WO2015199179A1 - Non-woven fabric - Google Patents

Non-woven fabric Download PDF

Info

Publication number
WO2015199179A1
WO2015199179A1 PCT/JP2015/068353 JP2015068353W WO2015199179A1 WO 2015199179 A1 WO2015199179 A1 WO 2015199179A1 JP 2015068353 W JP2015068353 W JP 2015068353W WO 2015199179 A1 WO2015199179 A1 WO 2015199179A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber density
convex
convex portion
fiber
Prior art date
Application number
PCT/JP2015/068353
Other languages
French (fr)
Japanese (ja)
Inventor
明寛 木村
耕 出谷
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to US15/321,780 priority Critical patent/US20170226672A1/en
Priority to KR1020167035643A priority patent/KR102294225B1/en
Priority to BR112016029946A priority patent/BR112016029946A2/en
Priority to CN201580034409.8A priority patent/CN106661791B/en
Priority to EP15811703.6A priority patent/EP3162939A4/en
Priority to AU2015281112A priority patent/AU2015281112B2/en
Publication of WO2015199179A1 publication Critical patent/WO2015199179A1/en
Priority to PH12016502606A priority patent/PH12016502606A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • D04H1/495Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet for formation of patterns, e.g. drilling or rearrangement
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G15/00Carding machines or accessories; Card clothing; Burr-crushing or removing arrangements associated with carding or other preliminary-treatment machines
    • D01G15/02Carding machines
    • D01G15/04Carding machines with worker and stripper or like rollers operating in association with a main cylinder
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres

Definitions

  • the present invention relates to nonwoven fabrics, and in particular to nonwoven fabrics in which the fiber density of the nonwoven fabric is biased.
  • Patent Document 1 a first projecting portion that protrudes to the first surface side of a sheet-like non-woven fabric in plan view and a second projecting portion that protrudes to the second surface side opposite to the first surface
  • the plurality of first protrusions and the plurality of second protrusions are non-woven fabrics alternately extended in two directions, i.e., the first direction and the second direction in plan view of the non-woven fabric, in the top of the first protrusions
  • a non-woven fabric is disclosed in which the fiber density on the first side is lower than the fiber density on the second side.
  • the absorbed liquid permeates because the fiber density of the fibers constituting the non-woven fabric is substantially uniform in a plan view of the non-woven fabric.
  • Direction can not be controlled. Therefore, for example, when such a non-woven fabric is used for the top sheet of an absorbent article, body fluids excreted on the non-woven fabric, such as urine and menstrual blood, are directional from the position where the body fluid is excreted to its periphery Penetrate as if to spread. As a result, since the body fluid also penetrates to the outside of the absorbent article, the body fluid may reach the outside of the absorbent article, and leakage may occur.
  • an object of the present invention is to provide a non-woven fabric that allows absorbed liquid to penetrate in a desired direction.
  • a non-woven fabric formed of a base extending in a planar manner and a plurality of projections projecting in the thickness direction from the base, Each said convex part has a convex part, and Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
  • Nonwoven fabrics can be provided.
  • the absorbed liquid can be permeated in the desired direction.
  • FIG. 6 is a view for explaining measurement points at which the fiber density of the convex portion of the convex portion of the nonwoven fabric according to Examples 1 to 3 is measured.
  • FIG. 1 is a plan view of a non-woven fabric according to a first embodiment of the present invention
  • FIG. 2 is a partial end view taken along line II-II of FIG.
  • the non-woven fabric 1 according to the first embodiment extends on the plane of the non-woven fabric 1 defined by the longitudinal direction Lo and the transverse direction Tr, and can be seen in plan view in FIG. And a second surface FS located on the side.
  • the non-woven fabric 1 has a base 10 that spreads in a substantially planar shape, and a plurality of protruding from the base 10 in the thickness direction Th to the side of the first surface FF in the first embodiment. It is formed of the convex portion 12.
  • Each convex portion 12 includes a convex portion 12T which is separated from the base 10 in the thickness direction Th of the nonwoven fabric 1.
  • the convex portion 12T is positioned closer to the top of the convex portion 12 than the middle point of the thickness direction Th between the base 10 and the top of the convex portion 12 most distant from the base 10 in the thickness direction Th. This is a portion of the convex portion 12 that forms a constant surface that faces in the direction in which the convex portion 12 protrudes from the base 10.
  • the convex portion 12T is substantially flat.
  • the convex surface portion 12T does not have to be a completely flat surface, and may include a constant inclined surface or a curved surface.
  • the convex portion 12 has a substantially cylindrical shape with a diameter of about 10 mm in appearance.
  • the shape of the convex portion 12 is a shape including a convex portion having a certain area, such as, for example, a truncated cone shape or an elliptical or polygonal columnar shape or a truncated pyramid shape. .
  • FIG. 3 is a view for explaining the distribution of fiber density of the convex portion 12T of the convex portion 12 in the nonwoven fabric 1 of FIG.
  • FIG. 3 is described paying attention to one convex part 12, and represents the distribution of the fiber density of convex part 12T by the magnitude of the density (number) of "x" mark.
  • each convex portion 12T is configured such that the fiber density of the convex portion 12T is biased in the longitudinal direction Lo of the nonwoven fabric 1 in the planar direction of the nonwoven fabric 1. That is, in the convex portion 12T, there is a portion where the fiber density is high on one side in the longitudinal direction Lo and the fiber density is low on the other side in the longitudinal direction Lo on a predetermined line extending in the longitudinal direction Lo.
  • each convex portion 12T is formed by a virtual line VL extending in a direction orthogonal to the longitudinal direction Lo of the non-woven fabric 1 in plan view of the non-woven fabric 1.
  • VL virtual line extending in a direction orthogonal to the longitudinal direction Lo of the non-woven fabric 1 in plan view of the non-woven fabric 1.
  • the “fiber density of the semiconvex portion” refers to the average of the fiber density of the entire semiconvex portions 121T and 122T, but when measuring the fiber density as described later, each semiconvex portion 121T , 122T in a direction perpendicular to the direction in which the fibers are offset, ie in the transverse direction Tr in the case of the first embodiment, in the direction in which the fibers are offset, ie in the case of the first embodiment
  • the fiber density is equally divided into three in the longitudinal direction Lo of 1 and the central portions in the transverse direction Tr of these cut surfaces are averaged.
  • FIG. 4 is the photograph which image
  • the shade of color indicates the high and low of the fiber density.
  • darker black in the photo in Fig. 4 indicates that the color of the photographing table is more easily seen through, indicating that the fiber density is lower, and darker white indicates that the color of the photographing table is less transparent, meaning that the fiber density is higher. Do. Also from the photograph shown in FIG.
  • the fiber density of the convex portion 12T of the convex portion 12 is biased in the longitudinal direction Lo among the planar directions of the nonwoven fabric 1 in plan view of the nonwoven fabric 1 It can be said that This is because, when the convex portion 12T is observed in FIG. 4, black tends to be dark on one side in the longitudinal direction Lo and white tends to be dark on the other side.
  • the number of points FC at which the fibers are cut per 1 mm 2 in the cut surface of the nonwoven fabric 1 is used as an index.
  • the magnification is adjusted to about 50 to 100 times and a fixed area (for example, about 2.0 mm 2) Observe the cut surface of) and count the points FC (Fig. 5) where the fibers were cut.
  • the cut surface to be observed includes the entire thickness direction Th from the first surface FF to the second surface FS. Then, the number of cutting points is replaced with the number per 1 mm 2 , and the number is used as an index of “fiber density”.
  • the fibers used for the non-woven fabric 1 in the first embodiment are fibers with a core-sheath structure, and the material is a high density polyethylene (HDPE) sheath and a polyethylene terephthalate (PET) core.
  • HDPE high density polyethylene
  • PET polyethylene terephthalate
  • Fibers used for non-woven fabrics include natural fibers, regenerated fibers (rayon, acetate, etc.), thermoplastic resin fibers (polyethylene, polypropylene, polybutylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, Ethylene-acrylic acid copolymers, polyolefins such as ionomer resins, polyethylene terephthalate, polyesters such as polybutylene terephthalate, polytrimethylene terephthalate, polylactic acid, polyamides such as nylon, etc. or surface-modified products thereof Among these, it is preferable that they are a thermoplastic resin fiber or its surface modification body.
  • these fibers include core-sheath fibers, composite fibers such as side-by-side fibers, island / sea fibers, hollow fibers, flat fibers, atypical fibers such as Y-type and C-type fibers, latent fibers It may be a crimped or three-dimensional crimped crimped crimped fiber, a water stream, or a split fiber split by physical load such as heat or embossing.
  • These fibers may be hydrophilic fibers or hydrophobic fibers. However, in the case of using a hydrophobic fiber, processing such as separately applying a hydrophilic oil to the fiber is required.
  • the convex part 12 is arrange
  • the first direction D1 is the same as the transverse direction Tr
  • the second direction D2 is a direction inclined 60 ° from the first direction D1.
  • the base 10 and the convex part 12 are arrange
  • the non-woven fabric 1 when used as a top sheet of an absorbent article such as disposable diapers or a sanitary napkin, the bodily fluid excreted on the non-woven fabric 1 can be absorbed when the first surface FF is used as the surface. It is possible to arrange the base 10 which penetrates into the inside where the absorbent or the like of the article is located, and the convex part 12 which penetrates the body fluid in a desired direction, in a suitable distribution.
  • the convex portions 12 adjacent to the first direction D1 and the second direction D2 are intermittently provided to separate the base 10. ing.
  • the body fluid excreted on the first surface FF can be made to permeate in the direction in which the fiber density is biased, and transferred from the convex portion 12T of the convex portion 12 to the adjacent base portion 10.
  • the liquid can be efficiently permeated from the base 10 into the interior of the absorbent article.
  • the convex portions 12T are configured such that the fiber density of the convex portions 12T is biased in the longitudinal direction Lo among the planar directions of the nonwoven fabric 1. Therefore, the liquid absorbed by the fibers forming the convex portion 12 easily penetrates from the low fiber density to the high fiber density by capillary action, and thus tends to move to the high fiber density side in the longitudinal direction Lo. Therefore, by disposing the non-woven fabric so that the side with the higher fiber density is disposed in the direction in which the liquid is to be infiltrated, the absorbed liquid can be infiltrated in the desired direction.
  • the liquid can be permeated in the desired direction does not mean that the liquid penetrates only in the desired direction, but the amount of liquid that penetrates in the desired direction is increased. It should be noted that the meaning of
  • the fiber density of the convex portion 12T is biased in the longitudinal direction Lo in the nonwoven fabric 1 according to the first embodiment, but may be biased in any direction in the planar direction of the nonwoven fabric 1. That is, the convex portion 12T may be configured so that the fiber density of the convex portion 12T is biased in a predetermined direction in the plane direction of the nonwoven fabric 1. Then, the liquid can be made to penetrate in a desired direction by arranging the side with high fiber density to be in the direction in which the liquid is desired to permeate.
  • FIG. 3 demonstrated the fiber distribution of convex part 12T of the one convex part 12, in the nonwoven fabric 1 which concerns on 1st embodiment, convex part 12T of each convex part 12 is the same as that of FIG. It has a fiber distribution.
  • the fiber density of the convex portions 12T of all the convex portions 12 need not be uneven, and the nonwoven fabric 1 in which the fiber density of the convex portions 12T of the convex portions 12 is uneven for at least a part of the convex portions 12 It can be said that it is the nonwoven fabric of the range of the invention. This is because there is no change in exerting the effect of the nonwoven fabric 1 of the present invention that the liquid absorbed in the nonwoven fabric 1 can permeate in the desired direction.
  • the degree of the deviation of the fiber density of the convex portion 12T may be a degree that allows the liquid absorbed in the non-woven fabric 1 to penetrate in a desired direction.
  • the convex portion 12 is linear along the first direction D1 and the second direction D2 inclined 60 ° from the first direction D1. Are located in In another embodiment, the second direction D2 is inclined at an angle other than 60 ° from the first direction D1. In yet another embodiment, the protrusions 12 are disposed linearly along only one direction. In the other embodiment, the convex portion 12 is not disposed along any direction but disposed at an arbitrary position.
  • the base 10 and the convex part 12 are arrange
  • the distance between the protrusions 12 is not constant.
  • the convex portion 12 is linearly disposed in either the first direction D1 or the second direction D2, and in still another embodiment, disposed along any direction. It is not set up and is irregularly placed.
  • the nonwoven fabric 1 according to the second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment will be mainly described in terms of differences from the first embodiment.
  • FIG. 6 is a diagram for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 in the nonwoven fabric 1 according to the second embodiment.
  • the edge 12TE of the convex portion 12T has a higher fiber density than the central portion 12TC of the convex portion 12T.
  • the rigidity of the edge 12TE becomes high, whereby the shape of the convex portion 12 is maintained even when an external force is applied to the convex portion 12 can do.
  • the nonwoven fabric 1 according to the second embodiment is preferable also in appearance (appearance) because the shape of the convex portion 12 of the nonwoven fabric 1 at the time of production can be maintained even after packaging and opening.
  • the edge 12TE is a region of the convex portion 12T having a constant width in the direction of the central portion 12TC along the edge 12TEE of the convex portion 12T to the extent that the fiber density can be confirmed.
  • the central portion 12TC is a portion farther from the edge 12TEE than the edge 12TE.
  • the width of the edge 12TE is about 1 mm with respect to the convex part 12T having a diameter of about 10 mm, that is, about 10% of the diameter (or the length of the convex part 12T).
  • the fiber density of the convex surface portion 12T is the longitudinal direction Lo of the nonwoven fabric 1 among the planar directions of the nonwoven fabric 1. It is configured to be biased. That is, in the second embodiment, on a line extending in the predetermined longitudinal direction Lo at the central portion 12TC of the convex portion 12T, the fiber density is high at a position on one side in the longitudinal direction Lo and the other side in the longitudinal direction Lo There is a portion with low fiber density in the portion.
  • the nonwoven fabric 1 according to the third embodiment of the present invention will be described with reference to FIG. 7.
  • the third embodiment will be mainly described in terms of differences from the first embodiment.
  • FIG. 7 is a view for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 and the base portion 10 located around the convex portion 12 in the nonwoven fabric 1 according to the third embodiment.
  • the fiber density of the fibers constituting the convex portion 12T of the convex portion 12, which is one end of the convex portion 12T in the longitudinal direction Lo in plan view of the nonwoven fabric 1
  • the fiber density is lower than the other portions of the base 10. That is, in the base 10, the fiber density becomes lower as the fiber density of the convex portion 12 approaches the portion 12TH where the fiber density of the convex portion 12 is higher.
  • the base 10 there will be a portion where the fiber density is lower than the other portions.
  • the low fiber density portion 10L of the base 10 located at the position of the base 10 it is possible to rapidly permeate.
  • the body fluid excreted on the non-woven fabric 1 can be rapidly transferred to the inside of the absorbent article provided with an absorbent or the like, which is preferable.
  • the nonwoven fabric 1 according to the fourth embodiment of the present invention will be described with reference to FIG.
  • the fourth embodiment will be mainly described in terms of differences from the third embodiment.
  • FIG. 8 is a view for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 and the base portion 10 located around the convex portion 12 in the nonwoven fabric 1 according to the fourth embodiment.
  • the edge 12TE of the convex portion 12T is the center of the convex portion 12T.
  • Fiber density is higher than 12 TC. That is, the nonwoven fabric 1 which concerns on 4th embodiment is a nonwoven fabric which has both the effect of the nonwoven fabric 1 which concerns on 2nd and 3rd embodiment.
  • FIG. 9 is a schematic view showing an outline of a production facility 3 for producing the non-woven fabric 1 according to the embodiment of the present invention
  • FIG. 10 is an enlarged view of a portion X in FIG.
  • the manufacturing equipment 3 forms a carding machine 20 for opening the fiber F1 and adjusting the fabric weight, a suction drum 22 and an air jet nozzle 26 for forming the fiber F2 so as to be in the shape of the nonwoven fabric 1, and a fiber F3.
  • the heat processing machine 28 heat-processes the fiber F3 so that fixed shape may be fixed.
  • the fibers F1 to F3 and the non-woven fabric 1 described later are transported in the direction of the arrow MD, and the transport direction MD coincides with the longitudinal direction Lo of the non-woven fabric 1.
  • the method of producing the non-woven fabric 1 will be briefly described. First, the fiber F1 is opened by the carding machine 20 and the coating weight is adjusted, and the opened fiber F2 is supplied to the suction drum 22. Subsequently, warm air is blown by the air jet nozzle 26 while suctioning and moving the fiber F2 on the outer peripheral surface of the suction drum 22 provided with the pattern plate 24 so that the shape of the nonwoven fabric 1 according to the above embodiment is obtained. Form the fiber F2. And the non-woven fabric 1 is completed by heat-treating the fiber F3 after shaping in the heat treatment machine 28 and fixing the shape of the fiber F3 shaped in the previous step.
  • the method of manufacturing the non-woven fabric 1 will now be described in detail.
  • the opened fiber F ⁇ b> 1 is supplied to the carding machine 20.
  • the fiber F1 is further opened, and the basis weight (weight) of the fiber F1 is adjusted to a desired value.
  • the fiber F2 which has passed through the card machine 20 is supplied to the suction drum 22.
  • the inside of the suction drum 22 is hollow, and the inside of the suction drum 22 is under negative pressure by suction of air by suction means such as a blower.
  • a large number of suction holes 22t are provided on the outer peripheral surface of the suction drum 22 so that outside air can be sucked.
  • the diameter of the suction hole of the suction drum 22 is set small so as not to suction the fiber F2 into the suction drum 22.
  • the pattern plate 24 is an apertured plate in which through holes 24 t having a shape complementary to the projections 12 of the nonwoven fabric 1 are provided with the distribution of the projections 12.
  • the suction holes of the suction drum 22 exposed in the through holes 24 t of the pattern plate 24 suck the fibers F 2 supplied onto the pattern plate 24.
  • the difference in position in the thickness direction Th of the nonwoven fabric 1 between the base 10 and the convex portion 12T of the convex portion 12 in the first surface FF is substantially equal to the thickness of the pattern plate 24.
  • the suction drum 22 has an area AS from the point SS where the fiber F2 is delivered from the upstream belt conveyor UB to the point SE where the fiber F2 is delivered to the downstream belt conveyor DB on the outer peripheral surface.
  • the fiber F2 is designed to suck at the other area, and is configured not to suck at the other area AN. This is to improve the efficiency of the suction operation by the suction drum 22.
  • the fibers F 2 sucked to the outer peripheral surface of the suction drum 22 are blown with warm air by the air jet nozzle 26.
  • the air jet nozzle 26 has a mechanism that ejects a predetermined amount of warm air uniformly with a uniform width in the width direction.
  • warm air is blown substantially uniformly over the entire width of the laminate formed from the fiber F2.
  • the fibers F2 can be shaped so as to have the shape of the nonwoven fabric 1 according to the above-described embodiment by the suction action and the spray action by the suction drum 22 and the air jet nozzle 26.
  • the temperature of the hot air blown from the air jet nozzle 26 is higher than the melting point of the fiber F2, but is adjusted so as not to be too high in order to avoid the nonwoven fabric 1 becoming excessively hardened after completion. There is. Also, the wind speed of the warm air is determined so as to shape the fiber F2 into a desired shape. Generally, the temperature and the wind speed of the warm air from the air jet nozzle 26 vary depending on the material and weight of the fiber used, the shape of the non-woven fabric 1 after completion, and the like. Is preferred. For example, the temperature of the warm air blown from the air jet nozzle 26 is preferably 80 ° C. to 400 ° C., and the wind speed thereof is preferably 10 to 200 m / sec.
  • the temperature of the warm air blown from the air jet nozzle 26 is 180 ° C., and the wind speed thereof is 38.9 m / sec.
  • the wind speed thereof is 38.9 m / sec.
  • the surface of the laminate formed of the fibers F2 facing the suction drum 22 and the pattern plate 24 is the first surface FF of the nonwoven fabric 1 and faces the air jet nozzle 26.
  • the surface of the laminate is the second surface FS of the nonwoven fabric 1.
  • the fiber F2 When the fiber F2 is blown by the air jet nozzle 26, it is blown off and moves around it. As a result, the amount of fibers in the sprayed part will be reduced and thus the fiber density of the sprayed part will be lower.
  • the air jet nozzle 26 since the air jet nozzle 26 is stationary, the fiber F2 located in the through hole 24t of the pattern plate 24 is finally blown by the warm air at the portion F2tu located on the upstream side in the transport direction MD. The attachment reduces the fiber density. Thereafter, the fiber F2 moved by the blowing action by the air jet nozzle 26 is fixed at the position after the movement by the suction action of the suction drum 22.
  • the convex portion 12T is a direction in which the fiber density of the convex portion 12T is a predetermined direction, in the above-mentioned embodiment, the direction of It is configured to be biased in the longitudinal direction Lo.
  • portion F2su of the fibers F2 located on the outer surface 24s located between the through holes 24t of the pattern plate 24 and located upstream of the transport direction MD that is, when the warm air is blown to the portion F2su, the fiber F2 is blown off and moves around. At this time, the fiber F2 also moves in the through hole 24t. Thereafter, warm air is blown to a portion F2tu of the fiber F2 in the through hole 24t on the upstream side in the transport direction of the fiber F2, but once the fiber F2 moves into the through hole 24t, the inside of the through hole 24t Since the fiber F2 does not return from the to the outer surface 24s, the fiber density of the portion F2su is low.
  • the fiber density of the portion F2tu on the upstream side in the transport direction of the fiber F2 in the through hole 24t is high.
  • the fiber density of the base 10 decreases as the fiber density of the convex portion 12 approaches the portion 12 TH where the fiber density of the convex portion 12 is high.
  • the corner portion Co is a position corresponding to the edge portion 12 TE of the convex portion 12 in the nonwoven fabric 1.
  • the edge 12TE of the projection 12 is the central portion 12TC of the projection.
  • the fiber density is higher than that.
  • the shape of the convex portion 12 is determined by the shape of the through hole 24t of the pattern plate 24, the temperature of the warm air blown from the air jet nozzle 26, the wind speed, and the like.
  • the fibers F3 shaped by the suction and spraying action are then transferred to the heat treatment machine.
  • the fibers F3 are heat treated in the heat treatment machine 28 and the shape shaped in the previous step is fixed.
  • the fiber F3 is heat-treated for a long time with warm air at a relatively low temperature and a low temperature relatively to the melting point of the fiber, thereby fixing the shape of the fiber F3 formed in the previous step It is possible to make the nonwoven fabric 1 flexible.
  • the temperature of the warm air in the heat treatment machine 28, the wind speed, the time of the heat treatment, etc. vary depending on the material of the fibers used, the coating weight, etc. However, it is preferable to determine the optimum temperature and wind speed by experiments, for example.
  • the nonwoven fabric 1 is completed.
  • the finished nonwoven fabric 1 is cut into a desired size and used.
  • the manufacturing method of the nonwoven fabric 1 according to the fourth embodiment has been described, but by appropriately changing the shape of the pattern plate 24, the temperature of the warm air blown from the air jet nozzle 26, etc.
  • the nonwoven fabric 1 according to the first to third aspects can be manufactured.
  • the liquid diffusion distance test was performed with the nonwoven fabric in which various conditions were set.
  • the liquid diffusion distance test is a test to confirm that the liquid absorbed by the non-woven fabric penetrates in a directional manner.
  • Examples 1 to 3 The non-woven fabrics according to Examples 1 to 3 are produced by the above-mentioned production method.
  • the temperature and the wind speed of the warm air blown from the air jet nozzle 26 when manufacturing these non-woven fabrics, and the temperature and the wind speed of the heat treatment in the heat treatment machine 28 are shown in Table 1 described later. Further, in these non-woven fabrics, the deviation of the fiber density of the convex part of the convex part was measured by the above-mentioned measuring method of the fiber density around the two measurement points PH and PL shown in FIG.
  • One measurement point PH is a middle point between the center point C of the convex portion 12T in plan view of the nonwoven fabric 1 and the edge 12TEE located on the side where the fiber density is high along the longitudinal direction Lo from the center point C.
  • the other measurement point PL is a midpoint between the center point C of the convex portion 12T and the edge 12TEE located on the side where the fiber density is low along the longitudinal direction Lo from the center point C.
  • the test method of the test performed in the present embodiment will be described.
  • a sample of the non-woven fabric according to the example and the comparative example cut to a width of 150 mm and a length of 300 mm was placed on a stainless plate of 250 mm width and 450 mm length, and 20 cc at the center of one convex portion
  • the artificial artificial urine was done by dropping it in 2.5 seconds.
  • the longitudinal direction of the sample is the direction in which the fiber density of the fibers constituting the convex portion of the convex portion is uneven, and the direction along which the fiber density of the convex portion is high is taken as the DH direction.
  • the direction in which the fiber density of the part was low was taken as the DL direction.
  • the artificial urine used in the liquid diffusion distance test was prepared by dissolving 200 g of urea, 80 g of sodium chloride, 8 g of magnesium sulfate, 3 g of calcium chloride and about 1 g of pigment (Blue No. 1) in 10 L of ion-exchanged water .
  • Table 1 is shown below. Table 1 shows the results of the fabric weight, thickness, preparation conditions, each measurement point PH, the fiber density of the convex portion around PL and the liquid diffusion distance test around each of the nonwoven fabrics of Examples 1 to 3 and Comparative Example. In addition, "thickness" of Table 1 is an average value of the thickness measured 3 times under the pressure of 3 gf / cm2, and in the nonwoven fabric concerning Example 1-3, the thickness of the convex part was measured. .
  • the edge 12TE of the convex portion 12T has a higher fiber density than the central portion 12TC of the convex portion 12T
  • the third embodiment As the form, the base 10 has a lower fiber density as the fiber density of the convex portion 12 approaches the high portion 12 TH around the convex portion 12.
  • the present invention is defined as follows.
  • a non-woven fabric formed of a base extending in a planar shape and a plurality of convex portions protruding in the thickness direction from the base, Each said convex part has a convex part, and Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
  • Non-woven fabric formed of a base extending in a planar shape and a plurality of convex portions protruding in the thickness direction from the base, Each said convex part has a convex part, and Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
  • an edge portion of the convex portion has a higher fiber density than a central portion of the convex portion.
  • the convex portion is disposed along a first direction and a second direction different from the first direction.
  • the nonwoven fabric according to any one of (1) to (4).
  • the convex portions are provided at equal intervals apart from the base in the first direction and the second direction.
  • the predetermined direction coincides with the first direction or the second direction.
  • the predetermined direction coincides with the transport direction when manufacturing the non-woven fabric, The nonwoven fabric according to any one of (1) to (7).
  • Non-woven fabric 10 Base 12 Convex part 12 T Convex part

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention relates to a non-woven fabric (1) that is formed from a base part (10) that spreads out in a planar shape and from a plurality of projecting parts (12) that protrude in a thickness direction (Th) from the base part. Each of the projecting parts has a projecting surface part (12T). Each of the projecting surface parts is configured such that the fiber density of the projecting surface part increases toward one side in a prescribed direction that is a surface direction of the non-woven fabric.

Description

不織布Non-woven
 本発明は、不織布、特に不織布の繊維密度が偏っている不織布に関する。 The present invention relates to nonwoven fabrics, and in particular to nonwoven fabrics in which the fiber density of the nonwoven fabric is biased.
 特許文献1には、シート状の不織布を平面視した側の第一面側に突出する第一突出部と、第一面とは反対側の第二面側に突出する第二突出部とを有し、第一突出部及び第二突出部は、不織布の平面視において第一方向と第二方向との2つの方向に向け複数交互に広がった不織布であって、第一突出部の頂部における第一面側の繊維密度が、その第二面側の繊維密度よりも低い不織布が開示されている。 In Patent Document 1, a first projecting portion that protrudes to the first surface side of a sheet-like non-woven fabric in plan view and a second projecting portion that protrudes to the second surface side opposite to the first surface And the plurality of first protrusions and the plurality of second protrusions are non-woven fabrics alternately extended in two directions, i.e., the first direction and the second direction in plan view of the non-woven fabric, in the top of the first protrusions A non-woven fabric is disclosed in which the fiber density on the first side is lower than the fiber density on the second side.
特開2012-144835号公報JP 2012-144835 A
 しかしながら、特許文献1において開示されている発明に係る不織布では、不織布の平面視において、不織布を構成する繊維の繊維密度が、略一様になるように形成されることから、吸収した液体が浸透する方向をコントロールすることができない。そのため、例えばこのような不織布を吸収性物品のトップシートに使用した場合において、不織布上に排泄された、例えば尿や経血などの体液が、体液が排泄された位置からその周囲に、指向性なく拡がるように浸透する。その結果、体液は吸収性物品の外側にも向けて浸透するため、体液が吸収性物品の外側に達して、モレが発生するおそれがある。 However, in the non-woven fabric according to the invention disclosed in Patent Document 1, the absorbed liquid permeates because the fiber density of the fibers constituting the non-woven fabric is substantially uniform in a plan view of the non-woven fabric. Direction can not be controlled. Therefore, for example, when such a non-woven fabric is used for the top sheet of an absorbent article, body fluids excreted on the non-woven fabric, such as urine and menstrual blood, are directional from the position where the body fluid is excreted to its periphery Penetrate as if to spread. As a result, since the body fluid also penetrates to the outside of the absorbent article, the body fluid may reach the outside of the absorbent article, and leakage may occur.
 したがって、本発明の目的は、吸収した液体を所望の方向に浸透させる不織布を提供することにある。 Therefore, an object of the present invention is to provide a non-woven fabric that allows absorbed liquid to penetrate in a desired direction.
 上記課題を解決するために、本発明によれば、
 平面状に拡がる基部と、前記基部から厚さ方向に突出する複数の凸部とから形成されている不織布であって、
 それぞれの前記凸部は凸面部を有し、
 それぞれの前記凸面部は、前記凸面部の繊維密度が前記不織布の平面方向のうち所定の方向に偏るように構成されている、
 不織布を提供することができる。
In order to solve the above-mentioned problems, according to the present invention,
A non-woven fabric formed of a base extending in a planar manner and a plurality of projections projecting in the thickness direction from the base,
Each said convex part has a convex part, and
Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
Nonwoven fabrics can be provided.
 本発明の不織布によれば、凸部の凸面部の繊維密度が所定の方向に偏っているので、吸収した液体を所望の方向に浸透させることができる。 According to the nonwoven fabric of the present invention, since the fiber density of the convex portion of the convex portion is biased in the predetermined direction, the absorbed liquid can be permeated in the desired direction.
本発明の第一の実施形態に係る不織布の平面図。BRIEF DESCRIPTION OF THE DRAWINGS The top view of the nonwoven fabric which concerns on 1st embodiment of this invention. 図1のII-II線部分端面図。The partial end elevation figure of the II-II line of FIG. 図1の不織布1における凸部の凸面部の繊維密度の分布を説明するための図。The figure for demonstrating distribution of the fiber density of the convex part of the convex part in the nonwoven fabric 1 of FIG. 図1の不織布を、不織布の平面視で撮影した写真。The photograph which image | photographed the nonwoven fabric of FIG. 1 by the planar view of the nonwoven fabric. 図2のV部を拡大した断面の写真。Photograph of the cross section which expanded the V section of FIG. 第二の実施形態に係る不織布における凸部の凸面部の繊維密度の分布を説明するための図。The figure for demonstrating distribution of the fiber density of the convex part of the convex part in the nonwoven fabric which concerns on 2nd embodiment. 第三の実施形態に係る不織布における凸部の凸面部と、凸部の周囲に位置する基部との繊維密度の分布を説明するための図。The figure for demonstrating distribution of the fiber density of the convex part of the convex part in the nonwoven fabric which concerns on 3rd embodiment, and the base located around a convex part. 第四の実施形態に係る不織布における凸部の凸面部と、凸部の周囲に位置する基部との繊維密度の分布を説明するための図。The figure for demonstrating distribution of the fiber density of the convex part of the convex part in the nonwoven fabric which concerns on 4th embodiment, and the base located around a convex part. 本発明の実施形態に係る不織布を製造するための製造設備の概要を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the outline | summary of the manufacturing equipment for manufacturing the nonwoven fabric which concerns on embodiment of this invention. 図9のX部拡大図。The X section enlarged view of FIG. 実施例1~3に係る不織布の凸部の凸面部の繊維密度を測定する測定点を説明する図。FIG. 6 is a view for explaining measurement points at which the fiber density of the convex portion of the convex portion of the nonwoven fabric according to Examples 1 to 3 is measured.
(第一の実施形態)
 これより、図1~図5を参照しつつ、本発明の第一の実施形態に係る不織布1について説明する。
(First embodiment)
The nonwoven fabric 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
 図1は本発明の第一の実施形態に係る不織布の平面図であり、図2は図1のII-II線部分端面図である。第一の実施形態に係る不織布1は、長手方向Lo及び横断方向Trにより画定される不織布1の平面上で拡がっており、図1において平面視で見ることのできる第一の面FFとその反対側に位置する第二の面FSとを有する。 FIG. 1 is a plan view of a non-woven fabric according to a first embodiment of the present invention, and FIG. 2 is a partial end view taken along line II-II of FIG. The non-woven fabric 1 according to the first embodiment extends on the plane of the non-woven fabric 1 defined by the longitudinal direction Lo and the transverse direction Tr, and can be seen in plan view in FIG. And a second surface FS located on the side.
 図1及び図2に示すように、不織布1は、略平面状に拡がる基部10と、基部10から厚さ方向Thに、第一の実施形態では第一の面FFの側に突出する複数の凸部12とから形成されている。各凸部12はそれぞれ、基部10から不織布1の厚さ方向Thに離間している凸面部12Tを含む。ここで、凸面部12Tは、基部10と、基部10から厚さ方向Thに最も離間している凸部12の頂部との厚さ方向Thの中間地点よりも、凸部12の頂部側に位置する凸部12の部分であって、凸部12の基部10からの突出方向を向く一定の面を形成する部分をいう。 As shown in FIGS. 1 and 2, the non-woven fabric 1 has a base 10 that spreads in a substantially planar shape, and a plurality of protruding from the base 10 in the thickness direction Th to the side of the first surface FF in the first embodiment. It is formed of the convex portion 12. Each convex portion 12 includes a convex portion 12T which is separated from the base 10 in the thickness direction Th of the nonwoven fabric 1. Here, the convex portion 12T is positioned closer to the top of the convex portion 12 than the middle point of the thickness direction Th between the base 10 and the top of the convex portion 12 most distant from the base 10 in the thickness direction Th. This is a portion of the convex portion 12 that forms a constant surface that faces in the direction in which the convex portion 12 protrudes from the base 10.
 第一の実施形態では、凸面部12Tは略平坦である。しかしながら、凸面部12Tは、全くの平面である必要はなく、一定の傾斜面や曲面を含むものであってもよい。 In the first embodiment, the convex portion 12T is substantially flat. However, the convex surface portion 12T does not have to be a completely flat surface, and may include a constant inclined surface or a curved surface.
 また、第一の実施形態では、凸部12は、外観上、直径が約10mmの略円柱形状をしている。別の実施形態では、凸部12の形状は、例えば、円錐台状の形状、あるいは、楕円や多角形の柱状、錐台状の形状等の、一定の面積を有する凸面部を含む形状である。 In the first embodiment, the convex portion 12 has a substantially cylindrical shape with a diameter of about 10 mm in appearance. In another embodiment, the shape of the convex portion 12 is a shape including a convex portion having a certain area, such as, for example, a truncated cone shape or an elliptical or polygonal columnar shape or a truncated pyramid shape. .
 図3は、図1の不織布1における凸部12の凸面部12Tの繊維密度の分布を説明するための図である。なお、図3は、1つの凸部12に注目して説明するものであり、「×」印の密度(数)の大小によって、凸面部12Tの繊維密度の分布を表している。 FIG. 3 is a view for explaining the distribution of fiber density of the convex portion 12T of the convex portion 12 in the nonwoven fabric 1 of FIG. In addition, FIG. 3 is described paying attention to one convex part 12, and represents the distribution of the fiber density of convex part 12T by the magnitude of the density (number) of "x" mark.
 図3に示すように、それぞれの凸面部12Tは、凸面部12Tの繊維密度が不織布1の平面方向のうち、不織布1の長手方向Loに偏るように構成されている。つまり、凸面部12Tでは、長手方向Loに延びる所定の線上において、長手方向Loの一方側において繊維密度が高く、長手方向Loの他方側において繊維密度が低い部分が存在する。 As shown in FIG. 3, each convex portion 12T is configured such that the fiber density of the convex portion 12T is biased in the longitudinal direction Lo of the nonwoven fabric 1 in the planar direction of the nonwoven fabric 1. That is, in the convex portion 12T, there is a portion where the fiber density is high on one side in the longitudinal direction Lo and the fiber density is low on the other side in the longitudinal direction Lo on a predetermined line extending in the longitudinal direction Lo.
 また、言い換えれば、第一の実施形態に係る不織布1では、それぞれの凸面部12Tを、不織布1の平面視において不織布1の長手方向Loに直交する方向、つまり横断方向Trに延びる仮想線VLによって同じ面積になるように2つの半凸面部121T、122Tに二等分したときに、一方の半凸面部121Tの繊維密度が、他方の半凸面部122Tの繊維密度よりも高い。ここで、「半凸面部の繊維密度」とは、半凸面部121T、122T全体の繊維密度の平均をいうものとするが、後述のように繊維密度を測定するにあたっては、各半凸面部121T、122Tを繊維が偏っている方向に垂直な方向に、つまり第一の実施形態の場合では横断方向Trに切断して、繊維が偏っている方向に、つまり第一の実施形態の場合では不織布1の長手方向Loに3等分し、これらの切断面の横断方向Tr中央部分において測定した繊維密度を平均したものとする。 In other words, in the non-woven fabric 1 according to the first embodiment, each convex portion 12T is formed by a virtual line VL extending in a direction orthogonal to the longitudinal direction Lo of the non-woven fabric 1 in plan view of the non-woven fabric 1. When the two semiconvex portions 121T and 122T are bisected so as to have the same area, the fiber density of one semiconvex portion 121T is higher than the fiber density of the other semiconvex portion 122T. Here, the “fiber density of the semiconvex portion” refers to the average of the fiber density of the entire semiconvex portions 121T and 122T, but when measuring the fiber density as described later, each semiconvex portion 121T , 122T in a direction perpendicular to the direction in which the fibers are offset, ie in the transverse direction Tr in the case of the first embodiment, in the direction in which the fibers are offset, ie in the case of the first embodiment The fiber density is equally divided into three in the longitudinal direction Lo of 1 and the central portions in the transverse direction Tr of these cut surfaces are averaged.
 図4は、図1の不織布を、不織布の平面視で、黒色の台上で撮影した写真である。図4の写真において、色の濃淡は、繊維密度の高低を示している。つまり、図4の写真の黒色が濃いほど撮影台の色が透けて見え易いことから繊維密度が低いことを示し、白色が濃いほど撮影台の色が透けにくいことから繊維密度が高いことを意味する。図4に示す写真からも、第一の実施形態に係る不織布1では、不織布1の平面視において、凸部12の凸面部12Tの繊維密度が不織布1の平面方向のうちの長手方向Loに偏っているといえる。これは、図4において凸面部12Tを観察すると、長手方向Loの一方側では黒色が濃く、他方側では白色が濃い傾向があるからである。 FIG. 4: is the photograph which image | photographed the nonwoven fabric of FIG. 1 on the black stand by planar view of a nonwoven fabric. In the photograph of FIG. 4, the shade of color indicates the high and low of the fiber density. In other words, darker black in the photo in Fig. 4 indicates that the color of the photographing table is more easily seen through, indicating that the fiber density is lower, and darker white indicates that the color of the photographing table is less transparent, meaning that the fiber density is higher. Do. Also from the photograph shown in FIG. 4, in the nonwoven fabric 1 according to the first embodiment, the fiber density of the convex portion 12T of the convex portion 12 is biased in the longitudinal direction Lo among the planar directions of the nonwoven fabric 1 in plan view of the nonwoven fabric 1 It can be said that This is because, when the convex portion 12T is observed in FIG. 4, black tends to be dark on one side in the longitudinal direction Lo and white tends to be dark on the other side.
 なお本発明では、「繊維密度」を測定するにあたっては、不織布1の切断面において、1mmあたりに繊維が切断された箇所FCの数を指標とする。具体的には、走査電子顕微鏡(例えば、KEYENCE社製「リアルサーフェスビュー顕微鏡 VE-7800」)を用いて、倍率を50~100倍程度に調整して、一定面積(例えば、2.0mm程度)の切断面を観察し、その上で繊維が切断された箇所FC(図5)を数える。観察する切断面は、第一の面FFから第二の面FSにわたって厚さ方向Thの全体を含む。次いで、切断箇所の数を1mmあたりの数に置き換えて、その数を「繊維密度」の指標とする。 In the present invention, in the measurement of the “fiber density”, the number of points FC at which the fibers are cut per 1 mm 2 in the cut surface of the nonwoven fabric 1 is used as an index. Specifically, using a scanning electron microscope (for example, "Real Surface View Microscope VE-7800" manufactured by KEYENCE Corporation), the magnification is adjusted to about 50 to 100 times and a fixed area (for example, about 2.0 mm 2) Observe the cut surface of) and count the points FC (Fig. 5) where the fibers were cut. The cut surface to be observed includes the entire thickness direction Th from the first surface FF to the second surface FS. Then, the number of cutting points is replaced with the number per 1 mm 2 , and the number is used as an index of “fiber density”.
 第一の実施形態において不織布1に使用される繊維は、芯鞘構造の繊維であって、その素材は、鞘が高密度ポリエチレン(HDPE)であり、芯がポリエチレンテレフタラート(PET)である。 The fibers used for the non-woven fabric 1 in the first embodiment are fibers with a core-sheath structure, and the material is a high density polyethylene (HDPE) sheath and a polyethylene terephthalate (PET) core.
 不織布に使用する繊維には、天然繊維、再生繊維(レーヨンや、アセテート等)、熱可塑性樹脂繊維(ポリエチレンや、ポリプロピレン、ポリブチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、アイオノマー樹脂等のポリオレフィンや、ポリエチレンテレフタラートや、ポリブチレンテレフタラート、ポリトリメチレンテレフタラート、ポリ乳酸等のポリエステル、ナイロン等のポリアミド等)又はこれらの表面修飾体等が挙げられるが、これらのうちでは、熱可塑性樹脂繊維又はその表面修飾体であることが好ましい。また、これら繊維は、芯鞘型繊維や、サイド・バイ・サイド型繊維、島/海型繊維等の複合繊維や、中空タイプの繊維、扁平や、Y型、C型等の異型繊維、潜在捲縮又は顕在捲縮の立体捲縮繊維、水流や、熱、エンボス加工等の物理的負荷により分割する分割繊維等であってもよい。なお、これらの繊維は、親水性繊維であってもよいし、疎水性繊維であってもよい。ただし、疎水性繊維を使用する場合には、親水性油剤を繊維に別途塗布する等の加工が必要となる。 Fibers used for non-woven fabrics include natural fibers, regenerated fibers (rayon, acetate, etc.), thermoplastic resin fibers (polyethylene, polypropylene, polybutylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, Ethylene-acrylic acid copolymers, polyolefins such as ionomer resins, polyethylene terephthalate, polyesters such as polybutylene terephthalate, polytrimethylene terephthalate, polylactic acid, polyamides such as nylon, etc. or surface-modified products thereof Among these, it is preferable that they are a thermoplastic resin fiber or its surface modification body. In addition, these fibers include core-sheath fibers, composite fibers such as side-by-side fibers, island / sea fibers, hollow fibers, flat fibers, atypical fibers such as Y-type and C-type fibers, latent fibers It may be a crimped or three-dimensional crimped crimped crimped fiber, a water stream, or a split fiber split by physical load such as heat or embossing. These fibers may be hydrophilic fibers or hydrophobic fibers. However, in the case of using a hydrophobic fiber, processing such as separately applying a hydrophilic oil to the fiber is required.
 また、図1に示すように、第一の実施形態に係る不織布1では、凸部12が、第一の方向D1及び第二の方向D2のそれぞれに沿って直線的に配設されている。ここで、第一の方向D1は横断方向Trと同じであり、第二の方向D2は第一の方向D1から60°傾けられた方向である。また、第一の実施形態に係る不織布1では、凸部12を等間隔に配置することによって、基部10及び凸部12を均等に配置させている。それにより、例えば、不織布1を使い捨てオムツや生理用ナプキン等の吸収性物品のトップシートとして、第一の面FFを表面にして使用するときに、不織布1の上に排泄された体液を吸収性物品の吸収体等が位置する内部に浸透させる基部10と、体液を所望の方向に浸透させる凸部12とを好適な分布で配置することができる。 Moreover, as shown in FIG. 1, in the nonwoven fabric 1 which concerns on 1st embodiment, the convex part 12 is arrange | positioned linearly along each of 1st direction D1 and 2nd direction D2. Here, the first direction D1 is the same as the transverse direction Tr, and the second direction D2 is a direction inclined 60 ° from the first direction D1. Moreover, in the nonwoven fabric 1 which concerns on 1st embodiment, the base 10 and the convex part 12 are arrange | positioned equally by arrange | positioning the convex part 12 at equal intervals. Thus, for example, when the non-woven fabric 1 is used as a top sheet of an absorbent article such as disposable diapers or a sanitary napkin, the bodily fluid excreted on the non-woven fabric 1 can be absorbed when the first surface FF is used as the surface. It is possible to arrange the base 10 which penetrates into the inside where the absorbent or the like of the article is located, and the convex part 12 which penetrates the body fluid in a desired direction, in a suitable distribution.
 さらに、図1に示すように、第一の実施形態に係る不織布1では、第一の方向D1及び第二の方向D2に隣り合う凸部12はそれぞれ、基部10を隔てて間欠的に設けられている。その結果、第一の面FFに排泄された体液を繊維密度が偏っている方向に浸透させて、凸部12の凸面部12Tから隣接する基部10に移行させることができる。それにより、例えば、不織布1を吸収性物品のトップシートに使用したような場合では、効率的に基部10から吸収性物品の内部に液体を浸透させることができる。 Furthermore, as shown in FIG. 1, in the non-woven fabric 1 according to the first embodiment, the convex portions 12 adjacent to the first direction D1 and the second direction D2 are intermittently provided to separate the base 10. ing. As a result, the body fluid excreted on the first surface FF can be made to permeate in the direction in which the fiber density is biased, and transferred from the convex portion 12T of the convex portion 12 to the adjacent base portion 10. Thus, for example, when the non-woven fabric 1 is used for the top sheet of the absorbent article, the liquid can be efficiently permeated from the base 10 into the interior of the absorbent article.
 これより、第一の実施形態に係る不織布の作用について説明する。第一の実施形態に係る不織布1では、上述のように、それぞれの凸面部12Tは、凸面部12Tの繊維密度が不織布1の平面方向のうちの長手方向Loに偏るように構成されている。したがって、凸部12を形成する繊維に吸収された液体は、毛細管現象によって、繊維密度が低い方から高い方に浸透し易いことから、長手方向Loの繊維密度が高い側に移動し易い。したがって、液体を浸透させたい方向に繊維密度が高い側が配置されるように不織布を設置することによって、吸収した液体を所望の方向に浸透させることができる。なお、本明細書において、「液体を所望の方向に浸透させることができる」とは、液体が所望の方向にのみ浸透することをいうものではなく、所望の方向に浸透する液体が増加することを意味するものであることに留意されたい。 The operation of the non-woven fabric according to the first embodiment will now be described. In the nonwoven fabric 1 according to the first embodiment, as described above, the convex portions 12T are configured such that the fiber density of the convex portions 12T is biased in the longitudinal direction Lo among the planar directions of the nonwoven fabric 1. Therefore, the liquid absorbed by the fibers forming the convex portion 12 easily penetrates from the low fiber density to the high fiber density by capillary action, and thus tends to move to the high fiber density side in the longitudinal direction Lo. Therefore, by disposing the non-woven fabric so that the side with the higher fiber density is disposed in the direction in which the liquid is to be infiltrated, the absorbed liquid can be infiltrated in the desired direction. In the present specification, "the liquid can be permeated in the desired direction" does not mean that the liquid penetrates only in the desired direction, but the amount of liquid that penetrates in the desired direction is increased. It should be noted that the meaning of
 なお、凸面部12Tの繊維密度は、第一の実施形態に係る不織布1では長手方向Loに偏っているが、不織布1の平面方向のうち、どの方向に偏っていてもよい。つまり、凸面部12Tは、凸面部12Tの繊維密度が不織布1の平面方向のうち所定の方向に偏るように構成されていればよい。そして、繊維密度が高い側を、液体を浸透させたい方向に向けるように配置することによって、液体を所望の方向に浸透させることができる。 The fiber density of the convex portion 12T is biased in the longitudinal direction Lo in the nonwoven fabric 1 according to the first embodiment, but may be biased in any direction in the planar direction of the nonwoven fabric 1. That is, the convex portion 12T may be configured so that the fiber density of the convex portion 12T is biased in a predetermined direction in the plane direction of the nonwoven fabric 1. Then, the liquid can be made to penetrate in a desired direction by arranging the side with high fiber density to be in the direction in which the liquid is desired to permeate.
 また、図3では、1つの凸部12の凸面部12Tの繊維分布について説明したが、第一の実施形態に係る不織布1では、それぞれの凸部12の凸面部12Tは、図3と同様の繊維分布を有する。しかしながら、全ての凸部12の凸面部12Tの繊維密度が偏っている必要はなく、少なくとも一部の凸部12について、凸部12の凸面部12Tの繊維密度が偏っている不織布1は、本発明の範囲の不織布であるといえる。これは、不織布1に吸収させた液体を所望の方向に浸透させることができるという、本発明の不織布1の作用効果を奏することに変わりはないからである。 Moreover, although FIG. 3 demonstrated the fiber distribution of convex part 12T of the one convex part 12, in the nonwoven fabric 1 which concerns on 1st embodiment, convex part 12T of each convex part 12 is the same as that of FIG. It has a fiber distribution. However, the fiber density of the convex portions 12T of all the convex portions 12 need not be uneven, and the nonwoven fabric 1 in which the fiber density of the convex portions 12T of the convex portions 12 is uneven for at least a part of the convex portions 12 It can be said that it is the nonwoven fabric of the range of the invention. This is because there is no change in exerting the effect of the nonwoven fabric 1 of the present invention that the liquid absorbed in the nonwoven fabric 1 can permeate in the desired direction.
 また、凸面部12Tの繊維密度の偏りの程度は、不織布1に吸収させた液体を所望の方向に浸透させることができる程度に偏っていればよい。 Further, the degree of the deviation of the fiber density of the convex portion 12T may be a degree that allows the liquid absorbed in the non-woven fabric 1 to penetrate in a desired direction.
 第一の実施形態に係る不織布1では、上述のように、凸部12が、第一の方向D1と第一の方向D1から60°傾けられた第二の方向D2のそれぞれに沿って直線的に配設されている。別の実施形態では、第二の方向D2は第一の方向D1から60°以外の角度に傾けられている。さらに別の実施形態では、凸部12は、1方向にのみ沿って直線的に配設されている。その他の実施形態では、凸部12は、どの方向にも沿って配設されておらず、任意の位置に配設されている。 In the nonwoven fabric 1 according to the first embodiment, as described above, the convex portion 12 is linear along the first direction D1 and the second direction D2 inclined 60 ° from the first direction D1. Are located in In another embodiment, the second direction D2 is inclined at an angle other than 60 ° from the first direction D1. In yet another embodiment, the protrusions 12 are disposed linearly along only one direction. In the other embodiment, the convex portion 12 is not disposed along any direction but disposed at an arbitrary position.
 また、第一の実施形態に係る不織布1では、上述のように、凸部12を等間隔に配置することによって、基部10及び凸部12を均等に配置させている。別の実施形態では、凸部12同士の間隔は一定ではない。 Moreover, in the nonwoven fabric 1 which concerns on 1st embodiment, the base 10 and the convex part 12 are arrange | positioned equally by arrange | positioning the convex part 12 at equal intervals as mentioned above. In another embodiment, the distance between the protrusions 12 is not constant.
 別の実施形態では、凸部12は、第一の方向D1及び第二の方向D2のいずれか一方に直線的に配設されており、さらに別の実施形態では、どの方向にも沿って配設されておらず、不規則に配置されている。 In another embodiment, the convex portion 12 is linearly disposed in either the first direction D1 or the second direction D2, and in still another embodiment, disposed along any direction. It is not set up and is irregularly placed.
(第二の実施形態)
 これより、図6を参照しつつ本発明の第二の実施形態に係る不織布1を説明する。第二の実施形態については、第一の実施形態と異なる点について主に説明する。
Second Embodiment
From this, the nonwoven fabric 1 according to the second embodiment of the present invention will be described with reference to FIG. The second embodiment will be mainly described in terms of differences from the first embodiment.
 図6は、第二の実施形態に係る不織布1における凸部12の凸面部12Tの繊維密度の分布を説明するための図である。図6に示すように、それぞれの凸部12において、凸面部12Tの縁部12TEは、凸面部12Tの中央部12TCよりも繊維密度が高い。このように、凸面部12Tの縁部12TEの繊維密度が高いと、縁部12TEの剛性が高くなり、それにより、凸部12に外力が付与された場合においても、凸部12の形状を維持することができる。よって、例えば、不織布1を販売するために包装するときに、凸部12に外力が付与されて不織布1の形状が崩れることを抑制することができる。その結果、不織布1が包装され、当該包装が開封された後も成形性に優れるという作用効果を奏することができ好ましい。さらに、第二の実施形態に係る不織布1は、包装し開封した後も製造時の不織布1の凸部12の形状を保つことができることからアピアランス(外観)上も好ましい。 FIG. 6 is a diagram for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 in the nonwoven fabric 1 according to the second embodiment. As shown in FIG. 6, in each convex portion 12, the edge 12TE of the convex portion 12T has a higher fiber density than the central portion 12TC of the convex portion 12T. As described above, when the fiber density of the edge 12TE of the convex portion 12T is high, the rigidity of the edge 12TE becomes high, whereby the shape of the convex portion 12 is maintained even when an external force is applied to the convex portion 12 can do. Therefore, for example, when packaging the nonwoven fabric 1 for sale, external force can be applied to the convex portions 12 and the shape of the nonwoven fabric 1 can be suppressed from being broken. As a result, the nonwoven fabric 1 is packaged, and even after the package is opened, it is possible to exert the effect of being excellent in moldability, which is preferable. Furthermore, the nonwoven fabric 1 according to the second embodiment is preferable also in appearance (appearance) because the shape of the convex portion 12 of the nonwoven fabric 1 at the time of production can be maintained even after packaging and opening.
 なお、縁部12TEは、繊維密度を確認できる程度に、凸面部12Tの端縁12TEEに沿いかつ中央部12TC方向に一定の幅を有する凸面部12Tの領域である。また、中央部12TCは、縁部12TEよりも端縁12TEEから離れた部分である。なお、縁部12TEと中央部12TCの識別が困難な場合は、不織布1の平面視における凸面部12Tの幾何学的形状の重心周りの一定の範囲を中央部12TCとする。また、第二の実施形態の場合では、縁部12TEの幅は、直径約10mmの凸面部12Tに対して1mm程度、つまり直径(あるいは、凸面部12Tの差渡しの長さ)の1割程度の長さである。 The edge 12TE is a region of the convex portion 12T having a constant width in the direction of the central portion 12TC along the edge 12TEE of the convex portion 12T to the extent that the fiber density can be confirmed. Also, the central portion 12TC is a portion farther from the edge 12TEE than the edge 12TE. When it is difficult to distinguish between the edge 12TE and the central portion 12TC, a certain range around the center of gravity of the geometric shape of the convex portion 12T in plan view of the nonwoven fabric 1 is defined as the central portion 12TC. Further, in the case of the second embodiment, the width of the edge 12TE is about 1 mm with respect to the convex part 12T having a diameter of about 10 mm, that is, about 10% of the diameter (or the length of the convex part 12T). The length of
 なお第二の実施形態においても、第一の実施形態に係る不織布1と同様に、それぞれの凸面部12Tは、凸面部12Tの繊維密度が不織布1の平面方向のうち、不織布1の長手方向Loに偏るように構成されている。つまり、第二の実施形態では、凸面部12Tの中央部12TCで所定の長手方向Loに延びる線上において、長手方向Loの一方側のある箇所において繊維密度が高く、長手方向Loの他方側のある箇所において繊維密度が低い部分が存在する。 Also in the second embodiment, as in the nonwoven fabric 1 according to the first embodiment, in each convex surface portion 12T, the fiber density of the convex surface portion 12T is the longitudinal direction Lo of the nonwoven fabric 1 among the planar directions of the nonwoven fabric 1. It is configured to be biased. That is, in the second embodiment, on a line extending in the predetermined longitudinal direction Lo at the central portion 12TC of the convex portion 12T, the fiber density is high at a position on one side in the longitudinal direction Lo and the other side in the longitudinal direction Lo There is a portion with low fiber density in the portion.
 (第三の実施形態)
 これより、図7を参照しつつ、本発明の第三の実施形態に係る不織布1を説明する。第三の実施形態については、第一の実施形態と異なる点について主に説明する。
Third Embodiment
The nonwoven fabric 1 according to the third embodiment of the present invention will be described with reference to FIG. 7. The third embodiment will be mainly described in terms of differences from the first embodiment.
 図7は、第三の実施形態に係る不織布1における凸部12の凸面部12Tと、凸部12の周囲に位置する基部10との繊維密度の分布を説明するための図である。図7を参照すると、第三の実施形態では、不織布1の平面視において、凸面部12Tの長手方向Loの一方の端部である、凸部12の凸面部12Tを構成する繊維の繊維密度が高い部分12THに近接する基部10の部分10Lでは、繊維密度が基部10のその他の部分よりも低い。つまり、基部10は、凸部12の周囲において、凸部12の繊維密度が高い部分12THに近づくにつれて、繊維密度が低くなる。 FIG. 7 is a view for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 and the base portion 10 located around the convex portion 12 in the nonwoven fabric 1 according to the third embodiment. Referring to FIG. 7, in the third embodiment, the fiber density of the fibers constituting the convex portion 12T of the convex portion 12, which is one end of the convex portion 12T in the longitudinal direction Lo, in plan view of the nonwoven fabric 1 In the portion 10 L of the base 10 adjacent to the high portion 12 TH, the fiber density is lower than the other portions of the base 10. That is, in the base 10, the fiber density becomes lower as the fiber density of the convex portion 12 approaches the portion 12TH where the fiber density of the convex portion 12 is higher.
 その結果、基部10において繊維密度が他の部分よりも低い部分ができることになる。それにより、例えば、第三の実施形態に係る不織布1を吸収性物品のトップシートに使用した場合に、上述のように凸面部12Tの繊維密度が高い部分12THに移動してきた液体を、その近くに位置する基部10の繊維密度の低い部分10Lにおいて、速やかに透過させることができる。その結果、不織布1上に排泄された体液を、吸収体等が設けられている吸収性物品の内部に速やかに移行させることができるので好ましい。 As a result, in the base 10, there will be a portion where the fiber density is lower than the other portions. Thereby, for example, when the nonwoven fabric 1 according to the third embodiment is used for the top sheet of the absorbent article, the liquid which has moved to the portion 12TH where the fiber density of the convex portion 12T is high as described above In the low fiber density portion 10L of the base 10 located at the position of the base 10, it is possible to rapidly permeate. As a result, the body fluid excreted on the non-woven fabric 1 can be rapidly transferred to the inside of the absorbent article provided with an absorbent or the like, which is preferable.
 (第四の実施形態)
 これより、図8を参照しつつ本発明の第四の実施形態に係る不織布1を説明する。第四の実施形態については、第三の実施形態と異なる点について主に説明する。
Fourth Embodiment
From this, the nonwoven fabric 1 according to the fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment will be mainly described in terms of differences from the third embodiment.
 図8は、第四の実施形態に係る不織布1における凸部12の凸面部12Tと、凸部12の周囲に位置する基部10との繊維密度の分布を説明するための図である。第四の実施形態に係る不織布では、第二の実施形態に係る不織布と同様に、図8に示すように、それぞれの凸部12において、凸面部12Tの縁部12TEは、凸面部12Tの中央部12TCよりも繊維密度が高い。つまり、第四の実施形態に係る不織布1は、第二及び第三の実施形態に係る不織布1の両方の作用効果を併せ持つ不織布である。これらの効果は、第二及び第三の実施形態に係る不織布1の作用効果と同じなので、説明を省略する。 FIG. 8 is a view for explaining the fiber density distribution of the convex portion 12T of the convex portion 12 and the base portion 10 located around the convex portion 12 in the nonwoven fabric 1 according to the fourth embodiment. In the non-woven fabric according to the fourth embodiment, as in the non-woven fabric according to the second embodiment, as shown in FIG. 8, in each of the convex portions 12, the edge 12TE of the convex portion 12T is the center of the convex portion 12T. Fiber density is higher than 12 TC. That is, the nonwoven fabric 1 which concerns on 4th embodiment is a nonwoven fabric which has both the effect of the nonwoven fabric 1 which concerns on 2nd and 3rd embodiment. These effects are the same as the effects of the nonwoven fabric 1 according to the second and third embodiments, and thus the description thereof is omitted.
 (不織布の製造方法)
 これより、第四の実施形態に係る不織布1の製造方法を説明する。図9は、本発明の実施形態に係る不織布1を製造するための製造設備3の概要を示す概略図であり、図10は図9のX部拡大図である。製造設備3は、繊維F1を開繊しかつ目付けを調整するカード機20と、不織布1の形状になるように繊維F2を賦形するサクションドラム22及びエアジェットノズル26と、繊維F3に賦形された形状を定着させるように繊維F3を熱処理する熱処理機28を備える。なお、図9において、後述する繊維F1~F3及び不織布1は矢印MDの方向に搬送され、この搬送方向MDは不織布1の長手方向Loと一致する。
(Method of manufacturing non-woven fabric)
From this, the manufacturing method of nonwoven fabric 1 concerning a fourth embodiment is explained. FIG. 9 is a schematic view showing an outline of a production facility 3 for producing the non-woven fabric 1 according to the embodiment of the present invention, and FIG. 10 is an enlarged view of a portion X in FIG. The manufacturing equipment 3 forms a carding machine 20 for opening the fiber F1 and adjusting the fabric weight, a suction drum 22 and an air jet nozzle 26 for forming the fiber F2 so as to be in the shape of the nonwoven fabric 1, and a fiber F3. The heat processing machine 28 heat-processes the fiber F3 so that fixed shape may be fixed. In FIG. 9, the fibers F1 to F3 and the non-woven fabric 1 described later are transported in the direction of the arrow MD, and the transport direction MD coincides with the longitudinal direction Lo of the non-woven fabric 1.
 不織布1の製造方法を簡単に述べると、まず、繊維F1をカード機20で開繊しかつ目付けを調整し、開繊後の繊維F2をサクションドラム22に供給する。次いで、パターンプレート24が設けられているサクションドラム22の外周面において繊維F2を吸付けて移動させつつエアジェットノズル26によって温風を吹き付けて、上記実施形態に係る不織布1の形状になるように繊維F2を賦形する。そして、賦形後の繊維F3を熱処理機28内において熱処理して、以前の工程で賦形された繊維F3の形状を定着させることによって、不織布1が完成する。 The method of producing the non-woven fabric 1 will be briefly described. First, the fiber F1 is opened by the carding machine 20 and the coating weight is adjusted, and the opened fiber F2 is supplied to the suction drum 22. Subsequently, warm air is blown by the air jet nozzle 26 while suctioning and moving the fiber F2 on the outer peripheral surface of the suction drum 22 provided with the pattern plate 24 so that the shape of the nonwoven fabric 1 according to the above embodiment is obtained. Form the fiber F2. And the non-woven fabric 1 is completed by heat-treating the fiber F3 after shaping in the heat treatment machine 28 and fixing the shape of the fiber F3 shaped in the previous step.
 これより、不織布1の製造方法を詳述する。不織布1の製造工程では、まず、開繊された繊維F1をカード機20に供給する。カード機20では、繊維F1がさらに開繊され、繊維F1の目付け(坪量)が所望の値に調節される。 The method of manufacturing the non-woven fabric 1 will now be described in detail. In the manufacturing process of the nonwoven fabric 1, first, the opened fiber F <b> 1 is supplied to the carding machine 20. In the carding machine 20, the fiber F1 is further opened, and the basis weight (weight) of the fiber F1 is adjusted to a desired value.
 カード機20を通過した繊維F2は、サクションドラム22に供給される。サクションドラム22の内部は中空に形成されており、サクションドラム22の内部は、ブロワ等の吸引手段によって空気が吸引されることにより負圧になっている。サクションドラム22の外周面には多数の吸引孔22tが設けられており、外気を吸引することができる。なお、サクションドラム22の吸引孔の径は、繊維F2をサクションドラム22内部に吸引しないように小さく設定されている。 The fiber F2 which has passed through the card machine 20 is supplied to the suction drum 22. The inside of the suction drum 22 is hollow, and the inside of the suction drum 22 is under negative pressure by suction of air by suction means such as a blower. A large number of suction holes 22t are provided on the outer peripheral surface of the suction drum 22 so that outside air can be sucked. The diameter of the suction hole of the suction drum 22 is set small so as not to suction the fiber F2 into the suction drum 22.
 サクションドラム22の外周面は、その全周にわたってパターンプレート24によって覆われており、具体的には、繊維F2はパターンプレート24上に供給される。この製造方法では、パターンプレート24は、不織布1の凸部12と相補的な形状の貫通孔24tが凸部12の分布をもって設けられている開孔プレートである。 The outer peripheral surface of the suction drum 22 is covered by the pattern plate 24 over the entire circumference thereof. Specifically, the fibers F2 are supplied onto the pattern plate 24. In this manufacturing method, the pattern plate 24 is an apertured plate in which through holes 24 t having a shape complementary to the projections 12 of the nonwoven fabric 1 are provided with the distribution of the projections 12.
 これにより、パターンプレート24の貫通孔24tにおいて露出しているサクションドラム22の吸引孔が、パターンプレート24上に供給された繊維F2を吸付ける。なお、実施形態の不織布1では、第一の面FFにおける基部10と凸部12の凸面部12Tとの不織布1の厚さ方向Thの位置の差は、パターンプレート24の厚さにほぼ等しい。 Thus, the suction holes of the suction drum 22 exposed in the through holes 24 t of the pattern plate 24 suck the fibers F 2 supplied onto the pattern plate 24. In the nonwoven fabric 1 of the embodiment, the difference in position in the thickness direction Th of the nonwoven fabric 1 between the base 10 and the convex portion 12T of the convex portion 12 in the first surface FF is substantially equal to the thickness of the pattern plate 24.
 なお、この製造方法では、サクションドラム22は、その外周面において、上流のベルトコンベアUBから繊維F2が受け渡される地点SSから、下流のベルトコンベアDBに繊維F2を受け渡す地点SEまでの領域ASで繊維F2を吸付けるようにされており、その他の領域ANでは吸付けないように構成されている。サクションドラム22による吸付け作用の効率を向上させるためである。 In this manufacturing method, the suction drum 22 has an area AS from the point SS where the fiber F2 is delivered from the upstream belt conveyor UB to the point SE where the fiber F2 is delivered to the downstream belt conveyor DB on the outer peripheral surface. The fiber F2 is designed to suck at the other area, and is configured not to suck at the other area AN. This is to improve the efficiency of the suction operation by the suction drum 22.
 サクションドラム22の外周面に吸い付けられた繊維F2は、エアジェットノズル26によって温風が吹付けられる。ここで、エアジェットノズル26は、幅方向に均一な幅で所定の量の温風を一定量均一に噴出する機構を有するものである。これら吹き出し口の幅や、吹出口から繊維F2までの距離などを調節することによって、温風が、繊維F2から形成される積層体の全幅にわたって略均等に吹付けられるようにされている。こうしたサクションドラム22及びエアジェットノズル26による吸付け作用及び吹付け作用によって、上記実施形態に係る不織布1の形状になるように繊維F2を賦形することができる。 The fibers F 2 sucked to the outer peripheral surface of the suction drum 22 are blown with warm air by the air jet nozzle 26. Here, the air jet nozzle 26 has a mechanism that ejects a predetermined amount of warm air uniformly with a uniform width in the width direction. By adjusting the width of the blowout port, the distance from the blowout port to the fiber F2, and the like, warm air is blown substantially uniformly over the entire width of the laminate formed from the fiber F2. The fibers F2 can be shaped so as to have the shape of the nonwoven fabric 1 according to the above-described embodiment by the suction action and the spray action by the suction drum 22 and the air jet nozzle 26.
 エアジェットノズル26から吹付けられる温風の温度は、繊維F2の融点よりも高いが、完成後において不織布1が過剰に固くなってしまうことを避けるために、高くなりすぎないように調整されている。また、この温風の風速は、繊維F2を所望の形状に賦形するように決定される。概して、エアジェットノズル26からの温風の温度及び風速は、使用する繊維の素材や目付け、完成後の不織布1の形状等により異なってくるが、例えば実験等により最適な温度及び風速を決定することが好ましい。例えば、エアジェットノズル26から吹付けられる温風の温度は80℃~400[℃]であり、その風速は10~200[m/sec]であると好ましい。この製造方法では、エアジェットノズル26から吹付けられる温風の温度は180[℃]であり、その風速は38.9[m/sec]である。なお、この段階で、繊維F2に対してその融点よりも高い温度の温風を吹付けることによって、繊維F2に賦形しつつ、賦形した形状をある程度定着させることができる。 The temperature of the hot air blown from the air jet nozzle 26 is higher than the melting point of the fiber F2, but is adjusted so as not to be too high in order to avoid the nonwoven fabric 1 becoming excessively hardened after completion. There is. Also, the wind speed of the warm air is determined so as to shape the fiber F2 into a desired shape. Generally, the temperature and the wind speed of the warm air from the air jet nozzle 26 vary depending on the material and weight of the fiber used, the shape of the non-woven fabric 1 after completion, and the like. Is preferred. For example, the temperature of the warm air blown from the air jet nozzle 26 is preferably 80 ° C. to 400 ° C., and the wind speed thereof is preferably 10 to 200 m / sec. In this manufacturing method, the temperature of the warm air blown from the air jet nozzle 26 is 180 ° C., and the wind speed thereof is 38.9 m / sec. At this stage, by blowing warm air at a temperature higher than the melting point of the fiber F2, it is possible to fix the shaped shape to some extent while shaping the fiber F2.
 なお、本実施形態に係る製造設備3では、サクションドラム22及びパターンプレート24を向く繊維F2から形成される積層体の面が、不織布1の第一の面FFになり、エアジェットノズル26を向く当該積層体の面が、不織布1の第二の面FSになる。 In the manufacturing facility 3 according to this embodiment, the surface of the laminate formed of the fibers F2 facing the suction drum 22 and the pattern plate 24 is the first surface FF of the nonwoven fabric 1 and faces the air jet nozzle 26. The surface of the laminate is the second surface FS of the nonwoven fabric 1.
 繊維F2は、エアジェットノズル26により吹付けられると、吹き飛ばされてその周囲に移動する。その結果、吹付けられた部分の繊維の量が減少することになり、ひいては吹付けられた部分の繊維密度が低くなる。一方で、エアジェットノズル26は定置されていることから、パターンプレート24の貫通孔24t内に位置する繊維F2は、搬送方向MDの上流側に位置する部分F2tuにおいて、最終的に温風が吹付けられることによって、繊維密度が低くなる。その後、エアジェットノズル26による吹付け作用によって移動した繊維F2は、サクションドラム22の吸付け作用によって移動後の位置に定着する。これを詳述すると、まずは、貫通孔24t内に位置する繊維F2の搬送方向MDの下流側の部分F2tdに温風が吹付けられて当該部分F2tdに位置する繊維が吹き飛ばされて、搬送方向MDの下流側に移動する。しかしながら、その後に、貫通孔24t内に位置する繊維F2の搬送方向MDの上流側の部分F2tuに温風が吹付けられて、搬送方向MDの下流側に繊維が移動する。そして、パターンプレート24の貫通孔24t内に位置する繊維F2は、サクションドラム22によって継続的に吸付けられていることから、繊維の移動が抑制されつつ後の工程に搬送される。その結果、最終的には、繊維F2の搬送方向MDの下流側の部分F2tdの繊維密度が高くなり、反対に最後に吹付けられた繊維F2の搬送方向MDの上流側の部分F2tuの繊維密度が低くなる。このようにして、不織布1では、それぞれの凸部12において、凸面部12Tは、凸面部12Tの繊維密度が所定の方向、上述の実施形態では搬送方向MDと一致する方向である、不織布1の長手方向Loに偏るように構成される。 When the fiber F2 is blown by the air jet nozzle 26, it is blown off and moves around it. As a result, the amount of fibers in the sprayed part will be reduced and thus the fiber density of the sprayed part will be lower. On the other hand, since the air jet nozzle 26 is stationary, the fiber F2 located in the through hole 24t of the pattern plate 24 is finally blown by the warm air at the portion F2tu located on the upstream side in the transport direction MD. The attachment reduces the fiber density. Thereafter, the fiber F2 moved by the blowing action by the air jet nozzle 26 is fixed at the position after the movement by the suction action of the suction drum 22. First, warm air is blown to the downstream portion F2td of the fiber F2 located in the through hole 24t in the transport direction MD, and the fibers located in the portion F2td are blown away, and the transport direction MD is generated. Move downstream of However, after that, warm air is blown to the upstream portion F2tu of the fiber F2 located in the through hole 24t in the transport direction MD, and the fiber moves to the downstream side in the transport direction MD. And since the fiber F2 located in the through-hole 24t of the pattern plate 24 is continuously attracted | sucked by the suction drum 22, it is conveyed by the later process, the movement of a fiber being suppressed. As a result, finally, the fiber density of the portion F2td on the downstream side in the conveyance direction MD of the fiber F2 is increased, and conversely, the fiber density of the portion F2tu on the upstream side of the conveyance direction MD of the fiber F2 finally blown. Becomes lower. Thus, in the non-woven fabric 1, in each convex portion 12, the convex portion 12T is a direction in which the fiber density of the convex portion 12T is a predetermined direction, in the above-mentioned embodiment, the direction of It is configured to be biased in the longitudinal direction Lo.
 また、パターンプレート24の貫通孔24t同士の間に位置する外表面24s上に位置する繊維F2のうちの、搬送方向MDの上流側に位置する部分F2suに関してもこれと同様のことがいえる。つまり、当該部分F2suに温風が吹付けられることにより繊維F2が吹き飛ばされてその周囲に移動する。このとき、貫通孔24t内にも繊維F2が移動する。この後に、繊維F2のうちの、貫通孔24t内の繊維F2の搬送方向の上流側の部分F2tuに温風が吹きつけられるが、繊維F2が貫通孔24t内に一旦移動すると、貫通孔24t内から外表面24sに繊維F2は戻って来ないので、当該部分F2suの繊維密度は低くなる。その反面で、貫通孔24t内の繊維F2の搬送方向の上流側の部分F2tuの繊維密度が高くなる。その結果、第三の実施形態に係る不織布1のように、基部10は、凸部12の周囲において、凸部12の繊維密度が高い部分12THに近づくにつれて、繊維密度が低くなる。 The same applies to the portion F2su of the fibers F2 located on the outer surface 24s located between the through holes 24t of the pattern plate 24 and located upstream of the transport direction MD. That is, when the warm air is blown to the portion F2su, the fiber F2 is blown off and moves around. At this time, the fiber F2 also moves in the through hole 24t. Thereafter, warm air is blown to a portion F2tu of the fiber F2 in the through hole 24t on the upstream side in the transport direction of the fiber F2, but once the fiber F2 moves into the through hole 24t, the inside of the through hole 24t Since the fiber F2 does not return from the to the outer surface 24s, the fiber density of the portion F2su is low. On the other hand, the fiber density of the portion F2tu on the upstream side in the transport direction of the fiber F2 in the through hole 24t is high. As a result, as in the non-woven fabric 1 according to the third embodiment, the fiber density of the base 10 decreases as the fiber density of the convex portion 12 approaches the portion 12 TH where the fiber density of the convex portion 12 is high.
 また、パターンプレート24の貫通孔24tを形成する側壁24wと、サクションドラム22の外周面とが接する位置に形成される隅部Coは、エアジェットノズル26からの温風が届きづらく、隅部Coから繊維が移動しにくい。一方で、隅部Coの周囲からエアジェットノズル26からの温風により繊維が吹き飛ばされて隅部Coに移動してくる。そして、隅部Coは、不織布1では、凸部12の縁部12TEに相当する位置である。以上により、上記製造工程では、隅部Coにおける繊維の量が多くなり、その結果、第二の実施形態に係る不織布1のように、凸部12の縁部12TEは、凸部の中央部12TCよりも繊維密度が高くなる。 Further, warm air from the air jet nozzle 26 does not easily reach the corner portion Co formed at the position where the side wall 24 w forming the through hole 24 t of the pattern plate 24 and the outer peripheral surface of the suction drum 22 contact. It is difficult for fibers to move from On the other hand, the fibers are blown off from the periphery of the corner portion Co by the warm air from the air jet nozzle 26 and move to the corner portion Co. The corner portion Co is a position corresponding to the edge portion 12 TE of the convex portion 12 in the nonwoven fabric 1. As described above, in the manufacturing process, the amount of fibers at the corner Co increases, and as a result, as in the non-woven fabric 1 according to the second embodiment, the edge 12TE of the projection 12 is the central portion 12TC of the projection. The fiber density is higher than that.
 最終的に、パターンプレート24の貫通孔24tの形状や、エアジェットノズル26から吹付けられる温風の温度や風速等によって、凸部12の形状が決定される。 Finally, the shape of the convex portion 12 is determined by the shape of the through hole 24t of the pattern plate 24, the temperature of the warm air blown from the air jet nozzle 26, the wind speed, and the like.
 図9に示すように、上記吸付け及び吹付け作用によって賦形された繊維F3は次いで、熱処理機28に移送される。繊維F3は、熱処理機28内において熱処理され、前段階で賦形された形状が定着する。熱処理機28では、繊維F3が繊維の融点に対して比較的低温かつ低速の温風で長時間をかけて熱処理されることによって、以前の工程で賦形された繊維F3の形状を定着させると共に不織布1に柔軟性を持たせることを可能にする。概して、熱処理機28内の温風の温度及び風速や熱処理の時間等は、使用する繊維の素材や目付け等により異なってくるが、例えば実験等により最適な温度及び風速を決定することが好ましい。 As shown in FIG. 9, the fibers F3 shaped by the suction and spraying action are then transferred to the heat treatment machine. The fibers F3 are heat treated in the heat treatment machine 28 and the shape shaped in the previous step is fixed. In the heat treatment machine 28, the fiber F3 is heat-treated for a long time with warm air at a relatively low temperature and a low temperature relatively to the melting point of the fiber, thereby fixing the shape of the fiber F3 formed in the previous step It is possible to make the nonwoven fabric 1 flexible. Generally, the temperature of the warm air in the heat treatment machine 28, the wind speed, the time of the heat treatment, etc. vary depending on the material of the fibers used, the coating weight, etc. However, it is preferable to determine the optimum temperature and wind speed by experiments, for example.
 熱処理機28による繊維F3の熱処理が終了すると、不織布1が完成する。完成した不織布1は、所望のサイズに切断して使用される。 When the heat treatment of the fiber F3 by the heat treatment machine 28 is completed, the nonwoven fabric 1 is completed. The finished nonwoven fabric 1 is cut into a desired size and used.
 これまで、第四の実施形態に係る不織布1の製造方法について説明してきたが、パターンプレート24の形状や、エアジェットノズル26から吹付ける温風の温度や風速等を適宜変更することによって、第一~第三に係る不織布1を製造することができる。 So far, the manufacturing method of the nonwoven fabric 1 according to the fourth embodiment has been described, but by appropriately changing the shape of the pattern plate 24, the temperature of the warm air blown from the air jet nozzle 26, etc. The nonwoven fabric 1 according to the first to third aspects can be manufactured.
 本実施例では、様々な条件が設定された不織布によって、液体拡散距離試験が行われた。液体拡散距離試験は、不織布が吸収した液体が、指向性をもって浸透することを確認するための試験である。 In the present example, the liquid diffusion distance test was performed with the nonwoven fabric in which various conditions were set. The liquid diffusion distance test is a test to confirm that the liquid absorbed by the non-woven fabric penetrates in a directional manner.
 これより、実施例1~3及び比較例について説明する。 Now, Examples 1 to 3 and a comparative example will be described.
 (実施例1~3)
 実施例1~3に係る不織布は、上述の製造方法によって製造されたものである。これらの不織布を製造するときのエアジェットノズル26から吹付けられる温風の温度及び風速と、熱処理機28内における熱処理の温度及び風速は、後述する表1に示されている。また、これらの不織布における、凸部の凸面部の繊維密度の偏りは、図11に示される2つの測定点PH、PLの周囲で、上述の繊維密度の測定方法により測定された。一方の測定点PHは、不織布1の平面視における凸面部12Tの中心点Cと、中心点Cから長手方向Loに沿って繊維密度が高い側に位置する端縁12TEEとの中点である。そして、他方の測定点PLは、凸面部12Tの中心点Cと、中心点Cから長手方向Loに沿って繊維密度が低い側に位置する端縁12TEEとの中点である。これらの測定点で測定された繊維密度の差が大きいと、より凸面部の繊維密度が偏っているということができる。後述する表1を参照すると、実施例1よりも実施例2に係る不織布の凸面部の繊維密度が偏っている。そして実施例2よりも実施例3に係る不織布の凸面部の繊維密度が偏っている。
(Examples 1 to 3)
The non-woven fabrics according to Examples 1 to 3 are produced by the above-mentioned production method. The temperature and the wind speed of the warm air blown from the air jet nozzle 26 when manufacturing these non-woven fabrics, and the temperature and the wind speed of the heat treatment in the heat treatment machine 28 are shown in Table 1 described later. Further, in these non-woven fabrics, the deviation of the fiber density of the convex part of the convex part was measured by the above-mentioned measuring method of the fiber density around the two measurement points PH and PL shown in FIG. One measurement point PH is a middle point between the center point C of the convex portion 12T in plan view of the nonwoven fabric 1 and the edge 12TEE located on the side where the fiber density is high along the longitudinal direction Lo from the center point C. The other measurement point PL is a midpoint between the center point C of the convex portion 12T and the edge 12TEE located on the side where the fiber density is low along the longitudinal direction Lo from the center point C. When the difference in fiber density measured at these measurement points is large, it can be said that the fiber density in the convex portion is more biased. Referring to Table 1 described later, the fiber density of the convex portion of the nonwoven fabric according to Example 2 is more biased than in Example 1. And the fiber density of the convex part of the nonwoven fabric concerning Example 3 is uneven rather than Example 2.
 (比較例)
 比較例に係る不織布は、カード機で開繊された繊維が、サクションドラムによって吸引されることなく、かつエアジェットノズルによって温風を吹付けられることなく、熱処理機で繊維密度が均等になるように平面状に形成されたものである。このときの、熱処理機内における熱処理の温度及び風速は、後述する表1に示されている。
(Comparative example)
In the non-woven fabric according to the comparative example, the fibers opened by the carding machine are not sucked by the suction drum and the hot air is not blown by the air jet nozzle, so that the fiber density becomes uniform by the heat treatment machine In a plane. The temperature and the wind speed of the heat treatment in the heat treatment machine at this time are shown in Table 1 described later.
 次に、本実施例で行われた試験の試験方法について説明する。液体拡散距離試験は、幅150mm、長さ300mmにカットした、実施例及び比較例に係る不織布のサンプルを、幅250mm、長さ450mmのステンレス板に載置し、1つの凸部の中央に20ccの模擬人工尿を2.5秒で滴下することによって行った。このとき、サンプルの長さ方向が凸部の凸面部を構成する繊維の繊維密度が偏っている方向であり、長さ方向に沿った、凸面部の繊維密度が高い方向をDH方向とし、凸面部の繊維密度が低い方向をDL方向とした。そして、人工尿がDH方向及びDL方向に浸透して到達した、人工尿の滴下位置からの距離dh及びdlをそれぞれ測定した。このときの、距離dhから距離dlを引いた値を液体拡散距離とした。上記液体拡散距離試験を3回行い、各測定値を算術平均した値を液体拡散距離として算出した。 Next, the test method of the test performed in the present embodiment will be described. In the liquid diffusion distance test, a sample of the non-woven fabric according to the example and the comparative example cut to a width of 150 mm and a length of 300 mm was placed on a stainless plate of 250 mm width and 450 mm length, and 20 cc at the center of one convex portion The artificial artificial urine was done by dropping it in 2.5 seconds. At this time, the longitudinal direction of the sample is the direction in which the fiber density of the fibers constituting the convex portion of the convex portion is uneven, and the direction along which the fiber density of the convex portion is high is taken as the DH direction. The direction in which the fiber density of the part was low was taken as the DL direction. Then, distances dh and dl from the dropping position of the artificial urine, which the artificial urine penetrated and reached in the DH direction and the DL direction, were respectively measured. At this time, a value obtained by subtracting the distance dl from the distance dh was taken as the liquid diffusion distance. The liquid diffusion distance test was performed three times, and the value obtained by arithmetically averaging the measured values was calculated as the liquid diffusion distance.
 なお、液体拡散距離試験で使用された人工尿は、イオン交換水10Lに、尿素200g、塩化ナトリウム80g、硫酸マグネシウム8g、塩化カルシウム3g及び色素(青色1号)約1gを溶解させることにより調製した。 The artificial urine used in the liquid diffusion distance test was prepared by dissolving 200 g of urea, 80 g of sodium chloride, 8 g of magnesium sulfate, 3 g of calcium chloride and about 1 g of pigment (Blue No. 1) in 10 L of ion-exchanged water .
 以下に表1を示す。表1には、実施例1~3及び比較例の不織布の目付け、厚さ、作成条件、各測定点PH、PL周辺における凸面部の繊維密度及び液体拡散距離試験の結果を示す。なお、表1の「厚さ」は、3gf/cm2の圧力下で3回測定された厚さの平均値であり、実施例1~3に係る不織布では、凸部の厚さが測定された。 Table 1 is shown below. Table 1 shows the results of the fabric weight, thickness, preparation conditions, each measurement point PH, the fiber density of the convex portion around PL and the liquid diffusion distance test around each of the nonwoven fabrics of Examples 1 to 3 and Comparative Example. In addition, "thickness" of Table 1 is an average value of the thickness measured 3 times under the pressure of 3 gf / cm2, and in the nonwoven fabric concerning Example 1-3, the thickness of the convex part was measured. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の液体拡散距離試験の結果に示されるように、凸面部の繊維密度が偏っているほど、液体拡散距離が大きい。したがって、当該繊維密度の偏りが大きいほど、不織布に吸収させた液体を、凸面部を構成する繊維の繊維密度が偏っている方向に浸透させることができるといえる。 As shown in the results of the liquid diffusion distance test in Table 1, the more uneven the fiber density of the convex part, the larger the liquid diffusion distance. Therefore, it can be said that as the deviation of the fiber density is larger, the liquid absorbed in the non-woven fabric can be permeated in the direction in which the fiber density of the fibers constituting the convex portion is biased.
 本明細書、図面及び特許請求の範囲の記載から当業者によって理解できるような全ての特徴は、本明細書において、これらの特徴が特定の他の特徴に関連してのみ組み合わされて説明されたとしても、それらの特徴が明確に除外されない限り、又は技術的な態様が不可能な若しくは意味のない組み合わせにならない限りにおいて、独立して、またさらに、ここで開示された他の1又は複数の特徴と任意に組み合わせて、結合することができるものとする。 All features as would be understood by one of ordinary skill in the art from the present specification, drawings and claims are described herein in combination with only those particular features. As long as the features are not specifically excluded, or unless the technical aspects result in an impossible or meaningless combination, one or more of the other disclosed herein or separately. It can be combined in any combination with the features.
 例えば、他の実施形態に係る不織布1では、第二の実施形態のように、凸面部12Tの縁部12TEは、凸面部12Tの中央部12TCよりも繊維密度が高く、かつ、第三の実施形態のように、基部10は、凸部12の周囲において、凸部12の繊維密度が高い部分12THに近づくにつれて、繊維密度が低くなる。 For example, in the nonwoven fabric 1 according to the other embodiment, as in the second embodiment, the edge 12TE of the convex portion 12T has a higher fiber density than the central portion 12TC of the convex portion 12T, and the third embodiment As the form, the base 10 has a lower fiber density as the fiber density of the convex portion 12 approaches the high portion 12 TH around the convex portion 12.
 本発明は、以下のように規定される。 The present invention is defined as follows.
 (1) 平面状に拡がる基部と、前記基部から厚さ方向に突出する複数の凸部とから形成されている不織布であって、
 それぞれの前記凸部は凸面部を有し、
 それぞれの前記凸面部は、前記凸面部の繊維密度が前記不織布の平面方向のうち所定の方向に偏るように構成されている、
 不織布。
(1) A non-woven fabric formed of a base extending in a planar shape and a plurality of convex portions protruding in the thickness direction from the base,
Each said convex part has a convex part, and
Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
Non-woven fabric.
 (2) それぞれの前記凸部において、前記凸面部の縁部は、前記凸面部の中央部よりも繊維密度が高い、
 (1)に記載の不織布。
(2) In each of the convex portions, an edge portion of the convex portion has a higher fiber density than a central portion of the convex portion.
The nonwoven fabric as described in (1).
 (3) 前記基部は、前記凸部の周囲において、凸部の繊維密度が高い部分に近づくにつれて、繊維密度が低くなる、
 (1)又は(2)に記載の不織布。
(3) The fiber density of the base decreases as the fiber density of the convex portion approaches the portion around the convex portion,
The nonwoven fabric as described in (1) or (2).
 (4) それぞれの前記凸面部を、前記不織布の平面視において前記所定の方向に直交する方向に延びる仮想線によって同じ面積になるように2つの半凸面部に二等分したときに、一方の前記半凸面部の繊維密度が、他方の前記半凸面部の繊維密度よりも高い、
 (1)~(3)のいずれか1つに記載の不織布。
(4) When each of the convex portions is bisected into two semi-convex portions so as to have the same area by an imaginary line extending in a direction orthogonal to the predetermined direction in a plan view of the nonwoven fabric, The fiber density of the semiconvex part is higher than the fiber density of the other semiconvex part,
The nonwoven fabric according to any one of (1) to (3).
 (5) 前記凸部が、第一の方向及び前記第一の方向と異なる第二の方向に沿って配設されている、
 (1)~(4)のいずれか1つに記載の不織布。
(5) The convex portion is disposed along a first direction and a second direction different from the first direction.
The nonwoven fabric according to any one of (1) to (4).
 (6) 前記凸部は、前記第一の方向及び前記第二の方向に前記基部を隔てて等間隔に設けられている、
 (5)に記載の不織布。
(6) The convex portions are provided at equal intervals apart from the base in the first direction and the second direction.
The nonwoven fabric as described in (5).
 (7) 前記所定の方向は、前記第一の方向又は前記第二の方向と一致する、
 (5)又は(6)に記載の不織布。
(7) The predetermined direction coincides with the first direction or the second direction.
The nonwoven fabric as described in (5) or (6).
 (8) 前記所定の方向は、前記不織布を製造するときの搬送方向と一致する、
 (1)~(7)のいずれか1つに記載の不織布。
(8) The predetermined direction coincides with the transport direction when manufacturing the non-woven fabric,
The nonwoven fabric according to any one of (1) to (7).
 1  不織布
 10  基部
 12  凸部
 12T  凸面部
1 Non-woven fabric 10 Base 12 Convex part 12 T Convex part

Claims (8)

  1.  平面状に拡がる基部と、前記基部から厚さ方向に突出する複数の凸部とから形成されている不織布であって、
     それぞれの前記凸部は凸面部を有し、
     それぞれの前記凸面部は、前記凸面部の繊維密度が前記不織布の平面方向のうち所定の方向に偏るように構成されている、
     不織布。
    A non-woven fabric formed of a base extending in a planar manner and a plurality of projections projecting in the thickness direction from the base,
    Each said convex part has a convex part, and
    Each of the convex portions is configured such that the fiber density of the convex portions is biased in a predetermined direction of the planar direction of the nonwoven fabric.
    Non-woven fabric.
  2.  それぞれの前記凸部において、前記凸面部の縁部は、前記凸面部の中央部よりも繊維密度が高い、
     請求項1に記載の不織布。
    In each of the convex portions, the edge of the convex portion has a higher fiber density than the central portion of the convex portion.
    The nonwoven fabric according to claim 1.
  3.  前記基部は、前記凸部の周囲において、凸部の繊維密度が高い部分に近づくにつれて、繊維密度が低くなる、
     請求項1又は2に記載の不織布。
    The fiber density of the base portion decreases as the fiber density of the convex portion approaches the portion around the convex portion.
    The nonwoven fabric according to claim 1 or 2.
  4.  それぞれの前記凸面部を、前記不織布の平面視において前記所定の方向に直交する方向に延びる仮想線によって同じ面積になるように2つの半凸面部に二等分したときに、一方の前記半凸面部の繊維密度が、他方の前記半凸面部の繊維密度よりも高い、
     請求項1~3のいずれか1項に記載の不織布。
    One of the half convex surfaces when each of the convex surface portions is bisected into two semi convex surface portions so as to have the same area by an imaginary line extending in a direction orthogonal to the predetermined direction in a plan view of the nonwoven fabric The fiber density of one section is higher than the fiber density of the other half convex section,
    The nonwoven fabric according to any one of claims 1 to 3.
  5.  前記凸部が、第一の方向及び前記第一の方向と異なる第二の方向に沿って配設されている、
     請求項1~4のいずれか1項に記載の不織布。
    The convex portion is disposed along a first direction and a second direction different from the first direction.
    The nonwoven fabric according to any one of claims 1 to 4.
  6.  前記凸部は、前記第一の方向及び前記第二の方向に前記基部を隔てて等間隔に設けられている、
     請求項5に記載の不織布。
    The protrusions are provided at equal intervals across the base in the first direction and the second direction.
    The nonwoven fabric according to claim 5.
  7.  前記所定の方向は、前記第一の方向又は前記第二の方向と一致する、
     請求項5又は6に記載の不織布。
    The predetermined direction coincides with the first direction or the second direction.
    The nonwoven fabric according to claim 5 or 6.
  8.  前記所定の方向は、前記不織布を製造するときの搬送方向と一致する、
     請求項1~7のいずれか1項に記載の不織布。
    The predetermined direction coincides with the transport direction when manufacturing the non-woven fabric,
    The nonwoven fabric according to any one of claims 1 to 7.
PCT/JP2015/068353 2014-06-26 2015-06-25 Non-woven fabric WO2015199179A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/321,780 US20170226672A1 (en) 2014-06-26 2015-06-25 Non-woven fabric
KR1020167035643A KR102294225B1 (en) 2014-06-26 2015-06-25 Non-woven fabric
BR112016029946A BR112016029946A2 (en) 2014-06-26 2015-06-25 nonwoven
CN201580034409.8A CN106661791B (en) 2014-06-26 2015-06-25 Non-woven fabric
EP15811703.6A EP3162939A4 (en) 2014-06-26 2015-06-25 Non-woven fabric
AU2015281112A AU2015281112B2 (en) 2014-06-26 2015-06-25 Non-woven fabric
PH12016502606A PH12016502606A1 (en) 2014-06-26 2016-12-23 Non-woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131732A JP5931131B2 (en) 2014-06-26 2014-06-26 Non-woven
JP2014-131732 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015199179A1 true WO2015199179A1 (en) 2015-12-30

Family

ID=54938256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068353 WO2015199179A1 (en) 2014-06-26 2015-06-25 Non-woven fabric

Country Status (9)

Country Link
US (1) US20170226672A1 (en)
EP (1) EP3162939A4 (en)
JP (1) JP5931131B2 (en)
KR (1) KR102294225B1 (en)
CN (1) CN106661791B (en)
AU (1) AU2015281112B2 (en)
BR (1) BR112016029946A2 (en)
PH (1) PH12016502606A1 (en)
WO (1) WO2015199179A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2582405B (en) * 2017-08-31 2021-03-31 Kao Corp Nonwoven fabric
JP6623206B2 (en) * 2017-12-26 2019-12-18 花王株式会社 Nonwoven manufacturing method
BR112021009321A2 (en) * 2018-11-30 2021-08-17 Kimberly-Clark Worldwide, Inc. non-woven material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106346A1 (en) * 2002-11-29 2004-06-03 Zafiroglu Dimitri Peter Textured composite material
JP2008161302A (en) * 2006-12-27 2008-07-17 Kao Corp Surface sheet for absorptive article and its manufacturing method
JP2009061026A (en) * 2007-09-05 2009-03-26 Kao Corp Absorbent article
JP2009233099A (en) * 2008-03-27 2009-10-15 Daio Paper Corp Absorbent article
JP2012143543A (en) * 2010-12-20 2012-08-02 Kao Corp Absorbent article
JP2014083228A (en) * 2012-10-24 2014-05-12 Kao Corp Absorbent article

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY151019A (en) 2006-06-23 2014-03-31 Uni Charm Corp Absorbent article
CN101448990B (en) * 2006-06-23 2011-12-07 尤妮佳股份有限公司 Nonwoven fabric
JP5154048B2 (en) * 2006-06-23 2013-02-27 ユニ・チャーム株式会社 Non-woven
DE602006010351D1 (en) * 2006-06-26 2009-12-24 Marco Maranghi Multilayer and multicomponent nonwoven material with different fiber density and process for its production
CN101790606B (en) * 2007-08-28 2012-09-05 花王株式会社 Shaped sheet and absorbent article utilizing the same
JP5421720B2 (en) * 2009-10-09 2014-02-19 ユニ・チャーム株式会社 Non-woven
RU2642033C1 (en) * 2010-12-24 2018-01-23 Као Корпорейшн Non-woven material and absorbing product using it
JP5921866B2 (en) 2010-12-24 2016-05-24 花王株式会社 Non-woven
JP5717602B2 (en) * 2011-09-30 2015-05-13 ユニ・チャーム株式会社 Laminated nonwoven fabric and method for producing the laminated nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106346A1 (en) * 2002-11-29 2004-06-03 Zafiroglu Dimitri Peter Textured composite material
JP2008161302A (en) * 2006-12-27 2008-07-17 Kao Corp Surface sheet for absorptive article and its manufacturing method
JP2009061026A (en) * 2007-09-05 2009-03-26 Kao Corp Absorbent article
JP2009233099A (en) * 2008-03-27 2009-10-15 Daio Paper Corp Absorbent article
JP2012143543A (en) * 2010-12-20 2012-08-02 Kao Corp Absorbent article
JP2014083228A (en) * 2012-10-24 2014-05-12 Kao Corp Absorbent article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162939A4 *

Also Published As

Publication number Publication date
EP3162939A1 (en) 2017-05-03
PH12016502606A1 (en) 2017-04-24
KR102294225B1 (en) 2021-08-27
JP2016008368A (en) 2016-01-18
AU2015281112A1 (en) 2017-02-16
CN106661791A (en) 2017-05-10
JP5931131B2 (en) 2016-06-08
KR20170021791A (en) 2017-02-28
BR112016029946A2 (en) 2017-08-22
EP3162939A4 (en) 2017-05-17
US20170226672A1 (en) 2017-08-10
AU2015281112B2 (en) 2018-05-10
CN106661791B (en) 2019-12-17

Similar Documents

Publication Publication Date Title
US10966880B2 (en) Methods and tooling for making three-dimensional substrates for absorbent articles
KR102172310B1 (en) Nonwoven fabric
KR102082289B1 (en) Three-dimensional sheet material and absorbent articles including such material
JP5538943B2 (en) Non-woven sheet and method for producing the same
TWI327181B (en)
US20100191207A1 (en) Nonwoven fabric and method for making the same
EP1110521A1 (en) Method for manufacturing particle deposited body
US10166154B2 (en) Shaped non-woven fabric for absorbent article, absorbent article including said shaped non-woven fabric, and method for manufacturing said shaped non-woven fabric
IL123499A (en) Method of forming apertured films, resultant films and applications thereof
JP2009185408A (en) Nonwoven fabric
WO2015199179A1 (en) Non-woven fabric
US10285873B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
AU2015285725A1 (en) Absorbent body for body fluid-absorbing articles
JP5885783B2 (en) Non-woven
JP2016060995A (en) Ridged and grooved nonwoven fabric
US9968496B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
US9999554B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
US10307308B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
US10265224B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
US20160089278A1 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
WO2021172476A1 (en) Nonwoven fabric, nonwoven fabric product and absorbent article each provided with same, and method for producing said nonwoven fabric product
JPH04300545A (en) Surface material for sanitary goods and production thereof
AU5506700A (en) Apertured film having improved fluid distribution properties, method of forming same, and absorbent products incorporating same
MXPA98001711A (en) Movie with openings that have improved properties of fluid distribution, method to form the same and absorbent products that incorporate the

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167035643

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015811703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12016502606

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016029946

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015281112

Country of ref document: AU

Date of ref document: 20150625

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016029946

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161220