WO2015198879A1 - Image pickup apparatus, focus control method, and program - Google Patents

Image pickup apparatus, focus control method, and program Download PDF

Info

Publication number
WO2015198879A1
WO2015198879A1 PCT/JP2015/066833 JP2015066833W WO2015198879A1 WO 2015198879 A1 WO2015198879 A1 WO 2015198879A1 JP 2015066833 W JP2015066833 W JP 2015066833W WO 2015198879 A1 WO2015198879 A1 WO 2015198879A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
difference detection
value
aperture
detection
Prior art date
Application number
PCT/JP2015/066833
Other languages
French (fr)
Japanese (ja)
Inventor
祐基 明壁
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015198879A1 publication Critical patent/WO2015198879A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Definitions

  • the present technology relates to an imaging apparatus, a focusing control method, and a program, and more particularly, to an imaging apparatus, a focusing control method, and a program that are capable of focusing with higher accuracy at a faster focusing speed.
  • phase difference method for example, a method using a sensor dedicated to phase difference AF (Autofocus), and a method using an image sensor provided with a pixel for capturing a captured image and a phase difference detection pixel ( Hereinafter, it is referred to as an imaging surface phase difference method in particular.
  • the aperture of the imaging lens during focusing control is opened and only for phase difference AF
  • the light beam incident on the sensor is limited to have a constant light beam thickness between the mirror mechanism and the phase difference AF dedicated sensor. For this reason, when focus control is performed using a phase difference AF dedicated sensor, the phase difference detection accuracy hardly changes depending on the F value (aperture value) of the imaging lens.
  • the F value aperture value
  • the phase difference detection accuracy varies greatly depending on the aperture state of the imaging lens.
  • focusing accuracy is higher when phase difference detection is performed with a bright (small) F value.
  • the thickness of the light beam is limited so that the light beam is thinned to some extent on the optical path in order to prevent such a large blurred state.
  • phase difference detection may be disabled when the subject image is greatly blurred, such as when the F value of the imaging lens is small.
  • focus control is performed by switching to another method different from the imaging surface phase difference method, but it takes time to focus.
  • the present technology has been made in view of such a situation, and makes it possible to focus with high accuracy at a faster focusing speed.
  • An imaging apparatus includes a phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit, and the phase difference detection by the phase difference detection processing unit.
  • a phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit, and the phase difference detection by the phase difference detection processing unit.
  • an aperture control unit that changes the aperture value to a larger value is provided.
  • the aperture control unit can change the aperture value to a predetermined value when the phase difference detection is difficult.
  • the aperture control unit can change the aperture value step by step whenever it is determined that the phase difference detection is difficult.
  • the phase difference detection processing unit can change the detection characteristics in the phase difference detection.
  • the aperture control unit can change the aperture value, and the phase difference detection processing unit can change the detection characteristics.
  • the phase difference detection processing unit can change the detection characteristics when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value.
  • the phase difference detection processing unit can change the filter processing applied to the output from the phase difference detection pixel as the detection characteristic.
  • the imaging apparatus may further include a focusing control unit that drives the imaging lens based on the result of the phase difference detection and performs focusing control.
  • the aperture control unit When the aperture value is changed and the phase difference detection is performed again, the aperture control unit returns the aperture value to the value before the change after the focus control by the focus control unit. be able to.
  • the focus control unit When it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value, the focus control unit performs the phase difference detection by the phase difference detection processing unit. Focus control can be performed by a method different from the method using the result.
  • a focus control method or program performs phase difference detection based on an output from a phase difference detection pixel provided in an imaging unit, and if the phase difference detection is difficult, an aperture value is set. Including changing to a larger value.
  • the aperture value can be changed to a predetermined value.
  • the aperture value can be changed step by step.
  • the detection characteristic in the phase difference detection can be changed.
  • the aperture value can be changed and the detection characteristics can be changed.
  • the phase difference detection is performed based on the output from the phase difference detection pixel provided in the imaging unit, and when the phase difference detection is difficult, the aperture value is changed to a larger value. Is done.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of an imaging apparatus to which the present technology is applied.
  • the imaging device 11 is composed of an electronic device having a photographing function such as a digital still camera or a digital video camera.
  • the imaging device 11 includes an imaging lens 21, an imaging unit 22, a signal processing unit 23, a control unit 24, an input unit 25, a display unit 26, a recording unit 27, an aperture driving unit 28, and a lens driving unit 29.
  • the imaging lens 21 is composed of one or a plurality of lenses and the like, and collects the light incident from the subject and forms an image on the imaging surface of the imaging unit 22.
  • the imaging lens 21 is provided with at least a focus lens 41 for focus control and a diaphragm 42 for adjusting the amount of light passing through the imaging lens 21.
  • the imaging lens 21 may be detachable from the imaging device 11 or may be fixed to the imaging device 11.
  • the imaging unit 22 is composed of an imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, for example.
  • the imaging unit 22 receives light incident from a subject via the imaging lens 21 and photoelectrically converts the captured image to obtain a signal. This is supplied to the processing unit 23.
  • CMOS Complementary Metal-Oxide Semiconductor
  • the imaging unit 22 includes a phase difference detection pixel used for phase difference detection, in addition to the pixel for capturing a captured image.
  • the imaging unit 22 receives light from the subject.
  • the phase difference detection signal obtained by photoelectric conversion is supplied to the signal processing unit 23.
  • the signal processing unit 23 performs predetermined signal processing on the image signal of the captured image and the phase difference detection signal supplied from the imaging unit 22 and supplies them to the control unit 24. For example, the signal processing unit 23 performs demosaic processing, gamma correction processing, and the like on the image signal of the captured image.
  • the control unit 24 controls the operation of the entire imaging apparatus 11.
  • the control unit 24 includes a phase difference detection processing unit 51, a contrast detection processing unit 52, a focusing control unit 53, and an aperture control unit 54.
  • the phase difference detection processing unit 51 performs phase difference detection processing based on the phase difference detection signal supplied from the signal processing unit 23, and obtains the defocus amount of the focus lens 41.
  • the defocus amount indicates the distance between the imaging position of the light from the subject to be focused by the imaging lens 21 and the imaging surface of the imaging unit 22, that is, the deviation amount of the imaging position with respect to the imaging surface.
  • the contrast detection processing unit 52 performs detection processing by a contrast method based on the captured image supplied from the signal processing unit 23, and calculates a contrast evaluation value.
  • the focusing control unit 53 uses the lens driving unit 29 based on the defocus amount obtained as a result of the detection processing by the phase difference detection processing unit 51 or the evaluation value obtained as a result of the detection processing by the contrast detection processing unit 52. By controlling this, focusing control of the focus lens 41 is performed. That is, the focus control unit 53 calculates the movement amount of the focus lens 41 based on the defocus amount or the evaluation value, and controls the lens driving unit 29 based on the movement amount to move the focus lens 41.
  • the aperture control unit 54 controls the aperture 42. That is, the aperture control unit 54 determines an appropriate F value (aperture value), and controls the aperture drive unit 28 based on the F value to adjust the aperture amount (opening degree) of the aperture 42.
  • F value aperture value
  • the input unit 25 includes various buttons such as a shutter button and a power button, and supplies a signal corresponding to a user operation to the control unit 24.
  • the display unit 26 includes a liquid crystal display panel, for example, and displays an image supplied from the control unit 24.
  • the recording unit 27 includes, for example, a recording medium that can be attached to and detached from the imaging device 11, and records images such as a captured image supplied from the control unit 24 and various types of information, and also records images that are recorded as required. Information is supplied to the control unit 24.
  • the aperture driving unit 28 drives the aperture 42 according to the control of the aperture control unit 54, and adjusts the aperture amount of the aperture 42, that is, the amount of light passing through the aperture 42 (imaging lens 21).
  • the lens driving unit 29 moves the focus lens 41 so that the subject is focused according to the control of the focusing control unit 53.
  • one square represents one pixel
  • each pixel with R, G, and B characters in the square has R (red), G (green), and B (blue) colors.
  • a pixel is shown.
  • the pixel arrangement on the imaging surface is an arrangement in which pixels of each color of R, G, and B are arranged in a Bayer arrangement, and a part of the B pixels arranged in the Bayer arrangement is replaced with a phase difference detection pixel. Yes.
  • each phase difference detection pixel is provided with a biased opening on the left or right side in the figure.
  • the phase difference detection pixels GR11 to GR13 are provided with openings at positions shifted to the right in the drawing from the centers of the phase difference detection pixels.
  • These phase difference detection pixels GR11 to GR13 receive light beams (light rays) that have passed through the left half of the exit pupil of the imaging lens 21.
  • phase difference detection pixel provided with an opening biased on the right side, such as the phase difference detection pixel GR11 to the phase difference detection pixel GR13, is also referred to as a right opening phase difference detection pixel.
  • the phase difference detection signal output from is also referred to as a right aperture phase difference detection signal.
  • phase difference detection pixels GL11 to GL13 are provided with openings at positions shifted to the left in the figure from the centers of the phase difference detection pixels. These phase difference detection pixels GL11 to phase difference detection pixel GL13 receive light beams (light rays) that have passed through the right half of the exit pupil of the imaging lens 21.
  • phase difference detection pixel provided with an opening biased on the left side, such as the phase difference detection pixel GL11 to the phase difference detection pixel GL13, is also referred to as a left opening phase difference detection pixel, and the left opening phase difference detection pixel.
  • the phase difference detection signal output from is also referred to as a left aperture phase difference detection signal.
  • the phase difference detection processing unit 51 compares the right opening phase difference detection signal and the left opening phase difference detection signal, and detects the phase difference (waveform deviation amount) of these phase difference detection signals, thereby the focus lens.
  • a defocus amount of 41 is calculated. In other words, by detecting the amount of deviation between the subject position on the image captured by the right aperture phase difference detection pixel and the subject position on the image captured by the left aperture phase difference detection pixel, the focus lens 41 A defocus amount is calculated.
  • the blur amount at the detection limit is the blur amount on the imaging surface of the imaging unit 22 of the image of the subject to be focused, which is formed by the imaging lens 21, and the defocus amount is calculated by the phase difference method.
  • the amount of blur at the detection limit is determined by detection characteristics of phase difference detection, for example, filter characteristics of filter processing for waveform shaping performed on the phase difference detection signal at the time of phase difference detection.
  • the focus lens 41 is located at a position where the blur amount of the subject image on the imaging surface IM11 becomes the blur limit of the detection limit in the state of F1.4 and the state of F5.6.
  • the points P11 and P12 indicate the positions of the optical images formed by the focus lens 41 (imaging lens 21), respectively.
  • the point P11 indicating the imaging position when the F value is smaller, F1.4 is lighter than the point P12 indicating the imaging position when the F value is larger, F5.6. It is located closer to the imaging surface IM11 in the axial direction.
  • the subject image blur amount does not reach the detection limit blur amount unless the focus lens 41 is moved greatly from the state where the subject image is formed on the imaging surface IM11. I understand. In other words, it can be seen that the larger the F value, the wider the range of the position of the focus lens 41 in which phase difference detection is possible, that is, the distance measurement possible range.
  • the amount of blur at the detection limit is constant regardless of the F value, and the range in which the focus lens 41 can move, that is, the drivable range is predetermined. Therefore, from the blur amount at the detection limit and the driveable range of the focus lens 41, when the focus control is performed by the imaging surface phase difference method, the F value useful for large defocusing, that is, even when the defocus amount is large, is ensured. It is possible to specify an F value capable of phase difference detection.
  • the range in which the focus lens 41 can measure the range where phase difference detection is possible is obtained for each F value.
  • the range in which the focus lens 41 can be measured is obtained for each F value with respect to the range in which the focus lens 41 can be driven.
  • the arrow Q11 indicates the driveable range of the focus lens 41
  • the arrow Q12 indicates the range in which the focus lens 41 can detect the phase difference in the case of F1.4
  • the arrow Q13 indicates F5.
  • the range in which the phase difference can be detected by the focus lens 41 in the case of .6 is shown.
  • the left end indicates the position of the focus lens 41 when the focus position of the imaging lens 21 is infinite, that is, the position of the infinite end.
  • the right end is the position of the near end that is the position of the focus lens 41 when the focus position of the imaging lens 21 is closest to the front, that is, the imaging apparatus 11 side. Is shown.
  • the distance measurement possible range at F1.4 indicated by the arrow Q12 is a partial range of the drivable range indicated by the arrow Q11, whereas F5.6 indicated by the arrow Q13.
  • the distance measurement possible range at that time is a range including the entire driveable range indicated by the arrow Q11.
  • phase difference detection should be possible.
  • the imaging apparatus 11 can detect (range) reliably even when the defocus amount is large, so that the F value of the aperture 42 is set to a predetermined F value. Change (aperture value) and perform phase difference detection again. As a result, when focusing control is performed using the imaging plane phase difference method, the subject can be focused with high accuracy at a faster focusing speed.
  • the focusable range is not limited to the F value including the entire driveable range of the focus lens 41, and the focus speed and focus accuracy are taken into consideration. What is necessary is just to change to the optimal F value.
  • phase difference detection is not completely impossible, and there is a possibility that phase difference detection can be performed, but if it is determined that phase difference detection is difficult, such as the possibility is not high, the F value is changed, The phase difference detection may be performed again.
  • the fact that phase difference detection is difficult includes the case where phase difference detection is completely impossible.
  • the imaging device 11 displays a live view image (through image) on the display unit 26.
  • the imaging lens 21 forms an image of light incident from the subject on the imaging surface of the imaging unit 22, and the imaging unit 22, that is, a pixel for capturing a captured image receives the light incident from the imaging lens 21.
  • the photoelectric conversion is performed, and an image obtained as a result is supplied to the control unit 24 via the signal processing unit 23.
  • the signal processing unit 23 appropriately performs signal processing such as demosaic processing on the image.
  • the control unit 24 supplies the image supplied from the signal processing unit 23 to the display unit 26 and displays it as a live view image.
  • the user performs a shooting operation while viewing the live view image displayed on the display unit 26 and confirming the angle of view and the like.
  • the imaging device 11 When the user tries to focus on a desired subject during shooting, when the shutter button as the input unit 25 is pressed halfway, the imaging device 11 performs a focusing operation in accordance with the user's operation, and focuses on the subject. Start processing.
  • the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
  • step S11 the aperture controller 54 designates the F value (aperture value) for capturing a captured image as the F value of the aperture 42.
  • the control unit 24 sets the conditions of the shooting environment. Determine the exposure, F value, and shutter speed from the above.
  • the aperture control unit 54 designates the F value determined by the control unit 24 as an F value for photographing the aperture 42.
  • the aperture control unit 54 sets the F value specified by the user operating the input unit 25 to the aperture value. Designated as an F-number for shooting 42.
  • step S12 the diaphragm control unit 54 controls the driving of the diaphragm 42 so that the diaphragm amount of the diaphragm 42 becomes the diaphragm amount corresponding to the designated F value.
  • the aperture control unit 54 controls the aperture drive unit 28 based on the designated F value, and the aperture drive unit 28 drives the aperture 42 according to the control of the aperture control unit 54 to change the aperture amount. For example, when the process proceeds from step S11 to step S12 and the diaphragm 42 is driven, the driving of the diaphragm 42 is controlled based on the F value designated in the process of step S11.
  • step S13 the phase difference detection processing unit 51 performs phase difference detection.
  • the phase difference detection pixel of the imaging unit 22 receives light incident from the subject via the imaging lens 21 and performs photoelectric conversion, and a phase difference detection signal obtained as a result is transmitted via the signal processing unit 23. To the control unit 24.
  • the phase difference detection processing unit 51 performs filter processing on the phase difference detection signal supplied from the signal processing unit 23 using a detection filter that shapes the waveform of the phase difference detection signal. Further, the phase difference detection processing unit 51 compares the phase difference detection signal subjected to the filter processing, more specifically, the right opening phase difference detection signal and the left opening phase difference detection signal, and those phase difference detection signals The defocus amount of the focus lens 41 is calculated by detecting the phase difference.
  • step S14 the phase difference detection processing unit 51 determines whether or not phase difference detection is impossible.
  • the phase difference detection processing unit 51 determines that phase difference detection is impossible when the phase difference cannot be detected by the phase difference detection in step S13 and the defocus amount cannot be obtained. More specifically, for example, when the phase difference is detected several times to detect the phase difference, but the phase difference cannot be detected for a certain period of time, the phase difference detection is difficult. That is, it is determined that phase difference detection is not possible.
  • the fact that the phase difference could not be detected means, for example, the right opening phase difference detection signal at each deviation amount calculated when detecting the phase difference (waveform deviation amount) of the phase difference detection signal.
  • the degree of correlation with the left aperture phase difference detection signal that is, the degree of similarity is lower than the threshold value, or the case where the minimum value of the degree of correlation of the phase difference detection signal obtained for each shift amount cannot be obtained.
  • step S15 the aperture controller 54 sets the focusing F value as the F value of the aperture 42 based on the currently designated F value. specify.
  • the aperture control unit 54 designates an F value larger than the imaging F value designated in step S11 as the F value for focusing the aperture 42. Specifically, for example, as described with reference to FIG. 3, an F which is obtained in advance from the driveable range of the focus lens 41 and the blur amount at the detection limit and can be reliably detected even when the defocus amount is large. The value is designated as the F value for focusing.
  • the F value of the aperture 42 at the time of focusing control matches the F value when a captured image is captured (captured). This is for ensuring the expression of the depth of blur, or shortening the release time lag by shortening the drive time of the diaphragm 42.
  • phase difference detection is performed with the F value for photographing, and when the phase difference detection is impossible (difficult) with the photographing F value, an F value predetermined for focusing is set.
  • the F value is changed to, and phase difference detection is performed again.
  • the F value is changed, the blur amount of the subject image on the imaging surface of the imaging unit 22 is reduced, and phase difference detection is possible (easy).
  • the imaging device 11 can estimate in advance the amount of narrowing necessary to enable phase difference detection from the amount of blur at the detection limit or the like, the defocus amount can be obtained quickly.
  • step S15 when a new F value is designated in step S15, the process returns to step S12, and the above-described process is repeated. That is, the aperture amount is adjusted based on the F value designated in the process of step S15, and phase difference detection is performed again.
  • step S14 If it is determined in step S14 that the phase difference detection is not impossible, that is, it is determined that the defocus amount is obtained by the phase difference detection, the focus control unit 53 moves the focus lens 41 based on the defocus amount in step S16. Calculate the amount. In other words, the focus control unit 53 converts the defocus amount obtained in the process of step S13 into a movement amount of the focus lens 41.
  • step S17 the focus control unit 53 moves the focus lens 41 based on the movement amount calculated in the process of step S16. That is, the focus control unit 53 controls the lens driving unit 29 based on the movement amount of the focus lens 41, and the lens driving unit 29 moves the focus lens 41 in the optical axis direction according to the control of the focusing control unit 53. As a result, the subject is in focus.
  • step S18 the aperture controller 54 determines whether or not the current F value of the aperture 42 is the F value for capturing a captured image, that is, the F value specified in step S11. In step S18, when the process of step S15 is performed even once, it is determined that the F value is different.
  • step S19 the aperture control unit 54 determines that the aperture amount of the aperture 42 is designated in the process of step S11. The drive of the diaphragm 42 is controlled so that the diaphragm amount corresponds to.
  • the aperture control unit 54 controls the aperture drive unit 28 based on the F value for photographing, and the aperture drive unit 28 drives the aperture 42 according to the control of the aperture control unit 54 to change the aperture amount.
  • the F value is returned from the F value for focusing to the F value for shooting in this way, that is, the F value changed for focusing control is changed from the F value after the change to the F value before the change.
  • the sense of blur (depth expression) of the live view image displayed on the display unit 26 is the same as when the captured image is captured.
  • step S20 When the diaphragm 42 is driven based on the F value for photographing, the process proceeds to step S20.
  • step S18 determines that the current F value is the F value for photographing, the diaphragm 42 does not need to be driven, and the process proceeds to step S20.
  • control unit 24 controls the display unit 26 to perform in-focus display in step S20.
  • control unit 24 superimposes a rectangular frame indicating the focus on the subject on the in-focus area in the live view image, and supplies the live view image on which the rectangular frame is superimposed to the display unit 26 for display.
  • the in-focus processing ends.
  • the control unit 24 uses the image supplied from the imaging unit 22 via the signal processing unit 23 as a captured image, performs compression processing or the like as necessary, and then supplies the recording unit 27 for recording.
  • a captured image is displayed on the display unit 26.
  • the imaging device 11 changes the F value (aperture value) of the diaphragm 42 to a larger value and performs the phase difference detection again.
  • the subject can be focused at a higher focusing speed and with higher accuracy.
  • the imaging device 11 it is possible to realize high-speed focusing drive from a greatly blurred state, which is not good for the imaging surface phase difference method.
  • the imaging device 11 performs the process shown in FIG. 5 as the focusing process.
  • the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
  • the description is abbreviate
  • step S55 the aperture control unit 54 sets a value obtained by reducing the currently specified F value by a predetermined number of steps to a new focus for the aperture 42. Specify as F value.
  • step S55 the F value for focusing is changed so that the F value (aperture value) is increased by 0.3 steps with respect to the F value for photographing.
  • step S54 If it is determined in step S54 that phase difference detection is not possible, then the processing from step S56 to step S60 is performed and the focusing processing ends, but these processing is performed from step S16 to step S20 in FIG. Since this is the same as the above process, the description thereof is omitted.
  • the imaging apparatus 11 increases the F value (aperture value) of the diaphragm 42 in a stepwise manner and performs phase difference detection.
  • the subject can be focused at a higher focusing speed and with higher accuracy.
  • by increasing the F value stepwise until phase difference detection becomes possible it is possible to prevent the brightness of the live view image from changing suddenly and to improve drive quality.
  • phase difference detection may remain impossible (difficult). Therefore, for example, when phase difference detection is impossible (difficult) even when the diaphragm 42 is narrowed to some extent, the focus control may be switched to a method different from the imaging surface phase difference method.
  • step S91 to step S94 is the same as the processing from step S11 to step S14 in FIG.
  • step S95 the aperture controller 54 determines whether or not the F value has been changed for phase difference detection.
  • the F value of the aperture 42 is changed from the F value for photographing to the F value for focusing and phase difference detection is performed, that is, when the processing of step S96 described later has already been performed, the F value Is determined to have been changed.
  • step S96 the aperture control unit 54 sets the F value for focusing to the F value for the aperture 42 based on the currently designated F value. Specify as. That is, in step S96, processing similar to that in step S15 in FIG. 4 is performed.
  • step S97 the imaging device 11 performs a focusing operation using a contrast method.
  • the contrast detection processing unit 52 calculates an evaluation value indicating the degree of contrast of each region of the image based on the image that is supplied from the signal processing unit 23 and is a live view image. That is, contrast detection is performed.
  • the focusing control unit 53 calculates the moving amount of the focus lens 41 based on the evaluation value obtained by contrast detection, and further controls the lens driving unit 29 based on the moving amount.
  • the lens driving unit 29 moves the focus lens 41 according to the control of the focusing control unit 53.
  • any focusing method may be used as long as the method is different from the imaging surface phase difference method. Also good.
  • a method different from the imaging surface phase difference method for example, an active method in which infrared or ultrasonic waves are emitted to measure the distance to the subject, a phase difference method using a phase difference AF dedicated sensor, or the like can be used.
  • step S101 When the focusing operation is performed by the contrast method and the subject is brought into focus, the process proceeds to step S101.
  • step S94 If it is determined in step S94 that phase difference detection is not possible, the processes in steps S98 to S100 are thereafter performed, which are the same as the processes in steps S16 to S18 in FIG. Therefore, the description is omitted.
  • step S101 If it is determined in step S100 that the current F value is not the F value for photographing, or if it is determined in step S97 that the focusing operation has been performed, the processing in step S101 is performed.
  • step S101 the diaphragm control unit 54 controls the driving of the diaphragm 42 so that the diaphragm amount of the diaphragm 42 becomes the diaphragm amount corresponding to the F value for photographing specified in the process of step S91.
  • the contrast detection may be performed after the F value of the aperture 42 is returned to the F value for shooting, or after the focus display, the actual shooting is performed.
  • the F value (aperture amount) may be returned before the image is taken.
  • step S101 If it is determined in step S101 that the aperture 42 has been driven or the current F value is the shooting F value in step S100, then in-focus display is performed in step S102 and the focusing process ends. .
  • the process in step S102 is the same as the process in step S20 in FIG.
  • the imaging apparatus 11 performs phase difference detection by increasing the F value of the diaphragm 42.
  • the imaging surface 11 The focusing operation is performed by a focusing method different from the phase difference method.
  • ⁇ Variation 1 of the third embodiment> ⁇ Description of focus processing> Furthermore, in the third embodiment, the example of switching to the contrast method when the phase difference detection is impossible even when the F value for focusing is changed is described. However, as described in the second embodiment, the F value may be changed step by step, and switching to the contrast method may be performed when phase difference detection is impossible even if the F value is changed a predetermined number of times. .
  • the process shown in FIG. 7 is performed as the focusing process.
  • the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
  • or step S134 is the same as the process of step S11 thru
  • step S1335 the aperture controller 54 determines whether the F value has been changed for phase difference detection a predetermined number of times.
  • the F value of the diaphragm 42 is changed by a predetermined number of steps, such as 0.3 steps from the F value for photographing, and phase difference detection is performed, that is, the process of step S136 described later is performed a predetermined number of times. In this case, it is determined that the F value has been changed a predetermined number of times.
  • the F value is changed a predetermined number of times, and the phase difference detection cannot be performed even when the stop 42 is stopped, so that switching to the contrast method is performed.
  • the F value may be changed step by step, and the phase shift detection may be switched to when the phase difference cannot be detected even if the F value is changed until the F value is reached.
  • step S136 the aperture control unit 54 sets a new value of the aperture 42 to a value obtained by reducing the currently specified F value by a predetermined number of steps. Specify as F value for focusing. That is, in step S136, the same process as step S55 of FIG. 5 is performed.
  • step S137 when it is determined in step S135 that the F value has been changed a predetermined number of times, in step S137, the imaging device 11 performs a focusing operation using a contrast method. In step S137, processing similar to that in step S97 in FIG. 6 is performed.
  • step S141 When the focusing operation is performed by the contrast method, the process thereafter proceeds to step S141, and after the diaphragm 42 is driven, in-focus display is performed in step S142, and the focusing process ends.
  • step S134 If it is determined in step S134 that phase difference detection is not possible, then the processing from step S138 to step S142 is performed, and the focusing process ends.
  • or step S142 is the same as the process of FIG.4 S16 thru
  • the imaging apparatus 11 performs phase difference detection by gradually increasing the F value of the aperture 42, and when the phase difference detection is still impossible.
  • the focusing operation is performed by a focusing method different from the imaging surface phase difference method. As described above, when phase difference detection is impossible even if the diaphragm 42 is squeezed a predetermined number of times, by performing a focusing operation with another focusing method, it is possible to focus on a subject at a higher focusing speed and with higher accuracy. Can be focused.
  • phase difference detection processing unit 51 can change the detection characteristics by changing the characteristics of such a detection filter.
  • the waveform of the phase difference detection signal becomes steep, that is, an edge is formed, so that it is easy to correlate the right opening phase difference detection signal and the left opening phase difference detection signal. Increases accuracy.
  • the detection filter when a high-pass filter is used as the detection filter, the low-frequency component of the phase difference detection signal is removed, so that the phase difference detection signal is filtered when the subject image is blurred on the imaging surface. As a result, almost no signal component remains. Therefore, when a high-pass filter is used as a detection filter, it is effective when the defocus amount is small, but cannot be detected when the defocus amount is large.
  • phase difference detection if a low-pass filter is used as a detection filter, the accuracy of phase difference detection is lower than when a high-pass filter is used, but the right aperture phase difference detection signal and the left aperture position can be detected even when the defocus amount is large. It is possible to correlate the phase difference detection signal.
  • the detection characteristics may be changed so that the phase difference detection can be performed even when the defocus amount is large.
  • the process shown in FIG. 8 is performed as the focusing process.
  • the focusing process by the imaging device 11 will be described with reference to the flowchart of FIG.
  • or step S174 is the same as the process of step S11 thru
  • step S173 it is assumed that, for example, a high-pass filter is used as a detection filter defined as an initial setting in the filter processing for the phase difference detection signal.
  • step S175 the aperture controller 54 determines whether or not the F value has been changed for phase difference detection.
  • the F value of the diaphragm 42 is changed from the F value for photographing to the F value for focusing and phase difference detection is performed, that is, when the processing in step S176 described later has already been performed, the F value Is determined to have been changed.
  • step S176 the aperture control unit 54 sets the F value for focusing to the F value of the aperture 42 based on the currently designated F value. Specify as. That is, in step S176, processing similar to that in step S15 in FIG. 4 is performed.
  • step S175 if it is determined in step S175 that the F value has been changed, that is, if the process of step S176 has already been performed, in step S177, the phase difference detection processing unit 51 determines the detection characteristics of the phase difference detection. change.
  • the phase difference detection processing unit 51 detects the phase difference detection characteristics from the detection characteristics predetermined in the initial setting, so that the phase difference detection can be performed even when the defocus amount of the focus lens 41 is large. Change to In other words, the detection characteristic is changed to a detection characteristic suitable for a case where there are many low frequency components in the phase difference detection signal.
  • the detection filter is switched from a high-pass filter that is set as an initial setting to a low-pass filter that can perform phase difference detection even when the defocus amount is large. Therefore, in this case, in the next phase difference detection, that is, the processing in step S173, the low-pass filter is used as the detection filter, and the filter processing is performed.
  • the detection filter is changed from the high-pass filter to the low-pass filter.
  • how to change the detection characteristics such as changing the detection filter from high-pass characteristics to low-pass characteristics by changing the filter coefficient of each tap constituting the detection filter and the number of taps. It may be.
  • step S174 If it is determined in step S174 that phase difference detection is not possible, the processing from step S178 to step S182 is performed thereafter, and the focusing processing ends. These processing is performed from step S16 to step S16 in FIG. Since it is the same as the process of S20, the description is abbreviate
  • the imaging apparatus 11 performs phase difference detection by increasing the F value of the diaphragm 42.
  • the imaging device 11 performs phase difference detection. Change the detection characteristics of detection and perform phase difference detection again.
  • the detection characteristics can be changed to focus on the subject with higher focusing speed and high accuracy. it can.
  • the change of the F value and the change of the detection characteristics it is possible to make the phase difference detection possible by the imaging surface phase difference method with a small amount of narrowing down.
  • the process shown in FIG. 9 is performed as the focusing process.
  • the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
  • or step S214 is the same as the process of step S11 thru
  • a high-pass filter is used as a detection filter defined as an initial setting in the filter processing for the phase difference detection signal.
  • step S215 the aperture controller 54 determines whether or not the F value has been changed for phase difference detection a predetermined number of times.
  • the F value of the aperture 42 is changed by a predetermined number of steps, such as 0.3 steps from the F value for photographing, and phase difference detection is performed, that is, the process of step S216 described later is performed a predetermined number of times. In this case, it is determined that the F value has been changed a predetermined number of times.
  • step S216 the aperture control unit 54 sets a new value of the aperture 42 to a value obtained by reducing the currently specified F value by a predetermined number of steps. Specify as F value for focusing. That is, in step S216, the same process as step S55 of FIG. 5 is performed.
  • step S215 if it is determined in step S215 that the F value has been changed a predetermined number of times, the phase difference detection processing unit 51 changes the detection characteristics of the phase difference detection in step S217.
  • step S217 processing similar to that in step S177 in FIG. 8 is performed, and the detection characteristic is changed from a high-pass filter in which a detection filter is set as an initial setting to a low-pass filter.
  • the F value and the detection characteristic of the diaphragm 42 may be changed simultaneously.
  • step S214 If it is determined in step S214 that phase difference detection is not possible, then the processing from step S218 to step S222 is performed and the focusing processing ends, but these processing is performed from step S16 to step S16 in FIG. Since it is the same as the process of S20, the description is abbreviate
  • the imaging apparatus 11 performs phase difference detection by gradually increasing the F value of the aperture 42, and when the phase difference detection is still impossible. Then, the detection characteristics of phase difference detection are changed, and phase difference detection is performed again.
  • phase difference detection when phase difference detection is impossible even when the diaphragm 42 is stopped a predetermined number of times, the subject can be focused at a higher focusing speed and with higher accuracy by changing the detection characteristics. .
  • the change of the F value and the change of the detection characteristics it is possible to make the phase difference detection possible by the imaging surface phase difference method with a small amount of narrowing down.
  • the focusing method is referred to as the imaging surface phase difference method.
  • the focus control may be performed by changing to a different method.
  • the imaging apparatus 11 has been described with respect to an example in which focusing control by the contrast method can be performed in addition to the imaging surface phase difference method. Such a method may be adopted.
  • the imaging device when focus control is possible by the phase difference method using the phase difference AF dedicated sensor in addition to the imaging surface phase difference method, the imaging device is configured as shown in FIG. 10, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • An imaging device 81 shown in FIG. 10 includes an imaging lens 21, a reflex mirror 91, a phase difference sensor 92, an imaging unit 22, a signal processing unit 23, a control unit 24, an input unit 25, a display unit 26, a recording unit 27, and a diaphragm drive. A unit 28 and a lens driving unit 29.
  • the imaging lens 21 of the imaging device 81 is provided with a focus lens 41 and a diaphragm 42
  • the control unit 24 is provided with a phase difference detection processing unit 51, a focusing control unit 53, and a diaphragm control unit 54. It has been.
  • the configuration of the imaging device 81 is different from the configuration of the imaging device 11 in that the reflex mirror 91 and the phase difference sensor 92 are provided, and the contrast detection processing unit 52 is not provided in the control unit 24. In other respects, imaging is performed.
  • the configuration is the same as that of the device 11.
  • the reflex mirror 91 is provided between the imaging lens 21 and the imaging unit 22, and guides light incident from the subject via the imaging lens 21 to either the imaging unit 22 or the phase difference sensor 92.
  • the reflex mirror 91 when the reflex mirror 91 is lowered, the light from the imaging lens 21 is reflected by the reflex mirror 91 and enters the phase difference sensor 92 and an optical finder (not shown). Further, in a state where the reflex mirror 91 is raised, the light from the imaging lens 21 does not enter the reflex mirror 91 but enters the imaging unit 22.
  • the phase difference sensor 92 is composed of an image sensor dedicated to focusing control by the phase difference method, in which a phase difference detection pixel is provided on the imaging surface.
  • the phase difference sensor 92 receives light incident from the subject via the reflex mirror 91 and the imaging lens 21 and performs photoelectric conversion, and supplies a phase difference detection signal obtained as a result to the control unit 24.
  • the phase difference detection processing unit 51 of the control unit 24 detects the phase difference of the phase difference detection signal supplied from the phase difference sensor 92 or the phase difference of the phase difference detection signal supplied from the signal processing unit 23, and the focus lens A defocus amount of 41 is obtained.
  • a diaphragm is provided between the reflex mirror 91 and the phase difference sensor 92 to limit the thickness (beam diameter) of light incident on the phase difference sensor 92.
  • the F value of the aperture 42 is set to an open value and the phase difference sensor 92 A defocus amount is calculated based on the output, and focusing control is performed.
  • the reflex mirror 91 is lowered when focusing control is performed, and the reflex mirror 91 is raised when a captured image is captured (captured).
  • the imaging device 81 causes each of the operations described with reference to FIGS. 4 to 9 to be performed with the reflex mirror 91 raised. Processing similar to the focusing processing is performed. However, in the process corresponding to step S97 of the focusing process described with reference to FIG. 6 and the process corresponding to step S137 of the focusing process described with reference to FIG. 7, the F value of the aperture 42 is the open value. Thus, the reflex mirror 91 is lowered, the defocus amount is calculated based on the output from the phase difference sensor 92, and the focus lens 41 is moved.
  • the above-described series of processing can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 11 is a block diagram showing an example of a hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 505 is further connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes a keyboard, a mouse, a microphone, one or a plurality of image sensors.
  • the image sensor constituting the input unit 506 corresponds to the image capturing unit 22 and the phase difference sensor 92.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 509 includes a network interface or the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 501) can be provided by being recorded in a removable recording medium 511 as a package medium or the like, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in advance in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present technology can be configured as follows.
  • a phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit; An aperture control unit that changes an aperture value to a larger value when the phase difference detection by the phase difference detection processing unit is difficult.
  • the aperture control unit changes the aperture value to a predetermined value when the phase difference detection is difficult.
  • the imaging device according to (1) (3) The imaging device according to (1), wherein the aperture control unit changes the aperture value step by step whenever it is determined that the phase difference detection is difficult.
  • the imaging device wherein when the phase difference detection is difficult, the aperture control unit changes the aperture value, and the phase difference detection processing unit changes the detection characteristics.
  • the phase difference detection processing unit changes the detection characteristic when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value.
  • Imaging device (7)
  • the imaging device according to any one of (4) to (6), wherein the phase difference detection processing unit changes filter processing applied to an output from the phase difference detection pixel as the detection characteristic.
  • the imaging apparatus according to any one of (1) to (7), further including a focusing control unit that drives an imaging lens based on the result of the phase difference detection and performs focusing control.
  • the aperture control unit When the aperture value is changed and the phase difference detection is performed again, the aperture control unit returns the aperture value to the value before the change after the focus control by the focus control unit. ).
  • the focus control unit when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value, the result of the phase difference detection by the phase difference detection processing unit.
  • (11) Perform phase difference detection based on the output from the phase difference detection pixel provided in the imaging unit, A focus control method including a step of changing the aperture value to a larger value when the phase difference detection is difficult.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 The present technique pertains to an image pickup device, a focus control method, and a program, with which highly accurate focusing can be achieved at faster focusing speeds. An image pickup unit is provided with pixels for pickup of a picked up image, as well as with phase difference detection pixels for detecting phase difference. A phase difference detection processor performs phase difference detection on the basis of the output of the phase difference detection pixels, and computes a defocus level for the image pickup lens. In the event that phase difference detection is not possible, an aperture controller changes the aperture value of the image pickup lens to a larger value, and the phase difference detection processor again performs phase difference detection. In so doing, highly accurate focusing can be achieved at faster focusing speed. The present technology may be applied to a digital still camera.

Description

撮像装置および合焦制御方法、並びにプログラムImaging apparatus, focus control method, and program
 本技術は撮像装置および合焦制御方法、並びにプログラムに関し、特に、より速い合焦速度で高精度に合焦させることができるようにした撮像装置および合焦制御方法、並びにプログラムに関する。 The present technology relates to an imaging apparatus, a focusing control method, and a program, and more particularly, to an imaging apparatus, a focusing control method, and a program that are capable of focusing with higher accuracy at a faster focusing speed.
 従来、オートフォーカス制御(自動合焦制御)を行う場合に、瞳分割して得られた2つの画像信号の位相のずれ量を求め、そのずれ量に基づいてフォーカスレンズを駆動させることで合焦させる位相差方式の合焦制御が知られている(例えば、特許文献1および特許文献2参照)。 Conventionally, when performing autofocus control (automatic focus control), the amount of phase shift between two image signals obtained by pupil division is obtained, and focusing is performed by driving the focus lens based on the amount of shift. A phase difference type focusing control is known (see, for example, Patent Document 1 and Patent Document 2).
 このような位相差方式を実現する方法として、例えば位相差AF(Autofocus)専用センサを用いる方法と、撮影画像を撮影するための画素と位相差検出画素とが設けられた撮像素子を用いる方法(以下、特に撮像面位相差方式と称する)とがある。 As a method for realizing such a phase difference method, for example, a method using a sensor dedicated to phase difference AF (Autofocus), and a method using an image sensor provided with a pixel for capturing a captured image and a phase difference detection pixel ( Hereinafter, it is referred to as an imaging surface phase difference method in particular.
特開2013-37143号公報JP 2013-37143 A 特開2013-54120号公報JP2013-54120A
 撮影画像用の撮像素子とは別の位相差AF専用センサとミラー機構とを有する、いわゆる一眼レフ構造のカメラの場合、合焦制御時における撮像レンズの絞りは開放とされ、かつ位相差AF専用センサに入射する光線は、ミラー機構と位相差AF専用センサの間において一定の光束太さとなるように制限される。そのため、位相差AF専用センサを用いて合焦制御を行う場合、撮像レンズのF値(絞り値)によって位相差検波精度が大きく変化することは少なかった。 In the case of a so-called single-lens reflex camera that has a phase difference AF dedicated sensor and a mirror mechanism that is different from the image sensor for the captured image, the aperture of the imaging lens during focusing control is opened and only for phase difference AF The light beam incident on the sensor is limited to have a constant light beam thickness between the mirror mechanism and the phase difference AF dedicated sensor. For this reason, when focus control is performed using a phase difference AF dedicated sensor, the phase difference detection accuracy hardly changes depending on the F value (aperture value) of the imaging lens.
 これに対して、撮像面位相差方式の場合、撮像レンズごとにF値(絞り値)は異なるため、撮像レンズの絞りの状態によって位相差検波精度が大きく変化する。 On the other hand, in the case of the imaging surface phase difference method, the F value (aperture value) differs for each imaging lens, so the phase difference detection accuracy varies greatly depending on the aperture state of the imaging lens.
 例えば撮像レンズのF値が小さい程、つまり撮像レンズが明るい程、位相差検波において重要となる基線長が長くなるため、撮像面上の位相差検波精度は向上する。反対に撮像レンズのF値が大きい程、つまり撮像レンズが暗い程、基線長が短くなるため、撮像面上の位相差検波精度は低下する。このように位相差方式では、明るい(小さい)F値で位相差検波を行った方が、合焦精度は高くなる。 For example, the smaller the F-number of the imaging lens, that is, the brighter the imaging lens, the longer the baseline length that is important in phase difference detection, so the phase difference detection accuracy on the imaging surface is improved. Conversely, the larger the F value of the imaging lens, that is, the darker the imaging lens, the shorter the baseline length, and therefore the phase difference detection accuracy on the imaging surface decreases. Thus, in the phase difference method, focusing accuracy is higher when phase difference detection is performed with a bright (small) F value.
 ところがF値を小さくすると被写界深度が浅くなるため、撮像面上の像が大きくぼけやすくなり、位相差検出画素の出力波形が崩れて位相差検波ができなくなってしまうことが多くなる。この点、位相差AF専用センサを用いる方式では、このような大きくぼけた状態になりにくくするため、光路上において光線の太さがある程度細くなるように光線の太さが制限されている。 However, if the F value is decreased, the depth of field becomes shallower, so that the image on the imaging surface becomes large and easily blurred, and the output waveform of the phase difference detection pixel collapses and phase difference detection cannot be performed in many cases. In this regard, in the method using the phase difference AF dedicated sensor, the thickness of the light beam is limited so that the light beam is thinned to some extent on the optical path in order to prevent such a large blurred state.
 このように撮像面位相差方式では、撮像レンズのF値が小さい場合など、被写体の像が大きくぼけている状態では位相差検波が不能となることがある。そのような場合には、撮像面位相差方式とは異なる他の方式に切り替えて合焦制御を行うようにする技術もあるが、合焦までに時間がかかってしまう。 As described above, in the imaging surface phase difference method, phase difference detection may be disabled when the subject image is greatly blurred, such as when the F value of the imaging lens is small. In such a case, there is a technique in which focus control is performed by switching to another method different from the imaging surface phase difference method, but it takes time to focus.
 本技術は、このような状況に鑑みてなされたものであり、より速い合焦速度で高精度に合焦させることができるようにするものである。 The present technology has been made in view of such a situation, and makes it possible to focus with high accuracy at a faster focusing speed.
 本技術の一側面の撮像装置は、撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行う位相差検波処理部と、前記位相差検波処理部による前記位相差検波が困難であった場合、絞り値をより大きい値に変更する絞り制御部とを備える。 An imaging apparatus according to one aspect of the present technology includes a phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit, and the phase difference detection by the phase difference detection processing unit. When it is difficult, an aperture control unit that changes the aperture value to a larger value is provided.
 前記絞り制御部には、前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更させることができる。 The aperture control unit can change the aperture value to a predetermined value when the phase difference detection is difficult.
 前記絞り制御部には、前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更させていくことができる。 The aperture control unit can change the aperture value step by step whenever it is determined that the phase difference detection is difficult.
 前記位相差検波処理部には、前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更させることができる。 When the phase difference detection is difficult, the phase difference detection processing unit can change the detection characteristics in the phase difference detection.
 前記位相差検波が困難であった場合、前記絞り制御部が前記絞り値を変更するとともに、前記位相差検波処理部が前記検波特性を変更するようにすることができる。 When the phase difference detection is difficult, the aperture control unit can change the aperture value, and the phase difference detection processing unit can change the detection characteristics.
 前記位相差検波処理部には、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記検波特性を変更させることができる。 The phase difference detection processing unit can change the detection characteristics when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value.
 前記位相差検波処理部には、前記検波特性として、前記位相差検出画素からの出力に対して施すフィルタ処理を変更させることができる。 The phase difference detection processing unit can change the filter processing applied to the output from the phase difference detection pixel as the detection characteristic.
 撮像装置には、前記位相差検波の結果に基づいて撮像レンズを駆動させ、合焦制御を行う合焦制御部をさらに設けることができる。 The imaging apparatus may further include a focusing control unit that drives the imaging lens based on the result of the phase difference detection and performs focusing control.
 前記絞り制御部には、前記絞り値が変更されて、再度、前記位相差検波が行われた場合、前記合焦制御部による合焦制御の後、前記絞り値を変更前の値に戻させることができる。 When the aperture value is changed and the phase difference detection is performed again, the aperture control unit returns the aperture value to the value before the change after the focus control by the focus control unit. be able to.
 前記合焦制御部には、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記位相差検波処理部による前記位相差検波の結果を利用する方式とは異なる方式で合焦制御を行わせることができる。 When it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value, the focus control unit performs the phase difference detection by the phase difference detection processing unit. Focus control can be performed by a method different from the method using the result.
 本技術の一側面の合焦制御方法またはプログラムは、撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行い、前記位相差検波が困難であった場合、絞り値をより大きい値に変更するステップを含む。 A focus control method or program according to one aspect of the present technology performs phase difference detection based on an output from a phase difference detection pixel provided in an imaging unit, and if the phase difference detection is difficult, an aperture value is set. Including changing to a larger value.
 前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更させることができる。 When the phase difference detection is difficult, the aperture value can be changed to a predetermined value.
 前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更させていくことができる。 Each time the phase difference detection is determined to be difficult, the aperture value can be changed step by step.
 前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更させることができる。 When the phase difference detection is difficult, the detection characteristic in the phase difference detection can be changed.
 前記位相差検波が困難であった場合、前記絞り値を変更するとともに前記検波特性を変更するようにすることができる。 When the phase difference detection is difficult, the aperture value can be changed and the detection characteristics can be changed.
 本技術の一側面においては、撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波が行われ、前記位相差検波が困難であった場合、絞り値がより大きい値に変更される。 In one aspect of the present technology, the phase difference detection is performed based on the output from the phase difference detection pixel provided in the imaging unit, and when the phase difference detection is difficult, the aperture value is changed to a larger value. Is done.
 本技術の一側面によれば、より速い合焦速度で高精度に合焦させることができる。 According to one aspect of the present technology, it is possible to focus with higher accuracy at a faster focusing speed.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。 Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
撮像装置の構成例を示す図である。It is a figure which shows the structural example of an imaging device. 撮像部の撮像面における画素配置例を示す図である。It is a figure which shows the pixel arrangement example in the imaging surface of an imaging part. 検波限界のぼけ量とF値の設定について説明する図である。It is a figure explaining the setting of the blur amount and F value of a detection limit. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 合焦処理を説明するフローチャートである。It is a flowchart explaining a focusing process. 撮像装置の構成例を示す図である。It is a figure which shows the structural example of an imaging device. コンピュータの構成例を示す図である。It is a figure which shows the structural example of a computer.
 以下、図面を参照して、本技術を適用した実施の形態について説明する。 Hereinafter, embodiments to which the present technology is applied will be described with reference to the drawings.
〈第1の実施の形態〉
〈撮像装置の構成例〉
 図1は、本技術を適用した撮像装置の一実施の形態の構成例を示す図である。
<First Embodiment>
<Configuration example of imaging device>
FIG. 1 is a diagram illustrating a configuration example of an embodiment of an imaging apparatus to which the present technology is applied.
 撮像装置11は、例えばデジタルスチルカメラやデジタルビデオカメラなどの撮影機能を有する電子機器から構成される。 The imaging device 11 is composed of an electronic device having a photographing function such as a digital still camera or a digital video camera.
 撮像装置11は、撮像レンズ21、撮像部22、信号処理部23、制御部24、入力部25、表示部26、記録部27、絞り駆動部28、およびレンズ駆動部29を有している。 The imaging device 11 includes an imaging lens 21, an imaging unit 22, a signal processing unit 23, a control unit 24, an input unit 25, a display unit 26, a recording unit 27, an aperture driving unit 28, and a lens driving unit 29.
 撮像レンズ21は1または複数のレンズ等からなり、被写体から入射した光を集光して撮像部22の撮像面上に結像させる。撮像レンズ21には、少なくとも合焦制御用のフォーカスレンズ41、および撮像レンズ21を通る光の量を調整するための絞り42が設けられている。 The imaging lens 21 is composed of one or a plurality of lenses and the like, and collects the light incident from the subject and forms an image on the imaging surface of the imaging unit 22. The imaging lens 21 is provided with at least a focus lens 41 for focus control and a diaphragm 42 for adjusting the amount of light passing through the imaging lens 21.
 なお、撮像レンズ21は撮像装置11に着脱可能であってもよいし、撮像装置11に固定されているようにしてもよい。 The imaging lens 21 may be detachable from the imaging device 11 or may be fixed to the imaging device 11.
 撮像部22は、例えばCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどの撮像素子からなり、撮像レンズ21を介して被写体から入射した光を受光して光電変換することにより撮影画像を撮影し、信号処理部23に供給する。 The imaging unit 22 is composed of an imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, for example. The imaging unit 22 receives light incident from a subject via the imaging lens 21 and photoelectrically converts the captured image to obtain a signal. This is supplied to the processing unit 23.
 また、撮像部22は撮影画像の撮影用の画素とは別に、位相差検波に用いられる位相差検出画素を有しており、撮像部22は、位相差検出画素が被写体からの光を受光して光電変換することで得られた位相差検出信号を信号処理部23に供給する。 In addition, the imaging unit 22 includes a phase difference detection pixel used for phase difference detection, in addition to the pixel for capturing a captured image. The imaging unit 22 receives light from the subject. The phase difference detection signal obtained by photoelectric conversion is supplied to the signal processing unit 23.
 信号処理部23は、撮像部22から供給された撮影画像の画像信号や位相差検出信号に対して所定の信号処理を施し、制御部24に供給する。例えば信号処理部23は、撮影画像の画像信号に対してデモザイク処理やガンマ補正処理などを施す。 The signal processing unit 23 performs predetermined signal processing on the image signal of the captured image and the phase difference detection signal supplied from the imaging unit 22 and supplies them to the control unit 24. For example, the signal processing unit 23 performs demosaic processing, gamma correction processing, and the like on the image signal of the captured image.
 制御部24は、撮像装置11全体の動作を制御する。制御部24は位相差検波処理部51、コントラスト検波処理部52、合焦制御部53、および絞り制御部54を備えている。 The control unit 24 controls the operation of the entire imaging apparatus 11. The control unit 24 includes a phase difference detection processing unit 51, a contrast detection processing unit 52, a focusing control unit 53, and an aperture control unit 54.
 位相差検波処理部51は、信号処理部23から供給された位相差検出信号に基づいて位相差検波処理を行い、フォーカスレンズ41のデフォーカス量を得る。デフォーカス量は、ピントを合わせようとする被写体からの光の撮像レンズ21による結像位置と撮像部22の撮像面との距離、つまり撮像面に対する結像位置のずれ量を示している。 The phase difference detection processing unit 51 performs phase difference detection processing based on the phase difference detection signal supplied from the signal processing unit 23, and obtains the defocus amount of the focus lens 41. The defocus amount indicates the distance between the imaging position of the light from the subject to be focused by the imaging lens 21 and the imaging surface of the imaging unit 22, that is, the deviation amount of the imaging position with respect to the imaging surface.
 コントラスト検波処理部52は、信号処理部23から供給された撮影画像に基づいて、コントラスト方式により検波処理を行い、コントラストの評価値を算出する。 The contrast detection processing unit 52 performs detection processing by a contrast method based on the captured image supplied from the signal processing unit 23, and calculates a contrast evaluation value.
 合焦制御部53は、位相差検波処理部51による検波処理の結果として得られたデフォーカス量、またはコントラスト検波処理部52による検波処理の結果として得られた評価値に基づいてレンズ駆動部29を制御することで、フォーカスレンズ41の合焦制御を行う。すなわち、合焦制御部53は、デフォーカス量または評価値に基づいてフォーカスレンズ41の移動量を算出し、その移動量に基づいてレンズ駆動部29を制御してフォーカスレンズ41を移動させる。 The focusing control unit 53 uses the lens driving unit 29 based on the defocus amount obtained as a result of the detection processing by the phase difference detection processing unit 51 or the evaluation value obtained as a result of the detection processing by the contrast detection processing unit 52. By controlling this, focusing control of the focus lens 41 is performed. That is, the focus control unit 53 calculates the movement amount of the focus lens 41 based on the defocus amount or the evaluation value, and controls the lens driving unit 29 based on the movement amount to move the focus lens 41.
 絞り制御部54は、絞り42の絞り制御を行う。すなわち、絞り制御部54は、適切なF値(絞り値)を決定し、そのF値に基づいて絞り駆動部28を制御して絞り42の絞り量(開き具合)を調整させる。 The aperture control unit 54 controls the aperture 42. That is, the aperture control unit 54 determines an appropriate F value (aperture value), and controls the aperture drive unit 28 based on the F value to adjust the aperture amount (opening degree) of the aperture 42.
 入力部25は、例えばシャッタボタンや電源ボタン等の各種のボタンなどからなり、ユーザの操作に応じた信号を制御部24に供給する。表示部26は、例えば液晶表示パネルなどからなり、制御部24から供給された画像等を表示する。 The input unit 25 includes various buttons such as a shutter button and a power button, and supplies a signal corresponding to a user operation to the control unit 24. The display unit 26 includes a liquid crystal display panel, for example, and displays an image supplied from the control unit 24.
 記録部27は、例えば撮像装置11に着脱可能な記録媒体などからなり、制御部24から供給された撮影画像等の画像や各種の情報を記録するとともに、要求に応じて記録している画像や情報を制御部24に供給する。 The recording unit 27 includes, for example, a recording medium that can be attached to and detached from the imaging device 11, and records images such as a captured image supplied from the control unit 24 and various types of information, and also records images that are recorded as required. Information is supplied to the control unit 24.
 絞り駆動部28は、絞り制御部54の制御に従って絞り42を駆動させ、絞り42の絞り量、つまり絞り42(撮像レンズ21)を通過する光の量を調整する。レンズ駆動部29は、合焦制御部53の制御に従って被写体に合焦した状態となるようにフォーカスレンズ41を移動させる。 The aperture driving unit 28 drives the aperture 42 according to the control of the aperture control unit 54, and adjusts the aperture amount of the aperture 42, that is, the amount of light passing through the aperture 42 (imaging lens 21). The lens driving unit 29 moves the focus lens 41 so that the subject is focused according to the control of the focusing control unit 53.
〈撮像部の画素配置例〉
 また、図1に示した撮像部22の撮像面には、例えば図2に示すように撮影画像用(撮影用)の画素と、位相差検出画素とが設けられている。
<Pixel arrangement example of imaging unit>
In addition, on the imaging surface of the imaging unit 22 illustrated in FIG. 1, for example, as illustrated in FIG. 2, pixels for captured images (for imaging) and phase difference detection pixels are provided.
 図2では1つの四角形は1つの画素を表しており、四角形内にR、G、Bの文字が記されている各画素はR(赤)、G(緑)、B(青)の各色の画素を示している。この例では、撮像面の画素配置はR、G、Bの各色の画素がベイヤー配列で並べられ、それらのベイヤー配列されたB画素の一部が位相差検出画素に置き換えられた配置となっている。 In FIG. 2, one square represents one pixel, and each pixel with R, G, and B characters in the square has R (red), G (green), and B (blue) colors. A pixel is shown. In this example, the pixel arrangement on the imaging surface is an arrangement in which pixels of each color of R, G, and B are arranged in a Bayer arrangement, and a part of the B pixels arranged in the Bayer arrangement is replaced with a phase difference detection pixel. Yes.
 各位相差検出画素の表面には図中、左側または右側に偏倚した開口が設けられている。例えば位相差検出画素GR11乃至位相差検出画素GR13には、それらの位相差検出画素の中心から図中、右側にずれた位置に開口が設けられている。これらの位相差検出画素GR11乃至位相差検出画素GR13は、撮像レンズ21の射出瞳の左側半分を通過した光束(光線)を受光する。 The opening of each phase difference detection pixel is provided with a biased opening on the left or right side in the figure. For example, the phase difference detection pixels GR11 to GR13 are provided with openings at positions shifted to the right in the drawing from the centers of the phase difference detection pixels. These phase difference detection pixels GR11 to GR13 receive light beams (light rays) that have passed through the left half of the exit pupil of the imaging lens 21.
 なお、以下、位相差検出画素GR11乃至位相差検出画素GR13のように、右側に偏倚した開口が設けられた位相差検出画素を右開口位相差検出画素とも称することとし、右開口位相差検出画素から出力される位相差検出信号を右開口位相差検出信号とも称する。 Hereinafter, a phase difference detection pixel provided with an opening biased on the right side, such as the phase difference detection pixel GR11 to the phase difference detection pixel GR13, is also referred to as a right opening phase difference detection pixel. The phase difference detection signal output from is also referred to as a right aperture phase difference detection signal.
 また、例えば位相差検出画素GL11乃至位相差検出画素GL13には、それらの位相差検出画素の中心から図中、左側にずれた位置に開口が設けられている。これらの位相差検出画素GL11乃至位相差検出画素GL13は、撮像レンズ21の射出瞳の右側半分を通過した光束(光線)を受光する。 For example, the phase difference detection pixels GL11 to GL13 are provided with openings at positions shifted to the left in the figure from the centers of the phase difference detection pixels. These phase difference detection pixels GL11 to phase difference detection pixel GL13 receive light beams (light rays) that have passed through the right half of the exit pupil of the imaging lens 21.
 なお、以下、位相差検出画素GL11乃至位相差検出画素GL13のように、左側に偏倚した開口が設けられた位相差検出画素を左開口位相差検出画素とも称することとし、左開口位相差検出画素から出力される位相差検出信号を左開口位相差検出信号とも称する。 Hereinafter, a phase difference detection pixel provided with an opening biased on the left side, such as the phase difference detection pixel GL11 to the phase difference detection pixel GL13, is also referred to as a left opening phase difference detection pixel, and the left opening phase difference detection pixel. The phase difference detection signal output from is also referred to as a left aperture phase difference detection signal.
 位相差検波処理部51は、右開口位相差検出信号と左開口位相差検出信号とを比較して、それらの位相差検出信号の位相差(波形のずれ量)を検出することで、フォーカスレンズ41のデフォーカス量を算出する。換言すれば、右開口位相差検出画素により撮影された画像上の被写体位置と、左開口位相差検出画素により撮影された画像上の被写体位置とのずれ量を検出することにより、フォーカスレンズ41のデフォーカス量が算出される。 The phase difference detection processing unit 51 compares the right opening phase difference detection signal and the left opening phase difference detection signal, and detects the phase difference (waveform deviation amount) of these phase difference detection signals, thereby the focus lens. A defocus amount of 41 is calculated. In other words, by detecting the amount of deviation between the subject position on the image captured by the right aperture phase difference detection pixel and the subject position on the image captured by the left aperture phase difference detection pixel, the focus lens 41 A defocus amount is calculated.
〈絞り制御について〉
 ところで、撮像装置11は、撮像部22に設けられた位相差検出画素を用いて、撮像面位相差方式により合焦制御を行う場合、位相差検波が不能であるときには、絞り42のF値をより大きくして再度位相差検波し、合焦制御を行う。
<About aperture control>
By the way, when the imaging device 11 performs focus control by the imaging surface phase difference method using the phase difference detection pixels provided in the imaging unit 22, when the phase difference detection is impossible, the F value of the diaphragm 42 is set. The phase difference is detected again with a larger value, and focusing control is performed.
 このとき、絞り42のF値をどのような値にすればよいかは、検波限界のぼけ量に基づいて事前に推定することが可能である。ここで、検波限界のぼけ量は、撮像レンズ21により結像される、合焦対象の被写体の像の撮像部22の撮像面上におけるぼけ量であって、位相差方式によりデフォーカス量を算出可能な最大のぼけ量である。この検波限界のぼけ量は位相差検波の検波特性、例えば位相差検波時に位相差検出信号に対して施される、波形整形のためのフィルタ処理のフィルタ特性などによって定まる。 At this time, what value should be used for the F value of the diaphragm 42 can be estimated in advance based on the amount of blur at the detection limit. Here, the blur amount at the detection limit is the blur amount on the imaging surface of the imaging unit 22 of the image of the subject to be focused, which is formed by the imaging lens 21, and the defocus amount is calculated by the phase difference method. The maximum amount of blur possible. The amount of blur at the detection limit is determined by detection characteristics of phase difference detection, for example, filter characteristics of filter processing for waveform shaping performed on the phase difference detection signal at the time of phase difference detection.
 例えば図3の矢印A11に示すように絞り42のF値が1.4(F1.4)である状態と、矢印A12に示すように絞り42のF値が5.6(F5.6)である状態とを比較する。図3ではF1.4である状態とF5.6である状態とで、撮像面IM11上における被写体の像のぼけ量が検波限界のぼけ量となる位置にフォーカスレンズ41が位置している。 For example, a state where the F value of the diaphragm 42 is 1.4 (F1.4) as shown by an arrow A11 in FIG. 3 and a state where the F value of the diaphragm 42 is 5.6 (F5.6) as shown by an arrow A12. Compare. In FIG. 3, the focus lens 41 is located at a position where the blur amount of the subject image on the imaging surface IM11 becomes the blur limit of the detection limit in the state of F1.4 and the state of F5.6.
 また、点P11および点P12は、それぞれフォーカスレンズ41(撮像レンズ21)による光像の結像位置を示している。この例では、よりF値が小さい、F1.4であるときの結像位置を示す点P11が、よりF値が大きい、F5.6であるときの結像位置を示す点P12よりも、光軸方向において、より撮像面IM11側に位置している。 Further, the points P11 and P12 indicate the positions of the optical images formed by the focus lens 41 (imaging lens 21), respectively. In this example, the point P11 indicating the imaging position when the F value is smaller, F1.4, is lighter than the point P12 indicating the imaging position when the F value is larger, F5.6. It is located closer to the imaging surface IM11 in the axial direction.
 このことからF値が大きい程、被写体の像の結像位置が撮像面IM11にある状態から、フォーカスレンズ41を大きく移動させないと被写体の像のぼけ量が検波限界のぼけ量に到達しないことが分かる。換言すれば、F値が大きい程、位相差検波が可能であるフォーカスレンズ41の位置の範囲、つまり測距可能範囲が広いことが分かる。 Therefore, as the F value increases, the subject image blur amount does not reach the detection limit blur amount unless the focus lens 41 is moved greatly from the state where the subject image is formed on the imaging surface IM11. I understand. In other words, it can be seen that the larger the F value, the wider the range of the position of the focus lens 41 in which phase difference detection is possible, that is, the distance measurement possible range.
 検波限界のぼけ量はF値に関係なく一定であり、またフォーカスレンズ41が移動可能な範囲、つまり駆動可能範囲は予め定められている。したがって検波限界のぼけ量と、フォーカスレンズ41の駆動可能範囲とから、撮像面位相差方式により合焦制御を行う場合において大デフォーカス時に有用なF値、つまりデフォーカス量が大きいときでも確実に位相差検波可能なF値を特定することができる。 The amount of blur at the detection limit is constant regardless of the F value, and the range in which the focus lens 41 can move, that is, the drivable range is predetermined. Therefore, from the blur amount at the detection limit and the driveable range of the focus lens 41, when the focus control is performed by the imaging surface phase difference method, the F value useful for large defocusing, that is, even when the defocus amount is large, is ensured. It is possible to specify an F value capable of phase difference detection.
 具体的には、フォーカスレンズ41の焦点距離と検波限界のぼけ量の関係から、各F値について、位相差検波が可能であるフォーカスレンズ41の測距可能範囲が求められる。 Specifically, from the relationship between the focal length of the focus lens 41 and the blurring amount of the detection limit, the range in which the focus lens 41 can measure the range where phase difference detection is possible is obtained for each F value.
 例えば矢印A13に示すように、フォーカスレンズ41の駆動可能範囲に対して、F値ごとに位相差検波可能なフォーカスレンズ41の測距可能範囲が求まる。 For example, as indicated by an arrow A13, the range in which the focus lens 41 can be measured is obtained for each F value with respect to the range in which the focus lens 41 can be driven.
 ここで、矢印Q11はフォーカスレンズ41の駆動可能範囲を示しており、矢印Q12はF1.4である場合におけるフォーカスレンズ41の位相差検波可能な測距可能範囲を示しており、矢印Q13はF5.6である場合におけるフォーカスレンズ41の位相差検波可能な測距可能範囲を示している。 Here, the arrow Q11 indicates the driveable range of the focus lens 41, the arrow Q12 indicates the range in which the focus lens 41 can detect the phase difference in the case of F1.4, and the arrow Q13 indicates F5. The range in which the phase difference can be detected by the focus lens 41 in the case of .6 is shown.
 例えば、矢印Q11で示される駆動可能範囲の図中、左側の端は、撮像レンズ21の焦点位置が無限遠となるときのフォーカスレンズ41の位置、つまり無限端の位置を示している。また、矢印Q11で示される駆動可能範囲の図中、右側の端は、撮像レンズ21の焦点位置が最も手前側、つまり撮像装置11側となるときのフォーカスレンズ41の位置であるニア端の位置を示している。 For example, in the diagram of the drivable range indicated by the arrow Q11, the left end indicates the position of the focus lens 41 when the focus position of the imaging lens 21 is infinite, that is, the position of the infinite end. Further, in the diagram of the drivable range indicated by the arrow Q11, the right end is the position of the near end that is the position of the focus lens 41 when the focus position of the imaging lens 21 is closest to the front, that is, the imaging apparatus 11 side. Is shown.
 この例では、矢印Q12で示されるF1.4時の測距可能範囲が、矢印Q11で示される駆動可能範囲の一部の範囲となっているのに対して、矢印Q13で示されるF5.6時の測距可能範囲は、矢印Q11で示される駆動可能範囲の全範囲を含む範囲となっている。 In this example, the distance measurement possible range at F1.4 indicated by the arrow Q12 is a partial range of the drivable range indicated by the arrow Q11, whereas F5.6 indicated by the arrow Q13. The distance measurement possible range at that time is a range including the entire driveable range indicated by the arrow Q11.
 したがって、例えば撮像面位相差方式による合焦制御時に、F値が1.4等で位相差検波が不能であるときには、F値を5.6に変更すれば位相差検波が可能となるはずである。 Therefore, for example, when the F value is 1.4 or the like and phase difference detection is impossible at the time of focusing control by the imaging surface phase difference method, if the F value is changed to 5.6, phase difference detection should be possible.
 そこで、撮像装置11は位相差検波が不能であると判定された場合には、デフォーカス量が大きいときでも確実に検波(測距)可能な、予め定められたF値に絞り42のF値(絞り値)を変更し、再度、位相差検波を行う。これにより、撮像面位相差方式で合焦制御を行う場合に、より速い合焦速度で高精度に被写体に合焦させることができる。 Therefore, when it is determined that the phase difference detection is impossible, the imaging apparatus 11 can detect (range) reliably even when the defocus amount is large, so that the F value of the aperture 42 is set to a predetermined F value. Change (aperture value) and perform phase difference detection again. As a result, when focusing control is performed using the imaging plane phase difference method, the subject can be focused with high accuracy at a faster focusing speed.
 なお、位相差検波時にF値を変更する場合には、測距可能範囲がフォーカスレンズ41の駆動可能範囲の全範囲を含むF値に限らず、合焦速度と合焦精度などを考慮して最適なF値に変更するようにすればよい。 When changing the F value at the time of phase difference detection, the focusable range is not limited to the F value including the entire driveable range of the focus lens 41, and the focus speed and focus accuracy are taken into consideration. What is necessary is just to change to the optimal F value.
 また、以下では、位相差検波が不能であると判定された場合にF値を変更し、再度、位相差検波を行うものとして説明を行う。しかし、位相差検波が完全に不能ではなく、位相差検波ができる可能性があるが、その可能性が高くないなど、位相差検波が困難であると判定された場合にF値を変更し、再度、位相差検波を行うようにしてもよい。なお、本実施の形態では、位相差検波が困難であることは、位相差検波が完全に不能である場合も含むものとする。 In the following description, it is assumed that when it is determined that phase difference detection is impossible, the F value is changed and phase difference detection is performed again. However, phase difference detection is not completely impossible, and there is a possibility that phase difference detection can be performed, but if it is determined that phase difference detection is difficult, such as the possibility is not high, the F value is changed, The phase difference detection may be performed again. In the present embodiment, the fact that phase difference detection is difficult includes the case where phase difference detection is completely impossible.
〈合焦処理の説明〉
 次に、撮像装置11の具体的な動作について説明する。
<Description of focus processing>
Next, a specific operation of the imaging device 11 will be described.
 例えばユーザが撮影画像を撮影しようとして、入力部25としての電源ボタンを操作し、電源をオンすると、撮像装置11は表示部26にライブビュー画像(スルー画像)を表示させる。 For example, when the user operates the power button as the input unit 25 to turn on the power to capture a captured image, the imaging device 11 displays a live view image (through image) on the display unit 26.
 すなわち、撮像レンズ21は、被写体から入射した光を撮像部22の撮像面上に結像させ、撮像部22、つまり撮影画像の撮影用の画素は、撮像レンズ21から入射した光を受光して光電変換し、その結果得られた画像を信号処理部23を介して制御部24に供給する。このとき、信号処理部23は適宜、画像に対してデモザイク処理等の信号処理を施す。 That is, the imaging lens 21 forms an image of light incident from the subject on the imaging surface of the imaging unit 22, and the imaging unit 22, that is, a pixel for capturing a captured image receives the light incident from the imaging lens 21. The photoelectric conversion is performed, and an image obtained as a result is supplied to the control unit 24 via the signal processing unit 23. At this time, the signal processing unit 23 appropriately performs signal processing such as demosaic processing on the image.
 制御部24は、信号処理部23から供給された画像を表示部26に供給し、ライブビュー画像として表示させる。ユーザは、表示部26に表示されたライブビュー画像を見て画角等を確認しながら撮影作業を行う。 The control unit 24 supplies the image supplied from the signal processing unit 23 to the display unit 26 and displays it as a live view image. The user performs a shooting operation while viewing the live view image displayed on the display unit 26 and confirming the angle of view and the like.
 撮影作業時にユーザが所望の被写体にピントを合わせようとして、入力部25としてのシャッタボタンを半押しすると、撮像装置11はユーザの操作に応じて合焦動作を行い、被写体にピントを合わせる合焦処理を開始する。以下、図4のフローチャートを参照して、撮像装置11による合焦処理について説明する。 When the user tries to focus on a desired subject during shooting, when the shutter button as the input unit 25 is pressed halfway, the imaging device 11 performs a focusing operation in accordance with the user's operation, and focuses on the subject. Start processing. Hereinafter, the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
 ステップS11において、絞り制御部54は、撮影画像の撮影用のF値(絞り値)を絞り42のF値として指定する。 In step S11, the aperture controller 54 designates the F value (aperture value) for capturing a captured image as the F value of the aperture 42.
 例えば、撮像装置11が適切な露出やF値、シャッタスピードなどを、ユーザの操作によらずに自動的に設定するプログラムオートが撮影モードとして選択されている場合、制御部24は撮影環境の条件などから露出やF値、シャッタスピードを決定する。絞り制御部54は、制御部24により決定されたF値を、絞り42の撮影用のF値として指定する。 For example, when the program auto in which the imaging apparatus 11 automatically sets appropriate exposure, F value, shutter speed, and the like without depending on the user's operation is selected as the shooting mode, the control unit 24 sets the conditions of the shooting environment. Determine the exposure, F value, and shutter speed from the above. The aperture control unit 54 designates the F value determined by the control unit 24 as an F value for photographing the aperture 42.
 また、例えばユーザが絞り42のF値を指定する絞り優先オートが撮影モードとして選択されている場合、絞り制御部54は、ユーザが入力部25を操作することにより指定されたF値を、絞り42の撮影用のF値として指定する。 Further, for example, when the aperture priority auto in which the user specifies the F value of the aperture 42 is selected as the shooting mode, the aperture control unit 54 sets the F value specified by the user operating the input unit 25 to the aperture value. Designated as an F-number for shooting 42.
 ステップS12において、絞り制御部54は、絞り42の絞り量が指定されたF値に対応する絞り量となるように、絞り42の駆動を制御する。 In step S12, the diaphragm control unit 54 controls the driving of the diaphragm 42 so that the diaphragm amount of the diaphragm 42 becomes the diaphragm amount corresponding to the designated F value.
 すなわち、絞り制御部54は、指定したF値に基づいて絞り駆動部28を制御し、絞り駆動部28は絞り制御部54の制御に従って絞り42を駆動させ、絞り量を変化させる。例えば、処理がステップS11からステップS12へと進み、絞り42が駆動される場合には、ステップS11の処理で指定されたF値に基づいて絞り42の駆動が制御される。 That is, the aperture control unit 54 controls the aperture drive unit 28 based on the designated F value, and the aperture drive unit 28 drives the aperture 42 according to the control of the aperture control unit 54 to change the aperture amount. For example, when the process proceeds from step S11 to step S12 and the diaphragm 42 is driven, the driving of the diaphragm 42 is controlled based on the F value designated in the process of step S11.
 ステップS13において、位相差検波処理部51は位相差検波を行う。 In step S13, the phase difference detection processing unit 51 performs phase difference detection.
 具体的には、撮像部22の位相差検出画素は、撮像レンズ21を介して被写体から入射した光を受光して光電変換し、その結果得られた位相差検出信号を信号処理部23を介して制御部24に供給する。 Specifically, the phase difference detection pixel of the imaging unit 22 receives light incident from the subject via the imaging lens 21 and performs photoelectric conversion, and a phase difference detection signal obtained as a result is transmitted via the signal processing unit 23. To the control unit 24.
 位相差検波処理部51は、信号処理部23から供給された位相差検出信号に対して、位相差検出信号の波形を整形する検波フィルタを用いてフィルタ処理を施す。さらに、位相差検波処理部51は、フィルタ処理が施された位相差検出信号、より詳細には右開口位相差検出信号と左開口位相差検出信号とを比較して、それらの位相差検出信号の位相差を検出することで、フォーカスレンズ41のデフォーカス量を算出する。 The phase difference detection processing unit 51 performs filter processing on the phase difference detection signal supplied from the signal processing unit 23 using a detection filter that shapes the waveform of the phase difference detection signal. Further, the phase difference detection processing unit 51 compares the phase difference detection signal subjected to the filter processing, more specifically, the right opening phase difference detection signal and the left opening phase difference detection signal, and those phase difference detection signals The defocus amount of the focus lens 41 is calculated by detecting the phase difference.
 ステップS14において、位相差検波処理部51は位相差検波が不能であるか否かを判定する。 In step S14, the phase difference detection processing unit 51 determines whether or not phase difference detection is impossible.
 例えば位相差検波処理部51は、ステップS13の処理で位相差検波により位相差を検出することができず、デフォーカス量が得られなかった場合、位相差検波が不能であると判定する。より詳細には、例えば何度か位相差検波を行って位相差を検出しようとしたが、一定時間継続して位相差が検出できない状態であった場合などに、位相差検波が困難である、すなわち位相差検波が不能であると判定される。 For example, the phase difference detection processing unit 51 determines that phase difference detection is impossible when the phase difference cannot be detected by the phase difference detection in step S13 and the defocus amount cannot be obtained. More specifically, for example, when the phase difference is detected several times to detect the phase difference, but the phase difference cannot be detected for a certain period of time, the phase difference detection is difficult. That is, it is determined that phase difference detection is not possible.
 ここで、位相差を検出することができなかったとは、例えば位相差検出信号の位相差(波形のずれ量)を検出するときに算出される、各ずれ量での右開口位相差検出信号と左開口位相差検出信号との相関度、つまり類似度が閾値よりも低い場合や、ずれ量ごとに求めた位相差検出信号の相関度の極小値を求めることができない場合などとされる。 Here, the fact that the phase difference could not be detected means, for example, the right opening phase difference detection signal at each deviation amount calculated when detecting the phase difference (waveform deviation amount) of the phase difference detection signal. For example, the degree of correlation with the left aperture phase difference detection signal, that is, the degree of similarity is lower than the threshold value, or the case where the minimum value of the degree of correlation of the phase difference detection signal obtained for each shift amount cannot be obtained.
 ステップS14において位相差検波が不能であると判定された場合、ステップS15において、絞り制御部54は、現在指定されているF値に基づいて、合焦用のF値を絞り42のF値として指定する。 If it is determined in step S14 that phase difference detection is not possible, in step S15, the aperture controller 54 sets the focusing F value as the F value of the aperture 42 based on the currently designated F value. specify.
 例えば位相差検波が不能(困難)である場合、現時点での絞り42のF値が小さいために撮像面上で被写体の像が大きくぼけており、位相差検波に失敗した可能性が高い。そこで、絞り制御部54は、ステップS11で指定された撮影用のF値よりも、より大きいF値を絞り42の合焦用のF値として指定する。具体的には、例えば図3を参照して説明したように、フォーカスレンズ41の駆動可能範囲と検波限界のぼけ量とから予め求められた、デフォーカス量が大きいときでも確実に検波可能なF値が、合焦用のF値として指定される。 For example, when phase difference detection is impossible (difficult), the current F value of the diaphragm 42 is small, so the subject image is greatly blurred on the imaging surface, and there is a high possibility that phase difference detection has failed. Therefore, the aperture control unit 54 designates an F value larger than the imaging F value designated in step S11 as the F value for focusing the aperture 42. Specifically, for example, as described with reference to FIG. 3, an F which is obtained in advance from the driveable range of the focus lens 41 and the blur amount at the detection limit and can be reliably detected even when the defocus amount is large. The value is designated as the F value for focusing.
 いわゆるミラーレス一眼と呼ばれる撮像装置などでは、前提として合焦制御時の絞り42のF値は撮影画像を撮影(キャプチャ)するときのF値と一致していることが重視されている。これは、ぼけの深度表現を確保したり、絞り42の駆動時間を短縮してレリーズタイムラグを短くしたりするためである。 In an imaging device called a so-called mirrorless single-lens camera, as a premise, it is important that the F value of the aperture 42 at the time of focusing control matches the F value when a captured image is captured (captured). This is for ensuring the expression of the depth of blur, or shortening the release time lag by shortening the drive time of the diaphragm 42.
 そのため、撮像装置11では、まずは撮影用のF値で位相差検波が行われ、撮影用のF値では位相差検波が不能(困難)である場合に、合焦用に予め定められたF値へとF値の変更が行われ、再度、位相差検波が行われる。F値が変更されると、撮像部22の撮像面上における被写体の像のぼけ量が低減され、位相差検波が可能(容易)となる。 Therefore, in the imaging apparatus 11, first, phase difference detection is performed with the F value for photographing, and when the phase difference detection is impossible (difficult) with the photographing F value, an F value predetermined for focusing is set. The F value is changed to, and phase difference detection is performed again. When the F value is changed, the blur amount of the subject image on the imaging surface of the imaging unit 22 is reduced, and phase difference detection is possible (easy).
 これにより、ぼけの深度表現や短いレリーズタイムラグをなるべく確保しつつ、より迅速かつ高精度に被写体に合焦させることができる。特に、撮像装置11では、検波限界のぼけ量等から、位相差検波が可能となるために必要な絞り込み量を事前に推定することができるため、迅速にデフォーカス量を得ることができる。 This makes it possible to focus on the subject more quickly and with high accuracy while ensuring as much blur depth expression and a short release time lag as possible. In particular, since the imaging device 11 can estimate in advance the amount of narrowing necessary to enable phase difference detection from the amount of blur at the detection limit or the like, the defocus amount can be obtained quickly.
 このようにしてステップS15において新たなF値が指定されると、その後、処理はステップS12に戻り、上述した処理が繰り返し行われる。すなわち、ステップS15の処理で指定されたF値に基づいて絞り量が調整され、再度、位相差検波が行われる。 Thus, when a new F value is designated in step S15, the process returns to step S12, and the above-described process is repeated. That is, the aperture amount is adjusted based on the F value designated in the process of step S15, and phase difference detection is performed again.
 また、ステップS14において位相差検波が不能でない、つまり位相差検波によりデフォーカス量が得られたと判定された場合、ステップS16において、合焦制御部53はデフォーカス量に基づいてフォーカスレンズ41の移動量を算出する。すなわち、合焦制御部53は、ステップS13の処理で得られたデフォーカス量を、フォーカスレンズ41の移動量に変換する。 If it is determined in step S14 that the phase difference detection is not impossible, that is, it is determined that the defocus amount is obtained by the phase difference detection, the focus control unit 53 moves the focus lens 41 based on the defocus amount in step S16. Calculate the amount. In other words, the focus control unit 53 converts the defocus amount obtained in the process of step S13 into a movement amount of the focus lens 41.
 ステップS17において、合焦制御部53は、ステップS16の処理で算出した移動量に基づいてフォーカスレンズ41を移動させる。すなわち、合焦制御部53はフォーカスレンズ41の移動量に基づいてレンズ駆動部29を制御し、レンズ駆動部29は合焦制御部53の制御に従って、フォーカスレンズ41を光軸方向に移動させる。これにより被写体にピントが合った状態となる。 In step S17, the focus control unit 53 moves the focus lens 41 based on the movement amount calculated in the process of step S16. That is, the focus control unit 53 controls the lens driving unit 29 based on the movement amount of the focus lens 41, and the lens driving unit 29 moves the focus lens 41 in the optical axis direction according to the control of the focusing control unit 53. As a result, the subject is in focus.
 ステップS18において、絞り制御部54は現時点における絞り42のF値が撮影画像の撮影用のF値、つまりステップS11で指定されたF値であるか否かを判定する。ステップS18では、ステップS15の処理が一度でも行われた場合、F値が異なると判定されることになる。 In step S18, the aperture controller 54 determines whether or not the current F value of the aperture 42 is the F value for capturing a captured image, that is, the F value specified in step S11. In step S18, when the process of step S15 is performed even once, it is determined that the F value is different.
 ステップS18において現時点のF値が撮影用のF値ではないと判定された場合、ステップS19において、絞り制御部54は、絞り42の絞り量がステップS11の処理で指定された撮影用のF値に対応する絞り量となるように、絞り42の駆動を制御する。 If it is determined in step S18 that the current F value is not the shooting F value, in step S19, the aperture control unit 54 determines that the aperture amount of the aperture 42 is designated in the process of step S11. The drive of the diaphragm 42 is controlled so that the diaphragm amount corresponds to.
 すなわち、絞り制御部54は、撮影用のF値に基づいて絞り駆動部28を制御し、絞り駆動部28は絞り制御部54の制御に従って絞り42を駆動させ、絞り量を変化させる。このようにしてF値が合焦用のF値から、撮影用のF値へと戻されると、つまり合焦制御のために変更したF値が、変更後のF値から変更前のF値へと戻されると、表示部26に表示されるライブビュー画像のぼけ感(深度表現)が撮影画像の撮影時と同じとなる。 That is, the aperture control unit 54 controls the aperture drive unit 28 based on the F value for photographing, and the aperture drive unit 28 drives the aperture 42 according to the control of the aperture control unit 54 to change the aperture amount. When the F value is returned from the F value for focusing to the F value for shooting in this way, that is, the F value changed for focusing control is changed from the F value after the change to the F value before the change. When the display is restored, the sense of blur (depth expression) of the live view image displayed on the display unit 26 is the same as when the captured image is captured.
 撮影用のF値に基づいて絞り42が駆動されると、その後、処理はステップS20へと進む。 When the diaphragm 42 is driven based on the F value for photographing, the process proceeds to step S20.
 一方、ステップS18において現時点のF値が撮影用のF値であると判定された場合、絞り42の駆動は不要であるので、処理はステップS20へと進む。 On the other hand, if it is determined in step S18 that the current F value is the F value for photographing, the diaphragm 42 does not need to be driven, and the process proceeds to step S20.
 ステップS18において撮影用のF値であると判定されたか、またはステップS19において絞り42が駆動されると、ステップS20において、制御部24は表示部26を制御し、合焦表示を行う。 When it is determined in step S18 that the F-number is for photographing, or when the diaphragm 42 is driven in step S19, the control unit 24 controls the display unit 26 to perform in-focus display in step S20.
 すなわち、制御部24はライブビュー画像における合焦領域に、被写体への合焦を示す矩形枠を重畳させ、矩形枠が重畳表示されたライブビュー画像を表示部26に供給して表示させる。ライブビュー画像上に合焦を示す矩形枠が表示されると、合焦処理は終了する。 That is, the control unit 24 superimposes a rectangular frame indicating the focus on the subject on the in-focus area in the live view image, and supplies the live view image on which the rectangular frame is superimposed to the display unit 26 for display. When a rectangular frame indicating in-focus is displayed on the live view image, the in-focus processing ends.
 このように合焦表示が行われると、ユーザは適宜、入力部25としてのシャッタボタンを全押しして、撮影画像の撮影(キャプチャ)を指示する。すると、制御部24は、信号処理部23を介して撮像部22から供給された画像を撮影画像とし、必要に応じて圧縮処理等を行った後、記録部27に供給して記録させたり、表示部26に撮影画像を表示させたりする。 When the in-focus display is performed as described above, the user appropriately presses the shutter button as the input unit 25 and instructs to capture a captured image. Then, the control unit 24 uses the image supplied from the imaging unit 22 via the signal processing unit 23 as a captured image, performs compression processing or the like as necessary, and then supplies the recording unit 27 for recording. A captured image is displayed on the display unit 26.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値(絞り値)がより大きい値となるように変更し、再度、位相差検波を行う。これにより、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。特に、撮像装置11によれば、撮像面位相差方式が苦手としていた、大きくぼけた状態からの高速な合焦駆動を実現することができる。 As described above, when the phase difference detection is impossible, the imaging device 11 changes the F value (aperture value) of the diaphragm 42 to a larger value and performs the phase difference detection again. As a result, the subject can be focused at a higher focusing speed and with higher accuracy. In particular, according to the imaging device 11, it is possible to realize high-speed focusing drive from a greatly blurred state, which is not good for the imaging surface phase difference method.
〈第2の実施の形態〉
〈合焦処理の説明〉
 なお、以上においては、合焦制御時に絞り42のF値をより大きい値に変更する場合に、予め定められたF値に変更すると説明した。この場合、例えばF値の変更前後でF値の差が大きいと、表示部26に表示されるライブビュー画像の明るさが急激に大きく変化してしまうことになり、駆動品位が低下してしまう。
<Second Embodiment>
<Description of focus processing>
In the above description, it has been described that when the F value of the diaphragm 42 is changed to a larger value during the focus control, the F value is changed to a predetermined value. In this case, for example, if the difference between the F values before and after the change of the F value is large, the brightness of the live view image displayed on the display unit 26 will change drastically and drive quality will be reduced. .
 そこで、合焦制御時に絞り42のF値を変更する場合に、現在のF値によらず特定のF値へと変更するのではなく、位相差検波が可能となるまで、現在のF値から特定のF値へと段階的に少しづつ変化させるようにしてもよい。このようにすることで駆動品位を損なうことなく、デフォーカス量が大きい状態での迅速な位相差検波を実現することができる。 Therefore, when the F value of the diaphragm 42 is changed during focus control, it is not changed to a specific F value regardless of the current F value, but from the current F value until phase difference detection is possible. You may make it change to a specific F value little by little in steps. By doing so, it is possible to realize rapid phase difference detection in a state where the defocus amount is large without impairing drive quality.
 そのような場合、撮像装置11は、合焦処理として図5に示す処理を行う。以下、図5のフローチャートを参照して、撮像装置11による合焦処理について説明する。なお、ステップS51乃至ステップS54の処理は、図4のステップS11乃至ステップS14の処理と同様であるので、その説明は省略する。 In such a case, the imaging device 11 performs the process shown in FIG. 5 as the focusing process. Hereinafter, the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG. In addition, since the process of step S51 thru | or step S54 is the same as the process of step S11 thru | or step S14 of FIG. 4, the description is abbreviate | omitted.
 ステップS54において位相差検波が不能であると判定された場合、ステップS55において、絞り制御部54は、現在指定されているF値から所定段数だけ絞った値を、絞り42の新たな合焦用のF値として指定する。 If it is determined in step S54 that phase difference detection is not possible, in step S55, the aperture control unit 54 sets a value obtained by reducing the currently specified F value by a predetermined number of steps to a new focus for the aperture 42. Specify as F value.
 例えばステップS55では、撮影用のF値に対して0.3段ずつF値(絞り値)が大きくなっていくように合焦用のF値が変更される。 For example, in step S55, the F value for focusing is changed so that the F value (aperture value) is increased by 0.3 steps with respect to the F value for photographing.
 新たなF値が指定されると、その後、処理はステップS52に戻り、上述した処理が繰り返し行われる。 When a new F value is designated, the process thereafter returns to step S52, and the above-described process is repeated.
 また、ステップS54において位相差検波が不能でないと判定された場合、その後、ステップS56乃至ステップS60の処理が行われて合焦処理は終了するが、これらの処理は図4のステップS16乃至ステップS20の処理と同様であるので、その説明は省略する。 If it is determined in step S54 that phase difference detection is not possible, then the processing from step S56 to step S60 is performed and the focusing processing ends, but these processing is performed from step S16 to step S20 in FIG. Since this is the same as the above process, the description thereof is omitted.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値(絞り値)を段階的に大きくし、位相差検波を行う。これにより、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。しかも、位相差検波が可能となるまでF値を段階的に大きくしていくことで、ライブビュー画像の明るさが急激に変化することを防止し、駆動品位を向上させることができる。 As described above, when the phase difference detection is impossible, the imaging apparatus 11 increases the F value (aperture value) of the diaphragm 42 in a stepwise manner and performs phase difference detection. As a result, the subject can be focused at a higher focusing speed and with higher accuracy. In addition, by increasing the F value stepwise until phase difference detection becomes possible, it is possible to prevent the brightness of the live view image from changing suddenly and to improve drive quality.
〈第3の実施の形態〉
〈合焦処理の説明〉
 ところで、位相差検波時に絞り42をある程度まで絞り込んでも、場合によっては位相差検波が不能(困難)なままの状態となることもあり得る。そこで、例えば絞り42をある程度絞り込んでも位相差検波が不能(困難)な状態であるときには、撮像面位相差方式とは異なる方式の合焦制御へと切り替えるようにしてもよい。
<Third Embodiment>
<Description of focus processing>
By the way, even if the diaphragm 42 is narrowed down to a certain extent at the time of phase difference detection, in some cases, phase difference detection may remain impossible (difficult). Therefore, for example, when phase difference detection is impossible (difficult) even when the diaphragm 42 is narrowed to some extent, the focus control may be switched to a method different from the imaging surface phase difference method.
 そのような場合、合焦処理として例えば図6に示す処理が行われる。以下、図6のフローチャートを参照して、撮像装置11による合焦処理について説明する。なお、ステップS91乃至ステップS94の処理は、図4のステップS11乃至ステップS14の処理と同様であるので、その説明は省略する。 In such a case, for example, the process shown in FIG. 6 is performed as the focusing process. Hereinafter, the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG. Note that the processing from step S91 to step S94 is the same as the processing from step S11 to step S14 in FIG.
 ステップS94において位相差検波が不能であると判定された場合、ステップS95において、絞り制御部54は位相差検波のためにF値を変更したか否かを判定する。 If it is determined in step S94 that phase difference detection is not possible, in step S95, the aperture controller 54 determines whether or not the F value has been changed for phase difference detection.
 例えば、撮影用のF値から合焦用のF値へと絞り42のF値が変更され、位相差検波が行われた場合、つまり後述するステップS96の処理が既に行われた場合、F値を変更したと判定される。 For example, when the F value of the aperture 42 is changed from the F value for photographing to the F value for focusing and phase difference detection is performed, that is, when the processing of step S96 described later has already been performed, the F value Is determined to have been changed.
 ステップS95においてまだF値を変更していないと判定された場合、ステップS96において、絞り制御部54は、現在指定されているF値に基づいて、合焦用のF値を絞り42のF値として指定する。すなわち、ステップS96では図4のステップS15と同様の処理が行われる。 If it is determined in step S95 that the F value has not yet been changed, in step S96, the aperture control unit 54 sets the F value for focusing to the F value for the aperture 42 based on the currently designated F value. Specify as. That is, in step S96, processing similar to that in step S15 in FIG. 4 is performed.
 合焦用のF値が指定されると、その後、処理はステップS92に戻り、上述した処理が行われる。 When the F value for focusing is designated, the process returns to step S92 and the above-described process is performed.
 これに対して、ステップS95においてF値を変更したと判定された場合、ステップS97において、撮像装置11はコントラスト方式で合焦動作を行う。 On the other hand, when it is determined in step S95 that the F value has been changed, in step S97, the imaging device 11 performs a focusing operation using a contrast method.
 すなわち、コントラスト検波処理部52は、信号処理部23から供給された、ライブビュー画像とする画像に基づいて、その画像の各領域のコントラストの度合いを示す評価値を算出する。つまり、コントラスト検波が行われる。 That is, the contrast detection processing unit 52 calculates an evaluation value indicating the degree of contrast of each region of the image based on the image that is supplied from the signal processing unit 23 and is a live view image. That is, contrast detection is performed.
 また、合焦制御部53はコントラスト検波により得られた評価値に基づいて、フォーカスレンズ41の移動量を算出し、さらにその移動量に基づいてレンズ駆動部29を制御する。レンズ駆動部29は合焦制御部53の制御に従ってフォーカスレンズ41を移動させる。このように評価値を算出し、フォーカスレンズ41を移動させる処理を何度か繰り返し行うことで、被写体にピントが合った状態となる。 Further, the focusing control unit 53 calculates the moving amount of the focus lens 41 based on the evaluation value obtained by contrast detection, and further controls the lens driving unit 29 based on the moving amount. The lens driving unit 29 moves the focus lens 41 according to the control of the focusing control unit 53. Thus, by calculating the evaluation value and moving the focus lens 41 several times, the subject is in focus.
 なお、ここでは撮像面位相差方式と異なる合焦方式としてコントラスト方式により合焦制御を行う例について説明したが、撮像面位相差方式と異なる方式であれば、どのような合焦方式であってもよい。撮像面位相差方式と異なる方式は、例えば赤外線や超音波などを射出して被写体までの距離を測定するアクティブ方式や、位相差AF専用センサを用いた位相差方式などとすることができる。 In addition, although the example in which the focus control is performed by the contrast method as the focusing method different from the imaging surface phase difference method has been described here, any focusing method may be used as long as the method is different from the imaging surface phase difference method. Also good. As a method different from the imaging surface phase difference method, for example, an active method in which infrared or ultrasonic waves are emitted to measure the distance to the subject, a phase difference method using a phase difference AF dedicated sensor, or the like can be used.
 コントラスト方式により合焦動作が行われ、被写体にピントが合った状態とされると、その後、処理はステップS101へと進む。 When the focusing operation is performed by the contrast method and the subject is brought into focus, the process proceeds to step S101.
 また、ステップS94において、位相差検波が不能でないと判定された場合、その後、ステップS98乃至ステップS100の処理が行われるが、これらの処理は図4のステップS16乃至ステップS18の処理と同様であるので、その説明は省略する。 If it is determined in step S94 that phase difference detection is not possible, the processes in steps S98 to S100 are thereafter performed, which are the same as the processes in steps S16 to S18 in FIG. Therefore, the description is omitted.
 ステップS100において現時点のF値が撮影用のF値ではないと判定されたか、またはステップS97においてコントラスト方式で合焦動作が行われたと判定された場合、ステップS101の処理が行われる。 If it is determined in step S100 that the current F value is not the F value for photographing, or if it is determined in step S97 that the focusing operation has been performed, the processing in step S101 is performed.
 すなわち、ステップS101において絞り制御部54は、絞り42の絞り量がステップS91の処理で指定された撮影用のF値に対応する絞り量となるように、絞り42の駆動を制御する。なお、コントラスト方式で合焦動作が行われる場合、絞り42のF値が撮影用のF値に戻されてから、コントラスト検波が行われるようにしてもよいし、合焦表示後、実際の撮影画像の撮影前にF値(絞り量)が戻されるようにしてもよい。 That is, in step S101, the diaphragm control unit 54 controls the driving of the diaphragm 42 so that the diaphragm amount of the diaphragm 42 becomes the diaphragm amount corresponding to the F value for photographing specified in the process of step S91. When the focusing operation is performed by the contrast method, the contrast detection may be performed after the F value of the aperture 42 is returned to the F value for shooting, or after the focus display, the actual shooting is performed. The F value (aperture amount) may be returned before the image is taken.
 ステップS101において絞り42が駆動されたか、またはステップS100において現時点のF値が撮影用のF値であると判定されると、その後、ステップS102において合焦表示が行われて合焦処理は終了する。なお、ステップS102の処理は図4のステップS20の処理と同様であるので、その説明は省略する。 If it is determined in step S101 that the aperture 42 has been driven or the current F value is the shooting F value in step S100, then in-focus display is performed in step S102 and the focusing process ends. . The process in step S102 is the same as the process in step S20 in FIG.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値を大きくして位相差検波を行い、それでも位相差検波が不能である場合には、撮像面位相差方式とは異なる合焦方式で合焦動作を行う。このように必要に応じて絞り42を絞っても位相差検波が不能である場合には、他の合焦方式で合焦動作を行うことで、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。 As described above, when the phase difference detection is impossible, the imaging apparatus 11 performs phase difference detection by increasing the F value of the diaphragm 42. When the phase difference detection is still impossible, the imaging surface 11 The focusing operation is performed by a focusing method different from the phase difference method. Thus, if phase difference detection is not possible even if the aperture 42 is reduced as necessary, the subject can be focused at a higher focus speed and with higher accuracy by performing a focusing operation with another focusing method. Can be in focus.
〈第3の実施の形態の変形例1〉
〈合焦処理の説明〉
 さらに、第3の実施の形態では、合焦用のF値に変更しても位相差検波が不能である場合にコントラスト方式に切り替える例について説明した。しかし、第2の実施の形態で説明したように段階的にF値を変更し、所定回数だけF値を変更しても位相差検波が不能である場合にコントラスト方式に切り替えるようにしてもよい。
<Variation 1 of the third embodiment>
<Description of focus processing>
Furthermore, in the third embodiment, the example of switching to the contrast method when the phase difference detection is impossible even when the F value for focusing is changed is described. However, as described in the second embodiment, the F value may be changed step by step, and switching to the contrast method may be performed when phase difference detection is impossible even if the F value is changed a predetermined number of times. .
 そのような場合、合焦処理として例えば図7に示す処理が行われる。以下、図7のフローチャートを参照して、撮像装置11による合焦処理について説明する。 In such a case, for example, the process shown in FIG. 7 is performed as the focusing process. Hereinafter, the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
 なお、ステップS131乃至ステップS134の処理は、図4のステップS11乃至ステップS14の処理と同様であるので、その説明は省略する。 In addition, since the process of step S131 thru | or step S134 is the same as the process of step S11 thru | or step S14 of FIG. 4, the description is abbreviate | omitted.
 ステップS134において位相差検波が不能であると判定された場合、ステップS135において、絞り制御部54は所定回数だけ位相差検波のためにF値を変更したか否かを判定する。 If it is determined in step S134 that phase difference detection is not possible, in step S135, the aperture controller 54 determines whether the F value has been changed for phase difference detection a predetermined number of times.
 例えば、撮影用のF値から0.3段ずつなど段階的に所定回数だけ絞り42のF値が変更され、位相差検波が行われた場合、つまり後述するステップS136の処理が所定回数だけ行われた場合、所定回数だけF値を変更したと判定される。 For example, when the F value of the diaphragm 42 is changed by a predetermined number of steps, such as 0.3 steps from the F value for photographing, and phase difference detection is performed, that is, the process of step S136 described later is performed a predetermined number of times. In this case, it is determined that the F value has been changed a predetermined number of times.
 なお、ここでは、所定回数だけF値を変更し、絞り42を絞っても位相差検波ができない場合にコントラスト方式へと切り替えられる例について説明する。しかし、その他、F値を段階的に変更していき、特定のF値となるまでF値を変更しても位相差検波ができない場合にコントラスト方式へと切り替えられるようにしてもよい。 Note that, here, an example will be described in which the F value is changed a predetermined number of times, and the phase difference detection cannot be performed even when the stop 42 is stopped, so that switching to the contrast method is performed. However, the F value may be changed step by step, and the phase shift detection may be switched to when the phase difference cannot be detected even if the F value is changed until the F value is reached.
 ステップS135においてまだF値を所定回数変更していないと判定された場合、ステップS136において、絞り制御部54は、現在指定されているF値から所定段数だけ絞った値を、絞り42の新たな合焦用のF値として指定する。すなわち、ステップS136では図5のステップS55と同様の処理が行われる。 If it is determined in step S135 that the F value has not been changed a predetermined number of times, then in step S136, the aperture control unit 54 sets a new value of the aperture 42 to a value obtained by reducing the currently specified F value by a predetermined number of steps. Specify as F value for focusing. That is, in step S136, the same process as step S55 of FIG. 5 is performed.
 合焦用のF値が指定されると、その後、処理はステップS132に戻り、上述した処理が行われる。 When the F value for focusing is designated, the process returns to step S132 and the above-described process is performed.
 これに対して、ステップS135において所定回数だけF値を変更したと判定された場合、ステップS137において、撮像装置11はコントラスト方式で合焦動作を行う。このステップS137では、図6のステップS97と同様の処理が行われる。 On the other hand, when it is determined in step S135 that the F value has been changed a predetermined number of times, in step S137, the imaging device 11 performs a focusing operation using a contrast method. In step S137, processing similar to that in step S97 in FIG. 6 is performed.
 コントラスト方式で合焦動作が行われると、その後、処理はステップS141へと進み、絞り42が駆動された後、さらにステップS142において合焦表示が行われ、合焦処理は終了する。 When the focusing operation is performed by the contrast method, the process thereafter proceeds to step S141, and after the diaphragm 42 is driven, in-focus display is performed in step S142, and the focusing process ends.
 また、ステップS134において、位相差検波が不能でないと判定された場合、その後、ステップS138乃至ステップS142の処理が行われて合焦処理は終了する。 If it is determined in step S134 that phase difference detection is not possible, then the processing from step S138 to step S142 is performed, and the focusing process ends.
 なお、これらのステップS138乃至ステップS142の処理は、図4のステップS16乃至ステップS20の処理と同様であるので、その説明は省略する。 In addition, since the process of these step S138 thru | or step S142 is the same as the process of FIG.4 S16 thru | or step S20, the description is abbreviate | omitted.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値を段階的に大きくして位相差検波を行い、それでも位相差検波が不能である場合には、撮像面位相差方式とは異なる合焦方式で合焦動作を行う。このように所定回数だけ絞り42を絞っても位相差検波が不能である場合には、他の合焦方式で合焦動作を行うことで、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。 As described above, when the phase difference detection is impossible, the imaging apparatus 11 performs phase difference detection by gradually increasing the F value of the aperture 42, and when the phase difference detection is still impossible. The focusing operation is performed by a focusing method different from the imaging surface phase difference method. As described above, when phase difference detection is impossible even if the diaphragm 42 is squeezed a predetermined number of times, by performing a focusing operation with another focusing method, it is possible to focus on a subject at a higher focusing speed and with higher accuracy. Can be focused.
〈第4の実施の形態〉
〈合焦処理の説明〉
 ところで、上述したように位相差検波時には、位相差検出信号に対して検波フィルタを用いてフィルタ処理を施した後、位相差検出信号の位相差を検出すると説明した。位相差検波処理部51では、このような検波フィルタの特性等を変更することで、検波特性を変更することができる。
<Fourth embodiment>
<Description of focus processing>
Incidentally, as described above, at the time of phase difference detection, it has been described that the phase difference of the phase difference detection signal is detected after the phase difference detection signal is filtered using the detection filter. The phase difference detection processing unit 51 can change the detection characteristics by changing the characteristics of such a detection filter.
 例えば検波フィルタとしてハイパスフィルタを利用する場合、位相差検出信号の波形が急峻になるので、つまりエッジが立つので右開口位相差検出信号と左開口位相差検出信号の相関をとりやすく位相差検波の精度が高くなる。 For example, when a high-pass filter is used as a detection filter, the waveform of the phase difference detection signal becomes steep, that is, an edge is formed, so that it is easy to correlate the right opening phase difference detection signal and the left opening phase difference detection signal. Increases accuracy.
 但し、検波フィルタとしてハイパスフィルタを利用する場合には、位相差検出信号の低周波数成分は除去されてしまうので、撮像面上における被写体の像がぼけているときには位相差検出信号にフィルタ処理を施すと、殆ど信号成分が残らなくなってしまう。そのため、検波フィルタとしてハイパスフィルタを利用すると、デフォーカス量が小さいときには有効であるが、デフォーカス量が大きいときには検波ができなくなってしまう。 However, when a high-pass filter is used as the detection filter, the low-frequency component of the phase difference detection signal is removed, so that the phase difference detection signal is filtered when the subject image is blurred on the imaging surface. As a result, almost no signal component remains. Therefore, when a high-pass filter is used as a detection filter, it is effective when the defocus amount is small, but cannot be detected when the defocus amount is large.
 これに対して、検波フィルタとしてローパスフィルタを利用すれば、ハイパスフィルタ利用時と比較すると位相差検波の精度は低くなるが、デフォーカス量が大きいときにも右開口位相差検出信号と左開口位相差検出信号の相関をとることが可能となる。 On the other hand, if a low-pass filter is used as a detection filter, the accuracy of phase difference detection is lower than when a high-pass filter is used, but the right aperture phase difference detection signal and the left aperture position can be detected even when the defocus amount is large. It is possible to correlate the phase difference detection signal.
 このように検波特性の一例として、検波フィルタの特性等を変更することで、位相差検波が可能となる撮像面上における被写体の像のぼけ量、つまりデフォーカス量の範囲と、検波精度とを制御することができる。 As an example of detection characteristics in this way, by changing the characteristics of the detection filter, etc., the amount of blur of the subject image on the imaging surface where phase difference detection is possible, that is, the range of the defocus amount, and the detection accuracy Can be controlled.
 そこで、位相差検波が不能であるときには、デフォーカス量が大きいときでも位相差検波できるように検波特性を変更するようにしてもよい。そのような場合、合焦処理として例えば図8に示す処理が行われる。以下、図8のフローチャートを参照して、撮像装置11による合焦処理について説明する。 Therefore, when the phase difference detection is impossible, the detection characteristics may be changed so that the phase difference detection can be performed even when the defocus amount is large. In such a case, for example, the process shown in FIG. 8 is performed as the focusing process. Hereinafter, the focusing process by the imaging device 11 will be described with reference to the flowchart of FIG.
 なお、ステップS171乃至ステップS174の処理は、図4のステップS11乃至ステップS14の処理と同様であるので、その説明は省略する。但し、ステップS173では、位相差検出信号に対するフィルタ処理において、例えば初期設定として定められている検波フィルタとしてハイパスフィルタが用いられるとする。 In addition, since the process of step S171 thru | or step S174 is the same as the process of step S11 thru | or step S14 of FIG. 4, the description is abbreviate | omitted. However, in step S173, it is assumed that, for example, a high-pass filter is used as a detection filter defined as an initial setting in the filter processing for the phase difference detection signal.
 ステップS174において、位相差検波が不能であると判定された場合、ステップS175において、絞り制御部54は位相差検波のためにF値を変更したか否かを判定する。 If it is determined in step S174 that phase difference detection is not possible, in step S175, the aperture controller 54 determines whether or not the F value has been changed for phase difference detection.
 例えば、撮影用のF値から合焦用のF値へと絞り42のF値が変更され、位相差検波が行われた場合、つまり後述するステップS176の処理が既に行われた場合、F値を変更したと判定される。 For example, when the F value of the diaphragm 42 is changed from the F value for photographing to the F value for focusing and phase difference detection is performed, that is, when the processing in step S176 described later has already been performed, the F value Is determined to have been changed.
 ステップS175においてまだF値を変更していないと判定された場合、ステップS176において、絞り制御部54は、現在指定されているF値に基づいて、合焦用のF値を絞り42のF値として指定する。すなわち、ステップS176では図4のステップS15と同様の処理が行われる。 If it is determined in step S175 that the F value has not been changed yet, in step S176, the aperture control unit 54 sets the F value for focusing to the F value of the aperture 42 based on the currently designated F value. Specify as. That is, in step S176, processing similar to that in step S15 in FIG. 4 is performed.
 合焦用のF値が指定されると、その後、処理はステップS172に戻り、上述した処理が行われる。 When the F value for focusing is designated, the process returns to step S172 and the above-described process is performed.
 これに対して、ステップS175においてF値を変更したと判定された場合、すなわち既にステップS176の処理が行われている場合、ステップS177において位相差検波処理部51は、位相差検波の検波特性を変更する。 On the other hand, if it is determined in step S175 that the F value has been changed, that is, if the process of step S176 has already been performed, in step S177, the phase difference detection processing unit 51 determines the detection characteristics of the phase difference detection. change.
 すなわち、位相差検波処理部51は、位相差検波の検波特性を、初期設定で予め定められている検波特性から、フォーカスレンズ41のデフォーカス量が大きいときでも位相差検波が可能となる検波特性へと変更する。換言すれば、位相差検出信号に低周波数成分が多い場合に適した検波特性へと変更される。 That is, the phase difference detection processing unit 51 detects the phase difference detection characteristics from the detection characteristics predetermined in the initial setting, so that the phase difference detection can be performed even when the defocus amount of the focus lens 41 is large. Change to In other words, the detection characteristic is changed to a detection characteristic suitable for a case where there are many low frequency components in the phase difference detection signal.
 より具体的には、例えば検波特性を変更するため、検波フィルタが初期設定として定められているハイパスフィルタから、デフォーカス量が大きいときでも位相差検波が可能となるローパスフィルタへと切り替えられる。したがって、この場合には、次回に行われる位相差検波、つまりステップS173の処理では、検波フィルタとしてローパスフィルタが用いられて、フィルタ処理が行われることになる。 More specifically, for example, in order to change the detection characteristics, the detection filter is switched from a high-pass filter that is set as an initial setting to a low-pass filter that can perform phase difference detection even when the defocus amount is large. Therefore, in this case, in the next phase difference detection, that is, the processing in step S173, the low-pass filter is used as the detection filter, and the filter processing is performed.
 なお、ここでは絞り42のF値を変更しても位相差検波が不能である場合に検波特性を変更する例について説明したが、絞り42のF値と検波特性を同時に変更するようにしてもよい。 Here, an example has been described in which the detection characteristic is changed when phase difference detection is impossible even if the F value of the diaphragm 42 is changed. However, the F value and the detection characteristic of the diaphragm 42 may be changed simultaneously. Good.
 また、ここでは検波特性を変更する例として、検波フィルタをハイパスフィルタからローパスフィルタに変更する場合について説明した。しかし、その他、検波フィルタを構成する各タップのフィルタ係数や、タップ数を変更することで、検波フィルタをハイパス特性からローパス特性に変更するようにするなど、どのようにして検波特性を変更させるようにしてもよい。 In addition, here, as an example of changing the detection characteristic, the case where the detection filter is changed from the high-pass filter to the low-pass filter has been described. However, how to change the detection characteristics, such as changing the detection filter from high-pass characteristics to low-pass characteristics by changing the filter coefficient of each tap constituting the detection filter and the number of taps. It may be.
 検波特性が変更されると、その後、処理はステップS173に戻り、上述した処理が行われる。 When the detection characteristic is changed, the process returns to step S173 and the above-described process is performed.
 また、ステップS174において位相差検波が不能でないと判定された場合、その後、ステップS178乃至ステップS182の処理が行われて合焦処理は終了するが、これらの処理は、図4のステップS16乃至ステップS20の処理と同様であるので、その説明は省略する。 If it is determined in step S174 that phase difference detection is not possible, the processing from step S178 to step S182 is performed thereafter, and the focusing processing ends. These processing is performed from step S16 to step S16 in FIG. Since it is the same as the process of S20, the description is abbreviate | omitted.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値を大きくして位相差検波を行い、それでも位相差検波が不能である場合には、位相差検波の検波特性を変更し、再度、位相差検波を行う。 As described above, when the phase difference detection is impossible, the imaging apparatus 11 performs phase difference detection by increasing the F value of the diaphragm 42. When the phase difference detection is still impossible, the imaging device 11 performs phase difference detection. Change the detection characteristics of detection and perform phase difference detection again.
 このように必要に応じて絞り42を絞っても位相差検波が不能である場合には、検波特性を変更することで、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。特にF値の変更と検波特性の変更とを併用することで、少ない絞り込み量で撮像面位相差方式での位相差検波を可能な状態とすることができる。 As described above, when phase difference detection is impossible even if the aperture 42 is reduced as necessary, the detection characteristics can be changed to focus on the subject with higher focusing speed and high accuracy. it can. In particular, by using both the change of the F value and the change of the detection characteristics, it is possible to make the phase difference detection possible by the imaging surface phase difference method with a small amount of narrowing down.
〈第4の実施の形態の変形例1〉
〈合焦処理の説明〉
 なお、段階的にF値を変更し、所定回数だけF値を変更しても位相差検波が不能である場合に、さらに検波特性を変更するようにしてもよい。
<Variation 1 of the fourth embodiment>
<Description of focus processing>
Note that the detection characteristics may be further changed when the F value is changed stepwise and phase difference detection is impossible even if the F value is changed a predetermined number of times.
 そのような場合、合焦処理として例えば図9に示す処理が行われる。以下、図9のフローチャートを参照して、撮像装置11による合焦処理について説明する。 In such a case, for example, the process shown in FIG. 9 is performed as the focusing process. Hereinafter, the focusing process performed by the imaging apparatus 11 will be described with reference to the flowchart of FIG.
 なお、ステップS211乃至ステップS214の処理は、図4のステップS11乃至ステップS14の処理と同様であるので、その説明は省略する。但し、ステップS213では、位相差検出信号に対するフィルタ処理において、例えば初期設定として定められている検波フィルタとしてハイパスフィルタが用いられるとする。 In addition, since the process of step S211 thru | or step S214 is the same as the process of step S11 thru | or step S14 of FIG. 4, the description is abbreviate | omitted. However, in step S213, it is assumed that, for example, a high-pass filter is used as a detection filter defined as an initial setting in the filter processing for the phase difference detection signal.
 ステップS214において位相差検波が不能であると判定された場合、ステップS215において、絞り制御部54は所定回数だけ位相差検波のためにF値を変更したか否かを判定する。 If it is determined in step S214 that phase difference detection is not possible, in step S215, the aperture controller 54 determines whether or not the F value has been changed for phase difference detection a predetermined number of times.
 例えば、撮影用のF値から0.3段ずつなど段階的に所定回数だけ絞り42のF値が変更され、位相差検波が行われた場合、つまり後述するステップS216の処理が所定回数だけ行われた場合、所定回数だけF値を変更したと判定される。 For example, when the F value of the aperture 42 is changed by a predetermined number of steps, such as 0.3 steps from the F value for photographing, and phase difference detection is performed, that is, the process of step S216 described later is performed a predetermined number of times. In this case, it is determined that the F value has been changed a predetermined number of times.
 ステップS215においてまだF値を所定回数変更していないと判定された場合、ステップS216において、絞り制御部54は、現在指定されているF値から所定段数だけ絞った値を、絞り42の新たな合焦用のF値として指定する。すなわち、ステップS216では図5のステップS55と同様の処理が行われる。 If it is determined in step S215 that the F value has not been changed a predetermined number of times, then in step S216, the aperture control unit 54 sets a new value of the aperture 42 to a value obtained by reducing the currently specified F value by a predetermined number of steps. Specify as F value for focusing. That is, in step S216, the same process as step S55 of FIG. 5 is performed.
 合焦用のF値が指定されると、その後、処理はステップS212に戻り、上述した処理が行われる。 When the F value for focusing is designated, the process returns to step S212 and the above-described process is performed.
 これに対して、ステップS215において所定回数だけF値を変更したと判定された場合、ステップS217において位相差検波処理部51は、位相差検波の検波特性を変更する。例えばステップS217では、図8のステップS177と同様の処理が行われ、検波特性として、検波フィルタが初期設定として定められているハイパスフィルタから、ローパスフィルタへと変更される。なお、この例においても絞り42のF値と検波特性を同時に変更するようにしてもよい。 On the other hand, if it is determined in step S215 that the F value has been changed a predetermined number of times, the phase difference detection processing unit 51 changes the detection characteristics of the phase difference detection in step S217. For example, in step S217, processing similar to that in step S177 in FIG. 8 is performed, and the detection characteristic is changed from a high-pass filter in which a detection filter is set as an initial setting to a low-pass filter. In this example as well, the F value and the detection characteristic of the diaphragm 42 may be changed simultaneously.
 検波特性が変更されると、その後、処理はステップS213に戻り、上述した処理が行われる。 When the detection characteristic is changed, the process returns to step S213, and the above-described process is performed.
 また、ステップS214において位相差検波が不能でないと判定された場合、その後、ステップS218乃至ステップS222の処理が行われて合焦処理は終了するが、これらの処理は、図4のステップS16乃至ステップS20の処理と同様であるので、その説明は省略する。 If it is determined in step S214 that phase difference detection is not possible, then the processing from step S218 to step S222 is performed and the focusing processing ends, but these processing is performed from step S16 to step S16 in FIG. Since it is the same as the process of S20, the description is abbreviate | omitted.
 以上のようにして撮像装置11は、位相差検波が不能である場合には、絞り42のF値を段階的に大きくして位相差検波を行い、それでも位相差検波が不能である場合には、位相差検波の検波特性を変更し、再度、位相差検波を行う。 As described above, when the phase difference detection is impossible, the imaging apparatus 11 performs phase difference detection by gradually increasing the F value of the aperture 42, and when the phase difference detection is still impossible. Then, the detection characteristics of phase difference detection are changed, and phase difference detection is performed again.
 このように所定回数だけ絞り42を絞っても位相差検波が不能である場合には、検波特性を変更することで、より速い合焦速度で、かつ高精度に被写体に合焦させることができる。特にF値の変更と検波特性の変更とを併用することで、少ない絞り込み量で撮像面位相差方式での位相差検波を可能な状態とすることができる。 As described above, when phase difference detection is impossible even when the diaphragm 42 is stopped a predetermined number of times, the subject can be focused at a higher focusing speed and with higher accuracy by changing the detection characteristics. . In particular, by using both the change of the F value and the change of the detection characteristics, it is possible to make the phase difference detection possible by the imaging surface phase difference method with a small amount of narrowing down.
 なお、図8や図9を参照して説明した合焦処理において、F値や検波特性を変更しても位相差検波が不能である場合には、合焦方式を撮像面位相差方式とは異なる方式に変更し、合焦制御を行うようにしてもよい。 In the focusing process described with reference to FIGS. 8 and 9, if the phase difference detection is impossible even if the F value or the detection characteristic is changed, the focusing method is referred to as the imaging surface phase difference method. The focus control may be performed by changing to a different method.
〈第5の実施の形態〉
〈撮像装置の構成例〉
 さらに、以上においては撮像装置11では、撮像面位相差方式の他、コントラスト方式による合焦制御が可能である例について説明したが、撮像面位相差方式とは異なる合焦方式として、他のどのような方式が採用されてもよい。
<Fifth embodiment>
<Configuration example of imaging device>
Further, in the above description, the imaging apparatus 11 has been described with respect to an example in which focusing control by the contrast method can be performed in addition to the imaging surface phase difference method. Such a method may be adopted.
 例えば撮像装置において、撮像面位相差方式の他、位相差AF専用センサを用いた位相差方式により合焦制御が可能な場合、撮像装置は図10に示すように構成される。なお、図10において、図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。 For example, in the imaging apparatus, when focus control is possible by the phase difference method using the phase difference AF dedicated sensor in addition to the imaging surface phase difference method, the imaging device is configured as shown in FIG. 10, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 図10に示す撮像装置81は、撮像レンズ21、レフレックスミラー91、位相差センサ92、撮像部22、信号処理部23、制御部24、入力部25、表示部26、記録部27、絞り駆動部28、およびレンズ駆動部29を有している。 An imaging device 81 shown in FIG. 10 includes an imaging lens 21, a reflex mirror 91, a phase difference sensor 92, an imaging unit 22, a signal processing unit 23, a control unit 24, an input unit 25, a display unit 26, a recording unit 27, and a diaphragm drive. A unit 28 and a lens driving unit 29.
 また、撮像装置81の撮像レンズ21には、フォーカスレンズ41および絞り42が設けられており、制御部24には、位相差検波処理部51、合焦制御部53、および絞り制御部54が設けられている。 Further, the imaging lens 21 of the imaging device 81 is provided with a focus lens 41 and a diaphragm 42, and the control unit 24 is provided with a phase difference detection processing unit 51, a focusing control unit 53, and a diaphragm control unit 54. It has been.
 この撮像装置81の構成は、レフレックスミラー91および位相差センサ92が設けられ、制御部24にコントラスト検波処理部52が設けられていない点で撮像装置11の構成と異なり、その他の点では撮像装置11と同じ構成となっている。 The configuration of the imaging device 81 is different from the configuration of the imaging device 11 in that the reflex mirror 91 and the phase difference sensor 92 are provided, and the contrast detection processing unit 52 is not provided in the control unit 24. In other respects, imaging is performed. The configuration is the same as that of the device 11.
 レフレックスミラー91は、撮像レンズ21と撮像部22との間に設けられ、撮像レンズ21を介して被写体から入射した光を、撮像部22または位相差センサ92の何れか一方へと導く。 The reflex mirror 91 is provided between the imaging lens 21 and the imaging unit 22, and guides light incident from the subject via the imaging lens 21 to either the imaging unit 22 or the phase difference sensor 92.
 すなわち、レフレックスミラー91が下ろされた状態においては、撮像レンズ21からの光はレフレックスミラー91で反射され、位相差センサ92および図示せぬ光学ファインダへと入射する。また、レフレックスミラー91が上げられた状態では、撮像レンズ21からの光は、レフレックスミラー91には入射せず、撮像部22へと入射する。 That is, when the reflex mirror 91 is lowered, the light from the imaging lens 21 is reflected by the reflex mirror 91 and enters the phase difference sensor 92 and an optical finder (not shown). Further, in a state where the reflex mirror 91 is raised, the light from the imaging lens 21 does not enter the reflex mirror 91 but enters the imaging unit 22.
 位相差センサ92は、撮像面に位相差検出画素が設けられた、位相差方式による合焦制御専用のイメージセンサから構成される。位相差センサ92は、レフレックスミラー91および撮像レンズ21を介して被写体から入射した光を受光して光電変換し、その結果得られた位相差検出信号を制御部24に供給する。制御部24の位相差検波処理部51は、位相差センサ92から供給された位相差検出信号の位相差、または信号処理部23から供給された位相差検出信号の位相差を検出し、フォーカスレンズ41のデフォーカス量を得る。 The phase difference sensor 92 is composed of an image sensor dedicated to focusing control by the phase difference method, in which a phase difference detection pixel is provided on the imaging surface. The phase difference sensor 92 receives light incident from the subject via the reflex mirror 91 and the imaging lens 21 and performs photoelectric conversion, and supplies a phase difference detection signal obtained as a result to the control unit 24. The phase difference detection processing unit 51 of the control unit 24 detects the phase difference of the phase difference detection signal supplied from the phase difference sensor 92 or the phase difference of the phase difference detection signal supplied from the signal processing unit 23, and the focus lens A defocus amount of 41 is obtained.
 なお、より詳細にはレフレックスミラー91と位相差センサ92の間には、さらに位相差センサ92へと入射する光の光束太さ(ビーム径)を制限する絞りが設けられている。 In more detail, a diaphragm is provided between the reflex mirror 91 and the phase difference sensor 92 to limit the thickness (beam diameter) of light incident on the phase difference sensor 92.
 このような撮像装置81で撮影画像が撮影される場合、ユーザが図示せぬ光学ファインダを利用して撮影を行う時には、絞り42のF値は開放値とされるとともに、位相差センサ92からの出力に基づいてデフォーカス量が算出され、合焦制御が行われる。 When a photographed image is photographed by such an imaging device 81, when the user performs photographing using an optical finder (not shown), the F value of the aperture 42 is set to an open value and the phase difference sensor 92 A defocus amount is calculated based on the output, and focusing control is performed.
 この場合、合焦制御時にはレフレックスミラー91は下げられた状態とされ、撮影画像を撮影(キャプチャ)するときにレフレックスミラー91が上げられる。 In this case, the reflex mirror 91 is lowered when focusing control is performed, and the reflex mirror 91 is raised when a captured image is captured (captured).
 これに対して、表示部26にライブビュー画像が表示された状態で撮影画像を撮影するライブビューモードでの撮影が行われる場合、基本的にはレフレックスミラー91が上げられた状態で、撮影が行われる。 On the other hand, when shooting is performed in a live view mode in which a shot image is shot while a live view image is displayed on the display unit 26, basically, shooting is performed with the reflex mirror 91 raised. Is done.
 このとき、ユーザにより入力部25としてのシャッタボタンが半押しされると、レフレックスミラー91が上げられた状態で、撮像装置81により、上述した図4乃至図9を参照して説明した各合焦処理と同様の処理が行われる。但し、図6を参照して説明した合焦処理のステップS97に対応する処理、および図7を参照して説明した合焦処理のステップS137に対応する処理では、絞り42のF値は開放値とされてレフレックスミラー91が下げられ、位相差センサ92からの出力に基づいてデフォーカス量が算出されてフォーカスレンズ41が移動される。 At this time, when the shutter button as the input unit 25 is half-pressed by the user, the imaging device 81 causes each of the operations described with reference to FIGS. 4 to 9 to be performed with the reflex mirror 91 raised. Processing similar to the focusing processing is performed. However, in the process corresponding to step S97 of the focusing process described with reference to FIG. 6 and the process corresponding to step S137 of the focusing process described with reference to FIG. 7, the F value of the aperture 42 is the open value. Thus, the reflex mirror 91 is lowered, the defocus amount is calculated based on the output from the phase difference sensor 92, and the focus lens 41 is moved.
 ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどが含まれる。 By the way, the above-described series of processing can be executed by hardware or can be executed by software. When a series of processing is executed by software, a program constituting the software is installed in the computer. Here, the computer includes, for example, a general-purpose computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
 図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 11 is a block diagram showing an example of a hardware configuration of a computer that executes the above-described series of processing by a program.
 コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。 In the computer, a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, and a RAM (Random Access Memory) 503 are connected to each other via a bus 504.
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。 An input / output interface 505 is further connected to the bus 504. An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
 入力部506は、キーボード、マウス、マイクロホン、1または複数の撮像素子などよりなる。この例では、入力部506を構成する撮像素子が撮像部22や位相差センサ92に相当する。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。 The input unit 506 includes a keyboard, a mouse, a microphone, one or a plurality of image sensors. In this example, the image sensor constituting the input unit 506 corresponds to the image capturing unit 22 and the phase difference sensor 92. The output unit 507 includes a display, a speaker, and the like. The recording unit 508 includes a hard disk, a nonvolatile memory, and the like. The communication unit 509 includes a network interface or the like. The drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。 In the computer configured as described above, the CPU 501 loads the program recorded in the recording unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program, for example. Is performed.
 コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer (CPU 501) can be provided by being recorded in a removable recording medium 511 as a package medium or the like, for example. The program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
 コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。 In the computer, the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in advance in the ROM 502 or the recording unit 508.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
 また、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 さらに、本技術は、以下の構成とすることも可能である。 Furthermore, the present technology can be configured as follows.
(1)
 撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行う位相差検波処理部と、
 前記位相差検波処理部による前記位相差検波が困難であった場合、絞り値をより大きい値に変更する絞り制御部と
 を備える撮像装置。
(2)
 前記絞り制御部は、前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
 (1)に記載の撮像装置。
(3)
 前記絞り制御部は、前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
 (1)に記載の撮像装置。
(4)
 前記位相差検波処理部は、前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
 (1)乃至(3)の何れか一項に記載の撮像装置。
(5)
 前記位相差検波が困難であった場合、前記絞り制御部が前記絞り値を変更するとともに、前記位相差検波処理部が前記検波特性を変更する
 (4)に記載の撮像装置。
(6)
 前記位相差検波処理部は、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記検波特性を変更する
 (4)に記載の撮像装置。
(7)
 前記位相差検波処理部は、前記検波特性として、前記位相差検出画素からの出力に対して施すフィルタ処理を変更する
 (4)乃至(6)の何れか一項に記載の撮像装置。
(8)
 前記位相差検波の結果に基づいて撮像レンズを駆動させ、合焦制御を行う合焦制御部をさらに備える
 (1)乃至(7)の何れか一項に記載の撮像装置。
(9)
 前記絞り制御部は、前記絞り値が変更されて、再度、前記位相差検波が行われた場合、前記合焦制御部による合焦制御の後、前記絞り値を変更前の値に戻す
 (8)に記載の撮像装置。
(10)
 前記合焦制御部は、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記位相差検波処理部による前記位相差検波の結果を利用する方式とは異なる方式で合焦制御を行う
 (8)または(9)に記載の撮像装置。
(11)
 撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行い、
 前記位相差検波が困難であった場合、絞り値をより大きい値に変更する
 ステップを含む合焦制御方法。
(12)
 前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
 (11)に記載の合焦制御方法。
(13)
 前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
 (11)に記載の合焦制御方法。
(14)
 前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
 (11)乃至(13)の何れか一項に記載の合焦制御方法。
(15)
 前記位相差検波が困難であった場合、前記絞り値を変更するとともに前記検波特性を変更する
 (14)に記載の合焦制御方法。
(16)
 撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行い、
 前記位相差検波が困難であった場合、絞り値をより大きい値に変更する
 ステップを含む処理をコンピュータに実行させるプログラム。
(17)
 前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
 (16)に記載のプログラム。
(18)
 前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
 (16)に記載のプログラム。
(19)
 前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
 (16)乃至(18)の何れか一項に記載のプログラム。
(20)
 前記位相差検波が困難であった場合、前記絞り値を変更するとともに前記検波特性を変更する
 (19)に記載のプログラム。
(1)
A phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit;
An aperture control unit that changes an aperture value to a larger value when the phase difference detection by the phase difference detection processing unit is difficult.
(2)
The aperture control unit changes the aperture value to a predetermined value when the phase difference detection is difficult. The imaging device according to (1).
(3)
The imaging device according to (1), wherein the aperture control unit changes the aperture value step by step whenever it is determined that the phase difference detection is difficult.
(4)
The imaging device according to any one of (1) to (3), wherein the phase difference detection processing unit changes detection characteristics in the phase difference detection when the phase difference detection is difficult.
(5)
The imaging device according to (4), wherein when the phase difference detection is difficult, the aperture control unit changes the aperture value, and the phase difference detection processing unit changes the detection characteristics.
(6)
The phase difference detection processing unit changes the detection characteristic when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value. (4) Imaging device.
(7)
The imaging device according to any one of (4) to (6), wherein the phase difference detection processing unit changes filter processing applied to an output from the phase difference detection pixel as the detection characteristic.
(8)
The imaging apparatus according to any one of (1) to (7), further including a focusing control unit that drives an imaging lens based on the result of the phase difference detection and performs focusing control.
(9)
When the aperture value is changed and the phase difference detection is performed again, the aperture control unit returns the aperture value to the value before the change after the focus control by the focus control unit. ).
(10)
The focus control unit, when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value, the result of the phase difference detection by the phase difference detection processing unit The imaging apparatus according to (8) or (9), in which focus control is performed by a method different from a method using.
(11)
Perform phase difference detection based on the output from the phase difference detection pixel provided in the imaging unit,
A focus control method including a step of changing the aperture value to a larger value when the phase difference detection is difficult.
(12)
The focusing control method according to (11), wherein when the phase difference detection is difficult, the aperture value is changed to a predetermined value.
(13)
The focus control method according to (11), wherein each time the phase difference detection is determined to be difficult, the aperture value is changed step by step.
(14)
The focusing control method according to any one of (11) to (13), wherein when the phase difference detection is difficult, a detection characteristic in the phase difference detection is changed.
(15)
The focus control method according to (14), wherein when the phase difference detection is difficult, the aperture value is changed and the detection characteristic is changed.
(16)
Perform phase difference detection based on the output from the phase difference detection pixel provided in the imaging unit,
A program for causing a computer to execute a process including a step of changing an aperture value to a larger value when the phase difference detection is difficult.
(17)
The program according to (16), wherein when the phase difference detection is difficult, the aperture value is changed to a predetermined value.
(18)
The program according to (16), wherein the aperture value is changed step by step whenever it is determined that the phase difference detection is difficult.
(19)
The program according to any one of (16) to (18), wherein when the phase difference detection is difficult, a detection characteristic in the phase difference detection is changed.
(20)
The program according to (19), wherein when the phase difference detection is difficult, the aperture value is changed and the detection characteristic is changed.
 11 撮像装置, 21 撮像レンズ, 22 撮像部, 24 制御部, 28 絞り駆動部, 29 レンズ駆動部, 41 フォーカスレンズ, 42 絞り, 51 位相差検波処理部, 52 コントラスト検波処理部, 53 合焦制御部, 54 絞り制御部, 92 位相差センサ 11 imaging device, 21 imaging lens, 22 imaging unit, 24 control unit, 28 aperture driving unit, 29 lens driving unit, 41 focus lens, 42 aperture, 51 phase difference detection processing unit, 52 contrast detection processing unit, 53 focusing control Part, 54 aperture control part, 92 phase difference sensor

Claims (20)

  1.  撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行う位相差検波処理部と、
     前記位相差検波処理部による前記位相差検波が困難であった場合、絞り値をより大きい値に変更する絞り制御部と
     を備える撮像装置。
    A phase difference detection processing unit that performs phase difference detection based on an output from a phase difference detection pixel provided in the imaging unit;
    An aperture control unit that changes an aperture value to a larger value when the phase difference detection by the phase difference detection processing unit is difficult.
  2.  前記絞り制御部は、前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein when the phase difference detection is difficult, the aperture control unit changes the aperture value to a predetermined value.
  3.  前記絞り制御部は、前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
     請求項1に記載の撮像装置。
    The imaging apparatus according to claim 1, wherein the aperture control unit changes the aperture value step by step whenever it is determined that the phase difference detection is difficult.
  4.  前記位相差検波処理部は、前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the phase difference detection processing unit changes detection characteristics in the phase difference detection when the phase difference detection is difficult.
  5.  前記位相差検波が困難であった場合、前記絞り制御部が前記絞り値を変更するとともに、前記位相差検波処理部が前記検波特性を変更する
     請求項4に記載の撮像装置。
    The imaging apparatus according to claim 4, wherein, when the phase difference detection is difficult, the aperture control unit changes the aperture value, and the phase difference detection processing unit changes the detection characteristics.
  6.  前記位相差検波処理部は、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記検波特性を変更する
     請求項4に記載の撮像装置。
    The phase difference detection processing unit changes the detection characteristic when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value. Imaging device.
  7.  前記位相差検波処理部は、前記検波特性として、前記位相差検出画素からの出力に対して施すフィルタ処理を変更する
     請求項4に記載の撮像装置。
    The imaging apparatus according to claim 4, wherein the phase difference detection processing unit changes a filter process to be performed on an output from the phase difference detection pixel as the detection characteristic.
  8.  前記位相差検波の結果に基づいて撮像レンズを駆動させ、合焦制御を行う合焦制御部をさらに備える
     請求項1に記載の撮像装置。
    The imaging apparatus according to claim 1, further comprising a focusing control unit that drives an imaging lens based on the result of the phase difference detection to perform focusing control.
  9.  前記絞り制御部は、前記絞り値が変更されて、再度、前記位相差検波が行われた場合、前記合焦制御部による合焦制御の後、前記絞り値を変更前の値に戻す
     請求項8に記載の撮像装置。
    The aperture controller, when the aperture value is changed and the phase difference detection is performed again, returns the aperture value to the value before the change after the focus control by the focus controller. 8. The imaging device according to 8.
  10.  前記合焦制御部は、前記絞り値を変更して行われた前記位相差検波において、前記位相差検波が困難であると判定された場合、前記位相差検波処理部による前記位相差検波の結果を利用する方式とは異なる方式で合焦制御を行う
     請求項8に記載の撮像装置。
    The focus control unit, when it is determined that the phase difference detection is difficult in the phase difference detection performed by changing the aperture value, the result of the phase difference detection by the phase difference detection processing unit The imaging apparatus according to claim 8, wherein the focus control is performed by a method different from a method using the image.
  11.  撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行い、
     前記位相差検波が困難であった場合、絞り値をより大きい値に変更する
     ステップを含む合焦制御方法。
    Perform phase difference detection based on the output from the phase difference detection pixel provided in the imaging unit,
    A focus control method including a step of changing the aperture value to a larger value when the phase difference detection is difficult.
  12.  前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
     請求項11に記載の合焦制御方法。
    The focus control method according to claim 11, wherein when the phase difference detection is difficult, the aperture value is changed to a predetermined value.
  13.  前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
     請求項11に記載の合焦制御方法。
    The focus control method according to claim 11, wherein the aperture value is changed stepwise whenever it is determined that the phase difference detection is difficult.
  14.  前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
     請求項11に記載の合焦制御方法。
    The focus control method according to claim 11, wherein when the phase difference detection is difficult, a detection characteristic in the phase difference detection is changed.
  15.  前記位相差検波が困難であった場合、前記絞り値を変更するとともに前記検波特性を変更する
     請求項14に記載の合焦制御方法。
    The focusing control method according to claim 14, wherein when the phase difference detection is difficult, the aperture value is changed and the detection characteristic is changed.
  16.  撮像部に設けられた位相差検出画素からの出力に基づいて位相差検波を行い、
     前記位相差検波が困難であった場合、絞り値をより大きい値に変更する
     ステップを含む処理をコンピュータに実行させるプログラム。
    Perform phase difference detection based on the output from the phase difference detection pixel provided in the imaging unit,
    A program for causing a computer to execute a process including a step of changing an aperture value to a larger value when the phase difference detection is difficult.
  17.  前記位相差検波が困難であった場合、前記絞り値を予め定められた値に変更する
     請求項16に記載のプログラム。
    The program according to claim 16, wherein when the phase difference detection is difficult, the aperture value is changed to a predetermined value.
  18.  前記位相差検波が困難であると判定されるたびに、段階的に前記絞り値を変更していく
     請求項16に記載のプログラム。
    The program according to claim 16, wherein each time the phase difference detection is determined to be difficult, the aperture value is changed step by step.
  19.  前記位相差検波が困難であった場合、前記位相差検波における検波特性を変更する
     請求項16に記載のプログラム。
    The program according to claim 16, wherein when the phase difference detection is difficult, a detection characteristic in the phase difference detection is changed.
  20.  前記位相差検波が困難であった場合、前記絞り値を変更するとともに前記検波特性を変更する
     請求項19に記載のプログラム。
    The program according to claim 19, wherein when the phase difference detection is difficult, the aperture value is changed and the detection characteristic is changed.
PCT/JP2015/066833 2014-06-25 2015-06-11 Image pickup apparatus, focus control method, and program WO2015198879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014129951 2014-06-25
JP2014-129951 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198879A1 true WO2015198879A1 (en) 2015-12-30

Family

ID=54937970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066833 WO2015198879A1 (en) 2014-06-25 2015-06-11 Image pickup apparatus, focus control method, and program

Country Status (1)

Country Link
WO (1) WO2015198879A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875983A (en) * 1994-09-05 1996-03-22 Nikon Corp Focus detector
JPH0895115A (en) * 1994-07-26 1996-04-12 Asahi Optical Co Ltd Automatic focusing device and camera provided with automatic exposure device
JP2004312432A (en) * 2003-04-08 2004-11-04 Canon Inc Electronic camera
JP2008242182A (en) * 2007-03-28 2008-10-09 Nikon Corp Focus detection device, focus detection method and imaging apparatus
JP2013003261A (en) * 2011-06-14 2013-01-07 Nikon Corp Focus detection device and imaging apparatus
JP2015034859A (en) * 2013-08-08 2015-02-19 キヤノン株式会社 Automatic focus adjustment lens device and photographing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895115A (en) * 1994-07-26 1996-04-12 Asahi Optical Co Ltd Automatic focusing device and camera provided with automatic exposure device
JPH0875983A (en) * 1994-09-05 1996-03-22 Nikon Corp Focus detector
JP2004312432A (en) * 2003-04-08 2004-11-04 Canon Inc Electronic camera
JP2008242182A (en) * 2007-03-28 2008-10-09 Nikon Corp Focus detection device, focus detection method and imaging apparatus
JP2013003261A (en) * 2011-06-14 2013-01-07 Nikon Corp Focus detection device and imaging apparatus
JP2015034859A (en) * 2013-08-08 2015-02-19 キヤノン株式会社 Automatic focus adjustment lens device and photographing device

Similar Documents

Publication Publication Date Title
US10264173B2 (en) Image capturing apparatus and control method thereof, and storage medium
US8248516B2 (en) Focus detection apparatus and control method therefor
KR101085925B1 (en) Image pickup apparatus to perform auto focusing function by using plurality of band pass filters and auto focusing method applied the same
JP2003167182A (en) Automatic focusing device
JP5500916B2 (en) Imaging apparatus and control method thereof
US9591243B2 (en) Focus detecting apparatus, control method thereof, and image-pickup apparatus
JP2014153509A (en) Imaging device and imaging method
US9307168B2 (en) Image capture apparatus and method for controlling image capture apparatus in which defective pixels are indicated
JP6415140B2 (en) Imaging apparatus and control method thereof
JP2016197202A (en) Focus adjustment device, control method and control program for the same, and imaging device
US9591205B2 (en) Focus control apparatus, optical apparatus, focus control method, and storage medium storing focus detection program
JP2013254166A (en) Imaging device and control method of the same
US9591202B2 (en) Image processing apparatus and image processing method for generating recomposed images
JP2015152749A (en) Imaging device and control method of the same
JP6330474B2 (en) Image processing apparatus, image processing apparatus control method, and imaging apparatus
JP6482247B2 (en) FOCUS ADJUSTMENT DEVICE, IMAGING DEVICE, FOCUS ADJUSTMENT DEVICE CONTROL METHOD, AND PROGRAM
JP2013186293A (en) Image generation device and image display method
US9924089B2 (en) Image capturing apparatus, method of displaying image, and storage medium storing program
US10911660B2 (en) Control apparatus, imaging apparatus, control method, and storage medium
WO2015198879A1 (en) Image pickup apparatus, focus control method, and program
JP6200240B2 (en) Imaging apparatus, control method therefor, program, and storage medium
JP2014134697A (en) Imaging apparatus
JP5207893B2 (en) Imaging apparatus and control method thereof
JP6149345B2 (en) Image capturing apparatus and image quality adjustment method
JP5454546B2 (en) Autofocus device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15812488

Country of ref document: EP

Kind code of ref document: A1