WO2015196888A1 - 连续侧吹炼锡装置 - Google Patents

连续侧吹炼锡装置 Download PDF

Info

Publication number
WO2015196888A1
WO2015196888A1 PCT/CN2015/079919 CN2015079919W WO2015196888A1 WO 2015196888 A1 WO2015196888 A1 WO 2015196888A1 CN 2015079919 W CN2015079919 W CN 2015079919W WO 2015196888 A1 WO2015196888 A1 WO 2015196888A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
smelting
tin
reduction
side blowing
Prior art date
Application number
PCT/CN2015/079919
Other languages
English (en)
French (fr)
Inventor
李东波
黎敏
王忠实
张振民
胡丕成
许良
冯双杰
姚霞
曹珂菲
邓兆磊
陈学刚
陈霞
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420348149.4U external-priority patent/CN203960305U/zh
Priority claimed from CN201410293173.7A external-priority patent/CN104073653B/zh
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2015196888A1 publication Critical patent/WO2015196888A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/02Obtaining tin by dry processes

Definitions

  • the invention relates to a continuous side blowing tinning device.
  • the technology of tin refining includes tin concentrate reverberation furnace smelting process, electric furnace smelting process, Ausmelt smelting process, blast furnace smelting process, short kiln smelting process, and Caldo furnace smelting process.
  • the short kiln smelting process has been eliminated due to high investment, management and maintenance costs, large amount of flue gas, and low direct yield.
  • the structure of the Caldo furnace is complicated, the maintenance cost is high, the furnace life is short, and the refractory material is consumed.
  • Reverberatory furnaces are rapidly being replaced by enhanced smelting methods due to their low production efficiency, low thermal efficiency, high fuel consumption, and high labor intensity.
  • an object of the present invention is to provide a continuous side blowing tin apparatus having the advantages of low energy consumption, good sealing performance, high environmental protection, simple structure, and easy operation.
  • a continuous side blowing tinning apparatus includes: a reaction furnace having a furnace chamber therein, a lower portion of the furnace chamber having a slag and a tin liquid; a molten pool, a partition wall is disposed in the furnace chamber, and the partition wall extends into the molten pool to divide the furnace chamber into a melting zone and a reduction zone, and the molten pool of the melting zone and the reduction zone
  • the molten pool is connected to the wall of the melting zone, and the wall of the melting zone is provided with a feeding port and a tin discharging port, and a wall of the reducing zone is provided with a reducing agent inlet port and a slag discharging port, and the top wall of the furnace cavity is provided a vent opening communicating with each of the smelting zone and the reduction zone; a smelting zone side blowing lance, the smelting zone side blasting gun being disposed on a sidewall of the smelting zone for
  • a continuous side blowing tin cleaning apparatus can divide the furnace chamber into the melting zone and the reduction zone by disposing the partition wall in the furnace cavity so as to be individually described Sintering and reduction can be realized in the continuous side blowing tinning device, that is, continuous tinning is realized in a single closed continuous side blowing tinning device, so the sealing performance is good, High environmental protection. Therefore, not only the enthalpy of the slag can be fully utilized, but also less fuel is consumed to replenish the heat when the slag-rich slag is reduced, and the process of smelting tin can be greatly shortened, and the continuous side blowing tin process can be simplified.
  • the fuel blown to the inside of the reduction zone and the second oxygen-containing gas and the carbonaceous reducing agent added to the top of the furnace directly reduce the crude tin, and the tin content in the slag is further reduced, and then the fuming is performed.
  • the vulcanization volatilization of the furnace is further depleted.
  • the partition wall extends into the molten pool, that is, the partition wall extends below the liquid level L1 of the slag, the gas in the smelting zone can be separated from the gas in the reducing zone.
  • the flue gas in the smelting zone and the flue gas in the reduction zone are not mixed, and may be separately treated or combined into a waste heat boiler.
  • the continuous side blowing tin-smelting device has the advantages of low energy consumption, good sealing performance, high environmental protection, simple structure, and easy operation.
  • continuous side blowing tin apparatus may further have the following additional technical features:
  • a smelting zone lance is provided on a sidewall of the smelting zone, and a reduction zone lance is provided on a sidewall of the reduction zone, wherein the smelting zone side blowing lance is disposed in the
  • the spray zone of the reduction zone is disposed in the lance of the smelting zone and is disposed in the lance of the reduction zone.
  • the tin-discharging opening is provided on a side wall of the melting zone and away from the partition wall, and the slag opening is provided on an end wall of the reduction zone.
  • the smelting zone feed port is disposed on a top wall of the smelting zone
  • the reducing agent inlet is disposed on a top wall of the reduction zone
  • the venting port comprises a smelting outlet of the smelting zone connected to the smelting zone and a venting port of the reducing zone communicating with the reducing zone, wherein the smelting zone outlet is provided on a top wall of the smelting zone, and the venting zone of the reducing zone is provided On the top wall of the reduction zone.
  • a secondary air vent is provided on a side wall of the reduction zone.
  • the tin discharge port is provided with a first ventilating chamber for preventing diffusion of tin vapor
  • the slag tapping port is provided with a second ventilating chamber for preventing diffusion of tin vapor
  • the continuous side blowing tinning apparatus further includes a waste heat boiler, and the waste heat boiler is connected to the smoke outlet.
  • the continuous side blowing tinning apparatus further comprises a dust collector, the dust collector being connected to the waste heat boiler.
  • the reaction furnace is a horizontal furnace.
  • the smelting zone side blowing lances are plurality, and the plurality of smelting zone side blowing lances are disposed on the side wall of the smelting zone at intervals along the length direction of the reaction furnace.
  • the reduction zone side blowing lances are plural, and a plurality of the reduction zone side blowing lances are spaced apart from each other on the side wall of the reduction zone along the longitudinal direction of the reaction furnace.
  • FIG. 1 is a cross-sectional view of a continuous side blowing tin cleaning apparatus in accordance with an embodiment of the present invention
  • FIG. 2 is a flow chart of a continuous lead smelting process in accordance with an embodiment of the present invention.
  • top and side blowing In the field of metallurgical technology, the difference between top and side blowing is not only the change in the position of the gun, but the reaction between the two is completely different smelting equipment and processes.
  • the first is bottom-blow steel, but the later developed top-blown steel is a technological invention, which is completely different from the bottom blowing. This is not simply changing the spray gun from the bottom. It is a top blow, but it embodies different methods and conditions. It is a completely different type of furnace and process.
  • top-blowing technology In the field of metallurgical technology, the use of top-blowing technology or side-blowing technology results in different kinetic conditions, melt agitation conditions and reaction mechanism (reaction sequence) of the melt in the furnace.
  • the existing tin smelting techniques are based on the processes of oxidative smelting and reduction smelting.
  • what equipment is specifically used in practice to achieve oxidative smelting and reduction smelting is the core issue in engineering applications.
  • Different choices of equipment determine the different technical routes (ie, processes) for achieving oxidative smelting and reduction smelting processes.
  • the technical route will determine the reliability, feasibility, and advancement of industrial indicators.
  • the choice of the blowing position ie the installation position of the spray gun
  • the structure of the smelting equipment furnace type
  • the structure and arrangement of the spray gun are completely different.
  • each metal element has unique physical and chemical properties. Therefore, the installation of a metal device and process without creative labor (modification) cannot be used to smelt another metal.
  • the equipment and processes for smelting tin are completely different from the equipment and processes for smelting lead. That is to say, without creative labor (modification), it is impossible to smelt tin by means of a device and process for smelting lead.
  • a continuous side blowing tinning apparatus 10 includes a reaction furnace 101, a smelting zone side blowing lance 103, and a reduction zone side blowing lance 104.
  • the reaction furnace 101 has a furnace chamber 1011.
  • the lower portion of the furnace chamber 1011 has a molten pool for slag and tin liquid.
  • the furnace chamber 1011 is provided with a partition wall 102 and the partition wall 102 extends into the molten pool to divide the furnace chamber 1011 into The melting zone 10111 and the reduction zone 10112, the molten pool of the melting zone 10111 is in communication with the molten pool of the reduction zone 10112.
  • the melting zone 10111 is provided with a melting zone feed port 10113 and a tin-discharging port 10114.
  • the reducing zone 10112 is provided with a reducing agent inlet 10115 and a slag.
  • the mouth 10119 is provided with a smoke outlet communicating with each of the melting zone 10111 and the reduction zone 10112 on the top wall of the furnace chamber 1011.
  • the smelting zone side blowing lance 103 is disposed on the side wall of the smelting zone 10111 to blow the first oxygen-containing gas and the first fuel side into the portion of the molten pool located in the smelting zone 10111, and the reduction zone side blowing lance 104 is disposed in the reduction zone.
  • the sidewalls of 10112 are configured to blow the second oxygen-containing gas and the second fuel side into a portion of the molten pool located within the reduction zone 10112.
  • a continuous side blowing tin process carried out using the continuous side blowing tinning apparatus 10 according to an embodiment of the present invention is described below with reference to FIG. As shown in FIG. 2, the continuous side blowing tin process according to an embodiment of the present invention includes the following steps:
  • a first oxygen-containing gas and a first fuel are injected from a side of the smelting zone 10111 to a portion of the molten pool located in the smelting zone 10111 to smelt the tin-containing material and obtain a first coarse Tin and rich tin slag;
  • the second oxygen-containing gas and the second fuel are injected from the side of the reduction zone 10112 to the portion of the molten pool located in the reduction zone 10112 by the reduction zone side blowing lance 104 to flow from the smelting zone 10111 to the reduction zone 10112.
  • the tin-rich slag is reduced and the second crude tin and slag are obtained, and the second crude tin flows from the reduction zone 10112 to the melting zone 10111;
  • the slag is intermittently discharged from the slag discharge port.
  • the continuous side blowing tinning apparatus 10 can partition the furnace chamber 1011 into the melting zone 10111 and the reduction zone 10112 by providing the partition wall 102 in the furnace cavity 1011 so that the tin can be blown on a single continuous side.
  • Melting and reduction can be realized in 10, that is, continuous smelting is realized in a single closed continuous side blowing tin device 10, so the sealing performance is good and the environmental protection is high. Therefore, not only the enthalpy of the slag can be fully utilized, but also less fuel is consumed to replenish the heat when the slag-rich slag is reduced, and the process of smelting tin can be greatly shortened, and the continuous side blowing tin process can be simplified.
  • the fuel blown to the inside of the reduction zone 10112 and the second oxygen-containing gas and the carbonaceous reducing agent added to the top of the furnace directly reduce the crude tin, and the tin content in the slag is further reduced, and then the flue gas furnace is sent. Vulcanization volatilization is further depleted.
  • the partition wall 102 extends into the molten pool, that is, the partition wall 102 extends below the liquid surface L1 of the slag, the gas in the melting zone 10111 can be separated from the gas in the reduction zone 10112, and the melting zone 10111 The flue gas and the flue gas of the reduction zone 10112 are not mixed, and smelting and reduction are continuously smelted. .
  • the continuous side blowing tinning apparatus 10 has the advantages of low energy consumption, good sealing performance, high environmental protection, simple structure, and easy operation.
  • the continuous side blowing tin process according to the embodiment of the invention has the advantages of simple process, low energy consumption, high environmental protection, high degree of automation and the like.
  • the molten pool includes a portion located in the melting zone 10111 and a portion located in the reduction zone 10112.
  • the lower surface of the partition wall 102 is spaced apart from the bottom wall of the furnace chamber 1011. And a communication passage 10117 is formed between the lower surface of the partition wall 102 and the bottom wall of the furnace chamber 1011.
  • the partition wall 102 is coupled to the bottom wall of the furnace chamber 1011, and the partition wall 102 is provided with a communication passage 10117.
  • the tin-rich slag may flow from the smelting zone 10111 to the reduction zone 10112 through the communication passage 10117, and the second coarse tin may flow from the reduction zone 10112 to the smelting zone 10111 through the communication passage 10117.
  • L1 is the liquid surface of the slag
  • L2 is the liquid surface of the crude tin.
  • the portion of the molten pool located in the melting zone 10111 accommodates the tin-rich slag
  • the portion of the molten pool located in the reduction zone 10112 accommodates the reduced slag (the tin content of the slag is less than or equal to 3-5 wt%) %).
  • the reaction furnace 101 may be a horizontal furnace. Specifically, the reaction furnace 101 may be a long oval fixed horizontal furnace.
  • the bottom wall of the furnace chamber 1011 may have a concave curved shape.
  • the smoke outlet may include a smelting zone outlet 10118 and a reduction zone outlet 10116.
  • the smelting zone feed port 10113 and the smelting zone vent opening 10118 may be disposed on the top wall of the smelting zone 10111, and the reducing agent inlet port 10115 and the reduction zone vent port 10116 may be disposed on the top wall of the reduction zone 10112.
  • the tin-out port 10114 may be disposed on the sidewall of the melting zone 10111 and the tin-discharging port 10114 may be remote from the partition wall 102, and the slag tapping port may be disposed on the end wall of the reduction zone 10112.
  • the structure of the continuous side blowing tinning apparatus 10 can be made more reasonable.
  • the tin port 10114 can be adjacent to the bottom wall of the reaction furnace 101.
  • a smelting zone lance can be provided on the side wall of the smelting zone 10111, and a reduction zone lance can be provided on the side wall of the reduction zone 10112.
  • the smelting zone side blowing lance 103 may be disposed in the smelting zone lance and the reduction zone side blasting gun 104 may be disposed in the reduction zone lance.
  • the end of the smelting zone side blowing lance 103 may be located in the blasting port of the smelting zone, and the end of the smelting zone side blasting gun 103 may also protrude from the blasting zone of the smelting zone, that is, the smelting zone side blasting gun 103
  • the ends can extend into the furnace cavity 1011.
  • the end of the reduction zone side blowing lance 104 may be located in the lance nozzle of the reduction zone, and the end of the reduction zone side lance 104 may also extend out of the reduction zone lance, that is, the end of the reduction zone side lance 104 may extend. It enters the furnace chamber 1011.
  • the smelting zone side blowing lance 103 can spray the first oxygen-containing gas and the first fuel onto the liquid surface L2 of the rough tin of the smelting zone 10111 and the slag-rich slag. Below the liquid level L1. In other words, the smelting zone side blowing lance 103 can inject the first oxygen-containing gas and the first fuel into the lead-rich slag in the smelting zone 10111.
  • the reduction zone side blowing lance 104 can spray the second oxygen-containing gas and the second fuel onto the liquid surface L2 of the crude tin of the reduction zone 10112 and below the liquid level L1 of the slag.
  • the reduction zone side blowing lance 104 can inject the second oxygen-containing gas and the second fuel into the slag in the reduction zone 10112, so that in the reduction zone 10112, the second oxygen-containing gas injected by the reduction zone side lance 104 is injected.
  • the body and the second fuel do not repeatedly oxidize the crude lead that has been reduced.
  • the smelting zone side blowing lance 103 may be plural, and the plurality of smelting zone side blasting lances 103 may be disposed at the smelting zone 10111 at intervals along the length direction of the reaction furnace 101.
  • the reduction zone side blowing lances 104 may be plural, and the plurality of reduction zone side blowing lances 104 may be disposed on the side walls of the reduction zone 10112 spaced apart along the length direction of the reaction furnace 101.
  • the longitudinal direction of the reaction furnace 101 is as indicated by an arrow A in FIG.
  • a tin-containing material (for example, tin concentrate) is added from the smelting zone feed port 10113 to the smelting zone 10111, and the first oxygen-containing gas injected from the smelting zone side blowing lance 103 and the first fuel are smelted to obtain a coarse tin. And rich tin slag.
  • the tin-rich slag in the smelting zone 10111 flows from the communication passage 10117 into the reduction zone 10112.
  • the reducing agent is added from the reducing agent inlet 10115 to the reducing zone 10112 to reduce the tin in the tin-rich slag, and the second oxygen-containing gas and the second are injected into the slag in the reducing zone 10112 through the reducing zone side blowing lance 104.
  • the fuel is used to maintain and increase the temperature of the reduction zone 10112.
  • a part of the fuel injected by the reduction zone side blowing lance 104 can also be used as a reducing agent to simultaneously reduce the tin-rich slag together with the added reducing agent.
  • the volume of oxygen of the first oxygen-containing gas is from 24% to 60%. That is, the first oxygen-containing gas has an oxygen content of 24% to 60% by volume. This makes it possible to smelt the tin-containing material better.
  • the volume concentration of the oxygen of the second oxygen-containing gas is from 30% to 100%, that is, the oxygen content of the second oxygen-containing gas is from 30% to 100%. This makes it possible to better reduce the tin-rich slag.
  • the reducing agent may be granulated coal. It is generally believed by those skilled in the art that the use of metallurgical coke as a reducing agent can effectively reduce the tin-rich slag. After intensive research and creative labor, the inventor found that the reduction of tin-rich slag by using granulated coal can further reduce the tin content in the slag compared with the reduction of rich tin slag by metallurgical coke (the slag content The amount of tin is 3-5 wt% or less, so that the direct yield and recovery of tin can be further improved. Therefore, by using granular coal as a reducing agent, technical bias is overcome and costs can be reduced.
  • the particle size of the granular coal may be less than or equal to a predetermined value.
  • the first fuel may be selected from at least one of pulverized coal, natural gas, coke oven gas, and producer gas
  • the second fuel may be selected from at least one of pulverized coal, natural gas, coke oven gas, and producer gas.
  • a flux to the smelting zone and the reduction zone, which may be limestone, quartz or a mixture of quartz and lime.
  • the tin-rich slag is reduced to produce a second coarse tin and slag, and the second coarse tin may flow into the portion of the molten pool located in the smelting zone 10111 through the communication passage 10117.
  • the first rough tin and the second coarse tin may be discharged from the furnace opening 10114 from the furnace opening 10114.
  • the slag generated in the reduction zone 10112 i.e., the slag produced by the reduction of the tin-rich slag in the reduction zone 10112
  • the slag produced in the reduction zone 10112 can be discharged once every 1.5 hours to 2 hours.
  • the continuous side blowing tinning apparatus 10 may also include a waste heat boiler.
  • the waste heat boiler can And connecting to the outlet, so as to recover heat in the flue gas generated by the smelting and reduce the heat in the generated flue gas by using the waste heat boiler.
  • the continuous side blowing tinning apparatus 10 further includes a dust collector (for example, a bag dust collector), and the dust collector may be connected to the waste heat boiler to recover tin contained in the smoke generated by the smelting by the dust collector. Smoke and tin-containing soot in the flue gas produced by reduction.
  • a dust collector for example, a bag dust collector
  • the continuous side blowing tinning apparatus 10 may further include a cooler that may be coupled to the waste heat boiler and the dust collector may be coupled to the cooler.
  • tin-containing soot can be added to the melting zone 10111.
  • the tin-containing soot is not generated, the tin-containing material and the flux can be added to the melting zone 10111.
  • the tin-containing soot, the tin-containing material, and the flux may be added to the melting zone 10111.
  • the continuous side blowing tinning apparatus 10 can achieve continuous tinning and periodic slagging.
  • a secondary tuyere may be disposed on the side wall of the reduction zone 10112, and air is transported from the secondary tuyere to a portion of the molten pool located in the reduction zone 10112 to combust combustibles in the flue gas produced by the reduction. This can improve environmental performance and safety.
  • a first ventilating chamber for preventing diffusion of tin vapor is provided at the discharge port 10114, and a second ventilating chamber for preventing diffusion of tin vapor is provided at the slag opening.
  • tin concentrate smelting process in a closed reaction furnace 101, to avoid the escape of smoke, tin concentrate or other tin raw materials with the granulation directly into the furnace, the material preparation process is simple, the production process The tin soot produced in the middle is sealed and transported and returned to the ingredients, effectively preventing the dispersion of the tin dust; the flue gas produced by the smelting is sent to the desulfurization system after the waste heat is recovered and collected.
  • the crude tin produced in the smelting section and the reduction section of the continuous side blowing furnace is discharged from the tin discharge port, and the produced slag is discharged from the slag port of the reduction section, and a ventilating chamber is provided at the tin discharge port and the slag discharge port to prevent the diffusion of the tin vapor.
  • High recovery rate In the continuous side blowing tin furnace, due to the full utilization of the slag enthalpy, the reduction section of the continuous side blowing tin furnace will consume less fuel to replenish heat, and the smelting process uses industrial oxygen. And the use of crushed coal as a reducing agent effectively reduces the amount of smoke and smoke, reduces the tin content in the slag, and improves the direct yield and recovery of tin.
  • the continuous side blowing lead method is the method of all the tin making methods, including the material preparation system, the shortest process, simple process equipment and low investment.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

公开了一种连续侧吹炼锡装置(10)。连续侧吹炼锡装置(10)包括:反应炉(101),反应炉(101)内具有炉腔(1011),炉腔(1011)的下部具有用于容纳渣和锡液的熔池,炉腔(1011)内设有隔墙(102)且隔墙(102)伸入到该熔池内以便将炉腔(1011)分成熔炼区(10111)和还原区(10112),熔炼区(10111)的熔池与还原区(10112)的熔池连通,熔炼区(10111)的壁上设有熔炼区加料口(10113)和放锡口(10114),还原区(10112)的壁上设有还原剂加入口(10115)和放渣口(10119),炉腔(1011)的顶壁上设有与熔炼区(10111)和还原区(10112)中的每一个均连通的出烟口;熔炼区侧吹喷枪(103),熔炼区侧吹喷枪(103)设在熔炼区(10111)的侧壁上;和还原区侧吹喷枪(104),还原区侧吹喷枪(104)设在还原区(10112)的侧壁上。

Description

连续侧吹炼锡装置 技术领域
本发明涉及一种连续侧吹炼锡装置。
背景技术
炼锡的技术有锡精矿反射炉熔炼工艺、电炉熔炼工艺、Ausmelt熔炼工艺、鼓风炉熔炼工艺、短窑熔炼工艺、卡尔多炉炼锡工艺。短窑熔炼工艺因投资、管理和维修费用高、烟气量大,直收率低早已被淘汰。卡尔多炉设备结构复杂,维修费用高,炉寿短,耐火材料消耗大。反射炉由于其生产效率低、热效率低、燃料消耗大、劳动强度大等缺点,正迅速被强化熔炼方法所取代。电炉炼锡的缺点电耗太高,只适合处理低铁物料;鼓风炉熔炼工艺要求物料需要制粒或制团,消耗昂贵的冶金焦,炉内气氛难于控制,锡的挥发率高等缺点,已不再使用。Ausmelt熔炼属强化熔池熔炼技术,分段作业,渣含锡可降至较低水平,但投资大,维护费用高,且操作复杂。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种具有能耗低、密封性能好、环保性高、结构简单、易操作等优点的连续侧吹炼锡装置。
根据本发明实施例的连续侧吹炼锡装置,所述连续侧吹炼锡装置包括:反应炉,所述反应炉内具有炉腔,所述炉腔的下部具有用于容纳渣和锡液的熔池,所述炉腔内设有隔墙且所述隔墙伸入到所述熔池内以便将所述炉腔分成熔炼区和还原区,所述熔炼区的熔池与所述还原区的熔池连通,所述熔炼区的壁上设有熔炼区加料口和放锡口,所述还原区的壁上设有还原剂加入口和放渣口,所述炉腔的顶壁上设有与所述熔炼区和所述还原区中的每一个均连通的出烟口;熔炼区侧吹喷枪,所述熔炼区侧吹喷枪设在所述熔炼区的侧壁上以便将第一含氧气体和第一燃料侧吹到所述熔池的位于所述熔炼区的部分内;和还原区侧吹喷枪,所述还原区侧吹喷枪设在所述还原区的侧壁上以便将第二含氧气体和第二燃料侧吹到所述熔池的位于所述还原区的部分内。
根据本发明实施例的连续侧吹炼锡装置通过在所述炉腔内设置所述隔墙,从而可以将所述炉腔分隔为所述熔炼区和所述还原区,以便可以在单个所述连续侧吹炼锡装置内能够实现熔炼和还原,即在单个封闭的连续侧吹炼锡装置内实现了连续炼锡,因此密封性能好, 环保性高。由此不仅可以充分地利用炉渣的热焓,在还原所述富锡渣时只需要消耗较少的燃料来补充热量,而且可以极大地缩短冶炼锡的流程,简化连续侧吹炼锡工艺。
而且,由于采取侧吹,因此向所述还原区内侧吹的燃料和第二含氧气体和炉顶加入的碳质还原剂直接还原出粗锡,渣中含锡量进一步降低,然后送烟化炉硫化挥发进一步贫化处理。此外,由于所述隔墙伸入到所述熔池内,即所述隔墙伸入到渣的液面L1以下,因此可以使所述熔炼区内的气体与所述还原区内的气体隔开,所述熔炼区的烟气和所述还原区的烟气不会混合,可以分别单独处理,也可合并进入余热锅炉。
因此,根据本发明实施例的连续侧吹炼锡装置具有能耗低、密封性能好、环保性高、结构简单、易操作等优点。
另外,根据本发明上述实施例的连续侧吹炼锡装置还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述熔炼区的侧壁上设有熔炼区喷枪口,所述还原区的侧壁上设有还原区喷枪口,其中所述熔炼区侧吹喷枪设在所述熔炼区喷枪口内且所述还原区侧吹喷枪设在所述还原区喷枪口内。
根据本发明的一个实施例,所述放锡口设在所述熔炼区的侧壁上且远离所述隔墙,所述放渣口设在所述还原区的端壁上。
根据本发明的一个实施例,所述熔炼区加料口设在所述熔炼区的顶壁上,所述还原剂加入口设在所述还原区的顶壁上,所述出烟口包括与所述熔炼区连通的熔炼区出烟口和与所述还原区连通的还原区出烟口,所述熔炼区出烟口设在所述熔炼区的顶壁上,所述还原区出烟口设在所述还原区的顶壁上。
根据本发明的一个实施例,所述还原区的侧壁上设有二次风口。
根据本发明的一个实施例,所述放锡口处设有用于防止锡蒸气扩散的第一通风室,所述放渣口处设有用于防止锡蒸气扩散的第二通风室。
根据本发明的一个实施例,所述连续侧吹炼锡装置还包括余热锅炉,所述余热锅炉与所述出烟口相连。
根据本发明的一个实施例,所述连续侧吹炼锡装置还包括收尘器,所述收尘器与所述余热锅炉相连。
根据本发明的一个实施例,所述反应炉为卧式炉。
根据本发明的一个实施例,所述熔炼区侧吹喷枪为多个,多个所述熔炼区侧吹喷枪沿所述反应炉的长度方向间隔开地设在所述熔炼区的侧壁上,所述还原区侧吹喷枪为多个,多个所述还原区侧吹喷枪沿所述反应炉的长度方向间隔开地设在所述还原区的侧壁上。
附图说明
图1是根据本发明实施例的连续侧吹炼锡装置的剖视图;
图2是根据本发明实施例的连续炼铅工艺的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在冶金技术领域,顶吹和侧吹的区别不仅仅是喷枪位置的变化,二者反应的是完全不同的冶炼设备和工艺。例如,在炼钢技术领域,最初的都是底吹炼钢,但是后来发展的顶吹炼钢是开创性的发明,与底吹是完全不同的技术,这不是简单地将喷枪从底吹变成顶吹,而是体现了不同的方法和条件,是完全不同的两类炉型和工艺。
在冶金技术领域,采用顶吹技术还是采用侧吹技术,会导致炉内熔体的动力学条件、熔体搅拌状态和反应机理(反应顺序)不同。
更具体而言,现有的锡冶炼技术都是基于氧化熔炼、还原熔炼的过程。但是,在实践中具体采用什么设备来实现氧化熔炼、还原熔炼是工程化应用中最核心的问题。对设备的不同选择决定了实现氧化熔炼、还原熔炼过程的不同技术路线(即工艺),技术路线将决定工业化的可靠性、可实施性和技术指标的先进性。而喷吹位置的选择(即喷枪的安装位置)则是设备选择、设备设计中最基本、最核心的问题之一。当选定了侧吹或顶吹,其冶炼设备(炉型)结构形式、喷枪结构、布置是完全不同的。
对于本领域技术人员来说,一种基本成型的冶炼装置无论存在什么技术问题,无论对其进行何种改进,这种改进都不可能改变其喷吹位置的选择。因此,对于本领域技术人员来说,喷枪位置的改变并不是一个常规的、显而易见的选择。
而且,每一个金属元素都具有独特的物理性质和化学性质。因此,冶炼一种金属的装置和工艺不经过创造性的劳动(改动),不能用于冶炼另一种金属。例如,冶炼锡的装置和工艺完全不同于冶炼铅的装置和工艺。也就是说,不经过创造性的劳动(改动),无法利用冶炼铅的装置和工艺冶炼锡。
下面参考图1描述根据本发明实施例的连续侧吹炼锡装置10。如图1所示,根据本发明实施例的连续侧吹炼锡装置10包括反应炉101、熔炼区侧吹喷枪103和还原区侧吹喷枪104。
反应炉101内具有炉腔1011,炉腔1011的下部具有用于容纳渣和锡液的熔池,炉腔1011内设有隔墙102且隔墙102伸入到熔池内以便将炉腔1011分成熔炼区10111和还原区10112,熔炼区10111的熔池与还原区10112的熔池连通。熔炼区10111的壁上设有熔炼区加料口10113和放锡口10114,还原区10112的壁上设有还原剂加入口10115和放渣 口10119,炉腔1011的顶壁上设有与熔炼区10111和还原区10112中的每一个均连通的出烟口。
熔炼区侧吹喷枪103设在熔炼区10111的侧壁上以便将第一含氧气体和第一燃料侧吹到熔池的位于熔炼区10111的部分内,还原区侧吹喷枪104设在还原区10112的侧壁上以便将第二含氧气体和第二燃料侧吹到熔池的位于还原区10112的部分内。
下面参考图2描述利用根据本发明实施例的连续侧吹炼锡装置10实施的连续侧吹炼锡工艺。如图2所示,根据本发明实施例的连续侧吹炼锡工艺包括以下步骤:
将含锡物料加入到熔炼区10111内;
利用熔炼区侧吹喷枪103从熔炼区10111的侧面向所述熔池的位于熔炼区10111的部分内喷入第一含氧气体和第一燃料,以便对含锡物料进行熔炼并得到第一粗锡和富锡渣;
将还原剂加入到还原区10112内;
利用还原区侧吹喷枪104从还原区10112的侧面向所述熔池的位于还原区10112的部分内喷入第二含氧气体和第二燃料,以便对从熔炼区10111流到还原区10112的富锡渣进行还原并得到第二粗锡和渣,所述第二粗锡从还原区10112流到熔炼区10111;
从放锡口10114排出所述第一粗锡和所述第二粗锡;和
从所述放渣口间断地排出所述渣。
根据本发明实施例的连续侧吹炼锡装置10通过在炉腔1011内设置隔墙102,从而可以将炉腔1011分隔为熔炼区10111和还原区10112,以便可以在单个连续侧吹炼锡装置10内能够实现熔炼和还原,即在单个封闭的连续侧吹炼锡装置10内实现了连续炼锡,因此密封性能好,环保性高。由此不仅可以充分地利用炉渣的热焓,在还原所述富锡渣时只需要消耗较少的燃料来补充热量,而且可以极大地缩短冶炼锡的流程,简化连续侧吹炼锡工艺。
而且,由于采取侧吹,因此向还原区10112内侧吹的燃料和第二含氧气体以及炉顶加入的碳质还原剂直接还原出粗锡,渣中含锡量进一步降低,然后送烟化炉硫化挥发进一步贫化处理。此外,由于隔墙102伸入到所述熔池内,即隔墙102伸入到渣的液面L1以下,因此可以使熔炼区10111内的气体与还原区10112内的气体隔开,熔炼区10111的烟气和还原区10112的烟气不会混合,实现熔炼和还原连续熔炼。。
因此,根据本发明实施例的连续侧吹炼锡装置10具有能耗低、密封性能好、环保性高、结构简单、易操作等优点。
根据本发明实施例的连续侧吹炼锡工艺具有工艺简单、能耗低、环保性高、自动化程度高等优点。
具体而言,所述熔池包括位于熔炼区10111的部分和位于还原区10112的部分。
如图1所示,在本发明的一个实施例中,隔墙102的下表面与炉腔1011的底壁间隔开, 且隔墙102的下表面与炉腔1011的底壁之间形成连通通道10117。
在本发明的另一个实施例中,隔墙102与炉腔1011的底壁相连,隔墙102上设有连通通道10117。
所述富锡渣可以通过连通通道10117从熔炼区10111流到还原区10112内,所述第二粗锡可以通过连通通道10117从还原区10112流到熔炼区10111内。
如图1所示,在所述熔池内,L1为渣的液面,L2为粗锡的液面。所述熔池的位于熔炼区10111内的部分容纳所述富锡渣,所述熔池的位于还原区10112内的部分容纳被还原后的渣(所述渣的含锡量小于等于3-5wt%)。
如图1所示,在本发明的一个具体示例中,反应炉101可以是卧式炉。具体地,反应炉101可以是长椭形的固定卧式炉。炉腔1011的底壁可以为下凹的弧形。
所述出烟口可以包括熔炼区出烟口10118和还原区出烟口10116。熔炼区加料口10113和熔炼区出烟口10118都可以设在熔炼区10111的顶壁上,还原剂加入口10115和还原区出烟口10116都可以设在还原区10112的顶壁上。由此可以使连续侧吹炼锡装置10的结构更加合理。
放锡口10114可以设在熔炼区10111的侧壁上且放锡口10114可以远离隔墙102,所述放渣口可以设在还原区10112的端壁上。由此可以使连续侧吹炼锡装置10的结构更加合理。有利地,放锡口10114可以邻近反应炉101的底壁。
熔炼区10111的侧壁上可以设有熔炼区喷枪口,还原区10112的侧壁上可以设有还原区喷枪口。其中,熔炼区侧吹喷枪103可以设在所述熔炼区喷枪口内且所述还原区侧吹喷枪104可以设在所述还原区喷枪口内。
具体而言,熔炼区侧吹喷枪103的端部可以位于所述熔炼区喷枪口内,熔炼区侧吹喷枪103的端部也可以伸出所述熔炼区喷枪口,即熔炼区侧吹喷枪103的端部可以伸入到炉腔1011内。还原区侧吹喷枪104的端部可以位于所述还原区喷枪口内,还原区侧吹喷枪104的端部也可以伸出所述还原区喷枪口,即还原区侧吹喷枪104的端部可以伸入到炉腔1011内。
如图1所示,更具体而言,熔炼区侧吹喷枪103可以将第一含氧气体和第一燃料喷入到熔炼区10111的粗锡的液面L2之上以及所述富锡渣的液面L1之下。换言之,熔炼区侧吹喷枪103可以将第一含氧气体和第一燃料喷入到熔炼区10111内的富铅渣内。
还原区侧吹喷枪104可以将第二含氧气体和第二燃料喷入到还原区10112的粗锡的液面L2之上以及渣的液面L1之下。换言之,还原区侧吹喷枪104可以将第二含氧气体和第二燃料喷入到还原区10112内的渣内,从而在还原区10112内,还原区侧吹喷枪104喷入的第二含氧气体和第二燃料不会反复氧化已经还原出来的粗铅。
如图1所示,在本发明的一个示例中,熔炼区侧吹喷枪103可以是多个,多个熔炼区侧吹喷枪103可以沿反应炉101的长度方向间隔开地设在熔炼区10111的侧壁上,还原区侧吹喷枪104可以是多个,多个还原区侧吹喷枪104可以沿反应炉101的长度方向间隔开地设在还原区10112的侧壁上。由此可以使连续侧吹炼锡装置10的结构更加合理。其中,反应炉101的长度方向如图1中的箭头A所示。
含锡物料(例如锡精矿)从熔炼区加料口10113加入到熔炼区10111内,通过熔炼区侧吹喷枪103喷入的第一含氧气体和第一燃料对含锡物料进行熔炼得到粗锡和富锡渣。熔炼区10111内的富锡渣从连通通道10117流入到还原区10112内。从还原剂加入口10115向还原区10112内加入还原剂对富锡渣中的锡进行还原,并且通过还原区侧吹喷枪104向还原区10112内的渣内喷入第二含氧气体和第二燃料,以便维持和提高还原区10112的温度。
需要理解的是,通过控制喷入量,还原区侧吹喷枪104喷入的部分燃料也可以作为还原剂与加入的还原剂一起同时还原富锡渣。
所述第一含氧气体的氧气的体积浓度为24%-60%。也就是说,所述第一含氧气体的含氧量为24v%-60v%。由此可以更好地对含锡物料进行熔炼。
所述第二含氧气体的氧气的体积浓度为30%-100%,即所述第二含氧气体的含氧量为30v%-100v%。由此可以更好地对富锡渣进行还原。
所述还原剂可以是粒煤。本领域技术人员普遍认为:利用冶金焦作为还原剂可以有效地对富锡渣进行还原。发明人经过深入的研究和创造性的劳动后发现:与利用冶金焦对富锡渣进行还原相比,利用粒煤对富锡渣进行还原,可以进一步降低渣中的锡含量(所述渣的含锡量小于等于3-5wt%),从而可以进一步提高锡的直收率和回收率。因此,通过利用粒煤作为还原剂,克服了技术偏见,而且可以降低成本。
有利地,粒煤的粒径可以小于等于预定值。
所述第一燃料可以选自粉煤、天然气、焦炉煤气和发生炉煤气中的至少一种,所述第二燃料可以选自粉煤、天然气、焦炉煤气和发生炉煤气中的至少一种。
还可以向所述熔炼区和所述还原区加入熔剂,所述熔剂可以是石灰石、石英石或者石英石与石灰的混合物。
还原所述富锡渣产生第二粗锡和渣,所述第二粗锡可以通过连通通道10117流入到所述熔池的位于熔炼区10111的部分内。所述第一粗锡和所述第二粗锡可以从放锡口10114排出炉腔1011。还原区10112内产生的渣(即所述富锡渣在还原区10112内被还原后产生的渣)从所述放渣口定期排出。还原区10112内产生的渣可以每1.5小时-2小时排放一次。
在本发明的一些示例中,连续侧吹炼锡装置10还可以包括余热锅炉。所述余热锅炉可 以与所述出烟口相连,以便利用所述余热锅炉回收熔炼产生的烟气中的热量以及还原产生的烟气中的热量。
连续侧吹炼锡装置10还包括收尘器(例如布袋收尘器),所述收尘器可以与所述余热锅炉相连,以便利用所述收尘器回收熔炼产生的烟气中的含锡烟尘以及还原产生的烟气中的含锡烟尘。
连续侧吹炼锡装置10可以进一步包括冷却器,所述冷却器可以与所述余热锅炉相连且所述收尘器可以与所述冷却器相连。
其中,含锡烟尘可以加入到熔炼区10111内。在开始启动连续侧吹炼锡装置10时,由于没有产生含锡烟尘,因此可以将含锡物料和熔剂加入到熔炼区10111内。待产生含锡烟尘后,可以将含锡烟尘、含锡物料和熔剂加入到熔炼区10111内。
根据本发明实施例的连续侧吹炼锡装置10可以实现连续炼锡和定期排渣。
还原区10112的侧壁上可以设有二次风口,从所述二次风口向所述熔池的位于还原区10112的部分的上方输送空气,以便燃烧还原产生的烟气中的可燃物。由此可以提高环保性能和安全性能。
放锡口10114处设有用于防止锡蒸气扩散的第一通风室,放渣口处设有用于防止锡蒸气扩散的第二通风室。
根据本发明实施例的连续侧吹炼锡装置10和连续侧吹炼锡工艺的技术优势在于:
1、能耗低:在一个炉子里面实现了从锡物料到粗锡的熔炼过程,熔炼过程采用工业氧气(氧气体积浓度30%-100%),烟气量少,烟尘率低,采用碎煤(粒煤)作为还原剂,不需要相对昂贵的冶金焦,同时回收熔炼段和还原段烟气中的余热。
2、环保好:锡精矿熔炼过程在一台密闭的反应炉101中进行,避免了烟气外逸,锡精矿或其它锡原料配合制粒后直接入炉,物料制备过程简单,生产过程中产出的锡烟尘均密封输送并返回配料,有效防止了锡尘的弥散;熔炼产出的烟气经余热回收和收尘后,送脱硫系统。连续侧吹炉熔炼段和还原段产出的粗锡从锡排放口排出,产出的炉渣从还原段炉渣口排出,同时在锡排放口和放渣口设通风室,防止锡蒸气的扩散。基本解决了锡冶炼烟气、锡尘污染的问题。
3、回收率高:在连续侧吹炼锡炉中,由于充分的利用了炉渣的热焓,在连续侧吹炼锡炉的还原段将消耗较少的燃料进行补热,熔炼过程采用工业氧气,和使用碎煤作为还原剂有效的降低了烟气量和烟尘率、降低了炉渣中的锡含量,提高了锡的直收率和回收率。
4、连续侧吹炼铅法是所有炼锡方法中,包括物料制备系统,流程最短的工艺,工艺装置简单、投资省。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、 “厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种连续侧吹炼锡装置,其特征在于,包括:
    反应炉,所述反应炉内具有炉腔,所述炉腔的下部具有用于容纳渣和锡液的熔池,所述炉腔内设有隔墙且所述隔墙伸入到所述熔池内以便将所述炉腔分成熔炼区和还原区,所述熔炼区的熔池与所述还原区的熔池连通,所述熔炼区的壁上设有熔炼区加料口和放锡口,所述还原区的壁上设有还原剂加入口和放渣口,所述炉腔的顶壁上设有与所述熔炼区和所述还原区中的每一个均连通的出烟口;
    熔炼区侧吹喷枪,所述熔炼区侧吹喷枪设在所述熔炼区的侧壁上以便将第一含氧气体和第一燃料侧吹到所述熔池的位于所述熔炼区的部分内;和
    还原区侧吹喷枪,所述还原区侧吹喷枪设在所述还原区的侧壁上以便将第二含氧气体和第二燃料侧吹到所述熔池的位于所述还原区的部分内。
  2. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,所述熔炼区的侧壁上设有熔炼区喷枪口,所述还原区的侧壁上设有还原区喷枪口,其中所述熔炼区侧吹喷枪设在所述熔炼区喷枪口内且所述还原区侧吹喷枪设在所述还原区喷枪口内。
  3. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,所述放锡口设在所述熔炼区的侧壁上且远离所述隔墙,所述放渣口设在所述还原区的端壁上。
  4. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,所述熔炼区加料口设在所述熔炼区的顶壁上,所述还原剂加入口设在所述还原区的顶壁上,所述出烟口包括与所述熔炼区连通的熔炼区出烟口和与所述还原区连通的还原区出烟口,所述熔炼区出烟口设在所述熔炼区的顶壁上,所述还原区出烟口设在所述还原区的顶壁上。
  5. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,所述还原区的侧壁上设有二次风口。
  6. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,所述放锡口处设有用于防止锡蒸气扩散的第一通风室,所述放渣口处设有用于防止锡蒸气扩散的第二通风室。
  7. 根据权利要求1所述的连续侧吹炼锡装置,其特征在于,还包括余热锅炉,所述余热锅炉与所述出烟口相连。
  8. 根据权利要求7所述的连续侧吹炼锡装置,其特征在于,还包括收尘器,所述收尘器与所述余热锅炉相连。
  9. 根据权利要求1-8中任一项所述的连续侧吹炼锡装置,其特征在于,所述反应炉为卧式炉。
  10. 根据权利要求9所述的连续侧吹炼锡装置,其特征在于,所述熔炼区侧吹喷枪为多个,多个所述熔炼区侧吹喷枪沿所述反应炉的长度方向间隔开地设在所述熔炼区的侧壁上,所述还原区侧吹喷枪为多个,多个所述还原区侧吹喷枪沿所述反应炉的长度方向间隔开地设在所述还原区的侧壁上。
PCT/CN2015/079919 2014-06-25 2015-05-27 连续侧吹炼锡装置 WO2015196888A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410293173.7 2014-06-25
CN201420348149.4U CN203960305U (zh) 2014-06-25 2014-06-25 连续侧吹炼锡装置
CN201420348149.4 2014-06-25
CN201410293173.7A CN104073653B (zh) 2014-06-25 2014-06-25 连续侧吹炼锡装置

Publications (1)

Publication Number Publication Date
WO2015196888A1 true WO2015196888A1 (zh) 2015-12-30

Family

ID=54936729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079919 WO2015196888A1 (zh) 2014-06-25 2015-05-27 连续侧吹炼锡装置

Country Status (1)

Country Link
WO (1) WO2015196888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746175A (zh) * 2020-12-29 2021-05-04 浙江遂昌汇金有色金属有限公司 锡铅渣可循环高纯炼锡装置及其工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861818A (zh) * 2006-06-12 2006-11-15 彭明求 侧吹沉没熔池熔炼法
CN102011014A (zh) * 2010-11-21 2011-04-13 中国恩菲工程技术有限公司 连续炼铅装置及连续炼铅工艺
CN102433450A (zh) * 2011-12-28 2012-05-02 个旧市富祥工贸有限责任公司 富氧侧吹还原熔池熔炼炉及其富锡复杂物料炼锡方法
CN104073655A (zh) * 2014-06-25 2014-10-01 中国恩菲工程技术有限公司 连续侧吹炼锡工艺
CN104073653A (zh) * 2014-06-25 2014-10-01 中国恩菲工程技术有限公司 连续侧吹炼锡装置
CN203960305U (zh) * 2014-06-25 2014-11-26 中国恩菲工程技术有限公司 连续侧吹炼锡装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861818A (zh) * 2006-06-12 2006-11-15 彭明求 侧吹沉没熔池熔炼法
CN102011014A (zh) * 2010-11-21 2011-04-13 中国恩菲工程技术有限公司 连续炼铅装置及连续炼铅工艺
CN102433450A (zh) * 2011-12-28 2012-05-02 个旧市富祥工贸有限责任公司 富氧侧吹还原熔池熔炼炉及其富锡复杂物料炼锡方法
CN104073655A (zh) * 2014-06-25 2014-10-01 中国恩菲工程技术有限公司 连续侧吹炼锡工艺
CN104073653A (zh) * 2014-06-25 2014-10-01 中国恩菲工程技术有限公司 连续侧吹炼锡装置
CN203960305U (zh) * 2014-06-25 2014-11-26 中国恩菲工程技术有限公司 连续侧吹炼锡装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746175A (zh) * 2020-12-29 2021-05-04 浙江遂昌汇金有色金属有限公司 锡铅渣可循环高纯炼锡装置及其工艺

Similar Documents

Publication Publication Date Title
WO2015196887A1 (zh) 连续侧吹炼锡工艺
CN102011014B (zh) 连续炼铅装置及连续炼铅工艺
CN102978405B (zh) 一种电子废料的侧吹连续冶炼装置
CN101880774B (zh) 采用底吹熔池熔炼处理除铜渣产出粗铅与铅冰铜的工艺及其装置
CN102796875B (zh) 锌浸出渣处理装置和处理工艺
CN101705367A (zh) 富氧侧吹熔池熔炼法炼铜镍工艺
CN105238938A (zh) 一种铜精矿连续生产阳极铜的三连炉工艺
WO2014117455A1 (zh) 锑的冶炼装置和冶炼方法
CN103397129A (zh) 一种熔融还原炼铁炉及其炼铁工艺
CN104073653B (zh) 连续侧吹炼锡装置
CN201762422U (zh) 双室氧气侧吹连续炼铅炉
CN204039474U (zh) 底吹炼锡装置
CN111440957A (zh) 处理锌精矿和锌渣的系统及方法
CN110195165A (zh) 一种铜冶炼工艺
CN101922861A (zh) 冶炼熔炉
CN104060104B (zh) 底吹炼锡工艺
CN104928493A (zh) 采用富氧旋涡熔池熔炼炉处理二次含铜杂料的方法
CN106996695A (zh) 一种冶金炉
CN203960305U (zh) 连续侧吹炼锡装置
WO2015196889A1 (zh) 侧吹炼锡装置
CN104073652A (zh) 侧吹炼锡装置
WO2015196888A1 (zh) 连续侧吹炼锡装置
CN201440036U (zh) 热法炼磷设备
CN204625746U (zh) 采用喷吹竖炉生产镍铁水的装置
CN106957983A (zh) 冶炼含铁物料的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811464

Country of ref document: EP

Kind code of ref document: A1