WO2015193458A1 - Amplificateur de classe a - Google Patents

Amplificateur de classe a Download PDF

Info

Publication number
WO2015193458A1
WO2015193458A1 PCT/EP2015/063766 EP2015063766W WO2015193458A1 WO 2015193458 A1 WO2015193458 A1 WO 2015193458A1 EP 2015063766 W EP2015063766 W EP 2015063766W WO 2015193458 A1 WO2015193458 A1 WO 2015193458A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
transistor
output
amplification
supply voltage
Prior art date
Application number
PCT/EP2015/063766
Other languages
English (en)
Inventor
Pierre-Emmanuel Calmel
Original Assignee
Devialet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devialet filed Critical Devialet
Publication of WO2015193458A1 publication Critical patent/WO2015193458A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3069Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output
    • H03F3/3076Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output with symmetrical driving of the end stage

Definitions

  • the present invention relates to an elementary amplifier having an input and an output, comprising:
  • control circuit connected to the input of the amplifier for receiving the signal to be amplified
  • a main amplification branch comprising a first amplification transistor connected between an overall supply voltage and the output of the amplifier, the output of the control circuit being connected to the control of the first transistor;
  • the input means comprising a second feedback loop connected to the input of the control circuit and to a power source for supplying said compensation signal.
  • the present invention also relates to an amplifier of the "push / pull" type, and in particular a class A amplifier comprising two elementary amplifiers.
  • the document WO 201 1/107670 describes an elementary amplifier of the above-mentioned type comprising additional non-linear response elements capable of operating in a non-linear regime to impose the flow of a fixed current in the main amplification branch, thereby avoiding the blocking of the transistor.
  • These elements are formed for example by diodes or by suitable transistors.
  • the object of the present invention is to propose an elementary amplifier that overcomes this drawback while keeping a good quality of the output signal.
  • the subject of the invention is an elementary amplifier of the aforementioned type, in which the main amplification branch comprises a single element capable of operating in a non-linear regime connected between the global supply voltage and the output of the amplifier, and wherein said single member is the first transistor.
  • the amplifier comprises one or more of the following features:
  • the main amplification branch further comprises a first resistor connected between the first transistor and the output of the amplifier;
  • the introduction means further comprises an interconnection branch connecting the main branch of amplification and the second feedback loop;
  • the interconnection branch comprises a second amplification transistor connected to the output of the control circuit and to said overall supply voltage in parallel with the first amplification transistor;
  • the current source is suitable for imposing a fixed current in the second amplification transistor
  • the interconnection branch further comprises a second resistor connected between the second transistor and the second feedback loop;
  • At least one amplification transistor among the first amplification transistor and the second amplification transistor is a "MOSFET” type transistor whose gate is connected to the output of the control circuit and the drain is connected to said overall supply voltage;
  • At least one amplification transistor among the first amplification transistor and the second amplification transistor is a bipolar transistor whose base is connected to the output of the control circuit and the collector is connected to said supply voltage global;
  • control circuit comprises an operational amplifier powered by a floating supply voltage
  • the floating supply transistor being furthermore connected between said global supply voltage and the first amplification transistor on the one hand, and between the second amplification transistor and the floating supply voltage of the amplifier on the other hand, the floating supply transistor being further connected to protection means connecting the floating supply transistor to a current source, the protection means being able to protect the amplifier against a potential difference between the input of the amplifier and the output of the amplifier and against the inversion of the floating supply voltages of the operational amplifier;
  • the cascode being further connected to protection means connecting said cascode to a current source, the protection means being able to protect the amplifier against a potential difference between the input of the amplifier and the output of the amplifier, and against the inversion of the floating supply voltages of the amplifier;
  • the introduction means further comprises an interconnection branch connecting the main branch of amplification and the second feedback loop;
  • the interconnection branch comprises a diode connected to the output of the control circuit
  • the second feedback loop comprises a resistor
  • the invention also relates to a push / pull amplifier comprising two elementary amplifiers as previously described and comprising a common input and a common output, the first amplification transistors of these amplifiers being anti-series mounted between the corresponding global supply voltages.
  • FIG. 1 is a diagram of the circuit of a push / pull amplifier according to a first embodiment of the invention
  • FIG. 2 is a view illustrating different currents at different points of the circuit of FIG. 1;
  • FIG. 3 is a circuit diagram of the amplifier according to a second embodiment of the invention.
  • FIG. 4 is a circuit diagram of the amplifier according to a third embodiment of the invention.
  • the amplifier 10 illustrated in FIG. 1 comprises an input 12 for an audio signal to be amplified and an output 14 for the amplified signal.
  • the output 14 is connected to a loudspeaker 16 forming a charge for the amplifier symbolized in FIG. 1 in the form of a resistor.
  • the input 12 of the amplifier is adapted to receive a control voltage whose reference is the ground and which comes from a sound reproduction system shown schematically by a generator 17 in FIG.
  • the amplifier 10 comprises two elementary amplifiers 20A, 20B each connected to the input 12 and to the output 14.
  • each elementary amplifier 20A, 20B is able to receive the same audio signal to be amplified at the input 12 to amplify it according to a predetermined configuration in order to obtain an amplified elementary signal.
  • Amplified signal at the output 14 results from the two amplified elementary signals from these elementary amplifiers.
  • Each elementary amplifier 20A, 20B comprises a control circuit 22A, 22B connected to the input 12 to receive the signal to be amplified, a main amplification branch 24A, 24B connecting the control circuit 22A, 22B to the output of the amplifier 14, a first linear feedback loop 26A, 26B connecting the output 14 to the control circuit 22A, 22B, and means 28A, 28B for introducing a compensation signal to the control circuit 22A, 22B.
  • Each control circuit 22A, 22B comprises an operational amplifier 30A, 30B powered by a floating supply voltage Vpos, Vneg and having a non-inverting input connected to the input 12, an inverting input connected to the first linear feedback loop 26A , 26B and the means 28A, 28B, and an output connected to the main amplification branch 24A, 24B.
  • the main amplification branch 24A, 24B comprises a first amplification transistor 32A, 32B connected to an overall supply voltage V + , V " , and a first resistor 34A, 34B connected between the first transistor 32A, 32B and the exit 14.
  • the global supply voltages V + , V " are able to supply voltages across the first transistors 32A, 32B of opposite signs.
  • the first transistor 32A, 32B is a bipolar transistor known per se.
  • the base of the first transistor 32A, 32B is connected to the output of the operational amplifier 30A, 30B, its collector is connected to the global supply voltage V + , V " and its emitter is connected to the first resistor 34A, 34B.
  • the first transistor 32A, 32B is a "MOSFET” type transistor whose gate is connected to the output of the operational amplifier 30A, 30B, the drain is connected to the global supply voltage V + , V " and the source is connected to the first resistor 34A, 34B.
  • the first linear feedback loop 26A, 26B has a feedback resistor 36A, 36B.
  • the two feedback resistors 36A, 36B have the same resistance value which is chosen relatively low, preferably less than 1 MOhms and for example equal to 330 Ohms.
  • the means 28A, 28B for introducing the compensation signal comprise a second feedback loop 38A, 38B connected to the inverting input of the operational amplifier 30A, 30B and an interconnection branch 40A, 40B connecting the main branch of amplification 24A, 24B and the second feedback loop 38A, 38B.
  • the interconnection branch 40A, 40B comprises a second amplification transistor 42A, 42B connected to the output of the operational amplifier 30A, 30B and at the overall supply voltage V + , V " in parallel with the first amplification transistor 32A, 32B.
  • the interconnection branch 40A, 40B further comprises a second resistor 44A, 44B connected between the second transistor 42A, 42B and the second feedback loop 38A, 38B.
  • the second transistor 42A, 42B is of the same type as the first transistor 32A, 32B.
  • the second transistor 42A, 42B is identical to the first transistor 32A, 32B.
  • the second transistor 42A, 42B is a bipolar transistor whose base is connected to the output of the operational amplifier 30A, 30B, the collector is connected to the global supply voltage V + , V " and the transmitter is connected to the second resistor 44A, 44B.
  • the second feedback loop 38A, 38B is further connected to a current source 45A, 45B and has a coupling resistor 46A, 46B connected between the control circuit 22A, 22B and the interconnection branch 40A, 40B.
  • the current sources 45A, 45B are in opposite directions and are able to impose a constant current through respectively the second transistors 42A, 42B.
  • the coupling resistor 46A, 46B is capable of injecting into the first linear feedback loop 26A, 26B the voltage at the terminal of the second resistor 44A, 44B.
  • the means 28A, 28B make it possible to introduce into the control circuit
  • the coupling resistors 46A, 46B are identical and their resistance values are much greater than the respective values of the feedback resistors 36A, 36B.
  • the coupling resistance values 46A, 46B are at least 100 times greater than the respective values of the feedback resistors 36A, 36B.
  • the first resistors 34A, 34B and the second resistors 44A, 44B are optional and advantageously of the same value.
  • the role of the first resistors 34A, 34B is to limit the maximum intensity of the current flowing through the first transistors 32A, 32B. Indeed, when a current flows through the first resistors 34A, 34B, a potential difference occurs across their terminals which is proportional to the current flowing through them.
  • the operational amplifiers 30A and 30B then compensate for this potential difference by varying the voltage on their outputs by the same value. When each output reaches the saturation voltage of the corresponding operational amplifier 22A, 22B, the voltage on this output can no longer increase (or decrease) and the current flowing through the first resistors 34A, 34B and therefore the first transistors 32A, 32B can no longer grow. This then performs the function of limiting the short circuit current of the amplifier.
  • the second resistors 44A and 44B are present to symmetrize the assembly and to ensure the temperature stability of the system.
  • the current source 45A, 45B imposes a constant current in the second transistors 42A, 42B.
  • the first feedback loops 26A, 26B and the second feedback loops 38A, 38B when no current flows in the load 16, the first transistors 32A and 32B are traversed by the same current as the second transistors 42A and 42B.
  • the other first transistor 32A, 32B has an intensity of the current passing therethrough which is non-zero, because of the regulation imposed by the second loop of feedback 38A, 38B on the current flowing in the first transistor 32A, 32B in the main amplification branch 24A, 24B.
  • FIG. 10 A circuit diagram of the amplifier 10 according to a second embodiment of the invention is illustrated in FIG.
  • each elementary amplifier of the amplifier 10 according to the second embodiment further comprises a floating power supply transistor 72A, 72B connected between the global supply voltage V + , V " and each of the first transistor 32A, 32B and the second transistor 42A, 42B, and the positive floating supply voltage Vpos (respectively negative Vneg) of the operational amplifiers 30A, 30B.
  • the amplifier 10 further comprises first protection means 74 and second protection means 75.
  • the floating supply transistor 72A, 72B is a bipolar transistor whose collector is connected to the global supply voltage V + , V " and the emitter is connected to the first transistor 32A, 32B and the second transistor 42A, 42B, as well as to the positive floating supply voltage Vpos (or negative Vneg) of the operational amplifiers 30A, 30B, the voltages Vpos and Vneg follow the variations of the output voltage 14 and serve as a floating supply.
  • the floating supply transistor 72A, 72B is then connected in series with the first transistor 32A, 32B and the second transistor 42A, 42B, as well as with the operational amplifiers 30A, 30B.
  • the base of this transistor 72A, 72B is connected to the current source 45B, 45A of the other elementary amplifier, to a resistor 76B, 76A, and to the first protection means 74.
  • the constant current, coming from the current source 45B, 45A, passes through the resistor 76B, 76A and causes a constant potential difference, of the order of a few volts, across the resistor 76B, 76A.
  • the voltage of the base of the transistor 72A, 72B follows the variations of the output voltage 14, high (or decreased) of the potential difference across the resistor 76B, 76A.
  • the first protection means 74 are able to protect the amplifier 10 against any significant potential difference (greater than a few hundred millivolt) between the input 12 and the output 14 when the follower operation is not possible during the phases of ignition and extinction of the amplifier for example, or during an episode of short circuit output.
  • the first protection means 74 comprise four protection diodes 81 to 84 making it possible to limit, in all operating conditions, firstly the potential difference between the input 12 and the output 14 at about 0.7 V, and on the other hand to prevent polarity reversal of floating supply voltages Vpos and Vneg.
  • the second protection means 75 comprise two protection resistors. Each protection resistor is connected between the emitter of the first transistor 32A, 32B and the output 14. In the exemplary embodiment in which the main amplification branch 24A, 24B comprises the first resistor 34A, 34B, the protection resistor consists of the first resistor 34A, 34B.
  • the role of the protection resistors is to limit the maximum current that the output transistor 32A, 32B is likely to provide in the event of an accidental short circuit of the output 14 to a fixed potential.
  • FIG. 4 A circuit diagram of the amplifier 10 according to a third embodiment of the invention is illustrated in FIG. 4.
  • each elementary amplifier of the amplifier 10 according to the third embodiment comprises a cascode 90A, 90B formed of two transistors connected between the overall supply voltage V + , V " and each of the first transistor 32A, 32B and the second transistor 42A, 42B, and between the global supply voltage V + , V " and the floating supply voltage Vpos, Vneg of the operational amplifier 30A, 30B.
  • the cascode 90A, 90B is formed of two transistors 92A, 92B and 93A, 93B of different types.
  • the transistor 92A, 92B is a "MOSFET” type transistor and the transistor 93A, 93B is a bipolar transistor.
  • the bipolar transistor 93A, 93B serves only to supply the operational amplifier 30A, 30B, dropping only about 0.6V between the voltage of its base and its emitter, which maximizes the floating supply voltage Vpos, Vneg.
  • the bipolar transistor 93A, 93B is thus of low power.
  • the "MOSFET” type transistor 92A, 92B serves as floating power supply to the rest of the circuit; it has the advantage of not consuming current in its gate but usually drops several volts between the voltage of its gate and that of its source. In the absence of the bipolar transistor 93A, 93B, this voltage drop would reduce all the operating voltage of the operational amplifiers 30A, 30B (generally between 3V and 15V); on the other hand, it is not a nuisance to power the first transistors 32A, 32B, because they require less than 0.5V between their collector and their transmitter to function properly.
  • the cascode 90A, 90B is connected to the protection means 74 and 75 identical to those of FIG.
  • the current cut in all the circuits of the amplifier 10 according to the second and third embodiments is performed by cutting the current sources 45A, 45B.
  • the protection means 74 and 75 make it possible to protect this together during the phases of cut and ensure the non-inversion of the supply voltages during short circuit phases for example.
  • each second transistor 42A, 42B is replaced by a diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

La présente invention concerne un amplificateur élémentaire (20A, 20B) comportant une entrée (12) et une sortie (14), comprenant un circuit de commande (22A, 22B) pour recevoir le signal à amplifier, une branche principale (24A, 24B) d'amplification comportant un premier transistor (32A, 32B) d'amplification, la sortie du circuit de commande (22A, 22B) étant reliée à la commande du premier transistor (32A, 32B), une première boucle de rétroaction linéaire (26A, 26B), des moyens (28A, 28B) d'introduction, en entrée du circuit de commande (22A, 22B), d'un signal de compensation, les moyens d'introduction (28A, 28B) comportant une deuxième boucle de rétroaction (38A, 38B). La branche principale d'amplification (24A, 24B) comporte un organe unique apte à fonctionner en régime non linéaire connecté entre la tension d'alimentation globale (V+, V-) et la sortie (14) de l'amplificateur, ledit organe unique étant le premier transistor (32A, 32B).

Description

Amplificateur de classe A
La présente invention concerne un amplificateur élémentaire comportant une entrée et une sortie, comprenant :
- un circuit de commande connecté à l'entrée de l'amplificateur pour recevoir le signal à amplifier ;
- une branche principale d'amplification comportant un premier transistor d'amplification connecté entre une tension d'alimentation globale et la sortie de l'amplificateur, la sortie du circuit de commande étant reliée à la commande du premier transistor ;
- une première boucle de rétroaction linéaire reliant la sortie de l'amplificateur et l'entrée du circuit de commande ; et
- des moyens d'introduction, en entrée du circuit de commande, d'un signal de compensation, les moyens d'introduction comportant une deuxième boucle de rétroaction connectée à l'entrée du circuit de commande et à une source de courant pour fournir ledit signal de compensation.
La présente invention concerne également un amplificateur de type « push/pull », et notamment un amplificateur de classe A comportant deux amplificateurs élémentaires.
Différentes variantes de réalisation d'un amplificateur de type « push/pull » et notamment d'un amplificateur élémentaire faisant partie d'un tel amplificateur, existent dans l'état de la technique.
Ainsi, le document WO 201 1 /107670 décrit un amplificateur élémentaire du type précité comportant des éléments à réponse non linéaire supplémentaires aptes à fonctionner en régime non linéaire pour imposer la circulation d'un courant fixé dans la branche principale d'amplification en évitant ainsi le blocage du transistor. Ces éléments sont formés par exemple par des diodes ou par des transistors adaptés.
Ceci permet plus particulièrement d'obtenir à la sortie de l'amplificateur un signal amplifié de bonne qualité et une faible dissipation statique d'énergie.
Cependant, cette solution n'est pas complètement satisfaisante. Plus particulièrement, la chute de tension dans les éléments à réponse non linéaire d'un tel amplificateur limite l'excursion maximale du signal à la sortie et accroît la distorsion harmonique de l'amplificateur.
La présente invention a pour but de proposer un amplificateur élémentaire remédiant à cet inconvénient tout en gardant une bonne qualité du signal en sortie.
À cet effet, l'invention a pour objet un amplificateur élémentaire du type précité, dans lequel la branche principale d'amplification comporte un organe unique apte à fonctionner en régime non linéaire connecté entre la tension d'alimentation globale et la sortie de l'amplificateur, et dans lequel ledit organe unique est le premier transistor.
Suivant des modes particuliers de réalisation, l'amplificateur comporte l'une ou plusieurs des caractéristiques suivantes :
- la branche principale d'amplification comporte en outre une première résistance connectée entre le premier transistor et la sortie de l'amplificateur ;
- les moyens d'introduction comportent en outre une branche d'interconnexion reliant la branche principale d'amplification et la deuxième boucle de rétroaction ;
- la branche d'interconnexion comporte un deuxième transistor d'amplification connecté à la sortie du circuit de commande et à ladite tension d'alimentation globale en parallèle avec le premier transistor d'amplification ;
- la source de courant est propre à imposer un courant fixé dans le deuxième transistor d'amplification ;
- la branche d'interconnexion comporte en outre une deuxième résistance connectée entre le deuxième transistor et la deuxième boucle de rétroaction ;
- au moins un transistor d'amplification parmi le premier transistor d'amplification et le deuxième transistor d'amplification, est un transistor de type « MOSFET » dont la grille est connectée à la sortie du circuit de commande et le drain est connecté à ladite tension d'alimentation globale ;
- au moins un transistor d'amplification parmi le premier transistor d'amplification et le deuxième transistor d'amplification, est un transistor bipolaire dont la base est connectée à la sortie du circuit de commande et le collecteur est connecté à ladite tension d'alimentation globale ;
- le circuit de commande comprend un amplificateur opérationnel alimenté par une tension d'alimentation flottante ;
- il comporte en outre un transistor d'alimentation flottante connecté entre ladite tension d'alimentation globale et le premier transistor d'amplification d'une part, et entre le deuxième transistor d'amplification et la tension d'alimentation flottante de l'amplificateur opérationnel d'autre part, le transistor d'alimentation flottante étant en outre connecté à des moyens de protection reliant le transistor d'alimentation flottante à une source de courant, les moyens de protection étant propres à protéger l'amplificateur contre une différence de potentiel entre l'entrée de l'amplificateur et la sortie de l'amplificateur et contre l'inversion des tensions d'alimentation flottante de l'amplificateur opérationnel ;
- il comporte en outre un cascode d'au moins deux transistors connecté entre ladite tension d'alimentation globale et le premier et le deuxième transistors d'amplification d'une part, et entre ladite tension d'alimentation globale et la tension d'alimentation flottante de l'amplificateur d'autre part, ledit cascode étant en outre connecté à des moyens de protection reliant ledit cascode à une source de courant, les moyens de protection étant propres à protéger l'amplificateur contre une différence de potentiel entre l'entrée de l'amplificateur et la sortie de l'amplificateur, et contre l'inversion des tensions d'alimentation flottante de l'amplificateur ;
- les moyens d'introduction comportent en outre une branche d'interconnexion reliant la branche principale d'amplification et la deuxième boucle de rétroaction ;
- la branche d'interconnexion comporte une diode connectée à la sortie du circuit de commande ;
- la deuxième boucle de rétroaction comporte une résistance.
L'invention a également pour objet un amplificateur de type « push/pull » comportant deux amplificateurs élémentaires tels que précédemment décrits et comportant une entrée commune et une sortie commune, les premiers transistors d'amplification de ces amplificateurs étant montés en anti-série entre les tensions d'alimentation globale correspondantes.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :
- la figure 1 est un schéma du circuit d'un amplificateur de type « push/pull » selon un premier mode de réalisation de l'invention ;
- la figure 2 est une vue illustrant différents courants en différents points du circuit de la figure 1 ;
- la figure 3 est un schéma du circuit de l'amplificateur selon un deuxième mode de réalisation de l'invention ; et
- la figure 4 est un schéma du circuit de l'amplificateur selon un troisième mode de réalisation de l'invention.
L'amplificateur 10 illustré sur la figure 1 comporte une entrée 12 pour un signal audio à amplifier et une sortie 14 pour le signal amplifié.
La sortie 14 est reliée à un haut-parleur 16 formant une charge pour l'amplificateur symbolisé sur la figure 1 sous la forme d'une résistance. L'entrée 12 de l'amplificateur est propre à recevoir une tension de commande dont la référence est la masse et qui est issue d'un système de restitution sonore schématisé par un générateur 17 sur la figure 1 .
L'amplificateur 10 comporte deux amplificateurs élémentaires 20A, 20B connectés chacun à l'entrée 12 et à la sortie 14.
Ainsi, chaque amplificateur 20A, 20B élémentaire est apte à recevoir le même signal audio à amplifier à l'entrée 12 pour l'amplifier selon une configuration prédéterminée afin d'obtenir un signal élémentaire amplifié. Le signal amplifié à la sortie 14 résulte des deux signaux élémentaires amplifiés issus de ces amplificateurs élémentaires.
Chaque amplificateur élémentaire 20A, 20B comporte un circuit de commande 22A, 22B relié à l'entrée 12 pour recevoir le signal à amplifier, une branche principale d'amplification 24A, 24B reliant le circuit de commande 22A, 22B à la sortie de l'amplificateur 14, une première boucle de rétroaction linéaire 26A, 26B reliant la sortie 14 au circuit de commande 22A, 22B, et des moyens 28A, 28B d'introduction d'un signal de compensation au circuit de commande 22A, 22B.
Chaque circuit de commande 22A, 22B comprend un amplificateur opérationnel 30A, 30B alimenté par une tension d'alimentation flottante Vpos, Vneg et comportant une entrée non inverseuse reliée à l'entrée 12, une entrée inverseuse reliée à la première boucle de rétroaction linéaire 26A, 26B et aux moyens 28A, 28B, et une sortie reliée à la branche principale d'amplification 24A, 24B.
La branche principale d'amplification 24A, 24B comporte un premier transistor 32A, 32B d'amplification relié à une tension d'alimentation globale V+, V", et une première résistance 34A, 34B connectée entre le premier transistor 32A, 32B et la sortie 14.
Les tensions d'alimentation globale V+, V" sont aptes à fournir des tensions aux bornes des premiers transistors 32A, 32B de signes opposés.
Sur la figure 1 , le premier transistor 32A, 32B est un transistor bipolaire connu en soi. Ainsi, comme illustré sur cette figure, la base du premier transistor 32A, 32B est reliée à la sortie de l'amplificateur opérationnel 30A, 30B, son collecteur est relié à la tension d'alimentation globale V+, V" et son émetteur est relié à la première résistance 34A, 34B.
Selon un autre exemple de réalisation, le premier transistor 32A, 32B est un transistor de type « MOSFET » dont la grille est reliée à la sortie de l'amplificateur opérationnel 30A, 30B, le drain est relié à la tension d'alimentation globale V+, V" et la source est reliée à la première résistance 34A, 34B.
La première boucle de rétroaction linéaire 26A, 26B comporte une résistance de rétroaction 36A, 36B. Les deux résistances de rétroaction 36A, 36B ont une même valeur de résistance qui est choisie relativement faible, de préférence inférieure à 1 MOhms et par exemple égale à 330 Ohms.
Les moyens 28A, 28B d'introduction du signal de compensation comportent une deuxième boucle de rétroaction 38A, 38B reliée à l'entrée inverseuse de l'amplificateur opérationnel 30A, 30B et une branche 40A, 40B d'interconnexion reliant la branche principale d'amplification 24A, 24B et la deuxième boucle de rétroaction 38A, 38B.
Selon l'invention, la branche d'interconnexion 40A, 40B comporte un deuxième transistor 42A, 42B d'amplification relié à la sortie de l'amplificateur opérationnel 30A, 30B et à la tension d'alimentation globale V+, V" en parallèle avec le premier transistor d'amplification 32A, 32B.
La branche d'interconnexion 40A, 40B comporte en outre une deuxième résistance 44A, 44B connectée entre le deuxième transistor 42A, 42B et la deuxième boucle de rétroaction 38A, 38B.
Le deuxième transistor 42A, 42B est de même type que le premier transistor 32A, 32B. Avantageusement, le deuxième transistor 42A, 42B est identique au premier transistor 32A, 32B.
Ainsi, comme illustré sur la figure 1 , le deuxième transistor 42A, 42B est un transistor bipolaire dont la base est reliée à la sortie de l'amplificateur opérationnel 30A, 30B, le collecteur est relié à la tension d'alimentation globale V+, V" et l'émetteur est relié à la deuxième résistance 44A, 44B.
La deuxième boucle de rétroaction 38A, 38B est reliée en outre à une source de courant 45A, 45B et comporte une résistance de couplage 46A, 46B connectée entre le circuit de commande 22A, 22B et la branche d'interconnexion 40A, 40B.
Les sources de courant 45A, 45B sont de sens opposés et sont aptes à imposer un courant constant au travers respectivement des deuxièmes transistors 42A, 42B.
La résistance de couplage 46A, 46B est apte à injecter dans la première boucle de rétroaction linéaire 26A, 26B la tension à la borne de la deuxième résistance 44A, 44B.
Ainsi, les moyens 28A, 28B permettent d'introduire dans le circuit de commande
22A, 22B un signal de compensation non linéaire pour assurer la circulation d'un courant fixé et non nul dans le premier transistor 32A, 32B. Ceci évite plus particulièrement le blocage du premier transistor 32A, 32B.
Les résistances de couplage 46A, 46B sont identiques et leurs valeurs de résistance sont très supérieures aux valeurs respectives des résistances de rétroaction 36A, 36B. Avantageusement, les valeurs de résistances de couplage 46A, 46B sont au moins 100 fois supérieures aux valeurs respectives des résistances de rétroaction 36A, 36B.
Les premières résistances 34A, 34B et les deuxièmes résistances 44A, 44B sont optionnelles et avantageusement de même valeur.
Le rôle des premières résistances 34A, 34B est de limiter l'intensité maximale du courant traversant les premiers transistors 32A, 32B. En effet, lorsqu'un courant traverse les premières résistances 34A, 34B, il se produit une différence de potentiel à leurs bornes qui est proportionnelle au courant les traversant. Les amplificateurs opérationnels 30A et 30B compensent alors cette différence de potentiel en faisant varier la tension sur leurs sorties de la même valeur. Lorsque chaque sortie atteint la tension de saturation de l'amplificateur opérationnel 22A, 22B correspondant, la tension sur cette sortie ne peut plus croître (resp. décroître) et le courant traversant les premières résistances 34A, 34B et par conséquent les premiers transistors 32A, 32B ne peut plus croître. Ceci réalise alors la fonction de limitation du courant de court-circuit de l'amplificateur.
Les deuxièmes résistances 44A et 44B sont présentes pour symétriser le montage et pour assurer la stabilité en température du système.
On comprend que, pendant le fonctionnement de l'amplificateur 10, le fonctionnement des deuxièmes transistors 42A, 42B parcourus par un courant constant permet d'imposer la circulation d'un courant fixé et non nul au travers de chaque premier transistor 32A, 32B.
En effet, la source de courant 45A, 45B impose un courant constant dans les deuxièmes transistors 42A, 42B. Par symétrie du montage, et par l'action des premières boucles de de rétroaction 26A, 26B et des deuxièmes boucles de rétroaction 38A, 38B, lorsqu'aucun courant ne circule dans la charge 16, les premiers transistors 32A et 32B sont parcourus par le même courant que les deuxièmes transistors 42A et 42B.
Par ailleurs, lorsque le courant transite essentiellement par l'un des premiers transistors 32A, 32B, l'autre premier transistor 32A, 32B a une intensité du courant le traversant qui est non nulle, du fait de la régulation imposée par la deuxième boucle de rétroaction 38A, 38B sur le courant circulant dans le premier transistor 32A, 32B dans la branche d'amplification principale 24A, 24B.
On constate sur la figure 2, que pour un signal amplifié sensiblement sinusoïdal mesuré en sortie et illustré sur la courbe 60, le courant circulant dans les premiers transistors 42A, 42B illustré par les courbes 62A et 62B présente, sur la moitié de la période du signal en sortie, une forme sensiblement sinusoïdale et sur l'autre moitié de la période, une portion continûment dérivable comprise entre 2 et 15 milliampères, sans que cette valeur ne s'annule jamais ce qui garantit l'absence de blocage de ces transistors.
Ce résultat est atteint sans ajout d'élément supplémentaire non linéaire dans la branche d'amplification principale autre que le premier transistor 32A, 32B dont on utilise la réponse non linéaire du courant de sortie en fonction de la tension de commande.
On conçoit alors que ceci permet de diminuer le nombre de composants électroniques à réponse non linéaire de l'amplificateur tout en gardant une bonne qualité de régulation du courant dans les premiers transistors 32A, 32B.
L'absence d'élément supplémentaire non linéaire permet d'utiliser un large spectre de technologies d'amplification existantes sans nécessité d'une adaptation particulière. Ceci autorise en outre une excursion de tension en sortie plus importante de plusieurs volts, pour une même tension d'alimentation du circuit. Un schéma du circuit de l'amplificateur 10 selon un deuxième mode de réalisation de l'invention est illustré sur la figure 3.
À la différence de l'amplificateur 10 selon le premier mode de réalisation, chaque amplificateur élémentaire de l'amplificateur 10 selon le deuxième mode de réalisation comporte en outre un transistor 72A, 72B d'alimentation flottante connecté entre la tension d'alimentation globale V+, V" et chacun du premier transistor 32A, 32B et du deuxième transistor 42A, 42B, ainsi qu'à la tension d'alimentation flottante positive Vpos (resp. négative Vneg) des amplificateurs opérationnels 30A, 30B.
L'amplificateur 10 comporte en outre des premiers moyens 74 de protection et des deuxièmes moyens 75 de protection.
Le transistor d'alimentation flottante 72A, 72B est un transistor bipolaire dont le collecteur est relié à la tension d'alimentation globale V+, V" et l'émetteur est relié au premier transistor 32A, 32B et au deuxième transistor 42A, 42B, ainsi qu'à la tension d'alimentation flottante positive Vpos (resp. négative Vneg) des amplificateurs opérationnels 30A, 30B. Les tensions Vpos et Vneg suivent les variations de la tension de sortie 14 et servent d'alimentation flottante.
Le transistor d'alimentation flottante 72A, 72B est alors connecté en série avec le premier transistor 32A, 32B et le deuxième transistor 42A, 42B, ainsi qu'avec les amplificateurs opérationnels 30A, 30B.
La base de ce transistor 72A, 72B est reliée à la source de courant 45B, 45A de l'autre amplificateur élémentaire, à une résistance 76B, 76A, et aux premiers moyens de protection 74. Le courant constant, issu de la source de courant 45B, 45A, traverse la résistance 76B, 76A et provoque une différence de potentiel constante, de l'ordre de quelques volts, aux bornes de la résistance 76B, 76A. Ainsi, la tension de la base du transistor 72A, 72B suit les variations de la tension de sortie 14, élevée (resp. diminuée) de la différence de potentiel aux bornes de la résistance 76B, 76A.
Les premiers moyens de protection 74 sont propres à protéger l'amplificateur 10 contre toute différence de potentiel significative (supérieure à quelques centaines de millivolt) entre l'entrée 12 et la sortie 14 lorsque le fonctionnement en suiveur n'est pas possible, durant les phases d'allumage et d'extinction de l'amplificateur par exemple, ou pendant un épisode de court-circuit de la sortie.
Pour ceci, les premiers moyens de protection 74 comportent quatre diodes de protection 81 à 84 permettant de limiter, dans toutes les conditions de fonctionnement, d'une part la différence de potentiel entre l'entrée 12 et la sortie 14 à 0.7V environ, et d'autre part permettant d'éviter l'inversion de polarité des tensions d'alimentation flottante Vpos et Vneg. Les deuxièmes moyens de protection 75 comprennent deux résistances de protection. Chaque résistance de protection est connectée entre l'émetteur du premier transistor 32A, 32B et la sortie 14. Dans l'exemple de réalisation dans lequel la branche principale d'amplification 24A, 24B comporte la première résistance 34A, 34B, la résistance de protection est constituée de la première résistance 34A, 34B.
Le rôle des résistances de protection est de limiter le courant maximum que le transistor de sortie 32A, 32B est susceptible de fournir en cas de court-circuit accidentel de la sortie 14 à un potentiel fixe.
Un schéma du circuit de l'amplificateur 10 selon un troisième mode de réalisation de l'invention est illustré sur la figure 4.
À la différence de l'amplificateur 10 selon le deuxième mode de réalisation, chaque amplificateur élémentaire de l'amplificateur 10 selon le troisième mode de réalisation comporte un cascode 90A, 90B formé de deux transistors connectés entre la tension d'alimentation globale V+, V" et chacun du premier transistor 32A, 32B et du deuxième transistor 42A, 42B, ainsi qu'entre la tension d'alimentation globale V+, V" et la tension d'alimentation flottante Vpos, Vneg de l'amplificateur opérationnel 30A, 30B.
Le cascode 90A, 90B est formé de deux transistors 92A, 92B et 93A, 93B de types différents. Ainsi, sur la figure 4, le transistor 92A, 92B est un transistor de type « MOSFET » et le transistor 93A, 93B est un transistor bipolaire.
Le transistor bipolaire 93A, 93B sert uniquement à alimenter l'amplificateur opérationnel 30A, 30B, en ne chutant que de 0.6V environ entre la tension de sa base et de son émetteur, ce qui maximise la tension d'alimentation flottante Vpos, Vneg. Le transistor bipolaire 93A, 93B est ainsi de faible puissance.
Le transistor de type « MOSFET » 92A, 92B sert d'alimentation flottante de puissance au reste du circuit ; il présente l'avantage de ne pas consommer de courant dans sa grille mais chute généralement plusieurs volts entre la tension de sa grille et celle de sa source. En l'absence du transistor bipolaire 93A, 93B, cette chute de tension réduirait d'autant la tension de fonctionnement des amplificateurs opérationnels 30A, 30B (généralement comprise entre 3V et 15V) ; par contre, elle n'est pas gênante pour alimenter les premiers transistors 32A, 32B, car ceux-ci nécessitent moins de 0.5V entre leur collecteur et leur émetteur pour fonctionner correctement.
Le cascode 90A, 90B est relié aux moyens de protection 74 et 75 identiques à ceux de la figure 3.
La coupure du courant dans l'ensemble des circuits de l'amplificateur 10 selon le deuxième et le troisième modes de réalisation s'effectue en coupant les sources de courant 45A, 45B. Les moyens de protection 74 et 75 permettent de protéger cet ensemble lors des phases de coupure et d'assurer la non-inversion des tensions d'alimentation lors de phases de court-circuit par exemple.
Selon une variante de réalisation de chacun des trois modes de réalisation, chaque deuxième transistor 42A, 42B est remplacé par une diode.
II également possible d'émuler une diode en déconnectant le collecteur des deuxièmes transistors 42A,42B de la tension d'alimentation globale V+, V" et en le connectant à la base (c'est-à-dire à la sortie de l'amplificateur opérationnel 30A, 30B).

Claims

REVENDICATIONS
1 .- Amplificateur élémentaire (20A, 20B) comportant une entrée (12) et une sortie (14), comprenant :
- un circuit de commande (22A, 22B) connecté à l'entrée (12) de l'amplificateur
(20A, 20B) pour recevoir le signal à amplifier ;
- une branche principale (24A, 24B) d'amplification comportant un premier transistor (32A, 32B) d'amplification connecté entre une tension d'alimentation globale (V- +, V") et la sortie (14) de l'amplificateur (20A, 20B), la sortie du circuit de commande (22A, 22B) étant reliée à la commande du premier transistor (32A, 32B) ;
- une première boucle de rétroaction linéaire (26A, 26B) reliant la sortie (14) de l'amplificateur (20A, 20B) et l'entrée du circuit de commande (22A, 22B) ;
- des moyens (28A, 28B) d'introduction, en entrée du circuit de commande (22A, 22B), d'un signal de compensation pour assurer la circulation d'un courant fixé et non nul dans le premier transistor (32A, 32B), les moyens d'introduction (28A, 28B) comportant une deuxième boucle de rétroaction (38A, 38B) connectée à l'entrée du circuit de commande (22A, 22B) et à une source de courant (45A, 45B) pour fournir ledit signal de compensation ;
caractérisé:
- en ce que la branche principale d'amplification (24A, 24B) comporte un organe unique apte à fonctionner en régime non linéaire connecté entre la tension d'alimentation globale (V+, V") et la sortie (14) de l'amplificateur ; et
- en ce que ledit organe unique est le premier transistor (32A, 32B).
2.- Amplificateur (20A, 20B) selon la revendication 1 , caractérisé en ce que la branche principale d'amplification (24A, 24B) comporte en outre une première résistance (34A, 34B) connectée entre le premier transistor (32A, 32B) et la sortie (14) de l'amplificateur (20A, 20B).
3.- Amplificateur (20A, 20B) selon la revendication 1 ou 2, caractérisé :
- en ce que les moyens (28A, 28B) d'introduction comportent en outre une branche d'interconnexion (40A, 40B) reliant la branche principale (24A, 24B) d'amplification et la deuxième boucle de rétroaction (38A, 38B) ; et
- en ce que la branche d'interconnexion (40A, 40B) comporte un deuxième transistor (42A, 42B) d'amplification connecté à la sortie du circuit de commande (22A,
22B) et à ladite tension d'alimentation globale (V+, V") en parallèle avec le premier transistor d'amplification (32A, 32B).
4. - Amplificateur (20A, 20B) selon la revendication 3, caractérisé en ce que la source de courant (45A, 45B) est propre à imposer un courant fixé dans le deuxième transistor d'amplification (42A, 42B).
5. - Amplificateur (20A, 20B) selon l'une quelconque des revendications 3 à 4, caractérisé en ce que la branche d'interconnexion (40A, 40B) comporte en outre une deuxième résistance (44A, 44B) connectée entre le deuxième transistor (42A, 42B) et la deuxième boucle de rétroaction (38A, 38B).
6. - Amplificateur (20A, 20B) selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'au moins un transistor d'amplification parmi le premier transistor d'amplification (32A, 32B) et le deuxième transistor d'amplification (42A, 42B), est un transistor de type « MOSFET » dont la grille est connectée à la sortie du circuit de commande (22A, 22B) et le drain est connecté à ladite tension d'alimentation globale (V+, V ).
7. - Amplificateur (20A, 20B) selon l'une quelconque des revendications 3 à 6, caractérisé en ce qu'au moins un transistor d'amplification parmi le premier transistor d'amplification (32A, 32B) et le deuxième transistor d'amplification (42A, 42B), est un transistor bipolaire dont la base est connectée à la sortie du circuit de commande (22A, 22B) et le collecteur est connecté à ladite tension d'alimentation globale (V+, V").
8. - Amplificateur (20A, 20B) selon l'une quelconque des revendications 1 à 7, le circuit de commande (22A, 22B) comprend un amplificateur opérationnel (30A, 30B) alimenté par une tension d'alimentation flottante (Vpos, Vneg).
9. - Amplificateur (20A, 20B) selon la revendication 8 prise en combinaison avec l'une quelconque des revendications 3 à 7, caractérisé en ce qu'il comporte en outre un transistor (72A, 72B) d'alimentation flottante connecté entre ladite tension d'alimentation globale (V+, V") et le premier transistor d'amplification (32A, 32B) d'une part, et entre le deuxième transistor d'amplification (42A, 42B) et la tension d'alimentation flottante (Vpos, Vneg) de l'amplificateur opérationnel (30A, 30B) d'autre part, le transistor d'alimentation flottante (72A, 72B) étant en outre connecté à des moyens (74) de protection reliant le transistor d'alimentation flottante (72A, 72B) à une source de courant (45A, 45B), les moyens de protection (74) étant propres à protéger l'amplificateur (20A, 20B) contre une différence de potentiel entre l'entrée (12) de l'amplificateur (20A, 20B) et la sortie (14) de l'amplificateur (20A, 20B), et contre l'inversion des tensions d'alimentation flottante (Vpos, Vneg) de l'amplificateur opérationnel (30A, 30B).
10.- Amplificateur (20A, 20B) selon la revendication 8 prise en combinaison avec l'une quelconque des revendications 3 à 7, caractérisé en ce qu'il comporte en outre un cascode (90A, 90B) d'au moins deux transistors connecté entre ladite tension d'alimentation globale (V+, V") et le premier et le deuxième transistors d'amplification (32A, 32B, 42A, 42B) d'une part, et entre ladite tension d'alimentation globale (V+, V") et la tension d'alimentation flottante (Vpos, Vneg) de l'amplificateur (22A, 22B) d'autre part, ledit cascode (90A, 90B) étant en outre connecté à des moyens de protection (74) reliant ledit cascode à une source de courant (45A, 45B), les moyens de protection (74) étant propres à protéger l'amplificateur (20A, 20B) contre une différence de potentiel entre l'entrée (12) de l'amplificateur (20A, 20B) et la sortie (14) de l'amplificateur (20A, 20B), et contre l'inversion des tensions d'alimentation flottante (Vpos, Vneg) de l'amplificateur (22A, 22B).
1 1 .- Amplificateur (20A, 20B) selon la revendication 1 ou 2, caractérisé :
- en ce que les moyens (28A, 28B) d'introduction comportent en outre une branche d'interconnexion (40A, 40B) reliant la branche principale (24A, 24B) d'amplification et la deuxième boucle de rétroaction (38A, 38B) ; et
- en ce que la branche d'interconnexion (40A, 40B) comporte une diode connectée à la sortie du circuit de commande (22A, 22B).
12.- Amplificateur (20A, 20B) selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième boucle de rétroaction (38A, 38B) comporte une résistance (46A, 46B).
13.- Amplificateur (10) de type « push-pull » comportant deux amplificateurs élémentaires (20A, 20B) selon l'une quelconque des revendications précédentes comportant une entrée (12) commune et une sortie (14) commune, les premiers transistors d'amplification (32A, 32B) de ces amplificateurs (20A, 20B) étant montés en anti-série entre les tensions d'alimentation globale (V+, V") correspondantes.
PCT/EP2015/063766 2014-06-19 2015-06-18 Amplificateur de classe a WO2015193458A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455645A FR3022710A1 (fr) 2014-06-19 2014-06-19 Amplificateur de classe a
FR1455645 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015193458A1 true WO2015193458A1 (fr) 2015-12-23

Family

ID=52102736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/063766 WO2015193458A1 (fr) 2014-06-19 2015-06-18 Amplificateur de classe a

Country Status (2)

Country Link
FR (1) FR3022710A1 (fr)
WO (1) WO2015193458A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216382A (en) * 1990-12-27 1993-06-01 Pioneer Electronic Corporation Single ended push pull amplifier circuit
WO2011107670A1 (fr) 2010-03-02 2011-09-09 Devialet Amplificateur de classe a de type push-pull
US8319552B1 (en) * 2009-12-31 2012-11-27 Analog Devices, Inc. Rail-to-rail output stage with balanced drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216382A (en) * 1990-12-27 1993-06-01 Pioneer Electronic Corporation Single ended push pull amplifier circuit
US8319552B1 (en) * 2009-12-31 2012-11-27 Analog Devices, Inc. Rail-to-rail output stage with balanced drive
WO2011107670A1 (fr) 2010-03-02 2011-09-09 Devialet Amplificateur de classe a de type push-pull

Also Published As

Publication number Publication date
FR3022710A1 (fr) 2015-12-25

Similar Documents

Publication Publication Date Title
FR2819064A1 (fr) Regulateur de tension a stabilite amelioree
EP0651502B1 (fr) Elément d'amplification à structure différentielle en mode de courant
FR2814608A1 (fr) Circuit d'amplificateur operationnel
FR2479606A1 (fr) Preamplificateur de tension d'alimentation pour un ou plusieurs amplificateurs differentiels
EP1713177A1 (fr) Amplificateur differentiel à gain variable
EP0700151A1 (fr) Etage amplificateur de puissance, de type suiveur
EP2788782B1 (fr) Dispositif de détection de rayonnement électromagnétique impulsionnel
EP0022015B1 (fr) Dispositif amplificateur et procédé d'amplification pour audio-fréquences
EP2711722B1 (fr) Circuit de mesure de tension différentielle
EP0913931A1 (fr) Amplificateur à fort gain ayant une dynamique de sortie limitée
EP2543140A1 (fr) Amplificateur de classe a de type push-pull
CA2953801C (fr) Amplificateur audio
WO2015193458A1 (fr) Amplificateur de classe a
EP1885057A1 (fr) Compensation en fréquence d'un amplificateur comportant au moins deux étages de gain
FR2818762A1 (fr) Regulateur de tension a gain statique en boucle ouverte reduit
EP3185422B1 (fr) Circuit de commande d'un transistor à grille
FR2477802A1 (fr) Circuit d'amplification
FR2500969A1 (fr) Amplificateur lineaire et circuit amplificateur a commande de gain comportant au moins un tel amplificateur
EP3172837B1 (fr) Convertisseur courant-tension, étage d'entrée d'un amplificateur et amplificateur correspondant
EP1313309A1 (fr) Dispositif de calibrage pour un étage d'entrée vidéo
FR2872648A1 (fr) Amplificateur a transconductance rapide
FR2589648A1 (fr) Circuit amplificateur a transistor a effet de champ
WO2007028897A1 (fr) Dispositif d'amplification d'une tension representative d'une information audiophonique
EP0050583A1 (fr) Convertisseur d'une tension alternative en un courant continu et circuit d'oscillateur comportant ce convertisseur
FR2741759A1 (fr) Amplificateur de tension a large plage de variation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15732187

Country of ref document: EP

Kind code of ref document: A1