WO2015197514A1 - Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values - Google Patents
Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values Download PDFInfo
- Publication number
- WO2015197514A1 WO2015197514A1 PCT/EP2015/063914 EP2015063914W WO2015197514A1 WO 2015197514 A1 WO2015197514 A1 WO 2015197514A1 EP 2015063914 W EP2015063914 W EP 2015063914W WO 2015197514 A1 WO2015197514 A1 WO 2015197514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hoa
- signals
- data frame
- representation
- hoa data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/20—Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/02—Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/11—Application of ambisonics in stereophonic audio systems
Definitions
- the invention relates to an apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non- differential gain values associated with channel signals of specific ones of said HOA data frames.
- HOA Higher Order Ambisonics denoted HOA offers one possibility to represent three-dimensional sound.
- Other techniques are wave field synthesis (WFS) or channel based approaches like 22.2.
- WFS wave field synthesis
- the HOA repre- sentation offers the advantage of being independent of a specific loudspeaker set-up.
- this flexibility is at the expense of a decoding process which is required for the playback of the HOA representation on a particular loudspeaker set-up.
- HOA may also be rendered to set-ups consisting of only few loud ⁇ speakers.
- a further advantage of HOA is that the same repre ⁇ sentation can also be employed without any modification for binaural rendering to head-phones.
- HOA is based on the representation of the spatial density of complex harmonic plane wave amplitudes by a truncated Spher ⁇ ical Harmonics (SH) expansion.
- SH Spher ⁇ ical Harmonics
- Each expansion coefficient is a function of angular frequency, which can be equivalently represented by a time domain function.
- the complete HOA sound field representation actually can be assumed to consist of 0 time domain func ⁇ tions, where 0 denotes the number of expansion coefficients.
- These time domain functions will be equivalently referred to as HOA coefficient sequences or as HOA channels in the fol ⁇ lowing .
- the spatial resolution of the HOA representation improves with a growing maximum order N of the expansion.
- the total bit rate for the transmission of HOA representation given a desired single-channel sampling rate f $ and the number of bits per sample, is determined by 0 ⁇ f s ⁇ .
- the final compressed representation is on one hand assumed to consist of a number of quantised signals, resulting from the perceptual coding of directional and vector-based signals as well as relevant coefficient sequences of the ambient HOA component. On the other hand it comprises additional side information related to the quantised signals, which side information is required for the reconstruction of the HOA representation from its compressed version.
- these inter ⁇ mediate time-domain signals are required to have a maximum amplitude within the value range [— 1,1 [ , which is a require ⁇ ment arising from the implementation of currently available perceptual encoders.
- a gain control pro ⁇ cessing unit (see EP 2824661 Al and the above-mentioned ISO/IEC JTC1/SC29/WG11 N14264 document) is used ahead of the perceptual encoders, which smoothly attenuates or amplifies the input signals.
- the resulting signal modification is as ⁇ sumed to be invertible and to be applied frame-wise, where in particular the change of the signal amplitudes between successive frames is assumed to be a power of '2'.
- corresponding normalisation side information is included in total side information.
- This normalisation side information can consist of exponents to base '2', which exponents describe the relative amplitude change between two successive frames. These exponents are coded using a run length code according to the above-mentioned ISO/IEC JTCl/ SC29/WG11 N14264 document, since minor amplitude changes be ⁇ tween successive frames are more probable than greater ones.
- differentially coded amplitude changes for recon- structing the original signal amplitudes in the HOA decom ⁇ pression is feasible e.g. in case a single file is decom ⁇ pressed from the beginning to the end without any temporal jumps.
- independent ac ⁇ cess units have to be present in the coded representation (which is typically a bit stream) in order to allow starting of the decompression from a desired position (or at least in the vicinity of it) , independently of the information from previous frames.
- Such an independent access unit has to con- tain the total absolute amplitude change (i.e. a non- differential gain value) caused by the gain control pro ⁇ cessing unit from the first frame up to a current frame.
- a problem to be solved by the invention is to provide a low ⁇ est integer number of bits required for representing the non-differential gain values. This problem is solved by the apparatus disclosed in claim 1.
- the invention establishes an inter-relation between the value range of the input HOA representation and the potential maximum gains of the signals before the application of the gain control processing unit within the HOA compressor.
- the amount of required bits is determined - for a given specification for the value range of an input HOA representation - for an efficient coding of the exponents to base '2' for describing within an access unit the total absolute amplitude changes (i.e. a non- differential gain value) of the modified signals caused by the gain control processing unit from the first frame up to a current frame .
- the invention uses a processing for verifying whether a given HOA representation satisfies the required value range con- straints such that it can be compressed correctly.
- the inventive apparatus is suited for determin ⁇ ing for the compression of an HOA data frame representation a lowest integer number ⁇ ⁇ of bits required for representing non-differential gain values for channel signals of specific ones of said HOA data frames, wherein each channel signal in each frame comprises a group of sample values and wherein to each channel signal of each one of said HOA data frames a differential gain value is assigned and such differential gain value causes a change of amplitudes of the sample val ⁇ ues of a channel signal in a current HOA data frame with re ⁇ spect to the sample values of that channel signal in the previous HOA data frame, and wherein such gain adapted chan ⁇ nel signals are encoded in an encoder,
- ⁇ max
- said apparatus including:
- VMIN 112 ⁇ 1 ⁇ ⁇ VMIN is a mode matrix for said minimum ambient component CAMB.MIN
- N MAX is a maximum order of interest
- ... , ⁇ are directions of said virtual loudspeakers
- K is a ratio between the squared Euclidean norm ⁇ 2 of said mode matrix and 0.
- ba ⁇ sis for this presentation is the processing described in the MPEG-H 3D audio document ISO/IEC JTCl /SC29/WGl 1 N14264, see also EP 2665208 Al, EP 2800401 Al and EP 2743922 Al .
- N14264 the 'directional component' is extended to a 'predom ⁇ inant sound component'.
- the predominant sound component is assumed to be partly repre ⁇ sented by directional signals, meaning monaural signals with a corresponding direction from which they are assumed to imping on the listener, together with some prediction parameters to predict portions of the original HOA representation from the directional signals. Additionally, the predominant sound component is supposed to be represented by 'vector based signals', meaning monaural signals with a correspond ⁇ ing vector which defines the directional distribution of the vector based signals.
- the overall architecture of the HOA compressor described in EP 2800401 Al is illustrated in Fig. 1. It has a spatial HOA encoding part depicted in Fig. 1A and a perceptual and source encoding part depicted in Fig. IB.
- the spatial HOA encoder provides a first compressed HOA representation con- sisting of / signals together with side information describing how to create an HOA representation thereof.
- perceptual and side information source coders the / signals are perceptually encoded and the side information is subjected to source encoding, before multiplexing the two coded repre- sentations.
- a current fc-th frame C(/c) of the original HOA representation is input to a direction and vector esti- mation processing step or stage 11, which is assumed to pro ⁇ vide the tuple sets f DIR (/c) and M VEC (k) .
- the tuple set f DIR (/c) consists of tuples of which the first element denotes the index of a directional signal and the second element denotes the respective quantised direction.
- the tuple set M VEC (k) consists of tuples of which the first element indicates the index of a vector based signal and the second element de ⁇ notes the vector defining the directional distribution of the signals, i.e. how the HOA representation of the vector based signal is computed.
- the initial HOA frame C(/c) is decomposed in a HOA decomposition step or stage 12 into the frame Xps ik— 1) of all predominant sound (i.e. directional and vector based) signals and the frame C AMB (k— 1) of the ambient HOA component.
- the HOA decomposition step/ stage 12 is assumed to output some prediction parameters ⁇ ( ⁇ :— 1) describing how to predict portions of the original HOA representation from the directional signals, in order to enrich the predominant sound HOA component.
- v A T (k— 1) containing information about the assignment of predominant sound signals, which were determined in the HOA Decomposition processing step or stage 12, to the / available channels is assumed to be pro ⁇ vided.
- the affected channels can be assumed to be occupied, meaning they are not available to transport any coefficient sequences of the ambient HOA component in the respective time frame.
- the frame C AMB k— 1) of the ambient HOA component is modified according to the information provided by the target assignment vector v A T (k— 1) .
- a fade-in and fade-out of coefficient sequenc ⁇ es is performed if the indices of the chosen coefficient se ⁇ quences vary between successive frames.
- the first OMIN coefficient sequences of the ambient HOA component C AMB (k— 2) are always chosen to be perceptually coded and transmitted, where + l) 2 with NMiN ⁇ N being typically a smaller order than that of the original HOA representation.
- a temporally predicted modified ambient HOA component C PMA (k— 1) is computed in step/stage 13 and is used in gain control processing steps or stages 15, 151 in order to allow a rea ⁇ sonable look-ahead, wherein the information about the modi ⁇ fication of the ambient HOA component is directly related to the assignment of all possible types of signals to the available channels in channel assignment step or stage 14.
- the final information about that assignment is assumed to be contained in the final assignment vector v A (k— 2) .
- information con ⁇ tained in the target assignment vector v AT (k— 1) is exploit- ed.
- Fig. 2 The overall architecture of the HOA decompressor described in EP 2800401 Al is illustrated in Fig. 2. It consists of the counterparts of the HOA compressor components, which are arranged in reverse order and include a perceptual and source decoding part depicted in Fig. 2A and a spatial HOA decoding part depicted in Fig. 2B.
- the coded side information data f(/c) are decoded in a side information source decoder step or stage 23, resulting in data sets f DIR (/c + 1) , M VEC (k + 1) , exponents ei(/c), exception flags /?i(/c), prediction parameters ⁇ ( ⁇ : + 1) and an assignment vector VAMB,ASSIGN( ⁇ ) ⁇ Regarding the difference between v A and VAMB,ASSIGN' see the above-mentioned MPEG docu- ment N14264.
- each of the perceptually decoded signals Zj(/c), i l,...,/, is input to an inverse gain control processing step or stage 24, 241 together with its associated gain correction exponent e ⁇ k and gain correction exception flag /?i(/c).
- the i-th inverse gain control processing step/stage provides a gain corrected signal frame yt (k .
- the assignment vector V AMB,ASSIGN( ⁇ ) consists of / components which indicate for each transmission channel whether it contains a coefficient se ⁇ quence of the ambient HOA component and which one it con ⁇ tains.
- the gain corrected signal frames yt (k are re-distributed in order to reconstruct the frame X P s (k) of all predominant sound signals (i.e. all directional and vector based signals) and the frame Ci AMB (k of an intermediate representation of the ambi ⁇ ent HOA component.
- the set JAMB.ACT C ⁇ °f indices of coefficient sequences of the ambient HOA component active in the fc-th frame, and the data sets J E (/c— 1), J D (/c— 1) and 1) of coefficient indices of the ambient HOA component, which have to be enabled, disabled and to remain active in the (k— l)-th frame, are provided.
- the HOA representation of the predominant sound component C PS (/c— 1) is computed from the frame X P s(k of all predominant sound signals using the tuple set f DIR (/c + 1) , the set ⁇ ( ⁇ : + 1) of prediction parameters, the tuple set M VEC (k + 1) and the data sets J E (fc-l), J D (fc-l) and l] (k - 1) .
- the ambient HOA component frame C AMB (/c— 1) is created from the frame C IAMB (/c) of the intermediate representation of the ambient HOA compo- nent, using the set °f indices of coefficient se ⁇ quences of the ambient HOA component which are active in the fc-th frame. The delay of one frame is introduced due to the synchronisation with the predominant sound HOA component.
- the ambient HOA component frame C AMB (k— 1) and the frame C PS (/c— 1) of pre ⁇ dominant sound HOA component are superposed so as to provide the decoded HOA frame C(k— 1) .
- the spatial HOA decoder creates from the / sig ⁇ nals and the side information the reconstructed HOA repre- sentation.
- a normalisation of the (total) input HOA representation signal is to be carried out before.
- HOA compression a frame-wise processing is performed, where the fc-th frame C(/c) of the original input HOA representation is defined with respect to the vector c(t) of time-continuous HOA coefficient sequences specified in equation (54) in section Basics of Higher Order Ambisonics as
- a time in stant of time t is represented by a sample index I and a sam pie period T s of the sample values of said HOA data frames.
- Fig. 3 shows the va
- a further important aspect is that under the assumption of nearly uniformly distributed virtual loudspeaker positions the column vectors of the mode matrix ⁇ , which represent the mode vectors with respect to the virtual loudspeaker posi ⁇ tions, are nearly orthogonal to each other and have an Eu- clidean norm of N + 1 each.
- This property means that the spa ⁇ tial transform nearly preserves the Euclidean norm except for a multiplicative constant, i.e.
- This vector describes by means of an HOA representation a directional beam into the signal source direction /2 S1 .
- the vector v is not con ⁇ strained to be a mode vector with respect to any direction, and hence may describe a more general directional distribu- tion of the monaural vector based signal.
- the mixing matrix A should be chosen such that its Eu ⁇ clidean norm does not exceed the value of '1', i.e.
- equation (18) is equivalent to the constraint
- each exponent to base '2' describing within an access unit the total absolute amplitude change of a modified sig ⁇ nal caused by the gain control processing unit from the first up to a current frame, can assume any integer value within the interval [e MIN ,e M Ax]- Consequently, the (lowest in ⁇ teger) number /? e of bits required for coding it is given by
- Equation (42) In case the amplitudes of the signals before the gain con ⁇ trol are not too small, equation (42) can be simplified:
- the non-differential gain values representing the total absolute amplitude changes as ⁇ signed to the side information for some data frames and re- ceived from demultiplexer 21 out of the received data stream B are used in inverse gain control steps or stages 24,..., 241 for applying a correct gain control, in a manner inverse to the processing that was carried out in gain control steps/stages 15,... ,151.
- the amount /? e of bits for the coding of the exponent has to be set according to equation (42) in dependence on a scaling factor #MAX,DES / which itself is dependent on a de ⁇ sired maximum order NMAX.DES °f HOA representations to be com- pressed and certain virtual loudspeaker directions
- a system which provides, based on the knowledge of the virtual loudspeaker positions, the maximally allowed amplitude of the virtual loudspeaker signals in order to ensure the respective HOA representation to be suitable for compression according to the processing described in MPEG document N14264.
- step or stage 51 the mode matrix ⁇ with respect to the virtual loudspeaker positions is computed according to equation (3) .
- step 52 the Euclid ⁇ ean norm ⁇ 2 of the mode matrix is computed.
- step 53 the amplitude y is computed as the minimum of ' 1 ' and the quotient between the product of the square root of the number of the virtual loudspeaker positions and ⁇ and the Euclidean norm of the mode matrix, i.e.
- HOA Higher Order Ambisonics
- the position index of an HOA coefficient sequence (t) with ⁇ in vector c(t) is given by n(n + l) + l + m.
- the final Ambisonics format provides the sampled version of c(t) using a sampling frequency f $ as
- inventive processing can be carried out by a single pro ⁇ cessor or electronic circuit, or by several processors or electronic circuits operating in parallel and/or operating on different parts of the inventive processing.
- the instructions for operating the processor or the proces ⁇ sors can be stored in one or more memories.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Mathematical Analysis (AREA)
- Theoretical Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Stereophonic System (AREA)
Priority Applications (19)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020167036547A KR102381202B1 (ko) | 2014-06-27 | 2015-06-22 | Hoa 데이터 프레임 표현의 압축을 위해 비차분 이득 값들을 표현하는 데 필요하게 되는 비트들의 최저 정수 개수를 결정하는 장치 |
| JP2016575019A JP6641304B2 (ja) | 2014-06-27 | 2015-06-22 | 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置 |
| KR1020227010252A KR102454747B1 (ko) | 2014-06-27 | 2015-06-22 | Hoa 데이터 프레임 표현의 압축을 위해 비차분 이득 값들을 표현하는 데 필요하게 되는 비트들의 최저 정수 개수를 결정하는 장치 |
| CN201910861296.9A CN110415712B (zh) | 2014-06-27 | 2015-06-22 | 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法 |
| KR1020247010754A KR102816984B1 (ko) | 2014-06-27 | 2015-06-22 | Hoa 데이터 프레임 표현의 압축을 위해 비차분 이득 값들을 표현하는 데 필요하게 되는 비트들의 최저 정수 개수를 결정하는 장치 |
| CN202311558626.XA CN117612540A (zh) | 2014-06-27 | 2015-06-22 | 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法 |
| US15/319,707 US9792924B2 (en) | 2014-06-27 | 2015-06-22 | Apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values |
| EP24158677.5A EP4354432A3 (en) | 2014-06-27 | 2015-06-22 | Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values |
| KR1020257018085A KR20250085845A (ko) | 2014-06-27 | 2015-06-22 | Hoa 데이터 프레임 표현의 압축을 위해 비차분 이득 값들을 표현하는 데 필요하게 되는 비트들의 최저 정수 개수를 결정하는 장치 |
| CN201580035125.0A CN106471822B (zh) | 2014-06-27 | 2015-06-22 | 针对hoa数据帧表示的压缩确定表示非差分增益值所需的最小整数比特数的设备 |
| CN202311556422.2A CN117636885A (zh) | 2014-06-27 | 2015-06-22 | 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法 |
| EP21159478.3A EP3860154B1 (en) | 2014-06-27 | 2015-06-22 | Method for decoding a compressed hoa dataframe representation of a sound field. |
| EP15729523.9A EP3162086B1 (en) | 2014-06-27 | 2015-06-22 | Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values |
| KR1020227035215A KR102654275B1 (ko) | 2014-06-27 | 2015-06-22 | Hoa 데이터 프레임 표현의 압축을 위해 비차분 이득 값들을 표현하는 데 필요하게 되는 비트들의 최저 정수 개수를 결정하는 장치 |
| CN201910861280.8A CN110459229B (zh) | 2014-06-27 | 2015-06-22 | 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法 |
| CN201910861274.2A CN110556120B (zh) | 2014-06-27 | 2015-06-22 | 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法 |
| US15/702,418 US10037764B2 (en) | 2014-06-27 | 2017-09-12 | Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield |
| US16/019,288 US10262670B2 (en) | 2014-06-27 | 2018-06-26 | Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield |
| US16/377,661 US10580426B2 (en) | 2014-06-27 | 2019-04-08 | Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14306024 | 2014-06-27 | ||
| EP14306024.2 | 2014-06-27 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/319,707 A-371-Of-International US9792924B2 (en) | 2014-06-27 | 2015-06-22 | Apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values |
| US15/702,418 Division US10037764B2 (en) | 2014-06-27 | 2017-09-12 | Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015197514A1 true WO2015197514A1 (en) | 2015-12-30 |
Family
ID=51178840
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2015/063914 Ceased WO2015197514A1 (en) | 2014-06-27 | 2015-06-22 | Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values |
Country Status (8)
| Country | Link |
|---|---|
| US (4) | US9792924B2 (enExample) |
| EP (3) | EP3860154B1 (enExample) |
| JP (5) | JP6641304B2 (enExample) |
| KR (5) | KR102454747B1 (enExample) |
| CN (7) | CN110415712B (enExample) |
| ES (1) | ES2974440T3 (enExample) |
| TW (3) | TWI809394B (enExample) |
| WO (1) | WO2015197514A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022082665A1 (en) * | 2020-10-22 | 2022-04-28 | Nokia Shanghai Bell Co., Ltd. | Method, apparatus, and computer program |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107077852B (zh) * | 2014-06-27 | 2020-12-04 | 杜比国际公司 | 包括与hoa数据帧表示的特定数据帧的通道信号关联的非差分增益值的编码hoa数据帧表示 |
| EP2960903A1 (en) | 2014-06-27 | 2015-12-30 | Thomson Licensing | Method and apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values |
| CN113808598B (zh) * | 2014-06-27 | 2025-03-18 | 杜比国际公司 | 针对hoa数据帧表示的压缩确定表示非差分增益值所需的最小整数比特数的方法 |
| DE102016104665A1 (de) * | 2016-03-14 | 2017-09-14 | Ask Industries Gmbh | Verfahren und Vorrichtung zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals |
| US10332530B2 (en) | 2017-01-27 | 2019-06-25 | Google Llc | Coding of a soundfield representation |
| US10015618B1 (en) * | 2017-08-01 | 2018-07-03 | Google Llc | Incoherent idempotent ambisonics rendering |
| US10264386B1 (en) * | 2018-02-09 | 2019-04-16 | Google Llc | Directional emphasis in ambisonics |
| GB2572761A (en) * | 2018-04-09 | 2019-10-16 | Nokia Technologies Oy | Quantization of spatial audio parameters |
| AU2019392876B2 (en) | 2018-12-07 | 2023-04-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus, method and computer program for encoding, decoding, scene processing and other procedures related to DirAC based spatial audio coding using direct component compensation |
| CN116348951A (zh) * | 2020-07-30 | 2023-06-27 | 弗劳恩霍夫应用研究促进协会 | 用于编码音频信号或用于解码经编码音频场景的设备、方法及计算机程序 |
| CN113314129B (zh) * | 2021-04-30 | 2022-08-05 | 北京大学 | 一种适应环境的声场重放空间解码方法 |
| CN113345448B (zh) * | 2021-05-12 | 2022-08-05 | 北京大学 | 一种基于独立成分分析的hoa信号压缩方法 |
| CN115376530A (zh) * | 2021-05-17 | 2022-11-22 | 华为技术有限公司 | 三维音频信号编码方法、装置和编码器 |
| CN115376528A (zh) * | 2021-05-17 | 2022-11-22 | 华为技术有限公司 | 三维音频信号编码方法、装置和编码器 |
| CN115376529B (zh) * | 2021-05-17 | 2024-10-11 | 华为技术有限公司 | 三维音频信号编码方法、装置和编码器 |
| CN115497485B (zh) * | 2021-06-18 | 2024-10-18 | 华为技术有限公司 | 三维音频信号编码方法、装置、编码器和系统 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2665208A1 (en) | 2012-05-14 | 2013-11-20 | Thomson Licensing | Method and apparatus for compressing and decompressing a Higher Order Ambisonics signal representation |
| EP2743922A1 (en) | 2012-12-12 | 2014-06-18 | Thomson Licensing | Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field |
| EP2800401A1 (en) | 2013-04-29 | 2014-11-05 | Thomson Licensing | Method and Apparatus for compressing and decompressing a Higher Order Ambisonics representation |
| EP2824661A1 (en) | 2013-07-11 | 2015-01-14 | Thomson Licensing | Method and Apparatus for generating from a coefficient domain representation of HOA signals a mixed spatial/coefficient domain representation of said HOA signals |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE522453C2 (sv) * | 2000-02-28 | 2004-02-10 | Scania Cv Ab | Sätt och anordning för styrning av ett mekaniskt tillsatsaggregat i ett motorfordon |
| CN1138254C (zh) * | 2001-03-19 | 2004-02-11 | 北京阜国数字技术有限公司 | 一种基于小波变换的音频信号压缩编/解码方法 |
| CN1926607B (zh) * | 2004-03-01 | 2011-07-06 | 杜比实验室特许公司 | 多信道音频编码 |
| CN1677492A (zh) * | 2004-04-01 | 2005-10-05 | 北京宫羽数字技术有限责任公司 | 一种增强音频编解码装置及方法 |
| ATE521143T1 (de) * | 2005-02-23 | 2011-09-15 | Ericsson Telefon Ab L M | Adaptive bitzuweisung für die mehrkanal- audiokodierung |
| US20080232601A1 (en) * | 2007-03-21 | 2008-09-25 | Ville Pulkki | Method and apparatus for enhancement of audio reconstruction |
| US8788264B2 (en) * | 2007-06-27 | 2014-07-22 | Nec Corporation | Audio encoding method, audio decoding method, audio encoding device, audio decoding device, program, and audio encoding/decoding system |
| US8509454B2 (en) * | 2007-11-01 | 2013-08-13 | Nokia Corporation | Focusing on a portion of an audio scene for an audio signal |
| ATE518224T1 (de) * | 2008-01-04 | 2011-08-15 | Dolby Int Ab | Audiokodierer und -dekodierer |
| EP2301262B1 (en) * | 2008-06-17 | 2017-09-27 | Earlens Corporation | Optical electro-mechanical hearing devices with combined power and signal architectures |
| ES2547545T3 (es) * | 2008-09-17 | 2015-10-07 | Panasonic Intellectual Property Management Co., Ltd. | Medio de grabación, dispositivo de reproducción y circuito integrado |
| AU2011231565B2 (en) * | 2010-03-26 | 2014-08-28 | Dolby International Ab | Method and device for decoding an audio soundfield representation for audio playback |
| BR122019013299B1 (pt) * | 2010-04-09 | 2021-01-05 | Dolby International Ab | aparelho e método para emitir um sinal de áudio esterofônico possuindo um canal esquerdo e um canal direito e meio legível por computador não transitório |
| EP2450880A1 (en) * | 2010-11-05 | 2012-05-09 | Thomson Licensing | Data structure for Higher Order Ambisonics audio data |
| EP2469741A1 (en) * | 2010-12-21 | 2012-06-27 | Thomson Licensing | Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field |
| EP2541547A1 (en) * | 2011-06-30 | 2013-01-02 | Thomson Licensing | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation |
| EP2637427A1 (en) * | 2012-03-06 | 2013-09-11 | Thomson Licensing | Method and apparatus for playback of a higher-order ambisonics audio signal |
| EP2645748A1 (en) * | 2012-03-28 | 2013-10-02 | Thomson Licensing | Method and apparatus for decoding stereo loudspeaker signals from a higher-order Ambisonics audio signal |
| EP2688066A1 (en) * | 2012-07-16 | 2014-01-22 | Thomson Licensing | Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction |
| JP6230602B2 (ja) * | 2012-07-16 | 2017-11-15 | ドルビー・インターナショナル・アーベー | オーディオ再生のためのオーディオ音場表現をレンダリングするための方法および装置 |
-
2015
- 2015-06-22 EP EP21159478.3A patent/EP3860154B1/en active Active
- 2015-06-22 CN CN201910861296.9A patent/CN110415712B/zh active Active
- 2015-06-22 EP EP24158677.5A patent/EP4354432A3/en active Pending
- 2015-06-22 CN CN201580035125.0A patent/CN106471822B/zh active Active
- 2015-06-22 KR KR1020227010252A patent/KR102454747B1/ko active Active
- 2015-06-22 KR KR1020257018085A patent/KR20250085845A/ko active Pending
- 2015-06-22 KR KR1020247010754A patent/KR102816984B1/ko active Active
- 2015-06-22 KR KR1020227035215A patent/KR102654275B1/ko active Active
- 2015-06-22 WO PCT/EP2015/063914 patent/WO2015197514A1/en not_active Ceased
- 2015-06-22 CN CN201910861274.2A patent/CN110556120B/zh active Active
- 2015-06-22 CN CN201910922110.6A patent/CN110662158B/zh active Active
- 2015-06-22 KR KR1020167036547A patent/KR102381202B1/ko active Active
- 2015-06-22 CN CN202311556422.2A patent/CN117636885A/zh active Pending
- 2015-06-22 ES ES21159478T patent/ES2974440T3/es active Active
- 2015-06-22 CN CN201910861280.8A patent/CN110459229B/zh active Active
- 2015-06-22 CN CN202311558626.XA patent/CN117612540A/zh active Pending
- 2015-06-22 US US15/319,707 patent/US9792924B2/en active Active
- 2015-06-22 EP EP15729523.9A patent/EP3162086B1/en active Active
- 2015-06-22 JP JP2016575019A patent/JP6641304B2/ja active Active
- 2015-06-26 TW TW110117878A patent/TWI809394B/zh active
- 2015-06-26 TW TW104120627A patent/TWI679633B/zh active
- 2015-06-26 TW TW108142368A patent/TWI728563B/zh active
-
2017
- 2017-09-12 US US15/702,418 patent/US10037764B2/en active Active
-
2018
- 2018-06-26 US US16/019,288 patent/US10262670B2/en active Active
-
2019
- 2019-04-08 US US16/377,661 patent/US10580426B2/en active Active
- 2019-12-27 JP JP2019237716A patent/JP6874115B2/ja active Active
-
2021
- 2021-04-21 JP JP2021071874A patent/JP7267340B2/ja active Active
-
2023
- 2023-04-19 JP JP2023068243A patent/JP7512470B2/ja active Active
-
2024
- 2024-06-26 JP JP2024102467A patent/JP7751696B2/ja active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2665208A1 (en) | 2012-05-14 | 2013-11-20 | Thomson Licensing | Method and apparatus for compressing and decompressing a Higher Order Ambisonics signal representation |
| EP2743922A1 (en) | 2012-12-12 | 2014-06-18 | Thomson Licensing | Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field |
| EP2800401A1 (en) | 2013-04-29 | 2014-11-05 | Thomson Licensing | Method and Apparatus for compressing and decompressing a Higher Order Ambisonics representation |
| EP2824661A1 (en) | 2013-07-11 | 2015-01-14 | Thomson Licensing | Method and Apparatus for generating from a coefficient domain representation of HOA signals a mixed spatial/coefficient domain representation of said HOA signals |
Non-Patent Citations (5)
| Title |
|---|
| "WD1-HOA Text of MPEG-H 3D Audio", 107. MPEG MEETING;13-1-2014 - 17-1-2014; SAN JOSE; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11),, no. N14264, 21 February 2014 (2014-02-21), XP030021001 * |
| B. RAFAELY: "Plane-wave decomposition of the sound field on a sphere by spherical convolution", J. ACOUST. SOC. AM., vol. 4, no. 116, October 2004 (2004-10-01), pages 2149 - 2157 |
| E.G. WIL-LIAMS: "Applied Mathematical Sciences", vol. 93, 1999, ACADEMIC PRESS, article "Fourier Acoustics" |
| J. DANIEL: "PhD thesis", 2001, article "Representation de champs acoustiques, application a la transmission et a la reproduction de scenes sonores complexes dans un contexte multimedia" |
| J. FLIEGE; U. MAIER: "A two-stage approach for computing cubature formulae for the sphere", TECHNICAL REPORT, FACHBEREICH MATHEMATIK, 1999 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022082665A1 (en) * | 2020-10-22 | 2022-04-28 | Nokia Shanghai Bell Co., Ltd. | Method, apparatus, and computer program |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2015197514A1 (en) | Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values | |
| US10516958B2 (en) | Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield | |
| US11875803B2 (en) | Methods and apparatus for determining for decoding a compressed HOA sound representation | |
| US10224044B2 (en) | Method for determining for the compression and decompression of an HOA data frame representation | |
| HK40102426A (en) | Apparatus for determining for the compression of an hoa data frame representation a lowest integer number of bits required for representing non-differential gain values | |
| HK40041126B (en) | Method and apparatus for determining for the decompression of an hoa data frame representation a lowest integer number of bits representing non-differential gain values | |
| HK40052738A (en) | Coded hoa data frame representation that includes non-differential gain values associated with channel signals of specific ones of the data frames of an hoa data frame representation | |
| HK40041126A (en) | Method and apparatus for determining for the decompression of an hoa data frame representation a lowest integer number of bits representing non-differential gain values |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15729523 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015729523 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015729523 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15319707 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2016575019 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20167036547 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020257018085 Country of ref document: KR |