WO2015196644A1 - 一种基站优化方法及装置、计算机可读存储介质 - Google Patents

一种基站优化方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2015196644A1
WO2015196644A1 PCT/CN2014/088688 CN2014088688W WO2015196644A1 WO 2015196644 A1 WO2015196644 A1 WO 2015196644A1 CN 2014088688 W CN2014088688 W CN 2014088688W WO 2015196644 A1 WO2015196644 A1 WO 2015196644A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna
network
transmit power
ommb
Prior art date
Application number
PCT/CN2014/088688
Other languages
English (en)
French (fr)
Inventor
成军平
�田宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196644A1 publication Critical patent/WO2015196644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a base station optimization method and apparatus, and a computer readable storage medium.
  • the mainstream 2G, 3G, and 4G base stations adopt the BBU+RRU+ ESC antenna architecture, and adjust the cell coverage radius by adjusting the downtilt angle of the ESC antenna.
  • the BBU represents the baseband processing unit (Building Base band Unite).
  • RRU stands for Radio Remote Unit.
  • the active antenna is a new architecture in the form of a next-generation base station.
  • FIG. 1 a schematic diagram of a base station architecture evolution according to the related art
  • FIG. 1 (A) shows a first-generation base station architecture diagram
  • (B) shows a second generation.
  • (C) shows a schematic diagram of a next-generation base station architecture.
  • the AAS (Adaptive Antenna System) antenna can change the antenna tilt and the width of the lobes by adjusting the amplitude and phase of the feed network.
  • the coverage radius of the base station and the improvement of the performance of the user at the edge of the cell are realized by modifying the transmission power of the base station and the downtilt angle of the antenna through the OMMB (Operation and Maintenance Center).
  • the current network optimization method is to modify the RRU transmit power or the downtilt angle, and then measure the performance of the cell edge user.
  • This network optimization workload is very large; for multiple sites overlapping overlapping areas, if still With this method of modifying a parameter in OMMB and then testing the performance of the cell edge, this workload will be very large. This way of optimizing the cell network in one direction, the performance improvement is not very obvious.
  • the embodiments of the present invention provide a base station optimization method and apparatus, and a computer readable storage medium.
  • an embodiment of the present invention provides a method for optimizing a base station, where the method includes: adjusting a transmit power of a base station and an antenna tilt angle; and receiving cell performance parameters corresponding to different transmit powers and antenna tilt angles. Determining a correspondence between a base station transmit power, an antenna tilt angle, and a cell performance parameter; determining a base station transmit power and an antenna tilt angle according to the correspondence.
  • adjusting the transmit power and the antenna tilt of the base station includes: if the base station is an ASIG (Antenna Interface Standards Group) antenna base station, adjusting the transmit power of the base station and the antenna tilt angle ⁇ ; if the base station is AAS The antenna base station adjusts the base station's transmit power, the up and down tilt angles ⁇ , and the tilt lobe width
  • the cell performance parameters corresponding to different transmit powers and antenna tilt angles are received, including: importing network rule network optimization modules in the operation and maintenance center OMMB and the road test tool respectively; the OMMB network rule network optimization module acquires different The cell performance parameter corresponding to the transmit power and the antenna tilt angle; and the network specification network optimization module of the OMMB receives the cell performance parameter fed back by the network rule network optimization module of the test tool.
  • determining the transmit power and the antenna tilt of the base station according to the corresponding relationship includes: determining, according to a preset threshold, an optimal cell performance parameter in each cell performance parameter; and searching for the optimal cell according to the corresponding relationship
  • the transmit power corresponding to the performance parameter and the antenna tilt angle; the transmit power and the antenna tilt angle are used as the final determined base station transmit power and antenna tilt angle.
  • the cell performance parameter includes: a cell parameter, a traffic size, and an access success rate.
  • the network planning network optimization module of the OMMB obtains different transmission powers and antennas. a cell performance parameter corresponding to the dip angle; and a cell performance parameter fed back by the network planning network optimization module receiving the road test tool, including: the network planning network optimization module of the road test tool accessing the cell, measuring the cell parameter; and the cell parameter Feedback to the network planning network optimization module of the OMMB; wherein the cell parameters include: a reference signal receiving quality RSRQ, a reference signal receiving power RSRP; and the OMMB network planning network optimization module fills the road testing tool
  • the network planning network optimization module of the road test tool tests the flow of the packet; and feeds the measured traffic volume to the network planning network optimization module of the OMMB; the network planning network optimization module of the road test tool makes the OMMB
  • the OMMB network planning network optimization module tests the packet flow rate and records the traffic size; the OMMB network planning network optimization module records the access success rate of the road test tool.
  • an embodiment of the present invention further provides a base station optimization apparatus, where the apparatus includes: an adjustment module configured to adjust a base station transmit power and an antenna tilt angle; and a parameter receiving module configured to receive a cell performance parameter corresponding to different transmit powers and antenna tilt angles; the relationship determining module is configured to determine a correspondence between a base station transmit power, an antenna tilt angle, and a cell performance parameter; and the processing module is configured to determine the base station according to the corresponding relationship Transmit power and antenna tilt.
  • the adjusting module includes: a first adjusting unit, configured to adjust a base station transmit power and an antenna tilt angle ⁇ when the base station is an electrical antenna ASIG antenna base station; and the second adjusting unit is configured to be In the case where the base station is an active antenna AAS antenna base station, adjusting the base station's transmit power, the uplink and downlink tilt angles ⁇ , and the tilt lobe width
  • the parameter receiving module is further configured to import a network planning network optimization module in the operation and maintenance center OMMB and the road test tool respectively; the network planning network optimization module based on the OMMB and the network planning network optimization module of the road test tool, Receiving performance parameters of cells corresponding to different transmit powers and antenna tilt angles.
  • the processing module includes: an optimal parameter determining unit, configured to determine an optimal cell performance parameter in each cell performance parameter based on a preset threshold; the searching unit is configured to search according to the corresponding relationship Transmit power and antenna corresponding to the optimal cell performance parameter And a determining unit configured to use the transmit power and the antenna tilt angle as a final determined base station transmit power and an antenna tilt angle.
  • the embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a base station optimization method according to an embodiment of the present invention.
  • the embodiment of the present invention optimizes the performance of the LTE single-station single cell, the GSM & LTE common antenna, and the LTE multi-cell edge by introducing a new network planning network optimization module and a test strategy in the OMMB and the road test tool.
  • the purpose is to eliminate the need for human intervention, reduce network optimization costs, and maintain the interests of operators.
  • FIG. 1 is a schematic diagram of a base station architecture evolution according to the related art
  • FIG. 2 is a flowchart of a method for optimizing a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a network architecture of an LTE mobile communication system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a network planning network optimization module according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a base station optimization apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention provides a base station optimization method and apparatus.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the embodiment of the present invention adds an "automatic network planning network optimization" mode to the OMMB and the road test tool.
  • Block through the interaction of OMMB, base station, road test tool and drive test software, automatically complete the optimization of the network cell.
  • FIG. 2 is a flowchart of a base station optimization method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps (step S202-step S208):
  • Step S202 adjusting the transmit power of the base station and the antenna tilt angle.
  • the base station is an ASIG antenna base station, adjust the base station transmit power and antenna tilt angle ⁇ ; if the base station is an AAS antenna base station, adjust the base station transmit power, the uplink and downlink tilt angles ⁇ , and the tilt lobe width
  • Step S204 Receive cell performance parameters corresponding to different transmit powers and antenna tilt angles.
  • the foregoing cell performance parameter includes at least: a cell parameter, a traffic size, and an access success rate.
  • Step S206 determining a correspondence between the transmit power of the base station, the antenna tilt angle, and the cell performance parameter.
  • Step S208 determining a transmit power and an antenna tilt angle of the base station according to the foregoing correspondence.
  • the optimal performance parameters can be selected by setting threshold values. Specifically, the optimal cell performance parameter is determined in each cell performance parameter based on the preset threshold value, and the transmit power and the antenna tilt angle corresponding to the optimal cell performance parameter are searched according to the corresponding relationship; the transmit power and the antenna tilt angle are taken as The final determined base station transmit power and antenna tilt. The base station performs optimal setting according to the transmit power corresponding to the optimal performance parameter and the antenna tilt angle.
  • step S204 the method includes: introducing a network planning network optimization module in the operation and maintenance center (OMMB) and the drive test tool respectively; the network planning network optimization module of the OMMB acquires different performance parameters of the cell corresponding to the transmit power and the antenna tilt angle; The OMMB network planning network optimization module receives the cell performance parameter fed back by the network planning network optimization module of the road test tool.
  • OMMB operation and maintenance center
  • the OMMB-based network planning network optimization module and the network planning network optimization module of the road test tool are connected.
  • the performance parameters of the cell corresponding to different transmit powers and antenna tilt angles are included, including the following steps:
  • the network planning network optimization module of the road test tool accesses the cell, measures the cell parameters, and feeds the cell parameters to the OMMB network planning network optimization module; wherein the cell parameters include at least: reference signal receiving quality (RSRQ), reference signal receiving power (RSRP);
  • RSRQ reference signal receiving quality
  • RSRP reference signal receiving power
  • OMMB's network planning network optimization module fills the road test tool, and the network test network test module of the road test tool tests the flow of the packet; and feeds the measured traffic size to the OMMB network rule network optimization module;
  • the network planning network optimization module of the road test tool fills the OMMB, and the OMMB network planning network optimization module tests the flow of the packet and records the traffic size;
  • the OMMB network planning network optimization module records the access success rate of the road test tool.
  • the network planning network optimization module and the testing strategy are introduced in the OMMB and the road test tool, thereby solving the problem that the optimization workload of the one-way base station network in the related technology is very large, and achieving the purpose of automatically optimizing the network.
  • the LTE mobile communication system mainly includes: a core network (CN), an access network (E_UTRAN), and an operation and maintenance center (OMMB).
  • the access network is composed of a base station (a node of LTE), and the base station includes a BBU (baseband processing unit), an RRU (radio frequency remote unit), and an antenna (radiation matrix).
  • the core network and the eNodeB are connected through the S1 (interface between the core network and the access network) interface of the BBU.
  • the BBU and the RRU are connected by optical fibers.
  • the base station controls the downtilt angle of the antenna through the AISG cable; for the AAS antenna, the base station changes the antenna tilt and beam by changing its own feed network.
  • the OMMB is an operation and maintenance center, and can send configuration parameters to the base station and monitor configuration parameters of the base station.
  • An automated network planning network optimization module is introduced in the OMMB, which can communicate with the base station and the road test tool and record relevant information.
  • the road test tool is a kind of instrument that can measure the performance of the base station; the automatic network rule network optimization module is introduced in the road test tool, and the module can communicate with the automatic network rule network optimization module of the OMMB through the base station, and transmit relevant information of the self measurement. Give OMMB's network planning network optimization module.
  • FIG. 4 is a flowchart of a network planning network optimization module according to an embodiment of the present invention. As shown in FIG. 4, the flow includes the following steps (step S402-step S420):
  • Step S402 starting the network planning network optimization module of the OMMB, setting the transmitting power P1 and the antenna tilt angle ⁇ 1 of the base station through the OMMB;
  • P1 and ⁇ 1 are obtained by empirical values, and different values are different in different scenarios, for example, the urban dense level P1 setting 40dBm, ⁇ 1 is set to 4 degrees.
  • Step S404 the network planning network optimization module of the road test tool is started; the road test tool accesses the cell corresponding to the base station, and the road test tool measures the received cell parameters (eg, RSRQ, RSRP, RS power, etc.), and the measurements are The cell information is fed back to the OMMB network planning network optimization module through signaling and recorded.
  • the road test tool accesses the cell corresponding to the base station, and the road test tool measures the received cell parameters (eg, RSRQ, RSRP, RS power, etc.), and the measurements are The cell information is fed back to the OMMB network planning network optimization module through signaling and recorded.
  • the received cell parameters eg, RSRQ, RSRP, RS power, etc.
  • step S406 the OMMB network planning network optimization module starts the ftp command to fill the road test tool, and the road test tool tests the traffic, and feeds the traffic size to the OMMB network rule network optimization module and records it.
  • Step S408 the road test tool network rule network optimization module starts the ftp command to fill the OMMB network rule network optimization module, and the OMMB network rule network optimization module tests the traffic and records it.
  • step S410 the OMMB network planning network optimization module releases the road test tool, and then allows the road test tool to access multiple times, and records the success rate of the access test tool access.
  • step S412 parameters such as the received power level, the traffic size, and the successful access rate of the small edge of the cell are obtained in the case of the base station's transmit power P1 and the antenna tilt angle ⁇ 1.
  • step S414 the network planning network optimization module of the OMMB sets the base station antenna tilt angle ⁇ 2 through the OMMB. And repeat the above steps.
  • Step S416 the network planning network optimization module of the OMMB sets the base station antenna power P2 through the OMMB. And the above steps are repeated; thus, a performance table of the cell edge P and the antenna tilt angle ⁇ cell edge as shown in Table 1 is obtained.
  • Step S418, according to the obtained table, select the inclination angle, the lobe width and the cell transmission power corresponding to the optimal performance by using a preset threshold. Further, base station optimization operations are performed accordingly. If the preset threshold is reached, step S420 is performed, and if not, step S406 is performed.
  • the preset threshold value may be a certain value of the successful access rate, that is, the cell performance parameter whose successful access rate exceeds the preset threshold value, and is determined as the optimal performance parameter.
  • the preset threshold may also be a certain value of the UE test amount, or a certain value of the downlink ftp/uplink ftp, and the like. It can be determined by actual operation conditions.
  • step S420 the process ends.
  • the invention introduces a new network planning network optimization module and a test strategy in the OMMB and the road test tool, and optimizes the performance of the LTE single station single cell, the GSM & LTE common antenna cell and the LTE multi-cell edge, thereby achieving the purpose of automatically optimizing the network. No human intervention is required, which reduces network optimization costs and safeguards the interests of operators.
  • Step 1 Start the network planning network optimization module of the OMMB, set the reference signal (RS) power of the base station to P1 through the OMMB, and set the antenna tilt angle ⁇ 1 to the ASIG antenna base station; for the AAS antenna, set the uplink and downlink tilt angle ⁇ 1 and Inclined lobe width
  • RS reference signal
  • Step 2 Start the network planning network optimization module of the road test tool; the road test tool accesses the cell, and the road test tool measures the received cell parameters (such as RSRQ, RSRP, RS power, etc.), and the measured cell information is obtained. The signaling is fed back to the OMMB network planning network optimization module and recorded.
  • the road test tool accesses the cell, and the road test tool measures the received cell parameters (such as RSRQ, RSRP, RS power, etc.), and the measured cell information is obtained.
  • the signaling is fed back to the OMMB network planning network optimization module and recorded.
  • Step 3 The OMMB network planning network optimization module starts the ftp command to fill the road test tool, the road test tool tests the traffic, and feeds the traffic size to the OMMB network rule network optimization module and records it.
  • Step 4 The road test tool network rule network optimization module starts the ftp command to fill the OMMB network rule network optimization module, and the OMMB network rule network optimization module tests its traffic and records it.
  • Step 5 The OMMB network planning network optimization module releases the road test tool, and then allows the road test tool to access multiple times, and records the success rate of the access test tool access.
  • Step 6 Obtain the parameters such as the received power, the traffic size, and the successful access rate of the small edge of the cell in the case of the base station's transmit power P1 and the antenna tilt angle ⁇ 1.
  • Step 7 Start the OMMB network planning network optimization module, set the base station antenna inclination angle ⁇ 2 and OMMB through OMMB. And repeat the above steps.
  • Step 8 Start the OMMB network planning network optimization module, and set the base station antenna tilt angle P2 through the OMMB. And repeat the above steps; thus, the base station power P and the antenna tilt angle ⁇ can be obtained.
  • a performance table of the constituent cell edges Thereby optimizing edge performance.
  • GSM&LTE common antenna base station single sector optimization case
  • Step 1 Start the OMMB network planning network optimization module, set the reference signal RS power of the LTE base station to PLTE1 through the OMMB, set the GSM base station transmission power to PGSM1, and set the antenna inclination angle ⁇ 1 to the ASIG antenna base station; for the AAS antenna, Set the up and down inclination angle ⁇ 1 and the inclination lobe width
  • Step 2 Start the network planning network optimization module of the road test tool; the road test tool first accesses the LTE cell, and the road test tool measures the received LTE cell parameters, and feeds the measured cell information to the OMMB network rule through signaling. Network optimization module and recorded.
  • Step 3 The OMMB network planning network optimization module starts the ftp command to do the LTE packet to the road test tool, the road test tool tests the traffic, and feeds the traffic size to the OMMB network rule network optimization module and records it.
  • Step 4 The road test tool network rule network optimization module starts the ftp command to do LTE packet to the OMMB network rule network optimization module, and the OMMB network rule network optimization module tests its traffic and records it.
  • Step 5 The OMMB network planning network optimization module releases the road test tool, and then allows the road test tool to access the LTE cell multiple times, and records the success rate of the access test tool access.
  • Step 6 The road test tool first accesses the GSM cell, and the road test tool measures the received GSM cell parameters, and the measured cell information is fed back to the OMMB network rule network optimization module through signaling and recorded.
  • Step 7 The OMMB network planning network optimization module releases the road test tool, and then allows the road test tool to access the GSM cell multiple times, and records the success rate of the access test tool access.
  • Step 8 For the ASIG antenna base station, only the antenna tilt angle ⁇ 2 needs to be set; for the AAS antenna, the up and down tilt angle ⁇ 2 and the tilt lobe width need to be set. Repeat the above steps to find the best antenna angle and lobe width.
  • Step 9 Fix the optimal angle of the antenna, change the reference signal RS power of the LTE base station to PLTE2, set the GSM base station transmit power to PGSM2, and repeat the above steps; enable the LTE cell and the GSM cell to reach the optimization target at the edge.
  • Step 1 Start the OMMB network planning network optimization module, set the reference signal RS power of the LTE base station to PLTE1 through the OMMB; for the ASIG antenna base station, only set the antenna inclination angle ⁇ 1; for the AAS antenna, set the uplink and downlink inclination angle ⁇ 1 and the inclination angle Lobe width
  • Step 2 Start the network planning network optimization module of the road test tool; the road test tool first accesses the LTE cell 1, and the road test tool measures the received LTE cell parameters, and feeds the measured cell information to the OMMB network through signaling. The network is optimized and recorded.
  • Step 3 The OMMB network planning network optimization module starts the ftp command to do the LTE packet to the road test tool, the road test tool tests the traffic, and feeds the traffic size to the OMMB network rule network optimization module and records it.
  • Step 4 The road test tool network rule network optimization module starts the ftp command to the OMMB network rule network optimization module to do the LTE cell 1 packet, and the OMMB network rule network module tests the traffic and records it.
  • Step 5 The OMMB network planning network optimization module releases the road test tool, and then allows the road test tool to access the LTE cell 1 multiple times, and records the success rate of the access test tool access.
  • Step 6 For the ASIG antenna base station, only the antenna tilt angle ⁇ 2 needs to be set; for the AAS antenna, the up and down tilt angle ⁇ 2 and the tilt lobe width need to be set. Repeat the above steps to find the best antenna angle and lobe width.
  • Step 7 The best angle of the fixed antenna 1 antenna and the reference signal RS power of the LTE base station cell 1 are PLTE; the base station cell 1 accesses the cell 2 through the S2 port control road test tool, so that the cell adjusts the RS power and the tilt angle; The S2 port control road test tool is used to access the cell 3, so that the cell adjusts the RS power and the tilt angle to achieve the optimization of the three cell edge performance.
  • FIG. 5 is a structural block diagram of a base station optimization apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes: an adjustment module 10, a parameter receiving module 20, a relationship determining module 30, and a processing module 40. The structure is described in detail below.
  • the adjustment module 10 is configured to adjust the transmit power of the base station and the antenna tilt angle.
  • the parameter receiving module 20 is connected to the adjustment module 10 and configured to receive cell performance parameters corresponding to different transmit powers and antenna tilt angles.
  • the cell performance parameter includes at least: a cell parameter, a traffic size, and an access success rate.
  • the relationship determining module 30 is coupled to the parameter receiving module 20 and configured to determine a correspondence between a base station transmit power, an antenna tilt angle, and a cell performance parameter.
  • the processing module 40 is coupled to the relationship determining module 30 and configured to determine the transmit power and the antenna tilt of the base station according to the foregoing correspondence.
  • the embodiment of the present invention optimizes the performance of the LTE single-station single cell, the GSM & LTE common antenna, and the LTE multi-cell edge by introducing a new network planning network optimization module and a test strategy in the OMMB and the road test tool.
  • the purpose is to eliminate the need for human intervention, reduce network optimization costs, and maintain the interests of operators.
  • the adjustment module 10 includes: a first adjustment unit configured to adjust a base station transmit power and an antenna tilt angle ⁇ when the base station is an ASIG antenna base station; and a second adjustment unit configured to be an AAS antenna at the base station In the case of a base station, adjusting the transmit power of the base station, the up and down tilt angles ⁇ , and the tilt lobe width
  • the parameter receiving module 20 is further configured to respectively import the network planning network optimization module in the OMMB and the road test tool; the network planning network optimization module based on the OMMB network planning network optimization module and the road test tool, receiving and Performance parameters of cells corresponding to different transmit powers and antenna tilt angles.
  • the operation process of the network planning network optimization module of the OMMB and the network planning network optimization module of the road test tool has been introduced in the foregoing method embodiments, and details are not described herein.
  • the processing module 40 includes: an optimal parameter determining unit, configured to determine an optimal cell performance parameter in each of the cell performance parameters based on the preset threshold; the searching unit is configured to search for the optimal cell according to the correspondence The transmit power corresponding to the performance parameter and the antenna tilt angle; the determining unit is configured to use the transmit power and the antenna tilt angle as the final determined base station transmit power and the antenna tilt angle.
  • the preset threshold may be a certain value of the successful access rate, a certain value of the UE test quantity, or a certain value of the downlink ftp/uplink ftp, and the like. It can be determined by actual operation conditions.
  • the foregoing adjustment module 10, the parameter receiving module 20, and the relationship determining module 30 And the processing module 40 may be implemented by a central processing unit (CPU), a microprocessor (MPU, a digital processing unit), a digital signal processor (DSP), or the like.
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA Field-Programmable Gate Array
  • the technical problem to be solved by the embodiments of the present invention is to address the shortcoming of the optimization workload of the one-way base station network in the current communication system, and automatically cycle through the introduction of the automation module: "Adjust the transmission power and antenna of the base station. Inclination, receiving different transmit power, cell performance parameters corresponding to the antenna tilt angle, this process, no need for artificial loop operation. Thereby reducing the difficulty and workload of network optimization and maintaining the interests of operators. The network coverage optimization of the base station and the improvement of the network performance are realized.
  • the embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a base station optimization method according to an embodiment of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基站优化方法及装置、计算机可读存储介质,其中,该方法包括:调整基站的发射功率和天线倾角;接收不同的发射功率、天线倾角所对应的小区性能参数;确定基站的发射功率、天线倾角与小区性能参数之间的对应关系;根据所述对应关系确定基站的发射功率和天线倾角。

Description

一种基站优化方法及装置、计算机可读存储介质 技术领域
本发明涉及无线通信领域,特别是涉及一种基站优化方法及装置、计算机可读存储介质。
背景技术
目前主流的2G、3G和4G基站都是采用BBU+RRU+电调天线的架构,通过调整电调天线的下倾角度来实现小区覆盖半径的调整;其中,BBU表示基带处理单元(Building Base band Unite),RRU表示射频拉远单元(Radio Remote Unit)。有源天线是下一代基站形式的一种新构架,如图1所示的根据相关技术的基站架构演进示意图,图1中(A)表示第一代基站架构示意图,(B)表示第二代基站架构示意图,(C)表示下一代基站架构示意图。3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)组织在LTE(Long Term Evolution,长期演进)Realse12中进行了深入研究,同时R12版本即将发布。AAS(Adaptive Antenna System,有源天线系统)天线可以通过调整馈电网络的幅度和相位来改变天线倾角和波瓣的宽度。
基站网络覆盖半径以及小区边缘用户性能的提升,都是通过OMMB(操作维护中心)修改基站的发射功率和天线的下倾角度来实现的。对于单个基站,目前网络优化的方法是,修改RRU发射功率或者下倾角度,然后测量小区边缘用户的性能,这种网络优化的工作量非常大;对于多个站点相互重叠的交叉区域,如果还是采用这种在OMMB修改一个参数,然后测试小区边缘性能的方式,这个工作量会非常大,这种单向优化小区网络的办法,性能提升的并不是非常明显。
针对相关技术中单向基站网络优化工作量非常大的问题,目前尚未提 出有效的解决方案。
发明内容
为解决现有存在的技术问题,本发明实施例提供了一种基站优化方法及装置、计算机可读存储介质。
根据本发明实施例的一个方面,本发明实施例提供了一种基站优化方法,其中,该方法包括:调整基站的发射功率和天线倾角;接收不同的发射功率、天线倾角所对应的小区性能参数;确定基站的发射功率、天线倾角与小区性能参数之间的对应关系;根据所述对应关系确定基站的发射功率和天线倾角。
上述方案中,调整基站的发射功率和天线倾角包括:如果所述基站是ASIG(Antenna Interface Standards Group,电调天线)天线基站,则调整基站的发射功率、天线倾角θ;如果所述基站是AAS天线基站,则调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000001
上述方案中,接收不同的发射功率、天线倾角所对应的小区性能参数,包括:分别在操作维护中心OMMB和路测工具中导入网规网优模块;所述OMMB的网规网优模块获取不同的发射功率、天线倾角所对应的小区性能参数;以及,所述OMMB的网规网优模块接收所述路测工具的网规网优模块反馈的小区性能参数。
上述方案中,根据所述对应关系确定基站的发射功率和天线倾角包括:基于预设门限值,在各个小区性能参数中确定最优小区性能参数;根据所述对应关系,查找该最优小区性能参数对应的发射功率、天线倾角;将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾角。
上述方案中,所述小区性能参数包括:小区参数、流量大小、接入成功率。
上述方案中,所述OMMB的网规网优模块获取不同的发射功率、天线 倾角所对应的小区性能参数;以及接收所述路测工具的网规网优模块反馈的小区性能参数,包括:路测工具的网规网优模块接入小区,测量小区参数;并将小区参数反馈至所述OMMB的网规网优模块;其中,所述小区参数包括:参考信号接收质量RSRQ、参考信号接收功率RSRP;所述OMMB的网规网优模块向所述路测工具做灌包,路测工具的网规网优模块测试灌包流量;并将测试得到的流量大小反馈至所述OMMB的网规网优模块;所述路测工具的网规网优模块向所述OMMB做灌包,OMMB的网规网优模块测试灌包流量,记录流量大小;所述OMMB的网规网优模块记录所述路测工具的接入成功率。
根据本发明实施例的另一方面,本发明实施例还提供了一种基站优化装置,其中,该装置包括:调整模块,配置为调整基站的发射功率和天线倾角;参数接收模块,配置为接收不同的发射功率、天线倾角所对应的小区性能参数;关系确定模块,配置为确定基站的发射功率、天线倾角与小区性能参数之间的对应关系;处理模块,配置为根据所述对应关系确定基站的发射功率和天线倾角。
上述方案中,所述调整模块包括:第一调整单元,配置为在所述基站是电调天线ASIG天线基站的情况下,调整基站的发射功率、天线倾角θ;第二调整单元,配置为在所述基站是有源天线AAS天线基站的情况下,调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000002
上述方案中,所述参数接收模块,还配置为分别在操作维护中心OMMB和路测工具中导入网规网优模块;基于OMMB的网规网优模块和路测工具的网规网优模块,接收与不同的发射功率、天线倾角所对应小区的性能参数。
上述方案中,所述处理模块包括:最优参数确定单元,配置为基于预设门限值,在各个小区性能参数中确定最优小区性能参数;查找单元,配置为根据所述对应关系,查找该最优小区性能参数对应的发射功率、天线 倾角;确定单元,配置为将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾角。
本发明实施例还提供了一种计算机可读存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的基站优化方法。
本发明实施例通过在OMMB和路测工具引入新的网规网优模块以及测试策略,对LTE单站单小区,GSM&LTE共天馈小区以及LTE多小区边缘进行性能优化,从而达到自动优化网络的目的,不需要人为干预,降低了网络优化费用,维护了运营商的利益。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
图1是根据相关技术的基站架构演进示意图;
图2是根据本发明实施例的基站优化方法的流程图;
图3是根据本发明实施例的LTE移动通信系统的网络架构示意图;
图4是根据本发明实施例的网规网优模块工作流程图;
图5是根据本发明实施例的基站优化装置的结构框图。
具体实施方式
为了解决现有技术中单向基站网络优化工作量非常大的问题,本发明实施例提供了一种基站优化方法及装置,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
本发明实施例通过在OMMB和路测工具增加一个“自动网规网优”的模 块,通过OMMB、基站、路测工具和路测软件的交互,自动来完成网络小区的优化工作。下面通过实施例进行具体介绍。
本发明实施例提供了一种基站优化方法,图2是根据本发明实施例的基站优化方法的流程图,如图2所示,该方法包括以下步骤(步骤S202-步骤S208):
步骤S202,调整基站的发射功率和天线倾角。
在该步骤中,如果基站是ASIG天线基站,则调整基站的发射功率、天线倾角θ;如果基站是AAS天线基站,则调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000003
步骤S204,接收不同的发射功率、天线倾角所对应的小区性能参数。其中,上述小区性能参数至少包括:小区参数、流量大小、接入成功率。
在该步骤中,接收携带有小区性能参数的信息,从而实现基站优化过程的双向交互。
步骤S206,确定基站的发射功率、天线倾角与小区性能参数之间的对应关系。
步骤S208,根据上述对应关系确定基站的发射功率和天线倾角。
在该步骤中,可以通过设置门限值,来选择最优性能参数。具体地,基于预设门限值,在各个小区性能参数中确定最优小区性能参数;根据对应关系,查找该最优小区性能参数对应的发射功率、天线倾角;将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾角。基站根据上述最优性能参数所对应的发射功率和天线倾角,进行优化设置。
在步骤S204中,包括:分别在操作维护中心(OMMB)和路测工具中导入网规网优模块;OMMB的网规网优模块获取不同的发射功率、天线倾角所对应的小区性能参数;以及,OMMB的网规网优模块接收路测工具的网规网优模块反馈的小区性能参数。
具体地,基于OMMB的网规网优模块和路测工具的网规网优模块,接 收与不同的发射功率、天线倾角所对应小区的性能参数,包括以下步骤:
路测工具的网规网优模块接入小区,测量小区参数;并将小区参数反馈至OMMB的网规网优模块;其中,小区参数至少包括:参考信号接收质量(RSRQ)、参考信号接收功率(RSRP);
OMMB的网规网优模块向路测工具做灌包,路测工具的网规网优模块测试灌包流量;并将测试得到的流量大小反馈至OMMB的网规网优模块;
路测工具的网规网优模块向OMMB做灌包,OMMB的网规网优模块测试灌包流量,记录流量大小;
OMMB的网规网优模块记录路测工具的接入成功率。
本实施例通过在OMMB和路测工具引入网规网优模块以及测试策略,从而解决了相关技术中单向基站网络优化工作量非常大的问题,达到自动优化网络的目的。
图3是根据本发明实施例的LTE移动通信系统的网络架构示意图,如图3所示,LTE移动通信系统主要包括:核心网(CN)、接入网(E_UTRAN)和操作维护中心(OMMB)。接入网由基站(LTE的一个节点)构成,基站包含BBU(基带处理单元)、RRU(射频拉远单元)和天线(辐射阵子)。核心网和eNodeB之间通过BBU的S1(核心网和接入网之间的接口)接口相连。BBU和RRU通过光纤连接。
对于传统基站而言,基站通过AISG线缆控制天线的下倾角;对于AAS天线而言,基站通过改变自身的馈电网络实现天线倾角和波束的改变。
OMMB是操作维护中心,可以向基站下发配置参数以及监控基站的配置参数。在OMMB中引入自动化网规网优模块,该模块可以通过基站和路测工具通信,并且记录相关信息。
路测工具是可以测量基站性能的一种仪表;在路测工具中引入自动化网规网优模块,该模块可以通过基站和OMMB的自动网规网优模块通信,并且将自身测量的相关信息传递给OMMB的网规网优模块。
下面结合图3所示的LTE移动通信系统,对本发明的实施过程进行介绍。图4是根据本发明实施例的网规网优模块工作流程图,如图4所示,该流程包括以下步骤(步骤S402-步骤S420):
步骤S402,启动OMMB的网规网优模块,通过OMMB设置基站的发射功率P1和天线倾角θ1;P1和θ1是通过经验值获得,不同场景,这两个取值不同,例如城市密级区P1设置40dBm,θ1设置4度。
步骤S404,启动路测工具的网规网优模块;路测工具接入与基站对应的小区,路测工具测量接收到的小区参数(例如RSRQ、RSRP、RS功率等等),将这些测量到的小区信息通过信令反馈给OMMB网规网优模块并且记录下来。
步骤S406,OMMB网规网优模块启动ftp命令向路测工具做灌包,路测工具测试流量,将流量大小反馈给OMMB网规网优模块并且记录下来。
步骤S408,路测工具网规网优模块启动ftp命令向OMMB网规网优模块做灌包,OMMB网规网优模块测试其流量并记录下来。
步骤S410,OMMB网规网优模块释放路测工具,然后在允许路测工具多次接入,记录路测工具的接入的成功率。
步骤S412,这样得到了基站的发射功率P1和天线倾角θ1情况的,小区小边缘的接收功率大小、流量大小、成功接入率等参数。
步骤S414,OMMB的网规网优模块通过OMMB设置基站天线倾角θ2。并且重复以上步骤。
步骤S416,OMMB的网规网优模块通过OMMB设置基站天线功率P2。并且重复以上步骤;这样就得到如表1所示的基站功率P和天线倾角角度θ小区边缘的性能表格。
表1
Figure PCTCN2014088688-appb-000004
Figure PCTCN2014088688-appb-000005
步骤S418,根据得到的表格,通过预设门限值来选择最佳性能对应的倾角、波瓣宽度和小区发射功率。进而据此执行基站优化操作。如果达到预设门限值,则执行步骤S420,如果未达到,则执行步骤S406。该预设门限值可以是成功接入率的某一数值,即成功接入率超过预设门限值的小区性能参数,确定为最优性能参数。预设门限值也可以是UE测试量的某一数值,或者下行ftp/上行ftp的某一数值等等。具体可由实际操作情况而确定。
步骤S420,该流程结束。
本发明通过在OMMB和路测工具引入新的网规网优模块以及测试策略,对LTE单站单小区,GSM&LTE共天馈小区以及LTE多小区边缘进行性能优化,从而达到自动优化网络的目的,不需要人为干预,降低了网络优化费用,维护了运营商的利益。
为了进一步说明本发明的技术方案,下面结合附图和实施例进行详细说明。
实施例1
LTE单模基站单扇区优化案例:
步骤1:启动OMMB的网规网优模块,通过OMMB设置基站的参考信号(RS)功率为P1;对ASIG天线基站,只需要设置天线倾角θ1;对于AAS天线,需要设置上行和下行倾角θ1以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000006
步骤2:启动路测工具的网规网优模块;路测工具接入该小区,路测工具测量接收到的小区参数(例如RSRQ、RSRP、RS功率等等),将这些测量到的小区信息通过信令反馈给OMMB网规网优模块并且记录下来。
步骤3:OMMB网规网优模块启动ftp命令向路测工具做灌包,路测工具测试流量,将流量大小反馈给OMMB网规网优模块并且记录下来。
步骤4:路测工具网规网优模块启动ftp命令向OMMB网规网优模块做灌包,OMMB网规网优模块测试其流量并记录下来。
步骤5:OMMB网规网优模块释放路测工具,然后在允许路测工具多次接入,记录路测工具的接入的成功率。
步骤6:这样得到了基站的发射功率P1和天线倾角θ1情况的,小区小边缘的接收功率大小、流量大小、成功接入率等参数。
步骤7:启动OMMB的网规网优模块,通过OMMB设置基站天线倾角θ2和
Figure PCTCN2014088688-appb-000007
并且重复以上步骤。
步骤8:启动OMMB的网规网优模块,通过OMMB设置基站天线倾角P2。并且重复以上步骤;这样就可以得到由基站功率P和天线倾角角度θ,
Figure PCTCN2014088688-appb-000008
构成的小区边缘的性能表格。从而优化边缘性能。
实施例2
GSM&LTE共天馈基站单扇区优化案例:
步骤1:启动OMMB的网规网优模块,通过OMMB设置LTE基站的参考信号RS功率为PLTE1;设置GSM基站发射功率为PGSM1;对ASIG天线基站,只需要设置天线倾角θ1;对于AAS天线,需要设置上行和下行 倾角θ1以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000009
步骤2:启动路测工具的网规网优模块;路测工具先接入该LTE小区,路测工具测量接收到的LTE小区参数,将这些测量到的小区信息通过信令反馈给OMMB网规网优模块并且记录下来。
步骤3:OMMB网规网优模块启动ftp命令向路测工具做LTE灌包,路测工具测试流量,将流量大小反馈给OMMB网规网优模块并且记录下来。
步骤4:路测工具网规网优模块启动ftp命令向OMMB网规网优模块做LTE灌包,OMMB网规网优模块测试其流量并记录下来。
步骤5:OMMB网规网优模块释放路测工具,然后在允许路测工具多次接入LTE小区,记录路测工具的接入的成功率。
步骤6:路测工具先接入该GSM小区,路测工具测量接收到的GSM小区参数,将这些测量到的小区信息通过信令反馈给OMMB网规网优模块并且记录下来。
步骤7:OMMB网规网优模块释放路测工具,然后在允许路测工具多次接入GSM小区,记录路测工具的接入的成功率。
步骤8:对ASIG天线基站,只需要设置天线倾角θ2;对于AAS天线,需要设置上行和下行倾角θ2以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000010
重复以上步骤,找到最佳的天线角度和波瓣宽度。
步骤9:固定天线最佳角度,改变LTE基站的参考信号RS功率为PLTE2;设置GSM基站发射功率为PGSM2,重复以上步骤;使LTE小区和GSM小区在边缘都达到优化目标。
实施例3
LTE三站基站三扇区优化案例:
步骤1:启动OMMB的网规网优模块,通过OMMB设置LTE基站的参考信号RS功率为PLTE1;对ASIG天线基站,只需要设置天线倾角θ1; 对于AAS天线,需要设置上行和下行倾角θ1以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000011
步骤2:启动路测工具的网规网优模块;路测工具先接入该LTE小区1,路测工具测量接收到的LTE小区参数,将这些测量到的小区信息通过信令反馈给OMMB网规网优模块并且记录下来。
步骤3:OMMB网规网优模块启动ftp命令向路测工具做LTE灌包,路测工具测试流量,将流量大小反馈给OMMB网规网优模块并且记录下来。
步骤4:路测工具网规网优模块启动ftp命令向OMMB网规网优模块做LTE小区1灌包,OMMB网规网优模块测试其流量并记录下来。
步骤5:OMMB网规网优模块释放路测工具,然后在允许路测工具多次接入LTE小区1,记录路测工具的接入的成功率。
步骤6:对ASIG天线基站,只需要设置天线倾角θ2;对于AAS天线,需要设置上行和下行倾角θ2以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000012
重复以上步骤,找到最佳的天线角度和波瓣宽度。
步骤7:固定小区1天线最佳角度以及,改变LTE基站小区1的参考信号RS功率为PLTE;基站小区1通过S2口控制路测工具接入小区2,使小区调整RS功率和倾角;然后在通过S2口控制路测工具接入小区3,使小区调整RS功率和倾角;以达到三小区边缘性能的优化。
对应于上述实施例介绍的基站优化方法,本实施例提供了一种基站优化装置,该装置用以实现上述实施例。图5是根据本发明实施例的基站优化装置的结构框图,如图5所示,该装置包括:调整模块10、参数接收模块20、关系确定模块30和处理模块40。下面对该结构进行详细介绍。
调整模块10,配置为调整基站的发射功率和天线倾角。
参数接收模块20,连接至调整模块10,配置为接收不同的发射功率、天线倾角所对应的小区性能参数。其中,小区性能参数至少包括:小区参数、流量大小、接入成功率。
关系确定模块30,连接至参数接收模块20,配置为确定基站的发射功率、天线倾角与小区性能参数之间的对应关系。
处理模块40,连接至关系确定模块30,配置为根据上述对应关系确定基站的发射功率和天线倾角。
本发明实施例通过在OMMB和路测工具引入新的网规网优模块以及测试策略,对LTE单站单小区,GSM&LTE共天馈小区以及LTE多小区边缘进行性能优化,从而达到自动优化网络的目的,不需要人为干预,降低了网络优化费用,维护了运营商的利益。
在本实施例中,调整模块10包括:第一调整单元,配置为在基站是ASIG天线基站的情况下,调整基站的发射功率、天线倾角θ;第二调整单元,配置为在基站是AAS天线基站的情况下,调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
Figure PCTCN2014088688-appb-000013
在本实施例中,参数接收模块20,还配置为分别在OMMB和路测工具中导入网规网优模块;基于OMMB的网规网优模块和路测工具的网规网优模块,接收与不同的发射功率、天线倾角所对应小区的性能参数。
在参数接收模块20中,OMMB的网规网优模块和路测工具的网规网优模块的操作过程,在上述方法实施例中已经进行了介绍,在此不做赘述。
上述处理模块40包括:最优参数确定单元,配置为基于预设门限值,在各个小区性能参数中确定最优小区性能参数;查找单元,配置为根据所述对应关系,查找该最优小区性能参数对应的发射功率、天线倾角;确定单元,配置为将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾角。
在本实施例中,预设门限值可以是成功接入率的某一数值、UE测试量的某一数值,或者下行ftp/上行ftp的某一数值等等。具体可由实际操作情况而确定。
需要说明的是,上述调整模块10、参数接收模块20、关系确定模块30 和处理模块40可以由本发明实施例所述基站优化装置的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Micro Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。
从以上的描述中可知,本发明实施例要解决的技术问题是针对目前通讯系统中单向基站网络优化工作量非常大的缺点,通过引入自动化模块来自动循环:“调整基站的发射功率和天线倾角,接收不同的发射功率、天线倾角所对应的小区性能参数”,这一过程,不用再人为的循环操作。从而降低了网络优化的难度以及工作量,维护了运营商的利益。实现了基站的网络覆盖优化以及网络性能的改善。
本发明实施例还提供了一种计算机可读存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的基站优化方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (11)

  1. 一种基站优化方法,所述方法包括:
    调整基站的发射功率和天线倾角;
    接收不同的发射功率、天线倾角所对应的小区性能参数;
    确定基站的发射功率、天线倾角与小区性能参数之间的对应关系;
    根据所述对应关系确定基站的发射功率和天线倾角。
  2. 如权利要求1所述的方法,其中,调整基站的发射功率和天线倾角包括:
    如果所述基站是电调天线ASIG天线基站,则调整基站的发射功率、天线倾角θ;
    如果所述基站是有源天线AAS天线基站,则调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
    Figure PCTCN2014088688-appb-100001
  3. 如权利要求1所述的方法,其中,接收不同的发射功率、天线倾角所对应的小区性能参数,包括:
    分别在操作维护中心OMMB和路测工具中导入网规网优模块;
    所述OMMB的网规网优模块获取不同的发射功率、天线倾角所对应的小区性能参数;以及,
    所述OMMB的网规网优模块接收所述路测工具的网规网优模块反馈的小区性能参数。
  4. 如权利要求1所述的方法,其中,根据所述对应关系确定基站的发射功率和天线倾角包括:
    基于预设门限值,在各个小区性能参数中确定最优小区性能参数;
    根据所述对应关系,查找该最优小区性能参数对应的发射功率、天线倾角;
    将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾 角。
  5. 如权利要求3所述的方法,其中,
    所述小区性能参数包括:小区参数、流量大小、接入成功率。
  6. 如权利要求5所述的方法,其中,所述OMMB的网规网优模块获取不同的发射功率、天线倾角所对应的小区性能参数;以及接收所述路测工具的网规网优模块反馈的小区性能参数,包括:
    路测工具的网规网优模块接入小区,测量小区参数;并将小区参数反馈至所述OMMB的网规网优模块;其中,所述小区参数包括:参考信号接收质量RSRQ、参考信号接收功率RSRP;
    所述OMMB的网规网优模块向所述路测工具做灌包,路测工具的网规网优模块测试灌包流量;并将测试得到的流量大小反馈至所述OMMB的网规网优模块;
    所述路测工具的网规网优模块向所述OMMB做灌包,OMMB的网规网优模块测试灌包流量,记录流量大小;
    所述OMMB的网规网优模块记录所述路测工具的接入成功率。
  7. 一种基站优化装置,所述装置包括:
    调整模块,配置为调整基站的发射功率和天线倾角;
    参数接收模块,配置为接收不同的发射功率、天线倾角所对应的小区性能参数;
    关系确定模块,配置为确定基站的发射功率、天线倾角与小区性能参数之间的对应关系;
    处理模块,配置为根据所述对应关系确定基站的发射功率和天线倾角。
  8. 如权利要求7所述的装置,其中,所述调整模块包括:
    第一调整单元,配置为在所述基站是电调天线ASIG天线基站的情况下,调整基站的发射功率、天线倾角θ;
    第二调整单元,配置为在所述基站是有源天线AAS天线基站的情况下,调整基站的发射功率、上行和下行倾角θ、以及倾角波瓣宽度
    Figure PCTCN2014088688-appb-100002
  9. 如权利要求7所述的装置,其中,
    所述参数接收模块,还配置为分别在操作维护中心OMMB和路测工具中导入网规网优模块;基于OMMB的网规网优模块和路测工具的网规网优模块,接收与不同的发射功率、天线倾角所对应小区的性能参数。
  10. 如权利要求7所述的装置,其中,所述处理模块包括:
    最优参数确定单元,配置为基于预设门限值,在各个小区性能参数中确定最优小区性能参数;
    查找单元,配置为根据所述对应关系,查找该最优小区性能参数对应的发射功率、天线倾角;
    确定单元,配置为将该发射功率、天线倾角作为最终确定的基站的发射功率和天线倾角。
  11. 一种计算机可读存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行权利要求1-6任一项所述的基站优化方法。
PCT/CN2014/088688 2014-06-24 2014-10-15 一种基站优化方法及装置、计算机可读存储介质 WO2015196644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410286910.0A CN105208578A (zh) 2014-06-24 2014-06-24 一种基站优化方法及装置
CN201410286910.0 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015196644A1 true WO2015196644A1 (zh) 2015-12-30

Family

ID=54936600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088688 WO2015196644A1 (zh) 2014-06-24 2014-10-15 一种基站优化方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN105208578A (zh)
WO (1) WO2015196644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019236966A2 (en) 2018-06-07 2019-12-12 Bantam Pharmaceutical, Llc Methods of treatment of cancer with substituted pyrrole and pyrazole compounds and diagnosis of cancers susceptible to treatment with substituted pyrrole and pyrazole compounds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792822A (zh) * 2016-12-28 2017-05-31 贺州学院 一种通信网络的优化方法
CN112770346A (zh) * 2021-03-08 2021-05-07 中国人民解放军军事科学院战争研究院 一种基站数据优化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932022A (zh) * 2009-06-19 2010-12-29 华为技术有限公司 调整小区无线配置参数的方法、基站及系统
CN102448087A (zh) * 2010-10-13 2012-05-09 中国移动通信集团河南有限公司 一种天馈参数的优化方法及系统
CN102510564A (zh) * 2011-12-19 2012-06-20 清华大学 一种改进集中分簇式自组织网络的自优化方法
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111800A (zh) * 2009-12-23 2011-06-29 北京三星通信技术研究有限公司 一种在基站中实现能量节省的方法
CN102202330B (zh) * 2011-05-23 2014-07-16 北京邮电大学 蜂窝移动通信系统的覆盖自优化方法
CN102904018B (zh) * 2012-09-14 2016-12-21 中兴通讯股份有限公司 一种有源天线自适应调整下倾角的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932022A (zh) * 2009-06-19 2010-12-29 华为技术有限公司 调整小区无线配置参数的方法、基站及系统
CN102448087A (zh) * 2010-10-13 2012-05-09 中国移动通信集团河南有限公司 一种天馈参数的优化方法及系统
US20120270593A1 (en) * 2011-04-19 2012-10-25 Korea University Research And Business Foundation Method and apparatus for power control and load balancing based on load estimation of neighbor cell in wireless communication system
CN102510564A (zh) * 2011-12-19 2012-06-20 清华大学 一种改进集中分簇式自组织网络的自优化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019236966A2 (en) 2018-06-07 2019-12-12 Bantam Pharmaceutical, Llc Methods of treatment of cancer with substituted pyrrole and pyrazole compounds and diagnosis of cancers susceptible to treatment with substituted pyrrole and pyrazole compounds

Also Published As

Publication number Publication date
CN105208578A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
US9173221B2 (en) Apparatus, system and method of establishing a wireless beamformed link
US8738022B2 (en) System and methods for beam shaping in a self-organizing network
CN109890079A (zh) 一种资源配置方法及其装置
WO2016058340A1 (zh) 一种定位方法及相应的终端、系统
WO2019062724A1 (zh) 一种确定波束互易性能力当前状态的方法及终端
US20160234789A1 (en) Method of controlling transmission power in device-to-device communication and apparatus thereof
CN105050161B (zh) 无线网络扫描策略
US20220167181A1 (en) Reference signal transmission method and device
WO2015196644A1 (zh) 一种基站优化方法及装置、计算机可读存储介质
US9736846B1 (en) Intelligent radiation selection for antennas in a wireless communications environment
CN108141880A (zh) 提供对无线装置的增强覆盖的移动性支持的系统和方法
CN106332180B (zh) 一种负载均衡的方法及装置
JP2020500443A (ja) ビームフォーミング情報の交換方法及びネットワーク機器
WO2018137156A1 (zh) 一种模拟波束切换方法及装置
WO2016055024A1 (zh) 优化通信网络的处理方法和装置
CN110337786B (zh) 用于控制天线系统、传送指示符的方法、系统和无线终端
US11962376B2 (en) Multi-channel beamforming method and apparatus, and storage medium
WO2017070956A1 (zh) 一种数据传输方法及装置
JP6386947B2 (ja) 基地局装置、指向方向制御方法およびコンピュータプログラム
US11622304B1 (en) Preferred pcell mode support in 4G and 5G cellular network
US20240179594A1 (en) System and methods for a dynamic and autonomous network switching for a user device
EP3192302A1 (en) Method and network node for obtaining nominal power and pathloss compensation factor of a power control process
CN110312316B (zh) 一种上行蜂窝网络中的多小区协调调度方法及上行蜂窝系统
US20230156766A1 (en) Systems and methods for controlling beam parameters to improve signal strength
US20240121765A1 (en) Network based intelligent new radio carrier aggregation algorithm for odd bandwidths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896219

Country of ref document: EP

Kind code of ref document: A1