WO2015194171A1 - Detection device, detection method, and recording medium having program for same recorded thereon - Google Patents

Detection device, detection method, and recording medium having program for same recorded thereon Download PDF

Info

Publication number
WO2015194171A1
WO2015194171A1 PCT/JP2015/003030 JP2015003030W WO2015194171A1 WO 2015194171 A1 WO2015194171 A1 WO 2015194171A1 JP 2015003030 W JP2015003030 W JP 2015003030W WO 2015194171 A1 WO2015194171 A1 WO 2015194171A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
waveform data
compliance
detection
elastic compliance
Prior art date
Application number
PCT/JP2015/003030
Other languages
French (fr)
Japanese (ja)
Inventor
宗一朗 高田
孝寛 久村
藤山 健一郎
三上 伸弘
茂樹 篠田
翔平 木下
純一郎 又賀
佐々木 康弘
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016529049A priority Critical patent/JPWO2015194171A1/en
Publication of WO2015194171A1 publication Critical patent/WO2015194171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor

Definitions

  • the present invention relates to a detection device for detecting deterioration of a structure, a detection method, and a recording medium recording the program.
  • Patent Document 1 discloses a technique for detecting a microcrack existing inside a solid.
  • Patent Document 1 digitally records a waveform of a wave that is transmitted perpendicularly or obliquely to a solid bonding interface and transmits or reflects a burst ultrasonic wave, and transmits or reflects the waveform of the incident wave. This is a method for digitally detecting distortion and harmonic amplitude.
  • the amplitude of the harmonic amplitude is as small as about 1/10 compared to the amplitude of the main resonance level, and for detecting the harmonic amplitude, a CPU (Central Processing Unit) with a large number of bits is used to perform A / D. It is necessary to increase the resolution of (analog / digital) conversion.
  • CPU Central Processing Unit
  • An object of the present invention is to provide a detection device, a detection method, and a program for detecting deterioration of a structure without using harmonic amplitude.
  • One form of the detection device of the present invention includes an acquisition unit that acquires waveform data of an elastic wave propagating through a structure, a nonlinear elastic compliance is estimated based on the acquired waveform data of the elastic wave, and a structure based on the nonlinear elastic compliance A detection unit that detects deterioration of the object.
  • One form of the detection method of the present invention acquires waveform data of elastic waves propagating through a structure, estimates nonlinear elastic compliance based on the acquired waveform data of elastic waves, and degrades the structure based on nonlinear elastic compliance Is detected.
  • a detection device program for detecting deterioration of a structure wherein a waveform data of an elastic wave propagating through a structure is acquired by a computer, and nonlinear elastic compliance is estimated based on the acquired waveform data of the elastic wave And detecting the deterioration of the structure based on the non-linear elastic compliance.
  • the present invention can provide a detection apparatus, a detection method, and a program for detecting deterioration of a structure without using harmonic amplitude.
  • FIG. 1 is a diagram showing an outline of a detection system using a detection apparatus according to the first embodiment of the present invention.
  • the detection system 5 includes a vibrator 11, an elastic wave detector 12, and a detection device 10.
  • the detection device 10 includes an acquisition unit 15 and a detection unit 16.
  • the vibrator 11 has a function of generating elastic waves by applying vibration to the structure 13. Specifically, an electrodynamic exciter composed of a coil and a magnet, a sine wave oscillator, or an impulse hammer can be used. In addition, the installation place of the vibrator 11 should just be an appropriate location which can give the vibration to the structure 13. FIG.
  • Elastic wave detector 12 has a function of detecting elastic waves propagating through the structure 13.
  • the elastic wave detector 12 is, for example, an acceleration sensor.
  • the acceleration sensor is preferably a piezoelectric acceleration sensor, and more preferably a piezoelectric acceleration sensor incorporating a signal amplification circuit.
  • various known sensors can be used. For example, a displacement sensor, a velocity sensor, an angular displacement sensor, or an angular velocity sensor can be used.
  • the installation location of the elastic wave detector 12 on the structure is not particularly limited, and may be any location that is appropriate for detection of elastic waves propagating through the structure.
  • FIG. 2 is a flowchart showing the operation of the detection system 5 in the first embodiment.
  • the vibrator 11 and the elastic wave detector 12 are installed at predetermined positions of the structure 13, and the elastic wave detector 12 and the detection device 10 are connected to each other.
  • the vibrator 11 vibrates and an elastic wave is generated inside the structure 13 (A1).
  • the elastic wave detector 12 detects an elastic wave propagating through the structure 13 (A2).
  • the acquisition unit 15 of the detection device 10 acquires waveform data from the elastic wave detected by the elastic wave detector 12 (A3).
  • the detection unit 16 estimates nonlinear elastic compliance from the acquired waveform data of elastic waves, and determines deterioration of the structure 13 (A4). The determination of the deterioration of the structure 13 will be described in detail in the description of the detection device 10.
  • FIG. 3 is a block diagram illustrating a configuration of the detection apparatus 10 according to the first embodiment.
  • FIG. 4 is a flowchart illustrating the operation of the detection device 10 according to the first embodiment.
  • the detection device 10 includes an acquisition unit 15 and a detection unit 16.
  • the acquisition unit 15 of the detection device 10 has a function of acquiring waveform data of elastic waves propagating through the structure, and specifically includes a band limiting unit 21 and an A / D conversion unit 22.
  • the band limiting unit 21 of the acquisition unit 15 removes information of a predetermined band from the received waveform data in order to reduce the calculation load in each calculation unit in the subsequent stage or reduce erroneous determination in the detection unit 16 in the subsequent stage. (B1). Specifically, the band limiting unit 21 removes band information including peaks other than the main resonance of the monitoring target mode from the waveform data received from the elastic wave detector 12.
  • a bandpass filter composed of a resistor and a capacitor can be used.
  • the A / D conversion unit 22 of the acquisition unit 15 converts the analog waveform data into digital waveform data (B2).
  • digital waveform data For example, a ⁇ - ⁇ type A / D converter having 12 bits for analog / digital processing and a sampling frequency of 15 kHz can be used.
  • the A / D converter 22 digitizes the waveform data of the elastic wave detected by the elastic wave detector 12.
  • the detection unit 16 of the detection apparatus 10 estimates nonlinear elastic compliance based on the acquired elastic wave waveform data, and detects deterioration of the structure by the nonlinear elastic compliance. Specifically, an instantaneous frequency calculation unit 23, an envelope calculation unit 24, an elastic compliance estimation unit 25, and a determination unit 26 are provided.
  • the detection unit 16 can be constituted by a CPU, for example, and a microcomputer can also be used.
  • the instantaneous frequency calculation unit 23 of the detection unit 16 has a function of calculating a temporal change amount of the frequency.
  • the instantaneous frequency calculator 23 calculates the amount of change in the natural frequency of the main resonance based on the acquired waveform data of the elastic wave (B3).
  • the instantaneous frequency calculation unit 23 can use a frequency counter circuit, for example.
  • the instantaneous frequency calculator 23 can also calculate a temporal change in frequency from the waveform data of the elastic wave using the zero cross method.
  • the envelope calculation unit 24 of the detection unit 16 calculates an envelope of vibration amplitude based on the acquired waveform data of elastic waves in order to acquire an approximate curve of the acquired waveform data of elastic waves (B4).
  • the envelope calculation unit 24 can use, for example, an envelope detection circuit.
  • the elastic compliance estimation unit 25 uses the amount of change in the natural frequency of the main resonance calculated by the instantaneous frequency calculation unit 23 and the envelope of the vibration amplitude calculated by the envelope calculation unit 24, and uses a linear regression equation described later.
  • Elastic compliance is estimated using equation (8) (B5).
  • Elastic compliance is one of the elastic coefficients that is the reciprocal of Young's modulus, and is a physical quantity that indicates how easily an object is deformed.
  • Equation (1) the relationship between the displacement x and the restoring force N in the one-degree-of-freedom nonlinear spring model of the lumped constant model is expressed by Equation (1).
  • Formula (1) becomes like Formula (3).
  • x (1) indicating a linear component and x (3) indicating a non-linear component were considered in the equation (3) .
  • a linear regression problem is set by paying attention to the vibration speed.
  • the elastic compliance estimation unit 25 determines the elastic compliance as the elastic compliance from the vibration velocity dependence of the natural angular frequency ⁇ 0 .
  • a free vibration response solution of the dimensionless Duffing equation having a third-order nonlinear restoring force N is obtained by a fourth-order Runge-Kutta method. Since the Runge-Kutta method is an explicit method, the nonlinear restoring force N can be expressed by a displacement x.
  • the non-dimensional non-linear restoring force N assumes equation (9) as an inverse function of equation (1).
  • FIG. 5 is a graph showing the relationship between the nonlinear restoring force N and the displacement x.
  • the horizontal axis indicates the restoring force (unit [N]), the vertical axis indicates the displacement (unit [mm]), and the above-described design values are indicated by solid lines.
  • ⁇ 2 is the linear region, and the third-order nonlinear component is dominant above this.
  • the response solution was obtained by changing the initial displacement in 5 increments.
  • the response solution is identified by an AR (Auto-regressive) model, the power spectral density of the vibration velocity is obtained, and linear parameters are regressed.
  • FIG. 6 is a graph showing the results of linear parameter regression analysis.
  • the horizontal axis represents the square of the vibration velocity, and the vertical axis represents the reciprocal of the natural angular frequency ⁇ 0 .
  • the determination coefficient R 2 is obtained by Expression (10) obtained by dividing the variance of the identification value by the variance of the design value.
  • R 2 0.9784, and it can be seen that the identification is good from the value of the determination coefficient R 2 .
  • FIG. 5 is a graph showing the relationship between the nonlinear restoring force N and the displacement x.
  • indicates the elastic compliance estimated by the elastic compliance estimation unit 25, and the solid line indicates the design value.
  • the elastic compliance estimation unit 25 has a good value of the elastic compliance estimated from the equation (8) and the vibration velocity dependence of the natural angular frequency ⁇ 0 .
  • the determination unit 26 of the detection unit 16 determines the deterioration of the structure based on the elastic compliance estimated by the elastic compliance estimation unit 25 (B6).
  • the elastic modulus of the structure changes due to the deterioration of the structure due to cracks or defects.
  • the determination unit 26 determines that the structure has deteriorated when the elastic compliance in the structure exceeds a predetermined reference value due to a change over time.
  • Non-linear elastic compliance among elastic compliances is used to determine the deterioration of structures.
  • FIG. 7 is a graph showing the change with time of the non-linear elastic compliance.
  • the vertical axis represents nonlinear elastic compliance
  • the horizontal axis represents time.
  • the determination unit 26 determines that the structure has deteriorated when the nonlinear elastic compliance estimated by the elastic compliance estimation unit 25 deviates from a predetermined range due to a change over time.
  • the predetermined range in FIG. 7 is a range of the average value ⁇ 3 ⁇ (standard deviation) of the nonlinear elastic compliance.
  • the predetermined range may be a range of the average value ⁇ ⁇ (standard deviation) of nonlinear elastic compliance.
  • the determination criterion for deterioration of the structure may be based on a predetermined value in nonlinear elastic compliance.
  • the determination of the deterioration of the structure by the determination unit 26 is not limited to the above.
  • the change in the ratio of the estimated nonlinear elastic compliance to the linear elastic compliance with time, or the estimated nonlinear elastic compliance and The deterioration of the structure may be determined by a change with time of the difference from the linear elastic compliance.
  • the structure used as a sample is a 10 ⁇ 20 ⁇ 170 (mm) square member, and a steel material that satisfies the steel standard SS400 of the Japanese Industrial Standard was used as the material.
  • the vibrator 11 is an electrodynamic vibrator, and a function generator generates a burst wave of 15 cycles at a frequency of 600 Hz.
  • the band limiting unit 21 of the acquiring unit 15 uses a low pass filter having a band limiting frequency of 10 kHz.
  • the detection unit 16 fits a freely damped vibration waveform using an AR model, obtains the power spectral density of the vibration velocity, and performs linear regression of nonlinear elastic compliance.
  • FIG. 8 shows the behavior of the elastic compliance until the specimen is broken by the three-point bending test.
  • the horizontal axis represents the normalized number of cycles n / n 0 normalized with the cycle number n 0 at break and the ordinate shows the normalized feature amount of elastic compliance normalized by the initial value.
  • indicates linear elastic compliance
  • indicates non-linear elastic compliance.
  • FIG. 9 is a diagram showing a hardware configuration in which the detection device 10 according to the first embodiment of the present invention is realized by a computer device.
  • the detection device 10 includes a CPU (Central Processing Unit) 91, a communication interface 92, a memory 93, and a storage device 94 such as a hard disk for storing a program.
  • the detection device 10 is connected to an input device 95 and an output device 96 via a system bus 97.
  • the CPU 91 operates the operating system to control the detection device 10 of the first embodiment. Further, the CPU 91 reads out programs and data from the recording medium mounted on the drive device to the memory 93, for example.
  • the CPU 91 has a function of processing the waveform data of the elastic wave acquired by the detection device 10 in each embodiment, and executes various functions based on the program.
  • the storage device 94 is, for example, an optical disk, a flexible disk, a magnetic optical disk, an external hard disk, or a semiconductor memory.
  • a part of the storage medium of the storage device 94 is a nonvolatile storage device, and stores a program therein.
  • the program is connected to a communication network. It may be downloaded from an external computer (not shown).
  • the input device 95 is realized by, for example, a mouse, a keyboard, or a touch panel, and is used for an input operation.
  • the output device 96 is used to output and check information processed by the CPU 91.
  • the first embodiment of the present invention is realized by the hardware configuration shown in FIG.
  • the means for realizing each part is not particularly limited. That is, it may be realized by one physically coupled device, or two or more physically separated devices may be connected by wire or wirelessly and realized by a plurality of these devices.
  • Appendix 1 An acquisition unit for acquiring waveform data of elastic waves propagating through the structure; And a detection unit that estimates nonlinear elastic compliance based on the acquired waveform data of the elastic wave and detects deterioration of the structure based on the nonlinear elastic compliance.
  • Appendix 2 The detection device according to appendix 1, wherein the detection unit includes a determination unit that determines deterioration of the structure based on a change with time of the nonlinear elastic compliance.
  • the detection unit is an elastic compliance estimation unit that estimates the nonlinear elastic compliance and linear elastic compliance; A determination unit that determines deterioration of the structure based on a change over time of the estimated ratio between the nonlinear elastic compliance and the linear elastic compliance, or a change over time,
  • the detection device comprising:
  • Appendix 5 The detection device according to appendix 4, wherein the determination unit determines that the structure has deteriorated when a change with time in the ratio or a change with time in the difference exceeds a predetermined range.
  • the detector is Based on the waveform data of the elastic wave, a frequency calculation unit that calculates a natural frequency change of the main resonance; An envelope calculation unit that calculates an envelope of vibration amplitude based on the waveform data of the elastic wave;
  • the acquisition unit includes a band limiting unit that removes frequencies other than a predetermined band from the waveform data of the elastic wave, and an A / D conversion unit that converts the waveform data of the elastic wave from analog to digital.
  • the detection device according to any one of 1 to 6.
  • Appendix 8 The detection device according to any one of appendices 1 to 7, A vibrator for generating an elastic wave in the structure by vibration; An elastic wave detector for detecting the elastic wave propagating through the structure; A detection system comprising:
  • Appendix 10 The detection method according to appendix 9, wherein the detection of the deterioration is to determine deterioration of the structure based on a change with time of the nonlinear elastic compliance.
  • Appendix 11 The detection method according to appendix 10, wherein the deterioration determination unit determines that the structure has deteriorated when the nonlinear elastic compliance exceeds a predetermined range based on a change over time.

Abstract

 Provided is a detection device with which it is possible to detect deterioration of a structure, without the use of harmonic amplitude. The device is provided with: an acquisition unit for acquiring waveform data pertaining to an elastic wave propagated through a structure; and a detection unit for estimating non-linear elastic compliance on the basis of the acquired waveform data pertaining to an elastic wave, and detecting deterioration of the structure from the non-linear elastic compliance.

Description

検知装置、検知方法とそのプログラムを記録した記録媒体Detection device, detection method and recording medium recording the program
 構造物の劣化を検知する検知装置、検知方法とそのプログラムを記録した記録媒体に関する。 [Technical Field] The present invention relates to a detection device for detecting deterioration of a structure, a detection method, and a recording medium recording the program.
 構造物の劣化状態を判定する方法として、様々な方法が提案されている。一例として、固体内部に存在する微視亀裂を検出する技術が、特許文献1に開示されている。特許文献1は、バースト超音波を固体の接合界面に対して垂直又は斜めに入射し、接合界面を透過又は反射した波の波形をデジタル収録し、入射波の波形に対する透過波又は反射波の波形ひずみ及び高調波振幅をデジタル的に検出する方法である。 Various methods have been proposed as a method for determining the deterioration state of a structure. As an example, Patent Document 1 discloses a technique for detecting a microcrack existing inside a solid. Patent Document 1 digitally records a waveform of a wave that is transmitted perpendicularly or obliquely to a solid bonding interface and transmits or reflects a burst ultrasonic wave, and transmits or reflects the waveform of the incident wave. This is a method for digitally detecting distortion and harmonic amplitude.
特開2001-305109号公報JP 2001-305109 A
 特許文献1のように高調波振幅を計測する場合、監視対象となるモード周波数のm倍の周波数を計測する必要があり、サンプリング周波数が高くなる。また、高調波振幅の振幅は、主共振レベルの振幅と比較して1/10程度と小さく、高調波振幅の検知のためにはbit数の大きいCPU(Central Processing Unit)を用いてA/D(アナログ・デジタル)変換の分解能を上げる必要がある。 When measuring the harmonic amplitude as in Patent Document 1, it is necessary to measure m times the mode frequency to be monitored, and the sampling frequency becomes high. In addition, the amplitude of the harmonic amplitude is as small as about 1/10 compared to the amplitude of the main resonance level, and for detecting the harmonic amplitude, a CPU (Central Processing Unit) with a large number of bits is used to perform A / D. It is necessary to increase the resolution of (analog / digital) conversion.
 本発明の目的は、高調波振幅を用いることなく構造物の劣化を検知できる検知装置、検知方法とそのプログラムを提供することにある。 An object of the present invention is to provide a detection device, a detection method, and a program for detecting deterioration of a structure without using harmonic amplitude.
 本発明の検知装置の一形態は、構造物を伝搬する弾性波の波形データを取得する取得部と、取得した弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、非線形弾性コンプライアンスに基づき構造物の劣化を検知する検知部と、を備える。 One form of the detection device of the present invention includes an acquisition unit that acquires waveform data of an elastic wave propagating through a structure, a nonlinear elastic compliance is estimated based on the acquired waveform data of the elastic wave, and a structure based on the nonlinear elastic compliance A detection unit that detects deterioration of the object.
 本発明の検知方法の一形態は、構造物を伝搬する弾性波の波形データを取得し、取得した弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、非線形弾性コンプライアンスに基づき構造物の劣化を検知する。 One form of the detection method of the present invention acquires waveform data of elastic waves propagating through a structure, estimates nonlinear elastic compliance based on the acquired waveform data of elastic waves, and degrades the structure based on nonlinear elastic compliance Is detected.
 本発明の構造物の劣化を検知する検知装置のプログラムであって、コンピュータに、構造物を伝搬する弾性波の波形データを取得し、取得した弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、非線形弾性コンプライアンスに基づき構造物の劣化を検知する、ことを実行させる。 A detection device program for detecting deterioration of a structure according to the present invention, wherein a waveform data of an elastic wave propagating through a structure is acquired by a computer, and nonlinear elastic compliance is estimated based on the acquired waveform data of the elastic wave And detecting the deterioration of the structure based on the non-linear elastic compliance.
 本発明は、高調波振幅を用いることなく構造物の劣化を検知できる検知装置、検知方法とそのプログラムを提供できる。 The present invention can provide a detection apparatus, a detection method, and a program for detecting deterioration of a structure without using harmonic amplitude.
本発明の第1の実施形態である検知装置を用いた検知システムの概要を示す図である。It is a figure which shows the outline | summary of the detection system using the detection apparatus which is the 1st Embodiment of this invention. 第1の実施形態における検知システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the detection system in 1st Embodiment. 本発明の第1の実施形態である検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the detection apparatus which is the 1st Embodiment of this invention. 本発明の第1の実施形態である検知装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the detection apparatus which is the 1st Embodiment of this invention. 線形パラメータの回帰分析の結果を示すグラフである。It is a graph which shows the result of the regression analysis of a linear parameter. 非線形復元力Nと変位xの関係を示すグラフである。It is a graph which shows the relationship between the nonlinear restoring force N and the displacement x. 非線形弾性コンプライアンスの経時変化を表すグラフである。It is a graph showing a time-dependent change of nonlinear elastic compliance. 構造物の破断に至るまでの弾性コンプライアンスの挙動を示すグラフである。It is a graph which shows the behavior of the elastic compliance until it leads to the fracture of a structure. 第1の実施形態における検知装置をコンピュータ装置で実現したハードウエア構成を示す図である。It is a figure which shows the hardware constitutions which implement | achieved the detection apparatus in 1st Embodiment with the computer apparatus.
 本発明の一例として第1の実施形態である検知装置、及び、当該検知装置を用いた検知システムについて、図面を用いて詳細に説明する。 As an example of the present invention, a detection apparatus according to a first embodiment and a detection system using the detection apparatus will be described in detail with reference to the drawings.
 図1は、本発明の第1の実施形態である検知装置を用いた検知システムの概要を示す図である。図1中、検知システム5は、加振器11、弾性波検出器12、及び、検知装置10を備える。検知装置10は、取得部15と検知部16を備える。 FIG. 1 is a diagram showing an outline of a detection system using a detection apparatus according to the first embodiment of the present invention. In FIG. 1, the detection system 5 includes a vibrator 11, an elastic wave detector 12, and a detection device 10. The detection device 10 includes an acquisition unit 15 and a detection unit 16.
 加振器11は、構造物13に振動を与えて弾性波を発生させる機能を有する。具体的には、コイルとマグネットからなる動電型加振器、正弦波発振器、又は、インパルスハンマーを用いることができる。なお、加振器11の設置場所は、構造物13に振動を与えられる適切な箇所であればよい。 The vibrator 11 has a function of generating elastic waves by applying vibration to the structure 13. Specifically, an electrodynamic exciter composed of a coil and a magnet, a sine wave oscillator, or an impulse hammer can be used. In addition, the installation place of the vibrator 11 should just be an appropriate location which can give the vibration to the structure 13. FIG.
 弾性波検出器12は、構造物13を伝搬する弾性波を検出する機能を有する。弾性波検出器12は、例えば、加速度センサである。加速度センサは、圧電加速度センサが好ましく、信号増幅回路が内蔵された圧電加速度センサがより好ましい。この他、公知の各種センサが利用可能であり、例えば、変位センサ、速度センサ、角変位センサ又は角速度センサを用いることができる。弾性波検出器12の構造物への設置箇所は、特に制限はなく、構造物を伝搬する弾性波の検出に適切な箇所であればよい。 Elastic wave detector 12 has a function of detecting elastic waves propagating through the structure 13. The elastic wave detector 12 is, for example, an acceleration sensor. The acceleration sensor is preferably a piezoelectric acceleration sensor, and more preferably a piezoelectric acceleration sensor incorporating a signal amplification circuit. In addition, various known sensors can be used. For example, a displacement sensor, a velocity sensor, an angular displacement sensor, or an angular velocity sensor can be used. The installation location of the elastic wave detector 12 on the structure is not particularly limited, and may be any location that is appropriate for detection of elastic waves propagating through the structure.
 図2は、第1の実施形態における検知システム5の動作を示すフローチャートである。はじめに、加振器11と弾性波検出器12は、構造物13の所定の位置に設置され、弾性波検出器12と検知装置10が互いに接続される。 FIG. 2 is a flowchart showing the operation of the detection system 5 in the first embodiment. First, the vibrator 11 and the elastic wave detector 12 are installed at predetermined positions of the structure 13, and the elastic wave detector 12 and the detection device 10 are connected to each other.
 次に、加振器11が振動し構造物13の内部に弾性波が発生する(A1)。弾性波検出器12は、構造物13を伝搬する弾性波を検出する(A2)。 Next, the vibrator 11 vibrates and an elastic wave is generated inside the structure 13 (A1). The elastic wave detector 12 detects an elastic wave propagating through the structure 13 (A2).
 検知装置10の取得部15は、弾性波検出器12が検出した弾性波から波形データを取得する(A3)。最後に、検知部16は、取得した弾性波の波形データから非線形弾性コンプライアンスを推定し、構造物13の劣化を判定する(A4)。なお、構造物13の劣化の判定については、検知装置10の説明で詳細に説明する。 The acquisition unit 15 of the detection device 10 acquires waveform data from the elastic wave detected by the elastic wave detector 12 (A3). Finally, the detection unit 16 estimates nonlinear elastic compliance from the acquired waveform data of elastic waves, and determines deterioration of the structure 13 (A4). The determination of the deterioration of the structure 13 will be described in detail in the description of the detection device 10.
 次に、第1の実施形態の検知装置10について、図3、図4を用いて説明する。図3は、第1の実施形態である検知装置10の構成を示すブロック図である。図4は、第1の実施形態の検知装置10の動作を示すフローチャートである。 Next, the detection apparatus 10 according to the first embodiment will be described with reference to FIGS. FIG. 3 is a block diagram illustrating a configuration of the detection apparatus 10 according to the first embodiment. FIG. 4 is a flowchart illustrating the operation of the detection device 10 according to the first embodiment.
 図3に示すように、検知装置10は、取得部15と検知部16を備える。 As shown in FIG. 3, the detection device 10 includes an acquisition unit 15 and a detection unit 16.
 検知装置10の取得部15は、構造物を伝搬する弾性波の波形データを取得する機能を有し、具体的には、帯域制限部21及びA/D変換部22を備える。 The acquisition unit 15 of the detection device 10 has a function of acquiring waveform data of elastic waves propagating through the structure, and specifically includes a band limiting unit 21 and an A / D conversion unit 22.
 取得部15の帯域制限部21は、後段の各算出部における計算負荷を削減する、又は、後段の検知部16において誤判定を低減するために、受信した波形データから所定の帯域の情報を除去する(B1)。具体的には、帯域制限部21は、弾性波検出器12から受信した波形データのうち、監視対象モードの主共振以外のピークを含む帯域の情報を除去する。一例として、抵抗とコンデンサで構成されるバンドパスフィルタが利用可能である。 The band limiting unit 21 of the acquisition unit 15 removes information of a predetermined band from the received waveform data in order to reduce the calculation load in each calculation unit in the subsequent stage or reduce erroneous determination in the detection unit 16 in the subsequent stage. (B1). Specifically, the band limiting unit 21 removes band information including peaks other than the main resonance of the monitoring target mode from the waveform data received from the elastic wave detector 12. As an example, a bandpass filter composed of a resistor and a capacitor can be used.
 取得部15のA/D変換部22は、アナログ波形データをデジタル波形データに変換する(B2)。例えば、アナログ・デジタル処理のビット数が12ビットでサンプリングの周波数が15kHzのΣ-Δ型A/D変換器を用いることができる。A/D変換部22により、弾性波検出器12で検出した弾性波の波形データがデジタル化される。 The A / D conversion unit 22 of the acquisition unit 15 converts the analog waveform data into digital waveform data (B2). For example, a Σ-Δ type A / D converter having 12 bits for analog / digital processing and a sampling frequency of 15 kHz can be used. The A / D converter 22 digitizes the waveform data of the elastic wave detected by the elastic wave detector 12.
 検知装置10の検知部16は、取得した弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、非線形弾性コンプライアンスにより構造物の劣化を検知する。具体的には、瞬時周波数算出部23と、包絡線算出部24と、弾性コンプライアンス推定部25及び判定部26を備える。 The detection unit 16 of the detection apparatus 10 estimates nonlinear elastic compliance based on the acquired elastic wave waveform data, and detects deterioration of the structure by the nonlinear elastic compliance. Specifically, an instantaneous frequency calculation unit 23, an envelope calculation unit 24, an elastic compliance estimation unit 25, and a determination unit 26 are provided.
 検知部16は、例えば、CPUで構成することができ、マイクロコンピュータを用いることもできる。 The detection unit 16 can be constituted by a CPU, for example, and a microcomputer can also be used.
 検知部16の瞬時周波数算出部23は、周波数の時間的な変化量を算出する機能を有する。瞬時周波数算出部23は、取得した弾性波の波形データに基づき、主共振の固有振動数の変化量を算出する(B3)。瞬時周波数算出部23は、例えば、周波数カウンタ回路を用いることができる。他に瞬時周波数算出部23は、弾性波の波形データからゼロクロス法を用いて周波数の時間的な変化を算出することもできる。 The instantaneous frequency calculation unit 23 of the detection unit 16 has a function of calculating a temporal change amount of the frequency. The instantaneous frequency calculator 23 calculates the amount of change in the natural frequency of the main resonance based on the acquired waveform data of the elastic wave (B3). The instantaneous frequency calculation unit 23 can use a frequency counter circuit, for example. In addition, the instantaneous frequency calculator 23 can also calculate a temporal change in frequency from the waveform data of the elastic wave using the zero cross method.
 検知部16の包絡線算出部24は、取得した弾性波の波形データの近似曲線を取得するために、取得した弾性波の波形データに基づき、振動振幅の包絡線を算出する(B4)。包絡線算出部24は、例えば、包絡線検波回路を用いることができる。 The envelope calculation unit 24 of the detection unit 16 calculates an envelope of vibration amplitude based on the acquired waveform data of elastic waves in order to acquire an approximate curve of the acquired waveform data of elastic waves (B4). The envelope calculation unit 24 can use, for example, an envelope detection circuit.
 弾性コンプライアンス推定部25は、瞬時周波数算出部23により算出された主共振の固有振動数の変化量と、包絡線算出部24により算出された振動振幅の包絡線を用い、後述する線形回帰式の式(8)を使って、弾性コンプライアンスを推定する(B5)。弾性コンプライアンスは、ヤング率の逆数となる弾性係数の1つであり、物体の変形しやすさを示す物理量である。 The elastic compliance estimation unit 25 uses the amount of change in the natural frequency of the main resonance calculated by the instantaneous frequency calculation unit 23 and the envelope of the vibration amplitude calculated by the envelope calculation unit 24, and uses a linear regression equation described later. Elastic compliance is estimated using equation (8) (B5). Elastic compliance is one of the elastic coefficients that is the reciprocal of Young's modulus, and is a physical quantity that indicates how easily an object is deformed.
 弾性コンプライアンスを推定するためのモデルとして、集中定数モデルの1自由度非線形ばねモデルを想定する。 Suppose a one-degree-of-freedom nonlinear spring model of a lumped constant model as a model for estimating elastic compliance.
 この非線形ばねモデルにおける復元力をN、変位をxとして、線形及び非線形の弾性コンプライアンスを求める。高次を含めた弾性コンプライアンスを
Figure JPOXMLDOC01-appb-I000001
In this nonlinear spring model, the restoring force is N and the displacement is x, and linear and nonlinear elastic compliance is obtained. Elastic compliance including higher order
Figure JPOXMLDOC01-appb-I000001
とすると、集中定数モデルの1自由度非線形ばねモデルにおける変位xと復元力Nの関係は、式(1)となる。
Figure JPOXMLDOC01-appb-I000002
Then, the relationship between the displacement x and the restoring force N in the one-degree-of-freedom nonlinear spring model of the lumped constant model is expressed by Equation (1).
Figure JPOXMLDOC01-appb-I000002
復元力Nを式(2)とすると、
Figure JPOXMLDOC01-appb-I000003
When the restoring force N is expressed by equation (2),
Figure JPOXMLDOC01-appb-I000003
(N0:復元力の振幅、ω0:固有角振動数)
式(1)は、式(3)のようになる。
Figure JPOXMLDOC01-appb-I000004
なお、以下の弾性コンプライアンスの推定として、式(3)のうち、線形成分を示すx(1)、及び、非線形成分を示すx(3)を考慮した。
(N 0 : amplitude of restoring force, ω 0 : natural angular frequency)
Formula (1) becomes like Formula (3).
Figure JPOXMLDOC01-appb-I000004
In addition, as the estimation of the elastic compliance below, x (1) indicating a linear component and x (3) indicating a non-linear component were considered in the equation (3) .
調波項毎に並べると、
Figure JPOXMLDOC01-appb-I000005
When arranged for each harmonic term,
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
(1)が振動速度、v(3)が高調波の振動速度であるとすると以下の式となり、
Figure JPOXMLDOC01-appb-I000007
If v (1) is the vibration velocity and v (3) is the harmonic vibration velocity,
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000008
振動速度に着目して線形回帰問題を設定する。
Figure JPOXMLDOC01-appb-I000009
A linear regression problem is set by paying attention to the vibration speed.
Figure JPOXMLDOC01-appb-I000009
 弾性コンプライアンス推定部25は、式(8)より固有角振動数ω0の振動速度依存性から弾性コンプライアンスとして、
Figure JPOXMLDOC01-appb-I000010
From the equation (8), the elastic compliance estimation unit 25 determines the elastic compliance as the elastic compliance from the vibration velocity dependence of the natural angular frequency ω 0 .
Figure JPOXMLDOC01-appb-I000010
を求めることができる。 Can be requested.
 ここで、上記により求めた弾性コンプライアンスに対する数値計算による同定実験のシミュレーションを以下に示す。 Here, the simulation of the identification experiment by numerical calculation for the elastic compliance obtained above is shown below.
 数値計算による同定実験では、はじめに、3次の非線形復元力Nを有する無次元化Duffing方程式の自由振動応答解を4次のRunge-Kutta法により求める。Runge-Kutta法は陽解法であるため、非線形復元力Nは、変位xで表すことができる。無次元化した非線形復元力Nは、式(1)の逆関数として式(9)を仮定する。
Figure JPOXMLDOC01-appb-I000011
In the identification experiment by numerical calculation, first, a free vibration response solution of the dimensionless Duffing equation having a third-order nonlinear restoring force N is obtained by a fourth-order Runge-Kutta method. Since the Runge-Kutta method is an explicit method, the nonlinear restoring force N can be expressed by a displacement x. The non-dimensional non-linear restoring force N assumes equation (9) as an inverse function of equation (1).
Figure JPOXMLDOC01-appb-I000011
上記の式(9)のパラメータはε(1)=1、ε(2)=0、ε(3)=0.03とした。 The parameters of the above equation (9) are ε (1) = 1, ε (2) = 0, and ε (3) = 0.03.
 図5は、非線形復元力Nと変位xの関係を示すグラフである。横軸は復元力(単位[N])、縦軸は変位(単位[mm])を示し、上述の設計値は実線で示されている。図5中、復元力|N|<2の場合、線形領域であり、それ以上で3次の非線形成分が卓越する様子がわかる。 FIG. 5 is a graph showing the relationship between the nonlinear restoring force N and the displacement x. The horizontal axis indicates the restoring force (unit [N]), the vertical axis indicates the displacement (unit [mm]), and the above-described design values are indicated by solid lines. In FIG. 5, it can be seen that the restoring force | N | <2 is the linear region, and the third-order nonlinear component is dominant above this.
 時間刻みdt=0.05,初期条件(x(0),v(0))=(0.1,0),(0.5,0),…,(5.0,0)まで0.5刻みに初期変位を変化させ応答解を求めた。 Time step dt = 0.05, initial condition (x (0), v (0)) = (0.1,0), (0.5,0),..., (5.0,0) 0. The response solution was obtained by changing the initial displacement in 5 increments.
 応答解をAR(Auto-regressive:自己回帰)モデルにより同定し、振動速度のパワースペクトル密度を求めて線形パラメータの回帰をおこなう。 The response solution is identified by an AR (Auto-regressive) model, the power spectral density of the vibration velocity is obtained, and linear parameters are regressed.
 図6は、線形パラメータの回帰分析の結果を示すグラフである。横軸は振動速度の二乗、縦軸は固有角振動数ω0の逆数を表す。 FIG. 6 is a graph showing the results of linear parameter regression analysis. The horizontal axis represents the square of the vibration velocity, and the vertical axis represents the reciprocal of the natural angular frequency ω 0 .
 式(8)の線形回帰式を用いて弾性コンプライアンスを回帰したところ、
Figure JPOXMLDOC01-appb-I000012
When the elastic compliance was regressed using the linear regression equation of equation (8),
Figure JPOXMLDOC01-appb-I000012
となった。 It became.
 ここで、設計値をz、回帰方程式による同定値をfとするときに、同定値の分散を設計値の分散で割った式(10)によって決定係数R2が求められる。 Here, when the design value is z and the identification value based on the regression equation is f, the determination coefficient R 2 is obtained by Expression (10) obtained by dividing the variance of the identification value by the variance of the design value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
これにより、R2=0.9784となり、決定係数R2の値から同定が良好であることがわかる。 Accordingly, R 2 = 0.9784, and it can be seen that the identification is good from the value of the determination coefficient R 2 .
 図5は、非線形復元力Nと変位xの関係を示すグラフである。図5中、○印は弾性コンプライアンス推定部25で推定した弾性コンプライアンスであり、実線は設計値である。非線形復元力の絶対値、|N|<4では同定値と設計値がよく一致することが確認できる。 FIG. 5 is a graph showing the relationship between the nonlinear restoring force N and the displacement x. In FIG. 5, ◯ indicates the elastic compliance estimated by the elastic compliance estimation unit 25, and the solid line indicates the design value. When the absolute value of the nonlinear restoring force, | N | <4, it can be confirmed that the identification value and the design value are in good agreement.
 上述の数値計算による同定実験のとおり、弾性コンプライアンス推定部25が、式(8)と固有角振動数ω0の振動速度依存性から推定する弾性コンプライアンスが良好な値となることがわかる。 As shown in the identification experiment based on the numerical calculation described above, it can be seen that the elastic compliance estimation unit 25 has a good value of the elastic compliance estimated from the equation (8) and the vibration velocity dependence of the natural angular frequency ω 0 .
 最後に検知部16の判定部26は、弾性コンプライアンス推定部25により推定された弾性コンプライアンスに基づいて、構造物の劣化を判定する(B6)。亀裂や欠損等による構造物の劣化によって、構造物の弾性係数が変化する。判定部26は、構造物における弾性コンプライアンスが経時変化によって所定の基準値を超えた場合に、構造物が劣化したと判定する。 Finally, the determination unit 26 of the detection unit 16 determines the deterioration of the structure based on the elastic compliance estimated by the elastic compliance estimation unit 25 (B6). The elastic modulus of the structure changes due to the deterioration of the structure due to cracks or defects. The determination unit 26 determines that the structure has deteriorated when the elastic compliance in the structure exceeds a predetermined reference value due to a change over time.
 構造物の劣化の判定には、弾性コンプライアンスのうち非線形弾性コンプライアンスを用いる。 ∙ Non-linear elastic compliance among elastic compliances is used to determine the deterioration of structures.
 図7は、非線形弾性コンプライアンスの経時的な変化を表すグラフである。図7中、縦軸は非線形弾性コンプライアンスを表し、横軸は時間を表す。 FIG. 7 is a graph showing the change with time of the non-linear elastic compliance. In FIG. 7, the vertical axis represents nonlinear elastic compliance, and the horizontal axis represents time.
 判定部26は、弾性コンプライアンス推定部25で推定された非線形弾性コンプライアンスが経時変化により所定の範囲を逸脱した場合、構造物が劣化したと判定する。ここで図7の所定の範囲は、非線形弾性コンプライアンスの平均値±3σ(標準偏差)の範囲としている。なお、所定の範囲は、非線形弾性コンプライアンスの平均値±σ(標準偏差)の範囲としてよい。また、構造物の劣化の判定基準は上記以外に、非線形弾性コンプライアンスにおける所定の値を基準としてもよい。 The determination unit 26 determines that the structure has deteriorated when the nonlinear elastic compliance estimated by the elastic compliance estimation unit 25 deviates from a predetermined range due to a change over time. Here, the predetermined range in FIG. 7 is a range of the average value ± 3σ (standard deviation) of the nonlinear elastic compliance. The predetermined range may be a range of the average value ± σ (standard deviation) of nonlinear elastic compliance. In addition to the above, the determination criterion for deterioration of the structure may be based on a predetermined value in nonlinear elastic compliance.
 判定部26による構造物の劣化の判定は、上記に限られるものではなく、例えば、推定された前記非線形弾性コンプライアンスと線形弾性コンプライアンスとの比の経時変化、又は、推定された前記非線形弾性コンプライアンスと線形弾性コンプライアンスとの差の経時変化により構造物の劣化を判定してもよい。 The determination of the deterioration of the structure by the determination unit 26 is not limited to the above. For example, the change in the ratio of the estimated nonlinear elastic compliance to the linear elastic compliance with time, or the estimated nonlinear elastic compliance and The deterioration of the structure may be determined by a change with time of the difference from the linear elastic compliance.
 [実施例]
 以下に、本発明の実施例である構造物の劣化検知の実験について説明する。試料となる構造物は、10×20×170(mm)の角材であり、その材料は、日本工業規格の鋼材規格SS400を満たす鋼材を用いた。
[Example]
Below, the experiment of the deterioration detection of the structure which is an Example of this invention is demonstrated. The structure used as a sample is a 10 × 20 × 170 (mm) square member, and a steel material that satisfies the steel standard SS400 of the Japanese Industrial Standard was used as the material.
 <実験内容>
 ひずみ制御により構造物に対し繰返し3点曲げ試験を行い、10サイクルのべき乗ごとに曲げ試験を停止した。そして停止中に検知装置は、バースト波による振動実験を行うことで非線形および線形の弾性コンプライアンスを求めた。
<Experiment details>
The structure was repeatedly subjected to a three-point bending test under strain control, and the bending test was stopped for every power of 10 cycles. During the stop, the detection device performed a vibration experiment using a burst wave to obtain nonlinear and linear elastic compliance.
 <実験機器>
 加振器11は、動電型加振器で、ファンクションジェネレータによって周波数600Hzで15サイクルのバースト波を発生させた。取得部15の帯域制限部21は、帯域制限周波数が10kHzのローパスフィルタを用いた。
<Experimental equipment>
The vibrator 11 is an electrodynamic vibrator, and a function generator generates a burst wave of 15 cycles at a frequency of 600 Hz. The band limiting unit 21 of the acquiring unit 15 uses a low pass filter having a band limiting frequency of 10 kHz.
 取得部15で取得した弾性波波形データに対し、検知部16は、自由減衰振動波形をARモデルによりフィッティングし、振動速度のパワースペクトル密度を求め、非線形弾性コンプライアンスの線形回帰を実施した。 For the elastic wave waveform data acquired by the acquisition unit 15, the detection unit 16 fits a freely damped vibration waveform using an AR model, obtains the power spectral density of the vibration velocity, and performs linear regression of nonlinear elastic compliance.
 図8に、3点曲げ試験によって試験体が破断するまでの弾性コンプライアンスの挙動を示す。図8中、横軸は、破断時のサイクル数n0で規格化した規格化サイクル数n/n0を示し、縦軸は初期値で規格化した弾性コンプライアンスの正規化特徴量を示す。また、○印は線形弾性コンプライアンスを示し、□印は非線形弾性コンプライアンスを示す。 FIG. 8 shows the behavior of the elastic compliance until the specimen is broken by the three-point bending test. In Figure 8, the horizontal axis represents the normalized number of cycles n / n 0 normalized with the cycle number n 0 at break and the ordinate shows the normalized feature amount of elastic compliance normalized by the initial value. Further, ◯ indicates linear elastic compliance, and □ indicates non-linear elastic compliance.
サイクル数の増加に伴って規格化した Normalized as the number of cycles increased
Figure JPOXMLDOC01-appb-I000013
 が減少しており、弾性コンプライアンス=1/弾性率の関係から試料である構造物の弾性率が増加(硬化現象)して破断(×印)に至っている。
Figure JPOXMLDOC01-appb-I000013
From the relationship of elastic compliance = 1 / elastic modulus, the elastic modulus of the structure as the sample increased (hardening phenomenon) and resulted in fracture (x mark).
 図8に示すように、非線形弾性コンプライアンス(○印)は、線形弾性コンプライアンス(□印)と比べて、サイクル数の増加(横軸)に伴い特徴量の変化(縦軸)が多くなった。このことから、非線形弾性コンプライアンスは、線形弾性コンプライアンスよりも構造物の劣化を検知し易いことがわかる。 As shown in FIG. 8, in the non-linear elastic compliance (marked with ○), the change in the characteristic amount (vertical axis) increased with the increase in the number of cycles (horizontal axis) compared with the linear elastic compliance (marked with □). From this, it is understood that the nonlinear elastic compliance is easier to detect the deterioration of the structure than the linear elastic compliance.
 更に、サイクル数nが少ない場合、線形弾性コンプライアンスは劣化の検知が難しい。これに対し、非線形弾性コンプライアンスは、サイクル数nが少ない場合でも変化が顕著に観察できるため、構造物の劣化を早い段階から検知することが可能となる。 Furthermore, when the number of cycles n is small, it is difficult to detect degradation of linear elastic compliance. On the other hand, since the nonlinear elastic compliance can be observed remarkably even when the number of cycles n is small, the deterioration of the structure can be detected from an early stage.
 (ハードウエア構成)
 図9は、本発明の第1の実施形態における検知装置10をコンピュータ装置で実現したハードウエア構成を示す図である。
(Hardware configuration)
FIG. 9 is a diagram showing a hardware configuration in which the detection device 10 according to the first embodiment of the present invention is realized by a computer device.
 図9に示すように、検知装置10は、CPU(Central Processing Unit)91、通信インターフェイス92、メモリ93、及び、プログラムを格納するハードディスク等の記憶装置94を含む。また、検知装置10は、システムバス97を介して入力装置95及び、出力装置96に接続されている。 As shown in FIG. 9, the detection device 10 includes a CPU (Central Processing Unit) 91, a communication interface 92, a memory 93, and a storage device 94 such as a hard disk for storing a program. The detection device 10 is connected to an input device 95 and an output device 96 via a system bus 97.
 CPU91は、オペレーティングシステムを動作させて第1の実施形態の検知装置10を制御する。またCPU91は、例えば、ドライブ装置に装着された記録媒体からメモリ93にプログラムやデータを読み出す。 The CPU 91 operates the operating system to control the detection device 10 of the first embodiment. Further, the CPU 91 reads out programs and data from the recording medium mounted on the drive device to the memory 93, for example.
 また、CPU91は、例えば、各実施形態における検知装置10が取得する弾性波の波形データを処理する機能を有し、プログラムに基づいて各種機能の処理を実行する。 Further, for example, the CPU 91 has a function of processing the waveform data of the elastic wave acquired by the detection device 10 in each embodiment, and executes various functions based on the program.
 記憶装置94は、例えば、光ディスク、フレキシブルディスク、磁気光ディスク、外付けハードディスク、又は半導体メモリ等である。記憶装置94の一部の記憶媒体は、不揮発性記憶装置であり、そこにプログラムを記憶する。また、プログラムは、通信網に接続されている。図示しない外部コンピュータからダウンロードされてもよい。 The storage device 94 is, for example, an optical disk, a flexible disk, a magnetic optical disk, an external hard disk, or a semiconductor memory. A part of the storage medium of the storage device 94 is a nonvolatile storage device, and stores a program therein. The program is connected to a communication network. It may be downloaded from an external computer (not shown).
 入力装置95は、例えば、マウス、キーボード、又は、タッチパネルなどで実現され、入力操作に用いられる。また、出力装置96は、CPU91により処理された情報等を出力して確認するために用いられる。 The input device 95 is realized by, for example, a mouse, a keyboard, or a touch panel, and is used for an input operation. The output device 96 is used to output and check information processed by the CPU 91.
 以上のように、本発明の第1の実施形態は、図9に示されるハードウエア構成によって実現される。 As described above, the first embodiment of the present invention is realized by the hardware configuration shown in FIG.
 各部の実現手段は、特に限定されない。すなわち、物理的に結合した一つの装置により実現されてもよいし、物理的に分離した二つ以上の装置を有線又は無線で接続し、これら複数の装置により実現してもよい。 The means for realizing each part is not particularly limited. That is, it may be realized by one physically coupled device, or two or more physically separated devices may be connected by wire or wirelessly and realized by a plurality of these devices.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment (and an Example), this invention is not limited to the said embodiment (and Example). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 上記の実施形態の一部又は全部は、以下の付記のように記載されうるが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
  (付記1)
 構造物を伝搬する弾性波の波形データを取得する取得部と、
 取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、前記非線形弾性コンプライアンスに基づき前記構造物の劣化を検知する検知部と、を備える検知装置。
(Appendix 1)
An acquisition unit for acquiring waveform data of elastic waves propagating through the structure;
And a detection unit that estimates nonlinear elastic compliance based on the acquired waveform data of the elastic wave and detects deterioration of the structure based on the nonlinear elastic compliance.
  (付記2)
 前記検知部は、前記非線形弾性コンプライアンスの経時変化により前記構造物の劣化を判定する判定部を備える付記1に記載の検知装置。
(Appendix 2)
The detection device according to appendix 1, wherein the detection unit includes a determination unit that determines deterioration of the structure based on a change with time of the nonlinear elastic compliance.
  (付記3)
 前記判定部は、前記非線形弾性コンプライアンスが経時変化により所定の範囲を超えた場合、前記構造物が劣化したと判定する、付記2に記載の検知装置。
(Appendix 3)
The detection device according to attachment 2, wherein the determination unit determines that the structure has deteriorated when the nonlinear elastic compliance exceeds a predetermined range due to a change with time.
  (付記4)
  前記検知部は、前記非線形弾性コンプライアンス及び線形弾性コンプライアンスを推定する弾性コンプライアンス推定部と、
 推定された前記非線形弾性コンプライアンスと前記線形弾性コンプライアンスとの比の経時変化、又は、差の経時変化に基づき前記構造物の劣化を判定する判定部と、
を備える付記1に記載の検知装置。
(Appendix 4)
The detection unit is an elastic compliance estimation unit that estimates the nonlinear elastic compliance and linear elastic compliance;
A determination unit that determines deterioration of the structure based on a change over time of the estimated ratio between the nonlinear elastic compliance and the linear elastic compliance, or a change over time,
The detection device according to appendix 1, comprising:
  (付記5)
 前記判定部は、前記比の経時変化、又は、前記差の経時変化が、所定の範囲を超えた場合、前記構造物が劣化したと判定する、付記4に記載の検知装置。
(Appendix 5)
The detection device according to appendix 4, wherein the determination unit determines that the structure has deteriorated when a change with time in the ratio or a change with time in the difference exceeds a predetermined range.
  (付記6)
 前記検知部は、
 前記弾性波の波形データに基づき、主共振の固有振動数変化を算出する周波数算出部と、
 前記弾性波の波形データに基づき、振動振幅の包絡線を算出する包絡線算出部と、
を備える付記1から5のいずれか1つに記載の検知装置。
(Appendix 6)
The detector is
Based on the waveform data of the elastic wave, a frequency calculation unit that calculates a natural frequency change of the main resonance;
An envelope calculation unit that calculates an envelope of vibration amplitude based on the waveform data of the elastic wave;
The detection device according to any one of supplementary notes 1 to 5, further comprising:
  (付記7)
 前記取得部は、前記弾性波の波形データについて所定の帯域以外の周波数を除去する帯域制限部と、前記弾性波の波形データをアナログからデジタルへ変換するA/D変換部と、を備える付記1から6のいずれかに1つに記載の検知装置。
(Appendix 7)
The acquisition unit includes a band limiting unit that removes frequencies other than a predetermined band from the waveform data of the elastic wave, and an A / D conversion unit that converts the waveform data of the elastic wave from analog to digital. The detection device according to any one of 1 to 6.
  (付記8)
 付記1から7のいずれか1つに記載の検知装置と、
 振動により前記構造物の内に弾性波を発生させる加振器と、
 前記構造物を伝搬する前記弾性波を検出する弾性波検出器と、
を備える検知システム。
(Appendix 8)
The detection device according to any one of appendices 1 to 7,
A vibrator for generating an elastic wave in the structure by vibration;
An elastic wave detector for detecting the elastic wave propagating through the structure;
A detection system comprising:
  (付記9)
 構造物を伝搬する弾性波の波形データを取得し、
 取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、
 前記非線形弾性コンプライアンスにより前記構造物の劣化を検知する検知方法。
(Appendix 9)
Acquire waveform data of elastic waves propagating through the structure,
Based on the acquired waveform data of the elastic wave, non-linear elastic compliance is estimated,
A detection method for detecting deterioration of the structure by the nonlinear elastic compliance.
  (付記10)
 前記劣化の検知は、前記非線形弾性コンプライアンスの経時変化に基づき前記構造物の劣化を判定する付記9に記載の検知方法。
(Appendix 10)
The detection method according to appendix 9, wherein the detection of the deterioration is to determine deterioration of the structure based on a change with time of the nonlinear elastic compliance.
  (付記11)
 前記劣化の判定部は、前記非線形弾性コンプライアンスが経時変化に基づき所定の範囲を超えた場合、前記構造物が劣化したと判定する、付記10に記載の検知方法。
(Appendix 11)
The detection method according to appendix 10, wherein the deterioration determination unit determines that the structure has deteriorated when the nonlinear elastic compliance exceeds a predetermined range based on a change over time.
  (付記12)
  前記劣化の検知は、前記非線形弾性コンプライアンス及び線形弾性コンプライアンスを推定し、
 推定された前記非線形弾性コンプライアンスと前記線形弾性コンプライアンスとの比の経時変化、又は、差の経時変化に基づき記構造物の劣化を判定する、付記9に記載の検知方法。
(Appendix 12)
The detection of the degradation estimates the nonlinear elastic compliance and linear elastic compliance,
The detection method according to appendix 9, wherein deterioration of the structure is determined based on a change in the ratio of the estimated nonlinear elastic compliance and the linear elastic compliance with time or a change with time.
  (付記13)
 前記劣化の検知は、前記比の経時変化、又は、前記差の経時変化が、所定の範囲を超えた場合、前記構造物が劣化したと判定する、付記12に記載の検知方法。
(Appendix 13)
13. The detection method according to appendix 12, wherein the deterioration is detected when the change with time of the ratio or the change with time of the difference exceeds a predetermined range.
  (付記14)
 前記劣化の検知は、
 前記弾性波の波形データに基づき、主共振の固有振動数変化を算出し、
 前記弾性波の波形データに基づき、振動振幅の包絡線を算出する、付記9から13のいずれか1つに記載の検知方法。
(Appendix 14)
The detection of the deterioration is
Based on the waveform data of the elastic wave, to calculate the natural frequency change of the main resonance,
The detection method according to any one of appendices 9 to 13, wherein an envelope of vibration amplitude is calculated based on the waveform data of the elastic wave.
  (付記15)
 構造物の劣化を検知する検知装置のプログラムを記録した記録媒体であって、
 コンピュータに、
 前記構造物を伝搬する弾性波の波形データを取得し、
 取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、
 前記非線形弾性コンプライアンスに基づき前記構造物の劣化を検知する、ことを実行させるプログラムを記録した記録媒体。
この出願は、2014年6月18日に出願された日本出願特願2014-125556を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(Appendix 15)
A recording medium recording a program of a detection device for detecting deterioration of a structure,
On the computer,
Obtain waveform data of elastic waves propagating through the structure,
Based on the acquired waveform data of the elastic wave, non-linear elastic compliance is estimated,
A recording medium recording a program for detecting the deterioration of the structure based on the nonlinear elastic compliance.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2014-125556 for which it applied on June 18, 2014, and takes in those the indications of all here.
 10  検知装置
 11  加振器
 12  弾性波検出器
 13  構造物
 15  取得部
 16  検知部
 21  帯域制限部
 22  A/D変換部
 23  瞬時周波数算出部
 24  包絡線算出部
 25  弾性コンプライアンス推定部
 26  判定部
 91  CPU
 92  通信インターフェイス
 93  メモリ
 94  記憶装置
 95  入力装置
 96  出力装置
 97  システムバス
DESCRIPTION OF SYMBOLS 10 Detection apparatus 11 Exciter 12 Elastic wave detector 13 Structure 15 Acquisition part 16 Detection part 21 Band limit part 22 A / D conversion part 23 Instantaneous frequency calculation part 24 Envelope calculation part 25 Elastic compliance estimation part 26 Judgment part 91 CPU
92 Communication Interface 93 Memory 94 Storage Device 95 Input Device 96 Output Device 97 System Bus

Claims (10)

  1.  構造物を伝搬する弾性波の波形データを取得する取得手段と、
     取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、前記非線形弾性コンプライアンスに基づき前記構造物の劣化を検知する検知手段と、を備える検知装置。
    Acquisition means for acquiring elastic wave waveform data propagating through the structure;
    A detection apparatus comprising: a detection unit that estimates nonlinear elastic compliance based on the acquired waveform data of the elastic wave and detects deterioration of the structure based on the nonlinear elastic compliance.
  2.  前記検知手段は、前記非線形弾性コンプライアンスの経時変化に基づき前記構造物の劣化を判定する判定手段を備える請求項1に記載の検知装置。 The detection device according to claim 1, wherein the detection unit includes a determination unit that determines deterioration of the structure based on a change with time of the nonlinear elastic compliance.
  3.  前記判定手段は、前記非線形弾性コンプライアンスが経時変化により所定の範囲を超えた場合、前記構造物が劣化したと判定する、請求項2に記載の検知装置。 The detection device according to claim 2, wherein the determination unit determines that the structure has deteriorated when the nonlinear elastic compliance exceeds a predetermined range due to a change over time.
  4.   前記検知手段は、前記非線形弾性コンプライアンス及び線形弾性コンプライアンスを推定する弾性コンプライアンス推定手段と、
     推定された前記非線形弾性コンプライアンスと前記線形弾性コンプライアンスとの比の経時変化、又は、差の経時変化に基づき前記構造物の劣化を判定する判定手段と、
    を備える請求項1に記載の検知装置。
    The detecting means includes an elastic compliance estimating means for estimating the nonlinear elastic compliance and the linear elastic compliance;
    A determination means for determining deterioration of the structure based on a change with time of the estimated ratio between the nonlinear elastic compliance and the linear elastic compliance, or a change with time;
    The detection device according to claim 1.
  5.  前記判定手段は、前記比の経時変化、又は、前記差の経時変化が、所定の範囲を超えた場合、前記構造物が劣化したと判定する、請求項4に記載の検知装置。 The detection device according to claim 4, wherein the determination unit determines that the structure has deteriorated when the change with time of the ratio or the change with time of the difference exceeds a predetermined range.
  6.  前記検知手段は、
     前記弾性波の波形データに基づき、主共振の固有振動数の変化量を算出する瞬時周波数算出手段と、
     前記弾性波の波形データに基づき、振動振幅の包絡線を算出する包絡線算出手段と、
    を備える請求項1から5のいずれか1項に記載の検知装置。
    The detection means includes
    Based on the waveform data of the elastic wave, instantaneous frequency calculating means for calculating the amount of change in the natural frequency of the main resonance,
    An envelope calculating means for calculating an envelope of vibration amplitude based on the waveform data of the elastic wave;
    The detection device according to any one of claims 1 to 5.
  7.  前記取得手段は、前記弾性波の波形データについて所定の帯域以外の周波数を除去する帯域制限手段と、前記弾性波の波形データをアナログからデジタルへ変換するA/D変換手段と、を備える請求項1から6のいずれか1項に記載の検知装置。 The acquisition means comprises band limiting means for removing frequencies other than a predetermined band from the waveform data of the elastic wave, and A / D conversion means for converting the waveform data of the elastic wave from analog to digital. The detection device according to any one of 1 to 6.
  8.  請求項1から7のいずれか1つに記載の検知装置と、
     振動により前記構造物の内に弾性波を発生させる加振器と、
     前記構造物を伝搬する前記弾性波を検出する弾性波検出器と、
    を備える検知システム。
    A detection device according to any one of claims 1 to 7,
    A vibrator for generating an elastic wave in the structure by vibration;
    An elastic wave detector for detecting the elastic wave propagating through the structure;
    A detection system comprising:
  9.  構造物を伝搬する弾性波の波形データを取得し、
     取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、
     前記非線形弾性コンプライアンスに基づき前記構造物の劣化を検知する検知方法。
    Acquire waveform data of elastic waves propagating through the structure,
    Based on the acquired waveform data of the elastic wave, non-linear elastic compliance is estimated,
    A detection method for detecting deterioration of the structure based on the nonlinear elastic compliance.
  10.  構造物の劣化を検知する検知装置のプログラムを記録した記録媒体であって、
     コンピュータに、
     前記構造物を伝搬する弾性波の波形データを取得し、
     取得した前記弾性波の波形データに基づき、非線形弾性コンプライアンスを推定し、
     前記非線形弾性コンプライアンスに基づき前記構造物の劣化を検知する、ことを実行させるプログラムを記録した記録媒体。
    A recording medium recording a program of a detection device for detecting deterioration of a structure,
    On the computer,
    Obtain waveform data of elastic waves propagating through the structure,
    Based on the acquired waveform data of the elastic wave, non-linear elastic compliance is estimated,
    A recording medium recording a program for detecting the deterioration of the structure based on the nonlinear elastic compliance.
PCT/JP2015/003030 2014-06-18 2015-06-17 Detection device, detection method, and recording medium having program for same recorded thereon WO2015194171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529049A JPWO2015194171A1 (en) 2014-06-18 2015-06-17 Detection device, detection method and program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014125556 2014-06-18
JP2014-125556 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015194171A1 true WO2015194171A1 (en) 2015-12-23

Family

ID=54935176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003030 WO2015194171A1 (en) 2014-06-18 2015-06-17 Detection device, detection method, and recording medium having program for same recorded thereon

Country Status (2)

Country Link
JP (1) JPWO2015194171A1 (en)
WO (1) WO2015194171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235195A1 (en) * 2017-06-21 2018-12-27 株式会社東芝 Structure evaluation system and structure evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273396A (en) * 1993-03-18 1994-09-30 Olympus Optical Co Ltd Tactile sensor
JPH09304268A (en) * 1996-05-21 1997-11-28 Toyo Seiki Seisakusho:Kk Apparatus for measuring non-linear modulus of elasticity of viscoelastic material
JP3620959B2 (en) * 1998-01-08 2005-02-16 株式会社東洋精機製作所 Viscoelasticity measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273396A (en) * 1993-03-18 1994-09-30 Olympus Optical Co Ltd Tactile sensor
JPH09304268A (en) * 1996-05-21 1997-11-28 Toyo Seiki Seisakusho:Kk Apparatus for measuring non-linear modulus of elasticity of viscoelastic material
JP3620959B2 (en) * 1998-01-08 2005-02-16 株式会社東洋精機製作所 Viscoelasticity measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235195A1 (en) * 2017-06-21 2018-12-27 株式会社東芝 Structure evaluation system and structure evaluation method
JPWO2018235195A1 (en) * 2017-06-21 2019-06-27 株式会社東芝 Structure evaluation system, structure evaluation method and shock applying device

Also Published As

Publication number Publication date
JPWO2015194171A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US7779690B2 (en) Vibrating wire sensor using spectral analysis
TWI535304B (en) Device and method for detecting force factor of loudspeaker
RU2019123660A (en) METHODS AND DEVICES FOR MONITORING THE CONDITION OF A STRUCTURE
JP6465034B2 (en) Signal analysis apparatus, excitation force measurement system, signal analysis method, and signal analysis program
CN106596100B (en) A kind of four-step machine tool chief axis elasticity modulus lossless detection method and device
CN204255494U (en) Bridge vibration monitoring device
JP2017166832A (en) Seismic sensor and seismic detection method
JP2012163439A (en) Rotating machine vibration monitoring system and monitoring method
CN106932162B (en) Track dynamic stiffness test method and system
JPWO2015174067A1 (en) Information processing apparatus, abnormality detection method, and recording medium
JP6611991B1 (en) Condition monitoring device
Wei et al. Nonlinearity measurement for low-pressure encapsulated MEMS gyroscopes by transient response
WO2015194171A1 (en) Detection device, detection method, and recording medium having program for same recorded thereon
Tan et al. Low-cost Structural Health Monitoring scheme using MEMS-based accelerometers
JP2009536335A5 (en)
CN104048746A (en) Vibration Sensor In A Portable Vibration Meter
JP6825714B2 (en) Vibration judgment device, vibration judgment method and program
CN105701278A (en) Modal parameter acquisition method
JP6981526B2 (en) System identification device, system identification method and computer program
Abdullahi et al. Accelerometer Based Structural Health Monitoring System on the Go: Developing Monitoring Systems with NI LabVIEW.
JP7004005B2 (en) Estimator, estimation method and computer program
WO2020044565A1 (en) Diagnostic device, diagnostic method, and computer-readable recording medium
WO2020179241A1 (en) Structure diagnosis device, structure diagnosis method, and computer-readable recording medium
JP2016206030A5 (en)
JP6432308B2 (en) Measuring device and measuring range switching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809558

Country of ref document: EP

Kind code of ref document: A1