WO2015194624A1 - Method for producing mold and method for producing lens array - Google Patents
Method for producing mold and method for producing lens array Download PDFInfo
- Publication number
- WO2015194624A1 WO2015194624A1 PCT/JP2015/067574 JP2015067574W WO2015194624A1 WO 2015194624 A1 WO2015194624 A1 WO 2015194624A1 JP 2015067574 W JP2015067574 W JP 2015067574W WO 2015194624 A1 WO2015194624 A1 WO 2015194624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- expression
- mold
- optical transfer
- lens array
- optical
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
Definitions
- the present invention relates to a method for manufacturing a mold for molding a lens array and a method for manufacturing a lens array using such a mold.
- a work to be a mold is prepared, a part corresponding to one array element in the center is first processed, and an eccentric error and a shape error with respect to the entire mold are measured.
- machining data is corrected so that an error and a shape error are equal to or less than allowable values, and parts corresponding to all other array elements are processed using the corrected machining data (see Patent Document 1).
- warpage and shrinkage are corrected by measuring the deformation due to warpage and shrinkage of the actually shaped array-shaped element as a shape error and changing the cutting depth of the machining tool. .
- the present invention has been made in view of the problems of the background art described above, and an object of the present invention is to provide a method for manufacturing a mold for a lens array, which can be manufactured in a relatively short time by a simple method. To do. It is another object of the present invention to provide a method for manufacturing a lens array using a mold obtained by the above manufacturing method.
- a first mold manufacturing method is a mold manufacturing method having a plurality of optical transfer surfaces for molding a lens array, and a plurality of optical transfer surfaces based on an expression of an axially symmetric surface.
- a non-axisymmetric plane expression is calculated based on the amount of error obtained by measuring the lens array molded by the mock mold.
- a plurality of optical transfer surfaces of the mold are processed based on the surface expression.
- the expression is not limited to a general mathematical expression including variables, arithmetic expressions, and the like, but also includes a data table in which functional points are collected.
- the expression of the non-axisymmetric surface is calculated based on the error amount obtained by the measurement of the lens array formed by the simulated mold, and the expression of the axially symmetric surface and the expression of the non-axisymmetric surface are calculated. Since the processing of the plurality of optical transfer surfaces of the mold is performed based on this, it is possible to easily manufacture the mold of the lens array including the plurality of axially symmetric optical surfaces. In other words, since the prototype and measurement are performed from the viewpoint of dividing the surface shape of the lens array into the components of the axisymmetric surface and the components of the non-axisymmetric surface, the period from the prototype of the lens array to the completion of the finished product is shortened. Labor can be reduced.
- the expression of the non-axisymmetric surface includes the deviation amount from the target value of the vertex position through which the optical axis passes and the deviation amount from the target aspherical shape.
- the expression of the non-axisymmetric surface is an expression in which the deviation amount from the target value of the vertex position of the optical transfer surface is defined by a free-form surface expression.
- the maximum compensation amount according to the expression of the non-axisymmetric surface is 10 ⁇ m.
- the amount of compensation related to the non-axisymmetric surface is relatively small, and the shape accuracy of the mold is relatively easy to increase.
- a second mold manufacturing method is a mold manufacturing method having a plurality of optical transfer surfaces for molding a lens array, and a plurality of optical molds based on axisymmetric processing data as design values.
- a simulated mold is produced by processing the transfer surface, and the expression of the non-axisymmetric surface is calculated based on the error amount obtained by measuring the lens array molded by the simulated mold.
- the expression of the axially symmetric surface to which the correction amount is added is calculated, and a plurality of optical transfer surfaces of the mold are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface.
- the expression of the non-axisymmetric surface is calculated based on the amount of error obtained by the measurement of the lens array molded by the simulated mold, and the design value is added to the correction amount obtained by the test processing. Since the surface expression is calculated and the plurality of optical transfer surfaces of the molding die are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface, a plurality of axially symmetric optical surfaces are provided.
- the manufacturing of the lens array mold can be simplified. In particular, when the expression of the axially symmetric surface is obtained by adding the correction amount obtained by the test processing to the design value, the shape accuracy of the element lenses constituting the lens array can be increased.
- the test processing is performed on a material different from the material of the mold. In this case, it becomes easy to make test processing quick and inexpensive.
- the mold has, as a plurality of optical transfer surfaces, a plurality of types of optical transfer surfaces having different design values for the expression of the axially symmetric surface, and the expression of the axially symmetric surface is: A plurality of correction values obtained by test processing are added to a plurality of types of design values corresponding to a plurality of types of optical transfer surfaces.
- the lens array includes a plurality of types of element lenses.
- the plural types of element lenses may have different corresponding wavelengths, different fields of view, and the like.
- the plurality of optical transfer surfaces have optical axes parallel to each other, and the plurality of optical transfer surfaces are processed by a tool having a rotation axis parallel to the optical axis.
- a tool having a rotation axis parallel to the optical axis.
- the expression of the non-axisymmetric surface is a free-form surface equation
- the axisymmetric surface is an aspheric surface equation
- the manufacturing method of the lens array according to the present invention includes a step of performing molding using the molding die obtained by the above manufacturing method.
- the molding is performed using the molding die obtained by the manufacturing method of the molding die, it is possible to easily manufacture a lens array having a plurality of axially symmetric optical surfaces.
- the time required to obtain a finished product can be shortened, and the labor can be reduced.
- FIG. 3A and 3B are a plan view and a side sectional view for explaining a molded product manufactured by the molding die apparatus of FIG. It is a block diagram explaining the processing apparatus of a shaping
- molding process of a lens array. 7A and 7B are diagrams illustrating the first correction amount set on the molding surface of the mold. It is a perspective view explaining the test process by a dummy workpiece
- a molding apparatus 30 shown in FIG. 1 includes a pair of molding dies 31 and 32, and both molding dies 31 and 32 are relatively displaced in the AB direction parallel to the Z axis by a driving device 40, whereby both molding dies 31 are provided. , 32 can be opened and closed.
- a mold space surrounded by molding surfaces 31t and 32t provided on both mold dies 31 and 32 is formed by closing the molds 31 and 32. By injecting molten resin into the mold spaces, the molding surfaces 31t and 32t are formed. It is possible to obtain a molded article, that is, a lens array, having an outer shape corresponding to.
- molding die 31 is provided with the core part 31a which forms the molding surface 31t, and the surrounding part 31b which supports the core part 31a.
- the end surface of the core portion 31a on the first mold 31 side has a large number of optical transfer surfaces 34a arranged in a matrix parallel to the XY plane, and a support transfer surface 34b formed around the optical transfer surface 34a.
- Each optical transfer surface 34a is an aspheric surface obtained by inverting the optical surface of the element lens constituting the lens array, and has an optical axis TX extending in parallel with the Z axis.
- the support portion transfer surface 34b has a slight level difference between the center side and the outer peripheral side, but the surfaces 43d and 43e are flat and extend parallel to the XY plane.
- the core portion 31a is formed by using, for example, stainless steel, super steel, or other steel as a base material, and the optical transfer surface 34a or the like is formed by finishing the surface of the NiP plating layer that covers the base material. Furthermore, the entire surface of the core portion 31a can be covered with a release agent.
- the end surface of the peripheral portion 31b is a parting surface PA1 used when the first molding die 31 is abutted against the second molding die 32.
- molding die 32 is provided with the core part 32a which forms the molding surface 32t, and the surrounding part 32b which supports the core part 32a.
- the end surface of the core portion 32a on the second mold 32 side has a large number of optical transfer surfaces 35a arranged in a matrix parallel to the XY plane, and a support transfer surface 35b formed around the optical transfer surface 35a. And are formed.
- Each optical transfer surface 35a is an aspheric surface obtained by inverting the optical surfaces of the element lenses constituting the lens array, and has an optical axis TX extending in parallel with the Z axis.
- the support portion transfer surface 35b has two steps on the center side and the outer peripheral side, but the surfaces 45d and 45e are flat and extend in parallel to the XY plane.
- the core portion 32a is formed by using, for example, stainless steel, super steel, or other steel as a base material, and the optical transfer surface 35a and the like are formed by finishing the surface of the NiP plating layer that covers the base material. Furthermore, the entire surface of the core portion 32a can be covered with a release agent.
- the end surface of the peripheral portion 32 b is a parting surface PA ⁇ b> 2 that is used when the second mold 32 is brought into contact with the first mold 31.
- the molding surface 31t of the core portion 31a constituting the first molding die 31 is formed by a cutting tool 80 provided in a machining apparatus described in detail later.
- the cutting tool 80 is formed by an end mill, for example, and can be rotated at high speed around a rotation axis RX set in parallel with the Z axis or the optical axis TX in principle, and the posture of the rotation axis RX is maintained.
- the core portion 31a can be moved at arbitrary timing and speed in the directions of the three axes XYZ.
- Each optical transfer surface 34a constituting the molding surface 31t is individually ground and sequentially finished by the cutting tool 80.
- Each optical transfer surface 34a basically has an axially symmetric or rotationally symmetric shape with respect to the optical axis TX, but may have a slightly modified shape.
- the optical transfer surface 34a obtained has high symmetry around the optical axis TX by causing the tip 81a of the cutting tool 80 to rotate around the optical axis TX while rotating around the rotation axis RX. It is possible to ensure the state of having.
- the support portion transfer surface 34b is formed by the cutting tool 80 after or before the processing of the optical transfer surface 34a. At this time, for example, scanning is performed in which the cutting tool 80 is linearly moved along the XY plane and gradually shifted in the vertical direction.
- the support portion transfer surface 34b is originally a flat surface parallel to the XY plane, but is subjected to shape correction so as to cancel out the shape error of the finished product, and is generally not defined as a free-form surface equation. It has a regular waviness shape.
- the lens array 10 is an integral body formed of a thermoplastic resin, which is an optical material, and has a rectangular (including square) outline with an outer frame.
- the lens array 10 includes a plurality of lens elements 10a, each of which is an optical element, and a flange portion 10f that supports the plurality of lens elements 10a from the periphery.
- the flange portion 10 f includes an inter-lens flange portion 10 c between the lens elements 10 a and an outer peripheral flange portion 10 d at the outer peripheral portion of the first lens array 10.
- the plurality of lens elements 10a constituting the first lens array 10 have optical axes OA parallel to each other on rectangular lattice points (16 ⁇ 4 ⁇ 4 in the illustrated example) arranged in parallel to the xy plane. It is arranged in a two-dimensional state.
- Each lens element 10a has a convex optical surface 11a on the first main surface 10p, a convex optical surface 11b on the second main surface 10q, and both optical surfaces 11a and 11b are axisymmetric surfaces, Specifically, it is an aspherical surface, for example.
- the inter-lens flange portion 10c is a flat plate-like flat portion having a flange surface 11c on the object side and a flange surface 11d on the image side.
- the outer peripheral flange portion 10d is a rectangular frame-shaped thick portion, and functions as a spacer when the lens array 10 is fixed to another lens array, a holder, or the like.
- FIG. 4 is a block diagram schematically illustrating an example of the structure of a processing apparatus used for processing the molding surfaces 31t and 32t of the first and second molding dies 31 and 32 shown in FIG.
- the machining apparatus 100 includes an NC drive mechanism 91 that enables cutting that relatively moves the cutting tool 80 while supporting the workpiece W, a drive control apparatus 97 that controls the operation of the NC drive mechanism 91, and an overall apparatus. And a main controller 98 that controls the operation in an integrated manner.
- the NC drive mechanism 91 has a structure in which a first processing stage 94b and a second processing stage 94c are placed on a pedestal 94a.
- the first processing stage 94b supports the first movable part 95a, and the first movable part 95a indirectly supports the workpiece W via the stage part 95b.
- the first processing stage 94b can rotate the first movable portion 95a and the stage portion 95b around a rotation axis RA parallel to the ⁇ axis, and the first movable portion 95a moves the workpiece W via the stage portion 95b.
- it can be arranged at a desired position along the ⁇ and ⁇ axis directions while being supported. That is, the workpiece W can be rotated at a desired speed around the rotation axis RA extending in a direction substantially perpendicular to the entire surface Wa through an arbitrary point on the surface Wa.
- the second machining stage 94c supports the second movable portion 95c
- the second movable portion 95c supports the cutting tool 80.
- the second processing stage 94c can support the second movable portion 95c and the cutting tool 80, and move them to desired positions along, for example, the ⁇ and ⁇ axis directions at a desired speed. Further, the second movable portion 95c can support the cutting tool 80 and move it to a desired position along the ⁇ -axis direction at a desired speed, for example.
- the second movable portion 95c can turn the cutting tool 80, for example, around the rotation axis RX parallel to the ⁇ axis through the tip portion 81a, and if necessary, a vertical turning axis passing through the tip portion 81a. It is also possible to adjust the posture of the cutting tool 80 by rotating or tilting the cutting tool 80 about a desired angle.
- the drive control device 97 enables high-precision numerical control, and drives the motor and the position sensor built in the NC drive mechanism 91 under the control of the main control device 98, so that the first and the first The two processing stages 94b and 94c and the first and second movable parts 95a and 95c are appropriately operated to a target state.
- the workpiece W is rotated around the rotation axis RA at a high speed by the first processing stage 94b.
- the turning center of the workpiece W can be made to coincide with any one of the positions to be the many optical axes TX by the first movable portion 95a.
- the machining point of the tip 81a of the cutting tool 80 is first placed on the rotation axis RA by the second machining stage 94c, and the tip 81a is moved (feeded) at a low speed in the ⁇ or ⁇ axis direction.
- the second movable portion 95c gradually moves the tip portion 81a forward and backward in the ⁇ -axis direction while rotating the cutting tool 80 around the rotation axis RX.
- the NC drive mechanism 91 can be operated as a lathe capable of changing the machining position, and a concave or convex axisymmetric surface having a desired shape can be formed at an arbitrary position on the workpiece W.
- the main controller 98 has a storage unit (not shown) that stores information related to the machining shape of the workpiece W.
- the information regarding the machining shape of the workpiece W includes a step of operating the first and second machining stages 94b and 94c and the first and second movable parts 95a and 95c, and more specifically, the core portions 31a and 32a.
- the shape of the molding surfaces 31t and 32t, and the locus of relative movement of the tip 81a of the cutting tool 80 with respect to the surface Wa of the workpiece W that can be derived from this shape in order to obtain this shape can be stored.
- the main controller 98 stores not only the shape of the designed molding surfaces 31t and 32t, but also the shape of the molding surfaces 31t and 32t that have been corrected or corrected to obtain the desired molded product shape.
- the optical transfer surfaces 34a and 35a are arranged on lattice points as axially symmetric surfaces that are rotationally symmetric with respect to the optical axis TX in the original design.
- the transfer surfaces 34b and 35b are flat surfaces perpendicular to the optical axis TX. Data of such a shape and the trajectory of the cutting tool 80 corresponding to this shape corresponds to an axially symmetric surface shape, and is hereinafter also referred to as axially symmetric processing data.
- the vertices of the plurality of optical transfer surfaces 34a and 35a are on the same plane in the original design. However, when correction is made in consideration of after molding, the interval is relatively increased or decreased, and is expressed by a free-form surface formula. It is arranged on a non-axisymmetric surface (swell surface) as defined. Similarly, the support portion transfer surfaces 34b and 35b are also corrected to surfaces having such a wavy shape when correction is performed. Unlike the above-described axially symmetric processing data, such a shape and the corresponding locus data of the cutting tool 80 correspond to a non-axisymmetric surface shape and are also referred to as non-axisymmetric processing data below.
- axisymmetric processing data for processing the target molding surface 31t is created (step S11).
- the axially symmetric processing data for the molding surface 31t corresponds to the design value of the shape of the target lens array 10, and is based on the expression of the axially symmetric surface.
- the axially symmetric processing data is obtained by arranging aspheric surfaces corresponding to the optical transfer surface 34a for transferring the lens element 10a at 4 ⁇ 4 lattice points.
- the shape of each aspheric surface can be expressed by a known aspherical expression.
- the vertex of the optical transfer surface 34a is the origin, the Z axis is taken in the direction of the optical axis TX, and the optical axis TX And the height in the vertical direction is represented by the following formula or expression.
- Ai i-order aspherical coefficient R: radius of curvature K: conical constant
- the target shape of the optical transfer surface 34a is generally expressed by the above-mentioned aspherical expression, but for purposes of the lens array 10, etc. Accordingly, the aspherical coefficient Ai is adjusted so as to obtain preferable characteristics.
- a simulated mold is preliminarily produced based on the axisymmetric machining data determined in step S11 (step S12).
- the processing apparatus 100 shown in FIG. 4 is used.
- the simulated mold is a practical mold that has substantially the same shape as the first mold 31 and can be experimentally molded, but is not corrected by feedback from the shape measurement of the molded product. . That is, in actual molding, the molds 31 and 32 are placed in an environment that is affected by deformation and inclination, and the molded product is also subjected to deformation actions such as bending and shrinkage due to factors such as the influence of the thermal process.
- the shape of the lens array 10 cannot be made as designed, and in order to make the shape of the lens array 10 as designed, it will be described later.
- the shapes of the plurality of optical transfer surfaces 34a and 35a constituting the molding surfaces 31t and 32t may be the same, but may be slightly different and may be a plurality of types. With reference to FIG. 4, the fabrication of the simulated mold will be specifically described.
- the workpiece W that is the basis of the simulation type is set on the stage unit 95b.
- the workpiece W has substantially the same shape as the first mold 31 shown in FIG. 1 and has a NiP plating layer formed on the surface, but the portion corresponding to the optical transfer surface 34a is shallow.
- processing is performed based on the axially symmetric processing data in the optical design, and a molding surface similar to the molding surface 31t provided on the core portion 31a of the first molding die 31 shown in FIG. 1 is processed.
- the optical transfer surfaces 34a arranged at 4 ⁇ 4 lattice points are sequentially processed.
- the tip 81a of the cutting tool 80 is made to coincide with the optical axis TX, which is the rotation center of the workpiece W, while rotating the cutting tool 80 supported by the second movable portion 95c.
- the tip portion 81a is also displaced in the direction of the optical axis TX while being moved away from the optical axis TX.
- tip part 81a of the cutting tool 80 cuts out the optical transfer surface 34a, drawing a spiral along an aspherical type.
- spiral scanning such movement of the tip 81a of the cutting tool 80 is referred to as spiral scanning.
- the processing of the next optical transfer surface 34a is similarly performed by spiral scanning.
- 16 optical transfer surfaces 34a are obtained.
- the apexes of these optical transfer surfaces 34a are ideally on the same plane parallel to the XY plane or the ⁇ plane.
- the first movable portion 95a is used to rotate the tip portion 81a of the cutting tool 80, for example, while performing main scanning along a plurality of main scanning lines extending in parallel, and is perpendicular thereto. By performing sub-scanning that gradually moves in the direction, a smooth surface that is substantially parallel to the XY plane or the ⁇ plane can be obtained.
- Such movement of the tip 81a of the cutting tool 80 is referred to as raster scanning.
- the first mold 31 as a simulation mold is obtained.
- the second mold 32 as a simulated mold is also produced in the same manner as the first mold 31 as a simulated mold.
- the second molding die 32 having a large number of optical transfer surfaces 35a processed based on the axially symmetric processing data and the support portion transfer surface 35b connecting the optical transfer surfaces 35a can be obtained as a simulation die. it can.
- the simulation type and the production type described later are different, but if the simulation type can be dealt with by additional machining, it can be used as the production type.
- FIG. 6 is a diagram for explaining the molding apparatus 30 for molding the lens array 10 with respect to the mold space, and includes first and second molding dies 31 and 32 shown in FIG. Both molds 31, 32 are mold matched to form a cavity 30a.
- a runner RA is connected to the cavity 30a via a gate GA, and the runner RA is connected to a sprue SP on the resin supply side.
- the molten resin J from the sprue SP obtained by melting the thermoplastic resin fills the runner RA and fills the cavity 30a through the gate GA.
- the sprue portion 71 corresponding to the sprue SP, the runner portion 72 corresponding to the runner RA, and the gate GA are supported.
- a molded product 70 is formed that includes a gate portion 73 to be processed and a lens array body 74 corresponding to the cavity 30a.
- the gate section 73 is subjected to a gate cut process, and the prototype lens array 10 is obtained by the lens array body 74 at the tip of the gate section 73.
- the prototype lens array 10 obtained in step S13 is measured (step S14).
- a three-dimensional measurement device that enables measurement of the shape of the optical surface is used.
- the three-dimensional measuring apparatus incorporates a known mechanism disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 2007-147371 and 2013-210331.
- the shape of the optical surfaces 11a and 11b of all the lens elements 10a constituting the lens array 10 is measured, and the extent to which these optical surfaces 11a and 11b deviate from the target aspherical shape (deviation).
- Amount) and the extent to which the optical axis OA corresponding to the apex position of each optical surface 11a, 11b is displaced from the target lattice point (deviation amount) is measured.
- Basic information about the shape and arrangement of the optical surface 11a can be obtained.
- the information regarding the surface shape of the flange part 10f can be obtained by measuring the flange surfaces 11c and 11d.
- an error component that is, an error amount
- an error amount is extracted for each of the optical surfaces 11a and 11b provided in the lens array 10 (step S15).
- the deviation amount from the target value of the vertex position through which the optical axis OA passes or the deviation amount from the target aspherical shape can be evaluated as an error component (error amount). it can.
- the amount of deviation from the target value of the vertex position of each optical surface 11a, 11b is the undulation shape or distortion of the flange portion 10f of the lens array 10.
- the optical surfaces 11a and 11b are used. Since the shapes of these are slightly different from each other, the degree of deviation from the target aspherical shape is considered in consideration of the difference in the original shapes of the plurality of optical transfer surfaces 34a and 35a.
- the plurality of types of optical transfer surfaces 34a and 35a there can be considered those for the purpose of RGB color classification, field angle use, and deflection surface use.
- the main controller 98 sets the first of the optical transfer surfaces 34a and 35a as an amount to be compensated for the deviation of the optical surfaces 11a and 11b due to trial manufacture.
- a correction amount (hereinafter also referred to as compensation amount) is determined (step S16). That is, the data (non-axisymmetric component) defined on the non-axisymmetric surface in which the measured vertex positions of the optical surfaces 11a and 11b are approximated are used as the first correction amount (compensation).
- the amount is stored in the main controller 98.
- the amount of deviation from the target value of the vertex position of each optical surface 11a, 11b is expressed by a non-axisymmetric surface (swell surface) as defined by a free-form surface equation, and each optical surface 11a, 11b. Is changed to data defined on the non-axisymmetric plane, and the inverted data becomes non-axisymmetric machining data for compensation.
- fitting to a free-form surface using a least square method or the like is performed.
- the non-axisymmetric surface as defined by a free-form surface equation can be supplementarily obtained from the shapes of the flange surfaces 11c and 11d.
- the shape of the non-axisymmetric free-form surface can be, for example, the following mathematical expression or expression using a Zernike polynomial.
- FIG. 7A and 7B are diagrams for explaining the first correction amount set on the molding surface 31t of the first molding die 31.
- FIG. 7A When the measurement result of the optical surface 11a of the lens array 10 has waviness (curved surface visually displayed by the flange surface 11c) as shown in FIG. 7A, the optical surface 11a on the left side of the drawing is relatively low, The right optical surface 11a is relatively high.
- the first correction amount (compensation amount) to be set on the optical transfer surface 34a of the mold 31 is reversed as shown in FIG. 7B (curved surface visually displayed by the support portion transfer surface 34b). It will have. That is, the optical transfer surface 34a on the left side of the drawing is relatively deep, and the optical transfer surface 34a on the right side of the drawing is relatively shallow.
- initial data corresponding to the design value of the surface shape of the lens elements 10a constituting the lens array 10 is read (step S21).
- This initial data is axisymmetric processing data that can be defined as an aspherical surface as described in step S11.
- initial data is obtained for each surface. read out.
- one kind of axially symmetric surface corresponding to the initial data is test processed (step S22).
- the test processing is performed by cutting the dummy workpiece W using the processing apparatus 100 of FIG.
- the dummy workpiece W can be an original workpiece W obtained by applying NIP plating or the like to super steel, but the workpiece W is made of different materials, specifically, for example, made of oxygen-free copper in consideration of cost. Can be used.
- only one optical transfer surface 134a corresponding to the optical transfer surface 34a of the first mold 31 is formed on the dummy workpiece W, but a plurality of optical transfer surfaces 134a are formed. You can also.
- the test machining shape is measured for the dummy workpiece W after the test machining obtained in step S22 (step S23).
- the three-dimensional measuring device used in step S14 is used for the measurement of the dummy workpiece W.
- the shape of the optical transfer surface 134a formed on the dummy workpiece W is measured, and the degree of deviation from the target aspherical shape of the optical transfer surface 134a is measured.
- the measurement stylus is two-dimensionally densely moved so as to perform main scanning and sub-scanning along the optical transfer surface 134a, and relatively precise information regarding the shape of the optical transfer surface 134a is obtained.
- shape information is acquired about all the optical transfer surfaces 134a.
- an error component that is, an error amount
- an error amount is extracted from the optical transfer surface 134a formed on the dummy workpiece W (step S24).
- the degree of deviation of the optical transfer surface 134a from the target aspherical shape is evaluated as an error component (error amount).
- the main controller 98 sets the second optical transfer surface 34a of each optical transfer surface 34a as an amount to be corrected to the original shape of the optical transfer surface 134a after the test processing.
- a correction amount (hereinafter also referred to as a correction amount) is determined (step S25). That is, the measured deviation data (axisymmetric component) from the design value of the optical transfer surface 134a is stored in the main controller 98 as the second correction amount (correction amount) constituting a part of the axially symmetric processing data. Specifically, deviation data from the design value is extracted as an axially symmetric component (for example, an aspheric shape).
- the test process can be performed by incorporating the already obtained second correction amount. That is, for the second correction amount, by repeating steps S22 to S25 while feeding back the result of the test process, a more accurate and appropriate second correction amount can be set as in the conventional method.
- step S26 Thereafter, if there is another type of axially symmetric surface (optical transfer surface 34a) corresponding to the initial data (Y in step S26), the process returns to step S22 to test-process another type of axially symmetric surface in the initial data. .
- the subsequent processing is the same (steps S22 to S25). By repeating this, the second correction amount is determined for all types of axially symmetric surfaces (optical transfer surface 34a) (step S25).
- the second correction amount (correction amount) is determined for the axially symmetric surface (optical transfer surface 34a) corresponding to all types of design values (N in step S26)
- the axially symmetric processing data created in step S11 is corrected.
- Non-axisymmetric machining data is obtained (step 1). Specifically, the first correction amount obtained in step S16 is added to the original axisymmetric machining data as a correction term relating to the whole, and the second correction amount obtained in step S25 is further added to the corresponding optical transfer surface 34a. Is added as a correction term for.
- the second correction amount and the like have been obtained for the optical transfer surface 34a of the first mold 31.
- the second transfer amount 35a of the second mold 32 is also determined by the same method as in steps S22 to S27.
- a correction amount or the like is obtained (step S28).
- the first and second molding dies 31, 32 are produced by the machining apparatus 90 of FIG.
- the lens array 10 is manufactured using (Step S29).
- the manufacturing process and molding conditions of the lens array 10 are matched with those of the prototype lens array 10 in step S13.
- the lens array 10 obtained by the above method has a shape close to the shape as originally designed, and the lens array 10 having the target accuracy can be obtained by a quick and simple method.
- the lens array 10 obtained by the above method is subjected to precise shape measurement using a three-dimensional measuring device, and the result is fitted with an aspherical expression, a free-form expression, etc., and the reciprocals of these fitting expressions are obtained.
- the shape correction terms of the molds 31 and 32 By feeding back as the shape correction terms of the molds 31 and 32, the shape of the lens array 10 can be brought closer to the design value more accurately. Even if such additional finishing correction is performed, the correction term is made highly accurate at an earlier stage than when precise two-dimensional shape measurement is performed from the beginning on the prototype lens array 10 using a three-dimensional measuring device.
- the drive-in is quick, and the time and labor from the design of the lens array 10 to the start of mass production can be greatly reduced.
- the expression for the non-axisymmetric surface is based on the error amount obtained by the measurement of the lens array 10 molded by the molds 31 and 32 which are simulated molds. Since one correction amount is calculated (step S16), the plurality of optical transfer surfaces 34a and 35a of the molds 31 and 32 are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface (step S16). S27, S28), the lens array 10 including a plurality of axially symmetric optical surfaces 11a, 11b can be easily manufactured.
- the prototype and measurement are performed from the viewpoint of dividing the surface shape of the lens array 10 into the components of the axially symmetric surface and the components of the non-axisymmetric surface, the period from the prototype of the lens array 10 to the completion of the finished product is shortened. , That effort can be reduced.
- molding die concerning this embodiment etc. were demonstrated, the manufacturing method of the shaping
- the lens array 10 manufactured by the method of the above embodiment is not limited to one used alone, but may be a lens array as an element when a plurality of lens arrays are stacked.
- a plurality of optical transfer surfaces 134a corresponding to the plurality of types are collectively placed on the dummy workpiece W. It can also be formed.
- steps S14 and S23 are not limited to the exemplified device and method, and various devices and methods can be used.
- thermoplastic resin is supplied as a molding material between the molds 31 and 32 to perform molding.
- a photocurable resin, a thermosetting resin, or the like can be used instead of the thermoplastic resin.
- the same molding die as that described in the above embodiment can be used to mold a 3 ⁇ 3 lens array and a 5 ⁇ 5 or more lens array. it can.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Provided is a method for producing a mold for a lens array with which production is possible in a relatively short time with a simple technique. A first correction amount, which is an expression of a non-axisymmetric surface, is calculated on the basis of an amount of error obtained by measuring a lens array (10) molded with a mold (31, 32) which is a model mold (step S16), and a plurality of optical transfer surfaces (34a, 35a) on the mold (31, 32) are processed on the basis of an expression of an axisymmetric surface and the expression of the non-axisymmetric surface (steps S27 and S28). Thus, it is possible to easily produce a lens array (10) having a plurality of axisymmetric optical surfaces (11a, 11b).
Description
本発明は、レンズアレイを成形するための成形型の製造方法及びかかる成形型を用いるレンズアレイの製造方法に関する。
The present invention relates to a method for manufacturing a mold for molding a lens array and a method for manufacturing a lens array using such a mold.
レンズアレイの加工方法として、金型となるワークを準備し、最初に中央の1つのアレイ要素に対応する部分を加工し、金型全体に対する偏芯誤差及び形状誤差を計測し、その後、偏芯誤差及び形状誤差が許容値以下となるように加工データを修正し、修正された加工データによって他の全てのアレイ要素に対応する部分を加工するものが存在する(特許文献1参照)。この加工方法に関しては、実際に成形されたアレイ形状素子のそり及び収縮による変形を形状誤差として測定し、加工工具の切込み量を変化させることで、そり及び収縮を補正することも説明されている。
As a processing method of the lens array, a work to be a mold is prepared, a part corresponding to one array element in the center is first processed, and an eccentric error and a shape error with respect to the entire mold are measured. There is a technique in which machining data is corrected so that an error and a shape error are equal to or less than allowable values, and parts corresponding to all other array elements are processed using the corrected machining data (see Patent Document 1). Regarding this processing method, it is also described that warpage and shrinkage are corrected by measuring the deformation due to warpage and shrinkage of the actually shaped array-shaped element as a shape error and changing the cutting depth of the machining tool. .
しかしながら、上記特許文献1に記載の方法では、個々のアレイ要素を含めたアレイ形状素子の形状を測定して理想値からのずれを計測するので、測定に長時間を要し、測定の最初から最後まで測定精度を維持することも容易でない。また、個々のアレイ素子について理想値からのずれを工具の軌跡に変換する作業も必ずしも容易でなく、試作から完成品を得るまでの時間と労力とが膨大なものとなる可能性がある。
However, in the method described in Patent Document 1, since the deviation from the ideal value is measured by measuring the shape of the array-shaped element including the individual array elements, the measurement takes a long time, and from the beginning of the measurement. It is not easy to maintain measurement accuracy until the end. Moreover, the operation | work which converts the deviation | shift from an ideal value into the locus | trajectory of a tool about each array element is not necessarily easy, and time and labor from a prototype to obtaining a completed product may become enormous.
本発明は、上記背景技術の問題に鑑みてなされたものであり、簡易な手法によって比較的短時間での作製を可能にする、レンズアレイ用の成形型の製造方法を提供することを目的とする。
また、本発明は、上記製造方法によって得られる成形型を用いるレンズアレイの製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and an object of the present invention is to provide a method for manufacturing a mold for a lens array, which can be manufactured in a relatively short time by a simple method. To do.
It is another object of the present invention to provide a method for manufacturing a lens array using a mold obtained by the above manufacturing method.
また、本発明は、上記製造方法によって得られる成形型を用いるレンズアレイの製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and an object of the present invention is to provide a method for manufacturing a mold for a lens array, which can be manufactured in a relatively short time by a simple method. To do.
It is another object of the present invention to provide a method for manufacturing a lens array using a mold obtained by the above manufacturing method.
本発明に係る第1の成形型の製造方法は、レンズアレイを成形するため複数の光学転写面を有する成形型の製造方法であって、軸対称面の表現式に基づいて複数の光学転写面を加工することによって模擬型を作製し、模擬型によって成形されたレンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、軸対称面の表現式と非軸対称面の表現式とに基づいて成形型の複数の光学転写面の加工を行う。ここで、表現式とは、変数、演算式等を含む一般的数式に限らず、関数的な点を集めたデータテーブルのようなものも含むものとする。
A first mold manufacturing method according to the present invention is a mold manufacturing method having a plurality of optical transfer surfaces for molding a lens array, and a plurality of optical transfer surfaces based on an expression of an axially symmetric surface. A non-axisymmetric plane expression is calculated based on the amount of error obtained by measuring the lens array molded by the mock mold. A plurality of optical transfer surfaces of the mold are processed based on the surface expression. Here, the expression is not limited to a general mathematical expression including variables, arithmetic expressions, and the like, but also includes a data table in which functional points are collected.
上記製造方法では、模擬型によって成形されたレンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、軸対称面の表現式と非軸対称面の表現式とに基づいて成形型の複数の光学転写面の加工を行うので、軸対称型の複数の光学面を備えるレンズアレイの成形型の製造を簡便なものとできる。つまり、レンズアレイの面形状を軸対称面の成分と非軸対称面の成分とに分けた観点で試作や計測を行うので、レンズアレイの試作から完成品を得るまでの期間を短くし、その労力を軽減することができる。
In the above manufacturing method, the expression of the non-axisymmetric surface is calculated based on the error amount obtained by the measurement of the lens array formed by the simulated mold, and the expression of the axially symmetric surface and the expression of the non-axisymmetric surface are calculated. Since the processing of the plurality of optical transfer surfaces of the mold is performed based on this, it is possible to easily manufacture the mold of the lens array including the plurality of axially symmetric optical surfaces. In other words, since the prototype and measurement are performed from the viewpoint of dividing the surface shape of the lens array into the components of the axisymmetric surface and the components of the non-axisymmetric surface, the period from the prototype of the lens array to the completion of the finished product is shortened. Labor can be reduced.
本発明の具体的な側面によれば、上記製造方法において、非軸対称面の表現式は、光軸が通る頂点位置の目標値からのずれ量、及び目標とする非球面形状からのずれ量の少なくとも一方を使用して表現される表現式である。
According to a specific aspect of the present invention, in the above manufacturing method, the expression of the non-axisymmetric surface includes the deviation amount from the target value of the vertex position through which the optical axis passes and the deviation amount from the target aspherical shape. An expression expressed using at least one of the following.
本発明の別の側面によれば、非軸対称面の表現式は、光学転写面の頂点位置の目標値からのずれ量を自由曲面式で定義した表現式である。
According to another aspect of the present invention, the expression of the non-axisymmetric surface is an expression in which the deviation amount from the target value of the vertex position of the optical transfer surface is defined by a free-form surface expression.
本発明の別の側面によれば、非軸対称面の表現式による最大の補償量は10μmである。この場合、非軸対称面に関連する補償量が比較的小さく、成形型の形状精度を比較的高めやすい。
According to another aspect of the present invention, the maximum compensation amount according to the expression of the non-axisymmetric surface is 10 μm. In this case, the amount of compensation related to the non-axisymmetric surface is relatively small, and the shape accuracy of the mold is relatively easy to increase.
本発明に係る第2の成形型の製造方法は、レンズアレイを成形するため複数の光学転写面を有する成形型の製造方法であって、設計値である軸対称加工データに基づいて複数の光学転写面を加工することによって模擬型を作製し、模擬型によって成形されたレンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、設計値に対しテスト加工で得た修正量を加算した軸対称面の表現式を算出し、軸対称面の表現式と非軸対称面の表現式とに基づいて成形型の複数の光学転写面の加工を行う。
A second mold manufacturing method according to the present invention is a mold manufacturing method having a plurality of optical transfer surfaces for molding a lens array, and a plurality of optical molds based on axisymmetric processing data as design values. A simulated mold is produced by processing the transfer surface, and the expression of the non-axisymmetric surface is calculated based on the error amount obtained by measuring the lens array molded by the simulated mold. The expression of the axially symmetric surface to which the correction amount is added is calculated, and a plurality of optical transfer surfaces of the mold are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface.
上記製造方法では、模擬型によって成形されたレンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、設計値に対しテスト加工で得た修正量を加算した軸対称面の表現式を算出し、軸対称面の表現式と非軸対称面の表現式とに基づいて成形型の複数の光学転写面の加工を行うので、軸対称型の複数の光学面を備えるレンズアレイの成形型の製造を簡便なものとできる。特に、軸対称面の表現式が設計値に対しテスト加工で得た修正量を加算したものであることにより、レンズアレイを構成する要素レンズの形状精度を高めることができる。
In the above manufacturing method, the expression of the non-axisymmetric surface is calculated based on the amount of error obtained by the measurement of the lens array molded by the simulated mold, and the design value is added to the correction amount obtained by the test processing. Since the surface expression is calculated and the plurality of optical transfer surfaces of the molding die are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface, a plurality of axially symmetric optical surfaces are provided. The manufacturing of the lens array mold can be simplified. In particular, when the expression of the axially symmetric surface is obtained by adding the correction amount obtained by the test processing to the design value, the shape accuracy of the element lenses constituting the lens array can be increased.
本発明の別の側面によれば、テスト加工は、成形型の材料とは異なる材料に対して行われる。この場合、テスト加工を迅速で安価なものとすることが容易となる。
According to another aspect of the present invention, the test processing is performed on a material different from the material of the mold. In this case, it becomes easy to make test processing quick and inexpensive.
本発明の別の側面によれば、成形型は、複数の光学転写面として、軸対称面の表現式の設計値が異なる複数種類の光学転写面を有し、軸対称面の表現式は、複数種類の光学転写面に対応する複数種類の設計値に対してテスト加工で得た複数の修正量をそれぞれ加算したものである。この場合、レンズアレイが複数タイプの要素レンズを含む場合に対応できる。なお、複数タイプの要素レンズは、対応波長が異なるもの、視野が異なるもの等とすることができる。
According to another aspect of the present invention, the mold has, as a plurality of optical transfer surfaces, a plurality of types of optical transfer surfaces having different design values for the expression of the axially symmetric surface, and the expression of the axially symmetric surface is: A plurality of correction values obtained by test processing are added to a plurality of types of design values corresponding to a plurality of types of optical transfer surfaces. In this case, it is possible to cope with a case where the lens array includes a plurality of types of element lenses. Note that the plural types of element lenses may have different corresponding wavelengths, different fields of view, and the like.
本発明の別の側面によれば、複数の光学転写面は、互いに平行な光軸を有し、複数の光学転写面は、光軸に平行な回転軸を有する工具によって加工する。この場合、工具によって成形型上に加工される複数の光学転写面の形状を揃え易く、加工精度を高め易い。
According to another aspect of the present invention, the plurality of optical transfer surfaces have optical axes parallel to each other, and the plurality of optical transfer surfaces are processed by a tool having a rotation axis parallel to the optical axis. In this case, it is easy to align the shapes of the plurality of optical transfer surfaces processed on the mold by the tool, and it is easy to improve the processing accuracy.
本発明の別の側面によれば、非軸対称面の表現式は、自由曲面式であり、軸対称面は、非球面式である。
According to another aspect of the present invention, the expression of the non-axisymmetric surface is a free-form surface equation, and the axisymmetric surface is an aspheric surface equation.
本発明に係るレンズアレイの製造方法は、上記製造方法によって得た成形型を用いて成形を行う工程を有する。
The manufacturing method of the lens array according to the present invention includes a step of performing molding using the molding die obtained by the above manufacturing method.
上記製造方法では、上記成形型の製造方法によって得た成形型を用いて成形を行うので、軸対称型の複数の光学面を備えるレンズアレイの製造を簡便なものとでき、レンズアレイの試作から完成品を得るまでの期間を短くし、その労力を軽減することができる。
In the manufacturing method, since the molding is performed using the molding die obtained by the manufacturing method of the molding die, it is possible to easily manufacture a lens array having a plurality of axially symmetric optical surfaces. The time required to obtain a finished product can be shortened, and the labor can be reduced.
以下、図面を参照して、本発明の一実施形態に係る成形型の製造方法について具体的に説明する。
Hereinafter, with reference to the drawings, a method for manufacturing a mold according to an embodiment of the present invention will be specifically described.
図1に示す成形装置30は、一対の成形型31,32を備え、両成形型31,32を駆動装置40によってZ軸に平行なAB方向に相対的に変位させることにより、両成形型31,32を開閉させることができるようになっている。両成形型31,32を突き合わせる型閉じによって、両者に設けた成形面31t,32tに囲まれた型空間が形成され、この型空間中に溶融樹脂を注入することで、成形面31t,32tに対応する外形を有する成形品すなわちレンズアレイを得ることができる。
A molding apparatus 30 shown in FIG. 1 includes a pair of molding dies 31 and 32, and both molding dies 31 and 32 are relatively displaced in the AB direction parallel to the Z axis by a driving device 40, whereby both molding dies 31 are provided. , 32 can be opened and closed. A mold space surrounded by molding surfaces 31t and 32t provided on both mold dies 31 and 32 is formed by closing the molds 31 and 32. By injecting molten resin into the mold spaces, the molding surfaces 31t and 32t are formed. It is possible to obtain a molded article, that is, a lens array, having an outer shape corresponding to.
第1の成形型31は、成形面31tを形成するコア部分31aと、コア部分31aを支持する周囲部分31bとを備える。コア部分31aの第1の成形型31側の端面には、XY面に平行にマトリックス状に配列された多数の光学転写面34aと、光学転写面34aの周囲に形成された支持部転写面34bとが形成されている(図2参照)。各光学転写面34aは、レンズアレイを構成する要素レンズの光学面を反転した非球面であり、Z軸に平行に延びる光軸TXを有している。つまり、格子点上に配列された多数の光学転写面34aは、互いに平行な光軸TXを有する同一又は類似の非球面となっている。支持部転写面34bは、中央側と外周側とで若干の段差があるが、各面43d,43eは、平坦であり、XY面に平行に延びている。
コア部分31aは、例えばステンレス、超鋼その他の鋼材を基材として形成したものであり、光学転写面34a等は、基材を被覆するNiPメッキ層の表面の仕上げ加工によって形成されている。さらに、コア部分31aの表面全体を離型剤で被覆することもできる。
周囲部分31bの端面は、第1の成形型31を第2の成形型32に突き合わせる際に利用されるパーティング面PA1となっている。 The 1st shaping |molding die 31 is provided with the core part 31a which forms the molding surface 31t, and the surrounding part 31b which supports the core part 31a. The end surface of the core portion 31a on the first mold 31 side has a large number of optical transfer surfaces 34a arranged in a matrix parallel to the XY plane, and a support transfer surface 34b formed around the optical transfer surface 34a. Are formed (see FIG. 2). Each optical transfer surface 34a is an aspheric surface obtained by inverting the optical surface of the element lens constituting the lens array, and has an optical axis TX extending in parallel with the Z axis. That is, a large number of optical transfer surfaces 34a arranged on the lattice points are the same or similar aspheric surfaces having optical axes TX parallel to each other. The support portion transfer surface 34b has a slight level difference between the center side and the outer peripheral side, but the surfaces 43d and 43e are flat and extend parallel to the XY plane.
Thecore portion 31a is formed by using, for example, stainless steel, super steel, or other steel as a base material, and the optical transfer surface 34a or the like is formed by finishing the surface of the NiP plating layer that covers the base material. Furthermore, the entire surface of the core portion 31a can be covered with a release agent.
The end surface of theperipheral portion 31b is a parting surface PA1 used when the first molding die 31 is abutted against the second molding die 32.
コア部分31aは、例えばステンレス、超鋼その他の鋼材を基材として形成したものであり、光学転写面34a等は、基材を被覆するNiPメッキ層の表面の仕上げ加工によって形成されている。さらに、コア部分31aの表面全体を離型剤で被覆することもできる。
周囲部分31bの端面は、第1の成形型31を第2の成形型32に突き合わせる際に利用されるパーティング面PA1となっている。 The 1st shaping |
The
The end surface of the
第2の成形型32は、成形面32tを形成するコア部分32aと、コア部分32aを支持する周囲部分32bとを備える。コア部分32aの第2の成形型32側の端面には、XY面に平行にマトリックス状に配列された多数の光学転写面35aと、光学転写面35aの周囲に形成された支持部転写面35bとが形成されている。各光学転写面35aは、レンズアレイを構成する要素レンズの光学面を反転した非球面であり、Z軸に平行に延びる光軸TXを有している。支持部転写面35bは、中央側と外周側とで2段となっているが、各面45d,45eは、平坦であり、XY面に平行に延びている。
コア部分32aは、例えばステンレス、超鋼その他の鋼材を基材として形成したものであり、光学転写面35a等は、基材を被覆するNiPメッキ層の表面の仕上げ加工によって形成されている。さらに、コア部分32aの表面全体を離型剤で被覆することもできる。
周囲部分32bの端面は、第2の成形型32を第1の成形型31に突き合わせる際に利用されるパーティング面PA2となっている。 The 2nd shaping | molding die 32 is provided with thecore part 32a which forms the molding surface 32t, and the surrounding part 32b which supports the core part 32a. The end surface of the core portion 32a on the second mold 32 side has a large number of optical transfer surfaces 35a arranged in a matrix parallel to the XY plane, and a support transfer surface 35b formed around the optical transfer surface 35a. And are formed. Each optical transfer surface 35a is an aspheric surface obtained by inverting the optical surfaces of the element lenses constituting the lens array, and has an optical axis TX extending in parallel with the Z axis. The support portion transfer surface 35b has two steps on the center side and the outer peripheral side, but the surfaces 45d and 45e are flat and extend in parallel to the XY plane.
Thecore portion 32a is formed by using, for example, stainless steel, super steel, or other steel as a base material, and the optical transfer surface 35a and the like are formed by finishing the surface of the NiP plating layer that covers the base material. Furthermore, the entire surface of the core portion 32a can be covered with a release agent.
The end surface of theperipheral portion 32 b is a parting surface PA <b> 2 that is used when the second mold 32 is brought into contact with the first mold 31.
コア部分32aは、例えばステンレス、超鋼その他の鋼材を基材として形成したものであり、光学転写面35a等は、基材を被覆するNiPメッキ層の表面の仕上げ加工によって形成されている。さらに、コア部分32aの表面全体を離型剤で被覆することもできる。
周囲部分32bの端面は、第2の成形型32を第1の成形型31に突き合わせる際に利用されるパーティング面PA2となっている。 The 2nd shaping | molding die 32 is provided with the
The
The end surface of the
図2に示すように、第1の成形型31を構成するコア部分31aの成形面31tは、後に詳述する加工装置に設けた切削工具80によって形成される。切削工具80は、例えばエンドミル等で形成され、Z軸又は光軸TXに対して原則として平行に設定される回転軸RXの周りに高速で回転させることができ、回転軸RXの姿勢を保ったままでコア部分31aに対してXYZの3軸の方向に任意のタイミング及び速度で移動させることができる。成形面31tを構成する各光学転写面34aは、切削工具80によって順次個別に研削され順次個別に仕上げられる。各光学転写面34aは、基本的に光軸TXを基準とする軸対称又は回転対称な形状をそれぞれ有するが、若干の修正を施した形状とすることもできる。例えば切削工具80の先端部81aを回転軸RXの周りに自転させつつ光軸TXの周りに旋回させるように動作させることにより、得られる光学転写面34aが光軸TXの周りに高い対称性を有する状態を確保することができる。支持部転写面34bは、切削工具80によって光学転写面34aの加工後又は加工前に形成される。この際、例えば切削工具80をXY面に沿って直線的に移動させつつ垂直な方向に徐々にずらして行く走査を行う。支持部転写面34bは、本来、XY面に平行な平坦面であるが、完成品の形状誤差を相殺するように形状補正が行われ、一般的には自由曲面式で定義されるような不規則なうねり形状を有するものとなる。
As shown in FIG. 2, the molding surface 31t of the core portion 31a constituting the first molding die 31 is formed by a cutting tool 80 provided in a machining apparatus described in detail later. The cutting tool 80 is formed by an end mill, for example, and can be rotated at high speed around a rotation axis RX set in parallel with the Z axis or the optical axis TX in principle, and the posture of the rotation axis RX is maintained. The core portion 31a can be moved at arbitrary timing and speed in the directions of the three axes XYZ. Each optical transfer surface 34a constituting the molding surface 31t is individually ground and sequentially finished by the cutting tool 80. Each optical transfer surface 34a basically has an axially symmetric or rotationally symmetric shape with respect to the optical axis TX, but may have a slightly modified shape. For example, the optical transfer surface 34a obtained has high symmetry around the optical axis TX by causing the tip 81a of the cutting tool 80 to rotate around the optical axis TX while rotating around the rotation axis RX. It is possible to ensure the state of having. The support portion transfer surface 34b is formed by the cutting tool 80 after or before the processing of the optical transfer surface 34a. At this time, for example, scanning is performed in which the cutting tool 80 is linearly moved along the XY plane and gradually shifted in the vertical direction. The support portion transfer surface 34b is originally a flat surface parallel to the XY plane, but is subjected to shape correction so as to cancel out the shape error of the finished product, and is generally not defined as a free-form surface equation. It has a regular waviness shape.
図3A及び3Bを参照して、図1に示す成形装置30によって作製される成形品としてのレンズアレイ10について説明する。レンズアレイ10は、光学材料である熱可塑性樹脂で形成された一体物であり、外枠を備えた矩形(正方形を含む)の輪郭を有する。レンズアレイ10は、それぞれが光学素子である複数のレンズ要素10aと、複数のレンズ要素10aを周囲から支持するフランジ部10fとを有する。フランジ部10fは、レンズ要素10a間にあるレンズ間フランジ部10cと、第1レンズアレイ10の外周部にある外周フランジ部10dとからなる。第1レンズアレイ10を構成する複数のレンズ要素10aは、xy面に平行に配列された矩形型の格子点(図示の例では4×4の16点)上に光軸OAを互いに平行にした状態で2次元的に配置されている。各レンズ要素10aは、第1主面10pにおいて凸の光学面11aを有し、第2主面10qにおいて凸の光学面11bを有し、両光学面11a,11bは、軸対称面であり、具体的には例えば非球面である。レンズ間フランジ部10cは、平板状の平坦部であり、物体側にフランジ面11cを有し、像側にフランジ面11dを有する。外周フランジ部10dは、矩形枠状の肉厚部分であり、レンズアレイ10を他のレンズアレイやホルダー等に固定する際のスペーサーとして機能する。
3A and 3B, the lens array 10 as a molded product produced by the molding apparatus 30 shown in FIG. 1 will be described. The lens array 10 is an integral body formed of a thermoplastic resin, which is an optical material, and has a rectangular (including square) outline with an outer frame. The lens array 10 includes a plurality of lens elements 10a, each of which is an optical element, and a flange portion 10f that supports the plurality of lens elements 10a from the periphery. The flange portion 10 f includes an inter-lens flange portion 10 c between the lens elements 10 a and an outer peripheral flange portion 10 d at the outer peripheral portion of the first lens array 10. The plurality of lens elements 10a constituting the first lens array 10 have optical axes OA parallel to each other on rectangular lattice points (16 × 4 × 4 in the illustrated example) arranged in parallel to the xy plane. It is arranged in a two-dimensional state. Each lens element 10a has a convex optical surface 11a on the first main surface 10p, a convex optical surface 11b on the second main surface 10q, and both optical surfaces 11a and 11b are axisymmetric surfaces, Specifically, it is an aspherical surface, for example. The inter-lens flange portion 10c is a flat plate-like flat portion having a flange surface 11c on the object side and a flange surface 11d on the image side. The outer peripheral flange portion 10d is a rectangular frame-shaped thick portion, and functions as a spacer when the lens array 10 is fixed to another lens array, a holder, or the like.
図4は、図1に示す第1及び第2の成形型31,32の成形面31t,32tを加工するために用いられる加工装置の構造の一例を模式的に説明するブロック図である。加工装置100は、ワークWを支持しつつ切削工具80を相対的に移動させる切削加工を可能にするNC駆動機構91と、NC駆動機構91の動作を制御する駆動制御装置97と、装置全体の動作を統括的に制御する主制御装置98とを備える。NC駆動機構91は、台座94a上に第1加工ステージ94bと第2加工ステージ94cとを載置した構造を有する。ここで、第1加工ステージ94bは、第1可動部95aを支持しており、この第1可動部95aは、ステージ部95bを介してワークWを間接的に支持している。第1加工ステージ94bは、第1可動部95a及びステージ部95bをγ軸に平行な回転軸RAのまわりに回転させることができ、第1可動部95aは、ステージ部95bを介してワークWを支持つつ例えばα及びβ軸方向に沿った所望の位置に配置することができる。つまり、ワークWを、その表面Wa上の任意の点を通って表面Wa全体に対して略垂直な方向に延びる回転軸RAのまわりに、所望の速度で回転させることができる。一方、第2加工ステージ94cは、第2可動部95cを支持しており、この第2可動部95cは、切削工具80を支持している。第2加工ステージ94cは、第2可動部95c及び切削工具80を支持して、これらを例えばα及びβ軸方向に沿った所望の位置に所望の速度で移動させることができる。また、第2可動部95cは、切削工具80を支持して、これを例えばγ軸方向に沿った所望の位置に所望の速度で移動させることができる。また、第2可動部95cは、切削工具80を、例えばその先端部81aを通ってγ軸に平行な回転軸RXの周りに旋回させることができ、必要ならば先端部81aを通る鉛直旋回軸の周りに切削工具80を所望角度だけ回転又は傾斜させて切削工具80の姿勢を調節することもできる。
FIG. 4 is a block diagram schematically illustrating an example of the structure of a processing apparatus used for processing the molding surfaces 31t and 32t of the first and second molding dies 31 and 32 shown in FIG. The machining apparatus 100 includes an NC drive mechanism 91 that enables cutting that relatively moves the cutting tool 80 while supporting the workpiece W, a drive control apparatus 97 that controls the operation of the NC drive mechanism 91, and an overall apparatus. And a main controller 98 that controls the operation in an integrated manner. The NC drive mechanism 91 has a structure in which a first processing stage 94b and a second processing stage 94c are placed on a pedestal 94a. Here, the first processing stage 94b supports the first movable part 95a, and the first movable part 95a indirectly supports the workpiece W via the stage part 95b. The first processing stage 94b can rotate the first movable portion 95a and the stage portion 95b around a rotation axis RA parallel to the γ axis, and the first movable portion 95a moves the workpiece W via the stage portion 95b. For example, it can be arranged at a desired position along the α and β axis directions while being supported. That is, the workpiece W can be rotated at a desired speed around the rotation axis RA extending in a direction substantially perpendicular to the entire surface Wa through an arbitrary point on the surface Wa. On the other hand, the second machining stage 94c supports the second movable portion 95c, and the second movable portion 95c supports the cutting tool 80. The second processing stage 94c can support the second movable portion 95c and the cutting tool 80, and move them to desired positions along, for example, the α and β axis directions at a desired speed. Further, the second movable portion 95c can support the cutting tool 80 and move it to a desired position along the γ-axis direction at a desired speed, for example. Further, the second movable portion 95c can turn the cutting tool 80, for example, around the rotation axis RX parallel to the γ axis through the tip portion 81a, and if necessary, a vertical turning axis passing through the tip portion 81a. It is also possible to adjust the posture of the cutting tool 80 by rotating or tilting the cutting tool 80 about a desired angle.
駆動制御装置97は、高精度の数値制御を可能にするものであり、NC駆動機構91に内蔵されたモーターや位置センサー等を主制御装置98の制御下で駆動することによって、第1及び第2加工ステージ94b,94cや第1及び第2可動部95a,95cを目的とする状態に適宜動作させる。例えば、第1加工ステージ94bによって、ワークWを回転軸RAのまわりに高速で回転させる。この際、第1可動部95aによってワークWの旋回中心を多数の光軸TXとなるべき位置のうち、いずれか1つの位置と一致させることができる。一方、第2加工ステージ94cによって、切削工具80の先端部81aの加工点を最初に回転軸RA上に配置し、先端部81aをα又はβ軸方向に低速で移動(送り動作)させる。これと並行して、第2可動部95cは、切削工具80を回転軸RXの周りに回転させつつ、その先端部81aをγ軸方向に徐々に進退移動させる。これにより、NC駆動機構91を加工位置を変更できる旋盤として動作させることができ、ワークW上の任意の位置に所望の形状を有する凹又は凸の軸対称面を形成することができ、例えば図2に示すような成形面31tを有するコア部分31aを得ることができる。
The drive control device 97 enables high-precision numerical control, and drives the motor and the position sensor built in the NC drive mechanism 91 under the control of the main control device 98, so that the first and the first The two processing stages 94b and 94c and the first and second movable parts 95a and 95c are appropriately operated to a target state. For example, the workpiece W is rotated around the rotation axis RA at a high speed by the first processing stage 94b. At this time, the turning center of the workpiece W can be made to coincide with any one of the positions to be the many optical axes TX by the first movable portion 95a. On the other hand, the machining point of the tip 81a of the cutting tool 80 is first placed on the rotation axis RA by the second machining stage 94c, and the tip 81a is moved (feeded) at a low speed in the α or β axis direction. In parallel with this, the second movable portion 95c gradually moves the tip portion 81a forward and backward in the γ-axis direction while rotating the cutting tool 80 around the rotation axis RX. Accordingly, the NC drive mechanism 91 can be operated as a lathe capable of changing the machining position, and a concave or convex axisymmetric surface having a desired shape can be formed at an arbitrary position on the workpiece W. A core portion 31a having a molding surface 31t as shown in FIG.
主制御装置98は、ワークWの加工形状に関する情報を保管する記憶部(不図示)を有している。ワークWの加工形状に関する情報は、第1及び第2加工ステージ94b,94cや第1及び第2可動部95a,95cを動作させる工程を含んでおり、より具体的には、コア部分31a,32aの成形面31t,32tの形状や、この形状を得るためこの形状から導き出せるワークWの表面Waに対しての切削工具80の先端部81aの相対的な移動の軌跡を記憶することができる。つまり、主制御装置98は、設計上の成形面31t,32tの形状だけでなく、目的とする成形品形状を得るために補正又は修正を施した成形面31t,32tの形状を記憶する。コア部分31a,32aの成形面31t,32tのうち、光学転写面34a,35aは、本来の設計上、光軸TXを基準とする回転対称な軸対称面として格子点上に配置され、支持部転写面34b,35bは、光軸TXに垂直な平坦面とされる。このような形状やこれに対応する切削工具80の軌跡のデータは、軸対称な面形状に対応するものであり、以下では軸対称加工データとも呼ぶ。複数の光学転写面34a,35aの頂点は、本来の設計上は同一平面上にあるが、成形後を考慮して補正が施された場合、間隔が相対的に増減変化し、自由曲面式で定義されるような非軸対称面(うねり面)上に配置される。同様に、支持部転写面34b,35bも、補正が施された場合、このようなうねり形状を有する面に補正される。このような形状やこれに対応する切削工具80の軌跡のデータは、上記軸対称加工データと異なって、非軸対称な面形状に対応するものであり、以下では非軸対称加工データとも呼ぶ。
The main controller 98 has a storage unit (not shown) that stores information related to the machining shape of the workpiece W. The information regarding the machining shape of the workpiece W includes a step of operating the first and second machining stages 94b and 94c and the first and second movable parts 95a and 95c, and more specifically, the core portions 31a and 32a. The shape of the molding surfaces 31t and 32t, and the locus of relative movement of the tip 81a of the cutting tool 80 with respect to the surface Wa of the workpiece W that can be derived from this shape in order to obtain this shape can be stored. That is, the main controller 98 stores not only the shape of the designed molding surfaces 31t and 32t, but also the shape of the molding surfaces 31t and 32t that have been corrected or corrected to obtain the desired molded product shape. Of the molding surfaces 31t and 32t of the core portions 31a and 32a, the optical transfer surfaces 34a and 35a are arranged on lattice points as axially symmetric surfaces that are rotationally symmetric with respect to the optical axis TX in the original design. The transfer surfaces 34b and 35b are flat surfaces perpendicular to the optical axis TX. Data of such a shape and the trajectory of the cutting tool 80 corresponding to this shape corresponds to an axially symmetric surface shape, and is hereinafter also referred to as axially symmetric processing data. The vertices of the plurality of optical transfer surfaces 34a and 35a are on the same plane in the original design. However, when correction is made in consideration of after molding, the interval is relatively increased or decreased, and is expressed by a free-form surface formula. It is arranged on a non-axisymmetric surface (swell surface) as defined. Similarly, the support portion transfer surfaces 34b and 35b are also corrected to surfaces having such a wavy shape when correction is performed. Unlike the above-described axially symmetric processing data, such a shape and the corresponding locus data of the cutting tool 80 correspond to a non-axisymmetric surface shape and are also referred to as non-axisymmetric processing data below.
以下、図5を参照して、図1、2等に示す成形型31のコア部分31aの製造方法等について説明する。まず、目的とする成形面31tを加工するための軸対称加工データを作成する(ステップS11)。ここで、成形面31t用の軸対称加工データは、目的とするレンズアレイ10の形状の設計値に対応するものであり、軸対称面の表現式に基づくものとなっている。具体的には、軸対称加工データは、レンズ要素10aを転写するための光学転写面34aに対応する非球面を4×4の格子点に配列したものとなっている。ここで、各非球面の形状は、公知の非球面式で表現することができ、具体的には光学転写面34aの頂点を原点とし、光軸TXの方向にZ軸をとり、光軸TXと垂直方向の高さをhとして、以下の数式又は表現式で表す。
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
なお、光学転写面34aの目標とする形状は、一般的には上記非球面式によって表現されるが、レンズアレイ10の目的等に応じて好ましい特性が得られるように非球面式の係数Aiが調整される。 Hereinafter, with reference to FIG. 5, the manufacturing method of thecore part 31a of the shaping | molding die 31 shown in FIG. First, axisymmetric processing data for processing the target molding surface 31t is created (step S11). Here, the axially symmetric processing data for the molding surface 31t corresponds to the design value of the shape of the target lens array 10, and is based on the expression of the axially symmetric surface. Specifically, the axially symmetric processing data is obtained by arranging aspheric surfaces corresponding to the optical transfer surface 34a for transferring the lens element 10a at 4 × 4 lattice points. Here, the shape of each aspheric surface can be expressed by a known aspherical expression. Specifically, the vertex of the optical transfer surface 34a is the origin, the Z axis is taken in the direction of the optical axis TX, and the optical axis TX And the height in the vertical direction is represented by the following formula or expression.
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant The target shape of theoptical transfer surface 34a is generally expressed by the above-mentioned aspherical expression, but for purposes of the lens array 10, etc. Accordingly, the aspherical coefficient Ai is adjusted so as to obtain preferable characteristics.
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
なお、光学転写面34aの目標とする形状は、一般的には上記非球面式によって表現されるが、レンズアレイ10の目的等に応じて好ましい特性が得られるように非球面式の係数Aiが調整される。 Hereinafter, with reference to FIG. 5, the manufacturing method of the
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant The target shape of the
次に、上記ステップS11で決定した軸対称加工データに基づいて模擬型を予備的に作製する(ステップS12)。模擬型の試作には、図4の加工装置100を用いる。模擬型は、第1の成形型31と略同一の形状を有し試験的な成形が可能な実用的な金型であるが、成形品の形状測定からフィードバックして行われる補正がなされていない。すなわち、実際の成形では、成形型31,32が変形や傾きの影響を受ける環境に置かれ、成形品も熱工程の影響等の要因によって撓みや収縮等の変形作用を受ける。さらに、加工装置100や切削工具80の動作に起因する誤差の偏りによって設計通りに加工されず一定の傾向を有する形状となる可能性がある。このため、成形型31,32が理想的な形状を有していても、レンズアレイ10の形状を設計値通りとできず、レンズアレイ10の形状を設計値通りとするためには、むしろ後述するように、成形型31,32の成形面31t,32tを強制的に補正をかけた形状に加工することが必要となる。なお、成形面31t,32tを構成する複数の光学転写面34a,35aの形状は、同一の場合もあるが、若干異なり複数種類となる場合もある。
図4を参照して、模擬型の作製について具体的に説明する。まず、模擬型の元になるワークWをステージ部95bにセットする。ワークWは、図1に示す第1の成形型31と略同様の形状を有し、表面にNiPメッキ層が形成されているが、光学転写面34aに相当する部分が浅くなっている。その後、光学設計上の軸対称加工データに基づいて加工を行い、図1に示す第1の成形型31のコア部分31aに設ける成形面31tと同様の成形面を加工する。この際、4×4の格子点に配列された光学転写面34aを順次加工する。特定の光学転写面34aを加工するときには、第2可動部95cに支持された切削工具80を回転させながら、切削工具80の先端部81aをワークWの回転中心である光軸TXに一致させ、先端部81aが光軸TXから徐々に離れるように移動させつつ光軸TX方向にも変位させる。これにより、切削工具80の先端部81aは、非球面式に沿って螺旋を描きながら光学転写面34aを切り出す。以下、このような切削工具80の先端部81aの移動を螺旋型走査と呼ぶ。こうして特定の光学転写面34aの加工が終わると次の光学転写面34aの加工を螺旋型走査によって同様に行う。これを繰り返すことで、16個の光学転写面34aが得られる。これら光学転写面34aの頂点は、理想的にはXY面又はαβ面に平行な同一平面上にある。支持部転写面34bについては、切削工具80の先端部81aを回転させつつ、第1可動部95aを利用して、例えば平行に延びる複数の主走査線に沿って主走査させつつこれに垂直な方向に徐々に移動させる副走査を行うことで、XY面又はαβ面に略平行な平滑面とできる。このような切削工具80の先端部81aの移動をラスター型走査と呼ぶ。以上により、模擬型としての第1の成形型31を得る。
詳細な説明を省略するが、模擬型としての第2の成形型32も、模擬型としての第1の成形型31と同様に作製される。結果的に、軸対称加工データに基づいて加工された多数の光学転写面35aと、これら光学転写面35aを繋ぐ支持部転写面35bとを有する第2の成形型32を模擬型として得ることができる。本実施例では模擬型と後述する本番の型を別のものとしているが、模擬型を追加工で対応できれば本番型としても流用可能である。 Next, a simulated mold is preliminarily produced based on the axisymmetric machining data determined in step S11 (step S12). For the simulation prototype, theprocessing apparatus 100 shown in FIG. 4 is used. The simulated mold is a practical mold that has substantially the same shape as the first mold 31 and can be experimentally molded, but is not corrected by feedback from the shape measurement of the molded product. . That is, in actual molding, the molds 31 and 32 are placed in an environment that is affected by deformation and inclination, and the molded product is also subjected to deformation actions such as bending and shrinkage due to factors such as the influence of the thermal process. Furthermore, there is a possibility that a shape having a certain tendency is not processed as designed due to a deviation in error caused by the operation of the processing apparatus 100 or the cutting tool 80. For this reason, even if the molds 31 and 32 have an ideal shape, the shape of the lens array 10 cannot be made as designed, and in order to make the shape of the lens array 10 as designed, it will be described later. Thus, it is necessary to process the molding surfaces 31t and 32t of the molding dies 31 and 32 into a shape forcibly corrected. The shapes of the plurality of optical transfer surfaces 34a and 35a constituting the molding surfaces 31t and 32t may be the same, but may be slightly different and may be a plurality of types.
With reference to FIG. 4, the fabrication of the simulated mold will be specifically described. First, the workpiece W that is the basis of the simulation type is set on thestage unit 95b. The workpiece W has substantially the same shape as the first mold 31 shown in FIG. 1 and has a NiP plating layer formed on the surface, but the portion corresponding to the optical transfer surface 34a is shallow. Thereafter, processing is performed based on the axially symmetric processing data in the optical design, and a molding surface similar to the molding surface 31t provided on the core portion 31a of the first molding die 31 shown in FIG. 1 is processed. At this time, the optical transfer surfaces 34a arranged at 4 × 4 lattice points are sequentially processed. When processing the specific optical transfer surface 34a, the tip 81a of the cutting tool 80 is made to coincide with the optical axis TX, which is the rotation center of the workpiece W, while rotating the cutting tool 80 supported by the second movable portion 95c. The tip portion 81a is also displaced in the direction of the optical axis TX while being moved away from the optical axis TX. Thereby, the front-end | tip part 81a of the cutting tool 80 cuts out the optical transfer surface 34a, drawing a spiral along an aspherical type. Hereinafter, such movement of the tip 81a of the cutting tool 80 is referred to as spiral scanning. When the processing of the specific optical transfer surface 34a is finished in this way, the processing of the next optical transfer surface 34a is similarly performed by spiral scanning. By repeating this, 16 optical transfer surfaces 34a are obtained. The apexes of these optical transfer surfaces 34a are ideally on the same plane parallel to the XY plane or the αβ plane. For the support portion transfer surface 34b, the first movable portion 95a is used to rotate the tip portion 81a of the cutting tool 80, for example, while performing main scanning along a plurality of main scanning lines extending in parallel, and is perpendicular thereto. By performing sub-scanning that gradually moves in the direction, a smooth surface that is substantially parallel to the XY plane or the αβ plane can be obtained. Such movement of the tip 81a of the cutting tool 80 is referred to as raster scanning. Thus, the first mold 31 as a simulation mold is obtained.
Although a detailed description is omitted, thesecond mold 32 as a simulated mold is also produced in the same manner as the first mold 31 as a simulated mold. As a result, the second molding die 32 having a large number of optical transfer surfaces 35a processed based on the axially symmetric processing data and the support portion transfer surface 35b connecting the optical transfer surfaces 35a can be obtained as a simulation die. it can. In the present embodiment, the simulation type and the production type described later are different, but if the simulation type can be dealt with by additional machining, it can be used as the production type.
図4を参照して、模擬型の作製について具体的に説明する。まず、模擬型の元になるワークWをステージ部95bにセットする。ワークWは、図1に示す第1の成形型31と略同様の形状を有し、表面にNiPメッキ層が形成されているが、光学転写面34aに相当する部分が浅くなっている。その後、光学設計上の軸対称加工データに基づいて加工を行い、図1に示す第1の成形型31のコア部分31aに設ける成形面31tと同様の成形面を加工する。この際、4×4の格子点に配列された光学転写面34aを順次加工する。特定の光学転写面34aを加工するときには、第2可動部95cに支持された切削工具80を回転させながら、切削工具80の先端部81aをワークWの回転中心である光軸TXに一致させ、先端部81aが光軸TXから徐々に離れるように移動させつつ光軸TX方向にも変位させる。これにより、切削工具80の先端部81aは、非球面式に沿って螺旋を描きながら光学転写面34aを切り出す。以下、このような切削工具80の先端部81aの移動を螺旋型走査と呼ぶ。こうして特定の光学転写面34aの加工が終わると次の光学転写面34aの加工を螺旋型走査によって同様に行う。これを繰り返すことで、16個の光学転写面34aが得られる。これら光学転写面34aの頂点は、理想的にはXY面又はαβ面に平行な同一平面上にある。支持部転写面34bについては、切削工具80の先端部81aを回転させつつ、第1可動部95aを利用して、例えば平行に延びる複数の主走査線に沿って主走査させつつこれに垂直な方向に徐々に移動させる副走査を行うことで、XY面又はαβ面に略平行な平滑面とできる。このような切削工具80の先端部81aの移動をラスター型走査と呼ぶ。以上により、模擬型としての第1の成形型31を得る。
詳細な説明を省略するが、模擬型としての第2の成形型32も、模擬型としての第1の成形型31と同様に作製される。結果的に、軸対称加工データに基づいて加工された多数の光学転写面35aと、これら光学転写面35aを繋ぐ支持部転写面35bとを有する第2の成形型32を模擬型として得ることができる。本実施例では模擬型と後述する本番の型を別のものとしているが、模擬型を追加工で対応できれば本番型としても流用可能である。 Next, a simulated mold is preliminarily produced based on the axisymmetric machining data determined in step S11 (step S12). For the simulation prototype, the
With reference to FIG. 4, the fabrication of the simulated mold will be specifically described. First, the workpiece W that is the basis of the simulation type is set on the
Although a detailed description is omitted, the
次に、上記ステップS12で得た成形型31,32を利用してレンズアレイ10を試験的に作製する。試作のレンズアレイ10の作製工程や成形条件は、本番の作製工程や成形条件と略一致させる(ステップS13)。
図6等を参照して、レンズアレイ10を試作について具体的に説明する。図6は、レンズアレイ10を成形するための成形装置30を型空間に関して説明する図であり、図1にも示す第1及び第2の成形型31,32を一部に備える。両成形型31,32は、型合わせされてキャビティ30aを形成する。キャビティ30aには、ゲートGAを介してランナーRAが連結され、ランナーRAは、樹脂供給側のスプルーSPに繋がっている。結果的に、熱可塑性樹脂を溶融させることによって得たスプルーSPからの溶融樹脂Jは、ランナーRAを充填し、ゲートGAを介してキャビティ30aを充填する。溶融樹脂Jの冷却後に第1の成形型31と第2の成形型32とを離間させることで、スプルーSPに対応するスプルー部71と、ランナーRAに対応するランナー部72と、ゲートGAに対応するゲート部73と、キャビティ30aに対応するレンズアレイ本体74とを備える成形品70が形成される。ここで、ゲート部73に対しては、ゲートカット処理が施され、ゲート部73の先のレンズアレイ本体74によって、試作のレンズアレイ10が得られる。 Next, thelens array 10 is produced on a trial basis using the molds 31 and 32 obtained in step S12. The manufacturing process and molding conditions of the prototype lens array 10 are substantially matched with the actual manufacturing process and molding conditions (step S13).
Thelens array 10 will be specifically described with reference to FIG. FIG. 6 is a diagram for explaining the molding apparatus 30 for molding the lens array 10 with respect to the mold space, and includes first and second molding dies 31 and 32 shown in FIG. Both molds 31, 32 are mold matched to form a cavity 30a. A runner RA is connected to the cavity 30a via a gate GA, and the runner RA is connected to a sprue SP on the resin supply side. As a result, the molten resin J from the sprue SP obtained by melting the thermoplastic resin fills the runner RA and fills the cavity 30a through the gate GA. By separating the first mold 31 and the second mold 32 after cooling the molten resin J, the sprue portion 71 corresponding to the sprue SP, the runner portion 72 corresponding to the runner RA, and the gate GA are supported. A molded product 70 is formed that includes a gate portion 73 to be processed and a lens array body 74 corresponding to the cavity 30a. Here, the gate section 73 is subjected to a gate cut process, and the prototype lens array 10 is obtained by the lens array body 74 at the tip of the gate section 73.
図6等を参照して、レンズアレイ10を試作について具体的に説明する。図6は、レンズアレイ10を成形するための成形装置30を型空間に関して説明する図であり、図1にも示す第1及び第2の成形型31,32を一部に備える。両成形型31,32は、型合わせされてキャビティ30aを形成する。キャビティ30aには、ゲートGAを介してランナーRAが連結され、ランナーRAは、樹脂供給側のスプルーSPに繋がっている。結果的に、熱可塑性樹脂を溶融させることによって得たスプルーSPからの溶融樹脂Jは、ランナーRAを充填し、ゲートGAを介してキャビティ30aを充填する。溶融樹脂Jの冷却後に第1の成形型31と第2の成形型32とを離間させることで、スプルーSPに対応するスプルー部71と、ランナーRAに対応するランナー部72と、ゲートGAに対応するゲート部73と、キャビティ30aに対応するレンズアレイ本体74とを備える成形品70が形成される。ここで、ゲート部73に対しては、ゲートカット処理が施され、ゲート部73の先のレンズアレイ本体74によって、試作のレンズアレイ10が得られる。 Next, the
The
次に、上記ステップS13で得た試作のレンズアレイ10を計測する(ステップS14)。レンズアレイ10の計測には、光学面の形状測定を可能にする三次元計測装置が用いられる。三次元計測装置は、例えば特開2007-147371号公報、特開2013-210331号公報等に開示の公知の機構を組み込んだものである。測定に際しては、レンズアレイ10を構成するすべてのレンズ要素10aについて、それらの光学面11a,11bの形状を測定し、これら光学面11a,11bが目標とする非球面形状からずれている程度(ずれ量)や、各光学面11a,11bの頂点位置に相当する光軸OAが目標とする格子点からずれている程度(ずれ量)を測定する。具体的には、測定用の触針をいずれかの光学面11aに沿って例えばx方向に移動させ、その後、測定用の触針を光学面11aに沿って例えばy方向に移動させることによって、光学面11aの形状や配置に関する基本的な情報を得ることができる。また、フランジ面11c,11dを計測することで、フランジ部10fの面形状に関する情報を得ることができる。
Next, the prototype lens array 10 obtained in step S13 is measured (step S14). For the measurement of the lens array 10, a three-dimensional measurement device that enables measurement of the shape of the optical surface is used. The three-dimensional measuring apparatus incorporates a known mechanism disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 2007-147371 and 2013-210331. At the time of measurement, the shape of the optical surfaces 11a and 11b of all the lens elements 10a constituting the lens array 10 is measured, and the extent to which these optical surfaces 11a and 11b deviate from the target aspherical shape (deviation). Amount) and the extent to which the optical axis OA corresponding to the apex position of each optical surface 11a, 11b is displaced from the target lattice point (deviation amount) is measured. Specifically, by moving the measurement stylus along one of the optical surfaces 11a, for example, in the x direction, and then moving the measurement stylus along the optical surface 11a, for example, in the y direction, Basic information about the shape and arrangement of the optical surface 11a can be obtained. Moreover, the information regarding the surface shape of the flange part 10f can be obtained by measuring the flange surfaces 11c and 11d.
次に、ステップS14で得た測定結果に基づいて、レンズアレイ10に設けた各光学面11a,11bについて誤差成分(すなわち誤差量)を抽出する(ステップS15)。この工程では、各光学面11a,11bについて、光軸OAが通る頂点位置の目標値からのずれ量や、目標とする非球面形状からのずれ量を誤差成分(誤差量)として評価することができる。各光学面11a,11bの頂点位置の目標値からのずれ量は、レンズアレイ10のフランジ部10fのうねり形状や歪みとなっている。なお、成形面31t,32tを構成する複数の光学転写面34a,35aの本来的形状が若干異なる場合、つまり複数種類の光学転写面34a,35aが前提となっている場合、光学面11a,11bの形状も相互に若干異なるものとなるので、目標とする非球面形状からのずれの程度も、複数の光学転写面34a,35aの本来的形状の差異を考慮したものとする。複数種類の光学転写面34a,35aとしては、RGBの色分け、画角による使い分け、偏向面による使い分けを目的とするもの等が考えられる。
Next, based on the measurement result obtained in step S14, an error component (that is, an error amount) is extracted for each of the optical surfaces 11a and 11b provided in the lens array 10 (step S15). In this step, for each of the optical surfaces 11a and 11b, the deviation amount from the target value of the vertex position through which the optical axis OA passes or the deviation amount from the target aspherical shape can be evaluated as an error component (error amount). it can. The amount of deviation from the target value of the vertex position of each optical surface 11a, 11b is the undulation shape or distortion of the flange portion 10f of the lens array 10. When the original shapes of the plurality of optical transfer surfaces 34a and 35a constituting the molding surfaces 31t and 32t are slightly different, that is, when a plurality of types of optical transfer surfaces 34a and 35a are assumed, the optical surfaces 11a and 11b are used. Since the shapes of these are slightly different from each other, the degree of deviation from the target aspherical shape is considered in consideration of the difference in the original shapes of the plurality of optical transfer surfaces 34a and 35a. As the plurality of types of optical transfer surfaces 34a and 35a, there can be considered those for the purpose of RGB color classification, field angle use, and deflection surface use.
次に、ステップS15で得た誤差成分(誤差量)に基づいて、主制御装置98では、試作による各光学面11a,11bのずれを補償すべき量として各光学転写面34a,35aの第1補正量(以下、補償量とも呼ぶ)を決定する(ステップS16)。すなわち、計測された各光学面11a,11bの頂点位置が近似的な非軸対称面上に規定されたデータ(非軸対称成分)を、非軸対称加工データを構成する第1補正量(補償量)として主制御装置98に保管する。具体的には、各光学面11a,11bの頂点位置の目標値からのずれ量は、自由曲面式で定義されるような非軸対称面(うねり面)によって表現され、各光学面11a,11bの頂点位置が上記非軸対称面上に規定されたデータに変更され、これを反転したものが補償用の非軸対称加工データとなる。この際、最小自乗法等を用いた自由曲面へのフィッティングが行われる。なお、フランジ面11c,11dの形状から自由曲面式で定義されるような上記非軸対称面を補助的に得ることもできる。非軸対称な自由曲面の形状は、例えばツェルニケ多項式を用いた以下の数式又は表現式とすることができる。
W(ρ,θ)=Σ{An・Zn(ρ,θ)}
W:非軸対称面(測定データでフィッティング)
Zn:ツェルニケ項
An:各項の係数
ρ:(測定点の中心からの距離)/(データ測定範囲の半径)
として、
Z1=1
Z2=ρcosθ
Z3=ρsinθ
Z4=2ρ2‐1
Z5=ρ2sin2θ
…
以上の第1補正量(補償量)は、最大でも10μmを超えないようにする。このような制限を設けることで、非軸対称面に関連する第1補正量を比較的小さい値とし、過度な補正又は補償によって成形型の形状精度が劣化することを抑制する。逆に第1補正量が10μmを超える場合、レンズアレイ10の成形条件、レンズ間フランジ部10cの形状変更等によって対処することが考えられる。 Next, based on the error component (error amount) obtained in step S15, themain controller 98 sets the first of the optical transfer surfaces 34a and 35a as an amount to be compensated for the deviation of the optical surfaces 11a and 11b due to trial manufacture. A correction amount (hereinafter also referred to as compensation amount) is determined (step S16). That is, the data (non-axisymmetric component) defined on the non-axisymmetric surface in which the measured vertex positions of the optical surfaces 11a and 11b are approximated are used as the first correction amount (compensation). The amount is stored in the main controller 98. Specifically, the amount of deviation from the target value of the vertex position of each optical surface 11a, 11b is expressed by a non-axisymmetric surface (swell surface) as defined by a free-form surface equation, and each optical surface 11a, 11b. Is changed to data defined on the non-axisymmetric plane, and the inverted data becomes non-axisymmetric machining data for compensation. At this time, fitting to a free-form surface using a least square method or the like is performed. In addition, the non-axisymmetric surface as defined by a free-form surface equation can be supplementarily obtained from the shapes of the flange surfaces 11c and 11d. The shape of the non-axisymmetric free-form surface can be, for example, the following mathematical expression or expression using a Zernike polynomial.
W (ρ, θ) = Σ {An · Zn (ρ, θ)}
W: Non-axisymmetric plane (fitting with measurement data)
Zn: Zernike term An: coefficient of each term ρ: (distance from center of measurement point) / (radius of data measurement range)
As
Z1 = 1
Z2 = ρcosθ
Z3 = ρsinθ
Z4 = 2ρ 2 -1
Z5 = ρ 2 sin2θ
...
The above first correction amount (compensation amount) does not exceed 10 μm at the maximum. By providing such a restriction, the first correction amount related to the non-axisymmetric surface is set to a relatively small value, and deterioration of the shape accuracy of the mold due to excessive correction or compensation is suppressed. Conversely, when the first correction amount exceeds 10 μm, it is conceivable to cope with the molding conditions of thelens array 10, the shape change of the inter-lens flange portion 10c, and the like.
W(ρ,θ)=Σ{An・Zn(ρ,θ)}
W:非軸対称面(測定データでフィッティング)
Zn:ツェルニケ項
An:各項の係数
ρ:(測定点の中心からの距離)/(データ測定範囲の半径)
として、
Z1=1
Z2=ρcosθ
Z3=ρsinθ
Z4=2ρ2‐1
Z5=ρ2sin2θ
…
以上の第1補正量(補償量)は、最大でも10μmを超えないようにする。このような制限を設けることで、非軸対称面に関連する第1補正量を比較的小さい値とし、過度な補正又は補償によって成形型の形状精度が劣化することを抑制する。逆に第1補正量が10μmを超える場合、レンズアレイ10の成形条件、レンズ間フランジ部10cの形状変更等によって対処することが考えられる。 Next, based on the error component (error amount) obtained in step S15, the
W (ρ, θ) = Σ {An · Zn (ρ, θ)}
W: Non-axisymmetric plane (fitting with measurement data)
Zn: Zernike term An: coefficient of each term ρ: (distance from center of measurement point) / (radius of data measurement range)
As
Z1 = 1
Z2 = ρcosθ
Z3 = ρsinθ
Z4 = 2ρ 2 -1
Z5 = ρ 2 sin2θ
...
The above first correction amount (compensation amount) does not exceed 10 μm at the maximum. By providing such a restriction, the first correction amount related to the non-axisymmetric surface is set to a relatively small value, and deterioration of the shape accuracy of the mold due to excessive correction or compensation is suppressed. Conversely, when the first correction amount exceeds 10 μm, it is conceivable to cope with the molding conditions of the
図7A及び7Bは、第1の成形型31の成形面31tに設定される第1補正量を説明する図である。レンズアレイ10の光学面11aの計測結果が図7Aのようなうねり(フランジ面11cによって視覚的に表示された曲面)を有するものである場合、図面左側の光学面11aは相対的に低く、図面右側の光学面11aは相対的に高くなっている。この場合、成形型31の光学転写面34aに設定されるべき第1補正量(補償量)は、図7Bに示すように反転したうねり(支持部転写面34bによって視覚的に表示された曲面)を有するものとなる。つまり、図面左側の光学転写面34aは相対的に深く、図面右側の光学転写面34aは相対的に浅くなっている。このような補正量を設定することで、補正後の第1の成形型31によって得られるレンズアレイ10の光学面11aは、すべて突起の高さが等しくなる。
7A and 7B are diagrams for explaining the first correction amount set on the molding surface 31t of the first molding die 31. FIG. When the measurement result of the optical surface 11a of the lens array 10 has waviness (curved surface visually displayed by the flange surface 11c) as shown in FIG. 7A, the optical surface 11a on the left side of the drawing is relatively low, The right optical surface 11a is relatively high. In this case, the first correction amount (compensation amount) to be set on the optical transfer surface 34a of the mold 31 is reversed as shown in FIG. 7B (curved surface visually displayed by the support portion transfer surface 34b). It will have. That is, the optical transfer surface 34a on the left side of the drawing is relatively deep, and the optical transfer surface 34a on the right side of the drawing is relatively shallow. By setting such a correction amount, all the optical surfaces 11a of the lens array 10 obtained by the corrected first molding die 31 have the same protrusion height.
次に、レンズアレイ10を構成するレンズ要素10aの表面形状の設計値に対応する初期データを読み出す(ステップS21)。この初期データは、上記ステップS11で説明したように非球面として定義することができる軸対称加工データである。なお、成形面31t,32tを構成する複数の光学転写面34a,35aの形状が若干異なる場合、つまり複数種類の光学転写面34a,35aが前提となっている場合、各面ごとに初期データを読み出す。
Next, initial data corresponding to the design value of the surface shape of the lens elements 10a constituting the lens array 10 is read (step S21). This initial data is axisymmetric processing data that can be defined as an aspherical surface as described in step S11. When the shapes of the plurality of optical transfer surfaces 34a and 35a constituting the molding surfaces 31t and 32t are slightly different, that is, when a plurality of types of optical transfer surfaces 34a and 35a are assumed, initial data is obtained for each surface. read out.
次に、初期データに対応する1種類の軸対称面をテスト加工する(ステップS22)。テスト加工は、図4の加工装置100を用いてダミーのワークWを切削することで行われる。ダミーのワークWは、超鋼にNIPメッキ等を施した本来のワークWを用いることもできるが、材料が異なるワークW、具体的にはコストを考慮して例えば無酸素銅で形成されたものを用いることができる。
図8に示すように、ダミーのワークWには、第1の成形型31の光学転写面34aに対応する1つの光学転写面134aのみが形成されるが、複数の光学転写面134aを形成することもできる。 Next, one kind of axially symmetric surface corresponding to the initial data is test processed (step S22). The test processing is performed by cutting the dummy workpiece W using theprocessing apparatus 100 of FIG. The dummy workpiece W can be an original workpiece W obtained by applying NIP plating or the like to super steel, but the workpiece W is made of different materials, specifically, for example, made of oxygen-free copper in consideration of cost. Can be used.
As shown in FIG. 8, only oneoptical transfer surface 134a corresponding to the optical transfer surface 34a of the first mold 31 is formed on the dummy workpiece W, but a plurality of optical transfer surfaces 134a are formed. You can also.
図8に示すように、ダミーのワークWには、第1の成形型31の光学転写面34aに対応する1つの光学転写面134aのみが形成されるが、複数の光学転写面134aを形成することもできる。 Next, one kind of axially symmetric surface corresponding to the initial data is test processed (step S22). The test processing is performed by cutting the dummy workpiece W using the
As shown in FIG. 8, only one
次に、上記ステップS22で得たテスト加工後のダミーのワークWについてテスト加工形状を計測する(ステップS23)。ダミーのワークWの計測には、ステップS14で用いた三次元計測装置が用いられる。測定に際しては、ダミーのワークWに形成された光学転写面134aの形状を測定し、光学転写面134aの目標とする非球面形状からのずれの程度を測定する。具体的には、測定用の触針を光学転写面134aに沿って主走査及び副走査するように2次元的に密に移動させ、光学転写面134aの形状に関する比較的精密な情報を得る。なお、ダミーのワークW上に複数の光学転写面134aが形成されている場合、すべての光学転写面134aについて形状情報を得る。
Next, the test machining shape is measured for the dummy workpiece W after the test machining obtained in step S22 (step S23). For the measurement of the dummy workpiece W, the three-dimensional measuring device used in step S14 is used. In the measurement, the shape of the optical transfer surface 134a formed on the dummy workpiece W is measured, and the degree of deviation from the target aspherical shape of the optical transfer surface 134a is measured. Specifically, the measurement stylus is two-dimensionally densely moved so as to perform main scanning and sub-scanning along the optical transfer surface 134a, and relatively precise information regarding the shape of the optical transfer surface 134a is obtained. In addition, when the some optical transfer surface 134a is formed on the dummy workpiece | work W, shape information is acquired about all the optical transfer surfaces 134a.
次に、ステップS23で得た測定結果に基づいて、ダミーのワークW上に形成された光学転写面134aについて誤差成分(すなわち誤差量)を抽出する(ステップS24)。この工程では、光学転写面134aについて、目標とする非球面形状からのずれの程度を誤差成分(誤差量)として評価する。ダミーのワークW上に複数の光学転写面134aが形成されている場合、誤差成分について平均化するといった統計的な処理が施される。
Next, based on the measurement result obtained in step S23, an error component (that is, an error amount) is extracted from the optical transfer surface 134a formed on the dummy workpiece W (step S24). In this step, the degree of deviation of the optical transfer surface 134a from the target aspherical shape is evaluated as an error component (error amount). When a plurality of optical transfer surfaces 134a are formed on the dummy workpiece W, statistical processing such as averaging of error components is performed.
次に、ステップS24で得た誤差成分(誤差量)に基づいて、主制御装置98では、テスト加工後の光学転写面134aを本来の形状に修正すべき量として各光学転写面34aの第2補正量(以下、修正量とも呼ぶ)を決定する(ステップS25)。すなわち、計測された光学転写面134aの設計値からのずれデータ(軸対称成分)を、軸対称加工データの一部を構成する第2補正量(修正量)として主制御装置98に保管する。具体的には、設計値からのずれデータを軸対称成分(例えば非球面の形状)として抽出する。なお、第2補正量が想定以上に大きい場合、既に得た第2補正量を組み込んでテスト加工を行うことができる。つまり、第2補正量については、テスト加工の結果をフィードバックしつつステップS22~S25を繰り返すことにより、従来型の手法と同様により精密かつ適切な第2補正量を設定することができる。
Next, based on the error component (error amount) obtained in step S24, the main controller 98 sets the second optical transfer surface 34a of each optical transfer surface 34a as an amount to be corrected to the original shape of the optical transfer surface 134a after the test processing. A correction amount (hereinafter also referred to as a correction amount) is determined (step S25). That is, the measured deviation data (axisymmetric component) from the design value of the optical transfer surface 134a is stored in the main controller 98 as the second correction amount (correction amount) constituting a part of the axially symmetric processing data. Specifically, deviation data from the design value is extracted as an axially symmetric component (for example, an aspheric shape). When the second correction amount is larger than expected, the test process can be performed by incorporating the already obtained second correction amount. That is, for the second correction amount, by repeating steps S22 to S25 while feeding back the result of the test process, a more accurate and appropriate second correction amount can be set as in the conventional method.
その後、初期データに対応する他の種類の軸対称面(光学転写面34a)がある場合(ステップS26でY)、ステップS22に戻って初期データのうち別の種類の軸対称面をテスト加工する。その後の処理は、同様であり(ステップS22~S25)、これを繰り返すことにより、すべての種類の軸対称面(光学転写面34a)について第2補正量を決定する(ステップS25)。
Thereafter, if there is another type of axially symmetric surface (optical transfer surface 34a) corresponding to the initial data (Y in step S26), the process returns to step S22 to test-process another type of axially symmetric surface in the initial data. . The subsequent processing is the same (steps S22 to S25). By repeating this, the second correction amount is determined for all types of axially symmetric surfaces (optical transfer surface 34a) (step S25).
すべての種類の設計値に対応する軸対称面(光学転写面34a)について第2補正量(修正量)を決定した場合(ステップS26でN)、ステップS11で作成した軸対称加工データを修正した非軸対称加工データを得る(ステップ1)。具体的には、元の軸対称加工データに対してステップS16で得た第1補正量を全体にかかる補正項として追加し、さらにステップS25で得た第2補正量を対応する光学転写面34aにかかる補正項として追加する。
When the second correction amount (correction amount) is determined for the axially symmetric surface (optical transfer surface 34a) corresponding to all types of design values (N in step S26), the axially symmetric processing data created in step S11 is corrected. Non-axisymmetric machining data is obtained (step 1). Specifically, the first correction amount obtained in step S16 is added to the original axisymmetric machining data as a correction term relating to the whole, and the second correction amount obtained in step S25 is further added to the corresponding optical transfer surface 34a. Is added as a correction term for.
以上では、第1の成形型31の光学転写面34aについて第2補正量等を求めたが、第2の成形型32の光学転写面35aについても、ステップS22~S27と同様の手法で第2補正量等を求める(ステップS28)。
In the above, the second correction amount and the like have been obtained for the optical transfer surface 34a of the first mold 31. However, the second transfer amount 35a of the second mold 32 is also determined by the same method as in steps S22 to S27. A correction amount or the like is obtained (step S28).
最後に、上記ステップS27,S28で得た非軸対称加工データに基づいて、図4の加工装置90によって本番の第1及び第2の成形型31,32を作製し、これら成形型31,32を利用してレンズアレイ10を作製する(ステップS29)。レンズアレイ10の作製工程や成形条件は、ステップS13での試作のレンズアレイ10の場合と一致させる。
Finally, based on the non-axisymmetric machining data obtained in steps S27 and S28, the first and second molding dies 31, 32 are produced by the machining apparatus 90 of FIG. The lens array 10 is manufactured using (Step S29). The manufacturing process and molding conditions of the lens array 10 are matched with those of the prototype lens array 10 in step S13.
以上の方法によって得たレンズアレイ10は、当初の設計通りの形状に近い形状を有するものとなっており、迅速かつ簡易な手法によって目標とする精度を有するレンズアレイ10を得ることができる。なお、以上の方法によって得たレンズアレイ10に対して三次元計測装置を用いて精密な形状測定を行い、この結果を非球面式、自由曲面式等でフィッティングし、これらのフィッティング式の逆数を成形型31,32の形状修正項としてフィードバックすることで、レンズアレイ10の形状をより正確に設計値に近づけることができる。このような追加の仕上げ補正を行っても、試作したレンズアレイ10に対して三次元計測装置を用いて最初から精密な2次元形状測定を行う場合よりも、補正項を早期に高精度化させる追い込みが迅速になり、レンズアレイ10の設計から大量生産開始までの時間と労力とを大幅に低減することができる。
The lens array 10 obtained by the above method has a shape close to the shape as originally designed, and the lens array 10 having the target accuracy can be obtained by a quick and simple method. The lens array 10 obtained by the above method is subjected to precise shape measurement using a three-dimensional measuring device, and the result is fitted with an aspherical expression, a free-form expression, etc., and the reciprocals of these fitting expressions are obtained. By feeding back as the shape correction terms of the molds 31 and 32, the shape of the lens array 10 can be brought closer to the design value more accurately. Even if such additional finishing correction is performed, the correction term is made highly accurate at an earlier stage than when precise two-dimensional shape measurement is performed from the beginning on the prototype lens array 10 using a three-dimensional measuring device. The drive-in is quick, and the time and labor from the design of the lens array 10 to the start of mass production can be greatly reduced.
本実施形態に係る成形型の製造方法によれば、模擬型である成形型31,32によって成形されたレンズアレイ10の計測によって得た誤差量に基づいて非軸対称面の表現式である第1補正量を算出し(ステップS16)、軸対称面の表現式と非軸対称面の表現式とに基づいて成形型31,32の複数の光学転写面34a,35aの加工を行うので(ステップS27,S28)、軸対称型の複数の光学面11a,11bを備えるレンズアレイ10の製造を簡便なものとできる。つまり、レンズアレイ10の面形状を軸対称面の成分と非軸対称面の成分とに分けた観点で試作や計測を行うので、レンズアレイ10の試作から完成品を得るまでの期間を短くし、その労力を軽減することができる。
According to the manufacturing method of the mold according to the present embodiment, the expression for the non-axisymmetric surface is based on the error amount obtained by the measurement of the lens array 10 molded by the molds 31 and 32 which are simulated molds. Since one correction amount is calculated (step S16), the plurality of optical transfer surfaces 34a and 35a of the molds 31 and 32 are processed based on the expression of the axially symmetric surface and the expression of the non-axisymmetric surface (step S16). S27, S28), the lens array 10 including a plurality of axially symmetric optical surfaces 11a, 11b can be easily manufactured. In other words, since the prototype and measurement are performed from the viewpoint of dividing the surface shape of the lens array 10 into the components of the axially symmetric surface and the components of the non-axisymmetric surface, the period from the prototype of the lens array 10 to the completion of the finished product is shortened. , That effort can be reduced.
以上、本実施形態に係る成形型の製造方法等について説明したが、本発明に係る成形型の製造方法は、上記のものには限られない。例えば、上記実施形態の方法によって作製されるレンズアレイ10は、単独で使用されるものに限らず、複数のレンズアレイを積層する際の要素としてのレンズアレイであってもよい。
As mentioned above, although the manufacturing method of the shaping | molding die concerning this embodiment, etc. were demonstrated, the manufacturing method of the shaping | molding die concerning this invention is not restricted to said thing. For example, the lens array 10 manufactured by the method of the above embodiment is not limited to one used alone, but may be a lens array as an element when a plurality of lens arrays are stacked.
ダミーのワークWに対してテスト加工を行う工程では、レンズアレイ10の光学面11aが複数種で構成される場合、これら複数種に対応した複数の光学転写面134aをダミーのワークW上に一括して形成することもできる。
In the process of performing test processing on the dummy workpiece W, when the optical surface 11a of the lens array 10 is composed of a plurality of types, a plurality of optical transfer surfaces 134a corresponding to the plurality of types are collectively placed on the dummy workpiece W. It can also be formed.
ステップS14,S23で行われる形状測定は、例示の装置や手法に限らず様々な装置及び手法を用いることができる。
The shape measurement performed in steps S14 and S23 is not limited to the exemplified device and method, and various devices and methods can be used.
以上では、成形型31,32間に成形材料として熱可塑性樹脂を供給して成形を行っているが、熱可塑性樹脂に代えて光硬化性樹脂、熱硬化性樹脂等を用いることができる。
In the above, a thermoplastic resin is supplied as a molding material between the molds 31 and 32 to perform molding. However, a photocurable resin, a thermosetting resin, or the like can be used instead of the thermoplastic resin.
以上では、4×4のレンズアレイ10について説明したが、3×3のレンズアレイ、5×5以上のレンズアレイの成形にも、上記実施形態として説明した成形型と同様のものを用いることができる。
Although the 4 × 4 lens array 10 has been described above, the same molding die as that described in the above embodiment can be used to mold a 3 × 3 lens array and a 5 × 5 or more lens array. it can.
Claims (10)
- レンズアレイを成形するため複数の光学転写面を有する成形型の製造方法であって、
軸対称面の表現式に基づいて前記複数の光学転写面を加工することによって模擬型を作製し、
前記模擬型によって成形された前記レンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、
前記軸対称面の表現式と前記非軸対称面の表現式とに基づいて前記成形型の前記複数の光学転写面の加工を行う成形型の製造方法。 A method for producing a mold having a plurality of optical transfer surfaces for molding a lens array,
A simulated mold is produced by processing the plurality of optical transfer surfaces based on the expression of the axially symmetric surface,
Calculate the expression of the non-axisymmetric surface based on the amount of error obtained by measurement of the lens array molded by the simulated mold,
A manufacturing method of a molding die for processing the plurality of optical transfer surfaces of the molding die based on an expression of the axially symmetric surface and an expression of the non-axisymmetric surface. - 前記非軸対称面の表現式は、光軸が通る頂点位置の目標値からのずれ量、及び目標とする非球面形状からのずれ量の少なくとも一方を使用して表現される表現式である、請求項1記載の成形型の製造方法。 The expression of the non-axisymmetric surface is an expression expressed using at least one of the deviation from the target value of the vertex position through which the optical axis passes and the deviation from the target aspheric shape. The manufacturing method of the shaping | molding die of Claim 1.
- 前記非軸対称面の表現式は、前記光学転写面の頂点位置の目標値からのずれ量を自由曲面式で定義した表現式である、請求項1及び2のいずれか一項に記載の成形型の製造方法。 3. The molding according to claim 1, wherein the expression of the non-axisymmetric surface is an expression in which a deviation amount from a target value of the vertex position of the optical transfer surface is defined by a free-form surface equation. Mold manufacturing method.
- 前記非軸対称面の表現式による最大の補償量は10μmである、請求項1~3のいずれか一項に記載の成形型の製造方法。 The method for producing a mold according to any one of claims 1 to 3, wherein a maximum compensation amount according to the expression of the non-axisymmetric surface is 10 μm.
- レンズアレイを成形するため複数の光学転写面を有する成形型の製造方法であって、
設計値である軸対称加工データに基づいて前記複数の光学転写面を加工することによって模擬型を作製し、
前記模擬型によって成形された前記レンズアレイの計測によって得た誤差量に基づいて非軸対称面の表現式を算出し、
前記設計値に対しテスト加工で得た修正量を加算した軸対称面の表現式を算出し、
前記軸対称面の表現式と前記非軸対称面の表現式とに基づいて前記成形型の前記複数の光学転写面の加工を行う成形型の製造方法。 A method for producing a mold having a plurality of optical transfer surfaces for molding a lens array,
A simulated mold is produced by machining the plurality of optical transfer surfaces based on axisymmetric machining data that is a design value,
Calculate the expression of the non-axisymmetric surface based on the amount of error obtained by measurement of the lens array molded by the simulated mold,
Calculate the expression of the axisymmetric surface by adding the correction amount obtained by test machining to the design value,
A manufacturing method of a molding die for processing the plurality of optical transfer surfaces of the molding die based on an expression of the axially symmetric surface and an expression of the non-axisymmetric surface. - 前記テスト加工は、前記成形型の材料とは異なる材料に対して行われる、請求項5に記載の成形型の製造方法。 The method for manufacturing a mold according to claim 5, wherein the test processing is performed on a material different from a material of the mold.
- 前記成形型は、前記複数の光学転写面として、前記軸対称面の表現式の設計値が異なる複数種類の光学転写面を有し、
前記軸対称面の表現式は、前記複数種類の光学転写面に対応する複数種類の設計値に対して前記テスト加工で得た複数の修正量をそれぞれ加算したものである、請求項5及び6のいずれか一項に記載の成形型の製造方法。 The molding die has, as the plurality of optical transfer surfaces, a plurality of types of optical transfer surfaces having different design values of expressions of the axially symmetric surfaces,
The expression for the axisymmetric surface is obtained by adding a plurality of correction amounts obtained by the test processing to a plurality of types of design values corresponding to the plurality of types of optical transfer surfaces, respectively. The manufacturing method of the shaping | molding die as described in any one of these. - 前記複数の光学転写面は、互いに平行な光軸を有し、前記複数の光学転写面は、前記光軸に平行な回転軸を有する工具によって加工する、請求項1~7のいずれか一項に記載の成形型の製造方法。 The plurality of optical transfer surfaces have optical axes parallel to each other, and the plurality of optical transfer surfaces are processed by a tool having a rotation axis parallel to the optical axis. The manufacturing method of the shaping | molding die of description.
- 前記非軸対称面の表現式は、自由曲面式であり、前記軸対称面は、非球面式である、請求項1~8のいずれか一項に記載の成形型の製造方法。 The method for manufacturing a molding die according to any one of claims 1 to 8, wherein the expression of the non-axisymmetric surface is a free-form surface equation, and the axisymmetric surface is an aspheric equation.
- 請求項1~9のいずれか一項に記載の成形型の製造方法によって得た成形型を用いて成形を行う工程を有するレンズアレイの製造方法。 A method for producing a lens array, comprising a step of molding using a mold obtained by the mold production method according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016529501A JP6515927B2 (en) | 2014-06-19 | 2015-06-18 | Method of manufacturing mold and method of manufacturing lens array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-126733 | 2014-06-19 | ||
JP2014126733 | 2014-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194624A1 true WO2015194624A1 (en) | 2015-12-23 |
Family
ID=54935604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067574 WO2015194624A1 (en) | 2014-06-19 | 2015-06-18 | Method for producing mold and method for producing lens array |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6515927B2 (en) |
WO (1) | WO2015194624A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010076402A (en) * | 2008-09-29 | 2010-04-08 | Hoya Corp | Manufacturing method for mold for lens, and manufacturing method for lens |
JP2012185238A (en) * | 2011-03-03 | 2012-09-27 | Fujifilm Corp | Method for manufacturing lens array, lens array, and lens module |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3969697B2 (en) * | 2001-02-28 | 2007-09-05 | 株式会社リコー | Manufacturing method of mold for microlens array |
JP2006056246A (en) * | 2004-07-20 | 2006-03-02 | Hoya Corp | Gasket for mold for forming plastic lens and designing method of gasket |
JP2011212924A (en) * | 2010-03-31 | 2011-10-27 | Brother Industries Ltd | Lens mold manufacturing method |
-
2015
- 2015-06-18 WO PCT/JP2015/067574 patent/WO2015194624A1/en active Application Filing
- 2015-06-18 JP JP2016529501A patent/JP6515927B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010076402A (en) * | 2008-09-29 | 2010-04-08 | Hoya Corp | Manufacturing method for mold for lens, and manufacturing method for lens |
JP2012185238A (en) * | 2011-03-03 | 2012-09-27 | Fujifilm Corp | Method for manufacturing lens array, lens array, and lens module |
Also Published As
Publication number | Publication date |
---|---|
JP6515927B2 (en) | 2019-05-22 |
JPWO2015194624A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Design of a new passive end-effector based on constant-force mechanism for robotic polishing | |
US7106528B2 (en) | Method and apparatus for manufacturing large double-sided curved Fresnel lens | |
Lee et al. | An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces | |
Noble et al. | Rapid tooling injection molded prototypes: a case study in artificial photosynthesis technology | |
Zhang et al. | Design, fabrication and testing of a compact large-field-of-view infrared compound eye imaging system by precision glass molding | |
JP4656530B2 (en) | Mold design method | |
WO2014058010A1 (en) | Optical assembly producing method and method for designing lens for assembly | |
TWI503580B (en) | Manufacturing method of molding tool, wafer lens, and optical lens | |
CN107377752B (en) | Multi-tool-head automatic incremental forming machine and forming method for free-form surface mold | |
WO2010038594A1 (en) | Mold, method of manufacturing mold, method of manufacturing wafer lens, and wafer lens | |
CN101481220B (en) | Splicing machining method for ion beam machining optical element | |
CN103260800A (en) | Die manufacturing method | |
Li et al. | Micro-optical fabrication by ultraprecision diamond machining and precision molding | |
WO2015194624A1 (en) | Method for producing mold and method for producing lens array | |
CN101125411A (en) | Parallel grinding and cutting method for non-axial-symmetry and non-ball-surface optical element | |
CN113557127A (en) | Mold pair with alignment surfaces | |
Zhang et al. | Highly uniform manufacturing method for large-area microlens arrays | |
CN101460295B (en) | Optical system manufacturing method | |
JP4498077B2 (en) | Optical element molding method, optical element, mold member, and mold member processing method | |
JP2012158098A (en) | Method and device for manufacturing mold | |
TWI398338B (en) | Compensation method for optics mold | |
Eberhart | A method for fixturing, scanning, and reorienting an additively manufactured part in preparation for subsequent machining | |
CN109803813B (en) | Method and apparatus for forming lenses | |
Zhang | Investigation of Optical Effects of Chalcogenide Glass in Precision Glass Molding and Applications on Infrared Micro Optical Manufacturing | |
JP3793116B2 (en) | How to create a mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15809914 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016529501 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15809914 Country of ref document: EP Kind code of ref document: A1 |