WO2015196959A1 - 2d/3d可切换立体显示装置 - Google Patents

2d/3d可切换立体显示装置 Download PDF

Info

Publication number
WO2015196959A1
WO2015196959A1 PCT/CN2015/082042 CN2015082042W WO2015196959A1 WO 2015196959 A1 WO2015196959 A1 WO 2015196959A1 CN 2015082042 W CN2015082042 W CN 2015082042W WO 2015196959 A1 WO2015196959 A1 WO 2015196959A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
substrate
stereoscopic display
switchable stereoscopic
Prior art date
Application number
PCT/CN2015/082042
Other languages
English (en)
French (fr)
Inventor
王红磊
郭福忠
宫晓达
Original Assignee
深圳超多维光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超多维光电子有限公司 filed Critical 深圳超多维光电子有限公司
Priority to US14/849,686 priority Critical patent/US9798216B2/en
Publication of WO2015196959A1 publication Critical patent/WO2015196959A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure belongs to the field of stereoscopic display technologies, and in particular, to a 2D/3D switchable stereoscopic display device.
  • Stereoscopic display technology is to create the parallax of the left and right eyes of human beings by artificial means, and send two images with parallax to the left and right eyes respectively, so that the brain can observe the real three-dimensional objects after acquiring different images seen by the left and right eyes. a feeling of.
  • FIG. 1 is a schematic structural diagram of a 2D/3D switchable stereoscopic display device provided by the prior art.
  • the 2D/3D switchable stereoscopic display device includes a display panel 1' and a liquid crystal lens 2' provided on the light exit side of the display panel 1'. The light emitted from the display panel 1' enters the left and right eyes of the viewer through the liquid crystal lens 2', respectively, to realize stereoscopic display.
  • the liquid crystal lens 2' includes a first substrate 21' and a second substrate 22' which are disposed opposite to each other, a liquid crystal layer including liquid crystal molecules 23' disposed between the first substrate 21' and the second substrate 22', and a liquid crystal layer for supporting the liquid crystal
  • the spacer 24' of the layer thickness is generally made of a transparent material.
  • the first substrate 21' is provided with a plurality of spaced-apart first electrodes 25', and the second substrate 22' is provided with a second electrode.
  • a driving voltage is applied to the plurality of first electrodes 25', and a driving voltage is applied to the second electrodes, so that the potential difference between the two is on the first substrate 21' and the second An electric field is formed between the substrates 21'.
  • the electric field drives the liquid crystal molecules 23' in the liquid crystal layer to be aligned to form liquid crystal lens units arranged in an array. Therefore, by controlling the driving voltage on each of the first electrodes 25', the refractive index of the liquid crystal lens 2' The distribution will be changed accordingly to control the light output of the display panel 1' to realize stereoscopic display and 2D/3D free switching.
  • the 2D/3D switchable stereoscopic display device when the 2D/3D switchable stereoscopic display device is in the 2D display state, the light emitted by the display panel 1' passes through the spacer 24' and the liquid crystal molecules 23' near the spacer 24', due to the refractive index of the spacer 24' The refractive index difference of the liquid crystal molecules 23' is large, and the light is refracted at the spacer 24'.
  • a bright spot or a color point phenomenon occurs at the gap 24', which affects the viewer's viewing effect and viewing comfort.
  • Another stereoscopic display device comprising a display panel and a liquid crystal lens grating, the display panel comprising a plurality of pixel units and a black matrix disposed between the plurality of pixel units, the liquid crystal lens grating including a spacer, a spacer
  • the position corresponds to the position of the black matrix in the display panel.
  • setting the black matrix in the display panel not only affects the display effect of the display panel, but generally the black matrix does not completely cover the gap, and when the human eye views, there is also a bright spot phenomenon at the gap.
  • the present disclosure provides a 2D/3D switchable stereoscopic display device, including a display panel, a liquid crystal lens disposed on a light exiting side of the display panel, the liquid crystal lens including a first substrate and a second substrate disposed opposite to each other, and a liquid crystal molecule and a gap between the first substrate and the second substrate, a plurality of first electrodes are disposed on the first substrate, and a distance between the two adjacent first electrodes is separated by a certain distance.
  • Providing a second electrode on the second substrate further comprising a control module for controlling a first voltage applied between the first substrate and the second substrate, when the 2D/3D switchable stereoscopic display device When in 2D display, the first voltage is used to generate a first electric field having the same electric field strength, and the first electric field drives the liquid crystal molecules to deflect so that the refractive index difference between the liquid crystal molecules and the spacer Within the preset range.
  • control module controls a first driving voltage applied to the plurality of first electrodes and a second driving voltage on the second electrode, the first driving voltage and the second driving voltage The difference between the two is the first voltage.
  • the 2D/3D switchable stereoscopic display device further includes a third electrode disposed between the first substrate and the first electrode, and the third electrode is disposed between the third electrode and the first electrode An insulating layer, each of the first electrodes is disposed on the insulating layer, and the control module controls a third driving voltage applied to the third electrode and a fourth driving voltage on the second electrode, The difference between the third driving voltage and the fourth driving voltage is the first voltage.
  • the first voltage is greater than a threshold voltage of the liquid crystal molecules.
  • the threshold voltage of the liquid crystal molecules v th the first voltage u 0, and 1.5v th ⁇ u 0 ⁇ 4v th.
  • control module is further configured to control a second voltage applied between the first substrate and the second substrate, when the 2D/3D switchable stereoscopic display device is in a 3D display,
  • the second voltage is used to generate a second electric field having unequal electric field strengths, and the second electric field drives the liquid crystal molecules to deflect to form an array of liquid crystal lens units.
  • the 2D/3D switchable stereoscopic display device further comprises an directional diffuser for directional diffusion of the light exiting of the liquid crystal lens, the directional diffuser being mounted on a side of the liquid crystal lens that emits light.
  • the directional diffuser is disposed at an angle with the liquid crystal lens, and the angle of the angle is set such that the liquid crystal lens normally emits light when displayed in 3D.
  • the included angle is ⁇ and 60° ⁇ ⁇ ⁇ 120°.
  • the angle ⁇ 90°.
  • the directional diffuser comprises a first refracting layer having a refractive index difference and a second refracting layer coated on the first refracting layer, wherein the first refracting layer is provided with a plurality of array rows The diffusion unit of the cloth.
  • a light exit point of each of the liquid crystal lens units on the second substrate is at a non-focus point of the diffusion unit.
  • the focal length of the diffusion unit is f
  • the light exit point and the diffusion unit The distance is l, and l ⁇ 0.5f or l > 2f.
  • the cross-sectional shape of the diffusion unit is semicircular, and the diameter d of the diffusion unit is smaller than the diameter of the liquid crystal lens unit.
  • the diameter d of the diffusion unit is 1/3 to 2/3 times the diameter of the gap.
  • the height of the directional diffuser is equal to the height of the diffusion unit, and the height of the diffusion unit
  • the refractive index of the first refractive layer is N 1
  • the refractive index of the second refractive layer is N 2
  • the second electrode is a strip electrode.
  • the third electrode is a surface electrode or a strip electrode.
  • the 2D/3D switchable stereoscopic display device uses a control module to control a first voltage applied between the first substrate and the second substrate, and when the 2D/3D switchable stereoscopic display device is in 2D display, the first voltage is generated.
  • the uniform first electric field drives the liquid crystal molecules in the liquid crystal lens to deflect at the same angle, changing the refractive index of the liquid crystal molecules, so that the refractive index difference between the liquid crystal molecules and the spacer is within a preset range
  • the light is refracted at the gap, causing the human eye to view the 2D/3D switchable stereoscopic display device in the gap
  • the problem of bright spots or color dots appears at the sub-portion, and the viewing effect and viewing comfort of the 2D/3D switchable stereoscopic display device in the 2D display state are improved compared with the prior art.
  • FIG. 1 is a schematic structural diagram of a 2D/3D switchable stereoscopic display device provided by the prior art
  • FIG. 2 is a schematic structural diagram of a 2D/3D switchable stereoscopic display device in a 2D display state according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic diagram of a light propagation path of a directional diffuser according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic view showing an installation angle of a directional diffuser and a liquid crystal lens according to Embodiment 1 of the present disclosure
  • FIG. 5 is a first schematic structural diagram of a directional diffuser according to Embodiment 1 of the present disclosure
  • FIG. 6 is a second schematic structural view of a directional diffuser according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a schematic view showing a third structure of a directional diffuser according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a fourth schematic structural view of a directional diffuser according to Embodiment 1 of the present disclosure.
  • FIG. 9 is a schematic diagram of a refracted ray of a first refractive layer and a second refractive layer according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a schematic diagram of still another refracted ray of the first refractive layer and the second refractive layer according to Embodiment 1 of the present disclosure
  • FIG. 11 is a schematic structural diagram of a 2D/3D switchable stereoscopic display device in a 3D display state according to Embodiment 1 of the present disclosure
  • FIG. 12 is a schematic structural diagram of a 2D/3D switchable stereoscopic display device according to Embodiment 2 of the present disclosure in a 2D display state.
  • an embodiment of the present disclosure provides a 2D/3D switchable stereoscopic display device, including a display panel 1 and a liquid crystal lens 2 disposed on a light exiting side of the display panel 1 .
  • the liquid crystal lens 2 includes a first substrate 21 and a second substrate 22 disposed opposite to each other.
  • the second substrate 22 is disposed above the first substrate 21, and the liquid crystal molecules 23 and the spacers 24 are disposed between the first substrate 21 and the second substrate 22.
  • the first substrate 21 is provided with a plurality of first electrodes 25, and each of the first electrodes 25 may be a strip electrode, such as a linear shape, a curved shape, or a broken line shape, or may be designed as electrodes of other shapes according to requirements, any phase.
  • the two adjacent first electrodes 25 are spaced apart by a certain distance.
  • a plurality of second electrodes are disposed on the second substrate 22.
  • each of the second electrodes 28 may also be a strip electrode, such as a linear shape, a curved shape, a polygonal line shape, and any two adjacent second electrodes 28 are spaced apart by a certain distance.
  • the second electrode 28 can also be formed into electrodes of other shapes, such as a surface electrode, according to design requirements. When the first electrode 25 and the second electrode 28 are both strip electrodes, the extending directions of the two electrodes may be parallel or cross or even vertical.
  • the 2D/3D switchable stereoscopic display device also includes a control module (not shown).
  • the control module controls the first voltage applied between the first substrate 21 and the second substrate 22 to cause the first voltage to generate a uniform first electric field having the same electric field strength (Fig.
  • the first electric field drives the liquid crystal molecules 23 to deflect at the same angle, so that the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, and at this time, it can be regarded as the refraction of the liquid crystal molecules 23.
  • the rate is close to or even equal to the refractive index of the spacer 24.
  • the above condition that satisfies the preset range is that the difference between the refractive index of the spacer 24 and the refractive index of the liquid crystal molecules 23 is less than 0.1.
  • the 2D/3D switchable stereoscopic display device controls the first voltage applied between the first substrate 21 and the second substrate 22 during the 2D display, and the first voltage is A uniform first electric field having the same electric field strength is generated between the first substrate 21 and the second substrate 22.
  • the uniform first electric field all the liquid crystal molecules 23 are deflected to the same extent, that is, the refractive index of the liquid crystal molecules 23 is the same and satisfies
  • the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, and at this time, it can be considered that the refractive index of the liquid crystal molecules 23 is close to or equal to or equal to the refractive index of the spacers 24.
  • the existing 2D/3D switchable stereoscopic display device is solved.
  • the refractive index of the liquid crystal molecules 23 and the spacers 24 are different, the light is refracted when passing through the spacers 24, causing the problem of bright spots appearing at the gaps 24 when the human eye views the 2D/3D switchable stereoscopic display device. .
  • the control module provided by the embodiment of the present disclosure controls the first voltage applied between the first substrate 21 and the second substrate 22 under the action of a uniform first electric field, with respect to the method of using the black matrix in the prior art.
  • the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, that is, it can be considered that the refractive index of the liquid crystal molecules 23 is close to or even equal to the refractive index of the spacers 24, thereby eliminating the bright spot phenomenon at the spacers 24. And it does not affect the display effect of the 2D/3D switchable stereo display device, and there is no light leakage.
  • the preset range means a range in which the refractive index difference between the spacer 24 and the liquid crystal molecules 23 is less than 0.1.
  • the liquid crystal molecules 23 are driven by the uniform first electric field to generate the same angle of deflection, so that the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is small, within a preset range, thereby solving the 2D/3D switchable stereoscopic display device.
  • the 2D display due to the difference in refractive index between the liquid crystal molecules 23 and the spacers 24, the light is refracted in the spacers 24, resulting in bright spots or colored dots at the spacers 24, affecting the 2D/3D switchable stereoscopic display device. The problem of the effect.
  • the control module applies equal or similar first driving voltages to the plurality of first electrodes 25, and applies a second driving voltage to the second electrodes, the first driving voltage and The difference between the second driving voltages is the first voltage, and the first voltage generates a first electric field having the same electric field strength.
  • the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, that is, the refractive index of the liquid crystal molecules 23 can be regarded as being close to or even equal to the refractive index of the spacers 24, thereby The phenomenon of bright spots at the gaps 24 can be eliminated, and the display effect of the 2D/3D switchable stereoscopic display device is not affected, and light leakage does not occur.
  • the 2D/3D switchable stereoscopic display device provided by the embodiment of the present disclosure has a first voltage greater than a threshold voltage v th of the liquid crystal molecules 23 .
  • the first voltage generates a uniform first electric field having the same electric field strength, and the liquid crystal molecules 23 are deflected by the same angle under the action of the uniform first electric field.
  • the refractive index difference between the liquid crystal molecules 23 and the spacer 24 is small, Within the preset range, therefore, when the light emitted by the display panel 1 passes through the gap 24, the light is not refracted or the refraction of the generated light is negligible, and the 2D-3D switchable stereo display device is eliminated in the 2D display.
  • the light is refracted when the light passes through the spacers 24, causing the human eyes to see the 2D-3D switchable stereoscopic display device, and the bright spots appear at the gaps 24 problem.
  • the threshold voltage of the liquid crystal molecules 23 is 2 v th, a first voltage u 0, and 1.5v th ⁇ u 0 ⁇ 4v th.
  • the liquid crystal molecules of the threshold voltage V th is about 2.6V 23
  • a first voltage u 0 is greater than the threshold voltage of the liquid crystal molecules 23 of the V th, make sure that all the liquid crystal molecules in the second liquid crystal lens 23 at a first uniform electric field Under the liquid crystal molecules 23, the same degree of deflection occurs, and the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, which not only solves the difference in refractive index between the liquid crystal molecules 23 and the spacers 24, but also in the gap.
  • the problem of bright spots appears at the sub-24, and does not affect the display effect of the 2D/3D switchable stereoscopic display device in the 3D display state.
  • the first voltage u 0 may be set to 3.5v ⁇ u 0 ⁇ 8v, and the first voltage u 0 is greater than the threshold voltage v th of the liquid crystal molecules 23, so that the liquid crystal molecules 23 are under the action of the uniform first electric field.
  • the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range, when the light emitted from the display panel 1 passes through the liquid crystal lens 2, the light is not refracted at the spacers 24, and the bright spots at the gaps 24 are eliminated. .
  • the 2D/3D switchable stereoscopic display device provided by the embodiment of the present disclosure further includes an directional diffuser 3 for directional diffusion of the light output of the liquid crystal lens 2.
  • the directional diffuser 3 is mounted on the side where the liquid crystal lens 2 emits light. When the light from the liquid crystal lens 2 enters the directional diffuser 3, it will further diffuse, and the diffused light will become more dispersed in the space of the human visual field, thereby improving the 2D/3D switchable stereoscopic display device in the 2D or 3D display state. The viewing effect and viewing comfort.
  • the directional diffuser 3 provided in this embodiment further attenuates the problem that the 2D/3D switchable stereoscopic display device has a weak bright spot at the gap 24 when it is displayed in 2D.
  • the control module controls the first voltage applied between the first substrate 21 and the second substrate 22, the first voltage being between the first substrate 21 and the second substrate 22.
  • a uniform first electric field having an equal electric field strength is generated, the first voltage being greater than a threshold voltage vth of the liquid crystal molecules 23.
  • the liquid crystal molecules 23 are deflected at the same angle, and at this time, the refractive index difference between the liquid crystal molecules 23 and the spacers 24 is within a predetermined range due to the refraction between the two.
  • the rate difference is small, and when the light passes through the gap 24, there is no obvious refraction phenomenon, and the problem of bright spots at the gap 24 can be greatly reduced.
  • the directional diffuser 3 can well diffuse the light of the liquid crystal lens 2, further attenuating or even eliminating the bright spot phenomenon at the spacer 24.
  • the directional diffuser 3 provided in this embodiment has a simple structure.
  • the operator places the directional diffuser 3 on the liquid crystal lens 2, which is easy to install.
  • a layer of industrial glue may be applied to the surface of the second substrate 22, and the industrial glue fixes the directional diffuser 3 to the second substrate 22.
  • the industrial glue it should be ensured that the focal length of the directional diffuser 3 is larger or smaller than the thickness of the industrial rubber layer, so that the light-emitting position of the liquid crystal lens 2 is ensured not at the focus of the directional diffuser 3.
  • the directional diffuser 3 diffuses the light emitted from the liquid crystal lens 2, which further weakens or even eliminates the occurrence of bright spots or color points at the gap 24.
  • the orientation diffuser 3 can also be mounted on the light exit side of the liquid crystal lens 2 by other mounting means such as a snap connection or a screw connection.
  • the directional diffuser 3 provided in this embodiment may be a diffusion sheet/plate with a directional diffusion function, an optical diffusion film, a lens sheet, a light guide sheet/plate, a beam splitting prism or other optical device, and the selection range is wide, easy to obtain, and the product The cost is lower.
  • the addition of the directional diffuser 3 in the 2D/3D switchable stereoscopic display device not only improves the viewing effect of the 2D/3D switchable stereoscopic display device, but also does not cause a sharp increase in the manufacturing cost of the 2D/3D switchable stereoscopic display device, and improves 2D/ 3D switchable stereo display device product market competitiveness.
  • the directional diffuser 3 can also adopt a liquid crystal lens, and the directional light of the liquid crystal lens 2 can be directionally diffused by adjusting the variable focal length of the directional diffuser 3.
  • the structure of the directional diffuser 3 can be simplified as follows: a light diffusing structure is provided at a position corresponding to the directional diffuser 3 and the spacer 24, and The remaining position of the directional diffuser 3 can be made of the same material as that of the second substrate 22, that is, the light diffusing structure only diffuses the light of the gap 24, and the light of the liquid crystal lens 2 passes through the directional diffuser 3. When the position is not, the light does not spread and directly enters the viewer's eyes. Thus, the directional diffuser 3 not only weakens the occurrence of bright spots at the gap 24, but also has a simpler structure.
  • the control module provided in this embodiment is further used for controlling the application.
  • a second voltage between the substrate 21B and the second substrate 22B the second voltage generates a second electric field having unequal electric field strengths, and under the action of the second electric field, the liquid crystal molecules 23B are deflected at different angles according to the change of the electric field strength.
  • the refractive index of the liquid crystal layer between the first substrate 21B and the second substrate 22B is gradient-distributed to form liquid crystal lens units (not shown) arranged in an array.
  • a fifth driving voltage is applied to each of the first electrodes 25B
  • a sixth driving voltage is applied to the second electrodes 28B
  • a difference between the fifth driving voltage and the sixth driving voltage is a second voltage
  • the second voltage is Under the action of the second electric field, the electric field strength is not equal.
  • the second voltage here is not a voltage, but is relative to the first voltage, mainly for distinguishing from the first voltage.
  • the second voltage may be formed by a plurality of voltages distributed in a gradient and arranged in a group in a group to form a liquid crystal lens unit arranged in an array.
  • the second electric field drives the liquid crystal molecules 23B to be deflected at different angles, so that the refractive index difference between the liquid crystal molecules 23B and the spacers 24B is within a preset range, thus, The refractive index of the liquid crystal molecules 23B is close to the refractive index of the spacer 24B, so that the bright spot phenomenon at the spacer 24B is weak.
  • the light passes through the liquid crystal molecules 23B and the spacers 24B, some of the light is still refracted, resulting in a small number of bright spots at the gap 24B when the human eye views the 2D/3D switchable stereoscopic display device.
  • the directional diffuser 3B On the light-emitting side of the liquid crystal lens 2B, the directional diffuser 3B is placed, and the added directional diffuser 3B weakens or eliminates the bright spot phenomenon at the gap 24B, thereby improving viewing comfort and viewing effect, thereby weakening the light rays observed by the human eye.
  • the second electric field drives the liquid crystal molecules 23B to deflect at different angles, the position of the liquid crystal lens unit disposed in the array close to the position of the spacer 24B even coincides with the corresponding position, so that the refractive index of the liquid crystal molecules 23B is very close.
  • the refractive index of the spacer 24B It is even equal to the refractive index of the spacer 24B, so that the bright spot phenomenon at the spacer 24B is further weakened. Further, after the diffusion of the directional diffuser 3B, the bright spots or colored dots appearing at the spacer 24B due to the refraction of the light can be almost eliminated.
  • the display panel 1B provides left and right eye views, and the directional diffuser 3B is placed on the liquid crystal lens 2B and disposed at an angle to the liquid crystal lens 2B. That is, the light emitted by the liquid crystal lens 2B enters the orientation In the diffuser 3B, the directional diffuser 3B directionally diffuses the light, and the refracted light enters the human eye, and is still a standard left and right view, ensuring a stereoscopic image after entering the human eye.
  • the control module can control the second voltage between the first substrate 21 and the second substrate 22 according to the 2D/3D switchable stereoscopic display device in different display states, without affecting the 2D/3D switchable stereoscopic display device in the 3D state.
  • the normal display can control the second voltage between the first substrate 21 and the second substrate 22 according to the 2D/3D switchable stereoscopic display device in different display states, without affecting the 2D/3D switchable stereoscopic display device in the 3D state.
  • the normal display can control the second
  • the directional diffuser 3B provided by the embodiment of the present disclosure cooperates with the control module to further solve the problem that the 2D/3D switchable stereoscopic display device has a bright spot or a color point phenomenon at the gap 24B during 3D display, which affects the viewing effect.
  • the directional diffuser 3 is disposed at an angle with the liquid crystal lens 2, and the angle of the angle is set such that the liquid crystal lens 2 normally emits light when displayed in 3D.
  • the directional diffuser 3 can directionally diffuse the light emitted by the liquid crystal lens 2 within a certain angle range, and the angle of the angle should ensure that the 2D-3D switchable stereoscopic display device is in the 3D display state, the liquid crystal lens 2 can be normally emitted, and the light of the directional diffuser 3 does not affect the 3D viewing effect.
  • the angle between the directional diffuser 3 and the liquid crystal lens 2 is ⁇ , and 60° ⁇ ⁇ ⁇ 120°.
  • the directional diffuser 3 can directionally diffuse the light emitted by the liquid crystal lens 2 within a certain range of angles, and the angle of the angle ⁇ should be set to ensure that the liquid crystal lens 2 can be used when the 2D/3D switchable stereoscopic display device is in the 3D display state. Normal light output, the directional diffuser 3 does not affect the 3D viewing effect.
  • the display panel 1 provides left and right eye views, and the directional diffuser 3 is placed on the liquid crystal lens 2 and disposed at an angle to the liquid crystal lens 2.
  • the light emitted by the liquid crystal lens 2 enters the directional diffuser 3, and the directional diffuser 3 refracts the light.
  • the refracted light is still in the respective viewing zone range of the left and right images, and after entering the human eye, it is still a standard left and right view, ensuring A stereoscopic image can be formed after entering the human eye.
  • the directing diffuser 3 diffuses the light of the liquid crystal lens 2 to ensure that the directional diffuser 3 does not affect the view of the 2D/3D switchable stereoscopic display device in the 3D display state. See the effect.
  • the directional diffuser 3 includes a first refractive layer 31 and a second refractive layer 32 having a refractive index difference, and the second refractive layer 32 is coated on On the first refractive layer 31, a plurality of array-distributed diffusion units 311 are disposed on the first refractive layer 31, and the height of the orientation diffuser 3 is greater than or equal to the height of the diffusion unit 311. Since the refractive indices of the first refractive layer 31 and the second refractive layer 32 are different, the light emitted from the liquid crystal lens 2 enters the directional diffuser 3 through the second substrate 22, and the light refracts once at the boundary of the diffusion unit 311.
  • the light is incident into the air by the directional diffuser 3, and refraction of the light occurs again at the boundary of the second refracting layer 32, that is, the ray is in the directional diffuser, and after two refractions, it enters the viewer's eye. Therefore, the directional diffuser 3 further diffuses the light, and the diffused light becomes more dispersed throughout the field of view space, and the viewer sees a bright spot phenomenon due to the difference in refractive index between the liquid crystal molecules 23 and the spacers 24. , got a good improvement.
  • the light enters the first refractive layer 31 since the diffusion units 311 are arranged in an array, the light refracted by the diffusion unit 311 emits light more uniformly. As shown in FIG.
  • the directional diffuser 3a includes a first refracting layer 31a and a second refracting layer 32a, and the first refracting layer 31a includes a diffusing unit 311a arranged in an array, when the height of the directional diffuser 3a is larger than that of the diffusing unit 311a At the height, the light enters the diffusion unit 311a, and the light is refracted at the boundary of the diffusion unit 311a, and the refracted light enters the second refractive layer 32a, and the light is again refracted at the boundary of the second refractive layer 32a.
  • the directional diffuser 3 since the directional diffuser 3 is used in a 2D/3D switchable stereoscopic display device, it should be ensured that the height of the directional diffuser 3 is moderate, and if the height of the directional diffuser 3 is too high, the liquid crystal lens 2 is lowered.
  • the light output rate has an adverse effect. It has been experimentally confirmed that the height of the directional diffuser 3 can be 15 to 80 mm higher than the height of the diffusion unit 311, which not only further eliminates the problem of bright spots at the spacers 24, but also does not affect the light output of the liquid crystal lens 2.
  • the light exit point A of the liquid crystal lens unit on the second substrate 22 is at the non-focus of the diffusion unit 311.
  • the directional diffuser 3 is provided on the liquid crystal lens 2 to diffuse the light emitted from the liquid crystal lens 2.
  • the diffusion unit 311 in the directional diffuser 3 diffuses the light emitted from the liquid crystal lens 2 by setting the focal length of the diffusion unit 311 such that the light exit point A of the liquid crystal lens unit on the second substrate 22 is at the non-focus of the diffusion unit 311.
  • the light emitted by the liquid crystal lens unit is diffused by the diffusing unit 311, and the diffused light becomes more dispersed throughout the field of view space, and the viewer is watching the 2D/3D switchable stereoscopic display device.
  • the bright spot or the color point phenomenon generated at the gap 24 is weakened.
  • FIG. 3 is only a schematic diagram of the optical path propagation path of the present embodiment, and the distance between the light exit point A and the diffusion unit 311 does not represent the actual distance.
  • the focal length of the diffusion unit 311 is f
  • the distance between the light exit point A and the diffusion unit 311 is 1, and l ⁇ 0.5f or l. >2f
  • the focal length of the diffusion unit 311 is not too large, and since the directional diffuser 3 can be fixedly mounted on the liquid crystal lens 2 by industrial glue,
  • the focal length f of the diffusion unit 311 should be greater or smaller than the distance between the second substrate 22 and the first refractive layer 31, that is, the focal length f of the diffusion unit 311 is larger or smaller than the thickness of the adhesive layer, ensuring that the light exit point A of the liquid crystal lens 2 is not in the diffusion unit. Focus on 311.
  • the light emitted from the liquid crystal lens 2 enters the directional diffuser 3 and is further diffused, so that the diffused light is more dispersed.
  • the diffusion unit 311 may be a concave lens or a convex lens, and the directional diffuser 3 is a combination of two lenses having different refractive indices.
  • the cross-sectional shape of the diffusion unit 311 is curved, and the light from the liquid crystal lens 2 enters the directional diffuser 3, and the ray is refracted at the boundary of the diffusion unit 311.
  • the light exiting from the liquid crystal lens 2 enters the directional diffuser 3b, and the directional diffuser 3b includes a first refracting layer 31b and a second refracting layer 32b, and the first refracting layer 31b is arranged in an array.
  • the diffusion unit 311b has a triangular cross section shape, and the light is refracted at the boundary of the diffusion unit 311b.
  • the light exiting from the liquid crystal lens 2 enters the directional diffuser 3c, and the directional diffuser 3c includes a first refracting layer 31c and a second refracting layer 32c, and the first refracting layer 31c is arranged in an array.
  • the cross-sectional shape of the diffusion unit 311c is a rectangle, and the light is refracted at the boundary of the diffusion unit 311c.
  • the cross-sectional shape of the diffusion unit 311 may also be other regular or irregular shapes, and the diffusion unit 311 that refracts light is all within the protection scope of the present disclosure. It should be determined without objection that the cross-sectional shape of the diffusion unit 311 provided in this embodiment is only applicable to the illustration, and the regular lens is easier to process.
  • the cross section of the diffusion unit 311 is semicircular, and the shape of the diffusion unit 311 is regular, which facilitates processing and reduces manufacturing costs.
  • the diameter d of the diffusion unit 311 is smaller than the diameter of the liquid crystal lens unit, such that the light output of each liquid crystal lens unit may correspond to a plurality of diffusion units 311, and the diffusion unit 311 refracts the light, and the refracted light is in the field of view. The inside becomes more dispersed, further weakening the bright spot phenomenon at the gap 24.
  • the diameter d of the diffusion unit 311 is 1/3 to 2/3 times the diameter of the spacer 24, and the 2D/3D switchable stereoscopic display device is displayed in 2D.
  • the control module controls a first voltage applied between the first substrate 21 and the second substrate 22, the first voltage generating a uniform first electric field having the same electric field strength, and the liquid crystal molecules 23 and the gap under the action of the uniform first electric field
  • the refractive index difference between the sub- 24s is within a preset range.
  • the refractive index of the liquid crystal molecules 23 is close to or equal to or equal to the refractive index of the spacers 24, when the light emitted from the display panel 1 passes through the spacers 24, some light will be generated at the spacers 24.
  • the refracting, and the directional light emitted from the liquid crystal lens 2 by the directional diffuser 3 is further refracted at the diffusion unit 311 to weaken the bright spot phenomenon of the spacer 24, and the diameter d of the diffusion unit 311 is smaller than the diameter of the spacer 24, ensuring the liquid crystal lens 2 The light is diffused.
  • the height of the directional diffuser 3 is equal to the height of the diffusion unit 311, and the height of the diffusion unit 311.
  • the height h of the diffusion unit 311 is determined by the focal length f and the diameter d of the diffusion unit 311, and according to the geometric relationship, the height h of the diffusion unit 311 is obtained, according to the height h, the focal length f
  • the diameter d and the diameter d can be processed to form a diffusion unit 311 which is simple in structure and easy to manufacture.
  • the refractive index of the first refractive layer 31 is N 1
  • the refractive index of the second refractive layer 32 is N 2
  • the first refractive layer 31 and the second The refractive index difference ⁇ n
  • the refractive index N 1 of the first refractive layer 31 ′ is 1.59
  • the refractive index N 2 of the second refractive layer 32 ′ is 1.60
  • the first refractive layer 31 ′ and the second refractive layer are obtained.
  • the 32' is a schematic diagram of the refracted ray that emits light to the liquid crystal lens 2.
  • the refractive index N 1 of the first refractive layer 31 is 1.46
  • the refractive index N 2 of the second refractive layer 32 is 1.60.
  • the first refractive layer 31 and the second refractive layer 32 are obtained.
  • the refractive index difference ⁇ n between the first refracting layer 31 and the second refracting layer 32 is larger on the premise that the 2D/3D switchable stereoscopic display device is normally displayed.
  • the better the diffusion effect of the directional diffuser 3 on the light the more the refracted light becomes more dispersed in the field of view space, further weakening the bright spot phenomenon at the gap 24.
  • the first refractive layer 31 is a first OCA optical glue or a first UV glue
  • the second refractive layer 32 is a second UV glue or a second OCA optical. gum.
  • the first refractive layer 31 is a first OCA optical adhesive
  • the second refractive layer 32 is a second OCA optical adhesive or a second UV adhesive different in refractive index from the first refractive layer 31, or
  • the first refractive layer 31 is a first UV glue
  • the second refractive layer 32 is a second OCA optical glue or a second UV glue having a different refractive index from the first refractive layer 31.
  • OCA Optically Clear Adhesive
  • transparent optical components such as lenses
  • OCA optical Clear Adhesive
  • It requires colorless transparency, light transmittance of over 90%, and good bonding strength. It can be cured at room temperature or medium temperature, and has the characteristics of small curing shrinkage.
  • UV glue also known as shadowless glue, photosensitive glue, UV curing glue, it refers to a type of adhesive that must be cured by ultraviolet light. It can be used as a binder or as a glue for paints, coatings, inks, etc. Material used.
  • the principle of UV glue curing is that the photoinitiator (or photosensitizer) in the UV curing material absorbs ultraviolet light to generate active radicals or cations under the irradiation of ultraviolet rays, and initiates polymerization, crosslinking and chemical reaction of the monomers to bond. The agent is converted from a liquid to a solid in a few seconds.
  • the first OCA optical glue, the second OCA optical glue, the first UV glue, and the second UV glue all contain a resin.
  • the resin is easy to take, and the resin is easily attached to the second substrate 22, and the operation is more convenient.
  • the main body of the first OCA optical glue, the second OCA optical glue, the first UV glue, and the second UV glue are all resins, and the main body of the first OCA optical glue and the second OCA optical glue may be acrylic type.
  • Resin and unsaturated polyester, polyurethane, epoxy resin when selected, the main body of the first OCA optical glue is unsaturated polyester, the main body of the second OCA optical glue is polyurethane, the composition of the first OCA glue and the second OCA glue Differently, therefore, the refractive indices of the first OCA glue and the second OCA glue are different.
  • the main body of the first UV glue and the second UV glue is preferably epoxy (meth) acrylate, and of course, urethane (meth) acrylate or silicone (meth) acrylate may also be used.
  • the main body of the first UV glue is epoxy (meth) acrylate
  • the body of the second UV glue is urethane (meth) acrylate
  • the composition of the first UV glue and the second UV glue are different, therefore, The refractive index of a UV glue is different from that of the second UV glue.
  • the composition of the first OCA optical glue, the second OCA optical glue, the first UV glue, and the second UV glue ensuring the first OCA optical glue, the second OCA optical glue, the first UV glue, the second UV glue.
  • the refractive indices are different from each other and have a refractive index difference.
  • the 2D/3D switchable stereoscopic display device provided in this embodiment is basically the same as the 2D/3D switchable stereoscopic display device provided in the first embodiment, and the display panel 1C and the liquid crystal lens 2C are disposed.
  • the liquid crystal lens 2C includes a first substrate 21C and a second substrate 22C which are disposed opposite to each other, and the second substrate 22C is disposed on the first substrate 21C.
  • the liquid crystal molecules 23C and the spacers 24C are provided between the first substrate 21C and the second substrate 22C.
  • a third electrode 26C is disposed between the first substrate 21C and the first electrode 25C, and an insulating layer 27C is disposed between the third electrode 26C and the first electrode 25C, and each of the first electrodes 25C is disposed on the insulating layer 27C. on.
  • the control module controls a first voltage applied between the first substrate 21C and the second substrate 22C, and the first voltage generates a uniform first electric field having the same electric field strength (not shown) It is shown that the uniform first electric field drives the liquid crystal molecules 23C to deflect at the same angle, so that the refractive index difference between the liquid crystal molecules 23C and the spacers 24C is within a preset range, and the condition that satisfies the preset range is the refraction of the spacer 24C.
  • the difference between the ratio and the refractive index of the liquid crystal molecules 23C is less than 0.1, and at this time, it can be considered that the refractive index of the liquid crystal molecules 23C is close to or even equal to the refractive index of the spacer 24C.
  • a third driving voltage is applied to the third electrode 26C
  • a fourth driving voltage is applied to the second electrode 28C.
  • the difference between the third driving voltage and the fourth driving voltage is the first voltage
  • the first voltage is in the first voltage.
  • a uniform first electric field having the same electric field strength is formed between a substrate 21C and the second substrate 22C. Under the action of the uniform first electric field, all the liquid crystal molecules 23C have the same refractive index and satisfy the liquid crystal molecule 23C and the spacer 24C.
  • the refractive index difference is within a predetermined range, and at this time, it can be considered that the refractive index of the liquid crystal molecule 23C is close to or even equal to the refractive index of the spacer 24C.
  • the refraction of the light is not generated or the refraction of the generated light is negligible, thereby solving the existing 2D/3D switchable stereoscopic display device.
  • the refractive index of the liquid crystal molecules 23C and the spacer 24C are different, the light is refracted when passing through the gap 24C, causing the human eye to see the 2D/3D switchable stereoscopic display device, and the bright spot appears at the gap 24C. problem.
  • the driving voltage may be applied to the first electrode 25C, or the driving voltage may not be applied, and the 2D/3D switchable stereoscopic display device is not affected.
  • the normal display when the 2D/3D switchable stereoscopic display device is used for 2D display, the driving voltage may be applied to the first electrode 25C, or the driving voltage may not be applied, and the 2D/3D switchable stereoscopic display device is not affected.
  • the normal display when the 2D/3D switchable stereoscopic display device is used for 2D display, the driving voltage may be applied to the first electrode 25C, or the driving voltage may not be applied, and the 2D/3D switchable stereoscopic display device is not affected.
  • the normal display when the 2D/3D switchable stereoscopic display device is used for 2D display, the driving voltage may be applied to the first electrode 25C, or the driving voltage may not be applied, and the 2D/3D switchable stereoscopic display device is not affected.
  • the normal display when the 2D/3D switchable stere
  • the third electrode 26C may be a surface electrode or a strip electrode.
  • the third electrode 26C is the same as the first electrode 25C and is a strip electrode, the extending directions of the two electrodes may be parallel.
  • the plurality of first electrodes 25C are applied The seventh driving voltage is applied, the second driving voltage is applied to the second electrode 28C, and the ninth driving voltage is applied to the third electrode 26C.
  • the driving voltages are matched to each other to ensure the liquid crystal lens of the 2D/3D switchable stereoscopic display device in 3D display. 2C presents a stereoscopic image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种2D/3D可切换立体显示装置,包括显示面板(1)、设于显示面板(1)出光侧的液晶透镜(2),液晶透镜(2)包括相对设置的第一基板(21)和第二基板(22)、以及设置于第一基板(21)与第二基板(22)之间的液晶分子(23)与间隙子(24),第一基板(21)上设有多个第一电极(25),相邻两第一电极(25)之间均间隔一定距离,第二基板(22)上设有第二电极(28),还包括控制模块,用于控制施加于第一基板(21)与第二基板(22)之间的第一电压,当2D/3D可切换立体显示装置处于2D显示时,第一电压产生电场强度相等的第一电场,第一电场驱动液晶分子(23)偏转,使得以使液晶分子(23)与间隙子(24)之间的折射率差在预设范围内,消除因折射率差,光线在间隙子(24)处发生折射,导致间隙子(24)处存在亮点或彩点,影响观看效果的问题。

Description

2D/3D可切换立体显示装置
相关申请的交叉引用
本公开主张在2014年6月24日在中国提交的中国专利申请号No.201410289749.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于立体显示技术领域,尤其涉及一种2D/3D可切换立体显示装置。
背景技术
人类通过右眼和左眼所看到的物体的细微差异来感知物体的深度,从而识别出立体图像,这种差异被称为视差。立体显示技术就是通过人为的手段来制造人的左右眼的视差,给左、右眼分别送去有视差的两幅图像,使大脑在获取了左右眼看到的不同图像之后,产生观察真实三维物体的感觉。
随着人们对液晶材料认识的不断深入,采用液晶材料制成的液晶透镜具有广泛的应用,如应用于立体显示领域。图1为现有技术提供的2D/3D可切换立体显示装置的结构示意图。2D/3D可切换立体显示装置包括显示面板1′和设于显示面板1′出光侧的液晶透镜2′。显示面板1′发出的光线经液晶透镜2′分别进入观看者的左眼和右眼中,实现立体显示。液晶透镜2′包括相对设置的第一基板21′和第二基板22′、设置在第一基板21′与第二基板22′之间包含有液晶分子23′的液晶层、以及用于支撑液晶层厚度的间隙子24′,间隙子24′一般采用透明材质制成。第一基板21′上设有多个间隔设置的第一电极25′,第二基板22′上设有第二电极。当2D/3D可切换立体显示装置用于3D显示时,对多个第一电极25′施加驱动电压,第二电极施加驱动电压,让二者之间的电势差在第一基板21′与第二基板21′之间形成电场。电场驱动液晶层中的液晶分子23′排列而形成呈阵列设置的液晶透镜单元。因此,通过控制各第一电极25′上的驱动电压,液晶透镜2′的折射率 分布会相应的改变,从而对显示面板1′的出光进行控制,实现立体显示和2D/3D自由切换。但是,当2D/3D可切换立体显示装置处于2D显示状态,显示面板1′发出的光线经过间隙子24′和间隙子24′附近的液晶分子23′时,由于间隙子24′的折射率与液晶分子23′的折射率差较大,光线在间隙子24′处发生折射。这样,当人眼观看液晶透镜2′时,在间隙子24′处出现亮点或彩点现象,影响观看者的观看效果和观看舒适度。
现有技术还公开了另一种立体显示装置,包括显示面板和液晶透镜光栅,显示面板包括多个像素单元以及设置在多个像素单元之间的黑矩阵,液晶透镜光栅包括间隙子,间隙子的位置对应于显示面板中黑矩阵的位置。但在显示面板中设置黑矩阵,不仅影响显示面板的显示效果,而且一般黑矩阵并不能完全覆盖间隙子,导致人眼观看时,在间隙子处亦存在亮点现象。
发明内容
本公开的目的在于提供一种2D/3D可切换立体显示装置,旨在解决由现有技术的局限和缺点引起的上述一个或多个技术问题。
本公开提供了一种2D/3D可切换立体显示装置,包括显示面板、设于所述显示面板出光侧的液晶透镜,所述液晶透镜包括相对设置的第一基板和第二基板、以及设置于所述第一基板与所述第二基板之间的液晶分子与间隙子,所述第一基板上设有多个第一电极,相邻两所述第一电极之间均间隔一定距离,所述第二基板上设有第二电极;还包括控制模块,用于控制施加于所述第一基板与所述第二基板之间的第一电压,当所述2D/3D可切换立体显示装置处于2D显示时,所述第一电压用于产生电场强度相等的第一电场,所述第一电场驱动所述液晶分子偏转,以使所述液晶分子与所述间隙子之间的折射率差在预设范围内。
可选地,所述控制模块控制施加于多个所述第一电极上的第一驱动电压以及所述第二电极上的第二驱动电压,所述第一驱动电压与所述第二驱动电压之间的差值即为所述第一电压。
可选地,所述2D/3D可切换立体显示装置还包括设置于所述第一基板与所述第一电极之间的第三电极,所述第三电极与所述第一电极之间设有绝缘层,各所述第一电极设置于所述绝缘层上,所述控制模块控制施加于所述第三电极上的第三驱动电压以及所述第二电极上的第四驱动电压,所述第三驱动电压与所述第四驱动电压之间的差值即为所述第一电压。
可选地,所述第一电压大于所述液晶分子的阈值电压。
可选地,所述液晶分子的阈值电压为vth,所述第一电压为u0,且1.5vth≤u0≤4vth
可选地,所述控制模块还用于控制施加于所述第一基板与所述第二基板之间的第二电压,当所述2D/3D可切换立体显示装置处于3D显示时,所述第二电压用于产生电场强度不等的第二电场,所述第二电场驱动所述液晶分子偏转形成阵列设置的液晶透镜单元。
可选地,所述2D/3D可切换立体显示装置还包括对所述液晶透镜的出光进行定向扩散的定向扩散器,所述定向扩散器安装在所述液晶透镜出光的一侧。
可选地,所述的定向扩散器与所述液晶透镜呈夹角设置,所述夹角的角度设定使得所述液晶透镜在3D显示时正常出光。
可选地,所述夹角为α,且60°≤α≤120°。
可选地,所述夹角α=90°。
可选地,所述定向扩散器包括具有折射率差的第一折射层和包覆于所述第一折射层上的第二折射层,所述第一折射层上设有多个呈阵列排布的扩散单元。
可选地,各所述液晶透镜单元在所述第二基板上的出光点在所述扩散单元的非焦点处。
可选地,所述扩散单元的焦距为f,所述出光点与所述扩散单元之间的 距离为l,且l≤0.5f或l>2f。
可选地,所述扩散单元的截面形状为半圆形,所述扩散单元的直径d小于所述液晶透镜单元的直径。
可选地,所述扩散单元的直径d为所述间隙子直径的1/3~2/3倍。
可选地,所述定向扩散器的高度等于所述扩散单元的高度,所述扩散单元的高度
Figure PCTCN2015082042-appb-000001
可选地,所述第一折射层的折射率为N1,所述第二折射层的折射率为N2,所述第一折射层与所述第二折射层的折射率差Δn=|N1-N2|≥0.1。
可选地,所述第二电极为条形电极。
可选地,所述第三电极为面电极或条形电极。
本公开提供的2D/3D可切换立体显示装置采用控制模块控制施加于第一基板与第二基板之间的第一电压,当2D/3D可切换立体显示装置处于2D显示时,第一电压产生电场强度相等的均匀第一电场,均匀的第一电场驱动液晶透镜中的液晶分子发生相同角度的偏转,改变液晶分子的折射率,使得液晶分子与间隙子之间的折射率差在预设范围内,从而减弱甚至消除2D显示时,因间隙子与液晶分子之间存在较大的折射率差,光线在间隙子处发生折射,导致人眼观看2D/3D可切换立体显示装置时,在间隙子处出现亮点或彩点的问题,与现有技术相比,提升了2D/3D可切换立体显示装置在2D显示状态下的观看效果和观看舒适度。
附图说明
图1是现有技术提供的2D/3D可切换立体显示装置的结构示意图;
图2是本公开实施例一提供的2D/3D可切换立体显示装置处于2D显示状态的结构示意图;
图3是本公开实施例一提供的定向扩散器的光线传播路线示意图;
图4是本公开实施例一提供的定向扩散器与液晶透镜的安装角度示意图;
图5是本公开实施例一提供的定向扩散器的第一结构示意图;
图6是本公开实施例一提供的定向扩散器的第二结构示意图;
图7是本公开实施例一提供的定向扩散器的第三结构示意图;
图8是本公开实施例一提供的定向扩散器的第四结构示意图;
图9是本公开实施例一提供的第一折射层与第二折射层的一折射光线示意图;
图10是本公开实施例一提供的第一折射层与第二折射层的又一折射光线示意图;
图11是本公开实施例一提供的2D/3D可切换立体显示装置处于3D显示状态的结构示意图;
图12本公开实施例二提供的2D/3D可切换立体显示装置处于2D显示状态的结构示意图。
具体实施方式
为了使本公开要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一
如图2所示,本公开实施例提供一种2D/3D可切换立体显示装置,包括:显示面板1和液晶透镜2,液晶透镜2设置于显示面板1的出光侧。液晶透镜2包括相对设置的第一基板21与第二基板22,第二基板22设置于第一基板21的上方,第一基板21与第二基板22之间设有液晶分子23和间隙子24。第一基板21上设有多个第一电极25,每一第一电极25可以为条形电极,如直线形、曲线形、折线形,也可以依据需要设计成呈其他形状的电极,任意相邻两个第一电极25之间均间隔一定距离。第二基板22上设有多个第二电极(图中未示出)。同第一电极25,每一第二电极28也可以为条形电极,如直线形、曲线形、折线形,任意相邻两个第二电极28之间均间隔一定距离, 所述第二电极28也可以依据设计需要制成呈其他形状的电极,如面电极。当第一电极25、第二电极28均为条形电极时,二者的延伸方向既可以平行,也可以交叉甚至垂直。
2D/3D可切换立体显示装置还包括控制模块(图中未示出)。当2D/3D可切换立体显示装置处于2D显示时,控制模块控制施加于第一基板21与第二基板22之间的第一电压,让第一电压产生电场强度相等的均匀第一电场(图中未示出),第一电场驱动液晶分子23发生相同角度的偏转,使得液晶分子23与间隙子24之间的折射率差在预设范围内,此时,可以看作液晶分子23的折射率接近于甚至等于间隙子24的折射率。上述满足预设范围的条件是间隙子24的折射率与液晶分子23折射率之间的差值小于0.1。
如图2所示,本实施例提供的2D/3D可切换立体显示装置,在2D显示时,控制模块控制施加于第一基板21与第二基板22之间的第一电压,第一电压在第一基板21与第二基板22之间产生电场强度相等的均匀第一电场,在均匀第一电场的作用下,所有的液晶分子23偏转程度相同,即液晶分子23的折射率相同,并满足液晶分子23与间隙子24之间的折射率差在预设范围内,此时,可以看作液晶分子23的折射率接近于甚至等于间隙子24的折射率。因此,当显示面板1发出的光线经过液晶分子23和间隙子24时,不会产生光线的折射或者即使产生光线的折射也可以忽略不计,解决了现有的2D/3D可切换立体显示装置处于2D显示时,因液晶分子23与间隙子24的折射率不同,光线在经过间隙子24时发生折射,造成人眼观看2D/3D可切换立体显示装置时,在间隙子24处出现亮点的问题。同时,相对于现有技术采用黑矩阵的方法,本公开实施例提供的控制模块,控制施加于第一基板21与第二基板22之间的第一电压,在均匀第一电场的作用下,液晶分子23的与间隙子24之间的折射率差在预设范围内,即可以看作液晶分子23的折射率接近于甚至等于间隙子24的折射率,从而消除间隙子24处的亮点现象,并且不会影响2D/3D可切换立体显示装置的显示效果,不会出现漏光的现象。
在本实施例中,预设范围,是指根据间隙子24与液晶分子23之间的折射率差小于0.1的范围。通过均匀第一电场驱动液晶分子23发生相同角度的偏转,使得液晶分子23与间隙子24之间的折射率差较小,在预设范围内,从而解决了2D/3D可切换立体显示装置在2D显示时,由于液晶分子23与间隙子24之间存在的折射率差,光线在间隙子24发生折射,导致间隙子24处出现亮点或彩点现象,影响2D/3D可切换立体显示装置观看效果的问题。
具体地,2D/3D可切换立体显示装置在2D显示时,控制模块对多个第一电极25施加相等或相近的第一驱动电压,对第二电极施加第二驱动电压,第一驱动电压与第二驱动电压之间的差值即为第一电压,第一电压产生电场强度相等的第一电场。在第一电场的作用下,液晶分子23的与间隙子24之间的折射率差在预设范围内,即可以看作液晶分子23的折射率接近于甚至等于间隙子24的折射率,从而能够消除间隙子24处的亮点现象,并且不会影响2D/3D可切换立体显示装置的显示效果,不会出现漏光的现象。
作为上述实施例的进一步改进,如图2所示,本公开实施例提供的2D/3D可切换立体显示装置,第一电压大于液晶分子23的阈值电压vth。第一电压产生电场强度相同的均匀第一电场,液晶分子23在均匀第一电场的作用下发生相同角度的偏转,此时,液晶分子23与间隙子24之间的折射率差较小,在预设范围内,因此,显示面板1发出的光线在经过间隙子24时,不会发生光线的折射或者即使产生光线的折射也可以忽略不计,消除了2D-3D可切换立体显示装置处于2D显示状态时,由于液晶分子23与间隙子24之间存在折射率差,光线经过间隙子24时发生光线折射,导致人眼观看2D-3D可切换立体显示装置时,在间隙子24处出现亮点的问题。
作为上述实施例的进一步改进,如图2所示,液晶分子23的阈值电压为vth,第一电压为u0,且1.5vth≤u0≤4vth。在常温状态下,液晶分子23的阈值电压vth在2.6v左右,第一电压u0大于液晶分子23的阈值电压vth,确保液晶透镜2 中的所有液晶分子23在均匀第一电场的作用下,液晶分子23均发生相同程度的偏转,并使得液晶分子23与间隙子24之间的折射率差在预设范围内,不仅解决了液晶分子23与间隙子24因折射率差,在间隙子24处出现亮点的问题,同时不会影响2D/3D可切换立体显示装置在3D显示状态下的显示效果。
在具体实施时,可以将第一电压u0设置为3.5v≤u0≤8v,第一电压u0大于液晶分子23的阈值电压vth,使得液晶分子23在均匀第一电场的作用下,液晶分子23与间隙子24之间的折射率差在预设范围内,显示面板1发出的光经过液晶透镜2时,光线不会在间隙子24处发生折射,消除间隙子24处亮点的现象。
作为上述实施例的进一步改进,如图2所示,本公开实施例提供的2D/3D可切换立体显示装置还包括定向扩散器3,定向扩散器3用于对液晶透镜2的出光进行定向扩散,定向扩散器3安装在液晶透镜2出光的一侧。液晶透镜2的出光进入定向扩散器3时会进一步扩散,扩散后的光线在人眼视场空间范围内会变得更加分散,进而提高2D/3D可切换立体显示装置在2D或3D显示状态下的观看效果和观看舒适度。
本实施例提供的定向扩散器3进一步减弱2D/3D可切换立体显示装置在2D显示时,间隙子24处出现微弱亮点的问题。2D/3D可切换立体显示装置处于2D显示状态时,控制模块控制施加于第一基板21与第二基板22之间的第一电压,第一电压在第一基板21与第二基板22之间产生电场强度相等的均匀第一电场,第一电压大于液晶分子23的阈值电压vth。因此,在均匀第一电场的作用下,液晶分子23发生相同角度的偏转,且此时,液晶分子23与间隙子24之间的折射率差在预设范围内,由于两者之间的折射率差较小,光线在经过间隙子24时,不会出现很明显的折射现象,可以在很大程度上减弱间隙子24处出现亮点的问题。但是,由于折射率差的存在,还是存在微弱 的折射现象,而定向扩散器3可以很好地对液晶透镜2的出光进行扩散,进一步减弱甚至消除间隙子24处的亮点现象。
本实施例提供的定向扩散器3结构简单,装配时,操作人员将定向扩散器3放置于液晶透镜2上,易于安装。如图3所示,可以在第二基板22的表面涂设一层工业胶,工业胶将定向扩散器3固定于第二基板22上。在涂设工业胶时,应保证定向扩散器3的焦距大于或小于工业胶层的厚度,这样,保证液晶透镜2的出光位置不在定向扩散器3的焦点上。定向扩散器3对液晶透镜2的出光进行扩散,这样进一步消弱甚至消除间隙子24处出现亮点或彩点的现象。当然,也可以采用其他安装方式,如卡扣连接或螺钉连接,将定向扩散器3安装在液晶透镜2的出光侧。
本实施例提供的定向扩散器3可以是具有定向扩散功能的扩散片/板、光学扩散膜、透镜片、导光片/板、分光棱镜或其他光学器件,选择范围宽泛,容易获取,且产品成本较低。在2D/3D可切换立体显示装置增加定向扩散器3,不仅改善2D/3D可切换立体显示装置的观看效果,而且也不会导致2D/3D可切换立体显示装置的制造成本激增,提高2D/3D可切换立体显示装置的产品市场竞争力。当然,定向扩散器3也可以采用液晶透镜,通过调节定向扩散器3的可变焦距,实现对液晶透镜2的出光进行定向扩散。
当然,对于液晶透镜2内设置均匀喷洒的间隙子24来说,可以将定向扩散器3的结构简化为:在定向扩散器3与间隙子24相对应的位置处设有光扩散结构,而在定向扩散器3的其余位置可以采用与第二基板22折射率相同的材质制成,即光扩散结构仅对间隙子24的出光进行定向扩散,液晶透镜2的出光在经过定向扩散器3的其他位置时,不会发生光线扩散,直接进入观看者的眼中。这样,定向扩散器3不仅同样可以弱化间隙子24处出现亮点问题,而且结构更加简单。
作为上述实施例的进一步实施方式,如图11所示,2D/3D可切换立体显示装置处于3D显示时,本实施例提供的控制模块,还用于控制施加于第 一基板21B与第二基板22B之间的第二电压,第二电压产生电场强度不等的第二电场,在第二电场的作用下,液晶分子23B随电场强度的变化发生不同角度的偏转,使得第一基板21B和第二基板22B之间液晶层的折射率呈梯度分布,形成呈阵列设置的液晶透镜单元(图中未示出)。具体地,对各第一电极25B施加第五驱动电压,对第二电极28B施加第六驱动电压,第五驱动电压与第六驱动电压之间的差值即为第二电压,在第二电压的作用下产生电场强度不等的第二电场。可见,这里的第二电压并不是一个电压,而是相对于第一电压而言的,主要是为了与第一电压相区别。具体地,第二电压可以是如呈梯度分布的多个电压形成一组且一组一组呈阵列排布,以形成呈阵列设置的液晶透镜单元为准。
当2D/3D可切换立体显示装置处于3D显示时,第二电场驱动液晶分子23B发生不同角度的偏转,可让液晶分子23B与间隙子24B之间的折射率差在预设范围内,这样,液晶分子23B的折射率接近于间隙子24B的折射率,从而间隙子24B处的亮点现象较为微弱。但是由于光线经过液晶分子23B和间隙子24B时,仍然会有部分光线发生折射,导致人眼观看2D/3D可切换立体显示装置时,在间隙子24B处还会少量的亮点。而在液晶透镜2B的出光侧放置定向扩散器3B,增设的定向扩散器3B则会弱化或消除间隙子24B处的亮点现象,提升观看舒适度和观看效果,从而削弱人眼观看到的因光线的折射造成的在间隙子24B处出现亮点或彩点的问题。事实上,在第二电场驱动液晶分子23B发生不同角度的偏转时,可让呈阵列设置的液晶透镜单元中心靠近间隙子24B的位置甚至与其对应重合,则可让液晶分子23B的折射率非常接近于甚至等于间隙子24B的折射率,这样间隙子24B处的亮点现象更进一步弱化。再加定向扩散器3B的扩散后几乎可以消除因光线的折射造成的在间隙子24B处出现的亮点或彩点。
实际中,显示面板1B提供左右眼视图,定向扩散器3B放置在液晶透镜2B上,并与液晶透镜2B呈夹角设置。即液晶透镜2B发出的光线进入定向 扩散器3B中,定向扩散器3B对光线进行定向扩散,折射后的光线进入人眼后,仍是标准的左右视图,确保进入人眼后可以形成立体图像。控制模块可以根据2D/3D可切换立体显示装置处于不同的显示状态,控制第一基板21与第二基板22之间的第二电压,不会影响2D/3D可切换立体显示装置在3D状态时的正常显示。本公开实施例提供的定向扩散器3B与控制模块配合使用,进一步解决了2D/3D可切换立体显示装置在3D显示时,在间隙子24B处存在亮点或彩点现象,影响观看效果的问题。
作为上述实施例的进一步改进,如图2与图4所示,定向扩散器3与液晶透镜2呈夹角设置,夹角的角度设定使得液晶透镜2在3D显示时正常出光。定向扩散器3在一定夹角范围内,都可以对液晶透镜2发出的光进行定向扩散,同时,夹角角度的设定应确保2D-3D可切换立体显示装置处于3D显示状态时,液晶透镜2可以正常出光,定向扩散器3的出光不会影响3D观看效果。
作为上述实施例的进一步实施方式,如图2与图4所示,定向扩散器3与液晶透镜2之间的夹角为α,且60°≤α≤120°。定向扩散器3在一定角度范围内,都可以对液晶透镜2发出的光进行定向扩散,夹角α角度的设定应确保2D/3D可切换立体显示装置处于3D显示状态时,液晶透镜2可以正常出光,定向扩散器3不会影响3D观看效果。显示面板1提供左右眼视图,定向扩散器3放置在液晶透镜2上,并与液晶透镜2呈夹角设置。即液晶透镜2发出的光线进入定向扩散器3,定向扩散器3对光线进行折射,折射后的光线仍然在左右图各自的视区范围内,进入人眼后,仍是标准的左右视图,确保进入人眼后可以形成立体图像。
作为上述实施例的优选实施方式,如图2与图4所示,当定向扩散器3与液晶透镜2之间的夹角α=90°,即定向扩散器3的扩散方向与液晶透镜2的出光方向呈垂直,此时,定向扩散器3对液晶透镜2的出光定向扩散,确保定向扩散器3不会影响2D/3D可切换立体显示装置在3D显示状态下的观 看效果。
作为上述实施例的进一步改进,如图2、图3与图5所示,定向扩散器3包括具有折射率差的第一折射层31和第二折射层32,第二折射层32包覆于第一折射层31上,第一折射层31上设有多个阵列排布的扩散单元311,定向扩散器3的高度大于或等于扩散单元311的高度。由于第一折射层31与第二折射层32的折射率不同,因此,液晶透镜2发出的光经过第二基板22进入定向扩散器3中,光线在扩散单元311的边界处发生一次光的折射,光线由定向扩散器3射入空气中,在第二折射层32的边界处发生再次光的折射,即光线在定向扩散器中,经过两次折射后才进入观看者的眼中。因此,定向扩散器3对光进一步扩散,扩散后的光在整个视场空间范围内会变得更加分散,观看者看到的因液晶分子23与间隙子24由于存在折射率差产生的亮点现象,得到很好的改善。光线进入第一折射层31时,由于扩散单元311呈阵列排布,经扩散单元311折射后的光线出光更加均匀。如图5所示,定向扩散器3的高度等于扩散单元311的高度时,光线在扩散单元311的最高点处只进行一次光的折射,提高液晶透镜2的出光率。如图6所示,定向扩散器3a包括第一折射层31a和第二折射层32a,第一折射层31a包括呈阵列排布的扩散单元311a,当定向扩散器3a的高度大于扩散单元311a的高度时,光线进入扩散单元311a,在扩散单元311a的边界处发生光的折射,折射后的光线进入第二折射层32a中,在第二折射层32a的边界处再一次发生光的折射。如图2所示,由于定向扩散器3用于2D/3D可切换立体显示装置中,应确保定向扩散器3的高度适中,若定向扩散器3的高度过高,则会降低液晶透镜2的出光率,带来不利的影响。经试验证实,定向扩散器3的高度可以比扩散单元311的高度高出15~80mm,不仅进一步消除间隙子24处的亮点问题,而且不会影响液晶透镜2的出光。
作为上述实施例的进一步改进,如图2、图3与图5所示,液晶透镜单元在第二基板22上的出光点A在扩散单元311的非焦点处。如图2所示,为 进一步解决间隙子24处出现亮点的问题,在液晶透镜2上设置定向扩散器3,对液晶透镜2的出光进行扩散。具体地,定向扩散器3中的扩散单元311对液晶透镜2的出光进行扩散,通过设置扩散单元311的焦距,使得液晶透镜单元在第二基板22上的出光点A在扩散单元311的非焦点处,这样,液晶透镜单元发出的光经扩散单元311折射后,呈扩散状,扩散后的光在整个视场空间范围内会变得更加分散,观看者在观看2D/3D可切换立体显示装置时,弱化间隙子24处产生的亮点或彩点现象。
需要说明的是,图3仅为本实施例光路传播路线示意图,图中出光点A与扩散单元311之间的距离并不代表实际距离。
作为上述实施例的优选实施方式,如图2、图3与图6所示,扩散单元311的焦距为f,出光点A与扩散单元311之间的距离为l,且l≤0.5f或l>2f,由于2D/3D可切换立体显示装置对液晶透镜2的出光率的要求,扩散单元311的焦距不易太大,又由于定向扩散器3可以采用工业用胶固定安装在液晶透镜2上,扩散单元311的焦距f应大于或小于第二基板22与第一折射层31之间的距离,即扩散单元311的焦距f大于或小于胶层的厚度,确保液晶透镜2出光点A不在扩散单元311的焦点上。这样,液晶透镜2发出的光线进入定向扩散器3中,进一步扩散,使得扩散后的光线更加分散。
作为上述实施例的进一步实施方式,扩散单元311可以是凹透镜,也可以是凸透镜,定向扩散器3为两种折射率不同的透镜组合。如图5所示,扩散单元311的截面形状为弧形,液晶透镜2的出光进入定向扩散器3中,光线在扩散单元311的边界处进行折射。或者,如图2与图7所示,液晶透镜2的出光进入定向扩散器3b中,定向扩散器3b包括第一折射层31b和第二折射层32b,第一折射层31b包括呈阵列排布的扩散单元311b,扩散单元311b的截面形状为三角形,光线在扩散单元311b的边界处进行折射。或者,如图2与图8所示,液晶透镜2的出光进入定向扩散器3c中,定向扩散器3c包括第一折射层31c和第二折射层32c,第一折射层31c包括呈阵列排布的扩散单 元311c,扩散单元311c的截面形状为矩形,光线在扩散单元311c的边界处进行折射。当然,扩散单元311的截面形状也可以为其他规则或不规则形状,实现对光具有折射作用的扩散单元311都属于本公开的保护范围之内。应当毫无异议的确定,本实施例提供的扩散单元311截面形状,只适用于举例说明,规则的透镜更加容易加工。
作为上述实施例的优选实施方式,如图2与图3所示,扩散单元311的截面为半圆形,扩散单元311的形状规则,便于加工,且降低制造成本。同时,扩散单元311的直径d小于液晶透镜单元的直径,这样,每个液晶透镜单元的出光可以对应有多个扩散单元311,扩散单元311对光线进行折射,折射后的光线在视场空间范围内变得更加分散,进一步削弱间隙子24处的亮点现象。
作为上述实施例的优选实施方式,如图2与图3所示,扩散单元311的直径d为间隙子24直径的1/3~2/3倍,2D/3D可切换立体显示装置在2D显示时,控制模块控制施加于第一基板21与第二基板22之间的第一电压,第一电压产生电场强度相等的均匀第一电场,在均匀第一电场的作用下,液晶分子23与间隙子24之间的折射率差在预设范围内。虽然此时可以看作液晶分子23的折射率接近于甚至等于间隙子24的折射率,但是,显示面板1发出的光线经过间隙子24时,还是有部分光在间隙子24处会发生光线的折射,而设置的定向扩散器3对液晶透镜2的出光在扩散单元311处发生进一步折射,以减弱间隙子24的亮点现象,扩散单元311的直径d小于间隙子24直径,确保对液晶透镜2的出光进行扩散。
作为上述实施例的进一步实施方式,如图5所示,定向扩散器3的高度等于扩散单元311的高度,扩散单元311的高度
Figure PCTCN2015082042-appb-000002
以扩散单元311的截面为半圆形为例,扩散单元311的高度h是由扩散单元311的焦距f和直径d决定,根据几何关系,获得扩散单元311的高度h,根据高度h, 焦距f和直径d可以加工生成扩散单元311,扩散单元311结构简单,易于制造。
作为上述实施例的进一步实施方式,如图2与图5所示,第一折射层31的折射率为N1,第二折射层32的折射率为N2,第一折射层31与第二折射层32的折射率差Δn=|N1-N2|≥0.1。目前,选用的折射率有n=1.46、1.51、1.59、1.60。如图2与图9所示,选取第一折射层31′的折射率N1为1.59,第二折射层32′的折射率N2为1.60,获得第一折射层31′与第二折射层32′对液晶透镜2出光的折射光线示意图。如图2与图10所示,选取第一折射层31的折射率N1为1.46,第二折射层32的折射率N2为1.60,获得第一折射层31与第二折射层32对液晶透镜2出光的折射光线示意图。对两幅折射光线示意图,可以毫无异议的得出,在满足2D/3D可切换立体显示装置正常显示的前提下,第一折射层31与第二折射层32的折射率差Δn越大,定向扩散器3对光的扩散作用越好,折射后的光线在视场空间范围内变得更加分散,进一步削弱间隙子24处的亮点现象。
作为上述实施例的进一步实施方式,如图2与图5所示,第一折射层31为第一OCA光学胶或第一UV胶,第二折射层32为第二UV胶或第二OCA光学胶。制作定向扩散器时,备选方案有第一折射层31为第一OCA光学胶,第二折射层32为与第一折射层31折射率不同的第二OCA光学胶或第二UV胶,或者,第一折射层31为第一UV胶,第二折射层32为与第一折射层31折射率不同的第二OCA光学胶或第二UV胶。为保证定向扩散器3固定安装在液晶透镜2上,在定向扩散器3与液晶透镜2之间涂设有工业用胶,即通过胶层固定定向扩散器,由于OCA胶、UV胶具有很好的粘合性,粘接更加牢固,且不会影响液晶透镜2的出光。
OCA(Optically Clear Adhesive)是用于胶结透明光学元件(如镜头等)的特种粘胶剂,要求具有无色透明、光透过率在90%以上、胶结强度良好, 可在室温或中温下固化,且有固化收缩小等特点。
UV胶又称无影胶、光敏胶、紫外光固化胶,它是指必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。UV胶固化原理是UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联和接支化学反应,使粘合剂在数秒钟内由液态转化为固态。
作为上述实施例的进一步实施方式,如图2所示,第一OCA光学胶、第二OCA光学胶、第一UV胶、第二UV胶均包含有树脂。树脂作为常用的化学制品,取材容易,且树脂易于与第二基板22贴合,操作更加方便。
在本实施例中,第一OCA光学胶、第二OCA光学胶、第一UV胶、第二UV胶的主体都为树脂,第一OCA光学胶、第二OCA光学胶的主体可以是丙烯酸型树脂及不饱和聚酯、聚氨酯、环氧树脂,选用时,第一OCA光学胶的主体为不饱和聚酯,第二OCA光学胶的主体为聚氨酯,第一OCA胶与第二OCA胶的成分不同,因此,第一OCA胶与第二OCA胶的折射率不同。同样的,第一UV胶、第二UV胶的主体以环氧(甲基)丙烯酸酯最为理想,当然也可选用聚氨酯(甲基)丙烯酸酯、有机硅(甲基)丙烯酸酯。选用时,第一UV胶的主体为环氧(甲基)丙烯酸酯,第二UV胶的主体为聚氨酯(甲基)丙烯酸酯,第一UV胶与第二UV胶的成分不同,因此,第一UV胶与第二UV胶的折射率不同。且通过改变第一OCA光学胶、第二OCA光学胶、第一UV胶、第二UV胶的成分组成,确保第一OCA光学胶、第二OCA光学胶、第一UV胶、第二UV胶彼此之间的折射率都不相同,具有折射率差。
实施例二
如图12所示,本实施例提供的2D/3D可切换立体显示装置和实施例一提供的2D/3D可切换立体显示装置的结构基本相同,显示面板1C和液晶透镜2C,液晶透镜2C设置于显示面板1C的出光侧。液晶透镜2C包括相对设置的第一基板21C与第二基板22C,第二基板22C设置于第一基板21C的上 方,第一基板21C与第二基板22C之间设有液晶分子23C和间隙子24C。不同之处在于,第一基板21C与第一电极25C之间设有第三电极26C,第三电极26C与第一电极25C之间设有绝缘层27C,各第一电极25C设于绝缘层27C上。2D/3D可切换立体显示装置处于2D显示时,控制模块控制施加于第一基板21C与第二基板22C之间的第一电压,第一电压产生电场强度相等的均匀第一电场(图中未示出),均匀第一电场驱动液晶分子23C发生相同角度的偏转,使得液晶分子23C与间隙子24C之间的折射率差在预设范围内,满足预设范围的条件是间隙子24C的折射率与液晶分子23C折射率之间的差值小于0.1,此时,可以看作,液晶分子23C的折射率接近于甚至等于间隙子24C的折射率。
具体地,对第三电极26C施加第三驱动电压,对第二电极28C施加第四驱动电压,第三驱动电压与第四驱动电压之间的差值即为第一电压,第一电压在第一基板21C与第二基板22C之间形成电场强度相等的均匀第一电场,在均匀第一电场的作用下,所有的液晶分子23C的折射率相同,并满足液晶分子23C与间隙子24C之间的折射率差在预设范围内,此时,可以看作液晶分子23C的折射率接近于甚至等于间隙子24C的折射率。因此,当显示面板1C发出的光线经过液晶分子23C和间隙子24C时,不会产生光线的折射或者即使产生光线的折射也可以忽略不计,从而解决了现有的2D/3D可切换立体显示装置处于2D显示时,因液晶分子23C与间隙子24C的折射率不同,光线在经过间隙子24C时发生折射,造成人眼观看2D/3D可切换立体显示装置时,在间隙子24C处出现亮点的问题。在本实施例中,当2D/3D可切换立体显示装置用于2D显示时,对第一电极25C可以施加驱动电压,也可以不施加驱动电压,都不会影响2D/3D可切换立体显示装置的正常显示。
可选地,第三电极26C可以为面电极或条形电极。当第三电极26C与第一电极25C一样,都是条形电极时,二者的延伸方向可以平行。
当2D/3D可切换立体显示装置用于3D显示时,对多个第一电极25C施 加第七驱动电压,第二电极28C施加第八驱动电压,第三电极26C施加第九驱动电压,各个驱动电压之间相互配合,确保2D/3D可切换立体显示装置在3D显示时,液晶透镜2C呈现立体图像。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 2D/3D可切换立体显示装置,包括显示面板、设于所述显示面板出光侧的液晶透镜,所述液晶透镜包括相对设置的第一基板和第二基板、以及设置于所述第一基板与所述第二基板之间的液晶分子与间隙子,所述第一基板上设有多个第一电极,相邻两所述第一电极之间均间隔一定距离,所述第二基板上设有第二电极,其中,
    所述2D/3D可切换立体显示装置还包括控制模块,用于控制施加于所述第一基板与所述第二基板之间的第一电压,当所述2D/3D可切换立体显示装置处于2D显示时,所述第一电压用于产生电场强度相等的第一电场,所述第一电场驱动所述液晶分子偏转,以使所述液晶分子与所述间隙子之间的折射率差在预设范围内。
  2. 如权利要求1所述的2D/3D可切换立体显示装置,其中,所述控制模块控制施加于多个所述第一电极上的第一驱动电压以及所述第二电极上的第二驱动电压,所述第一驱动电压与所述第二驱动电压之间的差值即为所述第一电压。
  3. 如权利要求1所述的2D/3D可切换立体显示装置,还包括设置于所述第一基板与所述第一电极之间的第三电极,所述第三电极与所述第一电极之间设有绝缘层,各所述第一电极设置于所述绝缘层上,所述控制模块控制施加于所述第三电极上的第三驱动电压以及所述第二电极上的第四驱动电压,所述第三驱动电压与所述第四驱动电压之间的差值即为所述第一电压。
  4. 如权利要求1至3中任一项所述的2D/3D可切换立体显示装置,其中,所述第一电压大于所述液晶分子的阈值电压。
  5. 如权利要求4所述的2D/3D可切换立体显示装置,其中,所述液晶分子的阈值电压为vth,所述第一电压为u0,且1.5vth≤u0≤4vth
  6. 如权利要求5所述的2D/3D可切换立体显示装置,其中,所述控制模 块还用于控制施加于所述第一基板与所述第二基板之间的第二电压,当所述2D/3D可切换立体显示装置处于3D显示时,所述第二电压用于产生电场强度不等的第二电场,所述第二电场驱动所述液晶分子偏转形成阵列设置的液晶透镜单元。
  7. 如权利要求6所述的2D/3D可切换立体显示装置,还包括对所述液晶透镜的出光进行定向扩散的定向扩散器,所述定向扩散器安装在所述液晶透镜出光的一侧。
  8. 如权利要求7所述的2D/3D可切换立体显示装置,其中,所述的定向扩散器与所述液晶透镜呈夹角设置,所述夹角的角度设定使得所述液晶透镜在3D显示时正常出光。
  9. 如权利要求8所述的2D/3D可切换立体显示装置,其中,所述夹角为α,且60°≤α≤120°。
  10. 如权利要求9所述的2D/3D可切换立体显示装置,其中,所述夹角α=90°。
  11. 如权利要求7至10中任一项所述的2D/3D可切换立体显示装置,其中,所述定向扩散器包括具有折射率差的第一折射层和包覆于所述第一折射层上的第二折射层,所述第一折射层上设有多个呈阵列排布的扩散单元。
  12. 如权利要求11所述的2D/3D可切换立体显示装置,其中,各所述液晶透镜单元在所述第二基板上的出光点在所述扩散单元的非焦点处。
  13. 如权利要求12所述的2D/3D可切换立体显示装置,其中,所述扩散单元的焦距为f,所述出光点与所述扩散单元之间的距离为l,且l≤0.5f或l>2f。
  14. 如权利要求13所述的2D/3D可切换立体显示装置,其中,所述扩散单元的截面形状为半圆形,所述扩散单元的直径d小于所述液晶透镜单元的直径。
  15. 如权利要求14所述的2D/3D可切换立体显示装置,其中,所述扩散 单元的直径d为所述间隙子直径的1/3~2/3倍。
  16. 如权利要求14或15所述的2D/3D可切换立体显示装置,其中,所述定向扩散器的高度等于所述扩散单元的高度,所述扩散单元的高度
    Figure PCTCN2015082042-appb-100001
  17. 如权利要求16所述的2D/3D可切换立体显示装置,其中,所述第一折射层的折射率为N1,所述第二折射层的折射率为N2,所述第一折射层与所述第二折射层的折射率差Δn=|N1-N2|≥0.1。
  18. 如权利要求1所述的2D/3D可切换立体显示装置,其中,
    所述第二电极为条形电极。
  19. 如权利要求3所述的2D/3D可切换立体显示装置,其中,
    所述第三电极为面电极或条形电极。
PCT/CN2015/082042 2014-06-24 2015-06-23 2d/3d可切换立体显示装置 WO2015196959A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/849,686 US9798216B2 (en) 2014-06-24 2015-09-10 2D/3D switchable stereoscopic display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410289749.2 2014-06-24
CN201410289749.2A CN104090445B (zh) 2014-06-24 2014-06-24 2d/3d可切换立体显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/849,686 Continuation US9798216B2 (en) 2014-06-24 2015-09-10 2D/3D switchable stereoscopic display apparatus

Publications (1)

Publication Number Publication Date
WO2015196959A1 true WO2015196959A1 (zh) 2015-12-30

Family

ID=51638171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082042 WO2015196959A1 (zh) 2014-06-24 2015-06-23 2d/3d可切换立体显示装置

Country Status (2)

Country Link
CN (1) CN104090445B (zh)
WO (1) WO2015196959A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090445B (zh) * 2014-06-24 2016-02-17 深圳超多维光电子有限公司 2d/3d可切换立体显示装置
CN104460017B (zh) * 2014-12-30 2017-01-18 深圳市华星光电技术有限公司 3d显示装置
CN105629469B (zh) * 2016-01-12 2019-03-15 叠境数字科技(上海)有限公司 基于液晶透镜阵列的头戴式显示设备
CN110611040B (zh) 2019-08-21 2021-08-24 武汉华星光电半导体显示技术有限公司 一种封装结构、显示面板及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998873A (zh) * 2012-12-14 2013-03-27 友达光电股份有限公司 一种液晶透镜
CN103034012A (zh) * 2012-12-14 2013-04-10 京东方科技集团股份有限公司 3d显示模组、液晶透镜及其制备方法
US20130222742A1 (en) * 2012-02-28 2013-08-29 Masako Kashiwagi Optical device and image display device
CN103454825A (zh) * 2013-09-30 2013-12-18 深圳超多维光电子有限公司 液晶透镜及2d/3d图像显示装置
CN103676258A (zh) * 2012-09-05 2014-03-26 群康科技(深圳)有限公司 液晶显示面板
CN103728807A (zh) * 2013-11-28 2014-04-16 深圳市华星光电技术有限公司 显示装置及液晶盒透镜面板
CN103926748A (zh) * 2013-06-28 2014-07-16 天马微电子股份有限公司 液晶透镜及其制作方法、立体显示装置及其制作方法
CN104049372A (zh) * 2014-06-24 2014-09-17 深圳超多维光电子有限公司 2d/3d可切换显示装置
CN104090445A (zh) * 2014-06-24 2014-10-08 深圳超多维光电子有限公司 2d/3d可切换立体显示装置
CN104238164A (zh) * 2014-09-02 2014-12-24 深圳超多维光电子有限公司 立体显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1966643B1 (en) * 2005-12-20 2011-03-23 Koninklijke Philips Electronics N.V. Switchable autostereoscopic display device
JP2012003072A (ja) * 2010-06-17 2012-01-05 Sony Corp レンズアレイ素子、および画像表示装置
JP5596625B2 (ja) * 2011-06-07 2014-09-24 株式会社ジャパンディスプレイ 表示装置
JP5732348B2 (ja) * 2011-08-12 2015-06-10 株式会社ジャパンディスプレイ 表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222742A1 (en) * 2012-02-28 2013-08-29 Masako Kashiwagi Optical device and image display device
CN103676258A (zh) * 2012-09-05 2014-03-26 群康科技(深圳)有限公司 液晶显示面板
CN102998873A (zh) * 2012-12-14 2013-03-27 友达光电股份有限公司 一种液晶透镜
CN103034012A (zh) * 2012-12-14 2013-04-10 京东方科技集团股份有限公司 3d显示模组、液晶透镜及其制备方法
CN103926748A (zh) * 2013-06-28 2014-07-16 天马微电子股份有限公司 液晶透镜及其制作方法、立体显示装置及其制作方法
CN103454825A (zh) * 2013-09-30 2013-12-18 深圳超多维光电子有限公司 液晶透镜及2d/3d图像显示装置
CN103728807A (zh) * 2013-11-28 2014-04-16 深圳市华星光电技术有限公司 显示装置及液晶盒透镜面板
CN104049372A (zh) * 2014-06-24 2014-09-17 深圳超多维光电子有限公司 2d/3d可切换显示装置
CN104090445A (zh) * 2014-06-24 2014-10-08 深圳超多维光电子有限公司 2d/3d可切换立体显示装置
CN104238164A (zh) * 2014-09-02 2014-12-24 深圳超多维光电子有限公司 立体显示装置

Also Published As

Publication number Publication date
CN104090445B (zh) 2016-02-17
CN104090445A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
US9798216B2 (en) 2D/3D switchable stereoscopic display apparatus
TWI662302B (zh) Display device
JP6098064B2 (ja) 表示装置および照明装置
US7307779B1 (en) Transmissive E-paper display
CN105739164B (zh) 液晶显示模块和包括液晶显示模块的液晶显示器
US7821717B2 (en) Lenticular lens array element
US5600456A (en) Transmission liquid crystal display with a reduced dependency of a display quality upon a visual angle
KR101822706B1 (ko) 광학시트 및 이를 포함하는 광학표시장치
TWI598676B (zh) 顯示系統之螢幕組態
JP5948813B2 (ja) 照明装置および表示装置
WO2015196959A1 (zh) 2d/3d可切换立体显示装置
CN108139591B (zh) 三维显示面板、包括其的三维显示设备、及其制造方法
WO2013018560A1 (ja) 照明装置および表示装置
CN110554534B (zh) 侧缘型表面发光装置及液晶显示单元
JP6913441B2 (ja) 画像表示装置
US20170070727A1 (en) High Quality and Moire-Free 3D Stereoscopic Image Rendering System Using a Lenticular Lens
KR102015363B1 (ko) 백라이트 유닛 및 그것을 포함하는 표시 장치
CN105652454B (zh) 一种3d显示层及其3d显示结构
CN109752778B (zh) 光学膜以及包括光学膜的显示装置
US9454071B2 (en) Projection screen and projection system thereof
CN104849797A (zh) 导向膜及应用该导向膜的led显示屏
KR101813753B1 (ko) 액정표시장치
JP7048045B2 (ja) 裸眼3d用液晶表示モジュール
JP4929636B2 (ja) 液晶表示装置
CN104049372B (zh) 2d/3d可切换显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15810943

Country of ref document: EP

Kind code of ref document: A1