WO2015194487A1 - Active energy ray curable resin composition, cured product thereof and molded product thereof - Google Patents

Active energy ray curable resin composition, cured product thereof and molded product thereof Download PDF

Info

Publication number
WO2015194487A1
WO2015194487A1 PCT/JP2015/067091 JP2015067091W WO2015194487A1 WO 2015194487 A1 WO2015194487 A1 WO 2015194487A1 JP 2015067091 W JP2015067091 W JP 2015067091W WO 2015194487 A1 WO2015194487 A1 WO 2015194487A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
active energy
energy ray
curable resin
resin composition
Prior art date
Application number
PCT/JP2015/067091
Other languages
French (fr)
Japanese (ja)
Inventor
学 北田
Original Assignee
ポリマテック・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリマテック・ジャパン株式会社 filed Critical ポリマテック・ジャパン株式会社
Priority to CN201580030336.5A priority Critical patent/CN106459322A/en
Priority to JP2016529318A priority patent/JPWO2015194487A1/en
Publication of WO2015194487A1 publication Critical patent/WO2015194487A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention cures rapidly by irradiation with active energy rays such as ultraviolet rays, and is suitable for producing a cured product excellent in chemical resistance, low warpage, high hardness, and adhesion to a substrate.
  • the present invention relates to a curable resin composition, a cured product obtained by curing the curable resin composition, and a molded body.
  • the cured product obtained from the active energy ray-curable resin composition is known to have excellent properties such as chemical resistance, high hardness, adhesion to the substrate, and toughness. Since it is cured and excellent in transparency, it is a material suitable as a hard material for the thin parts.
  • this active energy ray-curable resin composition for example, an example using a bifunctional acrylate having a cyclic skeleton not containing a double bond as a raw material is described in JP2011-173982A (Patent Document 1). .
  • This active energy ray-curable resin composition can improve the cross-linking density by using a bifunctional acrylate having a cyclic skeleton, and can provide excellent effects such as surface hardness and wear resistance.
  • a bifunctional acrylate having a cyclic skeleton can provide excellent effects such as surface hardness and wear resistance.
  • the addition amount of the bifunctional acrylate is small, if a sufficient amount is added, the shrinkage when cured is large, and if the product is molded integrally with a substrate such as a film, the warpage becomes large. There was a disadvantage that the substrate wavy.
  • characteristics such as surface hardness and chemical resistance, and characteristics such as warpage and adhesion to the substrate when integrally formed with a substrate such as a film are in a trade-off relationship, and it was difficult to satisfy all these characteristics by adjusting the crosslink density by increasing or decreasing the bifunctional acrylate.
  • the present invention has been made in order to eliminate such inconveniences, and is an active energy ray-curable resin composition having excellent chemical resistance, high hardness, low warpage, and excellent adhesion to a substrate. It aims at providing a thing, its hardened
  • the present invention is configured as follows to solve the above problems.
  • Active energy ray-curable resin composition comprising a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton, at least one of acrylamide or a derivative thereof, and a monofunctional (meth) acrylate monomer having a heterocyclic group It is.
  • a tough cured product can be obtained, and since it contains at least one of acrylamide or a derivative thereof, adhesion to substrates such as resins and rubber films Can be increased.
  • the monofunctional (meth) acrylate monomer which has a heterocyclic group is included, the surface hardness of hardened
  • the monofunctional (meth) acrylate monomer having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and trimethylolpropane formal (meth) acrylate.
  • the elements constituting the ring of the heterocyclic group can be only carbon and oxygen. Since the elements constituting the ring of the heterocyclic group are only carbon and oxygen, there is a possibility that an effect of improving chemical resistance by containing oxygen and a toughness based on a flexible skeleton containing oxygen may be obtained. . On the other hand, when elements other than oxygen are included, the toughness and adhesion of the cured product may not be sufficiently obtained.
  • Such a heterocyclic group can be at least one of an oxirane ring, an oxirene ring, an oxetane ring, an oxolane ring, a dioxolane ring, an oxane ring and a dioxane ring.
  • cured material is integrally molded on a base material are provided. Since the cured product obtained by curing the active energy ray-curable resin composition is not only chemical resistance and high hardness, it has less warpage and excellent adhesion to the substrate. The same applies to a molded body integrally formed with a substrate such as a film.
  • a cured product obtained by curing an active energy ray-curable resin composition with an active energy ray and a molded product obtained by integrally molding the cured product on a base material include a key sheet, a presser sheet, and a decorative molded part.
  • a key sheet for example, a key sheet provided with a base sheet, a key top film formed on substantially the entire surface of the base sheet, and a key top body in which the key top film partially protrudes
  • the base sheet include a thin molded product made of a thermoplastic resin or rubber in addition to a resin film, a rubber sheet, a metal sheet, and the like.
  • a cured product excellent in chemical resistance, low warpage, high hardness, and adhesion to a substrate can be produced. According to the molded body, such properties can be provided.
  • the active energy ray-curable resin composition described below includes a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton (component A), at least one of acrylamide and its derivative (component B), and a heterocyclic group. And a monofunctional (meth) acrylate monomer (component C).
  • the bifunctional urethane (meth) acrylate oligomer having a polyester skeleton is a bifunctional oligomer.
  • the reason why it is bifunctional is that the crosslink density becomes too high when it is trifunctional or higher.
  • a tough cured product cannot be obtained.
  • the oligomer preferably has a weight average molecular weight of 1,000 to 20,000. If it is less than 1,000, there exists a possibility that the crosslinking density may become high too much and the curvature of hardened
  • bifunctional urethane (meth) acrylate oligomer various products manufactured by Toa Gosei Co., Ltd., Sartomer, Kyoeisha Chemical Co., etc. can be used. These bifunctional urethane (meth) acrylate oligomers can be used alone or Two or more kinds can be mixed and used.
  • the glass transition temperature (Tg) of the bifunctional urethane (meth) acrylate oligomer having a polyester skeleton is preferably ⁇ 30 ° C. to 60 ° C., and more preferably 20 ° C. to 55 ° C. This is because it is easy to obtain a cured product having substrate adhesion, low warpage, high hardness, and chemical resistance.
  • Tg is less than ⁇ 30 ° C., low warpage is good, but hardness and chemical resistance tend to deteriorate, and when Tg exceeds 60 ° C., low warpage tends to deteriorate.
  • Acrylamide or its derivatives include (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl-Nn-propyl (meth) acrylamide, N-methyl-N-isopropyl (meth) acrylamide, N-ethoxypropyl (meth) acrylamide, N-tetrahydrofurfuryl (meta ) Acrylamide, N-ethoxyethyl (meth) acrylamide, N-1-methyl-2-methoxyethyl (meth) acrylamide, N-morpholinopropyl (meth) acrylamide, N-methoxypropyl (meth) acrylamide, N-isopropoxyethyl (Meth) acrylamide, N-isopropoxy
  • cyclic acrylamides and derivatives thereof such as N-vinylcaprolactam, N-vinylpyrrolidone, N- (meth) acryloylmorpholine and N- (meth) acryloylpiperidine.
  • Preferred is acrylamide or a derivative thereof having a (meth) acryloyl group
  • N-acryloylmorpholine is a particularly preferred acrylamide or one of its derivatives.
  • the amount of acrylamide or its derivative added is preferably 3 to 40% by weight, more preferably 5 to 20% by weight, based on the total solid content. If the addition amount is less than 3% by weight, the adhesion to the substrate tends to be inferior, and if the addition amount is more than 40%, the adhesion to the mold to be cast becomes high and the demolding property tends to deteriorate. It is in.
  • Monofunctional (meth) acrylate monomers having a heterocyclic group include, for example, tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidi Nyl (meth) acrylate, (meth) acryloylmorpholine, etc. are mentioned.
  • the elements constituting the ring of the heterocyclic group are only carbon and oxygen, since high chemical resistance can be obtained by giving oxygen to the heterocyclic group.
  • a heterocyclic ring include an oxirane ring, an oxirene ring, an oxetane ring, an oxolane ring, a dioxolane ring, an oxane ring, and a dioxane ring.
  • monofunctional (meth) acrylate monomers having oxygen in the heterocyclic group tetrahydrofurfuryl (meth) acrylate or trimethylolpropane formal (meth) acrylate can provide particularly high chemical resistance. preferable.
  • a cyclic monofunctional (meth) acrylate monomer that is not a heterocyclic group it is a preferred embodiment to mix a cyclic monofunctional (meth) acrylate monomer that is not a heterocyclic group together with a monofunctional (meth) acrylate monomer having a heterocyclic group.
  • a monofunctional (meth) acrylate monomer having a heterocyclic group When the content of the monofunctional (meth) acrylate monomer having a heterocyclic group is reduced, mixing such a cyclic monofunctional (meth) acrylate monomer that is not a heterocyclic group helps to increase chemical resistance and hardness. is there.
  • the cyclic monofunctional (meth) acrylate monomer include isobornyl methacrylate and cyclohexyl methacrylate.
  • the total content of the monofunctional (meth) acrylate monomer having a heterocyclic group and the cyclic monofunctional (meth) acrylate monomer is preferably 35 to 55% by weight based on the total solid content. If it is less than 35% by weight, the hardness is lowered and the chemical resistance may be deteriorated. Moreover, when it exceeds 55 weight%, content of a bifunctional urethane (meth) acrylate oligomer will decrease relatively, the toughness of hardened
  • the photopolymerization initiator benzophenone series, thioxanthone series, acetophenone series, acylphosphine series and the like are used, and examples thereof include IRGACURE (trade name) manufactured by BASF Japan, and one kind of photopolymerization initiator or Two or more kinds can be used in combination.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight with respect to 100 parts by weight of the bifunctional urethane (meth) acrylate oligomer.
  • various diluents, additives, fillers and the like can be added for various purposes.
  • an inorganic filler such as amorphous silica or calcium carbonate
  • properties such as mechanical strength and chemical resistance of the cured product can be improved.
  • a colorant such as phthalocyanine blue, titanium oxide, or carbon black
  • the cured product can be colored.
  • the viscosity of the active energy ray-curable resin composition is preferably 150 to 1500 mPa ⁇ s at 25 ° C.
  • the viscosity is lower than 150 mPa ⁇ s, the material flows out during mold casting, making it difficult to mold.
  • the viscosity is higher than 1500 mPa ⁇ s, casting becomes difficult and a molded product with a desired shape is obtained. It's hard to be done.
  • the active energy ray-curable resin composition can be used by being applied to a substrate made of a resin, an elastomer, or the like, or injected into a mold and bonded to these substrates.
  • Examples of the active energy ray for curing the active energy ray-curable resin composition include ultraviolet rays, electron beams, visible light, infrared light, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and the like.
  • Examples of the light source for irradiating these include a UV light source, a UV-LED light source, various mercury lamps, sodium lamps, xenon lamps, metal halide lamps, and the like.
  • Active energy ray-curable type containing component A which is a bifunctional urethane acrylate oligomer having a polyester skeleton, component B which is acrylamide or a derivative thereof, and component C which is a monofunctional (meth) acrylate monomer having a heterocyclic group
  • component A which is a bifunctional urethane acrylate oligomer having a polyester skeleton
  • component B which is acrylamide or a derivative thereof
  • component C which is a monofunctional (meth) acrylate monomer having a heterocyclic group
  • CN9009 trade name manufactured by Sartomer.
  • CN9788 trade name manufactured by Sartomer.
  • CN 996 trade name manufactured by Sartomer.
  • CN929 trade name manufactured by Sartomer.
  • Irgacure 184 trade name of BASF Japan.
  • ⁇ Base material adhesion> The adhesion between the substrate and the cured product when each sample was cured on the resin serving as the substrate was tested.
  • (Easy-adhesive PET: 300 ⁇ m thickness) is prepared as a base material, and a sample is filled into a mold from which a cured product having a diameter of 5 mm and a height of 5 mm can be obtained. Then, the sample was solidified by irradiation with active energy rays (ultraviolet rays) under conditions of illuminance: 500 mW / cm 2 and integrated light quantity: 3000 mJ / cm 2 from above easy-adhesion PET.
  • active energy rays ultraviolet rays
  • the adhesion was judged from the ease of peeling when a nail was hooked on the end of the cured product fixed to the easy-adhesion PET on the surface having a diameter of 5 mm and the cured product was peeled off. Those that were not peeled were evaluated as “ ⁇ ”, those that were difficult to peel off were evaluated as “ ⁇ ”, and those that were easily peeled off were evaluated as “ ⁇ ”.
  • ⁇ Chemical resistance> Each sample was irradiated with ultraviolet rays under the conditions of 500 mW / cm 2 and integrated light quantity: 3000 mJ / cm 2 to prepare a cured product having a size of 10 mm ⁇ 50 mm ⁇ 0.5 mm. This cured product was immersed in two kinds of chemicals, and the chemical resistance was evaluated from the degree of swelling obtained by the following formula.
  • -Swelling degree weight after soaking in chemicals / weight before soaking in chemicals
  • oleic acid and ethanol as chemicals, oleic acid at 50 ° C for 24 hours, ethanol at 25 ° C Each was immersed for 24 hours.
  • ⁇ Demoldability> Whether the sample is filled in a mold having a plurality of recesses of 10 mm ⁇ 5 mm ⁇ depth 0.5 mm, and the sample is covered with the easy-adhesion PET and irradiated with ultraviolet rays under the above conditions to solidify the sample. Tested. In the determination of mold release property, “ ⁇ ” indicates that the mold can be easily removed from the mold, and “X” indicates that the mold cannot be easily removed.
  • sample 8 using a bifunctional urethane (meth) acrylate oligomer having a polyether skeleton instead of the bifunctional urethane (meth) acrylate oligomer having a polyester skeleton (component A) has a hardness of 58 and an ethanol swelling degree. was 1.21, and the result was poor hardness and poor chemical resistance.
  • the sample 10 using the trifunctional urethane (meth) acrylate oligomer while having the same polyester skeleton has a warpage of 7.2 mm. The result was an increase in warpage.
  • Sample 6 to which acryloylmorpholine which is acrylamide or a derivative thereof (component B) was not added had a hardness as low as 52, and the substrate adhesion was not very good.
  • the sample 7 which does not contain the monofunctional (meth) acrylate monomer (component C) which has a heterocyclic group had an oleic acid swelling degree of 1.16 and an ethanol swelling degree of 1.18, and was inferior in chemical resistance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is an active energy ray curable resin composition that exhibits excellent chemical resistance and has high hardness, while exhibiting a low amount of warping and superior adhesiveness to a film substrate. Also provided are a cured product and a molded product of said active energy ray curable resin. The active energy ray curable resin composition contains: a bifunctional urethane (meth)acrylate oligomer having a polyester skeleton; an acrylamide and/or a derivative thereof; and a monofunctional (meth)acrylate monomer having a heterocyclic group.

Description

活性エネルギー線硬化型樹脂組成物およびその硬化物並びにその成形体Active energy ray-curable resin composition, cured product thereof and molded product thereof
 本発明は、紫外線などの活性エネルギー線の照射により速やかに硬化し、耐薬品性や低反り性、高硬度、基材との密着性に優れた硬化物を製造するのに適した活性エネルギー線硬化型樹脂組成物と、それを硬化して得られる硬化物並びに成形体に関する。 The present invention cures rapidly by irradiation with active energy rays such as ultraviolet rays, and is suitable for producing a cured product excellent in chemical resistance, low warpage, high hardness, and adhesion to a substrate. The present invention relates to a curable resin composition, a cured product obtained by curing the curable resin composition, and a molded body.
 近年、携帯電話やスマートフォン等のポータブル通信機器や、タブレット等の情報端末、車載オーディオ機器等の薄型化や軽量化に伴い、これに備えられる入力部品や装飾部品についても薄型化が求められてきており、例えば、柔軟性のあるフィルム等の基材に対し硬い樹脂を簡単に一体成形してなる薄型部品が求められている。
 これらの部品は、薄型部品であっても、落下等の衝撃に対する耐性があり、長期使用に際しても色調・形状・物性の変化がなく、更には高温高湿環境下においても高い信頼性が求められており、加えて、最外装に用いられる場合には、耐摩耗性や耐擦傷性も要求される。
In recent years, with the reduction in thickness and weight of portable communication devices such as mobile phones and smartphones, information terminals such as tablets, and in-vehicle audio devices, it has been required to reduce the thickness of input parts and decorative parts provided for them. For example, there is a demand for a thin part formed by simply integrally molding a hard resin on a base material such as a flexible film.
These parts are resistant to impacts such as dropping, even if they are thin parts, there is no change in color tone, shape, and physical properties during long-term use, and high reliability is also required in high temperature and high humidity environments. In addition, when used in the outermost package, wear resistance and scratch resistance are also required.
 活性エネルギー線硬化型樹脂組成物から得られる硬化物は、耐薬品性や高硬度、基材との密着性、強靭性等の優れた特性を有することで知られ、活性エネルギー線により短時間で硬化し、透明性にも優れるため、上記薄型部品の硬質材として適した材料である。この活性エネルギー線硬化型樹脂組成物としては、例えば、二重結合を含まない環状骨格を有する二官能アクリレートを原材料とした例が特開2011-173982号公報(特許文献1)に記載されている。 The cured product obtained from the active energy ray-curable resin composition is known to have excellent properties such as chemical resistance, high hardness, adhesion to the substrate, and toughness. Since it is cured and excellent in transparency, it is a material suitable as a hard material for the thin parts. As this active energy ray-curable resin composition, for example, an example using a bifunctional acrylate having a cyclic skeleton not containing a double bond as a raw material is described in JP2011-173982A (Patent Document 1). .
特開2011-173982JP2011-173982
 この活性エネルギー線硬化型樹脂組成物は、環状骨格を有する二官能アクリレートを用いることで架橋密度を向上させることができ、表面硬度、耐摩耗性等に優れた効果が得られる。しかしながら、二官能アクリレートの添加量が少なければ効果が無いため、十分な量を添加すると、硬化した際の収縮が大きく、フィルム等の基材と一体化して成形した製品にすると、反りが大きくなり、基材が波打ってしまうという不都合があった。 This active energy ray-curable resin composition can improve the cross-linking density by using a bifunctional acrylate having a cyclic skeleton, and can provide excellent effects such as surface hardness and wear resistance. However, since there is no effect if the addition amount of the bifunctional acrylate is small, if a sufficient amount is added, the shrinkage when cured is large, and if the product is molded integrally with a substrate such as a film, the warpage becomes large. There was a disadvantage that the substrate wavy.
 こうした例に限らず、本発明者らの検討によれば、表面硬度や耐薬品性等の特性と、フィルム等の基材と一体成形した際の反り性や基材との密着性等の特性はトレードオフの関係にあり、二官能アクリレートの増減による架橋密度の調整によって、これら全ての特性を満たすことは困難であった。 In addition to these examples, according to the study by the present inventors, characteristics such as surface hardness and chemical resistance, and characteristics such as warpage and adhesion to the substrate when integrally formed with a substrate such as a film Are in a trade-off relationship, and it was difficult to satisfy all these characteristics by adjusting the crosslink density by increasing or decreasing the bifunctional acrylate.
 そこで本発明は、こうした不都合を解消するためになされたものであり、耐薬品性に優れ、硬度が高い一方で、反りが少なく、基材との密着性に優れた活性エネルギー線硬化型樹脂組成物と、その硬化物並びに成形体を提供することを目的とする。 Therefore, the present invention has been made in order to eliminate such inconveniences, and is an active energy ray-curable resin composition having excellent chemical resistance, high hardness, low warpage, and excellent adhesion to a substrate. It aims at providing a thing, its hardened | cured material, and a molded object.
 本発明は、上記課題を解決するため以下のように構成される。
 ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーと、アクリルアミドまたはその誘導体の少なくとも何れか一方と、複素環基を有する単官能(メタ)アクリレートモノマーと、を含有する活性エネルギー線硬化型樹脂組成物である。
The present invention is configured as follows to solve the above problems.
Active energy ray-curable resin composition comprising a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton, at least one of acrylamide or a derivative thereof, and a monofunctional (meth) acrylate monomer having a heterocyclic group It is.
 ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーを含むため強靭な硬化物を得ることができ、アクリルアミドまたはその誘導体の少なくとも何れか一方を含むため樹脂やゴム製フィルム等の基材との密着性を高めることができる。また、複素環基を有する単官能(メタ)アクリレートモノマーを含むため硬化収縮率を低く維持しつつ硬化物の表面硬度を高め耐薬品性を付与することができる。
 複素環基を有する単官能(メタ)アクリレートモノマーには、テトラヒドロフルフリル(メタ)アクリレートやトリメチロールプロパンフォルマル(メタ)アクリレートが挙げられる。
Because it contains a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton, a tough cured product can be obtained, and since it contains at least one of acrylamide or a derivative thereof, adhesion to substrates such as resins and rubber films Can be increased. Moreover, since the monofunctional (meth) acrylate monomer which has a heterocyclic group is included, the surface hardness of hardened | cured material can be raised and chemical resistance can be provided, maintaining a cure shrinkage rate low.
Examples of the monofunctional (meth) acrylate monomer having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and trimethylolpropane formal (meth) acrylate.
 複素環基の環を構成する元素は炭素と酸素のみとすることができる。複素環基の環を構成する元素が炭素と酸素のみであるため、酸素を含有することによる耐薬品性向上の効果や、酸素を含有した柔軟な骨格に基づく強靱性が得られる可能性がある。その一方で、酸素以外の元素を含む場合は、硬化物の強靱性や密着性が十分に得られない場合があり得る。
 こうした複素環基は、オキシラン環、オキシレン環、オキセタン環、オキソラン環、ジオキソラン環、オキサン環またはジオキサン環の少なくとも何れかとすることができる。
The elements constituting the ring of the heterocyclic group can be only carbon and oxygen. Since the elements constituting the ring of the heterocyclic group are only carbon and oxygen, there is a possibility that an effect of improving chemical resistance by containing oxygen and a toughness based on a flexible skeleton containing oxygen may be obtained. . On the other hand, when elements other than oxygen are included, the toughness and adhesion of the cured product may not be sufficiently obtained.
Such a heterocyclic group can be at least one of an oxirane ring, an oxirene ring, an oxetane ring, an oxolane ring, a dioxolane ring, an oxane ring and a dioxane ring.
 そして、上記活性エネルギー線硬化型樹脂組成物を重合してなる硬化物と、基材上にこの硬化物が一体成形されてなる成形体を提供する。
 上記活性エネルギー線硬化型樹脂組成物を硬化させてなる硬化物としたため、耐薬品性や高硬度であるだけでなく、反りが少なく、基材との密着性にも優れている。フィルム等の基材と一体成形した成形体も同様である。
And the hardened | cured material formed by superposing | polymerizing the said active energy ray hardening-type resin composition and the molded object by which this hardened | cured material is integrally molded on a base material are provided.
Since the cured product obtained by curing the active energy ray-curable resin composition is not only chemical resistance and high hardness, it has less warpage and excellent adhesion to the substrate. The same applies to a molded body integrally formed with a substrate such as a film.
 活性エネルギー線硬化型樹脂組成物を活性エネルギー線で硬化してなる硬化物と、基材上にこの硬化物が一体成形されてなる成形体としては、キーシートや押し子シート、装飾用成形部品等が挙げられる。
 キーシートとしては、例えばベースシートと、該ベースシートの表面の略全面に形成されたキートップ膜と、該キートップ膜が部分的に厚肉となって突出したキートップ本体を備えたキーシート、あるいは、ベースシートの表面の一部分に形成されたキートップ本体を備えたキーシートであり、前記キートップ膜及び前記キートップ本体は、活性エネルギー線硬化型樹脂組成物を硬化してなる硬化物からなる。
 ベースシートとしては、樹脂フィルム、ゴムシート、金属シート等の他に熱可塑性樹脂やゴムからなる薄型の成形品が挙げられる。
A cured product obtained by curing an active energy ray-curable resin composition with an active energy ray and a molded product obtained by integrally molding the cured product on a base material include a key sheet, a presser sheet, and a decorative molded part. Etc.
As a key sheet, for example, a key sheet provided with a base sheet, a key top film formed on substantially the entire surface of the base sheet, and a key top body in which the key top film partially protrudes Or a key sheet provided with a key top body formed on a part of the surface of the base sheet, wherein the key top film and the key top body are cured products obtained by curing an active energy ray-curable resin composition. Consists of.
Examples of the base sheet include a thin molded product made of a thermoplastic resin or rubber in addition to a resin film, a rubber sheet, a metal sheet, and the like.
 本発明の活性エネルギー線硬化型樹脂組成物によれば、耐薬品性、低反り性、高硬度、基材との密着性に優れた硬化物を製造することができ、本発明の硬化物および成形体によれば、こうした性質を備え得る。 According to the active energy ray-curable resin composition of the present invention, a cured product excellent in chemical resistance, low warpage, high hardness, and adhesion to a substrate can be produced. According to the molded body, such properties can be provided.
 実施形態を示し本発明を詳細に説明する。以下に説明する活性エネルギー線硬化型樹脂組成物は、ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマー(成分A)と、アクリルアミドとその誘導体の少なくとも何れか一方(成分B)と、複素環基を有する単官能(メタ)アクリレートモノマー(成分C)と、を少なくとも含有する。 Embodiments will be described to explain the present invention in detail. The active energy ray-curable resin composition described below includes a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton (component A), at least one of acrylamide and its derivative (component B), and a heterocyclic group. And a monofunctional (meth) acrylate monomer (component C).
 ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーは2官能オリゴマーである。2官能としたのは、3官能以上とすると架橋密度が高くなりすぎるからである。また、1官能(単官能)オリゴマーのみでは3次元架橋構造が発達しないため、強靭な硬化物が得られないからである。また、このオリゴマーは、重量平均分子量が1,000~20,000であることが好ましい。1,000未満では架橋密度が高くなりすぎて硬化物の反りが大きくなるおそれがある。また、20,000を超えると粘度が高くなりすぎて成形体の作製が困難になり易い。
 こうした2官能ウレタン(メタ)アクリレートオリゴマーには、東亜合成社やサートマー社、共栄社化学社等で製造される各種製品を利用することができ、こうした2官能ウレタン(メタ)アクリレートオリゴマーは単独で、あるいは2種以上を混合して用いることができる。
The bifunctional urethane (meth) acrylate oligomer having a polyester skeleton is a bifunctional oligomer. The reason why it is bifunctional is that the crosslink density becomes too high when it is trifunctional or higher. Moreover, since a three-dimensional crosslinked structure does not develop with only a monofunctional (monofunctional) oligomer, a tough cured product cannot be obtained. The oligomer preferably has a weight average molecular weight of 1,000 to 20,000. If it is less than 1,000, there exists a possibility that the crosslinking density may become high too much and the curvature of hardened | cured material may become large. On the other hand, if it exceeds 20,000, the viscosity tends to be too high, making it difficult to produce a molded product.
For such a bifunctional urethane (meth) acrylate oligomer, various products manufactured by Toa Gosei Co., Ltd., Sartomer, Kyoeisha Chemical Co., etc. can be used. These bifunctional urethane (meth) acrylate oligomers can be used alone or Two or more kinds can be mixed and used.
 ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーのガラス転移温度(Tg)は、-30℃~60℃であることが好ましく、20℃~55℃であることがさらに好ましい。基材密着性、低反り性、高硬度、耐薬品性を兼ね備えた硬化物が得易いからである。Tgが-30℃未満では低反り性は良好であるが、硬度や耐薬品性が悪化する傾向があり、Tgが60℃を超えると低反り性が悪化する傾向にある。 The glass transition temperature (Tg) of the bifunctional urethane (meth) acrylate oligomer having a polyester skeleton is preferably −30 ° C. to 60 ° C., and more preferably 20 ° C. to 55 ° C. This is because it is easy to obtain a cured product having substrate adhesion, low warpage, high hardness, and chemical resistance. When Tg is less than −30 ° C., low warpage is good, but hardness and chemical resistance tend to deteriorate, and when Tg exceeds 60 ° C., low warpage tends to deteriorate.
 アクリルアミドまたはその誘導体には、(メタ)アクリルアミドやN-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-メチル-N-イソプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-テトラヒドロフルフリル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-1-メチル-2-メトキシエチル(メタ)アクリルアミド、N-モルホリノプロピル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-イソプロポキシエチル(メタ)アクリルアミド、N-イソプロポキシプロピル(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(3-ヒドロキシプロピル)(メタ)アクリルアミドなどの脂肪族アクリルアミドやその誘導体、N-ビニルカプロラクタム、N-ビニルピロリドン、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピペリジンなどの環状アクリルアミドやその誘導体が挙げられる。好ましくは、(メタ)アクリロイル基を有するアクリルアミドまたはその誘導体であり、N-アクリロイルモルホリンは、特に好ましいアクリルアミドまたはその誘導体の1つである。 Acrylamide or its derivatives include (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl-Nn-propyl (meth) acrylamide, N-methyl-N-isopropyl (meth) acrylamide, N-ethoxypropyl (meth) acrylamide, N-tetrahydrofurfuryl (meta ) Acrylamide, N-ethoxyethyl (meth) acrylamide, N-1-methyl-2-methoxyethyl (meth) acrylamide, N-morpholinopropyl (meth) acrylamide, N-methoxypropyl (meth) acrylamide, N-isopropoxyethyl (Meth) acrylamide, N-isopropoxypropyl (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N- (3-hydroxypropyl) (meth) acrylamide, etc. And cyclic acrylamides and derivatives thereof such as N-vinylcaprolactam, N-vinylpyrrolidone, N- (meth) acryloylmorpholine and N- (meth) acryloylpiperidine. Preferred is acrylamide or a derivative thereof having a (meth) acryloyl group, and N-acryloylmorpholine is a particularly preferred acrylamide or one of its derivatives.
 アクリルアミドまたはその誘導体の添加量は、全固形分に対して3~40重量%が好ましく、5~20重量%がより好ましい。添加量が3重量%より少ないと基材との密着性が劣る傾向にあり、添加量が40%より大きいと注型する金型との密着性が高くなって、脱型性が悪化する傾向にある。 The amount of acrylamide or its derivative added is preferably 3 to 40% by weight, more preferably 5 to 20% by weight, based on the total solid content. If the addition amount is less than 3% by weight, the adhesion to the substrate tends to be inferior, and if the addition amount is more than 40%, the adhesion to the mold to be cast becomes high and the demolding property tends to deteriorate. It is in.
 複素環基を有する単官能(メタ)アクリレートモノマーは、これを含有させることにより低い硬化収縮率を維持しつつ、硬化物の硬度を向上させ、かつ耐薬品性を付与することができる。
 複素環基を有する単官能(メタ)アクリレートモノマーには、例えば、テトラヒドロフルフリル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、(メタ)アクリロイルモルホリン等が挙げられる。
By containing this monofunctional (meth) acrylate monomer having a heterocyclic group, the hardness of the cured product can be improved and chemical resistance can be imparted while maintaining a low curing shrinkage rate.
Monofunctional (meth) acrylate monomers having a heterocyclic group include, for example, tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidi Nyl (meth) acrylate, (meth) acryloylmorpholine, etc. are mentioned.
 複素環基の環を構成する元素が炭素と酸素のみであることは、複素環基に酸素を持たせることで高い耐薬品性が得られるため、一つの好ましい実施形態である。こうした複素環には、オキシラン環やオキシレン環、オキセタン環、オキソラン環、ジオキソラン環、オキサン環、ジオキサン環等が挙げられる。複素環基に酸素を持つ単官能(メタ)アクリレートモノマーのなかでも、テトラヒドロフルフリル(メタ)アクリレートまたはトリメチロールプロパンフォルマル(メタ)アクリレートは、特に高い耐薬品性を付与することができる点で好ましい。 It is one preferred embodiment that the elements constituting the ring of the heterocyclic group are only carbon and oxygen, since high chemical resistance can be obtained by giving oxygen to the heterocyclic group. Examples of such a heterocyclic ring include an oxirane ring, an oxirene ring, an oxetane ring, an oxolane ring, a dioxolane ring, an oxane ring, and a dioxane ring. Among monofunctional (meth) acrylate monomers having oxygen in the heterocyclic group, tetrahydrofurfuryl (meth) acrylate or trimethylolpropane formal (meth) acrylate can provide particularly high chemical resistance. preferable.
 複素環基を有する単官能(メタ)アクリレートモノマーとともに、複素環基ではない環状単官能(メタ)アクリレートモノマーを混合することは好ましい態様である。複素環基を有する単官能(メタ)アクリレートモノマーの含有量を減らした際にこうした複素環基ではない環状単官能(メタ)アクリレートモノマーを混合すれば耐薬品性や硬度を高めるために役立つからである。環状単官能(メタ)アクリレートモノマーの一例として、イソボロニルメタクリレートやシクロヘキシルメタクリレート等を挙げることができる。
 複素環基を有する単官能(メタ)アクリレートモノマーと環状単官能(メタ)アクリレートモノマーとの合計含有量は、全固形分に対して35~55重量%が好ましい。35重量%より少ないと、硬度が低くなり、耐薬品性が悪くなるおそれがある。また、55重量%を超えると、相対的に2官能ウレタン(メタ)アクリレートオリゴマーの含有量が少なくなり、硬化物の強靱性が損なわれ、脆くなる傾向がある。
It is a preferred embodiment to mix a cyclic monofunctional (meth) acrylate monomer that is not a heterocyclic group together with a monofunctional (meth) acrylate monomer having a heterocyclic group. When the content of the monofunctional (meth) acrylate monomer having a heterocyclic group is reduced, mixing such a cyclic monofunctional (meth) acrylate monomer that is not a heterocyclic group helps to increase chemical resistance and hardness. is there. Examples of the cyclic monofunctional (meth) acrylate monomer include isobornyl methacrylate and cyclohexyl methacrylate.
The total content of the monofunctional (meth) acrylate monomer having a heterocyclic group and the cyclic monofunctional (meth) acrylate monomer is preferably 35 to 55% by weight based on the total solid content. If it is less than 35% by weight, the hardness is lowered and the chemical resistance may be deteriorated. Moreover, when it exceeds 55 weight%, content of a bifunctional urethane (meth) acrylate oligomer will decrease relatively, the toughness of hardened | cured material will be impaired, and there exists a tendency which becomes weak.
 光重合開始剤としては、ベンゾフェノン系、チオキサントン系、アセトフェノン系、アシルフォスフィン系等が用いられ、例えば、BASFジャパン社製のIRGACURE(商品名)等が挙げられ、光重合開始剤の1種もしくは2種以上を組み合わせて用いることができる。 光重合開始剤の添加量は、2官能ウレタン(メタ)アクリレートオリゴマー100重量部に対して、0.1~10重量部が好ましく、0.3~5重量部がより好ましい。 As the photopolymerization initiator, benzophenone series, thioxanthone series, acetophenone series, acylphosphine series and the like are used, and examples thereof include IRGACURE (trade name) manufactured by BASF Japan, and one kind of photopolymerization initiator or Two or more kinds can be used in combination. The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight with respect to 100 parts by weight of the bifunctional urethane (meth) acrylate oligomer.
 こうした組成物には、種々の目的で種々の希釈剤、添加剤、充填材等を加えることができる。その一例として、無定形シリカや炭酸カルシウムなどの無機充填材を含有させれば、硬化物の機械的強度や耐薬品性等の特性を向上させることができる。また、フタロシアニンブルーや酸化チタン、カーボンブラックなどの着色剤を含有させれば硬化物に着色することができる。 In such a composition, various diluents, additives, fillers and the like can be added for various purposes. As an example, if an inorganic filler such as amorphous silica or calcium carbonate is contained, properties such as mechanical strength and chemical resistance of the cured product can be improved. Further, if a colorant such as phthalocyanine blue, titanium oxide, or carbon black is contained, the cured product can be colored.
 活性エネルギー線硬化型樹脂組成物の粘度は、25℃で150~1500mPa・sとすることが好ましい。150mPa・sより低い粘度であると、金型注型の際に材料が流れ出してしまい成形が困難であり、1500mPa・sより高い粘度であると注型し難くなり所望の形状の成形品が得られにくい。 The viscosity of the active energy ray-curable resin composition is preferably 150 to 1500 mPa · s at 25 ° C. When the viscosity is lower than 150 mPa · s, the material flows out during mold casting, making it difficult to mold. When the viscosity is higher than 1500 mPa · s, casting becomes difficult and a molded product with a desired shape is obtained. It's hard to be done.
 活性エネルギー線硬化型樹脂組成物は、樹脂やエラストマー等からなる基材に塗布したり、金型に注入してこれらの基材と接着したりして用いることができる。
 活性エネルギー線硬化型樹脂組成物を硬化させるための活性エネルギー線には、紫外線の他、電子線、可視光、赤外光、X線、α線、β線、γ線などを挙げることができ、これらを照射する光源としては、UV光源やUV-LED光源、種々の水銀灯やナトリウム灯、キセノンランプ、メタルハライドランプ等が挙げられる。
The active energy ray-curable resin composition can be used by being applied to a substrate made of a resin, an elastomer, or the like, or injected into a mold and bonded to these substrates.
Examples of the active energy ray for curing the active energy ray-curable resin composition include ultraviolet rays, electron beams, visible light, infrared light, X-rays, α rays, β rays, γ rays, and the like. Examples of the light source for irradiating these include a UV light source, a UV-LED light source, various mercury lamps, sodium lamps, xenon lamps, metal halide lamps, and the like.
 活性エネルギー線硬化型樹脂組成物の製造
 ポリエステル骨格を有する2官能ウレタンアクリレートオリゴマーである成分Aと、アクリルアミドまたはその誘導体である成分Bと、複素環基を有する単官能(メタ)アクリレートモノマーである成分Cとを含有する活性エネルギー線硬化型樹脂組成物、それにこれらの成分の一部を欠く活性エネルギー線硬化型樹脂組成物を調製し、試料1~試料10を製造した。各組成物を構成する成分の詳細は次の表1および表2に示した。
Production of active energy ray-curable resin composition :
Active energy ray-curable type containing component A which is a bifunctional urethane acrylate oligomer having a polyester skeleton, component B which is acrylamide or a derivative thereof, and component C which is a monofunctional (meth) acrylate monomer having a heterocyclic group A resin composition and an active energy ray-curable resin composition lacking some of these components were prepared, and samples 1 to 10 were produced. Details of the components constituting each composition are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2における表記は次のとおりである。
 ・CN9009:サートマー社製の商品名。ポリエステル系骨格の2官能ウレタンアクリレートオリゴマー。
 ・CN9788:サートマー社製の商品名。ポリエステル系骨格の2官能ウレタンアクリレートオリゴマー。
 ・CN996:サートマー社製の商品名。ポリエーテル系骨格の2官能ウレタンアクリレートオリゴマー。
 ・CN929:サートマー社製の商品名。ポリエステル系骨格の3官能ウレタンアクリレートオリゴマー。
 ・イルガキュア184:BASFジャパン社製の商品名。
The notations in Table 1 and Table 2 are as follows.
CN9009: trade name manufactured by Sartomer. Bifunctional urethane acrylate oligomer with a polyester-based skeleton.
CN9788: trade name manufactured by Sartomer. Bifunctional urethane acrylate oligomer with a polyester-based skeleton.
CN 996: trade name manufactured by Sartomer. A bifunctional urethane acrylate oligomer with a polyether skeleton.
CN929: trade name manufactured by Sartomer. A trifunctional urethane acrylate oligomer with a polyester skeleton.
・ Irgacure 184: trade name of BASF Japan.
 表1および表2で示す配合比率で調製した試料1~試料10の各活性エネルギー線硬化型樹脂組成物について、基材密着性、反り性、硬度、硬化収縮率、耐薬品性、脱型性について以下の方法で試験・評価した。その結果も表1に示す。 For each of the active energy ray-curable resin compositions of Samples 1 to 10 prepared at the blending ratios shown in Tables 1 and 2, the substrate adhesion, warpage, hardness, curing shrinkage, chemical resistance, and demolding property The following methods were used for testing and evaluation. The results are also shown in Table 1.
 <基材密着性>:
 各試料を基材となる樹脂上で硬化させた際の基材と硬化物との密着性をテストした。
 基材として易接着PET:300μm厚)を準備し、直径5mm、高さ5mmの大きさの硬化物が得られる型に試料を充填し、その表面に易接着PETを空気が入らないようにして被せて、易接着PETの上から照度:500mW/cm、積算光量:3000mJ/cmの条件で活性エネルギー線(紫外線)を照射して試料を固化し、脱型した。
 密着性は、直径5mmの面で易接着PETに固着している硬化物の端部に爪を引っかけ、硬化物を剥離したときの剥離のし易さから判断した。剥がれなかったものを“○”、剥がれ難かったものを“△”、容易に剥がれるものを“×”と評価した。
<Base material adhesion>:
The adhesion between the substrate and the cured product when each sample was cured on the resin serving as the substrate was tested.
(Easy-adhesive PET: 300 μm thickness) is prepared as a base material, and a sample is filled into a mold from which a cured product having a diameter of 5 mm and a height of 5 mm can be obtained. Then, the sample was solidified by irradiation with active energy rays (ultraviolet rays) under conditions of illuminance: 500 mW / cm 2 and integrated light quantity: 3000 mJ / cm 2 from above easy-adhesion PET.
The adhesion was judged from the ease of peeling when a nail was hooked on the end of the cured product fixed to the easy-adhesion PET on the surface having a diameter of 5 mm and the cured product was peeled off. Those that were not peeled were evaluated as “◯”, those that were difficult to peel off were evaluated as “Δ”, and those that were easily peeled off were evaluated as “×”.
 <反り性>:
 各試料を薄層になるように成形し硬化させた硬化物の反りの程度をテストした。
 基材密着性試験をしたのと同様の易接着PETを準備し、120mm×45mm×0.3mmの大きさの硬化物が得られる型に試料を充填し、その表面に易接着PETを空気が入らないようにして被せて、易接着PETの上から照度:500mW/cm、積算光量:3000mJ/cmの条件で紫外線を照射した。脱型後、80℃環境下で1時間放置し、室温で30分放冷した。そして硬化物の反り量が最も大きな部分をハイトゲージで測定しその反りの長さ(mm)を示した。
<Warpage>:
Each sample was tested to determine the degree of warpage of the cured product formed and cured to form a thin layer.
Prepare the same easy-adhesive PET as in the base material adhesion test, fill the sample into a mold that can obtain a cured product of 120 mm x 45 mm x 0.3 mm, and place the easy-adhesive PET on the surface with air. It covered so that it might not enter, and was irradiated with ultraviolet rays from above easy-adhesive PET under the conditions of illuminance: 500 mW / cm 2 and integrated light quantity: 3000 mJ / cm 2 . After demolding, it was left for 1 hour in an 80 ° C. environment and allowed to cool at room temperature for 30 minutes. And the part with the largest curvature amount of hardened | cured material was measured with the height gauge, and the length (mm) of the curvature was shown.
 <硬度>:
 基材密着性試験をしたのと同様に基材に固着した硬化物を作製し、JIS K7215に準じて、デュロメータ硬さDを硬化物に衝撃無く速やかに押しつけたときの最大値を測定した。
<Hardness>:
The hardened | cured material adhering to the base material was produced similarly to having done the base-material adhesiveness test, and the maximum value when pressing the durometer hardness D against a hardened | cured material rapidly without an impact was measured according to JISK7215.
 <硬化収縮率>:
 上記試料の比重と、その試料を硬化させた後の比重から硬化収縮率を求めた。 硬化前の試料の比重は、JIS Z8807に準ずる比重瓶による密度および比重測定方法によって測定し、硬化物の比重は、JIS Z8807に準ずる水中秤量法による密度および比重測定法によって測定し、次の式から硬化収縮率を求めた。
・硬化収縮率(%)={(硬化後比重)-(硬化前比重)}/(硬化後比重)×100
<Curing shrinkage>:
The cure shrinkage was determined from the specific gravity of the sample and the specific gravity after the sample was cured. The specific gravity of the sample before curing is measured by a density and specific gravity measurement method using a specific gravity bottle according to JIS Z8807. From this, the cure shrinkage was determined.
Curing shrinkage rate (%) = {(specific gravity after curing) − (specific gravity before curing)} / (specific gravity after curing) × 100
 <耐薬品性>:
 各試料に500mW/cm、積算光量:3000mJ/cmの条件で紫外線を照射し、10mm×50mm×0.5mmの大きさの硬化物を作製した。この硬化物を2種類の薬品に浸漬し、次の式で得られる膨潤度から耐薬品性を評価した。
・膨潤度=薬品に浸漬させた後の重量/薬品に浸漬させる前の重量
 薬品としては、オレイン酸とエタノールを準備し、オレイン酸には、50℃で24時間、エタノールには、25℃で24時間、それぞれ浸漬させた。
<Chemical resistance>:
Each sample was irradiated with ultraviolet rays under the conditions of 500 mW / cm 2 and integrated light quantity: 3000 mJ / cm 2 to prepare a cured product having a size of 10 mm × 50 mm × 0.5 mm. This cured product was immersed in two kinds of chemicals, and the chemical resistance was evaluated from the degree of swelling obtained by the following formula.
-Swelling degree = weight after soaking in chemicals / weight before soaking in chemicals Prepare oleic acid and ethanol as chemicals, oleic acid at 50 ° C for 24 hours, ethanol at 25 ° C Each was immersed for 24 hours.
 <脱型性>:
 10mm×5mm×深さ0.5mmの凹部を複数備える型に試料を充填し、上記易接着PETを被せて上記条件で紫外線を照射して試料を固化した後、型から容易に取り出せるか否かをテストした。
 脱型性の判断は、型から容易に取り出せるものを“○”、容易には取り出せなかったものを“×”とした。
<Demoldability>:
Whether the sample is filled in a mold having a plurality of recesses of 10 mm × 5 mm × depth 0.5 mm, and the sample is covered with the easy-adhesion PET and irradiated with ultraviolet rays under the above conditions to solidify the sample. Tested.
In the determination of mold release property, “◯” indicates that the mold can be easily removed from the mold, and “X” indicates that the mold cannot be easily removed.
 活性エネルギー線硬化型樹脂組成物を硬化させた硬化物の評価
 ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマー(成分A)と、アクリルアミドまたはその誘導体(成分B)と、複素環基を有する単官能(メタ)アクリレートモノマー(成分C)と、を含有する試料1~試料5、試料9の活性エネルギー線硬化型樹脂組成物は、全ての特性評価において良好であった。
Evaluation of cured product obtained by curing active energy ray-curable resin composition :
A sample containing a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton (component A), acrylamide or a derivative thereof (component B), and a monofunctional (meth) acrylate monomer having a heterocyclic group (component C) The active energy ray-curable resin compositions of Samples 1 to 5 and Sample 9 were good in all the characteristic evaluations.
 一方、ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマー(成分A)に代えて、ポリエーテル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーを用いた試料8は、硬度が58で、エタノール膨潤度が1.21であり、硬度不足で耐薬品性に劣る結果であった。また、ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマー(成分A)に代えて、同じポリエステル骨格でありながら3官能ウレタン(メタ)アクリレートオリゴマーを用いた試料10は、反り性が7.2mmと大きくなり、反りが問題となる結果であった。 On the other hand, sample 8 using a bifunctional urethane (meth) acrylate oligomer having a polyether skeleton instead of the bifunctional urethane (meth) acrylate oligomer having a polyester skeleton (component A) has a hardness of 58 and an ethanol swelling degree. Was 1.21, and the result was poor hardness and poor chemical resistance. Moreover, instead of the bifunctional urethane (meth) acrylate oligomer (component A) having a polyester skeleton, the sample 10 using the trifunctional urethane (meth) acrylate oligomer while having the same polyester skeleton has a warpage of 7.2 mm. The result was an increase in warpage.
 また、アクリルアミドまたはその誘導体(成分B)であるアクリロイルモルホリンを加えなかった試料6は、硬度が52と低く、また基材密着性があまり良く無かった。そして、複素環基を有する単官能(メタ)アクリレートモノマー(成分C)を含まない試料7は、オレイン酸膨潤度が1.16、エタノール膨潤度が1.18となり、耐薬品性が劣っていた。 Further, Sample 6 to which acryloylmorpholine which is acrylamide or a derivative thereof (component B) was not added had a hardness as low as 52, and the substrate adhesion was not very good. And the sample 7 which does not contain the monofunctional (meth) acrylate monomer (component C) which has a heterocyclic group had an oleic acid swelling degree of 1.16 and an ethanol swelling degree of 1.18, and was inferior in chemical resistance. .

Claims (6)

  1.  ポリエステル骨格を有する2官能ウレタン(メタ)アクリレートオリゴマーと、アクリルアミドまたはその誘導体の少なくとも何れか一方と、複素環基を有する単官能(メタ)アクリレートモノマーと、を含有する活性エネルギー線硬化型樹脂組成物。 Active energy ray-curable resin composition comprising a bifunctional urethane (meth) acrylate oligomer having a polyester skeleton, at least one of acrylamide or a derivative thereof, and a monofunctional (meth) acrylate monomer having a heterocyclic group .
  2.  前記複素環基の環を構成する元素が、炭素と酸素のみである請求項1記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 1, wherein the elements constituting the ring of the heterocyclic group are only carbon and oxygen.
  3.  前記複素環基が、オキシラン環、オキシレン環、オキセタン環、オキソラン環、ジオキソラン環、オキサン環またはジオキサン環の少なくとも何れかである請求項1または請求項2記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 1 or 2, wherein the heterocyclic group is at least one of an oxirane ring, an oxirene ring, an oxetane ring, an oxolane ring, a dioxolane ring, an oxane ring, or a dioxane ring.
  4.  前記単官能(メタ)アクリレートモノマーが、テトラヒドロフルフリル(メタ)アクリレートまたはトリメチロールプロパンフォルマル(メタ)アクリレートの少なくとも何れかを含むものである請求項1~請求項3何れか1項記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray according to any one of claims 1 to 3, wherein the monofunctional (meth) acrylate monomer contains at least one of tetrahydrofurfuryl (meth) acrylate and trimethylolpropane formal (meth) acrylate. A curable resin composition.
  5.  請求項1~請求項4何れか1項記載の活性エネルギー線硬化型樹脂組成物を活性エネルギー線で硬化してなる硬化物。 A cured product obtained by curing the active energy ray-curable resin composition according to any one of claims 1 to 4 with active energy rays.
  6.  基材上に、請求項5記載の硬化物が一体成形されてなる成形体。 A molded product obtained by integrally molding the cured product according to claim 5 on a substrate.
PCT/JP2015/067091 2014-06-18 2015-06-12 Active energy ray curable resin composition, cured product thereof and molded product thereof WO2015194487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580030336.5A CN106459322A (en) 2014-06-18 2015-06-12 Active energy ray curable resin composition, cured product thereof and molded product thereof
JP2016529318A JPWO2015194487A1 (en) 2014-06-18 2015-06-12 Active energy ray-curable resin composition, cured product thereof and molded product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125322 2014-06-18
JP2014125322 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015194487A1 true WO2015194487A1 (en) 2015-12-23

Family

ID=54935474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067091 WO2015194487A1 (en) 2014-06-18 2015-06-12 Active energy ray curable resin composition, cured product thereof and molded product thereof

Country Status (3)

Country Link
JP (1) JPWO2015194487A1 (en)
CN (1) CN106459322A (en)
WO (1) WO2015194487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064522A1 (en) 2018-09-24 2020-04-02 Basf Se Photocurable composition for use in 3d printing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437376B (en) * 2019-07-09 2022-05-17 湖南昇微新材料有限公司 High-precision 3D printing thermochromic material and preparation method and application method thereof
CN110437385B (en) * 2019-07-09 2022-04-22 湖南昇微新材料有限公司 Photochromic material for 3D printing and preparation method and application method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117023A (en) * 1986-11-05 1988-05-21 Nippon Kayaku Co Ltd Resin composition and printing ink composition
JPH10130586A (en) * 1996-10-30 1998-05-19 Nippon Kayaku Co Ltd Adhesive composition, cured material, article and bonding
JP2003268026A (en) * 2002-03-12 2003-09-25 Teikoku Printing Inks Mfg Co Ltd Ultraviolet light-curing composition, ultraviolet light- curing ink and printed material
JP2005255844A (en) * 2004-03-11 2005-09-22 Jsr Corp Radiation curable composition
JP2011256307A (en) * 2010-06-10 2011-12-22 Mitsubishi Rayon Co Ltd Active energy ray-curable resin composition for casting, and optical component
JP2014141654A (en) * 2012-12-28 2014-08-07 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition and coating agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835857B2 (en) * 1996-06-18 2006-10-18 日本化薬株式会社 Adhesive composition for optical disk, cured product, article, and adhesion method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117023A (en) * 1986-11-05 1988-05-21 Nippon Kayaku Co Ltd Resin composition and printing ink composition
JPH10130586A (en) * 1996-10-30 1998-05-19 Nippon Kayaku Co Ltd Adhesive composition, cured material, article and bonding
JP2003268026A (en) * 2002-03-12 2003-09-25 Teikoku Printing Inks Mfg Co Ltd Ultraviolet light-curing composition, ultraviolet light- curing ink and printed material
JP2005255844A (en) * 2004-03-11 2005-09-22 Jsr Corp Radiation curable composition
JP2011256307A (en) * 2010-06-10 2011-12-22 Mitsubishi Rayon Co Ltd Active energy ray-curable resin composition for casting, and optical component
JP2014141654A (en) * 2012-12-28 2014-08-07 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curable resin composition and coating agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064522A1 (en) 2018-09-24 2020-04-02 Basf Se Photocurable composition for use in 3d printing

Also Published As

Publication number Publication date
JPWO2015194487A1 (en) 2017-05-25
CN106459322A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
TWI624514B (en) Photocurable resin composition and method for manufacturing image display device
JP5141074B2 (en) Impact-resistant adhesive layer, impact-resistant adhesive laminate, and display device
CN108300361A (en) Adhesive sheet, display body and its manufacturing method
JP2019526663A (en) Polymerization-induced phase separation composition for acrylate-based networks
KR20140112433A (en) Photocurable resin composition and optical film using the same
WO2015194487A1 (en) Active energy ray curable resin composition, cured product thereof and molded product thereof
JP2021075044A (en) Polymer composition for photofabrication
KR101975885B1 (en) Coating meterial composition
JP2015209520A (en) Ultraviolet curable resin composition for optical use, cured layer thereof, and optical member
CN108350336A (en) Adhesive composition for optical applications
TW202035489A (en) Photocurable resin composition and a method of producing the display device
JP2008081572A (en) Resin composition, and laminated material by using the same
JP6440944B2 (en) Photocurable composition and molded article
KR20170079713A (en) Adhesive composition, Display device comprising the same and Method of making display device using the same
JP2018140601A (en) Manufacturing method for laminate, and light curable resin composition
JP2018127528A (en) Photocurable resin composition having high refractive index
JP6753038B2 (en) Photocurable composition
KR102664447B1 (en) Manufacturing method of fast curing acrylic syrup
JP6011086B2 (en) Active energy ray polymerizable resin composition for casting
KR101493233B1 (en) Resin composition of ultraviolet stiffening type for plastic surface treatment and plastic surface treatment method
KR101491974B1 (en) Resin composition of ultraviolet stiffening type for plastic surface treatment and plastic surface treatment method
EP3815899B1 (en) Polymer composition for stereolithography
JP2013057010A (en) Curable resin composition and cured product
KR102057457B1 (en) Protecting film applied during heat molding of glastic substrate and method for producing the same
JP2014015554A (en) Base material with shaped product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809687

Country of ref document: EP

Kind code of ref document: A1