WO2015192416A1 - 电子设备和用于电子设备的可穿戴式输入装置 - Google Patents

电子设备和用于电子设备的可穿戴式输入装置 Download PDF

Info

Publication number
WO2015192416A1
WO2015192416A1 PCT/CN2014/082108 CN2014082108W WO2015192416A1 WO 2015192416 A1 WO2015192416 A1 WO 2015192416A1 CN 2014082108 W CN2014082108 W CN 2014082108W WO 2015192416 A1 WO2015192416 A1 WO 2015192416A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
information
processing unit
unit
electronic device
Prior art date
Application number
PCT/CN2014/082108
Other languages
English (en)
French (fr)
Inventor
原硕朋
Original Assignee
原硕朋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原硕朋 filed Critical 原硕朋
Publication of WO2015192416A1 publication Critical patent/WO2015192416A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor

Definitions

  • the present invention relates to a human-machine interaction device, and more particularly to an electronic device and a wearable input device for an electronic device.
  • the input devices of computers, mobile phones and the like which are commonly used on the market and manufactured by using existing known technologies are either separate mice, joysticks, light pens, etc., or are integrated touch screens, pointing devices, trackballs, and the like.
  • data helmets and data gloves in virtual reality technology. Whether in real life or in virtual reality, the hand is a very important action and sensory organ.
  • the behaviors such as tapping, pointing, or touching of the above-mentioned devices are generally used as input methods of human-computer interaction to form a basic means for human-computer interaction of electronic devices.
  • such devices are mostly designed for use in fixed or stable application environments.
  • input devices such as data helmets and data gloves are very complicated, expensive, and bulky and inconvenient to carry.
  • CN101581990A discloses a wearable pointing device for use in an electronic device.
  • the device comprises a short-distance signal generating unit, a remote signal generating unit, a control unit, a positioning unit and a communication unit.
  • the main content of the patent is formed by integrating several prior art.
  • the near-field signal generating unit is based on the existing trackball structure and technology, and is improved from the formation, so that it can be miniaturized to be bound to the index finger for the thumb to operate; the long-distance signal generating unit is equivalent Directly swap an existing air mouse that needs to be used in a gripping manner to a use position and directly bind it to the back of the hand.
  • This patent is designed to meet the different needs of devices such as computers that use close-range use and require precise screen positioning, as well as devices that are used in remote locations such as televisions and that do not require precise positioning. Near two thresholds for switching between a trackball corresponding to a close device and an air mouse corresponding to a remote device.
  • the patent only has to compare the displacement data of the air mouse with the previously stored sample data. What is done is a comparison of the trajectories. Only the comparison is consistent and confirmed and output. If the comparison is inconsistent, it will not be confirmed and will not be output.
  • the output signal is only a "confirmation" signal, rather than a real-time "position” signal that can be used for screen cursor display, it is generally only suitable for relatively simple “extensive” control. Moreover, it is still difficult to meet the requirements for anti-bumping and anti-sloshing in walking, sports and vehicle environments.
  • the patent relies only on trackballs and aerial mice that have improved in form, making it difficult to perform multi-point input functions with higher real-time requirements. Because it is impossible to put each finger on the trackball device or bind multiple mice on the back of one hand and operate at the same time.
  • One of the objectives of the present invention is to provide a wearable input device for an electronic device to solve the problem that the existing wearable electronic smart product lacks a human-machine interaction device that is convenient to use, reliable in operation, and accurate in input information.
  • Another object of the present invention is to provide an electronic device using a wearable input device to facilitate the development and application of a new generation of electronic smart products.
  • a wearable input device for an electronic device comprising:
  • a finger action unit worn on the user's finger, for detecting an action state of the worn finger, and transmitting the detected finger action state data information to the data processing unit;
  • a reference position scaler which is an inertial sensor including an acceleration sensor and an angular velocity sensor, or a wireless transmitting unit for wireless positioning, for detecting the motion state of the arm/human body carrying the finger action unit, and The detected arm/human motion state data information is transmitted to the data processing unit;
  • the data processing unit calculates the data information of the movement state change amount of the finger action unit relative to the reference position scaler in real time according to the received finger action state data information and the arm/human body motion state data information, and performs After the background subtraction process, forming display cursor positioning information on the display of the associated electronic device, or forming input information for operating the associated electronic device;
  • a communication unit configured to send display cursor positioning information to an associated electronic device, or send input information of an operation associated electronic device
  • the reference position scaler, the data processing unit and the communication unit are jointly disposed in a physical carrier to form an integrated processing unit; the integrated processing unit can be worn on the wrist or the torso of the user. It can also be attached to the user's carry-on or side fixtures.
  • the wearable input device of the present invention is mainly composed of a finger action unit worn on a finger and an integrated processing unit fixed on the wrist, the body trunk or a relatively stable place near the body, and the finger action unit is used to sense a finger at a certain moment. Relative to the action state of the ground, the integrated processing unit provides motion information of the sports carrier such as the body relative to the ground.
  • the finger action unit and the integrated processing unit jointly form a basic hardware structure of background motion detection and blanking (referred to as “back-cancellation structure”), thereby obtaining accurate information of the movement of the finger action unit relative to the integrated processing unit, and processing becomes Coordinate data for display by the display device, so as to meet the needs of the wearable electronic device to input information or calibrate the cursor in a static and dynamic environment.
  • back-cancellation structure a basic hardware structure of background motion detection and blanking
  • the finger state sensor is an inertial sensor including an acceleration sensor and an angular velocity sensor, or a signal receiving device with a wireless positioning technology, which acquires acceleration, velocity, displacement, and position parameter information of a finger motion in real time, and forms finger positioning data information. .
  • the status information transmitter is configured to transmit finger positioning data information to the data processing unit in real time.
  • the reference position scaler may be an inertial sensor including an acceleration sensor and an angular velocity sensor to acquire acceleration, velocity, displacement and position parameter information of the location where it is located, and form background motion data information for determining the finger motion.
  • the reference position scaler may also be a wireless transmitting unit with a wireless positioning function, and directly locate the finger action unit by wireless positioning, which is equivalent to a moving “base station”.
  • the wearable input device of the invention constitutes a novel information input technology based on the micro-motion positioning detection technology, and based on the technology, a novel information input device called "finger state information calibration and transmitter" is realized, wherein
  • the shape of the finger movement unit can be made into a shape like a finger ring or a thimble worn on the front end of the finger; and the integrated processing unit can be worn on the wrist, the trunk or the human body of the user, and the wire can be wired or
  • the wireless connection is performed in a communication manner, thereby forming a wearable input device, which is simply referred to as an "indicator".
  • the present invention proposes the basic concepts of "relative state” and “motion identification”, and forms a specific hardware structure of background motion detection and blanking realized by the finger action unit and the integrated processing unit, which is referred to as "back-off structure”. ".
  • the so-called “relative state” is the relative position state between the finger action unit and the integrated processing unit. After being worn, the two work units may remain in the process of constant change of position with the movement of the human body or the operation of the vehicle being boarded. However, in the absence of deliberate finger movement, between the finger and the wrist, or between the finger and the torso, can be in the same motion reference system (that is, in the same sports environment) and only due to vibration, etc. The reason for the relatively small positional change is even a relatively static state.
  • motion recognition refers to the recognition of the motion state and trajectory of the finger movement unit located on the finger with the integrated processing unit as a reference and using the relative position of the finger and the finger movement unit as a reference. That is, it is accurately recognized that a certain movement of the finger is due to a positional change caused by the carrier driving the finger, or a positional change caused by the relative positional relationship between the finger and the carrier.
  • the finger action unit of the present invention is for sensing the action state of the finger relative to the ground at a certain moment
  • the reference position scaler is for providing motion information of the sports carrier such as the body relative to the ground.
  • the recognition can be completed simply by detecting the relative change between the finger and the reference position scaler by the action of the finger.
  • This type of input can be carried out simply by using a finger for "ratio" without the support of the hand, or with support (for example, placing the hand on the table, your own leg or the other side) Arm) Perform a "click” implementation. Whether it is a slow shift or a quick sniper, the combination of different directions and modes of motion can form a "three-dimensional space" with a certain range of finger movement relative to the carrier (such as the wrist).
  • both the finger action unit and the reference position scaler can combine these techniques to detect physical quantities such as acceleration, velocity, displacement, direction, angle, and time change. These measured data can be used as "first hand” data, and returned to the data processing unit shared with the reference position scaler in real time to perform motion recognition of the finger. In fact, all these changes in physical quantity have a certain correlation and can be converted into the form of "basic data" for subsequent processing.
  • the finger movement unit records the absolute motion between it and the ground. Regardless of the independent movement of the finger, or the arm, walking, any displacement of the body will change the coordinates of the finger, and of course the state of the moving platform such as the vehicle and the elevator.
  • any movement reflected in the finger movement unit will be recorded in full, but this is often not the finger control signal that the user desires.
  • the reference position calibration is missing, and only the finger action unit is used, the lack of reference can not produce effective information, and the system will not be able to recognize whether it is an independent finger displacement or driven by the environmental displacement caused by the vehicle and the human body. Finger displacement. Therefore, both the finger action unit and the reference position scaler are indispensable and must be present at the same time and used at the same time.
  • the acceleration information in the reference position scaler and the finger action unit is corrected by one integral, double integral operation and correlation angular velocity values to obtain respective parameters such as speed and position.
  • the "background blanking" process can be completed, and the real-time position information of the finger action unit relative to the reference position scaler can be obtained in real time.
  • the hand remains relatively static at a certain time, but the position of the arm changes, or the body moves the arm, and the data of the reference position scaler and the finger action unit should change the same.
  • the reference position scaler and the finger action unit are both displaced, they belong to the "integral displacement" that occurs synchronously with respect to the ground coordinate system, that is, the finger action unit is opposite to the reference position scaler.
  • the respective changes in the previous moment are synchronous and equal. After the cancellation process, the result is zero.
  • the background blanking method can accurately identify the effective relative displacement between the finger action unit and the reference position scaler, and minimizes the positional interference caused by the movement of the finger from other parts of the body.
  • the integrated processing unit and the finger action unit can be connected by wire or wirelessly. Regardless of the manner of connection between the finger action unit and the integrated processing unit, the finger action unit should not impose any restrictions on the movement of the tip of the finger. Therefore, the finger with the finger movement unit is completely free as usual, and can perform free movements in the up, down, left and right directions.
  • the integrated processing unit is only required to be fixed with respect to the finger action unit. Therefore, the integrated processing unit can be located on the wrist, or can be bound to a relatively stable part of the chest or the body, or simply fixed directly to the user's working environment or a table, chair, etc. in a vehicle such as a car. A suitable part. In this way, it is possible to adapt as much as possible to the spatial differences in finger and hand movements caused by the application environment, as well as the different "calibration range" and "resolution” requirements required for identification.
  • the output signals of the indicator device of the present invention can be transmitted to a specific electronic device (such as smart glasses) in real time for use as a position signal of the screen cursor; or can be transmitted to an electronic device such as a mobile phone. In the process, it is left for its own use or used for other purposes.
  • the transmission method of the positioning information it can be either a wired transmission or a wireless transmission.
  • the indicator of the present invention can simulate the touch screen in the current notebook computer, that is, any plane that can be touched by the hand (such as a desktop, a wall, or even a belly, a leg, etc.).
  • a "virtual touchpad" environment based on contact is established to implement all input functions including the "finger-finger writing" method.
  • the indicator device of the invention can simulate the front, back, left and right movement of the computer mouse, the click of the left and right keys and the dialing of the wheel, that is, creating a "virtual mouse", just like holding a real mouse in the hand. Further, as long as the "mouse” is "held” according to the imagination, the corresponding finger movement can be made, and finally the actual screen operation is completed. Even in the case where there is no plane to be contacted, even if the hand is not supported and is in a suspended manner, the input operation mode of "translation shift, click input” can still be completed.
  • the present invention can further form a brand-new and multi-functional "indicator" through the integration and improvement of hardware and software technology, combined with the unique flexibility, convenience and non-restriction of surrounding objects. Input mode. This can also be detailed as follows.
  • the integrated processing unit is used as the reference point of the reference system to establish a three-dimensional rectangular coordinate coordinate system or an angular coordinate system, it is possible to divide a plurality of different levels corresponding to different heights or angles generated by the finger when the wrist is the axis. Further, the finger motion unit that generates the displacement motion with respect to the integrated processing unit can be calibrated to the "motion level". Each traditional "touchpad” or “mouse” can correspond to a particular motion level. Therefore, in the past, various input devices and working modes based on planes can be incorporated into the multi-layer operation structure of the stereo mode very intuitively and conveniently. This leads to the concept of "multi-plate touch", “layered mouse” or "three-dimensional input” and the corresponding technology.
  • a hierarchical structure of the system can be formed by establishing a hierarchical "fixed” manner.
  • integrated processing units even finger action units
  • the integrated processing unit in the form of a “watch” has a wider range of functions and becomes a more powerful information processing complex. Therefore, there is no need to rely on a dedicated "host” or a smart device such as an existing mobile phone for subsequent information processing.
  • the wearable input device of the present invention is largely different from the CN101581990A patent, and the technical and application advantages are embodied in the following five aspects:
  • the wearable input device of the present invention is not produced based on the basic principles or general methods of any conventional input device.
  • the wearable input device of the present invention it is not necessary to determine the distance between the input device and the controlled object, and the usage is completely the same regardless of the distance within the effective information transmission range. Moreover, because background blanking techniques can be used as well as autonomously controlling the movement of the hand, the effects of vibration and sloshing can be minimized.
  • the "virtual mouse” is used in the same manner as the real mouse, and the user can use the index finger to perform the same for the left, right, and scroll wheels as the real mouse according to the habit of using a real mouse. "operating”. Further, the input operation of the "virtual touch panel” can also be realized using the wearable input device of the present invention.
  • the invention can completely change the existing operation mode of the planar mouse through the three-dimensional sensing technology to realize the three-dimensional virtual mouse. Therefore, it is possible to directly complete the requirements of a three-dimensional application, such as control of a three-dimensional stereoscopic graphic or image.
  • the integrated processing unit can be worn on the left and right hands respectively, and the finger action unit is worn on the ten fingers of both hands. In this way, as long as the corresponding data processing speed can be satisfied, the requirements of multi-point and simultaneous input can be completed in real time.
  • the wearable input device of the present invention can have a one-handed single-finger mode (such as simulating the use of a general touchpad and a mouse), a one-handed multi-finger mode (such as an analog high-precision mouse), and a two-handed finger (such as Various implementations such as the simplification and variable structure of data gloves are formed.
  • a one-handed single-finger mode such as simulating the use of a general touchpad and a mouse
  • a one-handed multi-finger mode such as an analog high-precision mouse
  • a two-handed finger such as Various implementations such as the simplification and variable structure of data gloves are formed.
  • a keyboard instrument such as a piano in real-time performance. It can even imagine a plane with a certain shape and area. Piano keyboard for analog performance.
  • Wireless positioning technology can be existing RIPS (radio TFIM (two frequency intervals) in interferometric positioning system)
  • RIPS radio TFIM (two frequency intervals) in interferometric positioning system
  • a wireless positioning transmitting unit is installed in the integrated processing unit, it is equivalent to establishing a "base station" capable of moving.
  • the wireless receiving and positioning circuit is installed in the finger action unit, and is valid only in a small working range (ie, the range of movement of the finger) near the "base station", and its power consumption is extremely low.
  • the integrated processing unit can directly locate the finger action unit through wireless positioning technology.
  • the calculation process can be greatly simplified.
  • the method of motion recognition is exactly the same as the foregoing.
  • the second object of the present invention is achieved by an electronic device including an electronic device terminal and a wearable input device; the wearable input device includes:
  • a finger action unit worn on the user's finger, for detecting an action state of the worn finger, and transmitting the detected finger action state data information to the data processing unit;
  • a reference position scaler which is an inertial sensor including an acceleration sensor and an angular velocity sensor, or a wireless transmitting unit for wireless positioning, for detecting the motion state of the arm/human body carrying the finger action unit, and The detected arm/human motion state data information is transmitted to the data processing unit;
  • the data processing unit calculates the data information of the movement state change amount of the finger action unit relative to the reference position scaler in real time according to the received finger action state data information and the arm/human body motion state data information, and performs After the background subtraction process, forming display cursor positioning information on the display of the associated electronic device, or forming input information for operating the associated electronic device;
  • a communication unit configured to send display cursor positioning information to an associated electronic device, or send input information of an operation associated electronic device
  • the reference position scaler, the data processing unit and the communication unit are jointly disposed in a physical carrier to form an integrated processing unit; the integrated processing unit can be worn on the wrist or the torso of the user. It can also be attached to the user's carry-on or side fixtures.
  • the finger state sensor is an inertial sensor including an acceleration sensor and an angular velocity sensor, or a signal receiving device with a wireless positioning technology, which acquires acceleration, velocity, displacement, and position parameter information of a finger motion in real time, and forms finger positioning data information. ;
  • the status information transmitter is configured to transmit finger positioning data information to the data processing unit in real time.
  • the reference position scaler may be an inertial sensor including an acceleration sensor and an angular velocity sensor to acquire acceleration, velocity, displacement and position parameter information of the location where it is located, and form background motion data information for determining the finger motion.
  • the reference position scaler may also be a wireless transmitting unit having a wireless positioning function, and directly positioning the finger action unit by wireless positioning.
  • This kind of electronic equipment can greatly promote the development and application of a new generation of intelligent electronic products.
  • FIG. 1 is a block diagram showing the basic configuration of a wearable input device of the present invention.
  • FIG. 2 is a schematic view showing the basic structure and wearing manner of the wearable input device of the present invention.
  • Figure 3 is a schematic diagram of the "overall displacement" state of the indicator.
  • Figure 4 is a schematic diagram of the "relative displacement" state of the indicator.
  • Figure 5 is a flow chart showing the operation of the wearable input device of the present invention.
  • Figure 6 is a schematic diagram of the "finger-end writing" working mode of the indicator.
  • Figure 7 is a schematic diagram of the indicator as a virtual mouse and its "grasping" mode.
  • Fig. 8 is a block diagram showing the configuration of an embodiment of the wearable input device of the present invention.
  • Fig. 9 is a view showing the state of use of the one-handed multi-finger indicator.
  • FIG. 10 is a schematic structural view of a dummy input device based on a two-finger hand method.
  • FIG. 11 is a schematic structural view of a piano performance fingering recorder based on a two-handed multi-finger mode.
  • the basic configuration of the wearable input device of the present invention includes a finger action unit 01, a reference position scaler, a data processing unit, and a communication unit, wherein the reference position scaler, the data processing unit, and the communication
  • the units can be centrally located into a physical carrier to form an integrated processing unit 02.
  • the finger movement unit 01 can be formed in the shape of a thimble or a finger ring and worn on the user's finger, preferably at the fingertip (Fig. 2).
  • the integrated processing unit 02 can be made into a wristwatch, a cassette or the like (Fig. 2), and can be worn on the wrist or the trunk of the user, or on the user's carry-on or side-fixing objects.
  • the finger action unit 01 is configured to detect an action state of the worn finger, including a finger state sensor and a state information transmitter.
  • the finger state sensor includes an inertial sensing element such as an angular velocity sensor and an acceleration sensor for generating finger positioning data, that is, real-time acquiring parameters such as acceleration, velocity, displacement, and position of a finger portion thereof, and detecting the detected Data information of physical quantities such as acceleration, velocity, and displacement of finger motion is transmitted to the data processing unit.
  • the reference position scaler is for detecting the motion state of the arm or the human body carrying the finger movement unit 01, and transmitting the data information of the detected physical quantity of the arm or the human body motion as the background motion information of the finger motion to the data processing unit.
  • the reference position scaler may be an inertial sensor including an angular velocity sensor and an acceleration sensor to obtain acceleration, velocity, displacement and position parameter information of the location in real time, and form background motion data information for determining the finger motion; or
  • the wireless transmitting unit of the wireless positioning function directly locates the finger action unit by wireless positioning.
  • the data processing unit performs background subtraction processing on the received finger motion data information and the background motion data information, and calculates the motion state change amount of the finger motion unit 01 relative to the reference position scaler in real time, so as to obtain the finger motion unit relative reference position in real time.
  • the motion data of the scaler forms position coordinate information to constitute cursor position information of the display screen or as input information of the wearable electronic device.
  • the communication unit is coupled to the data processing unit and communicates with the electronic device that uses the information to transmit cursor positioning information or to transmit input information that the wearable device can receive.
  • the indicator of the present invention uses the background blanking technique to process the relative motion between the finger wearing the finger action unit 01 and the carrier (such as the wrist) on which the integrated processing unit 02 is placed. If the two are only displaced synchronously, the relative ground coordinate system belongs to the overall displacement, that is, the finger with the finger action unit 01 has no positional change with respect to the wrist with the integrated processing unit 02.
  • the data processing unit uses the method of finding the difference to eliminate such displacement "interference" information (Fig. 3). If the position and state of the finger relative to the wrist changes, it can be judged as valid position or status information (Fig. 4).
  • the specific workflow is shown in Figure 5. For the basic working process shown in Figure 5, the use of existing computing, communication technology and corresponding components is fully achievable.
  • the indicator device of the invention can realize the working mode of "virtual touchpad", complete various input functions including “finger-end writing” (Fig. 6); can also simulate a computer mouse, establish a “virtual mouse”, and complete “translation” Shift, click input” mouse mode of operation ( Figure 7).
  • the indicator of the invention can have a one-handed single-finger mode (such as simulating the use of a general touchpad and a mouse), a one-handed multi-finger method (such as analog high-precision mouse use), and a two-handed multi-finger method (such as simplification of forming data gloves). And variable implementations and other implementations.
  • a two-handed indexer you can input dummy words, or as a fingering record of a keyboard instrument such as a piano in real-time performance, and even imagine a piano keyboard on a plane with a certain shape and area. Perform an analog performance.
  • Embodiment 1 Implementation of a simple indicator based on one-handed single-finger mode
  • the simple indicator of the present embodiment includes a finger action unit 01 and an integrated processing unit 02.
  • the finger action unit 01 includes a finger state sensor and a status information transmitter (Fig. 1).
  • the integrated processing unit 02 includes a reference position scaler, a data processing unit, a communication unit, a status display unit, and a power supply unit (FIG. 8).
  • the data processing unit includes functional links such as a double integrator and a position encoder.
  • the finger state sensor in the finger action unit 01 constitutes a finger end inertia unit
  • the reference position scaler in the integrated processing unit 02 constitutes a wrist inertia unit. All the motion data generated by the two inertial units are transmitted to the data processing unit for solution, so that the movement state of the finger end relative to the wrist can be accurately obtained.
  • the front, rear, left and right movements of the fingers can be converted and equivalent to a "mouse” that is translated on a "desktop", thereby forming a "mouse plane” (Fig. 7).
  • the increase or decrease of the hand in a certain range and extent can be equivalent to another "mouse plane" in order to control the input of another electronic device.
  • the click action of the fingertip can be equivalent to the "button" operation.
  • the integrated processing unit 02 worn on the wrist can be made into a cassette structure or a structure similar in appearance to an electronic watch.
  • the finger action unit 01 with the finger end can be connected by wire, and of course, a wireless connection can also be used.
  • the system cursor position information formed after the data processing needs to be transmitted to the relevant data receiving device via the communication unit based on the Bluetooth technology.
  • the two inertial units can be Bosch's 9-axis MEMS inertial measurement unit BMX055.
  • the chip integrates a 12-bit three-axis accelerometer, a 16-bit three-axis gyroscope and a wide-range three-axis magnetometer with a package size of 4.5 ⁇ 3.0 ⁇ 0.95mm, a supply voltage of 2.4 to 3.6V, and an operating current of ⁇ 5mA.
  • the chip features an I 2 C and SPI interface that provides data output in the range of ⁇ 2g/ ⁇ 4g/ ⁇ 8g/ ⁇ 16g for use by subsequent processors.
  • the main function of the data processing unit can be completed by Freescale's 32-bit embedded processor KL02.
  • the chip package size of 2 ⁇ 1.61 ⁇ 0.56 mm, the power supply voltage of 1.71 ⁇ 3.6 V, the normal operating current of about 5 mA, and includes a SPI module and two I 2 C module.
  • Dialog Semiconductor's DA14580 Bluetooth wireless network chip has a supply voltage of 3 V, a running power of 13.2 mW, a maximum operating current of 4.9 mA for data transmission, and a minimum package size of 2.5 x 2.5 x 0.5 mm.
  • the chip also has an I 2 C and SPI interface.
  • the function of the integrated processing unit 02 can be expanded to directly display all parameters directly related to the indicator. For example, data transmission status, battery power, and various types of error prompts can also display additional information such as time and date.
  • the status display unit can use DENSITRON's 128 ⁇ 64 dot matrix OLED module, which is directly connected to the data processing unit via the I 2 C interface to receive data and graphic information to be displayed. Its model number is DD-12864WE-4A (package size is 26.70 ⁇ 19.26 ⁇ 1.45mm).
  • the driver is SSD1306, and uses ST's STOD1812 (supply voltage 2.5 ⁇ 5.5 V, package size 3 ⁇ 3 ⁇ 0.8mm) to form a power supply unit, providing the higher voltage required by the status display unit.
  • This embodiment can serve different types of wearable electronic devices. Therefore, no matter whether it is wired or wireless, there are not many types of nodes, and the transmission distance is very close. Therefore, it is very convenient to use the I 2 C or SPI interface to connect each other between the various units inside the indicator. In the case of external communication, if the current environmental interference is not too large, Bluetooth technology can be used. Otherwise, you need to consider the ANT method that supports more nodes, lower unit power consumption, and stronger anti-interference ability.
  • the various links described in this embodiment can be easily implemented by using an existing chip and technology on a circuit board similar to the CR2032 button cell area. Moreover, it can be packaged in the integrated processing unit 02 together with the battery and the display unit. Except for the display, the entire system consumes only about 50mW, and a 300mA/h button battery can continuously supply it for more than 5 hours. The power consumption is large when displayed, and can only be triggered when needed, and is normally turned off. If additional power management measures are added to the system, the duration of the power supply may be longer.
  • Embodiment 2 Implementation of a complex virtual mouse based on one-handed multi-finger mode
  • the indexer of the embodiment is composed of an integrated processing unit 02 and three finger action units 01. Composition, as shown in Figure 9.
  • An integrated processing unit 02 is bound to the wrist, and the unit supports multiple finger action unit input modes for multi-point input.
  • Finger action units 01 are respectively worn at the fingertips or first knuckles of the thumb, forefinger and middle finger, each of which is independently connected to the integrated processing unit 02.
  • the index finger is responsible for the "left button” click
  • the middle finger is responsible for the "right click” click.
  • the use of the "wheel” needs to move the index finger between the "left button” and “right button” positions to "toggle”.
  • the thumb is responsible for the input of the thumb button. Because the thumb of the normal mouse and the number of keys of the thumb keyboard are not equal, from one to a dozen. The greater the number of keys, the higher the accuracy requirement for the finger action unit 01.
  • the thumb, forefinger and middle finger must be relatively static, relying on the left and right swing of the hand (not the arm) and the simultaneous translation of the above three fingers. Since the indicator is a three-dimensional input device, it is also able to simulate the "lifting" and "putting down” actions when holding a physical mouse. Through the corresponding software technology, not only can all the features of the existing physical mouse be equivalently realized, but also the function of implementing a new "three-dimensional mouse” can be developed. When using it, if you hold a mouse-like object in your hand (even if it is a flat cup), it is easier to control and operate, that is, use it as a "mouse".
  • Embodiment 3 Implementation of a dummy input device based on two-handed multi-finger mode
  • the basic structure of the dummy input device is shown in Figure 10. Since the dummy language needs to be represented by the posture of both hands and different finger types and fingers, when the present embodiment is used, it is necessary to adopt a cascade structure based on the classification "fixed".
  • the actual "fixed” with respect to the body is the integrated processing unit 02 located on the chest, which is called “primary fixation”.
  • the integrated processing unit 02 bound to the wrist is only “fixed” with respect to the finger action unit 01 located on the finger, and is still similar to a “finger action unit” with respect to “primary fixed”. Therefore, it can be called “secondary fixed”.
  • the positional relationship between the hands can be known through the "first-level fixed”; the "secondary fixed” can reflect the shape of the hand; 01, can also determine the position of the ten fingers of the hands. If it is necessary to accurately determine the finger shape or position of each finger, then a finger action unit 01 is required at each knuckle of the finger. And this is only an increase in the number of the original, and does not require technical updates. Thus, a dummy input device can be constructed using the present invention.
  • Embodiment 4 Implementation of a fingering recorder based on two-handed multi-finger mode
  • the basic structure of the piano playing fingering recorder is shown in Figure 11.
  • a keyboard instrument such as a piano
  • the action of each finger of the player includes a plurality of indicators such as position, speed, strength, hysteresis duration, and height of the finger.
  • the most important thing is that during the performance of the entire music, it is necessary to calibrate the order and position of each finger when hitting the keyboard, and the over-finger relationship between the thumb and the remaining four fingers.
  • the Piano Performance Fingering Recorder needs to accurately identify and identify these parameters during the performance.
  • This embodiment first requires ten basic finger action units 01. In order to affect the performance as little as possible, the finger action unit 01 needs to be sleeved at the second knuckle of each finger. The size and position of all the keys of the standard 88-key piano keyboard are strictly fixed, so the effective working range of the finger action unit 01 is also determined.
  • the posture of the body during the performance and the corresponding swinging method it can be considered that it is only the subconscious expression of the player's emotional bursting, or the subjective need to deliberately enhance the visual perception. And there is no substantial improvement in the pure auditory effect, which can be ignored. If you need it, you can add two finger movement units 01 to the player's head and chest.
  • the motion parameters of all the finger action units 01 are relative to the keyboard, specifically, relative to the piano body. Therefore, the integrated processing unit 02 in the true sense should be fixed on the piano. In fact, at this time, the integrated processing unit 02 can be directly placed on the cover, the raised keyboard cover or the music stand provided by the cover, etc., which can be relatively stable during the performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电子设备和用于电子设备的可穿戴式输入装置,该可穿戴式输入装置包括手指动作单元(01)和综合处理单元(02),在综合处理单元(02)中设置有基准位置定标器、数据处理单元和通讯单元等部分;手指动作单元(01)用于感知某一时刻手指相对于地面的动作状态,综合处理单元(02)中的基准位置定标器则是提供身体等运动载体相对于地面的运动信息。手指动作单元(01)和综合处理单元(02)共同形成了背景运动检测与消隐的基本硬件结构,由此获取手指动作单元(01)相对于综合处理单元(02)所作运动的精确信息,并处理成为可供显示设备调用的坐标数据,从而满足了可穿戴电子设备在静态和动态环境中输入信息或标定光标的使用需要。该电子设备可以极大地促进新一代电子智能产品的发展和应用。

Description

电子设备和用于电子设备的可穿戴式输入装置 技术领域
本发明涉及一种人机交互设备,具体地说是一种电子设备和用于电子设备的可穿戴式输入装置。
背景技术
目前市面上常见的、利用现有已知技术制造的计算机、手机等产品的输入设备,要么属于分离式的鼠标、游戏杆、光笔等,要么就是集成式的触摸屏、指点器、轨迹球等。再有就是虚拟现实技术中的数据头盔和数据手套等。无论是在实际生活中,还是在虚拟现实中,手都是十分重要的一个动作与感知器官。特别是在目前的计算机日常操作技术中,一般多通过手指对上述设备的敲击、点划或触摸等行为方式作为人机交互的输入方式,以形成电子设备人机交互的基本手段。但是,此类设备多是为了在固定或稳定的应用环境中的使用而设计的。特别是,数据头盔和数据手套等类输入设备的结构非常复杂、价格昂贵,且体积过大、携带不便。
随着智能手机与平板电脑的持续发展,此类电子设备也越来越小型化,智能化,并已经向可穿戴方向推进,以适用于日常生活中的各类场合。同时,也产生了一些新型的人机交互实现方式,形成了一些新型的输入装置,例如可单手操作的掌上键盘、手势键盘、空中鼠标、手写板技术等。
然而,在运动与特别颠簸的环境中使用平板电脑、智能手机等电子设备时,剧烈的摇晃或不停的抖动,经常使得传统的触摸屏等输入装置难以发挥功效。勉强的点击,也可能会因其偏差太大、不能准确定位而难以使用。此时,即便是使用经过改进的鼠标等输入设备,或是采用视觉跟踪、图像辨识等技术,也于事无补。同样,即便是数据手套,在此类环境中仍然使用不便。而语音辨识技术首先需要在使用过程中具有较为清晰的发音,这在保护输入内容的私密性方面,相对于其他几种方式而言无疑是最差的。
对于已经出现的智能眼镜,利用现有的各种输入设备均无法顺利解决其运动环境下人机交互的问题。尽管智能眼镜能将影像直接展示在佩戴者的眼前,但目前却缺乏与操作者灵活、方便和有效的互动。
CN101581990A号专利公开了一种应用于电子设备的可穿戴式指点装置。该装置包括有近距离信号产生单元、远距离信号产生单元、控制单元、定位单元和通信单元,该专利的主要内容是将几项现有技术综合而形成的。其近距信号产生单元就是基于现有的轨迹球结构和技术,从形成上进行了改进,使其能够小型化,以绑定在食指上,供拇指进行操作;其远距离信号产生单元则相当于直接将现有的、需要以抓握方式使用的空中鼠标调换一个使用位置,直接绑定到手背上使用。
该专利为了满足类似于计算机等近距离使用、并且需要精确屏幕定位的设备,以及类似于电视机等远距离使用、不需精确定位的设备的不同需求,通过增设一个距离判断功能,设定远、近两个阈值,以进行对应于近距设备的轨迹球和对应于远距设备的空中鼠标之间的切换。然而,因绑定在手背上的空中鼠标难以实现鼠标所应该具有的点击功能,所以为了对此进行补偿,该专利只得将空中鼠标的位移数据与之前存储的样本数据进行比较。所进行的是一种运行轨迹的比较,只有对比一致才予以确认并输出,对比不一致就不予确认、不进行输出。
鉴于该输出信号只是一种“确认”信号,而不是一种可用于屏幕光标显示的实时“位置”信号,一般只是适合较为简单的“粗放型”控制。而且,依旧难以满足类似步行、运动和车载环境下的抗颠簸、抗晃动的使用要求。此外,该专利仅仅依靠在形式上有所改进的轨迹球和空中鼠标,难以完成实时性要求较高的多点输入功能。因为不可能使每个手指都戴上轨迹球装置或是在一只手背上绑定多个鼠标并同时操作。
所以,即便是在现有输入设备的基础上予以进一步的改进,也难以得到更为充分和有效的提高。可见,输入方式的缺乏,已直接影响到下一代智能设备的发展和应用,并成为其后续发展所面临的一个新的瓶颈。
对于可穿戴电子设备而言,目前迫切需要一种新型的信息输入方式,以真正解决将电子设备“穿戴”起来之后的操作命令或数据信息的输入问题。
发明内容
本发明的目的之一就是提供一种用于电子设备的可穿戴式输入装置,以解决现有可穿戴电子智能产品缺乏使用便捷、动作可靠、输入信息准确的人机交互设备的问题。
本发明的目的之二就是提供一种使用可穿戴式输入装置的电子设备,以促进新一代电子智能产品的发展和应用。
本发明的目的之一是这样实现的:一种用于电子设备的可穿戴式输入装置,包括有:
手指动作单元,佩戴在使用者的手指上,用于检测所佩戴手指的动作状态,并将所检测到的手指动作状态数据信息传送到数据处理单元;
基准位置定标器,为包括加速度传感器和角速度传感器在内的惯性传感器,或是用于无线定位的无线发射单元,用于检测承载所述手指动作单元的手臂/人体的运动状态,并将所检测到的手臂/人体运动状态数据信息传送到数据处理单元;
数据处理单元,根据所接收的手指动作状态数据信息和手臂/人体运动状态数据信息,实时解算出所述手指动作单元相对于所述基准位置定标器的运动状态变化量的数据信息,在进行背景消减处理后,形成关联电子设备显示器上的显示光标定位信息,或者形成操作关联电子设备的输入信息;以及
通讯单元,用以向关联的电子设备发送显示光标定位信息,或者发送操作关联电子设备的输入信息;
所述基准位置定标器、所述数据处理单元和所述通讯单元共同设置在一个物理载体中,形成一个综合处理单元;所述综合处理单元既可佩戴在使用者的手腕部或躯干部,也可固定在使用者的随身附着物或身边固定物上。
本发明可穿戴式输入装置主要由佩戴于手指上的手指动作单元和固定在手腕、身体躯干或者身体附近某一相对稳定之处的综合处理单元所组成,手指动作单元用于感知某一时刻手指相对于地面的动作状态,综合处理单元则是提供身体等运动载体相对于地面的运动信息。手指动作单元和综合处理单元共同形成了背景运动检测与消隐的基本硬件结构(简称“背消结构”),由此获取手指动作单元相对于综合处理单元所作运动的精确信息,并处理成为可供显示设备调用的坐标数据,从而能够满足可穿戴电子设备在静态和动态环境中输入信息或标定光标的使用需要。
所述手指状态传感器为包括加速度传感器和角速度传感器在内的惯性传感器,或是具备无线定位技术的信号接收装置,以实时获取手指动作的加速度、速度、位移和位置参数信息,形成手指定位数据信息。
所述状态信息传输器用于向所述数据处理单元实时传输手指定位数据信息。
所述基准位置定标器可以是包括加速度传感器和角速度传感器在内的惯性传感器,以实时获取其所在部位的加速度、速度、位移和位置参数信息,形成判断手指动作的背景运动数据信息。
所述基准位置定标器还可以是具有无线定位功能的无线发射单元,通过无线定位方式,直接定位所述手指动作单元,相当于一个运动的“基站”。
本发明可穿戴式输入装置构成一种基于微动定位检测技术的新型信息输入技术,基于这种技术实现了一种可称为“手指状态信息标定与传输器”的信息输入新型装置,其中,手指动作单元的外形可制成一个类似指环或顶针的形状,戴在手指前端;而综合处理单元可佩戴在使用者的手腕部、躯干部或人体附着物上,二者之间可以通过有线或无线的方式进行通讯连接,由此形成了一种可穿戴式输入装置,本发明将其简称为“指标器”。
对于日常生活中的静态应用和运动过程中的动态应用而言,数据输入的环境和要求差别很大。为此,本发明提出了“相对状态”和“运动辨识”的基本概念,形成了一个由手指动作单元和综合处理单元共同实现的背景运动检测与消隐的具体硬件结构,简称“背消结构”。
所谓“相对状态”,就是手指动作单元与综合处理单元之间的相对位置状态。这两个工作单元在穿戴之后,随着人体的动作或所搭乘的交通工具的运行,可能一直处于位置不停变化的运动过程之中。但在不去刻意进行手指活动的情况下,手指与手腕之间,或是手指与躯干之间,均可因处于同一运动参照系中(即处于同样的运动环境之中)而只因震动等原因发生相对较小的位置变动,甚至是处于相对静止的状态。
所谓“运动辨识”,就是以综合处理单元为参照物,将其某一时刻与手指动作单元的相对位置作为基准,对位于手指的手指动作单元的运动状态和轨迹所进行的辨识。即,准确辨识出手指的某个运动是由于载体带动手指所产生的位置变化,还是手指自主改变与载体之间的相对位置关系所带来的位置变化。
本发明所述的手指动作单元用于感知某一时刻手指相对于地面的动作状态,基准位置定标器则是提供身体等运动载体相对于地面的运动信息。此时,如果需要进行信息的输入,则简单地通过手指的动作,探测其与基准位置定标器之间的相对变化即可辨识完成。这种输入方式,既可在手部没有支撑的情况下,简单使用手指进行“比划”实施,也可在具有支撑的情况下(例如将手放到桌面、自己的腿部或另一侧的臂部)进行“点击”实施。无论是缓慢移位还是快速叩击,不同的运动方向与方式的综合,可以形成一个相对于载体(如手腕)的、具有一定手指活动范围的“三维空间”。
随着小型封装的三轴加速度传感器和三轴陀螺仪的复合传感器技术的出现,惯性传感等相关器件和技术日趋成熟。所以,手指动作单元和基准位置定标器均可综合这些技术,进行加速度、速度、位移、方向、角度、时间变化等物理量的检测。这些实测数据可以作为“第一手”数据,实时传回与基准位置定标器共体的数据处理单元中,进行手指的运动辨识。实际上,所有这些物理量的变化均具有一定的关联性,可以转换为“基础数据”的形式,以供后续处理。
在本发明中,不仅手指动作单元定位是必须的,而且基准位置定标器也是不可或缺。手指动作单元记录的是其与地面之间的绝对运动。不管是手指的独立运动,还是甩臂、行走,身体发生的任何位移均将带动手指的坐标发生变化,当然也包括所乘坐的车辆、电梯等运动平台的状态变化在内。
所以,任何反映在手指动作单元的运动均会被悉数记录,但这往往又不是使用者所希望得到的手指控制信号。如果基准位置定标缺失,仅靠手指动作单元,则因缺乏参照而无法产生有效的信息,系统也将无法辨识是独立的手指位移,还是由于交通工具、人体行进所导致的环境位移而带动的手指位移。所以,手指动作单元和基准位置定标器二者缺一不可,必须同时出现,同时使用。
基准位置定标器和手指动作单元中的加速度信息通过一次积分、二重积分运算和相关角速度数值的修正后,得到各自的速度、位置等参数。再经过简单但高速的减法运算,便可完成“背景消隐”处理,实时得到手指动作单元相对于基准位置定标器的有效的实时位置信息。
假设某一时刻手部保持相对静止,但手臂位置有所变化,或是身体带动手臂发生了移动,基准位置定标器和手指动作单元的数据应该发生了同样的变化。对于这种情况而言,尽管基准位置定标器和手指动作单元均发生了位移,但属于二者相对地面坐标系所同步发生的“整体位移”,即手指动作单元与基准位置定标器相对于上一时刻各自的变化量是同步的、相等的。背消处理后,结果为零。
这也就说明了带有手指动作单元的手指相对于带有基准位置定标器的手腕没有相对位置的变化。从而,可将手臂、身体以及车辆等载体环节所带来的位移“干扰”信息予以消除。背景消隐法能够精确辨识手指动作单元与基准位置定标器之间的有效相对位移,尽量减少以至使得手指不受由于身体其它部位运动所导致的定位干扰。
如果的确是手指相对于手腕的位置及状态发生了变化,则经过背景消隐之后,结果肯定不会为零。可以认为,此时这个不为零的结果就是能够反映变化之后的新的位置或状态信息。
综合处理单元与手指动作单元之间可以通过有线或无线的方式进行连接。不管手指动作单元与综合处理单元之间连接方式如何,手指动作单元对于手指顶端的运动不应产生任何限制。所以,带有手指动作单元的手指与平时一样,是完全自由的,可以进行上下、左右、前后三个方向的随意运动。
实际上,综合处理单元只要相对于手指动作单元是固定的即可。所以,综合处理单元既可以位于腕部,也可以绑定于胸前或身体的某一相对稳定之处,或是干脆直接固定于使用者的工作环境或汽车等乘坐载体中的桌、椅等某个合适的部位。以此,尽可能地适应因应用环境所造成的手指及手部运动的空间差异,以及对其进行辨识时所需的不同“标定范围”和“分辨率”的要求。
通过对加速度、线速度、角速度、运动时间等参数的测量,除了能够得出静态的位置信息外,还可反映手指的加速、匀速、方向、启停状态等运动状况,以模拟常规输入设备中的滑动、拨轮、点击等具体的功能要求。进而,便能够在光标所标定的特定位置进行各种操作命令的输出。
在本发明指标器的这些输出信号在转换成为坐标位置信号后,可以实时传输到具体的电子设备(例如智能眼镜)中,供其作为屏幕光标的位置信号使用;也可以传送至手机等电子设备中,经其处理后留作自身使用或再作他用。在定位信息的传输方式方面,既可以是有线传输,也可以是无线传输。
另外,在使用的过程中若是手有依托,本发明指标器便可以模拟目前笔记本电脑中的触摸屏,即在手能够触及到的任何平面(例如桌面、墙壁,甚至是自己的腹部、腿部等)建立了一个基于接触方式的“虚拟触摸板”环境,实现包括完成“指端书写”方式在内的全部输入功能。
本发明指标器可以模拟电脑鼠标的前后左右移动、左右键的点击和滚轮的拨转,即建立一个“虚拟鼠标器”,就好像手中把握着一个真实的鼠标一样。进而,只要根据想象所“握住”的“鼠标”,便可做出相应的手指运动,最终使得实际的屏幕操作得以完成。甚至,同样在没有可供接触的平面的情况下,即使手部没有依托、处于悬空方式,依旧能够完成“平动移位、点击输入”的输入操作方式。
更进一步,本发明还可以再通过硬件、软件技术的综合和完善,结合指标器自身独具的灵活、方便和不受周边物体形态限制等种种特征,形成一种全新的、多功能的“指标器输入”方式。对此亦可详述如下。
若以综合处理单元为参照系的原点,建立三维直角坐标或是角坐标系,可以划分出手指在以手腕为轴时,所产生的不同高度或角度所对应的数个不同层面。进而,可将相对于综合处理单元产生位移运动的手指动作单元进行“运动层面”的标定。每一个传统的“触摸板”或“鼠标器”均可对应于一个特定的运动层面。因此,以往基于平面的各种输入设备和工作方式,便可非常直观和方便地纳入到立体方式的多层运行结构之中。由此即产生了“多板触摸”、“分层鼠标”或“三维输入”的概念和相应的技术。
同样,在系统中需要更多的手指动作单元或需要根据不同的运动方式、规模,进行“分组”或“分类”时,便可通过建立分级“固定”的方式,形成系统的级联结构。
随着嵌入式计算机系统的体积越来越小、功耗越来越低、单个IC芯片的集成度越来越高、功能越来越强,综合处理单元(甚至手指动作单元)完全可以不仅仅作为一个输入设备工作,还能够将整个可穿戴系统的中央处理环节包容其中。即,以“腕表”形式出现的综合处理单元具有了更为广泛的功能,成为一个更为强大的信息处理综合体。从而,无需再去依托专用的“主机”或借助现有的手机等类智能设备进行后续的信息处理工作。
本发明可穿戴式输入装置与CN101581990A专利最大的不同以及技术和应用优势体现在以下五个方面:
一、本发明可穿戴式输入装置不是基于现有任何常见输入设备的基本原理或通用方法而产生的。
二、在本发明可穿戴式输入装置中,并不需要进行输入装置和被控对象之间的距离判断,在有效的信息传输范围内,无论距离远近,使用方式完全相同。而且,因为可以使用背景消隐技术以及自主控制手部的运动,可将震动和晃动的影响降至最小。
三、在本发明可穿戴式输入装置中,使用“虚拟鼠标”的方式与使用真实鼠标一样,使用者可以按照使用真实鼠标的习惯,使用食指进行与真实鼠标一样的针对左、右键和滚轮的“操作”。此外,使用本发明可穿戴式输入装置还可实现“虚拟触摸板”的输入操作。
四、本发明能够通过三维传感技术,彻底改变现有的平面鼠标运行方式,以实现三维虚拟鼠标。因此,有可能直接完成三维应用的需求,例如对三维立体旋转图形或影像等的控制。
五、在本发明可穿戴式输入装置中,可以分别在左、右手戴上综合处理单元,在双手的十指上均戴上手指动作单元。这样,只要相应的数据处理速度能够满足,就可以实时完成多点、同时输入的要求。
总而言之,本发明可穿戴式输入装置可有单手单指方式(如模拟一般的触摸板和鼠标的使用)、单手多指方式(如模拟高精度的鼠标使用)和双手多指方式(如形成数据手套的简化和可变结构)等多种实现方式。对于双手多指方式的可穿戴式输入装置,既可以进行哑语输入,也可以作为钢琴等键盘乐器在实时演奏过程中的指法记录,甚至还可以在一个具有一定形状和面积的平面上想象出一个钢琴键盘,进行模拟演奏。
另外,相比于目前较为成熟的惯性传感技术,精确的无线定位方法正处于发展过程之中,但其潜力更大。无线定位技术可以是现有RIPS(radio interferometric positioning system)中的TFIM(two frequency intervals method)的技术应用,以及类似的技术。特别是,毫米波设备的成熟化、微型化,以及太赫兹技术的出现,为精确的无线定位提供了无限的发展前景和各种可能。
若是在综合处理单元中安装有无线定位发射单元,则相当于建立一个能够移动的“基站”。手指动作单元中安装有无线接收和定位电路,仅在“基站”附近很小的工作范围(即手指的活动范围)内有效即可,其功耗极低。这样,综合处理单元便可以通过无线定位技术,直接定位手指动作单元。对于单手单指方式,其运算过程还可大大简化。而且,更容易进行双手多指、甚至是更多输入点数的分组处理。此时其运动辨识的方法与前述内容完全相同。
本发明的目的之二是这样实现的:一种电子设备,包括一个电子设备终端和可穿戴式输入装置;所述可穿戴式输入装置包括有:
手指动作单元,佩戴在使用者的手指上,用于检测所佩戴手指的动作状态,并将所检测到的手指动作状态数据信息传送到数据处理单元;
基准位置定标器,为包括加速度传感器和角速度传感器在内的惯性传感器,或是用于无线定位的无线发射单元,用于检测承载所述手指动作单元的手臂/人体的运动状态,并将所检测到的手臂/人体运动状态数据信息传送到数据处理单元;
数据处理单元,根据所接收的手指动作状态数据信息和手臂/人体运动状态数据信息,实时解算出所述手指动作单元相对于所述基准位置定标器的运动状态变化量的数据信息,在进行背景消减处理后,形成关联电子设备显示器上的显示光标定位信息,或者形成操作关联电子设备的输入信息;以及
通讯单元,用以向关联的电子设备发送显示光标定位信息,或者发送操作关联电子设备的输入信息;
所述基准位置定标器、所述数据处理单元和所述通讯单元共同设置在一个物理载体中,形成一个综合处理单元;所述综合处理单元既可佩戴在使用者的手腕部或躯干部,也可固定在使用者的随身附着物或身边固定物上。
所述手指状态传感器为包括加速度传感器和角速度传感器在内的惯性传感器,或是具备无线定位技术的信号接收装置,以实时获取手指动作的加速度、速度、位移和位置参数信息,形成手指定位数据信息;
所述状态信息传输器用于向所述数据处理单元实时传输手指定位数据信息。
所述基准位置定标器可以是包括加速度传感器和角速度传感器在内的惯性传感器,以实时获取其所在部位的加速度、速度、位移和位置参数信息,形成判断手指动作的背景运动数据信息。
所述基准位置定标器还可以是具有无线定位功能的无线发射单元,通过无线定位方式,直接定位所述手指动作单元。
这种电子设备可以极大地促进新一代智能电子产品的发展和应用
附图说明
图1是本发明可穿戴式输入装置的基本构成框图。
图2是本发明可穿戴式输入装置的基本结构及佩戴方式示意图。
图3是指标器“整体位移”状态示意图。
图4是指标器“相对位移”状态示意图。
图5是本发明可穿戴式输入装置的工作流程图。
图6是指标器的“指端书写”工作方式示意图。
图7是指标器作为虚拟鼠标器及其“把握”方式示意图。
图8是本发明可穿戴式输入装置的一种实施方式的构成框图。
图9是单手多指指标器的使用状态图。
图10是基于双手多指方式的哑语输入器的结构示意图。
图11是基于双手多指方式的钢琴演奏指法记录器的结构示意图。
具体实施方式
如图1所示,本发明可穿戴式输入装置的基本构成包括手指动作单元01、基准位置定标器、数据处理单元和通讯单元等部分,其中,基准位置定标器、数据处理单元和通讯单元可集中设置到一个物理载体中,形成一个综合处理单元02。手指动作单元01可制成顶针或指环的形状,佩戴在使用者的手指上,最好是在指尖部位(图2)。综合处理单元02可制成腕表、卡带等结构(图2),既可佩戴在使用者的手腕部或躯干部,也可固定在使用者的随身附着物或身边固定物上。
手指动作单元01用于检测所佩戴手指的动作状态,包括手指状态传感器和状态信息传输器。其中,手指状态传感器包括角角速度传感器、加速度传感器等惯性传感元件,用以产生手指定位数据,即,实时获取其所在手指部位的加速度、速度、位移和位置等参数,并将所检测到的手指运动的加速度、速度、位移等物理量的数据信息传送到数据处理单元。
基准位置定标器用于检测承载手指动作单元01的手臂或人体的运动状态,并将所检测到的手臂或人体运动状态的物理量的数据信息作为手指动作的背景运动信息传送到数据处理单元。基准位置定标器可以是包括角速度传感器和加速度传感器在内的惯性传感器,以实时获取其所在部位的加速度、速度、位移和位置参数信息,形成判断手指动作的背景运动数据信息;也可以是具有无线定位功能的无线发射单元,通过无线定位方式,直接定位所述手指动作单元。
数据处理单元对所接收的手指运动数据信息和背景运动数据信息进行背景消减处理,实时解算出手指动作单元01相对于基准位置定标器的运动状态变化量,以实时获得手指动作单元相对基准位置定标器的运动数据,形成位置坐标信息,从而构成显示屏的光标位置信息,或是作为可穿戴电子设备的输入信息。
通讯单元与数据处理单元相接,与使用信息的电子设备进行通信,以发送光标定位信息,或发送为可穿戴设备所能够接收的输入信息。
本发明指标器采用背景消隐技术处理佩戴手指动作单元01的手指与安置综合处理单元02的载体(如手腕)之间的相对运动。如果二者仅是同步发生位移,相对地面坐标系则属于整体位移,即带有手指动作单元01的手指相对于带有综合处理单元02的手腕没有位置变化。数据处理单元使用求取差值的方法可将此类位移“干扰”信息消除(图3)。如果是手指相对于手腕的位置及状态发生变化,即可判为是有效的位置或状态信息(图4)。其具体工作流程如图5所示。对于图5所示的基本工作过程而言,使用现有的计算、通讯技术和相应的元器件已完全可以实现。
本发明指标器可实现“虚拟触摸板”的工作方式,完成“指端书写”在内的各种输入功能(图6);也可模拟电脑鼠标,建立一个“虚拟鼠标器”,完成“平动移位、点击输入”的鼠标工作方式(图7)。
本发明指标器可有单手单指方式(如模拟一般的触摸板和鼠标的使用)、单手多指方式(如模拟高精度的鼠标使用)和双手多指方式(如形成数据手套的简化和可变结构)等多种实现方式。对于双手多指方式的指标器,既可以进行哑语输入,也可以作为钢琴等键盘乐器在实时演奏过程中的指法记录,甚至还可以在一个具有一定形状和面积的平面上想象出一个钢琴键盘,进行模拟演奏。
实施例1:基于单手单指方式的简单指标器的实现
如图2所示,本实施例的简单指标器包括一个手指动作单元01和一个综合处理单元02。手指动作单元01包括手指状态传感器和状态信息传输器(图1)。综合处理单元02包括基准位置定标器、数据处理单元、通讯单元、状态显示单元和电源单元等部分(图8)。数据处理单元包括了二重积分器和位置编码器等功能环节。
手指动作单元01中的手指状态传感器构成指端惯性单元,综合处理单元02中的基准位置定标器构成腕部惯性单元。两个惯性单元所产生的全部运动数据均传输至数据处理单元进行解算,所以,指端相对于腕部的运动状态就能够精确得出。进而,手指的前后左右运动可以转换并等效成为某个“鼠标”在某一个“桌面”上平动,由此形成了一个“鼠标平面”(图7)。手部在一定范围和程度的提升或下降可以等效为另外一个“鼠标平面”,以便控制另外一个电子设备的输入。而指端的点击动作便可等效为“按键”操作。
戴在腕部的综合处理单元02,可以制成卡带结构,也可以制成外形类似于电子手表的结构。从实施方案简单、明了的角度考虑,与指端的手指动作单元01可以使用有线方式进行连接,当然也可使用无线连接。而数据处理后所形成的系统光标位置信息,需要经由基于蓝牙技术的通讯单元传送至相关的数据接收设备。
两个惯性单元可采用Bosch公司的9轴MEMS惯性测量单元BMX055。该芯片集成了12位三轴加速度计、16位三轴陀螺仪和宽量程三轴磁力计,封装尺寸为4.5×3.0 ×0.95mm,供电电压为2.4~3.6V,工作电流<5mA。该芯片具有I2C和SPI接口,可以在±2g/±4g/±8g/±16g范围内提供数据输出,以供后续处理器使用。
数据处理单元的主要功能可由Freescale公司的32位嵌入式处理器KL02予以完成。该芯片封装尺寸为2 ×1.61×0.56 mm,供电电压为1.71~3.6 V,正常工作电流在5 mA左右,并包括了一个SPI模块和两组I2C模块。
Dialog半导体有限公司的DA14580蓝牙无线网络芯片供电电压为3 V,运行功耗为13.2mW,数据传输时最大工作电流仅为4.9mA,其最小封装尺寸为2.5×2.5×0.5mm。该芯片也具有I2C和SPI接口。
此外,如果增加一个精巧的状态显示单元,即可将综合处理单元02的功能加以拓展,从而直接显示出所有与指标器直接相关的参数。例如,数据传输状态、电池电量以及各类错误的提示等内容,还可显示时间、日期等附带信息。状态显示单元可采用DENSITRON公司的128×64点阵OLED模组,直接经由I2C接口连接到数据处理单元,接收待显示数据及图形信息。其型号为DD-12864WE-4A(封装尺寸为26.70×19.26×1.45mm)。其驱动器为SSD1306,并使用ST公司的STOD1812(供电电压2.5~5.5 V,封装尺寸3×3×0.8mm)构成电源单元,提供状态显示单元所需的较高电压。
本实施例可服务于不同类型的可穿戴电子设备。所以,无论是有线还是无线连接,各种类型的节点不多,传输距离也很近。因此,在指标器内部各个单元之间使用I2C或SPI接口相互连接非常方便。而外部通讯在目前环境干扰不是太大的情况下,使用蓝牙技术即可。否则,就需要考虑节点支持更多、单位功耗更低、抗扰能力更强的ANT方式了。
综上所述,本实施例所述各项环节可以利用现有芯片和技术,在一个与CR2032纽扣电池面积近似的电路板上即可较为方便地予以实现。而且,可以与电池、显示单元共同封装于综合处理单元02之中。在不计显示的情况下,整个系统功耗仅在50mW左右,一个300mA/h的纽扣电池可以为其连续供电5个小时以上。显示时功耗较大,仅在需要时触发即可,平时则处于关闭状态。如果在系统中再增加一些电源管理措施,则供电的持续时间可能更长。
实施例2:基于单手多指方式的复杂虚拟鼠标的实现
对于高精度的鼠标器而言,至少应有左键、右键、滚轮和拇指键,甚至还包括一个在鼠标侧壁上设置的拇指键盘。为模拟和使用这种鼠标器,就需要从单手单指的基本方式拓展为单手多指的综合方式,即本实施例的指标器是由一个综合处理单元02和三个手指动作单元01所组成,如图9所示。
本实施例的具体方案及使用方法如下:
1、在手腕处绑定一个综合处理单元02,而且该单元支持多个手指动作单元输入的模式,以便进行多点输入。
2、在拇指、食指和中指的指尖或第一指节处分别佩戴手指动作单元01,这三个单元各自独立地连接到综合处理单元02。
3、与正常的鼠标使用方式相同,由食指负责进行“左键”的点击,中指负责“右键”的点击。而“滚轮”的使用需将食指移至“左键”和“右键”的位置之间进行“拨动”即可。
4、拇指负责拇指键的输入。因为正常鼠标的拇指键和拇指键盘的键数不等,从一个到十几个都有。键数越多,对于手指动作单元01的精度要求就越高。
5、在“模拟鼠标”进行平移的过程中,拇指、食指和中指必须保证相对静止,依靠手部(不是小臂)的左右摆动和上述三个手指的前后同步平移即可。因指标器是一个三维输入设备,所以也完全能够模拟手握物理鼠标时的“抬起”和“放下”的动作。通过相应的软件技术,不仅可以等效实现现有物理鼠标的所有特性,还可以开发实现全新的“三维鼠标”的功能。使用时,手中如果握住一个类似鼠标的物体(即便是一只平放的水杯也可),则更易于掌控和操作,即真正将其作为“鼠标”来使用。
实施例3:基于双手多指方式的哑语输入器的实现
哑语输入器的基本结构如图10所示。因为哑语需要通过双手的姿势和不同的指型、指位予以表示,所以在使用本实施例时,需要采用基于分级“固定”的级联结构。
此时,相对于身体真正“固定”的,是位于胸前的综合处理单元02,称作“一级固定”。而绑定于手腕的综合处理单元02仅仅是相对位于手指上的手指动作单元01有所“固定”而已,相对于“一级固定”而言,仍类似于一个“手指动作单元”。所以,可称其为“二级固定”。
利用现有成熟技术,经由软件的标定和后续的辨识,可以通过“一级固定”得知双手相互的位置关系;通过“二级固定”,则可反映出手部的形状;再通过手指动作单元01,又可判断双手十个指端的位置。若是需要精确确定每个手指的指型或指位,则需在手指的每个指节处均再套装一个手指动作单元01。而这仅仅是在原有的基础上进行数量的增加而已,并不需要技术的更新。由此即可利用本发明构成一种哑语输入器。
实施例4:基于双手多指方式的钢琴演奏指法记录器的实现
钢琴演奏指法记录器的基本结构如图11所示。在钢琴等键盘乐器的演奏过程中,演奏者每个手指的动作都包含了位置、速度、力度、滞键时长、抬指高度等多项指标。而最主要的就是,在整个乐曲的演奏过程中,需要标定每个手指敲击键盘时的顺序和位置,以及拇指和其余4指的过指关系。钢琴演奏指法记录器需要准确识别并标识出演奏过程中的这些参数。
本实施例首先需要十个基本的手指动作单元01。为了尽量少地影响演奏,手指动作单元01均需套接在每根手指的第二指节处。标准的88键钢琴键盘所有琴键的尺寸和位置是严格固定的,所以,手指动作单元01的有效工作范围也就是确定的。
此外,演奏过程中手腕的位置和动作也很重要。所以,应在手腕处同样绑定两个手指动作单元01。当然,若是特别强调手腕与各个手指间的相互关系,使用综合处理单元02更好。但这样的话,级联方式就会类似于实施例3。
至于演奏过程中身体的姿态以及相应的摆动方式问题,可以认为仅仅是演奏者情感抒发时的下意识表现,或是多见于刻意增强视觉观感的主观需求。而其对于纯粹的听觉效果并无实质性的改善,可以不必考虑。如果特别需要的话,可在演奏者的头部和胸部分别再加装两个手指动作单元01即可。
与实施例3不同的是,所有手指动作单元01的运动参数都是相对于键盘而言的,准确地说,是相对于钢琴本体而言。所以,真正意义上的综合处理单元02应该固定于钢琴之上。实际上,此时将综合处理单元02直接放置于琴盖、掀起的键盘盖板或是盖板自带的谱架等在演奏过程中较为稳定之处均可。

Claims (8)

  1. 一种用于电子设备的可穿戴式输入装置,其特征是,包括有:
    手指动作单元,佩戴在使用者的手指上,用于检测所佩戴手指的动作状态,并将所检测到的手指动作状态数据信息传送到数据处理单元;
    基准位置定标器,为包括加速度传感器和角速度传感器在内的惯性传感器,或是用于无线定位的无线发射单元,用于检测承载所述手指动作单元的手臂/人体的运动状态,并将所检测到的手臂/人体运动状态数据信息传送到数据处理单元;
    数据处理单元,根据所接收的手指动作状态数据信息和手臂/人体运动状态数据信息,实时解算出所述手指动作单元相对于所述基准位置定标器的运动状态变化量的数据信息,在进行背景消减处理后,形成关联电子设备显示器上的显示光标定位信息,或者形成操作关联电子设备的输入信息;以及
    通讯单元,用以向关联的电子设备发送显示光标定位信息,或者发送操作关联电子设备的输入信息;
    所述基准位置定标器、所述数据处理单元和所述通讯单元共同设置在一个物理载体中,形成一个综合处理单元;所述综合处理单元既可佩戴在使用者的手腕部或躯干部,也可固定在使用者的随身附着物或身边固定物上。
  2. 根据权利要求1所述的可穿戴式输入装置,其特征是,所述手指动作单元包括手指状态传感器和状态信息传输器;
    所述手指状态传感器为包括加速度传感器和角速度传感器在内的惯性传感器,或是具备无线定位技术的信号接收装置,以实时获取手指动作的加速度、速度、位移和位置参数信息,形成手指定位数据信息;
    所述状态信息传输器用于向所述数据处理单元实时传输手指定位数据信息。
  3. 根据权利要求1所述的可穿戴式输入装置,其特征是,所述基准位置定标器为包括加速度传感器和角速度传感器在内的惯性传感器,以实时获取其所在部位的加速度、速度、位移和位置参数信息,形成判断手指动作的背景运动数据信息。
  4. 根据权利要求1所述的可穿戴式输入装置,其特征是,所述基准位置定标器是具有无线定位功能的无线发射单元,通过无线定位方式,直接定位所述手指动作单元。
  5. 一种电子设备,其特征是,包括电子设备终端和可穿戴式输入装置;所述可穿戴式输入装置包括有:
    手指动作单元,佩戴在使用者的手指上,用于检测所佩戴手指的动作状态,并将所检测到的手指动作状态数据信息传送到数据处理单元;
    基准位置定标器,为包括加速度传感器和角速度传感器在内的惯性传感器,或是用于无线定位的无线发射单元,用于检测承载所述手指动作单元的手臂/人体的运动状态,并将所检测到的手臂/人体运动状态数据信息传送到数据处理单元;
    数据处理单元,根据所接收的手指动作状态数据信息和手臂/人体运动状态数据信息,实时解算出所述手指动作单元相对于所述基准位置定标器的运动状态变化量的数据信息,在进行背景消减处理后,形成关联电子设备显示器上的显示光标定位信息,或者形成操作关联电子设备的输入信息;以及
    通讯单元,用以向关联的电子设备发送显示光标定位信息,或者发送操作关联电子设备的输入信息;
    所述基准位置定标器、所述数据处理单元和所述通讯单元共同设置在一个物理载体中,形成一个综合处理单元;所述综合处理单元既可佩戴在使用者的手腕部或躯干部,也可固定在使用者的随身附着物或身边固定物上。
  6. 根据权利要求5所述的可穿戴式输入装置,其特征是,所述手指动作单元包括手指状态传感器和状态信息传输器;
    所述手指状态传感器为包括加速度传感器和角速度传感器在内的惯性传感器,或是具备无线定位技术的信号接收装置,以实时获取手指动作的加速度、速度、位移和位置参数信息,形成手指定位数据信息;
    所述状态信息传输器用于向所述数据处理单元实时传输手指定位数据信息。
  7. 根据权利要求5所述的可穿戴式输入装置,其特征是,所述基准位置定标器为包括加速度传感器和角速度传感器在内的惯性传感器,以实时获取其所在部位的加速度、速度、位移和位置参数信息,形成判断手指动作的背景运动数据信息。
  8. 根据权利要求5所述的可穿戴式输入装置,其特征是,所述基准位置定标器是具有无线定位功能的无线发射单元,通过无线定位方式,直接定位所述手指动作单元。
PCT/CN2014/082108 2014-06-18 2014-07-12 电子设备和用于电子设备的可穿戴式输入装置 WO2015192416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410272210.6 2014-06-18
CN201410272210.6A CN104007844B (zh) 2014-06-18 2014-06-18 电子设备和用于电子设备的可穿戴式输入装置

Publications (1)

Publication Number Publication Date
WO2015192416A1 true WO2015192416A1 (zh) 2015-12-23

Family

ID=51368536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082108 WO2015192416A1 (zh) 2014-06-18 2014-07-12 电子设备和用于电子设备的可穿戴式输入装置

Country Status (2)

Country Link
CN (1) CN104007844B (zh)
WO (1) WO2015192416A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536556B (zh) * 2014-09-15 2021-01-15 联想(北京)有限公司 一种信息处理方法及电子设备
WO2016097841A2 (en) * 2014-12-16 2016-06-23 Quan Xiao Methods and apparatus for high intuitive human-computer interface and human centric wearable "hyper" user interface that could be cross-platform / cross-device and possibly with local feel-able/tangible feedback
CN104503576A (zh) * 2014-12-22 2015-04-08 山东超越数控电子有限公司 一种基于手势识别的计算机操作方法
CN104898829A (zh) * 2015-04-17 2015-09-09 杭州豚鼠科技有限公司 体感交互系统
CN106201282A (zh) * 2015-05-04 2016-12-07 联想(北京)有限公司 一种数据输入方法及穿戴式电子设备
CN106502407A (zh) * 2016-10-25 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种数据处理方法及其相关设备
CN108062786B (zh) * 2016-11-08 2022-12-30 台湾国际物业管理顾问有限公司 以三维信息模型为基础的综合感知定位技术应用系统
CN106601217B (zh) * 2016-12-06 2021-03-02 北京邮电大学 一种交互式乐器演奏方法及装置
CN106621323B (zh) * 2016-12-09 2023-04-14 深圳趣感科技有限公司 信号输入装置和方法
CN106648148A (zh) * 2016-12-14 2017-05-10 天津映之科技有限公司 一种计算机领域中用于人机交互的指尖佩戴式操作终端
CN106681264A (zh) * 2016-12-14 2017-05-17 天津映之科技有限公司 一种计算机领域中物联网下用于人机交互的穿戴设备
CN107608511A (zh) * 2017-09-14 2018-01-19 张兰梅 输入方法及装置
CN107545807B (zh) * 2017-09-28 2020-02-07 凯珀瑞润滑科技(东台)有限公司 人性化智能盲人教学钢琴
CN109859452A (zh) * 2019-03-11 2019-06-07 汕头大学 一种穿戴式控制器及使用该控制器的方法
CN114489331A (zh) * 2021-12-31 2022-05-13 上海米学人工智能信息科技有限公司 区别于按钮点击的隔空手势交互方法、装置、设备和介质
CN116521181B (zh) * 2023-07-05 2023-09-01 湖南速子文化科技有限公司 基于游戏系统的脚本数据处理方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581990A (zh) * 2008-05-13 2009-11-18 联想(北京)有限公司 电子设备和应用于电子设备的可穿戴式指点装置、方法
US20100161084A1 (en) * 2006-02-01 2010-06-24 Yang Zhao Magnetic sensor for use with hand-held devices
CN102478956A (zh) * 2010-11-25 2012-05-30 安凯(广州)微电子技术有限公司 一种虚拟键盘输入设备及输入方法
CN102541291A (zh) * 2010-12-15 2012-07-04 深圳富泰宏精密工业有限公司 穿戴式鼠标
CN103692454A (zh) * 2013-12-12 2014-04-02 浙江理工大学 外骨架穿戴式数据手套

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161084A1 (en) * 2006-02-01 2010-06-24 Yang Zhao Magnetic sensor for use with hand-held devices
CN101581990A (zh) * 2008-05-13 2009-11-18 联想(北京)有限公司 电子设备和应用于电子设备的可穿戴式指点装置、方法
CN102478956A (zh) * 2010-11-25 2012-05-30 安凯(广州)微电子技术有限公司 一种虚拟键盘输入设备及输入方法
CN102541291A (zh) * 2010-12-15 2012-07-04 深圳富泰宏精密工业有限公司 穿戴式鼠标
CN103692454A (zh) * 2013-12-12 2014-04-02 浙江理工大学 外骨架穿戴式数据手套

Also Published As

Publication number Publication date
CN104007844B (zh) 2017-05-24
CN104007844A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2015192416A1 (zh) 电子设备和用于电子设备的可穿戴式输入装置
Perng et al. Acceleration sensing glove (ASG)
CN106445130B (zh) 一种用于手势识别的动作捕捉手套及其校准方法
WO2020209662A1 (en) Wearable electronic device including biometric sensor and wireless charging module
US9218058B2 (en) Wearable digital input device for multipoint free space data collection and analysis
WO2019156518A1 (en) Method for tracking hand pose and electronic device thereof
WO2010053260A2 (ko) 공중에서의 손가락 움직임을 통해 제어되는 마우스
WO2018026202A1 (ko) 펜과 관련된 정보를 판단하는 터치 감지 장치 및 그 제어 방법과 펜
WO2016028097A1 (en) Wearable device
WO2010056024A2 (en) Method and device for inputting force intensity and rotation intensity based on motion sensing
US20220155866A1 (en) Ring device having an antenna, a touch pad, and/or a charging pad to control a computing device based on user motions
WO2015165162A1 (zh) 一种主机运动感测方法、组件及运动感测系统
CN107765850A (zh) 一种基于电子皮肤及多传感融合的手语识别系统
CN103605433B (zh) 一种多功能人体学输入设备
US11054923B2 (en) Automatic switching between different modes of tracking user motions to control computer applications
WO2019061513A1 (zh) 一种姿态矩阵的计算方法及设备
WO2022131534A1 (ko) 웨어러블 디바이스 및 웨어러블 디바이스의 모션 제스처 검출 방법
WO2021172839A1 (ko) 신체에 접촉되는 전극을 포함하는 전자 장치
RU2670649C1 (ru) Способ изготовления перчатки виртуальной реальности (варианты)
CN110209270A (zh) 一种数据手套、数据手套系统、校正方法及存储介质
CN110113490A (zh) 一种信息处理方法、终端及计算机可读存储介质
CN211578174U (zh) 一种手势识别手套
CN209070493U (zh) 一种手势设备及系统
CN113873637A (zh) 定位方法、装置、终端和存储介质
Calella et al. HandMagic: Towards user interaction with inertial measuring units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895238

Country of ref document: EP

Kind code of ref document: A1