WO2015193600A1 - Echangeur de chaleur à plaques - Google Patents

Echangeur de chaleur à plaques Download PDF

Info

Publication number
WO2015193600A1
WO2015193600A1 PCT/FR2015/051578 FR2015051578W WO2015193600A1 WO 2015193600 A1 WO2015193600 A1 WO 2015193600A1 FR 2015051578 W FR2015051578 W FR 2015051578W WO 2015193600 A1 WO2015193600 A1 WO 2015193600A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
channel
group
scales
fluid
Prior art date
Application number
PCT/FR2015/051578
Other languages
English (en)
Inventor
Lingai Luo
Yilin Fan
Original Assignee
Centre National De La Recherche Scientifique
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite De Nantes filed Critical Centre National De La Recherche Scientifique
Priority to EP15732874.1A priority Critical patent/EP3155344B1/fr
Priority to DK15732874.1T priority patent/DK3155344T3/en
Publication of WO2015193600A1 publication Critical patent/WO2015193600A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution

Definitions

  • the present invention generally relates to heat exchangers.
  • the invention relates more particularly to plate heat exchangers.
  • a heat exchanger is a device for transferring heat energy from one fluid to another, without mixing them.
  • a plate heat exchanger usually comprises a large number of plates arranged facing one another and separated in pairs from a short distance to provide between the plates, circulation spaces of a first fluid, and , alternately with the circulation spaces of the first fluid, circulation spaces of a second fluid sealed relative to the circulation spaces of the first fluid. The heat exchange is thus effected between the first and second fluids via the plates.
  • each plate has a corrugated surface to generate a turbulent flow of the fluid flowing between said plate and a neighboring plate.
  • the present invention aims to provide a new plate heat exchanger to solve all or part of the problems described above.
  • the subject of the invention is a plate heat exchanger comprising at least a first and a second plate arranged parallel to one another and to a covering element, called a cover,
  • each of the first and second plates having a fluid circulation circuit, the fluid circulation circuit of the first plate being formed in the face of the first plate facing the second plate, the second plate applying the first plate , and the fluid circulation circuit of the second plate being formed in the face of the second plate facing the cover, the cover coming from the second plate, each circulation circuit comprising:
  • each circulation circuit between said inlet and outlet of each circulation circuit, at least one portion, called a ladder, comprising two parallel and spaced apart channels, respectively called first end bar and second end bar, and two other channels, called respectively first amount and second amount, which extend in a direction substantially perpendicular to the bars, the first amount interconnecting the ends of the bars located on the same side, called the first side, and the second amount connecting between they end the bars on the other side, called the second side.
  • Such a design of the exchanger according to the invention makes it possible to homogenize the distribution of the fluids and to control the flow regime in the plates by using a ladder-type channel structure, and in particular a multi-type channel structure. -structs.
  • Such a scale structure of the or each circuit formed in each plate makes it possible to increase the performance of the heat exchanger compared to those known from the state of the art.
  • such a circuit structure makes it possible to obtain a better fluid distribution for a given pressure loss.
  • the or each scale comprises one or more other bars parallel to the first and second bars whose ends are connected to the uprights.
  • each circuit comprises at least one additional scale, preferably two additional scales, forming with said scale a group of scales, the scales of said group being distributed in a direction substantially parallel to the bars, and said first amounts of the scales of said group of scales are interconnected, on the side of the group, called the third side, defined by said first end bars, by a channel, called the first group channel, which extends in a direction substantially parallel to the bars, and said second uprights of the ladders of said group of ladders are connected together, on the side of the group, called the fourth side, defined by said second end bars, by a channel, called second group channel, which extends in a direction substantially parallel to the bars.
  • the first group channel has a passage section which increases in a direction of travel of said first group channel from said second side of a scale towards said first side
  • the second channel of group has a passage section which increases in a direction of travel of said second channel group from said first side of a ladder to said second side
  • each circuit comprises at least one additional group of scales, and preferably two additional groups of scales, forming with said group of scale a set of groups of scales, the groups of scales of said set being distributed in a direction substantially parallel to the first and second uprights, and said first group channels of the groups of scales of said set of groups are interconnected by a channel, called first set channel which extends according to a direction substantially parallel to the uprights, and said second group channels groups of scales of said set of groups are interconnected by a channel, called second set channel which extends in a direction substantially parallel to the uprights.
  • the first overall channel has a passage section which increases in a direction from said second end bar towards said first end bar of a scale of the set of groups
  • the second channel of together has a passage section which increases in a direction from said first end bar towards said second end bar of a ladder of the set of groups.
  • each circuit comprises at least one set of additional groups of scales, and preferably two sets of additional groups of scales, forming with said set of scale group, a set composition group of scales, the sets of groups of scales of said composition being distributed in a direction substantially parallel to said first and second bars, and the first overall channels are interconnected by a channel, called first composition channel, which extends in a direction substantially parallel to the first and second bars, and the second overall channels are interconnected by a channel, called second composition channel, which extends in a direction substantially parallel to the bars.
  • the realization of the circuit in the form of a pattern corresponding to a scale group set composition further enhances the heat exchange.
  • the first overall composition channel has a passage section which increases in a direction from said second overall channel of a set of the composition towards said first overall channel of said set
  • the second channel of overall composition has a passage section which increases in a direction from said first overall channel of a set of composition to said second overall channel of said set.
  • said exchanger comprises at least a third and a fourth plate arranged parallel to one another, each of the third and fourth plates having a fluid circulation circuit, the circulation circuit of the third plate being formed in the face of the third plate facing the fourth plate, the fourth plate applying the third plate, and the fluid circulation circuit of the fourth plate being formed in the face of the third plate; the fourth plate facing the first plate, the first plate applying the fourth plate, each circulation circuit of said third and fourth plates comprising:
  • said exchanger comprises first fluid supply means arranged to feed the inlet of the circulation circuit of the first and third plates, and second fluid supply means arranged to feed the inlet.
  • the circulation circuit of the second and fourth plates and said exchanger comprises first fluid discharge means arranged to collect the fluid from the circulation circuit outputs of the first and third plates, and second means of fluid evacuation arranged to collect the fluid from the outputs of the circulation circuit of the second and fourth plates.
  • each circulation circuit associated with a plate is formed in the thickness of the plate, preferably by etching.
  • connection zones between two circuit portions of different orientations are curved.
  • the input and the output of the circuit of each plate are situated on two opposite sides of the plate.
  • FIG. 1 is a perspective view of a plate heat exchanger according to one embodiment of the invention.
  • FIG. 2 is an exploded view of a plate heat exchanger according to one embodiment of the invention.
  • FIG. 3 is a perspective view of a plate of the exchanger of FIG. 2;
  • FIG. 4 is a front view of the plate of FIG. 3;
  • FIG. 5 is a diagram of an alternative circulation circuit of a plate of an exchanger according to one embodiment of the invention.
  • the invention relates to a plate heat exchanger 1.
  • the exchanger comprises four plates 10, 20, 30, 40 and a covering element, called a cover, which comes into application of the plate 20.
  • the exchanger can understand a larger number of plates.
  • N being a natural number greater than 4
  • the exchanger can be designed so that the n-th plate, with n between 1 and N, has the characteristics of the plate 20 or 40 as described hereinafter, and the n + 1-th plate comprises the characteristics of the plate 10 or 30 as described hereinafter.
  • said plates include first and second plates 10, 20 arranged parallel to one another.
  • the second plate also extends next to the CVR coverage as explained above.
  • Said plates also comprise third and fourth plates 30, 40 arranged parallel to one another.
  • the fourth plate 40 also extends opposite the first plate 10.
  • Each of the plates 10, 20, 30, 40 has a fluid circulation circuit 100, 200, 300, 400 formed of different channels.
  • Each circulation circuit associated with a plate is formed in the thickness of the plate, preferably by etching.
  • the face of the other adjacent plate which extends opposite the channels formed in the thickness of said plate closes the peripheral contour of said channels so that the fluid flows well along the channels of the circuit between the inlet and the exit.
  • the flat portions of the plate distinct from the recessed portions which form the channels of the circuit of the plate, are arranged to apply against the flat face of the plate opposite so that each channel of the circuit of circulation has in cross section a closed peripheral contour formed on the one hand by the recessed portions of the plate and, on the other hand, by the facing plate, in order to prevent the fluid from spreading between the two plates. outside the circulation circuit thus defined.
  • the fluid circulation circuit 100 of the first plate 10 is formed in the face of the first plate 10 facing the second plate 20.
  • the flat face of the second plate 20 is applied to the first plate 10 to close the peripheral contour of each channel of the circuit 100.
  • the fluid circulation circuit 200 of the second plate 20 is formed in the face of the second plate 20 facing the CVR cover.
  • the cover is in the form of a plate whose flat face comes into application of the second plate 20.
  • the fluid circulation circuit 300 of the third plate 30 is formed in the face of the third plate 30 and the flat face of the fourth plate 40 comes into application of the third plate 30 to close the peripheral contour of each channel of said circuit.
  • the fluid circulation circuit 400 of the fourth plate 40 is formed in the face of the fourth plate 40 opposite the flat face of the first plate 10. Said flat face of the first plate 10 comes into application of the fourth plate 40 to close the peripheral contour of each channel of said circuit.
  • each plate can be made of different types of material, depending on the nature of the fluids and the operating conditions. According to a particular embodiment, each plate may be made of stainless steel.
  • connection zones between two channels of different orientations are preferably curves.
  • each fluid inlet of a fluid circulation circuit is formed by a through orifice formed near an edge of the plate.
  • the fluid outlet of said circuit is formed by a through hole formed near an opposite edge of the plate.
  • the inlet and outlet of each plate are located on a diagonal of the plate, preferably near two diagonally opposite corners of the plate.
  • each circuit has, as detailed below, a Z-type ladder structure.
  • Each circulation circuit comprises a fluid inlet and a fluid outlet which are distinct from one another and between said inlet and outlet of each circulation circuit a ladder channel structure ECH1, ECH2, ECH3.
  • the circulation circuit described above is that of the plate 20 with reference to FIG. 3.
  • the description also applies to the circuit of the plate 40.
  • the description also applies to the circulation circuit of each of the plates. 10, 30 with the following feature: the circulation circuits of the plates 10, 30 are oriented in opposition to the circulation circuits 20, 40.
  • the circuit of a plate geometrically corresponds to the circuit of the or each directly adjacent plate which would have applied a rotation of 180 ° around an axis passing through the center of the plate and perpendicular to the plate.
  • each circuit comprises a plurality of scales which form groups of scales themselves grouped into sets of scales.
  • Each scale comprises two parallel channels B1, B2 and spaced apart from each other, called respectively the first end bar B1 and the second end bar B2.
  • Each scale also includes two other channels, called respectively first amount M1 and second amount M2.
  • These amounts M1, M2 extend in a direction substantially perpendicular to the bars B1, B2.
  • the first amount M1 interconnects the ends of the bars B1, B2 located on the same side, called the first side.
  • the second amount M2 connects the ends of the bars on the other side, called the second side.
  • each scale ECH1 may comprise one or more other bars B3 parallel to the first and second bars B1, B2 whose ends are connected to the uprights M1, M2.
  • each scale comprises three bars and in the embodiment illustrated in FIG. 5 each scale of the circuit 100 'comprises eight bars.
  • each channel has a section that varies from one end to the other of said channel.
  • the variation of each channel section is continuous.
  • each circuit comprises two additional scales ECH2, ECH3 forming with said scale ECH1 a group of scales GECH1.
  • the scales of said group GECH1 are distributed next to each other in a direction substantially parallel to the bars.
  • Said first amounts M1 of the scales of said group of scales GECH are interconnected, on the side of the group defined by said first end bars B1 (third side), by a channel, called the first group channel CG1.
  • Said first group channel CG1 extends in a direction substantially parallel to the bars.
  • Said second amounts M2 of the scales ECH1, ECH2, ECH3 of said group of scales GECH are connected together, on the side of the group defined by said second end bars B2 (fourth side), by a channel, called second group channel CG2 which extends in a direction substantially parallel to the bars.
  • the first group channel CG1 has a passage section that grows along its entire length in a direction of travel of said first group channel from said second side of a ladder to said first side.
  • the second group channel CG2 has a passage section which increases along its entire length in a direction of travel of said second group channel from said first side of a ladder to said second side.
  • each circuit comprises two groups of additional scales GECH2, GECH3 forming with said group of scale GECH1 a set of groups of scales EG1.
  • the groups of scales of said set EG1 are distributed one above the other in a direction substantially parallel to the first and second uprights M1, M2.
  • Said first group channels CG1 of the groups of scales of said set of groups EG1 are interconnected by a channel, called first set channel CE1 which extends in a direction substantially parallel to the uprights.
  • said second group channels CG2 of the groups of scales of said set of groups EG1 are interconnected by a channel, called second set channel CE2 which extends in a direction substantially parallel to the uprights.
  • Said set channel CE1 is located on the side of the set of groups corresponding to the first side of each group.
  • Said set channel CE2 is located on the side of the set of groups corresponding to the second side of each group.
  • the first set channel CE1 has a passage section which increases along its length in a direction from said second end bar B2 towards said first end bar B1 of a scale of the set of groups EG1.
  • the second assembly channel CE2 has a passage section which grows along its entire length in a direction from said first end bar B1 towards said second end bar B2 of a scale of the set of groups EG1. In the example illustrated in FIGS.
  • each circuit comprises two additional groups of scales EG2, EG3 forming with said set of scale group EG1 a set composition of group of scales CEG.
  • the groups EG1, EG2, EG3 of scale groups of said composition CEG are distributed one beside the other in a direction substantially parallel to said first and second bars B1, B2.
  • the first set channels CE1 of said sets EG1, EG2, EG3 of groups of scales are interconnected by a channel, called the first composition channel CC1, which extends in a direction substantially parallel to the first and second bars B1, B2.
  • the second set channels CE2 of said sets EG1, EG2, EG3 of groups of scales are interconnected by a channel, called the second composition channel CC2, which extends in a direction substantially parallel to the bars.
  • the first composition channel CC1 extends to the group set composition corresponding to the third side of each group set.
  • the second composition channel CC2 extends to the group set composition corresponding to the fourth side of each group set.
  • the first overall composing channel CC1 has a passage section which increases throughout its length in a direction from said second set channel CE2 of a set of the composition towards said first set channel CE1 of said set.
  • the second overall composing channel CCE has a passage section which grows throughout its length in a direction from said first set channel CE1 of a set of the composition towards said second set channel CE2 of said set.
  • Said exchanger 1 comprises first fluid feed means AL1 arranged to feed the inlet E1, E3 of the circulation circuit of the first and third plates 10, 30, and second fluid supply means AL2 arranged to supplying the input E2, E4 of the circulation circuit of the second and fourth plates 20, 40.
  • Said first supply means comprise a supply duct which extends orthogonally to said plates and feeds the inputs of the plates having the first type of circuit.
  • the plates having the second type of circuit also have through orifices OE1, OS1 allowing the inputs, respectively outputs, of neighboring plates to communicate with each other and thus to be fed by said conduit of the first supply means .
  • said second supply means comprise a supply duct which extends orthogonally to said plates and feeds the inputs of the plates having the second type of circuit.
  • the plates having the first type of circuit also have through holes allowing the inputs, respectively outputs, adjacent plates, which have a circuit of the second type, to communicate with each other and thus to be fed by said conduit feeding the second feed means.
  • Said supply means also comprise a fluid circulation system such as a circulator.
  • Said exchanger 1 comprises first evacuation means EV1 in fluid arranged to collect the fluid from the outlets S1, S3 of the circulation circuit of the first and third plates 10, 30.
  • Said exchanger 1 also comprises second evacuation means EV2 arranged to collect the fluid from the outlet S2 of the circulation circuit of the second plate 20 and from the outlet (not shown) of the circulation circuit of the fourth plates 40.
  • Said evacuation means are in the form of a leads orthogonal to the plates and communicating with the outputs of the circuits corresponding. Orifices are provided through the plates to allow the outputs of the same type of circuit to communicate with each other.
  • a first configuration corresponds to the configuration of the ducts.
  • the second locally concurrent and counter-current configuration corresponds to a configuration (not shown) in which the feed pipe position EV2 will be reversed with the exhaust pipe position AL2 relative to the configuration of Figure 2.
  • the perimeter of the plates is lined with a seal that allows compression of all the plates to prevent leakage.
  • the plates can be welded together to seal.
  • the exchanger comprises a multi-scale pipe network.
  • the geometrical parameters of the network guide and control the path of the fluid in order to obtain a homogeneous fluid distribution and a low pressure drop.
  • Channel size ranges may vary from application to application.
  • the characteristic dimension of the smallest channel that is to say the ladder rungs, may for example be of the order of one millimeter.
  • the width of the supply channel (distribution) and the evacuation channel (collection) and the length and width dimensions of each plate are functions of the number of channels and the number of scales.
  • the fluid flows through the circulation circuit formed between two plates from one corner to another of all the two plates.
  • Each circulation circuit of the first fluid formed between two plates extends between two other circulation circuit of the second fluid and vice versa.
  • the first circulation circuits are distributed alternately with the second circulation circuits of the second fluid.
  • Each pipe thus allows the fluid flowing along the circuit etched in a plate to pass through the adjacent plate in which is etched a circulation circuit of the other fluid, and to open into the fluid circulation circuit etched in the next plate.
  • the fluid passes from one space between two plates to another by jumping a space or the fluid passes from the space n to the space n + 2, where n is the number of spaces formed between the plates.
  • the design of the exchanger according to the invention thus makes it possible to obtain a compact and inexpensive exchanger, and having a good heat transfer coefficient.
  • the heat exchanger has little heat loss and is flexible because of the possibility of adding or removing plates.
  • the number of scales can also be modified during the design of the exchanger.

Abstract

L'invention concerne un échangeur de chaleur à plaques comprenant au moins une première et une deuxième plaques (10, 20) disposées parallèlement l'une en regard de l'autre et un élément de recouvrement, appelé couverture (CVR). Chacune des première et deuxième plaques (10, 20) présente un circuit de circulation de fluide (100, 200) comprenant une structure en échelle.

Description

ECHANGEUR DE CHALEUR A PLAQUES
La présente invention concerne de manière générale les échangeurs de chaleur. L'invention concerne plus particulièrement les échangeurs de chaleur à plaques.
Un échangeur de chaleur est un dispositif permettant de transférer de l'énergie thermique d'un fluide vers un autre, sans les mélanger. Un échangeur de chaleur à plaques comprend usuellement un grand nombre de plaques disposées l'une en regard de l'autre et séparées deux à deux d'une faible distance pour ménager entre les plaques, des espaces de circulation d'un premier fluide, et, de manière alternée avec les espaces de circulation du premier fluide, des espace de circulation d'un deuxième fluide étanches par rapport aux espaces de circulation du premier fluide. L'échange de chaleur s'effectue ainsi entre les premier et deuxième fluides par l'intermédiaire des plaques.
On connaît ainsi de l'état de la technique des échangeurs de chaleur à plaques dont chaque plaque présente une surface ondulée pour générer un flux turbulent du fluide circulant entre ladite plaque et une plaque voisine.
Cependant, on constate qu'avec de tels échangeurs de chaleur à plaques connus de l'état de la technique, la distribution de fluide entre les plaques n'est pas satisfaisante et le régime d'écoulement s'avère difficilement contrôlable.
La mauvaise distribution des fluides a pour conséquence la diminution des performances thermiques. La présente invention a pour but de proposer un nouvel échangeur de chaleur à plaques permettant de résoudre tout ou partie des problèmes exposés ci- dessus. A cet effet, l'invention a pour objet un échangeur de chaleur à plaques comprenant au moins une première et une deuxième plaques disposées parallèlement l'une en regard de l'autre et un élément de recouvrement, appelé couverture,
chacune des première et deuxième plaques présentant un circuit de circulation de fluide, le circuit de circulation de fluide de la première plaque étant formé dans la face de la première plaque en regard de la deuxième plaque, la deuxième plaque venant en applique de la première plaque, et le circuit de circulation de fluide de la deuxième plaque étant formé dans la face de la deuxième plaque en regard de la couverture, la couverture venant en applique de la deuxième plaque, chaque circuit de circulation comprenant :
- une entrée de fluide et une sortie de fluide distinctes l'une de l'autre;
- entre lesdites entrée et sortie de chaque circuit de circulation, au moins une portion, appelée échelle, comprenant deux canaux parallèles et écartés l'un de l'autre, appelés respectivement premier barreau d'extrémité et deuxième barreau d'extrémité, et deux autres canaux, appelés respectivement premier montant et deuxième montant, qui s'étendent suivant une direction sensiblement perpendiculaire aux barreaux, le premier montant reliant entre elles les extrémités des barreaux situées d'un même côté, appelé premier côté, et le deuxième montant reliant entre elles les extrémités des barreaux situées de l'autre côté, appelé deuxième côté.
Une telle conception de l'échangeur selon l'invention permet d'homogénéiser la distribution des fluides et de contrôler le régime d'écoulement dans les plaques en utilisant une structure de canaux de type échelle, et en particulier une structure de canaux de type multi-échelles.
Une telle structure en échelle du ou de chaque circuit formé dans chaque plaque permet d'augmenter les performances de l'échangeur de chaleur par rapport à ceux connus de l'état de la technique. En particulier une telle structure de circuit permet d'obtenir une meilleure distribution de fluide pour une perte de pression donnée.
Selon une caractéristique avantageuse de l'invention, la ou chaque échelle comprend un ou plusieurs autres barreaux parallèles aux premier et deuxième barreaux dont les extrémités sont raccordées aux montants.
Avantageusement, le premier montant présente une section de passage qui croît, de préférence de manière continue, depuis le deuxième barreau d'extrémité en direction du premier barreau d'extrémité, et le deuxième montant présente une section de passage qui croît, de préférence de manière continue, depuis le premier barreau d'extrémité en direction du deuxième barreau d'extrémité. Selon une caractéristique avantageuse de l'invention, chaque circuit comprend au moins une échelle supplémentaire, de préférence deux échelles supplémentaires, formant avec ladite échelle un groupe d'échelles, les échelles dudit groupes étant réparties suivant une direction sensiblement parallèle aux barreaux, et lesdits premiers montants des échelles dudit groupe d'échelles sont reliés entre eux, du côté du groupe, appelé troisième côté, défini par lesdits premiers barreaux d'extrémité, par un canal, appelé premier canal de groupe, qui s'étend suivant une direction sensiblement parallèle aux barreaux, et lesdits deuxième montants des échelles dudit groupe d'échelles sont reliés entre eux, du côté du groupe, appelé quatrième côté, défini par lesdits deuxièmes barreaux d'extrémité, par un canal, appelé deuxième canal de groupe, qui s'étend suivant une direction sensiblement parallèle aux barreaux.
Selon une caractéristique avantageuse de l'invention, le premier canal de groupe présente une section de passage qui croît dans un sens de parcours dudit premier canal de groupe allant dudit deuxième côté d'une échelle en direction dudit premier côté, et le deuxième canal de groupe présente une section de passage qui croît dans un sens de parcours dudit deuxième canal de groupe allant dudit premier côté d'une échelle en direction dudit deuxième côté.
Selon une caractéristique avantageuse de l'invention, chaque circuit comprend au moins un groupe d'échelles supplémentaire, et de préférence deux groupes d'échelles supplémentaires, formant avec ledit groupe d'échelle un ensemble de groupe d'échelles, les groupes d'échelles dudit ensemble étant répartis suivant une direction sensiblement parallèle aux premier et deuxième montants, et lesdits premiers canaux de groupe des groupes d'échelles dudit ensemble de groupes sont reliés entre eux par un canal, appelé premier canal d'ensemble qui s'étend suivant une direction sensiblement parallèle aux montants, et lesdits deuxièmes canaux de groupe des groupes d'échelles dudit ensemble de groupes sont reliés entre eux par un canal, appelé deuxième canal d'ensemble qui s'étend suivant une direction sensiblement parallèle aux montants.
Une telle conception du circuit avec un motif en ensemble de groupe d'échelles permet de bénéficier d'un meilleur échange de chaleur. Avantageusement, le premier canal d'ensemble présente une section de passage qui croît dans un sens allant dudit deuxième barreau d'extrémité en direction dudit premier barreau d'extrémité d'une échelle de l'ensemble de groupes, et le deuxième canal d'ensemble présente une section de passage qui croît dans un sens allant dudit premier barreau d'extrémité en direction dudit deuxième barreau d'extrémité d'une échelle de l'ensemble de groupes.
Selon une caractéristique avantageuse de l'invention, chaque circuit comprend au moins un ensemble de groupes d'échelles supplémentaire, et de préférence deux ensembles de groupes d'échelles supplémentaires, formant avec ledit ensemble de groupe d'échelle, une composition d'ensemble de groupe d'échelles, les ensembles de groupes d'échelles de ladite composition étant répartis suivant une direction sensiblement parallèle auxdits premier et deuxième barreaux, et les premiers canaux d'ensemble sont reliés entre eux par un canal, appelé premier canal de composition, qui s'étend suivant une direction sensiblement parallèle aux premier et deuxième barreaux, et les deuxièmes canaux d'ensemble sont reliés entre eux par un canal, appelé deuxième canal de composition, qui s'étend suivant une direction sensiblement parallèle aux barreaux.
La réalisation du circuit sous forme d'un motif correspondant à une composition d'ensemble de groupe d'échelles améliore encore l'échange de chaleur.
Avantageusement, le premier canal de composition d'ensemble présente une section de passage qui croît dans un sens allant dudit deuxième canal d'ensemble d'un ensemble de la composition en direction dudit premier canal d'ensemble dudit ensemble, et le deuxième canal de composition d'ensemble présente une section de passage qui croît dans un sens allant dudit premier canal d'ensemble d'un ensemble de la composition en direction dudit deuxième canal d'ensemble dudit ensemble.
Selon une caractéristique avantageuse de l'invention, ledit échangeur comprend au moins une troisième et une quatrième plaques disposées parallèlement l'une en regard de l'autre, chacune des troisième et quatrième plaques présentant un circuit de circulation de fluide, le circuit de circulation de fluide de la troisième plaque étant formé dans la face de la troisième plaque en regard de la quatrième plaque, la quatrième plaque venant en applique de la troisième plaque, et le circuit de circulation de fluide de la quatrième plaque étant formé dans la face de la quatrième plaque en regard de la première plaque, la première plaque venant en applique de la quatrième plaque, chaque circuit de circulation desdites troisième et quatrième plaques comprenant :
-une entrée de fluide et une sortie de fluide distinctes l'une de l'autre ;
- entre lesdites entrée et sortie de chaque circuit de circulation des desdites troisième et quatrième plaques, au moins une échelle. Selon un aspect particulier, ledit échangeur comprend des premiers moyens d'alimentation en fluide agencés pour alimenter l'entrée du circuit de circulation de la première et de la troisième plaques, et des deuxièmes moyens d'alimentation en fluide agencés pour alimenter l'entrée du circuit de circulation de la deuxième et de la quatrième plaques, et ledit échangeur comprend des premiers moyens d'évacuation en fluide agencés pour collecter le fluide des sorties du circuit de circulation de la première et de la troisième plaques, et des deuxièmes moyens d'évacuation en fluide agencés pour collecter le fluide des sorties du circuit de circulation de la deuxième et de la quatrième plaques.
Selon différents modes de réalisation de l'invention, chaque circuit de circulation associé à une plaque est ménagé dans l'épaisseur de la plaque, de préférence par gravure.
Préférentiellement, les zones de liaison entre deux portions de circuit de différentes orientations sont courbes.
Selon une caractéristique avantageuse de l'invention, l'entrée et la sortie du circuit de chaque plaque sont situées sur deux côtés opposés de la plaque.
L'invention sera bien comprise à la lecture de la description suivante d'exemples de réalisation, en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue en perspective d'un échangeur de chaleur à plaques selon un mode de réalisation de l'invention;
- la figure 2 est une vue à l'état éclaté d'un échangeur à plaques selon un mode de réalisation de l'invention;
- la figure 3 est une vue en perspective d'une plaque de l'échangeur de la figure 2 ;
- la figure 4 est une vue de face de la plaque de la figure 3 ;
- la figure 5 est un schéma d'une variante de circuit de circulation d'une plaque d'un échangeur selon un mode de réalisation de l'invention. Comme illustré aux figures, l'invention concerne un échangeur 1 de chaleur à plaques. Dans l'exemple illustré à la figure 2, l'échangeur comprend quatre plaques 10, 20, 30, 40 ainsi qu'un élément de recouvrement, appelé couverture, qui vient en applique de la plaque 20. Bien entendu, l'échangeur peut comprendre un plus grand nombre de plaques. En particulier, pour un nombre de plaques N (N étant un entier naturel supérieur à 4), l'échangeur peut être conçu de sorte que la n-ième plaque, avec n compris entre 1 et N, présente les caractéristiques de la plaque 20 ou 40 telle que décrite ci-après, et la n+1 -ième plaque comprend les caractéristiques de la plaque 10 ou 30 telle que décrite ci-après.
En particulier, lesdites plaques incluent une première et une deuxième plaques 10, 20 disposées parallèlement l'une en regard de l'autre. La deuxième plaque s'étend aussi en regard de la couverture CVR comme expliqué ci-dessus. Lesdites plaques comprennent aussi une troisième et une quatrième plaques 30, 40 disposées parallèlement l'une en regard de l'autre. La quatrième plaque 40 s'étend aussi en regard de la première plaque 10.
Chacune des plaques 10, 20, 30, 40 présente un circuit de circulation de fluide 100, 200, 300, 400 formé de différents canaux.
Chaque circuit de circulation associé à une plaque est ménagé dans l'épaisseur de la plaque, de préférence par gravure. La face de l'autre plaque voisine qui s'étend en regard des canaux ménagés dans l'épaisseur de ladite plaque vient fermer le contour périphérique desdits canaux de sorte que le fluide s'écoule bien le long des canaux du circuit entre l'entrée et la sortie. En particulier, les parties plates de la plaque, distinctes des parties en creux qui forment les canaux du circuit de la plaque, sont disposées en applique contre la face plate de la plaque en regard pour que chaque canal du circuit de circulation présente en section transversale un contour périphérique fermé formé d'une part par les parties en creux de la plaque et, d'autre part, par la plaque en regard, afin d'empêcher le fluide de s'étendre entre les deux plaques en dehors du circuit de circulation ainsi défini.
Ainsi, le circuit de circulation 100 de fluide de la première plaque 10 est formé dans la face de la première plaque 10 située en regard de la deuxième plaque 20. La face plate de la deuxième plaque 20 vient en applique de la première plaque 10 pour fermer le contour périphérique de chaque canal du circuit 100.
Le circuit de circulation 200 de fluide de la deuxième plaque 20 est formé dans la face de la deuxième plaque 20 en regard de la couverture CVR. La couverture se présente sous forme d'une plaque dont une face plate vient en applique de la deuxième plaque 20.
Le circuit de circulation 300 de fluide de la troisième plaque 30 est formé dans la face de la troisième plaque 30 et la face plate de la quatrième plaque 40 vient en applique de la troisième plaque 30 pour fermer le contour périphérique de chaque canal dudit circuit.
Le circuit de circulation 400 de fluide de la quatrième plaque 40 est formé dans la face de la quatrième plaque 40 en regard de la face plate de la première plaque 10. Ladite face plate de la première plaque 10 vient en applique de la quatrième plaque 40 pour fermer le contour périphérique de chaque canal dudit circuit.
De manière générale, chaque plaque peut être réalisée en différents types de matériau, selon la nature des fluides et les conditions opérationnelles. Selon un mode de réalisation particulier, chaque plaque peut être réalisée en acier inoxydable.
Les zones de liaison entre deux canaux de différentes orientations sont de préférence courbes.
L'entrée et la sortie du circuit de chaque plaque sont situées sur deux côtés opposés de la plaque. En particulier chaque entrée de fluide d'un circuit de circulation de fluide est formée par un orifice traversant ménagé à proximité d'un bord de la plaque. De même la sortie de fluide dudit circuit est formée par un orifice traversant ménagé à proximité d'un bord opposé de la plaque. Avantageusement, les entrée et sortie de chaque plaque sont situées sur une diagonale de la plaque, de préférence à proximité de deux coins diagonalement opposés de la plaque. Autrement dit, chaque circuit présente, comme détaillé ci-après, une structure à échelles de type en Z.
Chaque circuit de circulation comprend une entrée de fluide et une sortie de fluide distinctes l'une de l'autre et entre lesdites entrée et sortie de chaque circuit de circulation une structure de canaux en échelles ECH1 , ECH2, ECH3.
Par simplification le circuit de circulation décrit ci-dessus est celui de la plaque 20 en référence à la figure 3. La description s'applique aussi au circuit de la plaque 40. La description s'applique aussi au circuit de circulation de chacune des plaques 10, 30 avec la particularité suivante : les circuits de circulation des plaques 10, 30 sont orientés à l'inverse des circuits de circulation 20, 40. Ainsi le circuit d'une plaque correspond géométriquement au circuit de la ou de chaque plaque directement voisine auquel on aurait appliqué une rotation de 180° autour d'un axe passant par le centre de la plaque et perpendiculaire à la plaque.
Ainsi, lorsque les entrées E2, E4 des circuits 200, 400 de circulation sont situées en bas à gauche d'une plaque et lorsque la sortie S2 du circuit 200 et la sortie (non représentée) du circuit 400 sont situées en haut à droite d'une plaque, à l'inverse, les entrées E1 , E3 des circuits 100, 300 de circulation sont situées en bas à droite d'une plaque et les sorties S1 , S3 en haut à gauche d'une plaque (voir figure 2). Ainsi les circuits de deux plaques voisines, c'est-à- dire les deux circuits dans lesquels circulent deux fluides distincts sont inversés l'un par rapport à l'autre. Les fluides des deux types de circuit peuvent circulés dans le même sens ou de préférence en sens inverse l'un de l'autre. Comme détaillé ci-après, chaque circuit comprend une pluralité d'échelles qui forment des groupes d'échelles eux même rassemblés en ensembles d'échelles.
Chaque échelle comprend deux canaux B1 , B2 parallèles et écartés l'un de l'autre, appelés respectivement premier barreau d'extrémité B1 et deuxième barreau d'extrémité B2. Chaque échelle comprend aussi deux autres canaux, appelés respectivement premier montant M1 et deuxième montant M2. Ces montants M1 , M2 s'étendent suivant une direction sensiblement perpendiculaire aux barreaux B1 , B2. Le premier montant M1 relie entre elles les extrémités des barreaux B1 , B2 situées d'un même côté, appelé premier côté. Le deuxième montant M2 relie entre elles les extrémités des barreaux situées de l'autre côté, appelé deuxième côté.
Bien entendu, chaque échelle ECH1 peut comprendre un ou plusieurs autres barreaux B3 parallèles aux premier et deuxième barreaux B1 , B2 dont les extrémités sont raccordées aux montants M1 , M2. Ainsi dans l'exemple illustré aux figures 1 à 4, chaque échelle comprend trois barreaux et dans le mode de réalisation illustré à la figure 5 chaque échelle du circuit 100' comprend huit barreaux.
Par référence à la figure 4, ledit premier côté correspond au côté gauche, le deuxième côté correspondant au côté droit, le troisième côté au côté inférieur et le quatrième côté au côté supérieur. Comme détaillé ci-après, chaque canal présente une section qui varie d'une extrémité à l'autre dudit canal. La variation de chaque section de canal s'effectue de manière continue. Une telle conception des canaux permet d'homogénéiser l'écoulement de fluide dans le circuit en limitant les écoulements turbulents, ce qui permet de limiter les pertes de charges.
Pour chaque échelle, le premier montant M1 présente une section de passage qui croît sur toute sa longueur depuis le deuxième barreau B2 d'extrémité en direction du premier barreau B1 d'extrémité. Le deuxième montant M2 présente une section de passage qui croît sur toute sa longueur depuis le premier barreau B1 d'extrémité en direction du deuxième barreau B2 d'extrémité. Dans l'exemple illustré aux figures 1 à 4, chaque circuit comprend deux échelles ECH2, ECH3 supplémentaires formant avec ladite échelle ECH1 un groupe d'échelles GECH1 .
Les échelles dudit groupes GECH1 sont réparties l'une à côté de l'autre suivant une direction sensiblement parallèle aux barreaux. Lesdits premiers montants M1 des échelles dudit groupe d'échelles GECH sont reliés entre eux, du côté du groupe défini par lesdits premiers barreaux B1 d'extrémité (troisième côté), par un canal, appelé premier canal de groupe CG1 . Ledit premier canal de groupe CG1 s'étend suivant une direction sensiblement parallèle aux barreaux.
Lesdits deuxièmes montants M2 des échelles ECH1 , ECH2, ECH3 dudit groupe d'échelles GECH sont reliés entre eux, du côté du groupe défini par lesdits deuxièmes barreaux B2 d'extrémité (quatrième côté), par un canal, appelé deuxième canal de groupe CG2, qui s'étend suivant une direction sensiblement parallèle aux barreaux.
Le premier canal de groupe CG1 présente une section de passage qui croît sur toute sa longueur dans un sens de parcours dudit premier canal de groupe allant dudit deuxième côté d'une échelle en direction dudit premier côté. Le deuxième canal de groupe CG2 présente une section de passage qui croît sur toute sa longueur dans un sens de parcours dudit deuxième canal de groupe allant dudit premier côté d'une échelle en direction dudit deuxième côté.
Dans l'exemple illustré aux figures 1 à 4, chaque circuit comprend deux groupes d'échelles GECH2, GECH3 supplémentaires formant avec ledit groupe d'échelle GECH1 un ensemble de groupe d'échelles EG1 . Les groupes d'échelles dudit ensemble EG1 sont répartis l'un au dessus de l'autre suivant une direction sensiblement parallèle aux premier et deuxième montants M1 , M2. Lesdits premiers canaux de groupe CG1 des groupes d'échelles dudit ensemble de groupes EG1 sont reliés entre eux par un canal, appelé premier canal d'ensemble CE1 qui s'étend suivant une direction sensiblement parallèle aux montants. De manière similaire, lesdits deuxièmes canaux de groupe CG2 des groupes d'échelles dudit ensemble de groupes EG1 sont reliés entre eux par un canal, appelé deuxième canal d'ensemble CE2 qui s'étend suivant une direction sensiblement parallèle aux montants. Ledit canal d'ensemble CE1 est situé du côté de l'ensemble de groupe correspondant au premier côté de chaque groupe. Ledit canal d'ensemble CE2 est situé du côté de l'ensemble de groupe correspondant au deuxième côté de chaque groupe. Le premier canal d'ensemble CE1 présente une section de passage qui croît sur toute sa longueur dans un sens allant dudit deuxième barreau B2 d'extrémité en direction dudit premier barreau B1 d'extrémité d'une échelle de l'ensemble de groupes EG1 . Le deuxième canal d'ensemble CE2 présente une section de passage qui croît sur toute sa longueur dans un sens allant dudit premier barreau B1 d'extrémité en direction dudit deuxième barreau B2 d'extrémité d'une échelle de l'ensemble de groupes EG1 . Dans l'exemple illustré aux figures 1 à 4, chaque circuit comprend deux groupes d'échelles EG2, EG3 supplémentaires formant avec ledit ensemble de groupe d'échelle EG1 , une composition d'ensemble de groupe d'échelles CEG. Les ensembles EG1 , EG2, EG3 de groupes d'échelles de ladite composition CEG sont répartis l'un à côté de l'autre suivant une direction sensiblement parallèle auxdits premier et deuxième barreaux B1 , B2.
Les premiers canaux d'ensemble CE1 desdits ensembles EG1 , EG2, EG3 de groupes d'échelles sont reliés entre eux par un canal, appelé premier canal de composition CC1 , qui s'étend suivant une direction sensiblement parallèle aux premier et deuxième barreaux B1 , B2.
Les deuxièmes canaux d'ensemble CE2 desdits ensembles EG1 , EG2, EG3 de groupes d'échelles sont reliés entre eux par un canal, appelé deuxième canal de composition CC2, qui s'étend suivant une direction sensiblement parallèle aux barreaux.
Le premier canal de composition CC1 s'étend du côté de la composition d'ensemble de groupe correspondant au troisième côté de chaque ensemble de groupe. Le deuxième canal de composition CC2 s'étend du côté de la composition d'ensemble de groupe correspondant au quatrième côté de chaque ensemble de groupe. Le premier canal de composition d'ensemble CC1 présente une section de passage qui croît sur toute sa longueur dans un sens allant dudit deuxième canal d'ensemble CE2 d'un ensemble de la composition en direction dudit premier canal d'ensemble CE1 dudit ensemble. Le deuxième canal de composition d'ensemble CCE présente une section de passage qui croît sur toute sa longueur dans un sens allant dudit premier canal d'ensemble CE1 d'un ensemble de la composition en direction dudit deuxième canal d'ensemble CE2 dudit ensemble. Ledit échangeur 1 comprend des premiers moyens d'alimentation AL1 en fluide agencés pour alimenter l'entrée E1 , E3 du circuit de circulation de la première et de la troisième plaques 10, 30, et des deuxièmes moyens d'alimentation AL2 en fluide agencés pour alimenter l'entrée E2, E4 du circuit de circulation de la deuxième et de la quatrième plaques 20, 40.
Lesdits premier moyens d'alimentation comprennent un conduit d'alimentation qui s'étend orthogonalement auxdites plaques et alimentent les entrées des plaques présentant le premier type de circuit. Les plaques présentant le deuxième type de circuit présentent aussi des orifices traversants OE1 , OS1 permettant aux entrées, respectivement sorties, des plaques voisines de communiquer l'une avec l'autre et ainsi d'être alimentées par ledit conduit des premiers moyens d'alimentation. De manière similaire, lesdits deuxième moyens d'alimentation comprennent un conduit d'alimentation qui s'étend orthogonalement auxdites plaques et alimentent les entrées des plaques présentant le deuxième type de circuit. Les plaques présentant le premier type de circuit présentent aussi des orifices traversants permettant aux entrées, respectivement sorties, des plaques voisines, qui présentent un circuit du deuxième type, de communiquer l'une avec l'autre et ainsi d'être alimentées par ledit conduit d'alimentation des deuxième moyens d'alimentation. Lesdits moyens d'alimentation comprennent aussi un système de circulation de fluide tel qu'un circulateur. Ledit échangeur 1 comprend des premiers moyens d'évacuation EV1 en fluide agencés pour collecter le fluide des sorties S1 , S3 du circuit de circulation de la première et de la troisième plaques 10, 30. Ledit échangeur 1 comprend aussi des deuxièmes moyens d'évacuation EV2 agencés pour collecter le fluide de la sortie S2 du circuit de circulation de la deuxième plaque 20 et de la sortie (non représentée) du circuit de circulation de la quatrième plaques 40. Lesdits moyens d'évacuation se présentent sous la forme d'un conduit orthogonal aux plaques et communiquant avec les sorties des circuits correspondant. Des orifices sont ménagés à travers les plaques pour permettre aux sorties d'un même type de circuit de communiquer entre elles.
En particulier, deux configurations distinctes peuvent être prévues en ce qui concerne les positions des conduits d'alimentation AL1 , AL2 et des conduits d'évacuation EV1 , EV2, Une première configuration dite configuration localement contrecourant et globalement concourant, correspond à la configuration des conduits telle qu'illustrée en figure 2. La deuxième configuration dite localement concourant et globalement contrecourant correspond à une configuration (non représentée) dans laquelle la position de conduit d'alimentation EV2 sera inversée avec la position de conduit d'évacuation AL2 par rapport à la configuration de la figure 2.
Le périmètre des plaques est bordé d'un joint qui permet par compression de l'ensemble des plaques d'éviter les fuites. En variante, les plaques peuvent être soudées entre elles pour assurer l'étanchéité.
Grâce à la conception de l'échangeur selon l'invention, l'échangeur comprend un réseau de canalisation multi-échelles. Les paramètres géométriques du réseau permettent de guider et contrôler la trajectoire du fluide afin d'obtenir une distribution de fluide homogène et une faible perte de charge.
Les plages de dimensions des canaux de circuits peuvent varier d'une application à l'autre. Selon un mode de réalisation particulier, la dimension caractéristique du plus petit canal, c'est-à-dire des barreaux d'échelle, peut être par exemple de l'ordre d'un millimètre. La largeur du canal d'alimentation (distribution) et du canal d'évacuation (collection) et les dimensions en longueur et largeur de chaque plaque sont fonctions du nombre des canaux et le nombre d'échelles.
Le fluide circule à travers le circuit de circulation ménagé entre deux plaques d'un coin à un autre de l'ensemble des deux plaques. Chaque circuit de circulation du premier fluide ménagé entre deux plaques s'étend entre deux autres circuit de circulation du deuxième fluide et inversement. Autrement dit, les premiers circuits de circulation sont répartis de manière alternée avec les deuxièmes circuits de circulation du deuxième fluide.
Chaque tuyau permet ainsi au fluide circulant le long du circuit gravé dans une plaque de traverser la plaque voisine dans laquelle est gravé un circuit de circulation de l'autre fluide, et de déboucher dans le circuit de circulation de fluide gravé dans la plaque suivante. Autrement dit, le fluide passe d'un espace entre deux plaques à un autre en sautant un espace ou encore le fluide passe de l'espace n à l'espace n+2, n étant le nombre d'espaces ménagés entre les plaques. La conception de l'échangeur selon l'invention permet ainsi d'obtenir un échangeur compact et peu coûteux, et présentant un bon coefficient de transfert thermique. En outre l'échangeur présente peu de pertes thermiques et est modulable du fait de la possibilité d'ajouter ou de retirer des plaques. Le nombre d'échelles peut aussi être modifié lors de la conception de l'échangeur.
La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante conforme à son esprit.

Claims

REVENDICATIONS 1 . Echangeur (1 ) de chaleur à plaques comprenant au moins une première et une deuxième plaques (10, 20) disposées parallèlement l'une en regard de l'autre et un élément de recouvrement, appelé couverture (CVR),
chacune des première et deuxième plaques (10, 20) présentant un circuit de circulation de fluide (100, 200),
le circuit de circulation (100) de fluide de la première plaque (10) étant formé dans la face de la première plaque (10) en regard de la deuxième plaque (20), la deuxième plaque (20) venant en applique de la première plaque (10), et le circuit de circulation (200) de fluide de la deuxième plaque (20) étant formé dans la face de la deuxième plaque (20) en regard de la couverture (CVR), la couverture (CVR) venant en applique de la deuxième plaque (20), chaque circuit de circulation (100) comprenant :
-une entrée de fluide (E1 , E2) et une sortie (S1 , S2) de fluide distinctes l'une de l'autre;
- entre lesdites entrée (E1 , E2) et sortie (S1 , S2) de chaque circuit de circulation (100, 200), au moins une portion, appelée échelle (ECH1 ), comprenant deux canaux (B1 , B2) parallèles et écartés l'un de l'autre, appelés respectivement premier barreau d'extrémité (B1 ) et deuxième barreau d'extrémité (B2), et deux autres canaux, appelés respectivement premier montant (M1 ) et deuxième montant (M2), qui s'étendent suivant une direction sensiblement perpendiculaire aux barreaux (B1 , B2), le premier montant (M1 ) reliant entre elles les extrémités des barreaux (B1 , B2) situées d'un même côté, appelé premier côté, et le deuxième montant (M2) reliant entre elles les extrémités des barreaux situées de l'autre côté, appelé deuxième côté.
2. Echangeur (1 ) selon la revendication 1 , caractérisé en ce que la ou chaque échelle (ECH1 ) comprend un ou plusieurs autres barreaux (B3) parallèles aux premier et deuxième barreaux (B1 , B2) dont les extrémités sont raccordées aux montants (M1 , M2).
3. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que le premier montant (M1 ) présente une section de passage qui croît, de préférence de manière continue, depuis le deuxième barreau (B2) d'extrémité en direction du premier barreau (B1 ) d'extrémité,
et en ce que le deuxième montant (M2) présente une section de passage qui croît, de préférence de manière continue, depuis le premier barreau (B1 ) d'extrémité en direction du deuxième barreau (B2) d'extrémité.
4. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que chaque circuit comprend au moins une échelle (ECH2) supplémentaire, de préférence deux échelles supplémentaires, formant avec ladite échelle (ECH1 ) un groupe d'échelles (GECH1 ),
les échelles dudit groupes (GECH1 ) étant réparties suivant une direction sensiblement parallèle aux barreaux,
et en ce que lesdits premiers montants (M1 ) des échelles dudit groupe d'échelles (GECH) sont reliés entre eux, du côté du groupe, appelé troisième côté, défini par lesdits premiers barreaux (B1 ) d'extrémité, par un canal, appelé premier canal de groupe (CG1 ), qui s'étend suivant une direction sensiblement parallèle aux barreaux,
et en ce que lesdits deuxième montants (M2) des échelles (ECH1 , ECH2) dudit groupe d'échelles (GECH) sont reliés entre eux, du côté du groupe, appelé quatrième côté, défini par lesdits deuxièmes barreaux (B2) d'extrémité, par un canal, appelé deuxième canal de groupe (CG2), qui s'étend suivant une direction sensiblement parallèle aux barreaux.
5. Echangeur (1 ) selon la revendication 4, caractérisé en ce que le premier canal de groupe (CG1 ) présente une section de passage qui croît dans un sens de parcours dudit premier canal de groupe allant dudit deuxième côté d'une échelle en direction dudit premier côté,
et en ce que le deuxième canal de groupe (CG2) présente une section de passage qui croît dans un sens de parcours dudit deuxième canal de groupe allant dudit premier côté d'une échelle en direction dudit deuxième côté.
6. Echangeur (1 ) selon la revendication 4 ou 5, caractérisé en ce que chaque circuit comprend au moins un groupe d'échelles (GECH2) supplémentaire, et de préférence deux groupes d'échelles supplémentaires, formant avec ledit groupe d'échelle (GECH1 ) un ensemble de groupe d'échelles (EG1 ), les groupes d'échelles dudit ensemble (EG1 ) étant répartis suivant une direction sensiblement parallèle aux premier et deuxième montants (M1 , M2),
et en ce que lesdits premiers canaux de groupe (CG1 ) des groupes d'échelles dudit ensemble de groupes (EG1 ) sont reliés entre eux par un canal, appelé premier canal d'ensemble (CE1 ) qui s'étend suivant une direction sensiblement parallèle aux montants,
et en ce que lesdits deuxièmes canaux de groupe (CG2) des groupes d'échelles dudit ensemble de groupes (EG1 ) sont reliés entre eux par un canal, appelé deuxième canal d'ensemble (CE2) qui s'étend suivant une direction sensiblement parallèle aux montants.
7. Echangeur (1 ) selon la revendication 6, caractérisé en ce que le premier canal d'ensemble (CE1 ) présente une section de passage qui croît dans un sens allant dudit deuxième barreau (B2) d'extrémité en direction dudit premier barreau (B1 ) d'extrémité d'une échelle de l'ensemble de groupes (EG1 ), et en ce que le deuxième canal d'ensemble (CE2) présente une section de passage qui croît dans un sens allant dudit premier barreau (B1 ) d'extrémité en direction dudit deuxième barreau (B2) d'extrémité d'une échelle de l'ensemble de groupes (EG1 ).
8. Echangeur (1 ) selon la revendication 6 ou 7, caractérisé en ce que chaque circuit comprend au moins un ensemble de groupes d'échelles (EG2) supplémentaire, et de préférence deux ensembles de groupes d'échelles supplémentaires, formant avec ledit ensemble de groupe d'échelle (EG1 ), une composition d'ensemble de groupe d'échelles (CEG), les ensembles de groupes d'échelles de ladite composition (CEG) étant répartis suivant une direction sensiblement parallèle auxdits premier et deuxième barreaux (B1 , B2),
et en ce que les premiers canaux d'ensemble (CE1 ) sont reliés entre eux par un canal, appelé premier canal de composition (CC1 ), qui s'étend suivant une direction sensiblement parallèle aux premier et deuxième barreaux (B1 , B2), et en ce que les deuxièmes canaux d'ensemble (CE2) sont reliés entre eux par un canal, appelé deuxième canal de composition (CC2), qui s'étend suivant une direction sensiblement parallèle aux barreaux.
9. Echangeur (1 ) selon la revendication 8, caractérisé en ce que le premier canal de composition d'ensemble (CC1 ) présente une section de passage qui croît dans un sens allant dudit deuxième canal d'ensemble (CE2) d'un ensemble de la composition en direction dudit premier canal d'ensemble (CE1 ) dudit ensemble,
et en ce que le deuxième canal de composition d'ensemble (CCE) présente une section de passage qui croît dans un sens allant dudit premier canal d'ensemble (CE1 ) d'un ensemble de la composition en direction dudit deuxième canal d'ensemble (CE2) dudit ensemble.
10. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que ledit échangeur (1 ) comprend au moins une troisième et une quatrième plaques (30, 40) disposées parallèlement l'une en regard de l'autre, chacune des troisième et quatrième plaques (30, 40) présentant un circuit de circulation de fluide (300, 400),
le circuit de circulation de fluide de la troisième plaque (30) étant formé dans la face de la troisième plaque (30) en regard de la quatrième plaque (40), la quatrième plaque (40) venant en applique de la troisième plaque (30), et le circuit de circulation de fluide de la quatrième plaque (40) étant formé dans la face de la quatrième plaque (40) en regard de la première plaque (10), la première plaque (10) venant en applique de la quatrième plaque (40), chaque circuit de circulation desdites troisième et quatrième plaques (30, 40) comprenant :
-une entrée de fluide et une sortie de fluide distinctes l'une de l'autre ;
- entre lesdites entrée et sortie de chaque circuit de circulation des desdites troisième et quatrième plaques (30, 40), au moins une échelle (ECH).
1 1 . Echangeur (1 ) selon la revendication 10, caractérisé en ce que ledit échangeur (1 ) comprend des premiers moyens d'alimentation (AL1 ) en fluide agencés pour alimenter l'entrée (E1 , E3) du circuit de circulation de la première et de la troisième plaques (10, 30), et des deuxièmes moyens d'alimentation (AL2) en fluide agencés pour alimenter l'entrée (E2, E4) du circuit de circulation de la deuxième et de la quatrième plaques (20, 40),
et en ce que ledit échangeur (1 ) comprend des premiers moyens d'évacuation (EV1 ) en fluide agencés pour collecter le fluide des sorties (S1 , S3) du circuit de circulation de la première et de la troisième plaques (10, 30), et des deuxièmes moyens d'évacuation (EV2) en fluide agencés pour collecter le fluide des sorties (S2) du circuit de circulation de la deuxième et de la quatrième plaques (20, 40).
12. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que chaque circuit de circulation associé à une plaque est ménagé dans l'épaisseur de la plaque, de préférence par gravure.
13. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que les zones de liaison entre deux portions de circuit de différentes orientations sont courbes.
14. Echangeur (1 ) selon l'une des revendications précédentes, caractérisé en ce que l'entrée et la sortie du circuit de chaque plaque sont situées sur deux côtés opposés de la plaque.
PCT/FR2015/051578 2014-06-16 2015-06-15 Echangeur de chaleur à plaques WO2015193600A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15732874.1A EP3155344B1 (fr) 2014-06-16 2015-06-15 Echangeur de chaleur à plaques
DK15732874.1T DK3155344T3 (en) 2014-06-16 2015-06-15 PLATE HEAT EXCHANGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455465A FR3022335B1 (fr) 2014-06-16 2014-06-16 Echangeur de chaleur a plaques
FR1455465 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015193600A1 true WO2015193600A1 (fr) 2015-12-23

Family

ID=51485691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051578 WO2015193600A1 (fr) 2014-06-16 2015-06-15 Echangeur de chaleur à plaques

Country Status (4)

Country Link
EP (1) EP3155344B1 (fr)
DK (1) DK3155344T3 (fr)
FR (1) FR3022335B1 (fr)
WO (1) WO2015193600A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112218A (zh) * 2017-12-06 2018-06-01 上海交通大学 一种双向流路的分形微槽道冷板
CN109479385A (zh) * 2016-07-11 2019-03-15 株式会社T.Rad 层叠型散热器的芯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562156A (en) * 1994-02-10 1996-10-08 Ohmiya Corporation Immersion type heat exchanger
WO1999066279A2 (fr) * 1998-06-19 1999-12-23 Zess Technologies, Inc. Echangeur de chaleur a microcanaux
US6420061B1 (en) * 1999-02-23 2002-07-16 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
DE102007058182A1 (de) * 2007-12-04 2009-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Solarenergienutzung mit Vorrichtung zur Wärmeabgabe an die Umgebung, Verfahren zum Betreiben des Systems sowie Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562156A (en) * 1994-02-10 1996-10-08 Ohmiya Corporation Immersion type heat exchanger
WO1999066279A2 (fr) * 1998-06-19 1999-12-23 Zess Technologies, Inc. Echangeur de chaleur a microcanaux
US6420061B1 (en) * 1999-02-23 2002-07-16 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
DE102007058182A1 (de) * 2007-12-04 2009-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Solarenergienutzung mit Vorrichtung zur Wärmeabgabe an die Umgebung, Verfahren zum Betreiben des Systems sowie Verwendung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479385A (zh) * 2016-07-11 2019-03-15 株式会社T.Rad 层叠型散热器的芯
CN109479385B (zh) * 2016-07-11 2020-03-10 株式会社T.Rad 层叠型散热器的芯
CN108112218A (zh) * 2017-12-06 2018-06-01 上海交通大学 一种双向流路的分形微槽道冷板
CN108112218B (zh) * 2017-12-06 2019-12-10 上海交通大学 一种双向流路的分形微槽道冷板

Also Published As

Publication number Publication date
EP3155344B1 (fr) 2018-08-22
DK3155344T3 (en) 2018-12-10
FR3022335A1 (fr) 2015-12-18
FR3022335B1 (fr) 2019-04-05
EP3155344A1 (fr) 2017-04-19

Similar Documents

Publication Publication Date Title
EP1206672B1 (fr) Echangeur de chaleur et module d'echange s'y rapportant
FR2737558A1 (fr) Echangeur de chaleur a structure stratifiee en plaques
AU2015276525B2 (en) Heat transfer plate and plate heat exchanger comprising such a heat transfer plate
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
FR2705445A1 (fr) Echangeur de chaleur à plaques.
WO2010076477A1 (fr) Échangeur thermique a plaques soudées
EP3155344B1 (fr) Echangeur de chaleur à plaques
FR2563620A1 (fr) Echangeur de chaleur du type a plaques
WO2018172644A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a portion de canal regulatrice
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
FR2862747A1 (fr) Plaque d'echangeur de chaleur, et cet echangeur
CH633390A5 (fr) Rotor de machine electrique refroidi par circulation de gaz.
EP3818319B1 (fr) Plaque pour echangeur thermique et echangeur thermique incluant la plaque
EP0108025B1 (fr) Intercalaire pour appareil à membranes
WO2014096609A1 (fr) Plaque pour échangeur thermique
FR2625303A1 (fr) Tuyau plat pour echangeurs de chaleur
WO2017149208A1 (fr) Échangeur thermique pour fluide
CA3120901A1 (fr) Plaque de transfert de chaleur
FR3071874A1 (fr) Dispositif de ventilation a fixer sur un dispositif d'echange de chaleur de vehicule automobile
FR2465982A1 (fr) Echangeur de chaleur a plaques
EP0553340B1 (fr) Echangeur a plaques
FR3050519B1 (fr) Echangeur thermique en matiere plastique et vehicule comprenant cet echangeur thermique
EP3452772B1 (fr) Echangeur thermique en matière plastique et véhicule comprenant cet échangeur
FR3034855A1 (fr) Echangeur thermique et ensemble d'echangeur thermique associe
FR2471569A1 (fr) Echangeur thermique a toles empilees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732874

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015732874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015732874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE