极高吞吐量长训练域) 进行信道估计。
在 IEEE 802.1 lac中, VHT-LTF序列通过级联和对称取反获得, 其中, 放 置基序列 LTFleft、 LTFright的子载波对称地分布在直流子载波的两侧; 其它有 数值的子载波也对称地分布在直流子载波的两侧且数值相反。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 为了获得更好的信道估计性能, 需要对 WLAN信号进行功率提升, 而这 需要 VHT-LTF具有较低的 PAPR ( Peak to Average Power Ratio, 峰值平均功率 比)。 现有的 VHT-LTF序列通过级联和对称取反获得, 其 PAPR较高, 从而导 致系统的信道估计性能较低。 发明内容
为了解决现有技术中 VHT-LTF序列通过级联和对称取反获得, 其 PAPR 较高, 从而导致系统的信道估计性能较低的问题, 本发明实施例提供了一种训 练序列生成装置、 设备及方法。 所述技术方案如下:
第一方面, 提供了一种训练系列生成装置, 所述装置包括:
序列长度确定模块, 用于根据系统的总子载波数确定序列长度 N;
第一序列生成模块, 用于生成长度为 N的格雷序列;
第二序列生成模块, 用于基于所述格雷序列生成训练序列 b;
第一功率比计算模块,用于计算所述训练序列 b的峰值平均功率比 PAPR; 门限检测模块, 用于检测所述 PAPR是否小于峰值平均功率比门限 δ; 第一序列确定模块, 用于若所述门限检测模块的检测结果为所述 PAPR小 于 δ, 则确定所述训练序列 b为所述系统的长训练序列。
在第一方面的第一种可能实现方式中, 所述第二序列生成模块, 包括: 第一生成单元, 用于按照下述公式生成所述训练序列 b:
b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 );
其中, s= ( s ( 0 ), ... ..., s ( N-l ) ) 为所述格雷序列。
在第一方面的第二种可能实现方式中, 所述第二序列生成模块, 包括: 位置确定单元, 用于确定所述系统中直流子载波和保护子载波的位置; 置零单元, 用于将所述格雷序列中与所述直流子载波和保护子载波位置相 对应的元素设置为 0, 获得训练序列 c;
序列生成单元, 用于根据所述训练序列 c生成所述训练序列 b。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式 中, 所述序列生成单元, 包括: 第一序列确定子单元, 或者, 所述序列生成单 元, 包括: 位置确定子单元、 导频设置子单元和第二序列确定子单元;
所述第一序列确定子单元,用于将所述训练序列 c确定为所述训练序列 b; 所述位置确定子单元, 用于确定所述系统中导频子载波的位置;
所述导频设置子单元, 用于将所述训练序列 C中与所述导频子载波位置相 对应的元素设置为系统预设的导频值, 获得训练序列 d;
所述第二序列确定子单元,用于将所述训练序列 d确定为所述训练序列 b。 在第一方面的第四种可能实现方式中,
所述序列长度确定模块, 用于获取所述系统的总子载波数, 将获取到的所 述总子载波数确定为所述序列长度 N。
在第一方面的第五种可能实现方式中,
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1, 1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 ,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,
1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, 1,1,1,^
第二方面, 提供了一种训练系列生成设备, 所述设备包括: 总线, 以及连接到所述总线的处理器和存储器;
所述存储器用于存储若干个指令, 所述若干个指令被配置成由所述处理器 执行;
所述处理器, 用于根据系统的总子载波数确定序列长度 N, 生成长度为 N 的格雷序列, 基于所述格雷序列生成训练序列 b, 计算所述训练序列 b的峰值 平均功率比 PAPR,检测所述 PAPR是否小于峰值平均功率比门限 δ,若所述门 限检测模块的检测结果为所述 PAPR小于 δ, 则确定所述训练序列 b为所述系 统的长训练序列。
在第二方面的第一种可能实现方式中, 所述处理器, 用于按照下述公式生 成所述训练序列 b:
b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 );
其中, s= ( s ( 0 ), ... ..., s ( N-l ) ) 为所述格雷序列。
在第二方面的第二种可能实现方式中,
所述处理器, 用于确定所述系统中直流子载波和保护子载波的位置, 将所 述格雷序列中与所述直流子载波和保护子载波位置相对应的元素设置为 0, 获 得训练序列 c, 根据所述训练序列 c生成所述训练序列 b。
结合第二方面的第二种可能实现方式,在第二方面的第三种可能实现方式 中,
所述处理器, 用于将所述训练序列 c确定为所述训练序列 b;
或者,
所述处理器, 用于确定所述系统中导频子载波的位置, 将所述训练序列 c 中与所述导频子载波位置相对应的元素设置为系统预设的导频值, 获得训练序 列 d, 将所述训练序列 d确定为所述训练序列 b。
在第二方面的第四种可能实现方式中,
所述处理器, 用于获取所述系统的总子载波数, 将获取到的所述总子载波 数确定为所述序列长度 N。
在第二方面的第五种可能实现方式中,
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1,
1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者, (0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 ,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,
1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, 1,1,1,^
第三方面, 提供了一种训练系列生成方法, 所述方法包括:
根据系统的总子载波数确定序列长度 N;
生成长度为 N的格雷序列;
基于所述格雷序列生成训练序列 b;
计算所述训练序列 b的峰值平均功率比 PAPR, 检测所述 PAPR是否小于 峰值平均功率比门限 δ;
若所述 PAPR小于 δ, 则确定所述训练序列 b为所述系统的长训练序列。 在第三方面的第一种可能实现方式中, 所述基于所述格雷序列生成训练序 列 b, 包括:
按照下述公式生成所述训练序列 b:
b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0,
0, 0, 0, 0 );
其中, s= ( s ( 0 ), ... ..., s ( N-l ) ) 为所述格雷序列。
在第三方面的第二种可能实现方式中, 所述基于所述格雷序列生成训练序 列 b, 包括:
确定所述系统中直流子载波和保护子载波的位置;
将所述格雷序列中与所述直流子载波和保护子载波位置相对应的元素设 置为 0, 获得训练序列 c;
根据所述训练序列 c生成所述训练序列 b。
结合第三方面的第二种可能实现方式,在第三方面的第三种可能实现方式 中, 所述根据所述训练序列 c生成所述训练序列 b, 包括:
将所述训练序列 c确定为所述训练序列 b;
或者, 确定所述系统中导频子载波的位置; 将所述训练序列 c中与所述导 频子载波位置相对应的元素设置为系统预设的导频值, 获得训练序列 d; 将所 述训练序列 d确定为所述训练序列 b。
在第三方面的第四种可能实现方式中, 所述根据系统的总子载波数确定序 列长度 N, 包括: 获取所述系统的总子载波数, 将获取到的所述总子载波数确定为所述序列 长度 N。
在第三方面的第五种可能实现方式中,
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1, 1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 ,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1, 1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, l,l,l,-l,0,0,0,0,0)o
第四方面, 提供了一种训练系列生成装置, 所述装置包括:
序列长度确定模块, 用于根据系统的总子载波数确定序列长度 N;
第一序列组生成模块, 用于生成格雷序列组, 所述格雷序列组中包含有若 干条长度为 N的格雷序列;
第二序列组生成模块, 用于生成训练序列组, 所述训练序列组中包含有基 于所述格雷序列组中每一条格雷序列生成的训练序列;
第二功率比计算模块, 用于计算所述训练序列组中的各条训练序列的峰值 平均功率比 PAPR;
第二序列确定模块, 用于将所述训练序列组中, PAPR最低的一个或者多 个训练序列确定为所述系统的长训练序列。
第五方面, 提供了一种训练系列生成设备, 所述设备包括:
总线, 以及连接到所述总线的处理器和存储器;
所述存储器用于存储若干个指令, 所述若干个指令被配置成由所述处理器 执行;
所述处理器, 用于根据系统的总子载波数确定序列长度 N; 生成格雷序列 组, 所述格雷序列组中包含有若干条长度为 N的格雷序列; 生成训练序列组, 所述训练序列组中包含有基于所述格雷序列组中每一条格雷序列生成的训练 序列; 计算所述训练序列组中的各条训练序列的峰值平均功率比 PAPR; 将所 述训练序列组中, PAPR最低的一个或者多个训练序列确定为所述系统的长训 练序列。
第六方面, 提供了一种训练系列生成方法, 所述方法包括: 根据系统的总子载波数确定序列长度 N;
生成格雷序列组, 所述格雷序列组中包含有若干条长度为 N的格雷序列; 生成训练序列组, 所述训练序列组中包含有基于所述格雷序列组中每一条 格雷序列生成的训练序列;
计算所述训练序列组中的各条训练序列的峰值平均功率比 PAPR;
将所述训练序列组中, PAPR最低的一个或者多个训练序列确定为所述系 统的长训练序列。
本发明实施例提供的技术方案的有益效果是:
通过根据系统的总子载波数确定序列长度并根据该序列长度生成格雷序 列, 基于该格雷序列生成训练序列并检测该训练序列的 PAPR是否小于预设的 门限, 若是, 则确定该训练系列为系统的长训练序列, 由于格雷序列具有较低 的 PAPR的性质, 基于 Golay序列生成系统的长训练序列能够继承 Golay序列 原有的低 PAPR的性质,解决了现有技术中 VHT-LTF序歹 ij PAPR较高,导致系 统的信道估计性能较低的问题, 从而达到提高信道估计性能的效果。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例提供的训练序列生成装置的装置结构图; 图 2是本发明另一实施例提供的训练序列生成装置的装置结构图; 图 3是本发明一个实施例提供的训练序列生成设备的设备构成图; 图 4是本发明另一实施例提供的训练序列生成设备的设备构成图; 图 5是本发明一个实施例提供的训练序列生成方法的方法流程图; 图 6是本发明另一实施例提供的训练序列生成方法的方法流程图; 图 7是本发明一个实施例提供的训练序列生成装置的装置结构图; 图 8是本发明一个实施例提供的训练序列生成设备的设备构成图; 图 9是本发明一个实施例提供的训练序列生成方法的方法流程图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
请参考图 1, 其示出了本发明一个实施例提供的训练序列生成装置的装置 结构图。 该训练序列生成装置可以用于生成 WLAN系统的长训练序列。 该训 练序列生成装置可以包括:
序列长度确定模块 101, 用于根据系统的总子载波数确定序列长度 N; 第一序列生成模块 102, 用于生成长度为 N的格雷 (Golay )序列; 第二序列生成模块 103, 用于基于所述格雷序列生成训练序列 b;
第一功率比计算模块 104, 用于计算所述训练序列 b 的峰值平均功率比 PAPR;
门限检测模块 105, 用于检测所述 PAPR是否小于峰值平均功率比门限 δ; 第一序列确定模块 106, 用于若所述门限检测模块 105的检测结果为所述 PAP 小于 δ, 则确定所述训练序列 b为所述系统的长训练序列。
Golay序列具有低 PAPR的性质。 在本实施例中, 首先根据系统的总子载 波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练序列, 生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 对 WLAN信 号进行功率提升时, 能够获得更好的信道估计性能。
综上所述, 本发明实施例提供的训练序列生成装置, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。 请参考图 2, 其示出了本发明另一实施例提供的训练序列生成装置的装置 结构图。 该训练序列生成装置可以用于生成 WLAN系统的长训练序列。 该训 练序列生成装置可以包括: 序列长度确定模块 201、 第一序列生成模块 202、 第二序列生成模块 203、 第一功率比计算模块 204、 门限检测模块 205和第一 序列确定模块 206;
序列长度确定模块 201, 用于根据系统的总子载波数确定序列长度 N; 其中, 序列长度确定模块, 具体可以用于获取所述系统的总子载波数, 将 获取到的所述总子载波数确定为所述序列长度 N。
在通常情况下, 序列长度 N等于系统的子载波数。 比如, 系统的总子载波 个数为 64时, N=64; 系统的总子载波数为 256时, N=256; 系统的总子载波 个数为 512时, N=512; 系统的总子载波数为 1024时, N=1024。
值得一提的是, 当系统的总子载波数为 256时, 系统带宽可能是 20MHz, 也可能是 80MHz, 但不管系统带宽是多少, N都等于 256。
第一序列生成模块 202, 用于生成长度为 N的格雷 (Golay)序列; 目前已知的单位圓上的 Golay序列的长度形式为 Ο1^^, 其中 m, n, 1 都是非负整数, 可以通过迭代方法得到。 长度为 2m的 Golay序列还可以用广 义布尔函数来直接构造。设 N=2m
Figure imgf000013_0001
,dm) e ZH, H是偶数, μ是 { 1 ,2, ... ,m} 到自身的任意一个置换, 非负整数 t的二进制展开为
Figure imgf000013_0002
整数 剩余类环 ZH={0,1,...,H-1}上的 Golay序列定义为 s={ : 0<i<N-l}, 其中,
Figure imgf000013_0003
+do。 实际应用中, 可以生成包含有所有长度为 N的格雷序列的集合 Sl。
第二序列生成模块 203, 用于基于所述格雷序列生成训练序列 b;
其中, 所述第二序列生成模块 203, 可以包括: 第一生成单元 203a;
所述第一生成单元 203a, 用于按照下述公式生成所述训练序列 b:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0, 0, 0, 0, 0);
其中, s= (s (0), ......, s (N-l)) 为所述格雷序列。
所述第二序列生成模块 203, 还可以包括: 位置确定单元 203b、 置零单元 203c和序列确定单元 203d;
位置确定单元 203b, 用于确定所述系统中直流子载波和保护子载波的位 置;
置零单元 203c,用于将所述格雷序列中与所述直流子载波和保护子载波位 置相对应的元素设置为 0, 获得训练序列 c;
序列生成单元 203d, 用于才艮据所述训练序列 c生成所述训练序列 b。
其中, 在基于格雷序列生成训练序列 b时, 可以对该格雷序列中的指定位 置置 0, 生成该训练序列 b。 该指定位置可以是预先设定的指定位置, 比如, 设该长度为 N的格雷序列为 s=(s(0), s(N-l)),则按照下述公式对该格雷序列 进行置 0后获得的训练序列 b为:
b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 )。
或者, 该指定位置也可以根据系统中的直流子载波和保护子载波的位置来 确定。 具体的。 可以确定首先该系统中的直流子载波和保护子载波的位置, 将 格雷序列中与该直流子载波和保护子载波的位置相对应的元素设置为 0, 获得 训练序列 c; 再才艮据该训练序列 c生成训练序列 b。
比如, 以系统中的子载波数为 64为例, 系统的长训练序列和生成的格雷 序列的长度也为 64, 系统中的直流子载波对应于长训练序列的第 33个元素, 系统中的保护子载波对应于长训练序列的前 6个元素和后 5个元素, 此时, 可 以确定格雷序列中的前 6个元素、 第 33个元素以及后 5个元素为对应于直流 子载波和保护子载波的元素, 将格雷序列中的前 6个元素、 第 33个元素以及 后 5个元素置 0获得训练序列 b。
所述序列生成单元 203d, 包括: 第一序列确定子单元 203dl ;
所述第一序列确定子单元 203dl, 用于将所述训练序列 c确定为所述训练 序歹' J b。
其中, 在生成训练序列 b时, 可以将置 0后的格雷序列直接确定为训练序 歹' J b。
或者, 所述序列生成单元 203d, 还可以包括: 位置确定子单元 203d2、 导 频设置子单元 203d3和第二序列确定子单元 203d4;
所述位置确定子单元 203d2, 用于确定所述系统中导频子载波的位置; 导频设置子单元 203d3, 用于将所述训练序列 c中与所述导频子载波位置 相对应的元素设置为系统预设的导频值, 获得训练序列 d;
第二序列确定子单元 203d4, 用于将所述训练序列 d确定为所述训练序列 b。
由于 VHT-LTF中的导频值也会对其峰值平均功率比 PAPR产生影响, 因 此, 在生成训练序列 b时, 可以直接生成包含导频值的训练序列, 具体的, 可 以首先确定系统中对应于导频元素的导频子载波的位置,将对格雷序列置 0后 获得训练序列中与导频子载波的位置相对应的元素设置为系统预设的导频值, 将设置导频值后的训练序列确定为训练序列 b。
其中, 开发人员可以沿用现有的导频值, 也可以预先为每一个格雷序列设 置一个合适的导频值, 在对格雷序列置 0获得训练序列 c后, 可以根据生成的 格雷序列查询对应设置的导频值, 并用查询到的导频值替换训练序列 c中的指 定位置的元素, 该指定位置才艮据系统中的导频子载波的位置确定。
第一功率比计算模块 204, 用于计算所述训练序列 b 的峰值平均功率比 PAPR;
门限检测模块 205, 用于检测所述 PAPR是否小于峰值平均功率比门限 δ; 其中, 该峰值平均功率比门限 δ可以根据系统的总子载波数确定, 比如: 当系统的总子载波数为 64时, 可以确定 δ为 δΐ 7 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 64的情况下的峰值平均功 率比, 即 3.5766 dB;
当系统的总子载波数为 128时, 可以确定 δ为 δ2, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 128的情况下的峰值平均 功率比, 即 5.6317 dB;
当系统的总子载波数为 256时, 可以确定 δ为 δ3, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 256的情况下的峰值平均 功率比, 即 8.6268dB;
当系统的总子载波数为 512时, 可以确定 δ为 δ4, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 512的情况下的峰值平均 功率比, 即 8.6268 dB。
其中, δ广 δ4可以是开发人员根据实际需要预先设置的门限值,该预先设置 的门限值可以小于现有的在对应的宽带需求下的峰值平均功率比。
第一序列确定模块 206, 用于若所述门限检测模块 205的检测结果为所述 PAP 小于 δ, 则确定所述训练序列 b为所述系统的长训练序列。
需要说明的是, 在实际应用中, 也可以不预先设置门限值, 而是遍历所有 长度为 N的 Golay序列, 按照上述方法分别生成训练序列 b, 计算生成的所有 训练序列 b的 PAPR值, 选取 PAPR值最低的一个或者多个训练序列 b为系统 的长训练序列。
比^口, 以按照、公式 b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 )对 Golay序列置 0, 以生成训练序列 b为例, 本实 施例提供下列几种符合低 PAPR的长训练序列。
当所述系统的总子载波数为 64时, 所述长训练序列为: (0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1, 1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 ,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,
1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, 1,1,1,^
由于 Golay序列具有较低 PAPR的性质, 在本实施例中, 首先根据系统的 总子载波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练 序列,生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质,对 WLAN 信号进行功率提升时, 能够获得更好的信道估计性能。
其次,对于给定长度 2m,存在 Hm+1.m!/2 条定义在单位圓 H元根上的 Golay 序列, 因而可以构造更多满足条件的长训练序列, 从而能够扩展系统容量, 提 高系统性能。
综上所述, 本发明实施例提供的训练序列生成装置, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成装置,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 请参考图 3, 其示出了本发明一个实施例提供的训练序列生成设备的设备 构成图。 该训练序列生成设备 300可以用于生成 WLAN系统的长训练序列。 该训练序列生成设备 300可以包括: 总线 305, 以及连接到总线 305的处理器 301、 存储器 302、 发射机 303和接收机 304。 其中, 存储器 302用于存储若干 个指令, 该若干个指令被配置成由处理器 301执行;
所述处理器 301, 用于根据系统的总子载波数确定序列长度 N, 生成长度 为 N的格雷序列, 基于所述格雷序列生成训练序列 b, 计算所述训练序列 b的 峰值平均功率比 PAPR,检测所述 PAPR是否小于峰值平均功率比门限 δ,若所 述门限检测模块的检测结果为所述 PAPR小于 δ, 则确定所述训练序列 b为所 述系统的长训练序列。
由于 Golay序列具有较低 PAPR的性质, 在本实施例中, 首先根据系统的 总子载波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练 序列,生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质,对 WLAN 信号进行功率提升时, 能够获得更好的信道估计性能。
综上所述, 本发明实施例提供的训练序列生成设备, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。 请参考图 4, 其示出了本发明另一实施例提供的训练序列生成设备的设备 构成图。 该训练序列生成设备 400可以用于生成 WLAN系统的长训练序列。 该训练序列生成设备 400可以包括: 总线 405, 以及连接到总线 405的处理器 401、 存储器 402、 发射机 403和接收机 404。 其中, 存储器 402用于存储若干 个指令, 该若干个指令被配置成由处理器 401执行;
所述处理器 401, 用于根据系统的总子载波数确定序列长度 N, 生成长度 为 N的格雷序列, 基于所述格雷序列生成训练序列 b, 计算所述训练序列 b的 峰值平均功率比 PAPR,检测所述 PAPR是否小于峰值平均功率比门限 δ,若所 述门限检测模块的检测结果为所述 PAPR小于 δ, 则确定所述训练序列 b为所 述系统的长训练序列。
其中, 处理器 401具体可以用于获取所述系统的总子载波数, 将获取到的 所述总子载波数确定为所述序列长度 N。
在通常情况下, 序列长度 N等于系统的子载波数。 比如, 系统的总子载波 个数为 64时, N=64; 系统的总子载波数为 256时, N=256; 系统的总子载波 个数为 512时, N=512; 系统的总子载波数为 1024时, N=1024。 值得一提的是, 当系统的总子载波数为 256时, 系统带宽可能是 20MHz, 也可能是 80MHz, 但不管系统带宽是多少, N都等于 256 。
目前已知的单位圓上的 Golay序列的长度形式为 Ο1^^, 其中 m, n, 1 都是非负整数, 可以通过迭代方法得到。 长度为 2m的 Golay序列还可以用广 义布尔函数来直接构造。设 N=2m
Figure imgf000019_0001
,dm) e ZH, H是偶数, μ是 { 1 ,2, ... ,m} 到自身的任意一个置换, 非负整数 t的二进制展开为
Figure imgf000019_0002
整数 剩余类环 ZH={0,1,...,H-1 }上的 Golay序列定义为 s={ : 0 < i < N-l} , 其中,
Figure imgf000019_0003
+do。 实际应用中, 可以生成包含有所有长度为 N的格雷序列的集合 Sl。
此外,该峰值平均功率比门限 δ也可以根据系统的总子载波数确定,比如: 当系统的总子载波数为 64时, 可以确定 δ为 δΐ 7 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 64的情况下的峰值平均功 率比, 即 3.5766 dB;
当系统的总子载波数为 128时, 可以确定 δ为 δ2, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 128的情况下的峰值平均 功率比, 即 5.6317 dB;
当系统的总子载波数为 256时, 可以确定 δ为 δ3, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 256的情况下的峰值平均 功率比, 即 8.6268dB;
当系统的总子载波数为 512时, 可以确定 δ为 δ4, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 512的情况下的峰值平均 功率比, 即 8.6268 dB。
其中, δ广 δ4可以是开发人员根据实际需要预先设置的门限值,该预先设置 的门限值可以小于现有的在对应的宽带需求下的峰值平均功率比。
需要说明的是, 在实际应用中, 也可以不预先设置门限值, 而是遍历所有 长度为 Ν的 Golay序列, 按照上述方法分别生成训练序列 b, 计算生成的所有 训练序列 b的 PAPR值, 选取 PAPR值最低的一个或者多个训练序列 b为系统 的长训练序列。
由于 Golay序列具有较低 PAPR的性质, 在本实施例中, 首先根据系统的 总子载波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练 序列,生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质,对 WLAN 信号进行功率提升时, 能够获得更好的信道估计性能。
所述处理器 401, 用于按照下述公式生成所述训练序列 b:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0, 0, 0, 0, 0);
其中, s= (s (0), ......, s (N-l )) 为所述格雷序列。
所述处理器 401, 还用于确定所述系统中的直流子载波和保护子载波的位 置, 所述格雷序列中与所述直流子载波和保护子载波位置相对应的元素设置为
0, 获得训练序列 c, 根据所述训练序列 c生成所述训练序列 b。
其中, 在基于格雷序列生成训练序列 b时, 可以对该格雷序列中的指定位 置置 0, 生成该训练序列 b。 该指定位置可以是预先设定的指定位置, 比如, 设该长度为 N的格雷序列为 s=(s(0), s(N-l)),则按照下述公式对该格雷序列 进行置 0后获得的训练序列 b为:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0,
0, 0, 0, 0)。
或者, 该指定位置也可以根据系统中的直流子载波和保护子载波的位置来 确定。 具体的。 可以确定首先该系统中的直流子载波和保护子载波的位置, 将 格雷序列中与该直流子载波和保护子载波的位置相对应的元素设置为 0, 获得 训练序列 c; 再才艮据该训练序列 c生成训练序列 b。
比如, 以系统中的子载波数为 64为例, 系统的长训练序列和生成的格雷 序列的长度也为 64, 系统中的直流子载波对应于长训练序列的第 33个元素, 系统中的保护子载波对应于长训练序列的前 6个元素和后 5个元素, 此时, 可 以确定格雷序列中的前 6个元素、 第 33个元素以及后 5个元素为对应于直流 子载波和保护子载波的元素, 将格雷序列中的前 6个元素、 第 33个元素以及 后 5个元素置 0获得训练序列 b。
所述处理器 401, 可以用于将所述训练序列 c确定为所述训练序列 b; 其中, 在生成训练序列 b时, 可以将置 0后的格雷序列直接确定为训练序 歹' J b。
或者, 所述处理器 401, 还可以用于确定所述系统中导频子载波的位置, 将所述训练序列 c中与所述导频子载波位置相对应的元素设置为系统预设的导 频值, 获得训练序列 d, 将所述训练序列 d确定为所述训练序列 b。
由于 VHT-LTF中的导频值也会对其峰值平均功率比 PAPR产生影响, 因 此, 在生成训练序列 b时, 可以直接生成包含导频值的训练序列, 具体的, 可 以首先确定系统中对应于导频元素的导频子载波的位置,将对格雷序列置 0后 获得训练序列中与导频子载波的位置相对应的元素设置为系统预设的导频值, 将设置导频值后的训练序列确定为训练序列 b。
其中, 开发人员可以沿用现有的导频值, 也可以预先为每一个格雷序列设 置一个合适的导频值, 在对格雷序列置 0获得训练序列 c后, 可以根据生成的 格雷序列查询对应设置的导频值, 并用查询到的导频值替换训练序列 c中的指 定位置的元素, 该指定位置才艮据系统中的导频子载波的位置确定。
以按照公式 b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 )对 Golay序列置 0, 以生成训练序列 b为例, 本实 施例提供下列几种符合低 PAPR的长训练序列。
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1, 1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 ,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1, 1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, 1,1,1,^
综上所述, 本发明实施例提供的训练序列生成设备, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成设备,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 请参考图 5, 其示出了本发明一个实施例提供的训练序列生成方法的方法 流程图。 该训练序列生成方法用于在 WLAN系统中生成长训练序列。 该训练 序列生成方法可以包括:
步骤 502, 根据系统的总子载波数确定序列长度 N;
步骤 504, 生成长度为 N的格雷 (Golay )序列;
步骤 506, 基于该格雷序列生成训练序列 b;
步骤 508, 计算该训练序列 b的峰值平均功率比 PAPR, 检测该 PAPR是 否小于峰值平均功率比门限 δ;
步骤 510, 若该 PAPR小于 δ, 则确定训练序列 b为该系统的长训练序列。
Golay序列具有低 PAPR的性质。 在本实施例中, 首先根据系统的总子载 波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练序列, 生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 对 WLAN信 号进行功率提升时, 能够获得更好的信道估计性能。
综上所述, 本发明实施例提供的训练序列生成方法, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。 请参考图 6, 其示出了本发明另一实施例提供的训练序列生成方法的方法 流程图。 该训练序列生成方法用于在 WLAN系统中生成长训练序列。 该训练 序列生成方法可以包括:
步骤 602, 根据系统的总子载波数确定序列长度 N;
具体的, 可以获取系统中的总子载波数, 将获取到的总子载波数确定为序 列长度 N。
在通常情况下, 序列长度 N等于系统的子载波数。 比如, 系统的总子载波 个数为 64时, N=64; 系统的总子载波数为 256时, N=256; 系统的总子载波 个数为 512时, N=512; 系统的总子载波数为 1024时, N=1024。
值得一提的是, 当系统的总子载波数为 256时, 系统带宽可能是 20MHz, 也可能是 80MHz, 但不管系统带宽是多少, N都等于 256。 步骤 604, 生成长度为 N的格雷序列;
目前已知的单位圓上的 Golay序列的长度形式为 Ο1^^, 其中 m, n, 1 都是非负整数, 可以通过迭代方法得到。 长度为 2m的 Golay序列还可以用广 义布尔函数来直接构造。设 N=2m
Figure imgf000024_0001
,dm) e ZH, H是偶数, μ是 { 1 ,2, ... ,m} 到自身的任意一个置换, 非负整数 t的二进制展开为 ί ^ ^+.,.+ ^^, 整数 剩余类环 ΖΗ={0,1,...,Η-1}上的 Golay序列定义为 s={ : 0<i<N-l}, 其中,
Figure imgf000024_0002
+do。 实际应用中, 可以生成包含有所有长度为 N的格雷序列的集合 Sl。
步骤 606, 对该格雷序列中的指定位置置 0, 根据置 0获得的序列生成训 东序歹' J b;
其中, 该指定位置可以是预先设定的指定位置, 比如, 设该长度为 N的格 雷序列为 s=(s(0), ...,s(N-l)),则按照下述公式对该格雷序列进行置 0后获得的 训练序列 b为:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0, 0, 0, 0, 0)。
或者, 该指定位置也可以根据系统中的直流子载波和保护子载波的位置来 确定。 具体的。 可以确定首先该系统中的直流子载波和保护子载波的位置, 将 格雷序列中与该直流子载波和保护子载波的位置相对应的元素设置为 0, 获得 训练序列 c; 再才艮据该训练序列 c生成训练序列 b。
比如, 以系统中的子载波数为 64为例, 系统的长训练序列和生成的格雷 序列的长度也为 64, 系统中的直流子载波对应于长训练序列的第 33个元素, 系统中的保护子载波对应于长训练序列的前 6个元素和后 5个元素, 此时, 可 以确定格雷序列中的前 6个元素、 第 33个元素以及后 5个元素为对应于直流 子载波和保护子载波的元素, 将格雷序列中的前 6个元素、 第 33个元素以及 后 5个元素置 0获得训练序列 b。
其中, 在才艮据该训练序列 c生成训练序列 b时, 可以将训练序列 c确定为 训练序列 b;
其中, 在生成训练序列 b时, 可以将置 0后的格雷序列直接确定为训练序 歹' J b。
或者, 在才艮据该训练序列 c生成训练序列 b时, 可以确定系统中导频子载 波的位置; 将训练序列 c中与该导频子载波位置相对应的元素设置为系统预设 的导频值, 获得训练序列 d; 将训练序列 d确定为训练序列 b。
由于 VHT-LTF中的导频值也会对其峰值平均功率比 PAPR产生影响, 因 此, 在生成训练序列 b时, 可以直接生成包含导频值的训练序列, 具体的, 可 以首先确定系统中对应于导频元素的导频子载波的位置,将对格雷序列置 0后 获得训练序列中与导频子载波的位置相对应的元素设置为系统预设的导频值, 将设置导频值后的训练序列确定为训练序列 b。
其中, 开发人员可以沿用现有的导频值, 也可以预先为每一个格雷序列设置一 个合适的导频值, 在对格雷序列置 0获得训练序列 c后, 可以根据生成的格雷 序列查询对应设置的导频值, 并用查询到的导频值替换训练序列 c中的指定位 置的元素, 该指定位置才艮据系统中的导频子载波的位置确定。
步骤 608, 计算该训练序列 b的峰值平均功率比 PAPR, 检测该 PAPR是 否小于峰值平均功率比门限 δ;
其中, 该峰值平均功率比门限 δ可以根据系统的总子载波数确定, 比如: 当系统的总子载波数为 64时, 可以确定 δ为 δΐ 7 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 64的情况下的峰值平均功 率比, 即 3.5766 dB;
当系统的总子载波数为 128时, 可以确定 δ为 δ2, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 128的情况下的峰值平均 功率比, 即 5.6317 dB;
当系统的总子载波数为 256时, 可以确定 δ为 δ3, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 256的情况下的峰值平均 功率比, 即 8.6268dB;
当系统的总子载波数为 512时, 可以确定 δ为 δ4, 或者, 也可以确定 δ为 现有的 WLAN系统中的长训练序列在总子载波数为 512的情况下的峰值平均 功率比, 即 8.6268 dB。
其中, δ广 δ4可以是开发人员根据实际需要预先设置的门限值,该预先设置 的门限值可以小于现有的在对应的宽带需求下的峰值平均功率比。
步骤 610, 若该 PAPR小于 δ, 则确定训练序列 b为该系统的长训练序列。 需要说明的是, 在实际应用中, 也可以不预先设置门限值, 而是遍历所有 长度为 N的 Golay序列, 按照上述方法分别生成训练序列 b, 计算生成的所有 训练序列 b的 PAPR值, 选取 PAPR值最低的一个或者多个训练序列 b为系统 的长训练序列。
比^口, 以按照、公式 b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 )对 Golay序列置 0, 以生成训练序列 b为例, 本实 施例提供下列几种符合低 PAPR的长训练序列。
当该系统的总子载波数为 64时, 该长训练序列可以为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1, 1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1, 1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
上述两个序列的的 PAPR值约为 2.8652dB, 均小于 3.5766 dB (现有的长 度为 64的 VHT-LTF的 PAPR值)。
当该系统的总子载波数为 128时, 该长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1 ,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1 ,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1, 1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1 ,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,- 1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
上述两个序列的 PAPR值约为 3.4332 dB, 均小于 5.6317 dB (现有的长度 为 128的 VHT-LTF的 PAPR值)。
当该系统的总子载波数为 256时, 该长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1, -1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,- 1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,- 1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1, -1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1, 1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1 ,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0); 上述序列的 PAPR值约为 3.3217dB, 小于 8.6268 dB (现有的长度为 256 的 VHT-LTF的 PAPR值)。
当该系统的总子载波数为 512时, 该长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1 , ,^,^,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1, -1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1 ,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,
1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1 ,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1,-1 ,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1, -1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1 ,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,- 1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1, 1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1, 1,-1, 1,1, 1,1,-1, 1,1,-1, 1,-1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1, 1,1,1,-1,0,0,0,0,0)ο
上述序列的 PAPR值约为 3.3808 dB, 小于 8.6268dB (现有的长度为 512 的 VHT-LTF的 PAPR值)。
由于 Golay序列具有较低 PAPR的性质。 在本实施例中, 首先根据系统的 总子载波数生成对应长度的 Golay序列, 并基于 Golay序列生成系统的长训练 序列,生成的长训练序列能够继承 Golay序列原有的低 PAPR的性质,对 WLAN 信号进行功率提升时, 能够获得更好的信道估计性能。
其次,对于给定长度 2m,存在 Hm+1.m!/2 条定义在单位圓 H元根上的 Golay 序列, 因而可以构造更多满足条件的长训练序列, 从而能够扩展系统容量, 提 高系统性能。
综上所述, 本发明实施例提供的训练序列生成方法, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列,基于该格雷序列生成训 练序列并检测该训练序列的 PAPR是否小于预设的门限, 若是, 则确定该训练 系列为系统的长训练序列,由于格雷序列具有较低的 PAPR的性质,基于 Golay 序列生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决 了现有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低 的问题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成方法,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 请参考图 7, 其示出了本发明一个实施例提供的训练序列生成装置的装置 结构图。 该训练序列生成装置可以用于生成 WLAN系统的长训练序列。 该训 练序列生成装置可以包括: 序列长度确定模块 701、 第一序列组生成模块 702、 第二序列组生成模块 703、第二功率比计算模块 704和第二序列确定模块 705; 所述序列长度确定模块 701,用于根据系统的总子载波数确定序列长度 N; 其中,根据系统的总子载波数确定序列长度 N的方法请参见图 6所示的训 练序列生成方法实施例中的步骤 602, 此处不再赘述。
所述第一序列组生成模块 702, 用于生成格雷序列组, 所述格雷序列组中 包含有若干条长度为 N的格雷序列;
其中, 第一序列组生成模块 702可以生成所有长度为 N的格雷序列, 并将 生成的所有格雷序列加入格雷序列组; 或者, 第一序列组生成模块 702可以生 成所有长度为 N的格雷序列中的一部分,将生成的这一部分格雷序列加入格雷 序列组。
其中, 生成格雷序列的方法请参见图 6所示的训练序列生成方法实施例中 的步骤 604中的描述, 此处不再赘述。
所述第二序列组生成模块 703, 用于生成训练序列组, 所述训练序列组中 包含有基于所述格雷序列组中每一条格雷序列生成的训练序列;
具体的, 第二序列组生成模块 703根据格雷序列组中的每一条格雷序列分 别生成一条训练序列,根据格雷序列生成训练序列的方法可以参见图 6所示的 训练序列生成方法实施例中步骤 606的描述, 此处不再赘述。
所述第二功率比计算模块 704, 用于计算所述训练序列组中的各条训练序 列的峰值平均功率比 PAPR;
所述第二序列确定模块 705, 用于将所述训练序列组中, PAPR最低的一 个或者多个训练序列确定为所述系统的长训练序列。 第二序列确定模块 705比较训练序列组中的各个训练序列对应的峰值平均 功率比 PAPR, 获取 PAP 最小值, 将训练序列组中该 PAPR最小值对应的一 条或者多条训练序列确定为系统的长训练序列。
具体的, 当该 PAPR最小值只对应训练序列组中的一条训练序列时, 将该 训练序列确定为系统的长训练序列; 当该 PAPR最小值对应训练序列组中的多 条训练序列时, 将该多条训练序列都确定为系统的长训练序列。
或者, 也可以对训练序列组中的所有训练序列按照各自的 PAPR从大到小 的顺序进行排列, 将处于排列获得的队列末尾处的一条或者多条训练序列确定 为系统的长训练序列。
综上所述, 本发明实施例提供的训练序列生成装置, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列组,基于该格雷序列组生 成训练序列组, 并将训练序列组中 PAPR最小的一条或者多条训练系列确定为 系统的长训练序列, 由于格雷序列具有较低的 PAPR的性质, 基于 Golay序列 生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决了现 有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低的问 题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成装置,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 请参考图 8, 其示出了本发明一个实施例提供的训练序列生成设备的设备 构成图。 该训练序列生成设备 800可以用于生成 WLAN系统的长训练序列。 该训练序列生成设备 800可以包括: 总线 805, 以及连接到总线 805的处理器 801、 存储器 802、 发射机 803和接收机 804。 其中, 存储器 802用于存储若干 个指令, 该若干个指令被配置成由处理器 801执行;
所述处理器 801, 用于根据系统的总子载波数确定序列长度 N; 生成格雷 序列组, 所述格雷序列组中包含有若干条长度为 N的格雷序列; 生成训练序列 组, 所述训练序列组中包含有基于所述格雷序列组中每一条格雷序列生成的训 练序列; 计算所述训练序列组中的各条训练序列的峰值平均功率比 PAPR; 将 所述训练序列组中, PAPR最低的一个或者多个训练序列确定为所述系统的长 训练序列。
其中,根据系统的总子载波数确定序列长度 N的方法请参见图 6所示的训 练序列生成方法实施例中的步骤 602, 此处不再赘述。
在生成格雷序列组时,生成所有长度为 N的格雷序列, 并将生成的所有格 雷序列加入格雷序列组; 或者,也可以生成所有长度为 N的格雷序列中的一部 分, 将生成的这一部分格雷序列加入格雷序列组。
其中, 生成格雷序列的方法请参见图 6所示的训练序列生成方法实施例中 的步骤 604中的描述, 此处不再赘述。
在生成训练序列组, 可以根据格雷序列组中的每一条格雷序列分别生成一 条训练序列,根据格雷序列生成训练序列的方法可以参见图 6所示的训练序列 生成方法实施例中的步骤 606所示的, 关于生成训练序列 b的描述, 此处不再 赘述。
在确定长训练序列时, 处理器 801可以比较训练序列组中的各个训练序列 对应的峰值平均功率比 PAPR, 获取 PAP 最小值, 将训练序列组中该 PAPR 最小值对应的一条或者多条训练序列确定为系统的长训练序列。
具体的, 当该 PAPR最小值只对应训练序列组中的一条训练序列时, 将该 训练序列确定为系统的长训练序列; 当该 PAPR最小值对应训练序列组中的多 条训练序列时, 将该多条训练序列都确定为系统的长训练序列。
或者, 也可以对训练序列组中的所有训练序列按照各自的 PAPR从大到小 的顺序进行排列, 将处于排列获得的队列末尾处的一条或者多条训练序列确定 为系统的长训练序列。
综上所述, 本发明实施例提供的训练序列生成设备, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列组,基于该格雷序列组生 成训练序列组, 并将训练序列组中 PAPR最小的一条或者多条训练系列确定为 系统的长训练序列, 由于格雷序列具有较低的 PAPR的性质, 基于 Golay序列 生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决了现 有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低的问 题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成设备,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 请参考图 9, 其示出了本发明一个实施例提供的训练序列生成方法的方法 流程图。 该训练序列生成方法用于在 WLAN系统中生成长训练序列。 该训练 序列生成方法可以包括:
步骤 902, 根据系统的总子载波数确定序列长度 N;
其中,根据系统的总子载波数确定序列长度 N的方法请参见图 6所示的训 练序列生成方法实施例中的步骤 602, 此处不再赘述。
步骤 904, 生成格雷序列组, 该格雷序列组中包含有若干条长度为 N的格 雷序列;
在生成格雷序列组时,生成所有长度为 N的格雷序列, 并将生成的所有格 雷序列加入格雷序列组; 或者,也可以生成所有长度为 N的格雷序列中的一部 分, 将生成的这一部分格雷序列加入格雷序列组。
其中, 生成格雷序列的方法请参见图 6所示的训练序列生成方法实施例中 的步骤 604中的描述, 此处不再赘述。
步骤 906, 生成训练序列组, 该训练序列组中包含有基于格雷序列组中每 一条格雷序列生成的训练序列;
在生成训练序列组, 可以根据格雷序列组中的每一条格雷序列分别生成一 条训练序列,根据格雷序列生成训练序列的方法可以参见图 6所示的训练序列 生成方法实施例中的步骤 606中所示的, 关于生成训练序列 b的描述, 此处不 再赘述。
步骤 908, 计算该训练序列组中的各条训练序列的峰值平均功率比 PAPR; 步骤 910, 将该训练序列组中, PAPR最低的一个或者多个训练序列确定 为系统的长训练序列。
在确定长训练序列时, 可以比较训练序列组中的各个训练序列对应的峰值 平均功率比 PAPR, 获取 PAP 最小值, 将训练序列组中该 PAPR最 '〗、值对应 的一条或者多条训练序列确定为系统的长训练序列。
具体的, 当该 PAPR最小值只对应训练序列组中的一条训练序列时, 将该 训练序列确定为系统的长训练序列; 当该 PAPR最小值对应训练序列组中的多 条训练序列时, 将该多条训练序列都确定为系统的长训练序列。
或者, 也可以对训练序列组中的所有训练序列按照各自的 PAPR从大到小 的顺序进行排列, 将处于排列获得的队列末尾处的一条或者多条训练序列确定 为系统的长训练序列。
综上所述, 本发明实施例提供的训练序列生成方法, 通过根据系统的总子 载波数确定序列长度并根据该序列长度生成格雷序列组,基于该格雷序列组生 成训练序列组, 并将训练序列组中 PAPR最小的一条或者多条训练系列确定为 系统的长训练序列, 由于格雷序列具有较低的 PAPR的性质, 基于 Golay序列 生成系统的长训练序列能够继承 Golay序列原有的低 PAPR的性质, 解决了现 有技术中 VHT-LTF序列 PAPR较高, 从而导致系统的信道估计性能较低的问 题, 从而达到提高信道估计性能的效果。
本发明实施例提供的训练序列生成方法,基于指定长度的格雷序列生成训 练序列, 由于符合指定长度的格雷序列数量较多, 对于给定长度 2m, 存在 Hm+1-m!/2 条定义在单位圓 H元根上的格雷序列, 可以构造更多满足条件的长 训练序列, 从而能够扩展系统容量, 提高系统性能。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种训练系列生成装置, 其特征在于, 所述装置包括:
序列长度确定模块, 用于根据系统的总子载波数确定序列长度 N;
第一序列生成模块, 用于生成长度为 N的格雷序列;
第二序列生成模块, 用于基于所述格雷序列生成训练序列 b;
第一功率比计算模块, 用于计算所述训练序列 b的峰值平均功率比 PAPR; 门限检测模块, 用于检测所述 PAPR是否小于峰值平均功率比门限 δ;
第一序列确定模块,用于若所述门限检测模块的检测结果为所述 PAPR小于 δ, 则确定所述训练序列 b为所述系统的长训练序列。
2、 根据权利要求 1所述的装置, 其特征在于, 所述第二序列生成模块, 包 括:
第一生成单元, 用于按照下述公式生成所述训练序列 b:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0, 0, 0, 0, 0);
其中, s= (s (0), ......, s (N-l)) 为所述格雷序列。
3、 根据权利要求 1所述的装置, 其特征在于, 所述第二序列生成模块, 包 括:
位置确定单元, 用于确定所述系统中直流子载波和保护子载波的位置; 置零单元, 用于所述格雷序列中与所述直流子载波和保护子载波位置相对 应的元素设置为 0, 获得训练序列 c;
序列生成单元, 用于根据所述训练序列 c生成所述训练序列 b。
4、 根据权利要求 3所述的装置, 其特征在于, 所述序列生成单元, 包括: 第一序列确定子单元, 或者, 所述序列生成单元, 包括: 位置确定子单元、 导 频设置子单元和第二序列确定子单元;
所述第一序列确定子单元, 用于将所述训练序列 c确定为所述训练序列 b; 所述位置确定子单元, 用于确定所述系统中导频子载波的位置;
所述导频设置子单元, 用于将所述训练序列 c 中与所述导频子载波位置相 对应的元素设置为系统预设的导频值, 获得训练序列 d;
所述第二序列确定子单元, 用于将所述训练序列 d确定为所述训练序列 b。
5、 根据权利要求 1所述的装置, 其特征在于,
所述序列长度确定模块, 用于获取所述系统的总子载波数, 将获取到的所 述总子载波数确定为所述序列长度 N。
6、 根据权利要求 1所述的装置, 其特征在于,
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1,1, 1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1,1, 1,_1,_1,_1,1,_1,1,1,_1,1,1,1,_1上_1,_1,_1, 1,1, 1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1, 1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1,- 1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1, 1,1,_1,_1,_1,_1,1上_1,_1,_1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1,1,1 ,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1, -1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,- 1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1, 1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,- 1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,1 1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1 ,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0); 当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-
\^-\,-\,\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,\,\,-\,
1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,- 14,^,-1,-1,^4,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,-1,-
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1
,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1, 1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1 ,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,- 1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1 ,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1, 1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,0,0,0,0,0)。
7、 一种训练系列生成设备, 其特征在于, 所述设备包括:
总线, 以及连接到所述总线的处理器和存储器;
所述存储器用于存储若干个指令, 所述若干个指令被配置成由所述处理器 执行;
所述处理器, 用于根据系统的总子载波数确定序列长度 N, 生成长度为 N 的格雷序列,基于所述格雷序列生成训练序列 b, 计算所述训练序列 b的峰值平 均功率比 PAPR, 检测所述 PAPR是否小于峰值平均功率比门限5, 若所述门限 检测模块的检测结果为所述 PAPR小于 δ, 则确定所述训练序列 b为所述系统的 长训练序列。
8、 根据权利要求 7所述的设备, 其特征在于,
所述处理器, 用于按照下述公式生成所述训练序列 b:
b= ( 0, 0, 0, 0, 0, 0, s ( 6 ) ~s ( N/2-1 ), 0, s ( N/2+1 ) ~s ( N-6 ), 0, 0, 0, 0, 0 );
其中, s= ( s ( 0 ), ... ..., s ( N-l ) ) 为所述格雷序列。
9、 根据权利要求 7所述的设备, 其特征在于,
所述处理器, 用于确定所述系统中直流子载波和保护子载波的位置, 将所 述格雷序列中与所述直流子载波和保护子载波位置相对应的元素设置为 0,获得 训练序列 c, 才艮据所述训练序列 c生成所述训练序列 b。
10、 根据权利要求 9所述的设备, 其特征在于,
所述处理器, 用于将所述训练序列 c确定为所述训练序列 b;
或者,
所述处理器, 用于确定所述系统中导频子载波的位置, 将所述训练序列 c 中与所述导频子载波位置相对应的元素设置为系统预设的导频值, 获得训练序 列 d, 将所述训练序列 d确定为所述训练序列 b。
11、 根据权利要求 8所述的设备, 其特征在于,
所述处理器, 用于获取所述系统的总子载波数, 将获取到的所述总子载波 数确定为所述序列长度 N。
12、 根据权利要求 8所述的设备, 其特征在于,
当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1,1, 1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1,1, 1,_1,_1,_1,1,_1,1,1,_1,1,1,1,_1上_1,_1,_1, 1,1, 1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1, 1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1,- 1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1, 1,1,_1,_1,_1,_1,1上_1,_1,_1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1,1,1 ,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1, -1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,- 1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1, 1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,- 1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,1
1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1 ,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-
\^-\,-\,\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,\,\,-\,
1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,- 14,^,-1,-1,^4,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,-1,-
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1
,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1, 1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1 ,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,- 1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1 ,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1, 1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,0,0,0,0,0)。
13、 一种训练系列生成方法, 其特征在于, 所述方法包括:
根据系统的总子载波数确定序列长度 N;
生成长度为 N的格雷序列;
基于所述格雷序列生成训练序列 b;
计算所述训练序列 b的峰值平均功率比 PAPR, 检测所述 PAPR是否小于峰 值平均功率比门限 δ;
若所述 PAPR小于 δ, 则确定所述训练序列 b为所述系统的长训练序列。
14、 根据权利要求 13所述的方法, 其特征在于, 所述基于所述格雷序列生 成训练序列 b, 包括:
按照下述公式生成所述训练序列 b:
b= (0, 0, 0, 0, 0, 0, s (6) ~s (N/2-1 ), 0, s (N/2+1 ) ~s (N-6), 0, 0, 0, 0, 0);
其中, s= (s (0), ......, s (N-l )) 为所述格雷序列。
15、 根据权利要求 13所述的方法, 其特征在于, 所述基于所述格雷序列生 成训练序列 b, 包括:
确定所述系统中直流子载波和保护子载波的位置;
所述格雷序列中与所述直流子载波和保护子载波位置相对应的元素设置为 0, 获得训练序列 c;
根据所述训练序列 c生成所述训练序列 b。
16、 根据权利要求 15所述的方法, 其特征在于, 所述根据所述训练序列 c 生成所述训练序列 b, 包括:
将所述训练序列 c确定为所述训练序列 b;
或者,
确定所述系统中导频子载波的位置; 将所述训练序列 c 中与所述导频子载 波位置相对应的元素设置为系统预设的导频值, 获得训练序列 d; 将所述训练序 列 d确定为所述训练序列 b。
17、 根据权利要求 13所述的方法, 其特征在于, 所述根据系统的总子载波 数确定序列长度N, 包括:
获取所述系统的总子载波数, 将获取到的所述总子载波数确定为所述序列 长度 N。
18、 根据权利要求 13所述的方法, 其特征在于, 当所述系统的总子载波数为 64时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,0,1,1,-1,1, 1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,0,0,0,0,0), 或者,
(0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1,1, 1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,0,0,0,0,0);
当所述系统的总子载波数为 128时, 所述长训练序列为:
(0,0,0,0,0,0,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1, 1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,0,-1,-1,1,1,-1,-1,1,1,- 1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1, 1,1,-1,-1,-1,-1,1,1,-1,-1,-1,0,0,0,0,0),
或者,
(0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,1, 1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,0,1,-1,-1,1,1,-1,-1,1,1,1,1 ,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1, -1,1,-1,1,1,-1,-1,1,-1,0,0,0,0,0);
当所述系统的总子载波数为 256时, 所述长训练序列为:
(0,0,0,0,0,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,- 1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1, 1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,- 1,-1,1,1,1,1,1,1,-1,1,1,-1,1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,1
1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1 ,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,0,0,0,0,0);
当所述系统的总子载波数为 512时, 所述长训练序列为:
(0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-
\^-\,-\,\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,-\,-\,\,-\,\,\,\,-\,\,\,-\,\,\,\,\,-\,\,\,-\,
1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1 4,^,^,-14,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,- ΐ4 ι ι ι ι;ι ι ι;ι ι;ι;ι;ι ι;ι;ι ι;ι;ι;ι;ι ι ι ι;ι ι;ι;ι;ι ι;ο,ι,-ι, 1,1, 1,1,-1 ,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1, 1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1 ,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,- 1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1, -1,1,1,1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1 ,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1, ι,_ι,_ι,_ι,ι,_ι,_ι,ι,_ι,_ι,_ι,_ι,ι,ι,ι,_ι,ο,ο,ο,ο,ο)。
19、 一种训练系列生成装置, 其特征在于, 所述装置包括:
序列长度确定模块, 用于根据系统的总子载波数确定序列长度 N;
第一序列组生成模块, 用于生成格雷序列组, 所述格雷序列组中包含有若 干条长度为 N的格雷序列;
第二序列组生成模块, 用于生成训练序列组, 所述训练序列组中包含有基 于所述格雷序列组中每一条格雷序列生成的训练序列;
第二功率比计算模块, 用于计算所述训练序列组中的各条训练序列的峰值 平均功率比 PAPR;
第二序列确定模块, 用于将所述训练序列组中, PAPR最低的一个或者多个 训练序列确定为所述系统的长训练序列。
20、 一种训练系列生成设备, 其特征在于, 所述设备包括:
总线, 以及连接到所述总线的处理器和存储器;
所述存储器用于存储若干个指令, 所述若干个指令被配置成由所述处理器 执行;
所述处理器, 用于根据系统的总子载波数确定序列长度 N; 生成格雷序列 组, 所述格雷序列组中包含有若干条长度为 N的格雷序列; 生成训练序列组, 所述训练序列组中包含有基于所述格雷序列组中每一条格雷序列生成的训练序 歹1 J ; 计算所述训练序列组中的各条训练序列的峰值平均功率比 PAPR; 将所述训 练序列组中, PAPR 最低的一个或者多个训练序列确定为所述系统的长训练序 歹 |J。
21、 一种训练系列生成方法, 其特征在于, 所述方法包括: 根据系统的总子载波数确定序列长度 N;
生成格雷序列组, 所述格雷序列组中包含有若干条长度为 N的格雷序列; 生成训练序列组, 所述训练序列组中包含有基于所述格雷序列组中每一条 格雷序列生成的训练序列;
计算所述训练序列组中的各条训练序列的峰值平均功率比 PAPR;
将所述训练序列组中, PAPR最低的一个或者多个训练序列确定为所述系统 的长训练序列。
PCT/CN2014/081091 2014-06-30 2014-06-30 训练序列生成装置、设备及方法 WO2016000108A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/081091 WO2016000108A1 (zh) 2014-06-30 2014-06-30 训练序列生成装置、设备及方法
CN201480079808.1A CN106464630B (zh) 2014-06-30 2014-06-30 训练序列生成装置、设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081091 WO2016000108A1 (zh) 2014-06-30 2014-06-30 训练序列生成装置、设备及方法

Publications (1)

Publication Number Publication Date
WO2016000108A1 true WO2016000108A1 (zh) 2016-01-07

Family

ID=55018209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081091 WO2016000108A1 (zh) 2014-06-30 2014-06-30 训练序列生成装置、设备及方法

Country Status (2)

Country Link
CN (1) CN106464630B (zh)
WO (1) WO2016000108A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033565B2 (en) * 2015-07-27 2018-07-24 Intel Corporation Low peak-to-average power ratio long training field sequences
WO2021002674A1 (en) * 2019-07-01 2021-01-07 Samsung Electronics Co., Ltd. Method for adjusting length of golay sequence for object recognition and electronic device therefor
CN112511206A (zh) * 2016-06-30 2021-03-16 华为技术有限公司 一种波束训练序列设计方法及装置
TWI772567B (zh) * 2017-11-29 2022-08-01 美商高通公司 使用低峰均功率比基序列的信號產生

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521311B (zh) * 2018-04-24 2020-11-27 成都吉纬科技有限公司 一种基于格雷序列的信噪比估计方法
CN113923082B (zh) * 2020-07-10 2023-03-10 华为技术有限公司 传输ppdu的方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771652A (zh) * 2009-12-31 2010-07-07 北京交通大学 基于幅值比例因子的限幅预留子载波降低papr的方法及系统
CN101883066A (zh) * 2009-05-09 2010-11-10 电子科技大学中山学院 一种改进相位序列的叠加训练序列选择性映射方法及装置
CN102334320A (zh) * 2009-04-27 2012-01-25 华为技术有限公司 定位参考信号
WO2013086311A1 (en) * 2011-12-07 2013-06-13 Drexel University A joint bit loading and symbol rotation scheme for multi-carrier systems in siso and mimo links
CN103581078A (zh) * 2013-07-12 2014-02-12 电子科技大学 一种基于Golay互补序列的IQ不平衡补偿方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548319B1 (ko) * 2002-12-27 2006-02-02 엘지전자 주식회사 직교분할다중접속 시스템의 최소 피에이피알 수열 검색 방법
CN101883064A (zh) * 2009-05-09 2010-11-10 电子科技大学中山学院 一种叠加训练序列的选择性映射与限幅滤波联合方法及其装置
KR20130066804A (ko) * 2011-12-13 2013-06-21 한국전자통신연구원 단일 반송파 주파수 영역 등화 시스템에서 위상 추적 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102334320A (zh) * 2009-04-27 2012-01-25 华为技术有限公司 定位参考信号
CN101883066A (zh) * 2009-05-09 2010-11-10 电子科技大学中山学院 一种改进相位序列的叠加训练序列选择性映射方法及装置
CN101771652A (zh) * 2009-12-31 2010-07-07 北京交通大学 基于幅值比例因子的限幅预留子载波降低papr的方法及系统
WO2013086311A1 (en) * 2011-12-07 2013-06-13 Drexel University A joint bit loading and symbol rotation scheme for multi-carrier systems in siso and mimo links
CN103581078A (zh) * 2013-07-12 2014-02-12 电子科技大学 一种基于Golay互补序列的IQ不平衡补偿方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033565B2 (en) * 2015-07-27 2018-07-24 Intel Corporation Low peak-to-average power ratio long training field sequences
CN112511206A (zh) * 2016-06-30 2021-03-16 华为技术有限公司 一种波束训练序列设计方法及装置
CN112511206B (zh) * 2016-06-30 2022-07-12 华为技术有限公司 一种波束训练序列设计方法及装置
TWI772567B (zh) * 2017-11-29 2022-08-01 美商高通公司 使用低峰均功率比基序列的信號產生
WO2021002674A1 (en) * 2019-07-01 2021-01-07 Samsung Electronics Co., Ltd. Method for adjusting length of golay sequence for object recognition and electronic device therefor
US11656319B2 (en) 2019-07-01 2023-05-23 Samsung Electronics Co., Ltd. Method for adjusting length of Golay sequence for object recognition and electronic device therefor

Also Published As

Publication number Publication date
CN106464630B (zh) 2019-11-29
CN106464630A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2016000108A1 (zh) 训练序列生成装置、设备及方法
WO2018028351A1 (zh) 用于极化编码的方法、装置和设备
AU2018309213C1 (en) Method and device for encoding polar code
BR112019005074B1 (pt) Método para um dispositivo para codificação de dados com um código polar, dispositivo para codificação de dados com um código polar, método de decodificação para um dispositivo, dispositivo para decodificação com um código polar, e meio legível por computador
JP2016536871A5 (zh)
WO2014134974A1 (zh) 极性码的译码方法和译码器
Qi et al. A low complexity PTS scheme based on tree for PAPR reduction
WO2017000233A1 (zh) 传输导频序列的方法和装置
JP2019530269A (ja) 符号化方法およびデバイスならびに装置
BR112019022474A2 (pt) Método e aparelho de correspondência de taxa de código polar
WO2019056941A1 (zh) 译码方法及设备、译码器
US20200169352A1 (en) Polar code encoding method and apparatus
BR112019007341A2 (pt) método e aparelho de codificação
EP3651392A1 (en) Method and device for encoding polar code
TW201025955A (en) Transmitter and the method therefor
CN102334363B (zh) 用于处理要聚合发送的分量载波的方法和设备
Su et al. A family of fast hadamard–fourier transform algorithms
WO2015149301A1 (zh) 传输信号的方法和装置
CN108347300A (zh) 一种调整Polar码的方法、装置及编译码装置
CN109743269A (zh) 一种基于数据拟合的水声ofdm信道重构方法
WO2014180128A1 (zh) 一种正交频分复用系统中降低峰均比的方法及接入装置
Boritchev Estimates for solutions of a low-viscosity kick-forced generalized Burgers equation
CN110971556B (zh) 一种无线通信系统的信号处理方法、终端设备及网络设备
TW201822475A (zh) 頻域載波間干擾補償方法與裝置、非暫時性電腦可讀媒體、製造處理器的方法及建構積體電路的方法
WO2020172804A1 (zh) 反馈码本的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896428

Country of ref document: EP

Kind code of ref document: A1