WO2015194201A1 - Self-propelled electronic device - Google Patents

Self-propelled electronic device Download PDF

Info

Publication number
WO2015194201A1
WO2015194201A1 PCT/JP2015/051378 JP2015051378W WO2015194201A1 WO 2015194201 A1 WO2015194201 A1 WO 2015194201A1 JP 2015051378 W JP2015051378 W JP 2015051378W WO 2015194201 A1 WO2015194201 A1 WO 2015194201A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
distance
target object
relative position
unit
Prior art date
Application number
PCT/JP2015/051378
Other languages
French (fr)
Japanese (ja)
Inventor
弘晃 猶原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580013758.1A priority Critical patent/CN106104400B/en
Publication of WO2015194201A1 publication Critical patent/WO2015194201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a self-propelled electronic device, and particularly to a self-propelled electronic device having a function of controlling a control target device arranged in a predetermined space.
  • Self-propelled electronic devices having a function of transmitting infrared signals for remotely controlling devices to be controlled such as televisions and air conditioners are used.
  • Such a self-propelled electronic device outputs an infrared signal corresponding to a control command such as power ON / OFF after moving to a position where the infrared signal reaches the control target device.
  • a control command such as power ON / OFF
  • the arrangement position of the control target device had to be stored in advance, but the user uses a dedicated software for a personal computer or smartphone to determine the predetermined reference position and the control target device. A map with a relative relationship with the placement position was created.
  • the created map is transferred to the self-propelled electronic device, and the self-propelled electronic device determines the movement route to the control target device based on this map.
  • a map of the room to be cleaned is stored in the self-propelled cleaner, and the position of the charging stand as a reference point and the relative position of the control target device of the television or air conditioner installed in the room are also stored.
  • the instruction input command is transmitted to the self-propelled cleaner.
  • the self-propelled cleaner When receiving the instruction input command, the self-propelled cleaner analyzes the command and recognizes that the control target is “TV” and the control content is “power-on”. After that, the position of the television set to be controlled is confirmed using a map stored in advance, and the movement route from the current position of the self-propelled cleaner to the position of the television is determined. Then, the self-propelled cleaner starts moving based on the determined moving route, and moves to the vicinity of the television, and then outputs an infrared signal indicating that the television is turned on.
  • the space (room) in which a self-propelled electronic device moves and the device to be controlled are different for each user who uses the self-propelled electronic device, so the shape and size of the space, the position and name of the device to be controlled, etc.
  • the user had to enter and create the map himself.
  • the process of creating such a map is a rather cumbersome and time-consuming task even if dedicated map creation software is used.
  • the remote control function of the self-propelled electronic device may not be used using the map.
  • the user changes the map each time the position of the charging base, which is the reference point for the relative position, the position of the control target device such as a TV is changed, or a new control target device is added. There was a need to do.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to easily determine the position of a control target device arranged in a space in which a self-propelled electronic device moves. To do.
  • the present invention is a self-propelled electronic device that automatically travels toward the position of a target object, and a travel control unit that moves by controlling the rotation of a wheel, and a movement that measures a distance moved from a predetermined reference point A distance measuring unit; an angle detecting unit that detects a moving direction; a signal communication unit that receives a radio signal transmitted from the target object; and the target object based on the received radio signal.
  • a self-propelled type from the reference point using a distance measuring unit for measuring a distance, the measured moving distance from the reference point to the measurement point at which the distance is measured, and the detected moving direction By calculating the relative position of the electronic device, and using the relative position from the calculated reference point and the measurement distance to the target object measured by the distance measuring unit, the target object from the reference point Determine the relative position of There is provided a self-propelled electronic device is characterized in that a that position determination unit.
  • the distance measurement unit measures the distance from each measurement point to the target object at any of a plurality of measurement points
  • the position determination unit includes the reference
  • the relative position of the self-propelled electronic device from the point is calculated, and the circumferences of a plurality of circles intersecting with the calculated relative position of each measurement point as the center of the circle and the measured distance as the radius of the circle
  • the relative position of the intersecting point is determined as a position where the target object exists.
  • the measurement points for calculating the relative position of the self-propelled electronic device and measuring the distance to the target object are three or more different positions on the travel route that automatically travels, and the position determining unit The relative position of one intersection where the circumferences of three or more circles centered on the relative position of the measurement point intersect is determined as the position where the target object exists. According to this, the user does not need to perform the work of determining the position of the target object by himself / herself investigating the arrangement position of the target object, and can easily perform the target object only by the self-propelled electronic device traveling automatically. You can determine the position of an object.
  • a storage unit is further provided, and device identification information for distinguishing a plurality of target objects is stored in the storage unit in advance, and the position determination is performed.
  • the control unit After determining the relative position of each target object by the unit, the control unit obtains device position information that associates the device identification information with the determined relative position of each target object.
  • a control device map is generated based on the device position information stored in the storage unit.
  • the target object is a distance measuring device installed in the vicinity of a control target device to be remotely controlled by a user
  • the distance measuring device includes a signal communication unit that transmits the radio signal, and the position
  • the control unit regards the relative position of the distance measuring device as the arrangement position of the control target device and indicates the position where the control target device exists A device map is generated. According to this, it is not necessary to provide a signal communication unit that transmits a radio signal to the target object, and the user can easily install the distance measuring device in the vicinity of the target object.
  • the position of the object can be determined and a control device map can be generated.
  • the target object is a control target device to be remotely controlled by a user
  • the control target device includes a signal communication unit that transmits the radio signal.
  • the control target device that is the target object includes the signal communication unit, it is not necessary to install a ranging device in the vicinity of the target target in order to determine the position of the control target device. The user's work for position determination can be simplified.
  • the wireless signal is a BLE signal defined by a Bluetooth low energy standard
  • the distance measuring unit is configured to determine a distance to the target object based on a reception intensity of the BLE signal received by the signal communication unit. Is measured. According to this, since the distance to the target object is measured based on the received BLE signal, as long as the self-propelled electronic device is within a distance that can receive the BLE signal, the self-propelled electronic device and the target A linear distance to the object can be calculated.
  • the self-propelled electronic device is a self-propelled cleaner having a rechargeable battery and a cleaning function
  • the target object is a distance measuring device installed in the vicinity of the control target device to be remotely controlled by the user.
  • the self-propelled cleaner performs automatic cleaning and performs a cleaning function, and the distance to the distance measuring device measured at a plurality of measurement points of the travel route automatically traveled, and the reference point
  • the relative position of the measurement point from the position determination unit determines the relative position of the distance measuring device. According to this, it is possible to determine the position of the control target device while the self-propelled cleaner performs the cleaning by the automatic travel, and the user can determine a special position for determining the position of the control target device. There is no need to work.
  • the reference point is an installation position of a charging stand where the self-propelled cleaner returns to charge the rechargeable battery.
  • the device position information about the existing target object is stored in the storage unit, it is determined when the relative position of the newly installed target object is determined by the position determination unit.
  • the relative position of the target object is added to the device position information. According to this, even when a new target object is installed, the target object can be easily determined by determining the relative position of the newly installed target object by performing distance measurement as described above. Objects can be added to the control device map.
  • the storage If the previous device position information stored in the unit is different from the device position information including the relative position of the same target object obtained by re-determining the position, the change of the relative position of the target object or the reference point A process for changing the position is performed. According to this, even when the position of the existing target object or the position of the reference point changes, it is possible to easily reset the relative position of the target object after the change or the position of the reference point.
  • the present invention using the distance measurement to the target object and the relative position from the reference point of the measurement point calculated using the movement distance and the movement direction at the measurement point at which the distance measurement was performed. Since the relative position of the target object from the reference point is determined, the relative position where the target object is disposed can be easily determined.
  • the self-propelled electronic device of the present invention is an electronic device that has a function of automatically setting and storing the position of a control target device that is a target object, and that automatically travels toward the target object.
  • the structure of the "self-propelled cleaner" provided with the rechargeable battery and the cleaning function is demonstrated as one Example of the self-propelled electronic device of this invention.
  • the self-propelled cleaner It will automatically return until.
  • the self-propelled cleaner of the present invention may be any electronic device that has at least a rechargeable battery, performs automatic traveling control, and has a function of moving to a region near the controlled device by automatic traveling. It is not limited to a type vacuum cleaner.
  • a self-propelled air cleaner that sucks air and exhausts purified air
  • a self-propelled ion generator that generates ions
  • a function that presents necessary information to the user
  • a self-propelled robot that performs a function requested by the user.
  • the device to be controlled corresponds to a target object to be remotely controlled by the user. Also, it is an electrical device that receives a control signal output from a self-propelled electronic device and executes a specific function corresponding to the received control signal, such as a television, an air conditioner, an air cleaner, a lighting device, etc. It is.
  • FIG. 1 is a block diagram showing the construction of an embodiment of the self-propelled cleaner according to the present invention.
  • a self-propelled cleaner hereinafter also referred to as a vacuum cleaner or a cleaner
  • a control unit 11 mainly includes a control unit 11, a rechargeable battery 12, a failure detection unit 13, an angle detection unit 14, a signal communication unit 15, and a distance.
  • Measurement unit 16 position determination unit 17, infrared reception unit 18, travel control unit 21, wheel 22, encoder 23, intake port 31, exhaust port 32, dust collection unit 33, input unit 34, storage unit 41, command reception unit 51
  • the control signal transmission unit 52 is provided.
  • a charging stand (not shown) is fixedly installed at a predetermined position such as a room for cleaning.
  • the self-propelled cleaner 1 is supplied with electric power from the charging stand in contact with the charging stand, and the rechargeable battery 12 of the self-propelled cleaner 1 is connected. Charge.
  • the self-propelled cleaner 1 executes the cleaning function while automatically running away from the charging stand, and further, when requested, transmits a control signal to remotely control the device to be controlled.
  • the self-propelled cleaner 1 of the present invention cleans the floor surface by sucking air containing dust on the floor surface and exhausting the air from which dust has been removed while traveling on the floor surface of the place where it is installed. It is a cleaning robot.
  • the self-propelled cleaner 1 of the present invention has a function of autonomously returning to the charging stand when cleaning is completed.
  • FIG. 2 the schematic perspective view of one Example of the self-propelled cleaner of this invention is shown.
  • FIG. 3 the rear view of one Example of a self-propelled cleaner is shown.
  • the self-propelled cleaner 1 of the present invention includes a disk-shaped housing 2, and a rotating brush, a side brush 10, a dust collecting unit 33, an electric blower, and a plurality of devices are provided inside and outside the housing 2.
  • the wheel 22 which consists of these drive wheels, the signal communication part 15, the infrared receiving part 18, and the other component shown in FIG. 1 are provided.
  • the portion where the infrared receiver 18 is disposed is the front portion
  • the portion where the rear wheel which is a driven wheel is disposed is the rear portion
  • the signal communication portion 15 and the dust collecting portion 33 are disposed inside the housing. This part is called the middle part.
  • the housing 2 has a circular bottom plate having an air inlet 31 and a top plate 2b having a lid portion 3 that opens and closes when the dust collecting portion 33 accommodated in the housing 2 is taken in and out at the center portion, A side plate 2c having an annular shape in plan view provided along the outer peripheral portion of the bottom plate and the top plate 2b.
  • the bottom plate is formed with a plurality of holes for projecting the lower portions of the pair of drive wheels and rear wheels from the inside of the housing 2 to the outside, and the exhaust port 32 is located near the boundary between the front portion and the middle portion of the top plate 2b. Is formed.
  • the side plate 2c is divided into two in the front and rear directions, and the front side portion of the side plate functions as a bumper.
  • the self-propelled cleaner 1 turns in a stationary state by a pair of driving wheels rotating forward in the same direction, moving forward, moving backward in the same direction, moving backward, and rotating in opposite directions. For example, when the cleaner 1 reaches the peripheral edge of the cleaning area and collides with an obstacle on the course, the driving wheels stop, and the pair of driving wheels rotate in opposite directions to change directions. Thereby, the vacuum cleaner 1 is self-propelled while avoiding an obstacle over the entire installation place or the entire desired range.
  • the self-propelled cleaner 1 receives a radio signal emitted from a signal communication unit of a charging stand (not shown), for example, when cleaning is completed, when the remaining charge of the rechargeable battery 12 is reduced, or When the set time of the set cleaning timer elapses, the vehicle automatically returns to the charging stand by repeating linear travel and rotation, or wall running, etc., in the direction of approaching the charging stand automatically. . However, if there are obstacles, move to the charging stand while avoiding them. In addition, by receiving an infrared signal output from the charging stand by the infrared receiving unit 18, feedback processing to the charging stand and connection processing with the charging stand are performed.
  • the control unit 11 in FIG. 1 is a part that controls the operation of each component of the cleaner 1, and is mainly realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like.
  • the CPU organically operates each hardware based on a control program stored in advance in a ROM or the like, and executes a cleaning function, a traveling function, a control device map generation function, and the like according to the present invention.
  • control device map generation function refers to a target object arranged in a predetermined space using the relative position of the target object determined by the position determination unit 17 and the position of a predetermined reference point. This is a function for generating a control device map indicating the position where an object exists.
  • the reference point is an arrangement position of a charging stand where the self-propelled cleaner returns to charge the rechargeable battery.
  • the rechargeable battery 12 is a part that supplies electric power to each functional element of the cleaner 1, and is a part that mainly supplies electric power for performing the cleaning function and travel control.
  • a rechargeable battery such as a lithium ion battery, a nickel metal hydride battery, or a Ni—Cd battery is used.
  • the rechargeable battery 12 is charged in a state where the vacuum cleaner 1 and the charging stand are connected.
  • the connection between the vacuum cleaner 1 and the charging stand is performed by bringing exposed charging terminals that are connecting portions to each other into contact with each other.
  • the battery remaining amount detection part which is not shown in figure is provided, the remaining capacity (remaining battery amount) of a rechargeable battery is detected, and it should return to the charging stand based on the detected remaining battery amount (%) You may decide to return.
  • the traveling control unit 21 is a part that controls the autonomous traveling of the self-propelled cleaner 1, and automatically moves by mainly controlling the rotation of the wheel 22 described above to mainly perform linear traveling and rotational operation. It is a part to be made.
  • the left wheel and the right wheel are driven by different drive motors. By driving two drive wheels (the left wheel and the right wheel) of the wheels 22, operations such as forward movement, backward movement, rotation, and stationary of the cleaner 1 are performed.
  • the encoder 23 is provided for each of the left wheel and the right wheel, and measures the moving distance of the self-propelled cleaner from a predetermined reference point according to the rotation speed, rotation direction, rotation position, and rotation speed of the wheels. This corresponds to the movement distance measuring unit.
  • the angle detection unit 14 is a so-called gyro sensor and detects an angle in the traveling direction of the self-propelled cleaner 1. Based on the signal output from the gyro sensor 14, the angle from the reference direction is calculated. Thereby, the moving direction is detected. For example, when making a left turn of 90 degrees, while checking the state of the gyro sensor, the drive motor is controlled to rotate 90 degrees to the left from the initial angular position, and the right wheel is stationary. And the left wheel are rotated in opposite directions.
  • the gyro sensor 14 is also used for correction of movement control errors and fine adjustment of the posture.
  • the obstacle detection unit 13 is a part that detects that the cleaner 1 is in contact with or approaching an obstacle such as an indoor desk or chair while the vehicle is running.
  • a micro switch for example, a micro switch, an ultrasonic sensor, an infrared distance measuring sensor, or the like.
  • a contact sensor or an obstacle sensor is used, and is arranged at the front portion of the side plate 2 ⁇ / b> C of the housing 2.
  • the CPU recognizes the position where the obstacle exists based on the signal output from the obstacle detection unit 13. Based on the position information of the recognized obstacle, a direction to travel next is determined while avoiding the obstacle.
  • the infrared receiver 18 is a part that receives an infrared signal output from the charging stand.
  • the dust collection part 33 is a part which performs the cleaning function which collects indoor garbage and dust, and is mainly provided with the dust collection container which is not shown in figure, the filter part, and the cover part which covers a dust collection container and a filter part. Moreover, it has an inflow path that communicates with the intake port 31 and an exhaust path that communicates with the exhaust port 32, and guides the air sucked from the intake port 31 into the dust collecting container through the inflow channel. Air is discharged to the outside from the exhaust port 32 through the discharge path.
  • the intake port 31 and the exhaust port 32 are portions for performing intake and exhaust of air for cleaning, respectively, and are formed at positions as described above.
  • the input unit 34 is a part where the user inputs an instruction for the operation of the cleaner 1, and is provided on the surface of the housing of the cleaner 1 as an operation panel or an operation button.
  • a remote control unit is provided separately from the main body of the cleaner, and when the user presses an operation button provided on the remote control unit, an infrared ray or a radio wave signal is transmitted, and the operation is performed by wireless communication.
  • An instruction may be input.
  • a power switch, a start switch, a main power switch, a charge request switch, other switches (operation mode switch, timer switch), and the like are provided. For example, when the charging request switch is pushed down during automatic traveling, it is determined that it is necessary to return to the charging stand, and the feedback process is executed.
  • the signal communication unit 15 in FIG. 1 is a part that receives (detects) a radio signal transmitted from a signal communication unit 102 of the distance measuring device 100 described later or a control target device that is a target object.
  • a general communication device that can receive a transmitted radio signal can be used as an element of the signal communication unit 15.
  • a radio signal transmitted from the distance measuring device 100 for example, a signal defined by the Bluetooth Low Energy (BLE) standard is used.
  • BLE Bluetooth Low Energy
  • this radio signal is referred to as a BLE signal.
  • the signal communication unit 15 is also a receiving device capable of communication by BLE.
  • the distance to the distance measuring device 100 is measured based on the reception intensity of the BLE signal received by the signal communication unit 15.
  • BLE is a new Bluetooth standard that is used as a communication method for short-range wireless communication today, and performs wireless communication using 2.4 GHz band radio waves.
  • BLE has a maximum communication speed of 1 Mbps and can communicate several meters to several tens of meters depending on transmission power and antenna performance, and is characterized by power saving.
  • the distance L between the signal communication unit 102 and the signal communication unit 15 is measured by receiving the BLE signal output from the signal communication unit 102 of the distance measuring device 100 described later by the signal communication unit 15.
  • the signal communication unit 102 that outputs the BLE signal may be provided in the charging stand or each control target device 110 in addition to the distance measuring device.
  • the distance measuring unit 16 is a part that measures the distance L to the distance measuring device 100 or the control target device that is the target object based on the radio signal received by the signal communication unit 15. Specifically, since the reception intensity of the radio wave is inversely proportional to the square of the distance, the reception intensity of the BLE signal is detected using the BLE signal received by the signal communication unit 15 and measured with the self-propelled cleaner 1.
  • the distance L with the distance device 100 is calculated. For example, a signal attenuation rate is obtained from a predetermined transmission intensity of the BLE signal output from the signal communication unit 102 and a reception intensity of the BLE signal received by the signal communication unit 14, and an attenuation rate prepared in advance is obtained.
  • the distance L corresponding to the attenuation rate may be calculated by referring to a table indicating the relationship with the distance.
  • the BLE signal is transmitted from the signal communication unit 102 in all directions of 360 degrees by devising the antenna shape and the like. Since the BLE signal wraps around due to the diffraction phenomenon, the BLE signal can be received even if there is an obstacle that blocks infrared rays, and the distance between the two (1,100) can be measured.
  • the position determination unit 17 is a part that determines the relative position of the control target device that is the target object. In order to determine the relative position, the relative position of the self-propelled electronic device with respect to the charging base as a reference point and the measurement distance from the self-propelled electronic device to the target object are used. First, the distance measurement unit 16 calculates a measurement distance from a predetermined measurement point to a control target device that is a target object. Next, using the movement distance from the predetermined reference point to the measurement point (position of the self-propelled electronic device) where the distance is measured by the distance measurement unit 16, and the movement direction detected by the gyro sensor 14, Calculate the relative position of the self-propelled electronic device from the reference point. The measurement distance and relative position are calculated as described above at a plurality of arbitrary measurement points.
  • the relative position of the intersection of multiple circles with the relative position of each measurement point as the center of the circle and the measured distance (distance from the measurement point to the target object) as the radius of the circle intersects The position is determined at the position where the control target device as the target object exists.
  • the measurement points are assumed to be three or more different positions on the moving route for automatic traveling. Further, the relative position of one intersection where the circumferences of three or more circles centered on the relative position of the three or more measurement points intersect is determined as the position where the control target device exists.
  • FIG. 4 is a schematic explanatory diagram of distance measurement and movement route according to the present invention.
  • the distance measuring device 100 is a small device that is easy to carry, and is installed and used at a position where the control target device 110 exists. Or you may make it incorporate in the control object apparatus 110.
  • FIG. 4A it is assumed that the charging stand 140, the self-propelled cleaner 1, and the control target device 110 are arranged in the rectangular room 150 as shown in the drawing.
  • the distance measuring device 100 is a small device that is easy to carry, and is installed and used at a position where the control target device 110 exists. Or you may make it incorporate in the control object apparatus 110.
  • the position (x0, y0) of the charging stand 140 installed at the lower left of the room is the origin (0, 0) of the XY coordinates, and the current position (x1, y1) of the self-propelled cleaner 1 with this position as a reference point And the relative position of the installation position (x2, y2) of the distance measuring device 100.
  • the current position (x1, y1) of the self-propelled cleaner 1 is charged. It can be calculated using information (travel distance, travel direction) of the travel route that has traveled from the platform 140 to the current position.
  • the BLE signal output from the distance measuring device 100 is received by the signal communication unit 15, whereby the signal communication unit 102 of the distance measuring device 100 from the signal communication unit 15 of the self-propelled cleaner 1.
  • the measurement distance L is calculated.
  • the distance measuring device 100 exists somewhere on the circumference of a circle whose center is the current position of the self-propelled cleaner 1 and whose radius is the measurement distance L. Since only this is known, the position of the control target device 110 in which the distance measuring device 100 is installed cannot be uniquely specified.
  • the measurement distance L as described above is measured at a plurality of different measurement points, and the position determination unit 17 sets the measurement distance L as the radius.
  • the position coordinates (x2, y2) of one intersection where the circumferences of a plurality of circles intersect are calculated.
  • the installation position (x2, y2) is determined as the installation position of the distance measuring device 100, that is, the arrangement position of the control target device 110.
  • the command receiving unit 51 in FIG. 1 is a part that receives a control command output from a device that controls the operation of the self-propelled cleaner 1 (for example, a portable terminal such as an infrared remote controller or a smart phone).
  • a device that controls the operation of the self-propelled cleaner 1 for example, a portable terminal such as an infrared remote controller or a smart phone.
  • the control command include a start command, a stop command, a movement command, and a remote control command for the control target device of the self-propelled cleaner 1.
  • the control signal transmission unit 52 is a part that transmits a control signal for remotely controlling the operation of the control target device 110.
  • a control signal for example, an infrared signal is used, and a signal indicating activation (power ON), stop (power OFF), operation start, operation end, operation mode change, or the like of the control target device 110 is output.
  • the infrared signal since the infrared ray has directivity and the reachable range is limited, after the self-propelled cleaner 1 self-propels to the vicinity of the control target device 110, the control target device 110 described later A control signal is output toward a certain direction of the control signal receiving unit 112.
  • FIG. 4B shows an explanatory diagram of an example of the movement route of the self-propelled cleaner 1 and the control of the control target device 110.
  • the broken line has shown the movement route of the self-propelled cleaner 1.
  • FIG. Here, an example of a route that travels from the charging stand 140 to the vicinity of the control target device 110 for the first time is shown.
  • the self-propelled cleaner 1 moves to a position where the infrared signal transmitted from the control signal transmission unit 52 is received by the control signal reception unit 112 of the control target device 110.
  • the self-propelled cleaner 1 stops at that position and outputs the control signal as described above to the control signal receiving unit 112.
  • the control target device 110 executes a function corresponding to the received control signal.
  • the storage unit 41 is a part that stores information and programs necessary for realizing various functions of the self-propelled cleaner 1, and includes a semiconductor storage element such as a RAM and a ROM, a storage device such as a hard disk and an SSD, and the like. These storage media are used.
  • the storage unit 41 mainly stores a current measurement position 42, a device measurement distance 43, device identification information 44, device position information 45, a control device map 46, a movement route 47, and the like.
  • FIG. 5 shows an explanatory diagram of an embodiment of information stored in the storage unit 41 of the present invention.
  • FIG. 5A shows an example of measurement information measured by the self-propelled cleaner 1.
  • an example of the current measurement position 42 and the device measurement distance 43 is shown.
  • working route and measurement position of the self-propelled cleaner 1 of this invention is shown.
  • the position of the charging stand installed in one room, the television (TV) that is the device to be controlled, and the distance measuring device are shown, and the solid line with an arrow indicates the movement route of the self-propelled cleaner.
  • the star indicates a measurement point for measuring the distance to the distance measuring device.
  • the four measurement points (P1 to P4) at the current measurement position 42 in FIG. 5A correspond to the four positions of the star marks shown in FIG. In FIG. 7, the relative position coordinates of the positions of the four stars are shown with the position where the charging stand is located as the reference position (0, 0).
  • the position coordinates (120, 900) of the first measurement point P1 in FIG. 7 is +120 cm in the X-axis direction, which is the horizontal axis of the XY coordinates, and the vertical axis when the charging base (0, 0) is used as a reference. It means that the position is +900 cm in a certain Y-axis direction.
  • the second measurement point P2 (420, 810) indicates that the position is +420 cm in the X-axis direction and +810 cm in the Y-axis direction.
  • the position coordinates of such a measurement point can be calculated from the distance and direction of movement of the self-propelled cleaner 1 by analyzing the signals acquired from the encoding 23 and the gyro sensor 14 described above.
  • the device measurement distance 43 in FIG. 5A indicates a linear distance from the current position of the self-propelled cleaner 1 to the distance measuring device 100 at each measurement point. For example, at the measurement point P1, it means that the linear distance from the current position of the self-propelled cleaner 1 to the distance measuring device 100 is 600 cm. This linear distance corresponds to the device measurement distance 43 calculated by the distance measurement unit 16 described above.
  • the relative position coordinates (current measurement position 42) at the four measurement points (P1 to P4) and the instrument measurement distance 43 to the distance measuring device 100 are shown. Instead, it may be measured at an arbitrary measurement point on the moving route. Also, the number of measurement points is preferably as large as possible in order to increase the accuracy of specifying the position of the distance measuring device. At least three or more measurement points are necessary, and it is sufficient to measure at three or four measurement points as shown in FIG.
  • FIG. 5B shows an example of the device identification information 44.
  • the device identification information 44 includes distance measurement device identification information and device information, and indicates information (attributes) for distinguishing a plurality of control target devices 110.
  • FIG. 5B shows a case where there are two distance measuring devices, for example, and names of control target devices at positions where the respective distance measuring devices are installed are set and stored in advance.
  • the identification information for identifying the distance measuring device is ID01, which means that the name of the control target device in which the distance measuring device is installed is a television.
  • the device identification information 44 in addition to the device name, a product code or an identification ID may be used.
  • FIG. 5C shows an example of the device position information 45.
  • the device position information 45 is information that associates the device identification information 44 with the relative positions of the plurality of target objects determined by the position determination unit 17, and after the relative positions of the target objects are determined, Stored in the storage unit 41. Also, when the relative position of the newly installed target object is determined by the position determination unit 17 in a state where the device position information 45 about the existing target object is stored in the storage unit 41, the determination The relative position of the target object thus obtained is additionally stored in the device position information 45.
  • a control device map 46 to be described later is, for example, an arrangement map of control target devices as shown in FIGS. 4 and 11, and is generated based on the device position information 45.
  • the device position information 45 the identification information of the distance measuring device, the relative position (X, Y) of the control target device 110 obtained from the reference point (charging stand), and the control target device 110 It shows what consists of device information (device name).
  • device information device name
  • FIG. 5C shows position information 45 of three control target devices.
  • This relative position is obtained by the method described later by calculating the coordinates of the intersections of the circumferences of a plurality of circles using the measurement information (42, 43) shown in FIG.
  • the device identification information 44 when only one control target device exists in one room, it is not necessary to set the device identification information 44 as described above.
  • the information on the relative position and the attributes of the control target device as shown in FIG. may be stored in association with each other, and the identification information of the distance measuring device and the device name may not necessarily be associated in advance.
  • a distance measuring device is first installed at one of the plurality of controlled devices, and the self-propelled cleaner 1 is moved. Then, after measuring the measurement information of FIG. 5A and determining the relative position of the control target device, the determined relative position coordinate and the name of the control target device are stored in association with each other. Next, after re-installing the same distance measuring device at the position of another controlled device, measuring the same measurement information and determining the relative position of the controlled device, the position coordinates and control The name of the target device may be stored in association with each other.
  • a plurality of distance measuring devices may be installed at the positions of the respective control target devices, and the positions of all the control target devices may be determined simultaneously.
  • the position of the distance measuring device may be replaced with the position of each device to be controlled, and the positions of the devices to be controlled may be determined one by one in order.
  • the control device map 46 shows a position where a target object arranged in a predetermined space exists.
  • FIG. 6 the schematic explanatory drawing of the coordinate of the control equipment map (map) 46 is shown.
  • the space of the room 150 shown in FIG. 4 is shown as the upper right region (X> 0, Y> 0) in FIG.
  • control device map (map) 46 is generated not only for the coordinate space as shown in FIG. 4 but also for four coordinate spaces. By generating a map showing the positions of the control target devices arranged in the four coordinate spaces with the charging stand as the center, all devices included in the map can be controlled.
  • the movement route 47 in FIG. 1 is a route in which the self-propelled cleaner 1 has actually moved.
  • the moving route 47 can be generated from information acquired from the encoder 23 and the gyro sensor 14. Further, after the relative position from the reference point of the control target device is determined, when there is an instruction input to move to the control target device, the self-propelled cleaner calculated from the relative position and the movement route is used. After automatically generating a travel route to the vicinity of the control target device using information on the relative position from the reference point, the travel route may also be temporarily stored.
  • the self-propelled cleaner 1 is provided with a charging stand connection portion (not shown).
  • the charging stand connection unit is a terminal for inputting power for charging the rechargeable battery 12.
  • the charging stand connection unit is a terminal for inputting power for charging the rechargeable battery 12.
  • an ultrasonic sensor may be provided.
  • An ultrasonic sensor detects the distance to an object such as a wall of a room or a desk, and is composed of a transmitter that transmits ultrasonic waves and a receiver that receives reflected waves from the object.
  • the ultrasonic sensor is mainly used for measuring a distance to an obstacle such as a wall.
  • a structure (ion generator) that generates ions may be provided during cleaning or in a stationary state so as to perform sterilization and deodorization (or deodorization).
  • a timer switch for setting a time for executing the cleaning process is provided, and when a timer switch is turned on (ON), counting of a preset time (for example, 60 minutes) is started, and the set time is set.
  • the cleaning process may be executed until elapses. After the set time elapses, the cleaning process may be stopped and automatically returned to the charging stand.
  • the distance measuring device 100 mainly includes a control unit 101, a signal communication unit 102, and a storage unit 103. As described above, the distance measuring device 100 is installed in the vicinity of the position where the control target device 110 whose distance from the self-propelled cleaner 1 is to be measured is transmitted, and transmits a BLE signal to measure the distance. is there. Or you may incorporate in a control object apparatus or a charging stand. Since the distance measuring device 100 is installed in the vicinity of the control target device, it may be regarded as corresponding to the target object described above.
  • the position determination unit 17 determines the relative position of the distance measuring device 100
  • the relative position of the distance measuring device is regarded as the arrangement position of the corresponding control target device.
  • a control device map 46 indicating the position where the control target device exists is generated.
  • the distance to the distance measuring device 100 measured at a plurality of measurement points of the automatically traveled route and the charging stand as a reference point while performing the cleaning function by performing automatic traveling. are used to determine the relative position of the distance measuring device.
  • the control unit 101 can be realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like, and is a part that executes a predetermined function such as a BLE signal transmission function by a program stored in the ROM or the like. is there.
  • the signal communication unit 102 is a part that transmits a radio signal, and particularly includes a BLE transmission device and an antenna for transmitting a BLE signal.
  • the storage unit 103 is a part that stores information and programs necessary for transmission of the BLE signal, and a semiconductor storage element such as a ROM, a RAM, or a flash memory, and a storage device such as an HDD are used.
  • identification information for distinguishing the distance measuring device 100 is stored.
  • different identification information is set and stored in advance for each distance measuring device, and each unique identification information is included in the BLE signal output from the signal communication unit 102.
  • the distance measuring device 100 can distinguish the BLE signal received by the signal communication unit 15.
  • this identification information may be arbitrarily set using hardware such as a resistance element or a DIP switch.
  • the control target device 110 mainly includes a control unit 111, a control signal reception unit 112, a function execution unit 113, and a storage unit 114. Moreover, you may provide the structure which transmits a BLE signal similarly to the signal communication part 102 of a ranging device.
  • the control target device 110 is a target object whose operation is remotely controlled based on the control signal transmitted from the self-propelled cleaner 1, and is, for example, an electric device such as a television or an air conditioner. is there.
  • the control unit 111 gives an instruction corresponding to the control signal received by the control signal receiving unit 112 to the function execution unit 113, the operation of the control target device 110 is controlled.
  • the control unit 111 can be realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like.
  • the control signal receiving unit 112 is a part that receives the control signal output from the control signal transmitting unit 52 of the self-propelled cleaner 1. For example, when the control signal is infrared, an infrared light receiving element is used.
  • the function execution unit 113 is a part that executes a function of the control target device 110, and activates a predetermined program according to an instruction from the control unit 111, and executes a function based on the instruction. For example, when the control target device is a television, functions such as power-on (ON), power-off (OFF), and channel switching are executed.
  • the storage unit 114 is a part for storing information and programs necessary for executing functions, and a storage device such as a semiconductor storage element such as a ROM, a RAM, or a flash memory, or an HDD is used.
  • the storage unit 114 stores, for example, identification information (name, manufacturing number, etc.) for specifying the control target device.
  • control target device 110 may include a configuration equivalent to the distance measuring device 100 described above. That is, a configuration, a program, and the like for transmitting the BLE signal may be provided in the control target device 110 in advance. In this case, it is not necessary to install the dedicated distance measuring device 100 at the control target device 110 in order to obtain the arrangement position of the control target device. Even when the control target device 110 is in a stopped state, by making it possible to always send a signal for distance measurement, when the arrangement position of the control target device 110 is changed, etc. By making the running cleaner 1 self-run, it is possible to determine the changed position of the control target device 110 without performing a special operation or processing only for setting the changed position.
  • ⁇ Position determination processing of control target device> An example of processing for determining the position of the control target device and generating a control device map will be described with reference to FIGS. 7 to 10.
  • the self-propelled cleaner 1 is self-propelled along an arbitrary moving route, and is installed at a control target device 110 whose position is to be determined at least at three or more measurement points.
  • the distance to the distance measuring device 100 is measured, and the installation position of the distance measuring device is calculated using three or more measurement distances and the relative coordinates of the measurement points. Further, the calculated relative position of the distance measuring device 100 is regarded as the relative position of the installed control target device.
  • the self-propelled cleaner 1 starts moving from the charging stand that is the reference point. There is no need, and the travel route does not always have to travel on a preset route. It is only necessary to be able to calculate relative coordinates of the current position of the self-propelled cleaner 1 with respect to the reference point.
  • a distance measuring device First, in the vicinity of a control target device 110 that is to be stored in the self-propelled cleaner 1 such as a newly placed control target device or a control target device whose placement has been changed. Then, the distance measuring device 100 is placed. (2) Storage of identification information of distance measuring device Next, the identification information of the distance measuring device 100 is stored in the self-propelled cleaner 1.
  • the identification information of the distance measuring device 100 may be stored in the storage unit 41 in advance, but the distance measuring device 100 transmits the identification information of the distance measuring device to the self-propelled cleaner 1 and is automatically set. May be. At this time, the identification information itself may be given meaning and used as a dedicated identifier.
  • the identification information is zero, it means that it is a television, and if it is 1, it means that it means an air conditioner.
  • the identification information itself may be a general-purpose identifier and may be used only as a number for identifying a distance measuring device. In this case, if the user manually uses the input unit to manually set the relationship between the identification information and the name (or type) of the control device corresponding to the distance measuring device using a DIP switch or the like. Good.
  • the self-propelled cleaner 1 is set to a cleaning mode by automatic traveling, and the cleaning operation is started while moving the room.
  • the movement route and movement speed may be arbitrary.
  • the three or more measurement points need only be at different positions, and need not always be at the same position, but may be at random positions. However, measurement points may be set at regular intervals corresponding to the moving speed. Alternatively, a measurement point may be set every time a certain distance is moved. For example, when the self-propelled cleaner travels on a moving route as shown in FIG. 7, distance measurement is performed at four measurement points. The relative position of the measurement point is also calculated. One example of the result of measurement at these four measurement points is the measurement information shown in FIG.
  • FIG. 8 shows the positional relationship between the self-propelled cleaner 1 and the distance measuring device 100 at the first measurement point (120, 900).
  • the measured distance 600 cm indicates a linear distance between the measurement point and the distance measuring device 100.
  • the position of the distance measuring device 100 cannot be uniquely determined by only this one measurement distance. As shown in FIG. 8, it is only understood that the distance measuring device exists somewhere on the circumference of the circle whose radius is the measurement distance (600 cm) with the measurement point as the center. This circle is used to determine the position of the distance measuring device 100 as will be described later.
  • FIGS. 9 and 10 are explanatory diagrams of measurement distances at each measurement point.
  • FIG. 9A shows the measurement distance L1 between the first measurement point P1 and the distance measuring device 100, as in FIG.
  • a circle having the measurement point P1 as the center and the measurement distance L1 as the radius is defined as R1.
  • FIG. 9B shows a measurement distance L2 between the second measurement point P2 and the distance measuring device 100 in addition to FIG. 9A.
  • a circle having the measurement point P2 as the center and the measurement distance L2 as the radius is defined as R2. It is assumed that the radius of the circle R2 is 360 cm from FIG.
  • the two circles (R1, R2) intersect at two intersections, but the distance measuring device 100 can be found only on the circumference of the two circles. Is still unknown.
  • FIG. 10A shows a measurement distance L3 between the third measurement point P3 and the distance measuring device 100 in addition to FIG. 9B.
  • a circle having the measurement point P3 as the center and the measurement distance L3 as the radius is defined as R3.
  • the radius of the circle R3 is assumed to be 510 cm from FIG.
  • the three circles (R1, R2, R3) intersect each other at a plurality of intersections. If there are cases where the three circles intersect at one intersection, the intersection is The position where the distance measuring device 100 exists can be determined.
  • the position of the point where the three circles intersect indicates the installation position of the distance measuring device 100.
  • the position coordinates of this intersection can be obtained by arithmetic operation using mathematical expressions indicating three circles in the XY coordinates with the reference point as the origin (0, 0).
  • FIG. 10B further shows a measurement distance L4 between the fourth measurement point P4 and the distance measuring device 100 in addition to FIG. 10A.
  • a circle having the measurement point P4 as the center and the measurement distance L4 as the radius is defined as R4.
  • the radius of the circle R4 is assumed to be 70 cm from FIG.
  • a point where the four distance circles (R1 to R4) intersect at one intersection is a position where the distance measuring device 100 exists.
  • the position of the distance measuring device 100 can be determined using three circles as shown in FIG. 10 (a).
  • the intersection point can be determined using three or more circles.
  • the relative coordinates (X, Y) of the installation position of the distance measuring device 100 are obtained by obtaining the intersection of three or four circles shown in FIG. 10 (a) or FIG. 10 (b). .
  • the apparatus position information 45 of FIG. 5C when the identification information of the distance measuring device 100 is ID01, the coordinates of the relative position are calculated and stored as (500, 960). If this distance measuring device 100 is installed in the vicinity of the television that is the control target device, the relative coordinates of the arrangement position of the television are determined as the relative coordinates (500, 960) of the distance measuring device 100. That is, the relative position of the distance measuring device 100 is stored as the arrangement position of the control target device 110.
  • the television is stored as device information in association with ID01 in the device position information 45.
  • the device identification information 44 is set in advance as shown in FIG. 5B.
  • the television is stored as device information in association with ID01 in the device position information 45.
  • a control device map (map) 46 is automatically generated. That is, a map in which the control target device 110 is arranged in a predetermined space (room) is generated using the determined relative position of the control target device 110 and the position of the reference point.
  • a plurality of distance measuring devices 100 may be used to simultaneously determine the positions of a plurality of control target devices. For example, as shown in FIG. 5C, the relative positions of a plurality of control target devices can be determined in correspondence with the relative positions of the distance measuring devices.
  • the self-propelled cleaner 1 moves and cleans the inside of the room only once, it is automatically controlled as many as the number of distance measuring devices.
  • the position of the device can be measured, and the map 46 including a plurality of control target devices can be easily generated in a relatively short time. Therefore, in order to determine the position of the control target device and generate the control device map 46, the user does not need to perform complicated setting input operations.
  • Control processing for the control target device As described above, after the arrangement position of the control target device in the room is stored, even if the user does not enter the room where the control target device exists, he / she owns the control target device.
  • the control target device can be controlled by performing an input operation for transmitting a control command for the desired control target device to the self-propelled cleaner 1 using a portable terminal or the like.
  • a wireless signal including a control command (power-on command) that means turning on the air conditioner is transmitted from the portable terminal to the self-propelled cleaner 1.
  • the command receiving unit 51 of the self-propelled cleaner 1 receives this control command, it should be controlled from the received control command using the device position information 45 or the control device map 46 stored in the storage unit 41. Identify the device (air conditioner) and check the relative position of the identified device.
  • the self-propelled cleaning from the current position of the self-propelled cleaner 1 to the vicinity of the control target device (air conditioner) on the control device map 46.
  • the self-propelled cleaner 1 starts moving based on the set moving route.
  • the control signal transmission unit 52 of the self-propelled cleaner 1 sends a control signal (power-on) corresponding to the received control command in the direction of the control target device (air conditioner).
  • the function executing unit 113 executes a function (power-on) corresponding to the control signal.
  • each control target device There is also an embodiment in which the configuration of the distance measuring device is built in each control target device. (Embodiment 3) In this case, when the self-propelled cleaner 1 is at the position of the charging stand that is the reference point, that is, when the self-propelled cleaner 1 is being charged, each control target device has a position that is currently stored. It can be confirmed whether or not they exist at the same position.
  • FIG. 11A shows an explanatory diagram of an embodiment for measuring the distance from the charging stand.
  • the signal communication unit 15 of the self-propelled cleaner 1 receives the BLE signal output from the signal communication unit 102 of the distance measuring device built in each control target device, and the distance measurement unit 16 causes each control target device to Measure the distance to the signal communication unit.
  • the measurement distances (L10, L20, L30) to each control target device are measured as shown in FIG. 11 (a)
  • these distances are approximately equal to the linear distance from the charging stand where the self-propelled cleaner is located. Since it is considered that they are equal, this measured distance is compared with the linear distance from the reference point obtained from the relative position of the current device position information 45 already stored in the storage unit 41.
  • the current position may be reset by performing the position determination process as described above again.
  • FIG. 11B shows an explanatory diagram of an embodiment in the case where the distance from the charging stand is measured again.
  • the installation position of the charging base is changed as shown in FIG. 11 (b)
  • the position of the charging base after the change is different from the reference point (0, 0)
  • the charging base of each control target device is used as a reference.
  • the relative positional relationship changes. Therefore, it is necessary to obtain the relative position of the charging base itself after the change with reference to the reference point (0, 0).
  • the arrangement positions of three or more devices to be controlled have already been stored.
  • each measurement distance (L11, L21, L31) is a radius with the relative position of the distance measuring device 100 of each control target device as the center.
  • the relative position of the intersection of the circles is calculated.
  • the position coordinates of the point where the circle with the radius L11, the circle with the radius L21, and the circle with the radius L31 all intersect are determined as the position where the self-propelled cleaner 1 exists. Since self-propelled cleaner 1 is connected to the charging stand, the relative position of self-propelled cleaner 1 can be regarded as the relative position of the changed charging stand.
  • the information on the control target device may be deleted and updated. Further, when it is detected that the positions of a plurality of control target devices have changed, all information may be deleted and updated. Alternatively, when the user inputs an information deletion instruction using the input unit, all the information may be deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This self-propelled electronic device is equipped with: a travel control unit; a movement distance measurement unit for measuring a movement distance from a reference point; an angle detection unit for detecting a movement direction; a signal communication unit for receiving a radio signal transmitted from a target object; a distance measurement unit for measuring the distance to the target object on the basis of the received radio signal; and a position determination unit which calculates the relative position of the self-propelled electronic device from the reference point using the movement distance from the reference point to the measurement point, that is, the point at which the distance measurement was carried out, and the detected movement direction, and which determines the relative position of the target object from the reference point with use of the calculated relative position from the reference point and the measured distance to the target object. In addition, the self-propelled electronic device generates a control device map using the determined relative position of the target object and the position of the reference point, said control device map indicating the position where the target object is disposed within a space.

Description

自走式電子機器Self-propelled electronic device
 この発明は、自走式電子機器に関し、特に、所定の空間内に配置された制御対象機器を制御する機能を有する自走式電子機器に関する。 The present invention relates to a self-propelled electronic device, and particularly to a self-propelled electronic device having a function of controlling a control target device arranged in a predetermined space.
 テレビやエアコン等の制御対象機器を遠隔制御するための赤外線信号を送出する機能を備えた自走式電子機器が利用されている。
 このような自走式電子機器は、赤外線信号が制御対象機器に届く位置まで移動した後、電源ON/OFFなどの制御コマンドに対応する赤外線信号を出力している。移動ルートを決定するために、制御対象機器の配置位置を予め記憶しておく必要があったが、ユーザが、パソコンやスマートホンの専用ソフトウェアを使用して、所定の基準位置と制御対象機器の配置位置との相対関係を設定したマップを作成していた。
Self-propelled electronic devices having a function of transmitting infrared signals for remotely controlling devices to be controlled such as televisions and air conditioners are used.
Such a self-propelled electronic device outputs an infrared signal corresponding to a control command such as power ON / OFF after moving to a position where the infrared signal reaches the control target device. In order to determine the movement route, the arrangement position of the control target device had to be stored in advance, but the user uses a dedicated software for a personal computer or smartphone to determine the predetermined reference position and the control target device. A map with a relative relationship with the placement position was created.
 作成されたマップは、自走式電子機器に転送され、自走式電子機器は、このマップに基づいて、制御対象機器までの移動ルートを決定していた。
 たとえば、自走式掃除機に、掃除を行う室内のマップを記憶し、基準点となる充電台の位置や、室内に設置されたテレビやエアコンの制御対象機器の相対位置も記憶しておく。
 スマートホンから、たとえば、テレビの電源を投入する指示入力がされた場合、その指示入力コマンドが自走式掃除機に送信される。
The created map is transferred to the self-propelled electronic device, and the self-propelled electronic device determines the movement route to the control target device based on this map.
For example, a map of the room to be cleaned is stored in the self-propelled cleaner, and the position of the charging stand as a reference point and the relative position of the control target device of the television or air conditioner installed in the room are also stored.
For example, when an instruction is input from the smart phone to turn on the TV, the instruction input command is transmitted to the self-propelled cleaner.
 自走式掃除機は、指示入力コマンドを受信すると、そのコマンドを解析して、制御対象が「テレビ」であり、制御内容が「電源投入」であることを認識する。
 その後、予め記憶されたマップを利用して制御対象であるテレビの位置を確認し、自走式掃除機の現在位置からテレビの位置までの移動ルートを決定する。
 そして、自走式掃除機は、決定した移動ルートに基づいて移動を開始し、テレビの近傍にまで移動した後、テレビの電源投入を意味する赤外線信号を出力する。
When receiving the instruction input command, the self-propelled cleaner analyzes the command and recognizes that the control target is “TV” and the control content is “power-on”.
After that, the position of the television set to be controlled is confirmed using a map stored in advance, and the movement route from the current position of the self-propelled cleaner to the position of the television is determined.
Then, the self-propelled cleaner starts moving based on the determined moving route, and moves to the vicinity of the television, and then outputs an infrared signal indicating that the television is turned on.
特開2013-146302号公報JP 2013-146302 A
 従来、自走式電子機器が移動する空間(部屋)や制御対象機器は、自走式電子機器を利用するユーザごとに異なるので、空間の形状、大きさ、制御対象機器の位置や名称等を入力して、ユーザ自らがマップを作成する必要があった。
 このようなマップを作成する作業は、マップ作成の専用ソフトウェアを利用するとしても、かなり面倒で時間のかかる作業であった。
Conventionally, the space (room) in which a self-propelled electronic device moves and the device to be controlled are different for each user who uses the self-propelled electronic device, so the shape and size of the space, the position and name of the device to be controlled, etc. The user had to enter and create the map himself.
The process of creating such a map is a rather cumbersome and time-consuming task even if dedicated map creation software is used.
 また、パソコン等の入力操作が苦手なユーザにとっては、マップ作成はかなり困難な作業である。したがって、マップを利用して、自走式電子機器の遠隔制御機能が利用されない場合もあった。
 さらに、相対位置の基準点となる充電台の位置や、テレビなどの制御対象機器の配置位置が変更されたり、制御対象機器が新たに追加されたりした場合は、その都度、ユーザがマップを変更する必要があった。
Also, for users who are not good at input operations such as a personal computer, creating a map is quite difficult. Therefore, the remote control function of the self-propelled electronic device may not be used using the map.
Furthermore, the user changes the map each time the position of the charging base, which is the reference point for the relative position, the position of the control target device such as a TV is changed, or a new control target device is added. There was a need to do.
 そこで、この発明は、以上のような事情を考慮してなされたものであり、自走式電子機器が、移動する空間内に配置された制御対象機器の位置を容易に決定することを課題とする。 Therefore, the present invention has been made in view of the above circumstances, and it is an object of the present invention to easily determine the position of a control target device arranged in a space in which a self-propelled electronic device moves. To do.
 この発明は、目標対象物の位置に向かって自動走行する自走式電子機器であって、車輪の回転を制御して移動させる走行制御部と、所定の基準点から移動した距離を計測する移動距離計測部と、移動する方向を検出する角度検出部と、前記目標対象物から送信された無線信号を受信する信号通信部と、前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、前記基準点から前記距離の測定を行った測定ポイントまでの前記計測された移動距離と、前記検出された移動方向とを用いて前記基準点からの自走式電子機器の相対位置を算出し、前記算出された基準点からの相対位置と、前記距離測定部によって測定された目標対象物までの測定距離とを利用して、前記基準点からの目標対象物の相対位置を決定する位置決定部とを備えたことを特徴とする自走式電子機器を提供するものである。 The present invention is a self-propelled electronic device that automatically travels toward the position of a target object, and a travel control unit that moves by controlling the rotation of a wheel, and a movement that measures a distance moved from a predetermined reference point A distance measuring unit; an angle detecting unit that detects a moving direction; a signal communication unit that receives a radio signal transmitted from the target object; and the target object based on the received radio signal. A self-propelled type from the reference point using a distance measuring unit for measuring a distance, the measured moving distance from the reference point to the measurement point at which the distance is measured, and the detected moving direction By calculating the relative position of the electronic device, and using the relative position from the calculated reference point and the measurement distance to the target object measured by the distance measuring unit, the target object from the reference point Determine the relative position of There is provided a self-propelled electronic device is characterized in that a that position determination unit.
 また、前記自走式電子機器の自動走行中に、任意の複数の測定ポイントにおいて、前記距離測定部が各測定ポイントから前記目標対象物までの距離を測定し、前記位置決定部が、前記基準点からの自走式電子機器の相対位置を算出し、前記算出された各測定ポイントの相対位置を円の中心とし、前記測定された距離を円の半径とする複数の円の円周が交差する交点の相対位置を、前記目標対象物が存在する位置に決定することを特徴とする。 In addition, during the automatic traveling of the self-propelled electronic device, the distance measurement unit measures the distance from each measurement point to the target object at any of a plurality of measurement points, and the position determination unit includes the reference The relative position of the self-propelled electronic device from the point is calculated, and the circumferences of a plurality of circles intersecting with the calculated relative position of each measurement point as the center of the circle and the measured distance as the radius of the circle The relative position of the intersecting point is determined as a position where the target object exists.
 また、前記自走式電子機器の相対位置を算出し目標対象物までの距離を測定する測定ポイントは、自動走行する移動ルート上の異なる3つ以上の位置であり、前記位置決定部が、各測定ポイントの相対位置を中心とする3つ以上の円の円周が交差する1つの交点の相対位置を、前記目標対象物が存在する位置に決定することを特徴とする。
 これによれば、ユーザは、目標対象物の配置位置を自ら調査して目標対象物の位置を決定する作業をする必要がなく、自走式電子機器が自動走行するだけで、容易に目標対象物の位置を決定できる。
Further, the measurement points for calculating the relative position of the self-propelled electronic device and measuring the distance to the target object are three or more different positions on the travel route that automatically travels, and the position determining unit The relative position of one intersection where the circumferences of three or more circles centered on the relative position of the measurement point intersect is determined as the position where the target object exists.
According to this, the user does not need to perform the work of determining the position of the target object by himself / herself investigating the arrangement position of the target object, and can easily perform the target object only by the self-propelled electronic device traveling automatically. You can determine the position of an object.
 また、記憶部をさらに備え、位置決定を行うべき前記目標対象物が複数個存在する場合、複数個の目標対象物を区別するための機器識別情報を予め前記記憶部に記憶し、前記位置決定部によって、前記各目標対象物の相対位置の決定をそれぞれ行った後、前記制御部は、前記機器識別情報と、前記決定された各目標対象物の相対位置とを対応づけた機器位置情報を前記記憶部に記憶し、その機器位置情報に基づいて、制御機器地図を生成することを特徴とする。 In addition, when there are a plurality of target objects for which position determination is to be performed, a storage unit is further provided, and device identification information for distinguishing a plurality of target objects is stored in the storage unit in advance, and the position determination is performed. After determining the relative position of each target object by the unit, the control unit obtains device position information that associates the device identification information with the determined relative position of each target object. A control device map is generated based on the device position information stored in the storage unit.
 また、前記目標対象物が、ユーザが遠隔制御しようとする制御対象機器の近傍に設置された測距デバイスであり、前記測距デバイスが、前記無線信号を送信する信号通信部を備え、前記位置決定部が、前記測距デバイスの相対位置を決定した後、前記制御部が、その測距デバイスの相対位置を前記制御対象機器の配置位置とみなして制御対象機器の存在する位置を示した制御機器地図を生成することを特徴とする。
 これによれば、目標対象物に無線信号を送信する信号通信部を備える必要はなく、ユーザは、測距デバイスを目標対象物の近傍に設置する作業をするだけで、容易に、その目標対象物の位置を決定し、かつ制御機器地図を生成することができる。
Further, the target object is a distance measuring device installed in the vicinity of a control target device to be remotely controlled by a user, and the distance measuring device includes a signal communication unit that transmits the radio signal, and the position After the determination unit determines the relative position of the distance measuring device, the control unit regards the relative position of the distance measuring device as the arrangement position of the control target device and indicates the position where the control target device exists A device map is generated.
According to this, it is not necessary to provide a signal communication unit that transmits a radio signal to the target object, and the user can easily install the distance measuring device in the vicinity of the target object. The position of the object can be determined and a control device map can be generated.
 また、前記目標対象物が、ユーザが遠隔制御しようとする制御対象機器であり、前記制御対象機器が、前記無線信号を送信する信号通信部を備えることを特徴とする。
 これによれば、目標対象物である制御対象機器に、信号通信部を備えているので、制御対象機器の位置を決定するために、測距デバイスを目標対象物の近傍に設置する必要はなく、位置決定のためのユーザの作業を簡略化できる。
Further, the target object is a control target device to be remotely controlled by a user, and the control target device includes a signal communication unit that transmits the radio signal.
According to this, since the control target device that is the target object includes the signal communication unit, it is not necessary to install a ranging device in the vicinity of the target target in order to determine the position of the control target device. The user's work for position determination can be simplified.
 また、前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定することを特徴とする。
 これによれば、受信したBLE信号に基づいて、目標対象物までの距離を測定しているので、自走式電子機器がBLE信号を受信できる距離内にいる限り、自走式電子機器と目標対象物との間の直線距離を算出することができる。
Further, the wireless signal is a BLE signal defined by a Bluetooth low energy standard, and the distance measuring unit is configured to determine a distance to the target object based on a reception intensity of the BLE signal received by the signal communication unit. Is measured.
According to this, since the distance to the target object is measured based on the received BLE signal, as long as the self-propelled electronic device is within a distance that can receive the BLE signal, the self-propelled electronic device and the target A linear distance to the object can be calculated.
 また、前記自走式電子機器は、充電池および掃除機能を備えた自走式掃除機であり、前記目標対象物が、ユーザが遠隔制御しようとする制御対象機器の近傍に設置された測距デバイスであり、前記自走式掃除機が、自動走行を行って掃除機能を実行中に、自動走行した移動ルートの複数の測定ポイントにおいて、測定された測距デバイスまでの距離と、前記基準点からの前記測定ポイントの相対位置とを用いて、前記位置決定部が、前記測距デバイスの相対位置を決定することを特徴とする。
 これによれば、自走式掃除機が自動走行によって掃除を実行している間に、制御対象機器の位置を決定することができ、ユーザが、制御対象機器の位置を決定するための特別な作業をする必要はない。
The self-propelled electronic device is a self-propelled cleaner having a rechargeable battery and a cleaning function, and the target object is a distance measuring device installed in the vicinity of the control target device to be remotely controlled by the user. The self-propelled cleaner performs automatic cleaning and performs a cleaning function, and the distance to the distance measuring device measured at a plurality of measurement points of the travel route automatically traveled, and the reference point The relative position of the measurement point from the position determination unit determines the relative position of the distance measuring device.
According to this, it is possible to determine the position of the control target device while the self-propelled cleaner performs the cleaning by the automatic travel, and the user can determine a special position for determining the position of the control target device. There is no need to work.
 また、前記基準点は、前記自走式掃除機が前記充電池を充電するために帰還する充電台の設置位置であることを特徴とする。 In addition, the reference point is an installation position of a charging stand where the self-propelled cleaner returns to charge the rechargeable battery.
 また、前記記憶部に、既存の目標対象物についての機器位置情報が記憶されている状態において、前記位置決定部によって、新たに設置された目標対象物の相対位置が決定された場合、決定された目標対象物の相対位置を前記機器位置情報に追加することを特徴とする。
 これによれば、新たな目標対象物が設置された場合でも、上記のような距離測定などを行って新たに設置された目標対象物の相対位置を決定することにより、容易に、その目標対象物を、制御機器地図に追加することができる。
Further, in the state where the device position information about the existing target object is stored in the storage unit, it is determined when the relative position of the newly installed target object is determined by the position determination unit. The relative position of the target object is added to the device position information.
According to this, even when a new target object is installed, the target object can be easily determined by determining the relative position of the newly installed target object by performing distance measurement as described above. Objects can be added to the control device map.
 また、前記記憶部に、既存の目標対象物についての機器位置情報が記憶されている状態において、前記位置決定部によって再度、前記既存の目標対象物の相対位置の決定を行った場合、前記記憶部に記憶されていた前回の機器位置情報と、再度行った位置決定による同一の目標対象物の相対位置を含む機器位置情報とが異なる場合、その目標対象物の相対位置の変更あるいは基準点の位置を変更する処理を行うことを特徴とする。
 これによれば、既存の目標対象物の位置あるいは基準点の位置が変化した場合でも、容易に、変化後の目標対象物の相対位置あるいは基準点の位置を再設定することができる。
Further, when the relative position of the existing target object is determined again by the position determination unit in a state where the device position information about the existing target object is stored in the storage unit, the storage If the previous device position information stored in the unit is different from the device position information including the relative position of the same target object obtained by re-determining the position, the change of the relative position of the target object or the reference point A process for changing the position is performed.
According to this, even when the position of the existing target object or the position of the reference point changes, it is possible to easily reset the relative position of the target object after the change or the position of the reference point.
 この発明によれば、目標対象物までの距離測定と、その距離測定を行った測定ポイントにおける移動距離と移動方向とを用いて算出したその測定ポイントの基準点からの相対位置とを利用して、基準点からの目標対象物の相対位置を決定しているので、目標対象物が配置されている相対位置を容易に決定することができる。 According to the present invention, using the distance measurement to the target object and the relative position from the reference point of the measurement point calculated using the movement distance and the movement direction at the measurement point at which the distance measurement was performed. Since the relative position of the target object from the reference point is determined, the relative position where the target object is disposed can be easily determined.
この発明の自走式掃除機の一実施例の構成ブロック図である。It is a block diagram of the configuration of an embodiment of the self-propelled cleaner of the present invention. この発明の自走式掃除機の一実施例の概略を示す斜視図である。It is a perspective view which shows the outline of one Example of the self-propelled cleaner of this invention. この発明の自走式掃除機の一実施例の概略を示す背面図である。It is a rear view which shows the outline of one Example of the self-propelled cleaner of this invention. この発明の自走式掃除機による距離測定と移動ルートの一実施例の概略説明図である。It is a schematic explanatory drawing of one Example of the distance measurement by the self-propelled cleaner of this invention, and a movement route. この発明の記憶部に記憶される情報の一実施例の説明図である。It is explanatory drawing of one Example of the information memorize | stored in the memory | storage part of this invention. この発明の制御機器地図の座標の概略説明図である。It is a schematic explanatory drawing of the coordinate of the control equipment map of this invention. この発明の自走式掃除機の走行ルートと測定位置の一実施例の説明図である。It is explanatory drawing of one Example of the driving | running route and measurement position of the self-propelled cleaner of this invention. この発明の測定ポイントにおける測定距離の一実施例の説明図である。It is explanatory drawing of one Example of the measurement distance in the measurement point of this invention. この発明の測定ポイントP1,P2における測定距離の説明図である。It is explanatory drawing of the measurement distance in the measurement points P1 and P2 of this invention. この発明の4つの測定ポイントにおける測定距離の説明図である。It is explanatory drawing of the measurement distance in four measurement points of this invention. この発明の充電台からの測定距離の説明図である。It is explanatory drawing of the measurement distance from the charging stand of this invention.
 以下、図に示す実施例に基づいて、この発明を説明する。
 なお、これによって、この発明が限定されるものではない。
Hereinafter, the present invention will be described based on the embodiments shown in the drawings.
However, this does not limit the present invention.
<自走式電子機器の構成>
 この発明の自走式電子機器は、目標対象物である制御対象機器の位置を自動的に設定記憶する機能を有し、目標対象物に向かって自動走行する電子機器である。
 以下に、この発明の自走式電子機器の一実施例として、充電池および掃除機能を備えた「自走式掃除機」の構成について説明する。また、自走式掃除機が自動走行する所定の空間内の基準となる位置に、充電台を配置し、充電池の残量が所定値以下に減少した場合、自走式掃除機は充電台まで自動的に帰還するものとする。
<Configuration of self-propelled electronic device>
The self-propelled electronic device of the present invention is an electronic device that has a function of automatically setting and storing the position of a control target device that is a target object, and that automatically travels toward the target object.
Below, the structure of the "self-propelled cleaner" provided with the rechargeable battery and the cleaning function is demonstrated as one Example of the self-propelled electronic device of this invention. In addition, if a charging stand is placed at a reference position in a predetermined space where the self-propelled cleaner automatically travels, and the remaining amount of the rechargeable battery decreases below a predetermined value, the self-propelled cleaner It will automatically return until.
 ただし、この発明の自走式掃除機は、少なくとも充電池を備え、自動走行制御を行って、自動走行によって制御対象機器の近傍領域にまで移動する機能を有する電子機器であればよく、自走式掃除機に限定するものではない。
 たとえば、自走式電子機器には、空気吸引を行い清浄化した空気を排気する自走式空気清浄機、イオンを発生させる自走式イオン発生機、ユーザに対して必要な情報を提示する機能やユーザが要求した機能を実行する自走式ロボット等も含まれる。
However, the self-propelled cleaner of the present invention may be any electronic device that has at least a rechargeable battery, performs automatic traveling control, and has a function of moving to a region near the controlled device by automatic traveling. It is not limited to a type vacuum cleaner.
For example, in self-propelled electronic devices, a self-propelled air cleaner that sucks air and exhausts purified air, a self-propelled ion generator that generates ions, and a function that presents necessary information to the user And a self-propelled robot that performs a function requested by the user.
 制御対象機器は、ユーザが遠隔制御しようとする目標対象物に相当する。また、自走式電子機器から出力される制御信号を受信して、その受信した制御信号に対応した特定の機能を実行する電気機器であり、たとえば、テレビ、エアコン、空気清浄機、照明機器などである。 The device to be controlled corresponds to a target object to be remotely controlled by the user. Also, it is an electrical device that receives a control signal output from a self-propelled electronic device and executes a specific function corresponding to the received control signal, such as a television, an air conditioner, an air cleaner, a lighting device, etc. It is.
 図1に、この発明の自走式掃除機の一実施例の構成ブロック図を示す。
 図1において、この発明の自走式掃除機(以下、掃除機またはクリーナとも呼ぶ)は、主として、制御部11、充電池12、障害検知部13、角度検出部14、信号通信部15、距離測定部16、位置決定部17、赤外線受信部18、走行制御部21、車輪22、エンコーダ23、吸気口31、排気口32、集塵部33、入力部34、記憶部41、コマンド受信部51、制御信号送信部52を備える。
FIG. 1 is a block diagram showing the construction of an embodiment of the self-propelled cleaner according to the present invention.
In FIG. 1, a self-propelled cleaner (hereinafter also referred to as a vacuum cleaner or a cleaner) of the present invention mainly includes a control unit 11, a rechargeable battery 12, a failure detection unit 13, an angle detection unit 14, a signal communication unit 15, and a distance. Measurement unit 16, position determination unit 17, infrared reception unit 18, travel control unit 21, wheel 22, encoder 23, intake port 31, exhaust port 32, dust collection unit 33, input unit 34, storage unit 41, command reception unit 51 The control signal transmission unit 52 is provided.
 また、掃除を行う部屋などの所定の位置に、図示しない充電台を固定設置する。充電台と自走式掃除機1を接続することにより、自走式掃除機1は充電台と接触した状態で充電台からの電力の供給を受け、自走式掃除機1の充電池12を充電する。
 また、自走式掃除機1は、充電台から離れ自動走行しながら掃除機能を実行し、さらに、要求があった場合に、制御信号を送信して、制御対象機器を遠隔制御する。
In addition, a charging stand (not shown) is fixedly installed at a predetermined position such as a room for cleaning. By connecting the charging stand and the self-propelled cleaner 1, the self-propelled cleaner 1 is supplied with electric power from the charging stand in contact with the charging stand, and the rechargeable battery 12 of the self-propelled cleaner 1 is connected. Charge.
Moreover, the self-propelled cleaner 1 executes the cleaning function while automatically running away from the charging stand, and further, when requested, transmits a control signal to remotely control the device to be controlled.
 この発明の自走式掃除機1は、設置された場所の床面を自走しながら、床面上の塵埃を含む空気を吸い込み、塵埃を除去した空気を排気することにより床面上を掃除する掃除ロボットである。この発明の自走式掃除機1は、掃除が終了すると、自律的に充電台に帰還する機能を有する。
 図2に、この発明の自走式掃除機の一実施例の概略斜視図を示す。
 図3に、自走式掃除機の一実施例の背面図を示す。
The self-propelled cleaner 1 of the present invention cleans the floor surface by sucking air containing dust on the floor surface and exhausting the air from which dust has been removed while traveling on the floor surface of the place where it is installed. It is a cleaning robot. The self-propelled cleaner 1 of the present invention has a function of autonomously returning to the charging stand when cleaning is completed.
In FIG. 2, the schematic perspective view of one Example of the self-propelled cleaner of this invention is shown.
In FIG. 3, the rear view of one Example of a self-propelled cleaner is shown.
 図2において、本発明の自走式掃除機1は、円盤形の筐体2を備え、この筐体2の内部および外部に、回転ブラシ、サイドブラシ10、集塵部33、電動送風機、複数の駆動輪からなる車輪22、信号通信部15、赤外線受信部18、図1に示したその他の構成要素が設けられている。
 図2において、赤外線受信部18が配置されている部分を前方部、従動輪である後輪が配置されている部分を後方部、筐体内部に信号通信部15や集塵部33が配置されている部分を中間部と呼ぶ。
In FIG. 2, the self-propelled cleaner 1 of the present invention includes a disk-shaped housing 2, and a rotating brush, a side brush 10, a dust collecting unit 33, an electric blower, and a plurality of devices are provided inside and outside the housing 2. The wheel 22 which consists of these drive wheels, the signal communication part 15, the infrared receiving part 18, and the other component shown in FIG. 1 are provided.
In FIG. 2, the portion where the infrared receiver 18 is disposed is the front portion, the portion where the rear wheel which is a driven wheel is disposed is the rear portion, and the signal communication portion 15 and the dust collecting portion 33 are disposed inside the housing. This part is called the middle part.
 筐体2は、吸気口31を有する平面視円形の底板と、筐体2に収容する集塵部33を出し入れする際に開閉する蓋部3を中央部分に有している天板2bと、底板および天板2bの外周部に沿って設けられた平面視円環形の側板2cとを備えている。また、底板には一対の駆動輪および後輪の下部を筐体2内から外部へ突出させる複数の孔部が形成され、天板2bにおける前方部と中間部との境界付近には排気口32が形成されている。なお、側板2cは、前後に二分割されており、側板前部はバンパーとして機能する。 The housing 2 has a circular bottom plate having an air inlet 31 and a top plate 2b having a lid portion 3 that opens and closes when the dust collecting portion 33 accommodated in the housing 2 is taken in and out at the center portion, A side plate 2c having an annular shape in plan view provided along the outer peripheral portion of the bottom plate and the top plate 2b. The bottom plate is formed with a plurality of holes for projecting the lower portions of the pair of drive wheels and rear wheels from the inside of the housing 2 to the outside, and the exhaust port 32 is located near the boundary between the front portion and the middle portion of the top plate 2b. Is formed. In addition, the side plate 2c is divided into two in the front and rear directions, and the front side portion of the side plate functions as a bumper.
 自走式掃除機1は、一対の駆動輪が同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに逆方向に回転することにより静止した状態で旋回する。例えば、掃除機1は、掃除領域の周縁に到達した場合および進路上の障害物に衝突した場合、駆動輪が停止し、一対の駆動輪を互いに逆方向に回転して向きを変える。これにより、掃除機1は、設置場所全体あるいは所望範囲全体に障害物を避けながら自走する。 The self-propelled cleaner 1 turns in a stationary state by a pair of driving wheels rotating forward in the same direction, moving forward, moving backward in the same direction, moving backward, and rotating in opposite directions. For example, when the cleaner 1 reaches the peripheral edge of the cleaning area and collides with an obstacle on the course, the driving wheels stop, and the pair of driving wheels rotate in opposite directions to change directions. Thereby, the vacuum cleaner 1 is self-propelled while avoiding an obstacle over the entire installation place or the entire desired range.
 また、自走式掃除機1は、図示しない充電台の信号通信部から出射される無線信号を受信して、たとえば掃除が終了した場合、充電池12の充電残量が少なくなった場合、あるいは設定された掃除タイマーの設定時間が経過した場合に、自動的に充電台に近づく方向に向かって、直線的な走行と回転動作、あるいは壁ぎわ走行などを繰り返して進行し、充電台まで帰還する。
 ただし、障害物があれば、それを避けながら、充電台の方向へ移動する。
 また、赤外線受信部18によって充電台から出力される赤外線信号を受信することにより、充電台への帰還処理と、充電台との接続処理とを行う。
The self-propelled cleaner 1 receives a radio signal emitted from a signal communication unit of a charging stand (not shown), for example, when cleaning is completed, when the remaining charge of the rechargeable battery 12 is reduced, or When the set time of the set cleaning timer elapses, the vehicle automatically returns to the charging stand by repeating linear travel and rotation, or wall running, etc., in the direction of approaching the charging stand automatically. .
However, if there are obstacles, move to the charging stand while avoiding them.
In addition, by receiving an infrared signal output from the charging stand by the infrared receiving unit 18, feedback processing to the charging stand and connection processing with the charging stand are performed.
 以下、図1に示す各構成要素を説明する。
 図1の制御部11は、掃除機1の各構成要素の動作を制御する部分であり、主として、CPU、ROM、RAM、I/Oコントローラ、タイマー等からなるマイクロコンピュータによって実現される。
 CPUは、ROM等に予め格納された制御プログラムに基づいて、各ハードウェアを有機的に動作させて、この発明の掃除機能、走行機能、制御機器地図生成機能などを実行する。
Hereinafter, each component shown in FIG. 1 will be described.
The control unit 11 in FIG. 1 is a part that controls the operation of each component of the cleaner 1, and is mainly realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like.
The CPU organically operates each hardware based on a control program stored in advance in a ROM or the like, and executes a cleaning function, a traveling function, a control device map generation function, and the like according to the present invention.
 制御機器地図生成機能とは、後述するように、位置決定部17によって決定された目標対象物の相対位置と、所定の基準点の位置とを用いて、所定の空間内に配置された目標対象物の存在する位置を示した制御機器地図を生成する機能である。
 自走式掃除機の場合は、上記基準点は、自走式掃除機が充電池を充電するために帰還する充電台の配置位置とする。
As will be described later, the control device map generation function refers to a target object arranged in a predetermined space using the relative position of the target object determined by the position determination unit 17 and the position of a predetermined reference point. This is a function for generating a control device map indicating the position where an object exists.
In the case of a self-propelled cleaner, the reference point is an arrangement position of a charging stand where the self-propelled cleaner returns to charge the rechargeable battery.
 充電池12は、掃除機1の各機能要素に対して電力を供給する部分であり、主として、掃除機能および走行制御を行うための電力を供給する部分である。たとえば、リチウムイオン電池、ニッケル水素電池、Ni-Cd電池、などの充電池が用いられる。
 充電池12の充電は、掃除機1と充電台とを接続した状態で行われる。
 掃除機1と充電台との接続は、互いの接続部である露出した充電端子どうしを接触させることにより行う。
 なお、図示しない電池残量検出部を備え、充電池の残りの容量(電池残量)を検出し、検出された電池残量(%)に基づいて、充電台の方へ帰還するべきか否かを判断し、帰還してもよい。
The rechargeable battery 12 is a part that supplies electric power to each functional element of the cleaner 1, and is a part that mainly supplies electric power for performing the cleaning function and travel control. For example, a rechargeable battery such as a lithium ion battery, a nickel metal hydride battery, or a Ni—Cd battery is used.
The rechargeable battery 12 is charged in a state where the vacuum cleaner 1 and the charging stand are connected.
The connection between the vacuum cleaner 1 and the charging stand is performed by bringing exposed charging terminals that are connecting portions to each other into contact with each other.
In addition, the battery remaining amount detection part which is not shown in figure is provided, the remaining capacity (remaining battery amount) of a rechargeable battery is detected, and it should return to the charging stand based on the detected remaining battery amount (%) You may decide to return.
 走行制御部21は、自走式掃除機1の自律走行の制御をする部分であり、主として上記した車輪22の回転を制御して、主として直線走行および回転動作をさせることによって、自動的に移動させる部分である。左輪と右輪は、それぞれ異なる駆動用モータによって駆動される。
 車輪22のうち2つの駆動輪(左輪、右輪)を駆動させることにより、掃除機1の前進、後退、回転、静止などの動作を行わせる。
The traveling control unit 21 is a part that controls the autonomous traveling of the self-propelled cleaner 1, and automatically moves by mainly controlling the rotation of the wheel 22 described above to mainly perform linear traveling and rotational operation. It is a part to be made. The left wheel and the right wheel are driven by different drive motors.
By driving two drive wheels (the left wheel and the right wheel) of the wheels 22, operations such as forward movement, backward movement, rotation, and stationary of the cleaner 1 are performed.
 エンコーダ23は、左輪と右輪にそれぞれ設けられ、車輪の回転数や回転方向、回転位置、回転速度によって、所定の基準点からの自走式掃除機の移動距離を計測するものであり、上記した移動距離計測部に相当する。
 角度検出部14は、いわゆるジャイロセンサであり、自走式掃除機1の進行方向の角度を検出するものである。ジャイロセンサ14から出力される信号に基づいて、基準となる方向からの角度が計算される。これにより、移動する方向が検出される。
 たとえば、90度の左旋回をする場合は、ジャイロセンサの状態をチェックしながら、最初の角度位置から90度左方向に回転するように駆動用モータを制御して、静止した状態で、右輪と左輪とを互いに逆方向に回転させる。
 また、ジャイロセンサ14は、この他に、移動制御の誤差の補正や姿勢の微調整にも用いられる。
The encoder 23 is provided for each of the left wheel and the right wheel, and measures the moving distance of the self-propelled cleaner from a predetermined reference point according to the rotation speed, rotation direction, rotation position, and rotation speed of the wheels. This corresponds to the movement distance measuring unit.
The angle detection unit 14 is a so-called gyro sensor and detects an angle in the traveling direction of the self-propelled cleaner 1. Based on the signal output from the gyro sensor 14, the angle from the reference direction is calculated. Thereby, the moving direction is detected.
For example, when making a left turn of 90 degrees, while checking the state of the gyro sensor, the drive motor is controlled to rotate 90 degrees to the left from the initial angular position, and the right wheel is stationary. And the left wheel are rotated in opposite directions.
In addition, the gyro sensor 14 is also used for correction of movement control errors and fine adjustment of the posture.
 障害検知部13は、掃除機1が走行中に、室内の机やいすなどの障害物に接触又は近づいたことを検知する部分であり、たとえば、マイクロスイッチ、超音波センサ、赤外線測距センサなどからなる接触センサ又は障害物センサが用いられ、筐体2の側板2Cの前部に配置される。
 CPUは、障害検知部13から出力された信号に基づいて、障害物の存在する位置を認識する。認識された障害物の位置情報に基づいて、その障害物を避けて次に走行すべき方向を決定する。
 赤外線受信部18は、充電台から出力された赤外線信号を受信する部分である。
The obstacle detection unit 13 is a part that detects that the cleaner 1 is in contact with or approaching an obstacle such as an indoor desk or chair while the vehicle is running. For example, a micro switch, an ultrasonic sensor, an infrared distance measuring sensor, or the like. A contact sensor or an obstacle sensor is used, and is arranged at the front portion of the side plate 2 </ b> C of the housing 2.
The CPU recognizes the position where the obstacle exists based on the signal output from the obstacle detection unit 13. Based on the position information of the recognized obstacle, a direction to travel next is determined while avoiding the obstacle.
The infrared receiver 18 is a part that receives an infrared signal output from the charging stand.
 集塵部33は、室内のゴミやちりを集める掃除機能を実行する部分であり、主として、図示しない集塵容器と、フィルタ部と、集塵容器およびフィルタ部を覆うカバー部とを備える。
 また、吸気口31と連通する流入路と、排気口32と連通する排出路とを有し、吸気口31から吸い込まれた空気を流入路を介して集塵容器内に導き、集塵後の空気を排出路を介して排気口32から外部へ放出する。
 吸気口31および排気口32は、それぞれ掃除のための空気の吸気および排気を行う部分であり、前記したような位置に形成される。
The dust collection part 33 is a part which performs the cleaning function which collects indoor garbage and dust, and is mainly provided with the dust collection container which is not shown in figure, the filter part, and the cover part which covers a dust collection container and a filter part.
Moreover, it has an inflow path that communicates with the intake port 31 and an exhaust path that communicates with the exhaust port 32, and guides the air sucked from the intake port 31 into the dust collecting container through the inflow channel. Air is discharged to the outside from the exhaust port 32 through the discharge path.
The intake port 31 and the exhaust port 32 are portions for performing intake and exhaust of air for cleaning, respectively, and are formed at positions as described above.
 入力部34は、ユーザが、掃除機1の動作を指示入力する部分であり、掃除機1の筐体表面に、操作パネル、あるいは操作ボタンとして設けられる。
 あるいは、入力部34としては、掃除機本体とは別に、リモコンユニットを設け、ユーザがこのリモコンユニットに設けられた操作ボタンを押すことにより、赤外線や無線電波信号を送出し、無線通信により動作の指示入力をしてもよい。
 入力部34として、電源スイッチ、起動スイッチ、主電源スイッチ、充電要求スイッチ、その他のスイッチ(運転モードスイッチ,タイマースイッチ)などが設けられる。
 たとえば、自動走行中に、充電要求スイッチが押し下げられた場合に、充電台に帰還する必要があると判断し、帰還処理を実行する。
The input unit 34 is a part where the user inputs an instruction for the operation of the cleaner 1, and is provided on the surface of the housing of the cleaner 1 as an operation panel or an operation button.
Alternatively, as the input unit 34, a remote control unit is provided separately from the main body of the cleaner, and when the user presses an operation button provided on the remote control unit, an infrared ray or a radio wave signal is transmitted, and the operation is performed by wireless communication. An instruction may be input.
As the input unit 34, a power switch, a start switch, a main power switch, a charge request switch, other switches (operation mode switch, timer switch), and the like are provided.
For example, when the charging request switch is pushed down during automatic traveling, it is determined that it is necessary to return to the charging stand, and the feedback process is executed.
 図1の信号通信部15は、後述する測距デバイス100の信号通信部102や目標対象物である制御対象機器から送信された無線信号を受信(検出)する部分である。信号通信部15の素子としては、送信される無線信号を受信できる一般的な通信デバイスが利用できる。
 以下の実施例では、測距デバイス100から送信される無線信号としては、たとえば、ブルートゥース ローエナジー(BLE:Bluetooth(登録商標) Low Energy)の規格で定められた信号を用いるものとする。以下、この無線信号を、BLE信号と呼ぶ。
 測距デバイス100からBLE信号が送信される場合は、信号通信部15も、BLEによる通信が可能な受信デバイスが用いられる。この発明では、信号通信部15が受信したBLE信号の受信強度に基づいて、測距デバイス100までの距離(自走式掃除機1の現在位置と測距デバイスとの距離)を測定する。
The signal communication unit 15 in FIG. 1 is a part that receives (detects) a radio signal transmitted from a signal communication unit 102 of the distance measuring device 100 described later or a control target device that is a target object. As an element of the signal communication unit 15, a general communication device that can receive a transmitted radio signal can be used.
In the following embodiments, as a radio signal transmitted from the distance measuring device 100, for example, a signal defined by the Bluetooth Low Energy (BLE) standard is used. Hereinafter, this radio signal is referred to as a BLE signal.
When a BLE signal is transmitted from the distance measuring device 100, the signal communication unit 15 is also a receiving device capable of communication by BLE. In the present invention, the distance to the distance measuring device 100 (the distance between the current position of the self-propelled cleaner 1 and the distance measuring device) is measured based on the reception intensity of the BLE signal received by the signal communication unit 15.
 BLEは、今日、近距離無線通信の一つの通信方式として用いられるブルートゥースの新しい規格であり、2.4GHz帯の電波を利用した無線通信を行うものである。
 BLEは、最大通信速度が1Mbpsであり、送信電力やアンテナ性能にもよるが数m~数十mの通信が可能であり、省電力性を特徴とする。
 この発明では、後述する測距デバイス100の信号通信部102から出力されるBLE信号を、信号通信部15によって受信することにより、信号通信部102と信号通信部15との距離Lを測定する。BLE信号を出力する信号通信部102は、測距デバイスの他に、充電台や、各制御対象機器110に設けてもよい。
BLE is a new Bluetooth standard that is used as a communication method for short-range wireless communication today, and performs wireless communication using 2.4 GHz band radio waves.
BLE has a maximum communication speed of 1 Mbps and can communicate several meters to several tens of meters depending on transmission power and antenna performance, and is characterized by power saving.
In this invention, the distance L between the signal communication unit 102 and the signal communication unit 15 is measured by receiving the BLE signal output from the signal communication unit 102 of the distance measuring device 100 described later by the signal communication unit 15. The signal communication unit 102 that outputs the BLE signal may be provided in the charging stand or each control target device 110 in addition to the distance measuring device.
 距離測定部16は、信号通信部15によって受信された無線信号に基づいて、測距デバイス100あるいは目標対象物である制御対象機器までの距離Lを測定する部分である。具体的には、電波の受信強度は距離の2乗に反比例することから、信号通信部15によって受信されたBLE信号を用い、BLE信号の受信強度を検出し、自走式掃除機1と測距デバイス100との距離Lを計算する。
 たとえば、信号通信部102から出力されるBLE信号の予め定められた送信強度と、信号通信部14によって受信されたBLE信号の受信強度とから、信号の減衰率を求め、あらかじめ用意した減衰率と距離との関係を示すテーブルを参照するなどすることにより、減衰率に対応した上記距離Lを計算すればよい。
The distance measuring unit 16 is a part that measures the distance L to the distance measuring device 100 or the control target device that is the target object based on the radio signal received by the signal communication unit 15. Specifically, since the reception intensity of the radio wave is inversely proportional to the square of the distance, the reception intensity of the BLE signal is detected using the BLE signal received by the signal communication unit 15 and measured with the self-propelled cleaner 1. The distance L with the distance device 100 is calculated.
For example, a signal attenuation rate is obtained from a predetermined transmission intensity of the BLE signal output from the signal communication unit 102 and a reception intensity of the BLE signal received by the signal communication unit 14, and an attenuation rate prepared in advance is obtained. The distance L corresponding to the attenuation rate may be calculated by referring to a table indicating the relationship with the distance.
 また、BLE信号は、アンテナ形状等を工夫することにより、信号通信部102から、360度のあらゆる方向に送信される。
 BLE信号は、回折現象で回り込むため、赤外線を遮るような障害物が、あったとしても、BLE信号を受信することができ、両者(1,100)間の距離を測定することができる。
The BLE signal is transmitted from the signal communication unit 102 in all directions of 360 degrees by devising the antenna shape and the like.
Since the BLE signal wraps around due to the diffraction phenomenon, the BLE signal can be received even if there is an obstacle that blocks infrared rays, and the distance between the two (1,100) can be measured.
 位置決定部17は、目標対象物である制御対象機器の相対位置を決定する部分である。この相対位置を決定するために、基準点である充電台に対する自走式電子機器の相対位置と、自走式電子機器から目標対象物までの測定距離を利用する。
 まず、距離測定部16によって、所定の測定ポイントから目標対象物である制御対象機器までの測定距離を算出する。
 次に、所定の基準点から距離測定部16によって距離の測定を行った測定ポイント(自走式電子機器の位置)までの移動距離と、ジャイロセンサ14によって検出された移動方向とを用いて、基準点からの自走式電子機器の相対位置を算出する。
 上記のような測定距離と相対位置の算出を、複数の任意の測定ポイントで行う。
The position determination unit 17 is a part that determines the relative position of the control target device that is the target object. In order to determine the relative position, the relative position of the self-propelled electronic device with respect to the charging base as a reference point and the measurement distance from the self-propelled electronic device to the target object are used.
First, the distance measurement unit 16 calculates a measurement distance from a predetermined measurement point to a control target device that is a target object.
Next, using the movement distance from the predetermined reference point to the measurement point (position of the self-propelled electronic device) where the distance is measured by the distance measurement unit 16, and the movement direction detected by the gyro sensor 14, Calculate the relative position of the self-propelled electronic device from the reference point.
The measurement distance and relative position are calculated as described above at a plurality of arbitrary measurement points.
 その後、各測定ポイントの相対位置を円の中心とし、測定された距離(測定ポイントと目標対象物までの距離)を円の半径とする複数の円の円周が交差する交点の相対位置を、目標対象物である制御対象機器が存在する位置に決定する。
 ここで、後述するように、測定ポイントは自動走行する移動ルート上の異なる3つ以上の位置とする。
 また、この3つ以上の測定ポイントの相対位置を中心とする3つ以上の円の円周が交差する1つの交点の相対位置を、制御対象機器が存在する位置に決定する。
After that, the relative position of the intersection of multiple circles with the relative position of each measurement point as the center of the circle and the measured distance (distance from the measurement point to the target object) as the radius of the circle intersects, The position is determined at the position where the control target device as the target object exists.
Here, as will be described later, the measurement points are assumed to be three or more different positions on the moving route for automatic traveling.
Further, the relative position of one intersection where the circumferences of three or more circles centered on the relative position of the three or more measurement points intersect is determined as the position where the control target device exists.
 図4に、この発明の距離測定と移動ルートの概略説明図を示す。
 図4(a)において、長方形状の部屋150内に、充電台140と、自走式掃除機1と、制御対象機器110とが図に示すように配置されていたとする。
 また、測距デバイス100は、持ち運びが容易な小型の機器であり、制御対象機器110の存在する位置に設置して使用する。あるいは、制御対象機器110の中に、内蔵させてもよい。
FIG. 4 is a schematic explanatory diagram of distance measurement and movement route according to the present invention.
In FIG. 4A, it is assumed that the charging stand 140, the self-propelled cleaner 1, and the control target device 110 are arranged in the rectangular room 150 as shown in the drawing.
The distance measuring device 100 is a small device that is easy to carry, and is installed and used at a position where the control target device 110 exists. Or you may make it incorporate in the control object apparatus 110. FIG.
 部屋の左下に設置された充電台140の位置(x0,y0)をXY座標の原点(0,0)とし、この位置を基準点として、自走式掃除機1の現在位置(x1,y1)と、測距デバイス100の設置位置(x2,y2)の相対位置とを求める。
 ここで、上記したエンコーダ23とジャイロセンサ14から得られた信号に基づいて、それぞれ移動距離と移動方向とが検出されるので、自走式掃除機1の現在位置(x1,y1)は、充電台140から現在位置まで走行してきた移動ルートの情報(移動距離、移動方向)を利用して、算出することができる。
The position (x0, y0) of the charging stand 140 installed at the lower left of the room is the origin (0, 0) of the XY coordinates, and the current position (x1, y1) of the self-propelled cleaner 1 with this position as a reference point And the relative position of the installation position (x2, y2) of the distance measuring device 100.
Here, since the movement distance and the movement direction are detected based on the signals obtained from the encoder 23 and the gyro sensor 14, the current position (x1, y1) of the self-propelled cleaner 1 is charged. It can be calculated using information (travel distance, travel direction) of the travel route that has traveled from the platform 140 to the current position.
 また、上記したように、測距デバイス100から出力されるBLE信号を、信号通信部15によって受信することにより、自走式掃除機1の信号通信部15から測距デバイス100の信号通信部102までの測定距離Lが算出される。
 自走式掃除機1の現在位置の1ヶ所だけでは、測距デバイス100は、自走式掃除機1の現在位置を中心とし半径が測定距離Lの円の円周上のどこかに存在することしか分からないので、測距デバイス100が設置された制御対象機器110の位置を一意に特定することができない。
 そこで、後述するように、自走式掃除機1が自走中に、複数の異なる測定ポイントで、上記のような測定距離Lの測定を行い、位置決定部17が、測定距離Lを半径とする複数の円の円周が交差する1つの交点の位置座標(x2,y2)を算出する。
 この設置位置(x2,y2)を、測距デバイス100の設置位置、すなわち、制御対象機器110の配置位置に決定する。
Further, as described above, the BLE signal output from the distance measuring device 100 is received by the signal communication unit 15, whereby the signal communication unit 102 of the distance measuring device 100 from the signal communication unit 15 of the self-propelled cleaner 1. The measurement distance L is calculated.
At only one location of the current position of the self-propelled cleaner 1, the distance measuring device 100 exists somewhere on the circumference of a circle whose center is the current position of the self-propelled cleaner 1 and whose radius is the measurement distance L. Since only this is known, the position of the control target device 110 in which the distance measuring device 100 is installed cannot be uniquely specified.
Therefore, as described later, while the self-propelled cleaner 1 is self-propelled, the measurement distance L as described above is measured at a plurality of different measurement points, and the position determination unit 17 sets the measurement distance L as the radius. The position coordinates (x2, y2) of one intersection where the circumferences of a plurality of circles intersect are calculated.
The installation position (x2, y2) is determined as the installation position of the distance measuring device 100, that is, the arrangement position of the control target device 110.
 図1のコマンド受信部51は、自走式掃除機1の動作を制御する機器(たとえば、赤外線リモコン、スマートホン等の携帯端末)から出力された制御コマンドを受信する部分である。制御コマンドとしては、たとえば、自走式掃除機1の起動コマンド、停止コマンド、移動コマンド、制御対象機器に対する遠隔制御コマンドなどがある。
 コマンド受信部51によって受信された制御コマンドの内容を解析することによって、自走式掃除機のその後の動作が決定される。
The command receiving unit 51 in FIG. 1 is a part that receives a control command output from a device that controls the operation of the self-propelled cleaner 1 (for example, a portable terminal such as an infrared remote controller or a smart phone). Examples of the control command include a start command, a stop command, a movement command, and a remote control command for the control target device of the self-propelled cleaner 1.
By analyzing the content of the control command received by the command receiving unit 51, the subsequent operation of the self-propelled cleaner is determined.
 制御信号送信部52は、制御対象機器110の動作を遠隔制御するための制御信号を送信する部分である。制御信号としては、たとえば、赤外線信号が用いられ、制御対象機器110の起動(電源ON)、停止(電源OFF)、運転開始、運転終了、動作モード変更などを意味する信号が出力される。
 赤外線信号が用いられる場合、赤外線には指向性があり届く範囲が限定されているので、自走式掃除機1が、制御対象機器110の近傍まで自走した後に、後述する制御対象機器110の制御信号受信部112のある方向に向けて、制御信号が出力される。
The control signal transmission unit 52 is a part that transmits a control signal for remotely controlling the operation of the control target device 110. As the control signal, for example, an infrared signal is used, and a signal indicating activation (power ON), stop (power OFF), operation start, operation end, operation mode change, or the like of the control target device 110 is output.
When the infrared signal is used, since the infrared ray has directivity and the reachable range is limited, after the self-propelled cleaner 1 self-propels to the vicinity of the control target device 110, the control target device 110 described later A control signal is output toward a certain direction of the control signal receiving unit 112.
 図4(b)に自走式掃除機1の移動ルートと、制御対象機器110の制御の一実施例についての説明図を示す。
 図4(b)において、破線は、自走式掃除機1の移動ルートを示している。ここでは、充電台140から走行を初めて、制御対象機器110の近傍まで移動するルートの一例を示している。
 ここで、自走式掃除機1は、制御信号送信部52から送信される赤外線信号が、制御対象機器110の制御信号受信部112に受信されるような位置まで移動するものとする。
 自走式掃除機1が、制御対象機器110の近傍まで移動してきた場合、その位置で静止して、上記のような制御信号を、制御信号受信部112に向けて出力する。
 これによって、制御対象機器110は、制御信号を受信すると、受信した制御信号に対応した機能を実行する。
FIG. 4B shows an explanatory diagram of an example of the movement route of the self-propelled cleaner 1 and the control of the control target device 110.
In FIG.4 (b), the broken line has shown the movement route of the self-propelled cleaner 1. FIG. Here, an example of a route that travels from the charging stand 140 to the vicinity of the control target device 110 for the first time is shown.
Here, it is assumed that the self-propelled cleaner 1 moves to a position where the infrared signal transmitted from the control signal transmission unit 52 is received by the control signal reception unit 112 of the control target device 110.
When the self-propelled cleaner 1 has moved to the vicinity of the control target device 110, the self-propelled cleaner 1 stops at that position and outputs the control signal as described above to the control signal receiving unit 112.
As a result, when the control target device 110 receives the control signal, the control target device 110 executes a function corresponding to the received control signal.
 記憶部41は、自走式掃除機1の各種機能を実現するために必要な情報や、プログラムを記憶する部分であり、RAMやROM等の半導体記憶素子、ハードディスク、SSDなどの記憶装置、その他の記憶媒体が用いられる。
 記憶部41には、主として、現在測定位置42、機器測定距離43、機器識別情報44、機器位置情報45、制御機器地図46、移動ルート47などが記憶される。
The storage unit 41 is a part that stores information and programs necessary for realizing various functions of the self-propelled cleaner 1, and includes a semiconductor storage element such as a RAM and a ROM, a storage device such as a hard disk and an SSD, and the like. These storage media are used.
The storage unit 41 mainly stores a current measurement position 42, a device measurement distance 43, device identification information 44, device position information 45, a control device map 46, a movement route 47, and the like.
 図5に、この発明の記憶部41に記憶される情報の一実施例の説明図を示す。
 図5(a)に、自走式掃除機1で測定される測定情報の一実施例を示す。ここでは、現在測定位置42と、機器測定距離43の一実施例を示している。
 図7に、この発明の自走式掃除機1の走行ルートと測定位置の一実施例の説明図を示す。
 図7では、1つの部屋内に設置された充電台と、制御対象機器であるテレビ(TV)と、測距デバイスとの位置を示し、矢印付の実線は、自走式掃除機の移動ルートを示し、星印は、測距デバイスまでの距離を測定する測定ポイントを示している。
FIG. 5 shows an explanatory diagram of an embodiment of information stored in the storage unit 41 of the present invention.
FIG. 5A shows an example of measurement information measured by the self-propelled cleaner 1. Here, an example of the current measurement position 42 and the device measurement distance 43 is shown.
In FIG. 7, explanatory drawing of one Example of the driving | running | working route and measurement position of the self-propelled cleaner 1 of this invention is shown.
In FIG. 7, the position of the charging stand installed in one room, the television (TV) that is the device to be controlled, and the distance measuring device are shown, and the solid line with an arrow indicates the movement route of the self-propelled cleaner. The star indicates a measurement point for measuring the distance to the distance measuring device.
 図5(a)の現在測定位置42の4つの測定ポイント(P1~P4)は、図7に示した星印の4つの位置に対応している。
 図7では、充電台のある位置を基準位置(0,0)として、4つの星印の位置の相対位置座標を示している。
The four measurement points (P1 to P4) at the current measurement position 42 in FIG. 5A correspond to the four positions of the star marks shown in FIG.
In FIG. 7, the relative position coordinates of the positions of the four stars are shown with the position where the charging stand is located as the reference position (0, 0).
 たとえば、図7の第1の測定ポイントP1の位置座標(120,900)は、充電台(0,0)を基準とした場合、XY座標の横軸であるX軸方向に+120cm、縦軸であるY軸方向に+900cmの位置であることを意味する。
 第2の測定ポイントP2(420,810)は、X軸方向に+420cm、Y軸方向に+810cmの位置であることを示している。
 このような測定ポイントの位置座標は、上記したエンコード23とジャイロセンサ14から取得された信号を解析し、自走式掃除機1が移動した距離と移動方向とから算出することができる。
For example, the position coordinates (120, 900) of the first measurement point P1 in FIG. 7 is +120 cm in the X-axis direction, which is the horizontal axis of the XY coordinates, and the vertical axis when the charging base (0, 0) is used as a reference. It means that the position is +900 cm in a certain Y-axis direction.
The second measurement point P2 (420, 810) indicates that the position is +420 cm in the X-axis direction and +810 cm in the Y-axis direction.
The position coordinates of such a measurement point can be calculated from the distance and direction of movement of the self-propelled cleaner 1 by analyzing the signals acquired from the encoding 23 and the gyro sensor 14 described above.
 また、図5(a)の機器測定距離43は、各測定ポイントにおける自走式掃除機1の現在位置から測距デバイス100までの直線距離を示している。
 たとえば、測定ポイントP1では、自走式掃除機1の現在位置から測距デバイス100までの直線距離が、600cmであることを意味する。
 この直線距離は、上記した距離測定部16によって計算された機器測定距離43に相当する。
Further, the device measurement distance 43 in FIG. 5A indicates a linear distance from the current position of the self-propelled cleaner 1 to the distance measuring device 100 at each measurement point.
For example, at the measurement point P1, it means that the linear distance from the current position of the self-propelled cleaner 1 to the distance measuring device 100 is 600 cm.
This linear distance corresponds to the device measurement distance 43 calculated by the distance measurement unit 16 described above.
 図5(a)では、4つの測定ポイント(P1~P4)におけるその相対位置座標(現在測定位置42)と、測距デバイス100までの機器測定距離43を示しているが、この4つの限るものではなく、移動ルートにおける任意の測定ポイントで測定すればよい。
 また、測定ポイントの数は、測距デバイスの位置を特定する精度を上げるためには、できるだけ多い方がよい。測定ポイントは、少なくとも3つ以上が必要であり、図5(a)に示すように、3つあるいは4つの測定ポイントで測定すれば十分である。
In FIG. 5A, the relative position coordinates (current measurement position 42) at the four measurement points (P1 to P4) and the instrument measurement distance 43 to the distance measuring device 100 are shown. Instead, it may be measured at an arbitrary measurement point on the moving route.
Also, the number of measurement points is preferably as large as possible in order to increase the accuracy of specifying the position of the distance measuring device. At least three or more measurement points are necessary, and it is sufficient to measure at three or four measurement points as shown in FIG.
 図5(b)は、機器識別情報44の一実施例を示している。
 機器識別情報44は、測距デバイス識別情報と、機器情報とからなり、複数の制御対象機器110を区別するための情報(属性)を示したものである。
 図5(b)では、たとえば、2つの測距デバイスがある場合を示しており、各測距デバイスが設置されている位置にある制御対象機器の名称が、予め設定記憶されている。
 たとえば、測距デバイスを区別する識別情報がID01であり、その測距デバイスが設置されている制御対象機器の名称がテレビであることを意味する。
 このような機器識別情報44を利用することにより、部屋に設置された複数の制御対象機器の位置を明確に区別して、所望の制御対象機器の制御が可能となる。
 機器情報としては、機器名称の他に、商品コードや識別IDを用いてもよい。
FIG. 5B shows an example of the device identification information 44.
The device identification information 44 includes distance measurement device identification information and device information, and indicates information (attributes) for distinguishing a plurality of control target devices 110.
FIG. 5B shows a case where there are two distance measuring devices, for example, and names of control target devices at positions where the respective distance measuring devices are installed are set and stored in advance.
For example, the identification information for identifying the distance measuring device is ID01, which means that the name of the control target device in which the distance measuring device is installed is a television.
By using such device identification information 44, it is possible to clearly distinguish the positions of a plurality of control target devices installed in a room and control a desired control target device.
As the device information, in addition to the device name, a product code or an identification ID may be used.
 図5(c)は、機器位置情報45の一実施例を示している。
 機器位置情報45は、機器識別情報44と、位置決定部17によって決定された複数の目標対象物の相対位置とを対応づけた情報であり、各目標対象物の相対位置が決定された後に、記憶部41に記憶される。
 また、既存の目標対象物についての機器位置情報45が記憶部41に記憶されている状態において、位置決定部17によって、新たに設置された目標対象物の相対位置が決定された場合、その決定された目標対象物の相対位置が、機器位置情報45に追加記憶される。
 後述する制御機器地図46は、たとえば、図4や図11に示すような制御対象機器の配置マップであるが、この機器位置情報45に基づいて生成される。
FIG. 5C shows an example of the device position information 45.
The device position information 45 is information that associates the device identification information 44 with the relative positions of the plurality of target objects determined by the position determination unit 17, and after the relative positions of the target objects are determined, Stored in the storage unit 41.
Also, when the relative position of the newly installed target object is determined by the position determination unit 17 in a state where the device position information 45 about the existing target object is stored in the storage unit 41, the determination The relative position of the target object thus obtained is additionally stored in the device position information 45.
A control device map 46 to be described later is, for example, an arrangement map of control target devices as shown in FIGS. 4 and 11, and is generated based on the device position information 45.
 図5(c)では、機器位置情報45として、測距デバイスの識別情報と、基準点(充電台)から求めた制御対象機器110の相対位置(X,Y)と、各制御対象機器110の機器情報(機器名称)とからなるものを示している。
 ここでは、3つの測距デバイス(ID01,ID02,ID03)を利用し、各測距デバイスを、それぞれ3つの異なる制御対象機器に設置して、距離測定をした場合を示している。
 図5(c)には、3つの制御対象機器の位置情報45を示している。
 たとえば、測距デバイスID01を設置した位置に配置されている制御対象機器の相対位置は(X,Y)=(+500,+960)であり、その制御対象機器の名称はテレビであることを示している。
 この相対位置は、図5(a)に示した測定情報(42,43)を用いて、複数の円の円周の交差点の座標を算出することにより、後述するような方法で、求められる。
In FIG. 5C, as the device position information 45, the identification information of the distance measuring device, the relative position (X, Y) of the control target device 110 obtained from the reference point (charging stand), and the control target device 110 It shows what consists of device information (device name).
Here, a case is shown in which distance measurement is performed by using three distance measuring devices (ID01, ID02, ID03) and installing each distance measuring device in three different devices to be controlled.
FIG. 5C shows position information 45 of three control target devices.
For example, the relative position of the control target device arranged at the position where the distance measuring device ID01 is installed is (X, Y) = (+ 500, +960), and the name of the control target device is a television. Yes.
This relative position is obtained by the method described later by calculating the coordinates of the intersections of the circumferences of a plurality of circles using the measurement information (42, 43) shown in FIG.
 ただし、1つの部屋に、1つしか制御対象機器が存在しない場合は、上記のような機器識別情報44を設定しておく必要はない。
 また、1つの部屋に、複数の制御対象機器が存在する場合、各制御対象機器の相対位置が決定された後に、図5(c)のように、その相対位置の情報と制御対象機器の属性(たとえば、機器名称)とを対応付けて記憶すればよく、必ずしも、測距デバイスの識別情報と、機器名称とを予め対応づけなくてもよい。
However, when only one control target device exists in one room, it is not necessary to set the device identification information 44 as described above.
In addition, when a plurality of control target devices exist in one room, after the relative position of each control target device is determined, the information on the relative position and the attributes of the control target device as shown in FIG. (For example, the device name) may be stored in association with each other, and the identification information of the distance measuring device and the device name may not necessarily be associated in advance.
 すなわち、たとえば、測距デバイス100が1つしかない場合、まず複数の制御対象機器のうちいずれかの制御対象機器のところに測距デバイスを設置しておき、自走式掃除機1を移動させて、図5(a)の測定情報を測定して、その制御対象機器の相対位置を決定した後、その決定した相対位置座標と、制御対象機器の名称とを対応づけて記憶させる。
 次に、同じ測距デバイスを別の制御対象機器の位置のところに設置し直して、同様の測定情報を測定して、その制御対象機器の相対位置を決定した後、その位置座標と、制御対象機器の名称とを対応づけて記憶させればよい。
That is, for example, when there is only one distance measuring device 100, a distance measuring device is first installed at one of the plurality of controlled devices, and the self-propelled cleaner 1 is moved. Then, after measuring the measurement information of FIG. 5A and determining the relative position of the control target device, the determined relative position coordinate and the name of the control target device are stored in association with each other.
Next, after re-installing the same distance measuring device at the position of another controlled device, measuring the same measurement information and determining the relative position of the controlled device, the position coordinates and control The name of the target device may be stored in association with each other.
 したがって、複数の制御対象機器の相対位置を算出するためには、複数の測距デバイスを、各制御対象機器の位置にそれぞれ設置して、同時にすべての制御対象機器の位置を決定してもよいが、1つの測距デバイスのみを用いて、その測距デバイスを設置する位置を、各制御対象機器の位置に置き直して順番に1つずつ制御対象機器の位置を決定してもよい。 Therefore, in order to calculate the relative positions of a plurality of control target devices, a plurality of distance measuring devices may be installed at the positions of the respective control target devices, and the positions of all the control target devices may be determined simultaneously. However, by using only one distance measuring device, the position of the distance measuring device may be replaced with the position of each device to be controlled, and the positions of the devices to be controlled may be determined one by one in order.
 制御機器地図46は、所定の空間内に配置された目標対象物の存在する位置を示したものである。
 図6に、制御機器地図(マップ)46の座標の概略説明図を示す。
 ここで、XY座標のとり方と、充電台140のある位置を基準(0,0)とすることは、図4に示したものと同一である。
 ただし、図4に示した部屋150の空間は、便宜上図6の右上領域(X>0,Y>0)として示したが、
自走式掃除機1が移動する空間としては、基準点(0,0)から見て、図6のXY座標の左上、左下、右下の領域(部屋)が存在する場合がある。
 したがって、制御機器地図(マップ)46としては、図4に示したような座標空間のみならず、4つの座標空間を対象として生成することが好ましい。
 充電台を中心として、4つの座標空間に配置された制御対象機器の位置を示したマップを生成することにより、そのマップの中に含まれるすべての機器を制御対象とすることができる。
The control device map 46 shows a position where a target object arranged in a predetermined space exists.
In FIG. 6, the schematic explanatory drawing of the coordinate of the control equipment map (map) 46 is shown.
Here, taking the XY coordinates and setting the position of the charging stand 140 as the reference (0, 0) are the same as those shown in FIG.
However, the space of the room 150 shown in FIG. 4 is shown as the upper right region (X> 0, Y> 0) in FIG.
As the space in which the self-propelled cleaner 1 moves, there may be areas (rooms) in the upper left, lower left, and lower right of the XY coordinates in FIG. 6 when viewed from the reference point (0, 0).
Therefore, it is preferable that the control device map (map) 46 is generated not only for the coordinate space as shown in FIG. 4 but also for four coordinate spaces.
By generating a map showing the positions of the control target devices arranged in the four coordinate spaces with the charging stand as the center, all devices included in the map can be controlled.
 図1の移動ルート47は、自走式掃除機1が実際に移動したルートを記憶したものである。
 この移動ルート47は、エンコーダ23とジャイロセンサ14とから取得された情報から生成できる。
 また、制御対象機器の基準点からの相対位置が決定された後、その制御対象機器へ移動する指示入力があった場合に、前記相対位置と、移動ルートから算出された自走式掃除機の基準点からの相対位置との情報を用いて、制御対象機器の近傍へ行く移動ルートを自動生成した後、その移動ルートも一時記憶してもよい。
The movement route 47 in FIG. 1 is a route in which the self-propelled cleaner 1 has actually moved.
The moving route 47 can be generated from information acquired from the encoder 23 and the gyro sensor 14.
Further, after the relative position from the reference point of the control target device is determined, when there is an instruction input to move to the control target device, the self-propelled cleaner calculated from the relative position and the movement route is used. After automatically generating a travel route to the vicinity of the control target device using information on the relative position from the reference point, the travel route may also be temporarily stored.
 また、自走式掃除機1には、図示しない充電台接続部が設けられる。
 充電台接続部は、充電池12を充電させるための電力を入力するための端子である。
 この充電台接続部と、充電台140に設けられた掃除機接続部とを物理的に接触させることにより、充電台140の電力供給部から与えられる電力を、充電池12に供給し充電する。充電台接続部は、掃除機1本体の側面に露出した状態で形成される。
Moreover, the self-propelled cleaner 1 is provided with a charging stand connection portion (not shown).
The charging stand connection unit is a terminal for inputting power for charging the rechargeable battery 12.
By physically contacting the charging stand connecting portion and the vacuum cleaner connecting portion provided on the charging stand 140, the power supplied from the power supply portion of the charging stand 140 is supplied to the rechargeable battery 12 and charged. A charging stand connection part is formed in the state exposed to the side surface of the cleaner 1 main body.
 さらに、自走式掃除機1は、以上のような構成に加えて、他にも必要な構成や機能を備えてもよい。
 たとえば、超音波センサを設けてもよい。超音波センサは、部屋の壁や机などの対象物までの距離を検出するものであり、超音波を発信する送波器と、対象物からの反射波を受信する受波器とから構成される。超音波センサは、主として、壁などの障害物までの距離の測定に用いられる。
 また、掃除中あるいは静止状態において、イオンを発生する構成(イオン発生器)を備えて、除菌や消臭(または脱臭)を行うようにしてもよい。
 また、掃除処理を実行する時間を設定するタイマースイッチを設け、タイマースイッチの入(ON)操作がされた場合には、予め設定された時間(たとえば60分間)のカウントを開始し、その設定時間が経過するまで掃除処理を実行するようにしてもよい。
 この設定時間が経過した後は、掃除処理を中止し、自動的に充電台に帰還するようにしてもよい。
Furthermore, the self-propelled cleaner 1 may have other necessary configurations and functions in addition to the above configuration.
For example, an ultrasonic sensor may be provided. An ultrasonic sensor detects the distance to an object such as a wall of a room or a desk, and is composed of a transmitter that transmits ultrasonic waves and a receiver that receives reflected waves from the object. The The ultrasonic sensor is mainly used for measuring a distance to an obstacle such as a wall.
Further, a structure (ion generator) that generates ions may be provided during cleaning or in a stationary state so as to perform sterilization and deodorization (or deodorization).
In addition, a timer switch for setting a time for executing the cleaning process is provided, and when a timer switch is turned on (ON), counting of a preset time (for example, 60 minutes) is started, and the set time is set. The cleaning process may be executed until elapses.
After the set time elapses, the cleaning process may be stopped and automatically returned to the charging stand.
<測距デバイスの構成>
 図1において、測距デバイス100は、主として、制御部101,信号通信部102,記憶部103とを備える。
 測距デバイス100は、上記したように、自走式掃除機1との距離を測定したい制御対象機器110の配置位置の近傍に設置され、その距離を測定するためにBLE信号を送信するものである。あるいは、制御対象機器や充電台に内蔵してもよい。
 測距デバイス100は、制御対象機器の近傍に設置されるため、上記した目標対象物に相当するとみなしてもよい。
<Configuration of ranging device>
In FIG. 1, the distance measuring device 100 mainly includes a control unit 101, a signal communication unit 102, and a storage unit 103.
As described above, the distance measuring device 100 is installed in the vicinity of the position where the control target device 110 whose distance from the self-propelled cleaner 1 is to be measured is transmitted, and transmits a BLE signal to measure the distance. is there. Or you may incorporate in a control object apparatus or a charging stand.
Since the distance measuring device 100 is installed in the vicinity of the control target device, it may be regarded as corresponding to the target object described above.
 したがって、位置決定部17が測距デバイス100の相対位置を決定した後、その測距デバイスの相対位置を、対応する制御対象機器の配置位置とみなすものとする。
 決定された測距デバイスの相対位置を利用して、制御対象機器の存在する位置を示した制御機器地図46が生成される。
 自走式掃除機の場合、自動走行を行って掃除機能を実行中に、自動走行した移動ルートの複数の測定ポイントにおいて測定された測距デバイス100までの距離と、基準点である充電台からの測定ポイントの相対位置とを用いて、測距デバイスの相対位置が決定される。
Therefore, after the position determination unit 17 determines the relative position of the distance measuring device 100, the relative position of the distance measuring device is regarded as the arrangement position of the corresponding control target device.
Using the determined relative position of the distance measuring device, a control device map 46 indicating the position where the control target device exists is generated.
In the case of a self-propelled cleaner, the distance to the distance measuring device 100 measured at a plurality of measurement points of the automatically traveled route and the charging stand as a reference point while performing the cleaning function by performing automatic traveling. Are used to determine the relative position of the distance measuring device.
 制御部101は、CPU,ROM,RAM,I/Oコントローラ,タイマー等からなるマイクロコンピュータにより実現でき、ROM等に記憶されたプログラムによって、BLE信号の送信機能などの所定の機能を実行する部分である。
 信号通信部102は、無線信号を送信する部分であり、特に、BLE信号を送信するためのBLE送信デバイスとアンテナ等からなる。
The control unit 101 can be realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like, and is a part that executes a predetermined function such as a BLE signal transmission function by a program stored in the ROM or the like. is there.
The signal communication unit 102 is a part that transmits a radio signal, and particularly includes a BLE transmission device and an antenna for transmitting a BLE signal.
 記憶部103は、BLE信号の送信などに必要な情報やプログラムを記憶する部分であり、ROM,RAMあるいはフラッシュメモリなどの半導体記憶素子や、HDDなどの記憶装置が用いられる。
 記憶部103には、たとえば、測距デバイス100を区別するための識別情報が記憶される。
 測距デバイス100を、同時に複数台使用する場合は、測距デバイスごとに異なる識別情報を予め設定記憶させておき、信号通信部102から出力されるBLE信号にそれぞれ固有の識別情報を含めることによって、信号通信部15によって受信したBLE信号が、どの測距デバイス100から送られてきたものかを区別することができる。
 ただし、この識別情報は、抵抗素子やDIPスイッチ等のハードウェアを用いて、任意に設定できるようにしてもよい。
The storage unit 103 is a part that stores information and programs necessary for transmission of the BLE signal, and a semiconductor storage element such as a ROM, a RAM, or a flash memory, and a storage device such as an HDD are used.
In the storage unit 103, for example, identification information for distinguishing the distance measuring device 100 is stored.
When a plurality of distance measuring devices 100 are used at the same time, different identification information is set and stored in advance for each distance measuring device, and each unique identification information is included in the BLE signal output from the signal communication unit 102. The distance measuring device 100 can distinguish the BLE signal received by the signal communication unit 15.
However, this identification information may be arbitrarily set using hardware such as a resistance element or a DIP switch.
<制御対象機器の構成>
 図1において、制御対象機器110は、主として、制御部111,制御信号受信部112,機能実行部113,記憶部114とを備える。
 また、測距デバイスの信号通信部102と同様に、BLE信号を送信する構成を備えてもよい。
 制御対象機器110は、上記したように、自走式掃除機1から送信される制御信号に基づいて、その動作が遠隔制御される目標対象物であり、たとえば、テレビ、エアコンなどの電気機器である。
 制御信号受信部112によって受信された制御信号に対応した指示を、制御部111が機能実行部113に与えることにより、制御対象機器110の動作が制御される。
 制御部111は、CPU,ROM,RAM,I/Oコントローラ,タイマー等からなるマイクロコンピュータにより実現できる。
 制御信号受信部112は、自走式掃除機1の制御信号送信部52から出力された制御信号を受信する部分であり、たとえば、制御信号が赤外線の場合、赤外線受光素子が用いられる。
<Configuration of controlled devices>
In FIG. 1, the control target device 110 mainly includes a control unit 111, a control signal reception unit 112, a function execution unit 113, and a storage unit 114.
Moreover, you may provide the structure which transmits a BLE signal similarly to the signal communication part 102 of a ranging device.
As described above, the control target device 110 is a target object whose operation is remotely controlled based on the control signal transmitted from the self-propelled cleaner 1, and is, for example, an electric device such as a television or an air conditioner. is there.
When the control unit 111 gives an instruction corresponding to the control signal received by the control signal receiving unit 112 to the function execution unit 113, the operation of the control target device 110 is controlled.
The control unit 111 can be realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like.
The control signal receiving unit 112 is a part that receives the control signal output from the control signal transmitting unit 52 of the self-propelled cleaner 1. For example, when the control signal is infrared, an infrared light receiving element is used.
 機能実行部113は、制御対象機器110が有する機能を実行させる部分であり、制御部111からの指示により所定のプログラムを起動させて、その指示に基づく機能を実行させる。
 たとえば、制御対象機器がテレビの場合、電源の投入(ON)、電源の切断(OFF)、チャンネルの切り替えなどの機能を実行する。
 記憶部114は、機能を実行するために必要な情報やプログラムを記憶する部分であり、ROM,RAM,フラッシュメモリなどの半導体記憶素子、HDDなどの記憶装置が用いられる。
 記憶部114には、たとえば、制御対象機器を特定するための識別情報(名称、製造番号など)が記憶される。
The function execution unit 113 is a part that executes a function of the control target device 110, and activates a predetermined program according to an instruction from the control unit 111, and executes a function based on the instruction.
For example, when the control target device is a television, functions such as power-on (ON), power-off (OFF), and channel switching are executed.
The storage unit 114 is a part for storing information and programs necessary for executing functions, and a storage device such as a semiconductor storage element such as a ROM, a RAM, or a flash memory, or an HDD is used.
The storage unit 114 stores, for example, identification information (name, manufacturing number, etc.) for specifying the control target device.
 また、制御対象機器110に、上記した測距デバイス100と同等の構成を内蔵してもよい。すなわち、BLE信号を送信するための構成およびプログラム等を、予め制御対象機器110に備えてもよい。
 この場合、制御対象機器の配置位置を求めるために、専用の測距デバイス100を、その制御対象機器110のところに設置する必要はない。
 制御対象機器110が停止状態でも、常に測距用の信号を発信可能な状態としておくことによって、制御対象機器110の配置位置が変更された場合などにおいて、定期的な清掃処理をするために自走式掃除機1を自走させることによって、変更後の位置を設定するためだけの特別な操作や処理をすることなく、制御対象機器110の変更後の位置を決定することができる。
In addition, the control target device 110 may include a configuration equivalent to the distance measuring device 100 described above. That is, a configuration, a program, and the like for transmitting the BLE signal may be provided in the control target device 110 in advance.
In this case, it is not necessary to install the dedicated distance measuring device 100 at the control target device 110 in order to obtain the arrangement position of the control target device.
Even when the control target device 110 is in a stopped state, by making it possible to always send a signal for distance measurement, when the arrangement position of the control target device 110 is changed, etc. By making the running cleaner 1 self-run, it is possible to determine the changed position of the control target device 110 without performing a special operation or processing only for setting the changed position.
<制御対象機器の位置決定処理>
 図7から図10を用いて、制御対象機器の位置を決定し、制御機器地図を生成する処理の一実施例について、説明する。
 ここでは、図7に示すように、自走式掃除機1を、任意の移動ルートで自走させ、少なくとも3つ以上の測定ポイントで、位置を決定したい制御対象機器110のところに設置された測距デバイス100までの距離を測定して、3つ以上の測定距離と測定ポイントの相対座標とを用いて、測距デバイスの設置位置を算出する。
 また算出された測距デバイス100の相対位置を、設置された制御対象機器の相対位置とみなすものとする。
 自走式掃除機1の測定ポイントの位置(基準点(0,0)からの相対位置)を求める必要があるが、自走式掃除機1は、基準点である充電台から移動を開始する必要はなく、移動ルートも予め設定されたルートを常に走行する必要はない。
 自走式掃除機1の現在位置の基準点に対する相対座標が算出できればよく、任意の現在位置から走行を開始し、任意の移動ルートを走行すればよい。
<Position determination processing of control target device>
An example of processing for determining the position of the control target device and generating a control device map will be described with reference to FIGS. 7 to 10.
Here, as shown in FIG. 7, the self-propelled cleaner 1 is self-propelled along an arbitrary moving route, and is installed at a control target device 110 whose position is to be determined at least at three or more measurement points. The distance to the distance measuring device 100 is measured, and the installation position of the distance measuring device is calculated using three or more measurement distances and the relative coordinates of the measurement points.
Further, the calculated relative position of the distance measuring device 100 is regarded as the relative position of the installed control target device.
Although it is necessary to obtain the position of the measurement point of the self-propelled cleaner 1 (relative position from the reference point (0, 0)), the self-propelled cleaner 1 starts moving from the charging stand that is the reference point. There is no need, and the travel route does not always have to travel on a preset route.
It is only necessary to be able to calculate relative coordinates of the current position of the self-propelled cleaner 1 with respect to the reference point.
(1)測距デバイスの設置
 まず、新たに配置した制御対象機器、あるいは配置を変更した制御対象機器など、その位置を決定して自走式掃除機1に記憶させたい制御対象機器110の近傍に、測距デバイス100を置く。
(2)測距デバイスの識別情報の記憶
 次に、その測距デバイス100の識別情報を、自走式掃除機1に記憶させる。
 測距デバイス100の識別情報は、予め記憶部41に記憶しておいてもよいが、測距デバイス100から、自走式掃除機1に測距デバイスの識別情報を送信して自動的に設定してもよい。
 このとき、識別情報そのものに予め意味を持たせて、専用識別子として利用してもよい。
 たとえば、識別情報がゼロの場合はテレビを意味し、1の場合はエアコンを意味するものと予め定めておけばよい。
 あるいは、識別情報そのものは、汎用識別子とし、測距デバイスを区別する番号としてのみ利用してもよい。この場合は、ユーザが、入力部を利用して、識別情報と、その測距デバイスに対応する制御機器の名称(あるいは種別)とを関係付ける設定を、DIPスイッチ等を用いて手動ですればよい。
(1) Installation of a distance measuring device First, in the vicinity of a control target device 110 that is to be stored in the self-propelled cleaner 1 such as a newly placed control target device or a control target device whose placement has been changed. Then, the distance measuring device 100 is placed.
(2) Storage of identification information of distance measuring device Next, the identification information of the distance measuring device 100 is stored in the self-propelled cleaner 1.
The identification information of the distance measuring device 100 may be stored in the storage unit 41 in advance, but the distance measuring device 100 transmits the identification information of the distance measuring device to the self-propelled cleaner 1 and is automatically set. May be.
At this time, the identification information itself may be given meaning and used as a dedicated identifier.
For example, if the identification information is zero, it means that it is a television, and if it is 1, it means that it means an air conditioner.
Alternatively, the identification information itself may be a general-purpose identifier and may be used only as a number for identifying a distance measuring device. In this case, if the user manually uses the input unit to manually set the relationship between the identification information and the name (or type) of the control device corresponding to the distance measuring device using a DIP switch or the like. Good.
(3)自走式掃除機の自動走行
 自走式掃除機1を自動走行による清掃モードにして、部屋を移動しながら清掃作業を開始させる。
 移動ルートや移動スピードは任意でよい。
(4)自動走行中に距離測定
 自走式掃除機1の移動中に、任意のタイミングで、少なくとも3つ以上の測定ポイントで、測距デバイス100から出力されたBLE信号を受信して、各測定ポイントから測距デバイス100までの距離測定を行う。
 また、上記したように、エンコーダ23、ジャイロセンサ14から取得した情報を利用して、各測定ポイントについて、基準点である充電台からの相対位置を算出する。
(3) Automatic traveling of the self-propelled cleaner The self-propelled cleaner 1 is set to a cleaning mode by automatic traveling, and the cleaning operation is started while moving the room.
The movement route and movement speed may be arbitrary.
(4) Distance measurement during automatic traveling While moving the self-propelled cleaner 1, at any timing, at least three measurement points, BLE signals output from the distance measuring device 100 are received, The distance from the measurement point to the distance measuring device 100 is measured.
Further, as described above, using the information acquired from the encoder 23 and the gyro sensor 14, the relative position from the charging stand that is the reference point is calculated for each measurement point.
 3つ以上の測定ポイントは、異なる位置であればよく、いつも同じ位置である必要はなく、ランダムな位置でよい。
 ただし、移動するスピードに対応して、一定時間ごとに、測定ポイントを設定してもよい。また、一定距離を移動するごとに、測定ポイントを設定してもよい。
 たとえば、自走式掃除機が、図7に示したような移動ルートを走行する場合、4つの測定ポイントで、距離測定を行う。また、測定ポイントの相対位置も算出する。
 この4つの測定ポイントで測定した結果の一実施例が、図5(a)に示した測定情報である。
The three or more measurement points need only be at different positions, and need not always be at the same position, but may be at random positions.
However, measurement points may be set at regular intervals corresponding to the moving speed. Alternatively, a measurement point may be set every time a certain distance is moved.
For example, when the self-propelled cleaner travels on a moving route as shown in FIG. 7, distance measurement is performed at four measurement points. The relative position of the measurement point is also calculated.
One example of the result of measurement at these four measurement points is the measurement information shown in FIG.
 図8に、第1の測定ポイント(120,900)における自走式掃除機1と測距デバイス100との位置関係を示す。
 測定された距離600cmは、測定ポイントと測距デバイス100との直線距離を示している。しかし、この1つの測定距離だけでは、測距デバイス100の位置を一意に決定することができない。
 図8に示すように、測定ポイントを中心とする半径が測定距離(600cm)の円の円周上のどこかに、測距デバイスが存在することがわかるだけである。
 この円は、後述するように、測距デバイス100の位置の決定に用いる。
FIG. 8 shows the positional relationship between the self-propelled cleaner 1 and the distance measuring device 100 at the first measurement point (120, 900).
The measured distance 600 cm indicates a linear distance between the measurement point and the distance measuring device 100. However, the position of the distance measuring device 100 cannot be uniquely determined by only this one measurement distance.
As shown in FIG. 8, it is only understood that the distance measuring device exists somewhere on the circumference of the circle whose radius is the measurement distance (600 cm) with the measurement point as the center.
This circle is used to determine the position of the distance measuring device 100 as will be described later.
(5)測距デバイスの位置決定
 図9と図10に、各測定ポイントにおける測定距離の説明図を示す。
 図9(a)は、図8と同様に、第1の測定ポイントP1と、測距デバイス100との間の測定距離L1を示している。測定ポイントP1を中心とし、測定距離L1を半径とする円をR1とする。
 図5(a)の測定情報により、円R1は、半径L1=600cmの円である。
 図9(b)は、図9(a)に加えて、第2の測定ポイントP2と測距デバイス100との間の測定距離L2を示している。
 ここで、測定ポイントP2を中心とし、測定距離L2を半径とする円をR2とする。
 円R2の半径は、図5(a)より、360cmであったとする。
 この2つの円(R1,R2)は、2つの交点で交差しているが、測距デバイス100は、2つの円の円周上に存在することがわかるだけで、どちらの交点に存在するかは、まだ不明である。
(5) Determination of Position of Ranging Device FIGS. 9 and 10 are explanatory diagrams of measurement distances at each measurement point.
FIG. 9A shows the measurement distance L1 between the first measurement point P1 and the distance measuring device 100, as in FIG. A circle having the measurement point P1 as the center and the measurement distance L1 as the radius is defined as R1.
According to the measurement information in FIG. 5A, the circle R1 is a circle having a radius L1 = 600 cm.
FIG. 9B shows a measurement distance L2 between the second measurement point P2 and the distance measuring device 100 in addition to FIG. 9A.
Here, a circle having the measurement point P2 as the center and the measurement distance L2 as the radius is defined as R2.
It is assumed that the radius of the circle R2 is 360 cm from FIG.
The two circles (R1, R2) intersect at two intersections, but the distance measuring device 100 can be found only on the circumference of the two circles. Is still unknown.
 図10(a)は、図9(b)に加えて、さらに、第3の測定ポイントP3と、測距デバイス100との間の測定距離L3を示している。
 ここで、測定ポイントP3を中心とし、測定距離L3を半径とする円をR3とする。
 円R3の半径は、図5(a)より、510cmであったとする。
 図10(a)に示すように、3つの円(R1,R2,R3)は、それぞれ互いに複数の交点で交差するが、3つの円が1つの交点で交差する場合があれば、その交点が、測距デバイス100が存在する位置として決定することができる。
 図10(a)では、3つの円が交差する点の位置が、測距デバイス100の設置位置を示している。
 この交差点の位置座標は、基準点を原点(0,0)とするXY座標において、3つの円を示す数式を利用して、算数演算によって求めることができる。
FIG. 10A shows a measurement distance L3 between the third measurement point P3 and the distance measuring device 100 in addition to FIG. 9B.
Here, a circle having the measurement point P3 as the center and the measurement distance L3 as the radius is defined as R3.
The radius of the circle R3 is assumed to be 510 cm from FIG.
As shown in FIG. 10A, the three circles (R1, R2, R3) intersect each other at a plurality of intersections. If there are cases where the three circles intersect at one intersection, the intersection is The position where the distance measuring device 100 exists can be determined.
In FIG. 10A, the position of the point where the three circles intersect indicates the installation position of the distance measuring device 100.
The position coordinates of this intersection can be obtained by arithmetic operation using mathematical expressions indicating three circles in the XY coordinates with the reference point as the origin (0, 0).
 図10(b)は、図10(a)に加えて、さらに、第4の測定ポイントP4と、測距デバイス100との間の測定距離L4を示している。
 ここで、測定ポイントP4を中心とし、測定距離L4を半径とする円をR4とする。
 円R4の半径は、図5(a)より、70cmであったとする。
 図10(b)に示すように、4つの円(R1~R4)が1つの交点で交差する点が、測距デバイス100が存在する位置となる。
 すでに、図10(a)のように3つの円を利用して測距デバイス100の位置を決定することができるが、図10(b)のように、3つ以上の円を用いて交点を求めることにより、測距デバイス100の位置の精度を向上させることができる。
 すなわち、測定ポイントの数を増やして、さらに5つ以上の測定ポイントを設けることにより、より高精度で測距デバイス100の設置位置を特定することができる。
FIG. 10B further shows a measurement distance L4 between the fourth measurement point P4 and the distance measuring device 100 in addition to FIG. 10A.
Here, a circle having the measurement point P4 as the center and the measurement distance L4 as the radius is defined as R4.
The radius of the circle R4 is assumed to be 70 cm from FIG.
As shown in FIG. 10 (b), a point where the four distance circles (R1 to R4) intersect at one intersection is a position where the distance measuring device 100 exists.
Already, the position of the distance measuring device 100 can be determined using three circles as shown in FIG. 10 (a). However, as shown in FIG. 10 (b), the intersection point can be determined using three or more circles. By determining, the accuracy of the position of the distance measuring device 100 can be improved.
That is, by increasing the number of measurement points and providing five or more measurement points, the installation position of the distance measuring device 100 can be specified with higher accuracy.
 上記のように、図10(a)あるいは図10(b)に示した3つあるいは4つの円の交点を求めることにより、測距デバイス100の設置位置の相対座標(X,Y)が求められる。
 たとえば、図5(c)の機器位置情報45に示すように、測距デバイス100の識別情報をID01とすると、その相対位置の座標は、(500,960)として算出され、記憶される。この測距デバイス100が、制御対象機器であるテレビの近傍に設置されていたとすると、テレビの配置位置の相対座標は、測距デバイス100の相対座標(500,960)に決定される。すなわち、測距デバイス100の相対位置は、制御対象機器110の配置位置として記憶される。
As described above, the relative coordinates (X, Y) of the installation position of the distance measuring device 100 are obtained by obtaining the intersection of three or four circles shown in FIG. 10 (a) or FIG. 10 (b). .
For example, as shown in the apparatus position information 45 of FIG. 5C, when the identification information of the distance measuring device 100 is ID01, the coordinates of the relative position are calculated and stored as (500, 960). If this distance measuring device 100 is installed in the vicinity of the television that is the control target device, the relative coordinates of the arrangement position of the television are determined as the relative coordinates (500, 960) of the distance measuring device 100. That is, the relative position of the distance measuring device 100 is stored as the arrangement position of the control target device 110.
 図5(b)のように、機器識別情報44が予め設定されていれば、機器位置情報45に、ID01に対応づけて、機器情報としてテレビが記憶される。
 ただし、制御対象機器が1つしかない場合は、機器識別情報44を予め設定する必要はないので、機器位置情報45に機器情報を記憶しなくてもよい。
 このようにして求められた機器位置情報45に基づいて、自動的に制御機器地図(マップ)46が生成される。すなわち、決定された制御対象機器110の相対位置と、基準点の位置とを用いて、所定の空間(部屋)の中に制御対象機器110を配置した地図が生成される。
If the device identification information 44 is set in advance as shown in FIG. 5B, the television is stored as device information in association with ID01 in the device position information 45.
However, when there is only one device to be controlled, it is not necessary to set the device identification information 44 in advance, so that the device information does not have to be stored in the device position information 45.
Based on the device position information 45 thus obtained, a control device map (map) 46 is automatically generated. That is, a map in which the control target device 110 is arranged in a predetermined space (room) is generated using the determined relative position of the control target device 110 and the position of the reference point.
 また、複数の測距デバイス100を用いて、同時に複数の制御対象機器の位置決定をしてもよい。たとえば、図5(c)に示すように、各測距デバイスの相対位置と対応させて、複数の制御対象機器の相対位置を決定することができる。
 複数の測距デバイス100を用いる場合は、自走式掃除機1が、移動して部屋の中を1回だけ清掃作業をする間に、自動的に、測距デバイスの数と同数の制御対象機器の位置測定ができ、容易に、比較的短時間で、複数の制御対象機器を含む地図46を生成できる。
 したがって、制御対象機器の位置決定や、制御機器地図46の生成をするために、ユーザが自ら複雑な設定入力操作をする必要はない。
In addition, a plurality of distance measuring devices 100 may be used to simultaneously determine the positions of a plurality of control target devices. For example, as shown in FIG. 5C, the relative positions of a plurality of control target devices can be determined in correspondence with the relative positions of the distance measuring devices.
When a plurality of distance measuring devices 100 are used, while the self-propelled cleaner 1 moves and cleans the inside of the room only once, it is automatically controlled as many as the number of distance measuring devices. The position of the device can be measured, and the map 46 including a plurality of control target devices can be easily generated in a relatively short time.
Therefore, in order to determine the position of the control target device and generate the control device map 46, the user does not need to perform complicated setting input operations.
(6)制御対象機器に対する制御処理
 上記のように、部屋内の制御対象機器の配置位置が記憶された後、ユーザは、制御対象機器の存在する部屋の中に入らなくても、自己が所持する携帯端末などを用いて、自走式掃除機1に対して、所望の制御対象機器に対する制御コマンドを送信するための入力操作をすることによって、その制御対象機器を制御できる。
(6) Control processing for the control target device As described above, after the arrangement position of the control target device in the room is stored, even if the user does not enter the room where the control target device exists, he / she owns the control target device. The control target device can be controlled by performing an input operation for transmitting a control command for the desired control target device to the self-propelled cleaner 1 using a portable terminal or the like.
 たとえば、ユーザが、携帯端末で、エアコンの電源を投入するための入力操作をしたとする。この入力操作は、エアコンが設置されている室内で行う必要はなく、自走式掃除機1に制御コマンドが届く範囲内で行えばよい。
 これにより、エアコンの電源を投入することを意味する制御コマンド(電源投入コマンド)を含む無線信号が、携帯端末から自走式掃除機1に送信される。
 自走式掃除機1のコマンド受信部51が、この制御コマンドを受信すると、記憶部41に記憶されている機器位置情報45あるいは制御機器地図46を用いて、受信した制御コマンドから、制御すべき機器(エアコン)を特定し、その特定した機器の相対位置を調べる。
For example, it is assumed that the user performs an input operation for turning on the air conditioner on the portable terminal. This input operation does not have to be performed in the room where the air conditioner is installed, and may be performed within a range where the control command reaches the self-propelled cleaner 1.
As a result, a wireless signal including a control command (power-on command) that means turning on the air conditioner is transmitted from the portable terminal to the self-propelled cleaner 1.
When the command receiving unit 51 of the self-propelled cleaner 1 receives this control command, it should be controlled from the received control command using the device position information 45 or the control device map 46 stored in the storage unit 41. Identify the device (air conditioner) and check the relative position of the identified device.
 その後、制御対象機器(エアコン)の相対位置の情報を利用して、制御機器地図46上において、自走式掃除機1の現在位置から、制御対象機器(エアコン)の近傍までの自走式掃除機1の移動ルートを設定する。
 自走式掃除機1は、この設定された移動ルートに基づいて、移動を開始する。
 制御対象機器(エアコン)の近傍までくると、自走式掃除機1の制御信号送信部52は、受信した制御コマンドに対応した制御信号(電源投入)を、制御対象機器(エアコン)の方向に向けて送信する。
 制御対象機器(エアコン)の制御信号受信部112が、制御信号を受信することによって、機能実行部113が、その制御信号に対応した機能(電源投入)を実行する。
Thereafter, using the information on the relative position of the control target device (air conditioner), the self-propelled cleaning from the current position of the self-propelled cleaner 1 to the vicinity of the control target device (air conditioner) on the control device map 46. Set the travel route of machine 1.
The self-propelled cleaner 1 starts moving based on the set moving route.
When it comes close to the control target device (air conditioner), the control signal transmission unit 52 of the self-propelled cleaner 1 sends a control signal (power-on) corresponding to the received control command in the direction of the control target device (air conditioner). Send to.
When the control signal receiving unit 112 of the control target device (air conditioner) receives the control signal, the function executing unit 113 executes a function (power-on) corresponding to the control signal.
<実施形態のまとめとその他の実施形態>
(a)まず、上記したように、1台の測距デバイス100を用いて、1つの部屋に配置された複数台の制御対象機器の位置を決定する実施形態がある。(実施の形態1)
 この場合は、測距デバイスを1つだけ用意すればよいが、ユーザが、測距デバイスを位置測定を行いたい制御対象機器のところにその都度設置し直す必要があり、複数の制御対象機器の位置の決定を順番に行い、自走式掃除機1の自動走行も、制御対象機器の数だけ行う必要がある。ただし、ユーザが制御対象機器の位置決定や地図作成のために複雑な入力作業をする必要はない。
<Summary of Embodiments and Other Embodiments>
(A) First, as described above, there is an embodiment in which the position of a plurality of control target devices arranged in one room is determined using one distance measuring device 100. (Embodiment 1)
In this case, it is only necessary to prepare one distance measuring device, but the user needs to re-install the distance measuring device at the control target device for which position measurement is to be performed. It is necessary to determine the position in order and perform automatic traveling of the self-propelled cleaner 1 by the number of devices to be controlled. However, it is not necessary for the user to perform complicated input operations for determining the position of the control target device and creating a map.
(b)また、上記したように、複数台の測距デバイス100を用いて、測距デバイスの識別情報と測距デバイスを設置する制御対象機器の機器情報とを予め対応づけて記憶しておくことによって、ほぼ同時に、1つの部屋に配置された複数台の制御対象機器の位置を決定する実施形態がある。(実施の形態2)
 この場合は、各測距デバイスをそれぞれ対応する制御対象機器のところに設置しておく必要があるが、自走式掃除機1を1回だけ自動走行させるだけで、測距デバイスの数に相当する数の制御対象機器の位置を決定することができる。
(B) Also, as described above, using a plurality of distance measuring devices 100, the identification information of the distance measuring devices and the device information of the control target equipment on which the distance measuring devices are installed are stored in association with each other. Thus, there is an embodiment in which the positions of a plurality of control target devices arranged in one room are determined almost simultaneously. (Embodiment 2)
In this case, it is necessary to install each distance measuring device at the corresponding device to be controlled. However, the self-propelled vacuum cleaner 1 is automatically driven only once and corresponds to the number of distance measuring devices. It is possible to determine the positions of the control target devices.
(c)測距デバイスの構成を、各制御対象機器の中に内蔵する実施形態もある。(実施の形態3)
 この場合、自走式掃除機1が、基準点である充電台の位置にいる場合、すなわち、自走式掃除機1が充電中の場合、各制御対象機器が、現在記憶されている位置と同じ位置に存在するか否かを確認することができる。
(C) There is also an embodiment in which the configuration of the distance measuring device is built in each control target device. (Embodiment 3)
In this case, when the self-propelled cleaner 1 is at the position of the charging stand that is the reference point, that is, when the self-propelled cleaner 1 is being charged, each control target device has a position that is currently stored. It can be confirmed whether or not they exist at the same position.
 図11(a)に、充電台からの距離を測定する実施例の説明図を示す。
 自走式掃除機1の信号通信部15が、各制御対象機器に内蔵された測距デバイスの信号通信部102から出力されるBLE信号を受信し、距離測定部16によって、各制御対象機器の信号通信部までの距離を測定する。
 図11(a)のように、各制御対象機器までの測定距離(L10,L20,L30)が測定されると、それらの距離は、自走式掃除機がいる充電台からの直線距離にほぼ等しいと考えられるので、この測定距離と、すでに記憶部41に記憶されている現在の機器位置情報45の相対位置から求められる基準点からの直線距離と比較する。
 この比較により、両者の距離が一致すれば、制御対象機器の位置の変更はないが、大きくずれている場合は、制御対象機器の位置が異なっていると判断できる。
 したがって、制御対象機器の存在する現在位置が、すでに記憶されている位置と異なると判断された場合は、上記したような位置決定処理を再度実施することによって、現在位置を再設定すればよい。
FIG. 11A shows an explanatory diagram of an embodiment for measuring the distance from the charging stand.
The signal communication unit 15 of the self-propelled cleaner 1 receives the BLE signal output from the signal communication unit 102 of the distance measuring device built in each control target device, and the distance measurement unit 16 causes each control target device to Measure the distance to the signal communication unit.
When the measurement distances (L10, L20, L30) to each control target device are measured as shown in FIG. 11 (a), these distances are approximately equal to the linear distance from the charging stand where the self-propelled cleaner is located. Since it is considered that they are equal, this measured distance is compared with the linear distance from the reference point obtained from the relative position of the current device position information 45 already stored in the storage unit 41.
From this comparison, if the distance between the two matches, the position of the control target device is not changed, but if the distance is largely deviated, it can be determined that the position of the control target device is different.
Therefore, when it is determined that the current position where the control target device exists is different from the already stored position, the current position may be reset by performing the position determination process as described above again.
(d)基準点となる充電台の位置が変更された場合、再度、変更後の充電台からの各制御対象機器の相対位置を求め、制御機器地図を作成し直す必要がある。(実施の形態4)
 図11(b)に、充電台からの距離を測定し直す場合の実施例の説明図を示す。
 図11(b)のように充電台の設置位置が変更された場合、変更後の充電台の位置は基準点(0,0)とは異なるため、各制御対象機器の充電台を基準とした相対位置関係が変化する。
 そこで、基準点(0,0)を基準とした変更後の充電台自身の相対位置を求める必要がある。
 充電台の相対位置を求めるためには、3つ以上の制御対象機器の配置位置がすでに記憶されていることが好ましい。
(D) When the position of the charging stand serving as the reference point is changed, it is necessary to obtain again the relative position of each control target device from the changed charging stand and re-create the control device map. (Embodiment 4)
FIG. 11B shows an explanatory diagram of an embodiment in the case where the distance from the charging stand is measured again.
When the installation position of the charging base is changed as shown in FIG. 11 (b), the position of the charging base after the change is different from the reference point (0, 0), so the charging base of each control target device is used as a reference. The relative positional relationship changes.
Therefore, it is necessary to obtain the relative position of the charging base itself after the change with reference to the reference point (0, 0).
In order to obtain the relative position of the charging stand, it is preferable that the arrangement positions of three or more devices to be controlled have already been stored.
 たとえば、自走式掃除機1が充電台に接続された状態で、図11(a)と同様の方法で、自走式掃除機1と、各制御対象機器に内蔵された測距デバイス100との間の距離(L11,L21,L31)を測定する。
 図11(b)において、各制御対象機器の配置位置が変更されていないとすると、各制御対象機器の測距デバイス100の相対位置を中心とし、各測定距離(L11,L21,L31)を半径とする円の交差点の相対位置を算出する。
 図11(b)では、半径L11の円と、半径L21の円と、半径L31の円とがすべて交差する点の位置座標が、自走式掃除機1の存在する位置と決定される。
 自走式掃除機1は、充電台に接続されているので、自走式掃除機1の相対位置を、変更後の充電台の相対位置とみなすことができる。
For example, in a state where the self-propelled cleaner 1 is connected to the charging stand, the self-propelled cleaner 1 and the distance measuring device 100 incorporated in each control target device are the same as in FIG. The distance (L11, L21, L31) is measured.
In FIG. 11B, if the arrangement position of each control target device is not changed, each measurement distance (L11, L21, L31) is a radius with the relative position of the distance measuring device 100 of each control target device as the center. The relative position of the intersection of the circles is calculated.
In FIG. 11B, the position coordinates of the point where the circle with the radius L11, the circle with the radius L21, and the circle with the radius L31 all intersect are determined as the position where the self-propelled cleaner 1 exists.
Since self-propelled cleaner 1 is connected to the charging stand, the relative position of self-propelled cleaner 1 can be regarded as the relative position of the changed charging stand.
(e)自走式掃除機1を自動走行させることによって、既存の制御対象機器についての機器位置情報45がすでに記憶部41に記憶されている場合において、制御対象機器の位置が変化していないかどうかを調べるために、一定期間をあけて、自動走行を行わせることによって、再度、既存の制御対象機器の相対位置の決定を行ってもよい。(実施の形態5)
 このとき、記憶部に記憶されていた前回の機器位置情報45と、再度行った位置決定による同一の制御対象機器の相対位置を含む機器位置情報とが異なる場合、その制御対象機器の相対位置を変更すればよい。
 あるいは、既存の複数の制御対象機器の相対位置がすべてずれているような場合は、充電台の位置が変化している可能性もあるので、基準点となる充電台の位置を変更する処理をしてもよい。
(E) By automatically running the self-propelled cleaner 1, the position of the control target device is not changed when the device position information 45 about the existing control target device is already stored in the storage unit 41. In order to check whether or not the relative position of the existing device to be controlled may be determined again by allowing automatic running after a certain period of time. (Embodiment 5)
At this time, when the previous device position information 45 stored in the storage unit and the device position information including the relative position of the same control target device by the position determination performed again are different, the relative position of the control target device is determined. Change it.
Alternatively, when the relative positions of a plurality of existing devices to be controlled are all shifted, there is a possibility that the position of the charging stand may have changed. May be.
(f)自走式掃除機1が移動中において、任意の3つ以上の測定ポイントにおいて、各制御対象機器の測距デバイスとの距離の測定を行うようにして、新たに測定された測定距離が、すでに記憶されている制御対象機器の相対位置を示すものではなくなっている場合は、ユーザに、制御対象機器の配置位置が変更されている旨や、制御対象機器に対する正常な遠隔制御ができなくなっている旨の通知を、音声や表示などの方法で行ってもよい。(実施の形態6)
 この場合は、相対位置が正常でない制御対象機器について、記憶部41に記憶されている機器位置情報45を削除して、再度距離測定をやり直して、その制御対象機器の配置位置を決定してもよい。
 たとえば、1つの制御対象機器の位置が変化したことを検出した場合は、その制御対象機器の情報を削除し、更新すればよい。
 また、複数の制御対象機器の位置が変化したことを検出した場合は、すべての情報を消去して、更新してもよい。
 あるいは、ユーザが入力部を用いて情報の消去指示を入力した場合も、全情報を消去すればよい。
(F) While the self-propelled cleaner 1 is moving, the measurement distance newly measured by measuring the distance from the distance measuring device of each control target device at any three or more measurement points. However, if it does not indicate the relative position of the control target device that has already been stored, the user can change the arrangement position of the control target device or perform normal remote control on the control target device. You may notify by the method of an audio | voice, a display, etc. that it has run out. (Embodiment 6)
In this case, even if the device position information 45 stored in the storage unit 41 is deleted for the control target device whose relative position is not normal, the distance measurement is performed again, and the arrangement position of the control target device is determined. Good.
For example, when it is detected that the position of one control target device has changed, the information on the control target device may be deleted and updated.
Further, when it is detected that the positions of a plurality of control target devices have changed, all information may be deleted and updated.
Alternatively, when the user inputs an information deletion instruction using the input unit, all the information may be deleted.
11 制御部、 12 充電池、 13 障害検知部、 14 角度検出部、 15 信号通信部、 16 距離測定部、 17 位置決定部、 18、赤外線受信部、 21 走行制御部、 22 車輪、 23 エンコーダ、 31 吸気口、 32 排気口、 33 集塵部、 34 入力部、 41 記憶部、 42 現在測定位置、 43 機器測定距離、 44 機器識別情報、 45 機器位置情報、 46 制御機器地図、 47 移動ルート、 51 コマンド受信部、 52 制御信号送信部、 100 測距デバイス、 101 制御部、 102 信号通信部、  103 記憶部、 110 制御対象機器、 111 制御部、 112 制御信号受信部、 113 機器実行部、 114 記憶部、 140 充電台、 150 部屋 11 control unit, 12 rechargeable battery, 13 fault detection unit, 14 angle detection unit, 15 signal communication unit, 16 distance measurement unit, 17 position determination unit, 18, infrared receiving unit, 21 travel control unit, 22 wheels, 23 encoder, 31 Inlet, 32 Exhaust, 33 Dust collector, 34 Input unit, 41 Storage unit, 42 Current measurement position, 43 Device measurement distance, 44 Device identification information, 45 Device position information, 46 Control device map, 47 Travel route, 51 Command receiving unit, 52 Control signal transmitting unit, 100 Distance measuring device, 101 Control unit, 102 Signal communication unit, 103 Storage unit, 110 Control target device, 111 Control unit, 112 Control signal receiving unit, 113 Device execution unit, 114 Storage unit, 140 Power base, 150 room

Claims (8)

  1.  目標対象物の位置に向かって自動走行する自走式電子機器であって、
     車輪の回転を制御して移動させる走行制御部と、
     所定の基準点から移動した距離を計測する移動距離計測部と、
     移動する方向を検出する角度検出部と、
     前記目標対象物から送信された無線信号を受信する信号通信部と、
     前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、
     前記基準点から前記距離の測定を行った測定ポイントまでの前記計測された移動距離と、前記検出された移動方向とを用いて前記基準点からの自走式電子機器の相対位置を算出し、前記算出された基準点からの相対位置と、前記距離測定部によって測定された目標対象物までの測定距離とを利用して、前記基準点からの目標対象物の相対位置を決定する位置決定部とを備えたことを特徴とする自走式電子機器。
    A self-propelled electronic device that automatically travels toward the position of the target object,
    A travel controller that controls and moves the rotation of the wheels;
    A moving distance measuring unit that measures the distance moved from a predetermined reference point;
    An angle detection unit for detecting a moving direction;
    A signal communication unit for receiving a radio signal transmitted from the target object;
    A distance measuring unit for measuring a distance to the target object based on the received radio signal;
    Calculate the relative position of the self-propelled electronic device from the reference point using the measured moving distance from the reference point to the measurement point where the distance was measured, and the detected moving direction; A position determining unit that determines the relative position of the target object from the reference point using the calculated relative position from the reference point and the measured distance to the target object measured by the distance measuring unit. A self-propelled electronic device characterized by comprising:
  2.  前記自走式電子機器の自動走行中に、任意の複数の測定ポイントにおいて、前記距離測定部が各測定ポイントから前記目標対象物までの距離を測定し、前記位置決定部が、前記基準点からの自走式電子機器の相対位置を算出し、前記算出された各測定ポイントの相対位置を円の中心とし、前記測定された距離を円の半径とする複数の円の円周が交差する交点の相対位置を、前記目標対象物が存在する位置に決定することを特徴とする請求項1に記載の自走式電子機器。 During automatic traveling of the self-propelled electronic device, the distance measurement unit measures the distance from each measurement point to the target object at any of a plurality of measurement points, and the position determination unit is Calculating the relative position of the self-propelled electronic device, the intersection of the circles of the plurality of circles intersecting with the calculated relative position of each measurement point as the center of the circle and the measured distance as the radius of the circle The self-propelled electronic device according to claim 1, wherein the relative position is determined as a position where the target object is present.
  3.  前記自走式電子機器の相対位置を算出し目標対象物までの距離を測定する測定ポイントは、自動走行する移動ルート上の異なる3つ以上の位置であり、
     前記位置決定部が、各測定ポイントの相対位置を中心とする3つ以上の円の円周が交差する1つの交点の相対位置を、前記目標対象物が存在する位置に決定することを特徴とする請求項2に記載の自走式電子機器。
    The measurement points for calculating the relative position of the self-propelled electronic device and measuring the distance to the target object are three or more different positions on the travel route that automatically travels,
    The position determining unit determines the relative position of one intersection where the circumferences of three or more circles centering on the relative position of each measurement point intersect as a position where the target object exists. The self-propelled electronic device according to claim 2.
  4.  記憶部をさらに備え、
     位置決定を行うべき前記目標対象物が複数個存在する場合、複数個の目標対象物を区別するための機器識別情報を予め前記記憶部に記憶し、
     前記位置決定部によって、前記各目標対象物の相対位置の決定をそれぞれ行った後、
     前記機器識別情報と、前記決定された各目標対象物の相対位置とを対応づけた機器位置情報を前記記憶部に記憶し、その機器位置情報に基づいて、制御機器地図を生成することを特徴とする請求項1、2または3に記載の自走式電子機器。
    A storage unit;
    When there are a plurality of target objects to be position-determined, device identification information for distinguishing a plurality of target objects is previously stored in the storage unit,
    After the relative position of each target object is determined by the position determination unit,
    Device location information in which the device identification information is associated with the determined relative position of each target object is stored in the storage unit, and a control device map is generated based on the device location information. The self-propelled electronic device according to claim 1, 2, or 3.
  5.  前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定することを特徴とする請求項1から4のいずれかに記載の自走式電子機器。 The wireless signal is a BLE signal defined by the Bluetooth Low Energy standard, and the distance measurement unit measures the distance to the target object based on the reception intensity of the BLE signal received by the signal communication unit. The self-propelled electronic device according to claim 1, wherein the electronic device is a self-propelled electronic device.
  6.  前記自走式電子機器は、充電池および掃除機能を備えた自走式掃除機であり、
     前記目標対象物が、ユーザが遠隔制御しようとする制御対象機器の近傍に設置された測距デバイスであり、
     前記自走式掃除機が、自動走行を行って掃除機能を実行中に、自動走行した移動ルートの複数の測定ポイントにおいて、測定された測距デバイスまでの距離と、前記基準点からの前記測定ポイントの相対位置とを用いて、
     前記位置決定部が、前記測距デバイスの相対位置を決定することを特徴とする請求項1に記載の自走式電子機器。
    The self-propelled electronic device is a self-propelled cleaner equipped with a rechargeable battery and a cleaning function,
    The target object is a distance measuring device installed in the vicinity of the control target device that the user wants to remotely control,
    While the self-propelled cleaner performs automatic cleaning and performs a cleaning function, at a plurality of measurement points of a travel route that has automatically traveled, the measured distance from the distance measuring device and the measurement from the reference point Using the relative position of the point,
    The self-propelled electronic device according to claim 1, wherein the position determination unit determines a relative position of the distance measuring device.
  7.  前記記憶部に、既存の目標対象物についての機器位置情報が記憶されている状態において、前記位置決定部によって再度、前記既存の目標対象物の相対位置の決定を行った場合、
     前記記憶部に記憶されていた前回の機器位置情報と、再度行った位置決定による同一の目標対象物の相対位置を含む機器位置情報とが異なる場合、
     その目標対象物の相対位置の変更あるいは基準点の位置を変更する処理を行うことを特徴とする請求項4に記載の自走式電子機器。
    In the state where the device position information about the existing target object is stored in the storage unit, when the relative position of the existing target object is determined again by the position determination unit,
    When the previous device position information stored in the storage unit is different from the device position information including the relative position of the same target object by the position determination performed again,
    5. The self-propelled electronic device according to claim 4, wherein a process of changing a relative position of the target object or a position of a reference point is performed.
  8.  前記位置決定部によって決定された目標対象物の相対位置と、前記基準点の位置とを用いて、所定の空間内に配置された目標対象物の存在する位置を示した制御機器地図を生成することを特徴とする請求項1から7のいずれかに記載の自走式電子機器。 Using the relative position of the target object determined by the position determination unit and the position of the reference point, a control device map indicating the position where the target object arranged in a predetermined space exists is generated. The self-propelled electronic device according to any one of claims 1 to 7, wherein
PCT/JP2015/051378 2014-06-18 2015-01-20 Self-propelled electronic device WO2015194201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580013758.1A CN106104400B (en) 2014-06-18 2015-01-20 Self-propelled electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125333 2014-06-18
JP2014125333A JP6397663B2 (en) 2014-06-18 2014-06-18 Self-propelled electronic device

Publications (1)

Publication Number Publication Date
WO2015194201A1 true WO2015194201A1 (en) 2015-12-23

Family

ID=54935202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051378 WO2015194201A1 (en) 2014-06-18 2015-01-20 Self-propelled electronic device

Country Status (3)

Country Link
JP (1) JP6397663B2 (en)
CN (1) CN106104400B (en)
WO (1) WO2015194201A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791408A (en) * 2016-09-27 2019-05-21 日产自动车株式会社 Self-position estimates method and self-position estimating device
CN109922702A (en) * 2016-11-09 2019-06-21 东芝生活电器株式会社 Electric vacuum cleaner
CN110960149A (en) * 2019-12-17 2020-04-07 江苏美的清洁电器股份有限公司 Sweeper recharging method and device, sweeper and system
CN114052563A (en) * 2020-07-31 2022-02-18 松下知识产权经营株式会社 Dust collector system, walking path display method and computer readable recording medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606752B (en) * 2017-07-21 2019-10-01 珠海格力电器股份有限公司 Method and device for controlling movement of air purifier and air purifier
JP2019046381A (en) * 2017-09-06 2019-03-22 パナソニックIpマネジメント株式会社 Autonomous vacuum cleaner and map correction method
CN110018508A (en) * 2018-01-10 2019-07-16 西安中兴新软件有限责任公司 A kind of localization method and device
JP7033720B2 (en) * 2018-02-23 2022-03-11 パナソニックIpマネジメント株式会社 Mobile robot
CN108572647A (en) * 2018-07-24 2018-09-25 南京阿凡达机器人科技有限公司 A kind of smart home management method and management platform based on mobile robot
CN111583626A (en) * 2019-02-15 2020-08-25 上海博泰悦臻电子设备制造有限公司 Danger early warning method, vehicle machine and vehicle
JP7295657B2 (en) * 2019-02-26 2023-06-21 東芝ライフスタイル株式会社 Autonomous vehicle device
CN110142782B (en) * 2019-06-14 2020-08-11 武汉创现科技有限公司 Robot for bed surface sterilization and method for intelligently traversing bed surface
CN110385719B (en) 2019-07-23 2020-08-28 珠海市一微半导体有限公司 Method and chip for judging whether virtual wall is collided by robot and intelligent robot
CN113359136A (en) * 2020-03-06 2021-09-07 华为技术有限公司 Target detection method and device and distributed radar system
CN114610014A (en) * 2022-01-04 2022-06-10 北京石头创新科技有限公司 Control method and device of self-moving equipment, electronic equipment and readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143243A (en) * 1996-11-13 1998-05-29 Fujitsu Ltd Mobile equipment
JP2002351540A (en) * 2001-05-23 2002-12-06 Denku Kobo:Kk Traveling object controller
JP2003177820A (en) * 2001-12-07 2003-06-27 Ntt Advanced Technology Corp Self-traveling controller and method for controlling the same and self-traveling device
JP2007101492A (en) * 2005-10-07 2007-04-19 Sharp Corp Device for detecting distance, and position of mobile robot
JP2013164754A (en) * 2012-02-10 2013-08-22 Fujitsu Ltd Image processing device, advance information updating method, and program
JP2014018562A (en) * 2012-07-23 2014-02-03 Sharp Corp Self-propelled electronic apparatus and method of returning self-propelled electronic apparatus to charging platform

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483548B1 (en) * 2002-07-26 2005-04-15 삼성광주전자 주식회사 Robot cleaner and system and method of controlling thereof
KR100766434B1 (en) * 2005-07-22 2007-10-15 엘지전자 주식회사 Robot having function of recognizing image and leading method for thereof
CN102541057B (en) * 2010-12-29 2013-07-03 沈阳新松机器人自动化股份有限公司 Moving robot obstacle avoiding method based on laser range finder
CN102681541A (en) * 2011-03-10 2012-09-19 上海方伴自动化设备有限公司 Method for image recognition and vision positioning with robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143243A (en) * 1996-11-13 1998-05-29 Fujitsu Ltd Mobile equipment
JP2002351540A (en) * 2001-05-23 2002-12-06 Denku Kobo:Kk Traveling object controller
JP2003177820A (en) * 2001-12-07 2003-06-27 Ntt Advanced Technology Corp Self-traveling controller and method for controlling the same and self-traveling device
JP2007101492A (en) * 2005-10-07 2007-04-19 Sharp Corp Device for detecting distance, and position of mobile robot
JP2013164754A (en) * 2012-02-10 2013-08-22 Fujitsu Ltd Image processing device, advance information updating method, and program
JP2014018562A (en) * 2012-07-23 2014-02-03 Sharp Corp Self-propelled electronic apparatus and method of returning self-propelled electronic apparatus to charging platform

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791408A (en) * 2016-09-27 2019-05-21 日产自动车株式会社 Self-position estimates method and self-position estimating device
CN109922702A (en) * 2016-11-09 2019-06-21 东芝生活电器株式会社 Electric vacuum cleaner
CN109922702B (en) * 2016-11-09 2021-07-09 东芝生活电器株式会社 Electric sweeper
CN110960149A (en) * 2019-12-17 2020-04-07 江苏美的清洁电器股份有限公司 Sweeper recharging method and device, sweeper and system
CN114052563A (en) * 2020-07-31 2022-02-18 松下知识产权经营株式会社 Dust collector system, walking path display method and computer readable recording medium

Also Published As

Publication number Publication date
CN106104400B (en) 2019-05-21
JP6397663B2 (en) 2018-09-26
CN106104400A (en) 2016-11-09
JP2016004471A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6397663B2 (en) Self-propelled electronic device
US9340116B2 (en) Self-propelled electronic device
CN108885456B (en) Method for controlling autonomous mobile robot
EP3955027A1 (en) Detection method and apparatus, and mobile robot and storage medium
CN114468898B (en) Robot voice control method, device, robot and medium
EP3087894B2 (en) Moving robot and controlling method thereof
US9452526B2 (en) Robot cleaner
KR102153351B1 (en) Cleaning robot
KR100468107B1 (en) Robot cleaner system having external charging apparatus and method for docking with the same apparatus
TWI731555B (en) Mobile robot and method of controlling plurality of mobile robots
CN100493857C (en) Position calculation system for mobile robot and charging-stand return system and method using the same
CN109645896B (en) Method for cleaning floor, control device, cleaning robot and storage medium
JP6289268B2 (en) Self-propelled electronic device
JP6393520B2 (en) Self-propelled electronic device
JP2011245295A (en) Direction device and operation system utilizing the same
TWI759760B (en) Robot cleaner and method for controlling the same
CN209678392U (en) A kind of mobile robot
JP6397278B2 (en) Self-propelled vacuum cleaner
JP6200822B2 (en) Learning remote control device, self-propelled electronic device equipped with the same, and remote control learning method
KR20190030281A (en) Mobile robot, controlling method of mobile robot and mobile robot system
JP2016134081A (en) Self-propelled type electronic apparatus
JP2016033746A (en) Self-propelled type electronic equipment
CN113854904B (en) Control method and device of cleaning equipment, cleaning equipment and storage medium
JP7089452B2 (en) Self-propelled vacuum cleaner
JP2013250748A (en) Self-propelled electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809769

Country of ref document: EP

Kind code of ref document: A1