WO2015192367A1 - 一种生物倍增污水脱氮处理系统和污水脱氮处理方法 - Google Patents

一种生物倍增污水脱氮处理系统和污水脱氮处理方法 Download PDF

Info

Publication number
WO2015192367A1
WO2015192367A1 PCT/CN2014/080375 CN2014080375W WO2015192367A1 WO 2015192367 A1 WO2015192367 A1 WO 2015192367A1 CN 2014080375 W CN2014080375 W CN 2014080375W WO 2015192367 A1 WO2015192367 A1 WO 2015192367A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
circulation
sewage
denitrification treatment
treatment system
Prior art date
Application number
PCT/CN2014/080375
Other languages
English (en)
French (fr)
Inventor
李建国
Original Assignee
必德普(北京)环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 必德普(北京)环保科技有限公司 filed Critical 必德普(北京)环保科技有限公司
Priority to PCT/CN2014/080375 priority Critical patent/WO2015192367A1/zh
Priority to US14/401,460 priority patent/US9957178B2/en
Publication of WO2015192367A1 publication Critical patent/WO2015192367A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0051Plurality of tube like channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0042Baffles or guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0045Plurality of essentially parallel plates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • C02F3/223Activated sludge processes using circulation pipes using "air-lift"
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of sewage treatment, in particular to a biological doubled sewage denitrification treatment system and a sewage denitrification treatment method. Background technique
  • TN refers to the total amount of water and various forms of inorganic and organic nitrogen, including N0 3 -, ⁇ 0 2 ⁇ NH 4 +, and other inorganic nitrogen and proteins, amino acids and other organic amines, and organic nitrogen, per liter of water to The number of milligrams of nitrogen is calculated. Often used to indicate the extent to which water bodies are contaminated with nutrients. When the nitrogen and phosphorus substances in the surface water exceed the standard, the microorganisms multiply and the plankton grows vigorously, showing eutrophication.
  • the GB344-2008 pulp and paper industry water pollutant discharge standard stipulates that the total nitrogen emission limit of the pulping enterprise is 18 mg/L. Waste paper pulp and paper companies have a total nitrogen emission limit of 15 mg/L, other pulp and paper companies have a total nitrogen emission limit of 15 mg/L, and paper mills have a total nitrogen emission limit of 15 mg/L.
  • the total nitrogen emission limit for existing enterprises is 50 ( 40 ) mg / L; for new enterprises, the total The nitrogen emission limit is 35 (20) mg/L.
  • the denitrification methods for wastewater can be divided into physicochemical method and biological nitrogen removal method, wherein the physicochemical method includes air stripping method, break point chlorination method, zeolite adsorption method and flocculation precipitation method.
  • the air stripping method and the flocculation method can be used for the pretreatment of high ammonia nitrogen wastewater.
  • the latter is more expensive than the former; the broaching method and the zeolite adsorption method are suitable for advanced treatment.
  • the former liquid chlorine cost is too high and difficult.
  • preservation, nitrogen can make up for the discomfort of the blow-off method in the cold season, while the treatment of the latter regenerator is still a problem.
  • the biological nitrogen removal method includes the traditional process denitrification method, based on the three reactions of ammoniation, nitrification and denitrification, A/0 (anoxic/aerobic) denitrification process, oxidation ditch nitrification denitrification method and SBR (intermittent exposure). Gas activated sludge method).
  • the biochemical method of nitrogen removal has various forms, and it has great potential due to its economic and no secondary pollution.
  • an object of the present invention is to provide a bio-doubled sewage denitrification treatment system and method, and the total nitrogen content of the wastewater after treatment by the sewage denitrification treatment system provided by the present invention meets emission control standards.
  • the invention provides a biological doubled sewage denitrification treatment system, comprising a water inlet zone, wherein the water inlet zone is provided with a water inlet;
  • a rapid sedimentation zone in communication with the second aerodynamic zone, the rapid sedimentation zone being provided with a water outlet;
  • reflux buffer in communication with the rapid precipitation zone, the reflux buffer being in communication with the circulating circulation zone;
  • a sludge partial exchange line is disposed on the wall of the circulation circulation zone, and the circulation circulation zone performs sludge exchange with the biological multiplication tank through the sludge exchange pipeline.
  • three adjacent side walls of the precipitation zone are co-walled with the circulating circulation zone, the reflux buffer zone and the second aerodynamic zone, respectively.
  • the circulating circulation zone is an annular groove body, a square groove body, a rectangular groove body, a circular groove body or an elliptical groove body.
  • a bottom plate is provided at the bottom of the rapid sedimentation zone
  • the steady flow plate is provided with an air backwashing device, a sloping plate settler and a inclined pipe settler; the air backwashing device is spaced apart from the inclined plate settler;
  • the inclined tube settler is disposed on the inclined plate settler.
  • the circulating circulation area is provided with a fan;
  • the fan draws gas to agitate the sewage in the circulating circulation zone.
  • the water inlet zone and the first aerodynamic zone are disposed within the circulation circulation zone.
  • a partition wall is disposed along the length direction in the circulating circulation region
  • the water inlet zone and the first aerodynamic zone are disposed between the dividing wall and an outer wall of the circulating circulation zone.
  • the invention provides a sewage denitrification treatment method, comprising the following steps:
  • the sewage to be treated enters the sewage denitrification treatment system from the inflow area;
  • the sludge in the rapid sedimentation zone flows back to the circulation circulation zone via a reflux buffer zone; the circulation circulation zone exchanges sludge with the biological multiplication zone through a sludge exchange pipeline.
  • the particle size of the bacterial micelle in the sewage denitrification treatment system is below 100 ⁇ .
  • the dissolved oxygen in the sewage denitrification treatment system fluctuates in a discrete manner from 0.1 mg/L to 0.3 mg/L.
  • the velocity of the lateral flow of the water in the sewage denitrification treatment system is 0.05 m/s to 0.2 m/s.
  • the present invention provides a biologically multiplying sewage denitrification treatment system, comprising an influent zone, the influent zone being provided with a water inlet; a first aerodynamic zone in communication with the influent zone; and the first aerodynamic zone a circulating circulation zone connected to the zone; a second aerodynamic zone communicating with the circulation circulation zone; a rapid precipitation zone communicating with the second aerodynamic zone, the rapid precipitation zone being provided with a water outlet; and the rapid precipitation a recirculation buffer connected to the zone, wherein the reflux buffer is in communication with the circulation circulation zone; a sludge exchange pipeline is disposed on the wall of the circulation circulation zone, and the circulation circulation zone passes through the sludge exchange pipeline Partial sludge exchange with the biomultiplier tank.
  • the sewage to be treated enters the bio-enriched sewage denitrification treatment system provided by the present application through the water inlet zone, and then passes through the first aerodynamic zone, the circulation circulation zone, the second aerodynamic zone and the rapid sedimentation zone, and finally the rapid precipitation zone. Discharge; the sludge in the rapid sedimentation zone flows back to the circulation circulation zone via the reflux buffer, and The circulating circulation zone is subjected to sludge exchange with the biological multiplication tank through the sludge exchange line.
  • the biological doubled sewage denitrification treatment system provided by the invention carries out sludge exchange with the biological multiplication tank through the circulation circulation zone, and utilizes the organic matter in the water to denitrize to the utmost extent; and the air is introduced into the water body, and the ammonia nitrogen in the sewage can be taken Partial oxidation to nitrite, and nitrite oxidation of ammonia nitrogen in the sewage, reducing the demand for denitrifying carbon source, thereby improving the drainage water output index, can meet the upcoming implementation of the total nitrogen emission control standards.
  • the experimental results show that the total nitrogen index is less than 5 mg/L when treated with the bio-doubled sewage denitrification treatment system provided by the present application.
  • the process for denitrifying the sewage by the system provided by the invention is simple, and the effluent TN can stably discharge to the standard.
  • FIG. 1 is a plan view of a biological multiplication sewage treatment system according to an embodiment of the present invention
  • FIG. 2 is a plan view of a circulation circulation zone in a biological multiplication sewage treatment system according to an embodiment of the present invention
  • Fig. 3 is a longitudinal cross-sectional view showing a rapid sedimentation zone in a biological multiplication sewage treatment system according to an embodiment of the present invention. detailed description
  • the invention provides a biological doubled sewage denitrification treatment system, comprising a water inlet zone, wherein the water inlet zone is provided with a water inlet;
  • a rapid sedimentation zone in communication with the second aerodynamic zone, the rapid sedimentation zone being provided with a water outlet;
  • reflux buffer in communication with the rapid precipitation zone, the reflux buffer being in communication with the circulating circulation zone;
  • a sludge exchange line is disposed on the wall of the circulation circulation zone, and the circulation circulation zone performs sludge exchange with the biological multiplication tank through the sludge exchange pipeline.
  • the biological doubled sewage denitrification treatment system provided by the present application performs sludge exchange with the biological multiplication tank through the circulation circulation zone therein, and utilizes the organic matter in the raw water to denitrify the sewage to the maximum extent; and supplements the air into the water body to treat the sewage
  • the ammonia nitrogen is partially oxidized to nitrite, and the nitrite can oxidize the ammonia nitrogen in the sewage, thereby reducing the demand for the denitrifying carbon source, and finally achieving the denitrification treatment of the sewage.
  • the sewage treated by the sewage denitrification treatment system provided by the present application can meet the standard of total nitrogen emission control to be implemented.
  • FIG. 1 is a top view of a biological multiplying sewage treatment system according to an embodiment of the present invention, wherein 001 is a circulation circulation zone, 002 is a water inlet zone, 003 is a first aerodynamic zone, and 004 is a second aerodynamic zone.
  • 005 is the reflux buffer
  • 006 is the rapid sedimentation zone
  • 021 is the inlet pipe of the inlet zone
  • 061 is the outlet pipe of the rapid sedimentation zone
  • 011 is the first sludge exchange pipe
  • 012 is the second sludge exchange pipe.
  • the bio-enriched sewage denitrification treatment system comprises a circulation circulation zone 001 in which an inlet water zone 002 and a first aerodynamic zone 003 are disposed.
  • the shape of the circulation circulation zone is not particularly limited, and may be an annular groove body, a square groove body, a rectangular groove body, a circular groove body or an elliptical groove body, and a person skilled in the art may set a suitable one according to needs.
  • the circulating circulation zone may be specifically a rectangular channel.
  • a partition wall is disposed along the length direction in the circulating circulation region, the partition wall is disposed perpendicular to the water inlet region, and the water inlet region and the water inlet region are An aerodynamic zone is disposed in parallel, and the water inlet zone and the first aerodynamic zone are co-walled with the dividing wall.
  • the circulation circulation zone is provided with a sludge exchange pipeline, specifically, a first sludge exchange pipe 011 and a second sludge exchange pipe 012, the first sludge exchange pipe and the second
  • the sludge exchange pipes are respectively the sludge inlet pipe and the sludge outlet pipe of the circulation circulation zone.
  • the first sludge exchange pipe and the second sludge exchange pipe are respectively disposed on opposite side walls of the circulation circulation zone.
  • the sludge exchange line is further connected to the biological multiplication tank, and the circulation is exchanged to carry out sludge exchange with the biological multiplication tank through the sludge exchange line, thereby maximally utilizing the original
  • the organic matter in the water is denitrified, which improves the denitrification effect.
  • the invention has no special size for the diameter of the sludge exchange pipeline and the size of the circulation circulation zone.
  • the restriction of the person skilled in the art can set a suitable diameter of the sludge exchange line and a suitable circulation circulation area according to actual needs.
  • FIG. 2 is a top plan view of a circulation circulation zone in a biological multiplication sewage treatment system according to an embodiment of the present invention, wherein 007 is a fan.
  • the circulating circulation zone may further be provided with a fan 007, and the fan 007 extracts the gas in the circulation circulation zone, and specifically may be an aerobic gas or an oxygen-free gas, and is stirred.
  • a gas distribution device may be disposed at the air inlet of the fan, and the gas distribution device together with the fan may replenish air into the circulation circulation region to facilitate denitrification treatment of the sewage.
  • the biological doubled sewage denitrification treatment system comprises a water inlet zone 002, wherein the water inlet zone may be disposed in the circulation circulation zone, and the water inlet zone is connected to the first aerodynamic zone, specifically A communication hole may be disposed between the water inlet zone and the first aerodynamic zone to allow sewage to flow from the water inlet zone into the first aerodynamic zone.
  • the water inlet area may be a rectangular groove body disposed perpendicular to a side wall of the circulating circulation area, and the water inlet area and the adjacent side wall of the circulation circulation area share one wall.
  • the water inlet zone 002 is provided with an inlet pipe 021 for the water inlet zone for the sewage to be treated to enter the sewage denitrification treatment system for denitrification treatment.
  • the bio-enriched sewage denitrification treatment system comprises a first aerodynamic zone 003, the first aerodynamic zone is disposed in the circulation circulation zone, and the first aerodynamic zone is the same as the circulation circulation zone. Specifically, a communication hole may be disposed between the first aerodynamic zone and the circulating circulation zone, so that sewage flows from the first aerodynamic zone into the circulation circulation zone.
  • the first aerodynamic zone is disposed in parallel with the water inlet zone. The vertical distance between the water inlet zone and the first aerodynamic zone is not particularly limited, and those skilled in the art can set the water inlet zone and the first aerodynamic zone according to actual needs.
  • the water outlet of the water inlet zone is connected to the water inlet of the first aerodynamic zone.
  • the first aerodynamic zone is provided with a first gas lifting device, and the first gas lifting device is a balanced air releasing device, and the air released by the device passes through a narrow rising channel to bring a large amount of water flowing upward; the first gas lifting device is toward the first air The air is discharged from the aerodynamic zone to facilitate denitrification of the sewage.
  • the bio-enriched sewage denitrification treatment system provided by the present invention includes a second aerodynamic zone 004, the second aerodynamic zone having a similar function to the circulation circulation zone, specifically in the second aerodynamic zone and the A communication hole is provided between the circulation circulation zones.
  • the second aerodynamic zone may be a rectangular groove or a rectangular groove; the adjacent sidewalls of the second aerodynamic zone are respectively associated with the circulation circulation zone and the rapid sedimentation zone. wall.
  • the present invention has no particular limitation on the size of the second aerodynamic zone, and those skilled in the art can set a second aerodynamic zone of a suitable size according to the actual needs of the sewage treatment.
  • a second gas lifting device is disposed in the second aerodynamic zone, and the second gas lifting device discharges air into the second aerodynamic zone to facilitate denitrification of the sewage. .
  • the bio-enriched sewage denitrification treatment system provided by the present invention comprises a rapid precipitation zone 006 which is identical to the second aerodynamic zone.
  • the present invention has no particular limitation on the size and shape of the rapid precipitation zone, and those skilled in the art can set a rapid precipitation zone of a suitable size and shape as needed.
  • the rapid precipitation zone may be a rectangular groove or a square groove; the adjacent three sidewalls of the rapid precipitation zone and the second aerodynamic zone are respectively The circulating circulation zone and the recirculation buffer are co-walled.
  • FIG. 3 is a longitudinal cross-sectional view of a sedimentation zone in a biological multiplication sewage treatment system according to an embodiment of the present invention, wherein 062 is a inclined pipe settler, 063 is a sloping plate settler, 064 is a gas flushing device, and 065 is a steady flow. Plate, 066 is the support platform for the inclined plate settler.
  • a bottom portion of the rapid sedimentation zone is provided with a flow plate on which a gas flushing device is disposed, and a sloping plate settler is sequentially disposed above the gas flushing device a inclined pipe settler, the inclined pipe settler is disposed on the inclined plate settler, and the inclined plate settler is spaced apart from the gas flushing device.
  • the rapid precipitation zone has the above structure, which facilitates denitrification of the sewage, facilitates separation of water and sludge, and thereby obtains drainage that meets emission requirements.
  • the rapid sedimentation zone is provided with a water outlet for discharging the treated sewage.
  • the bio-enriched sewage denitrification system provided by the present invention comprises a reflux buffer, and the reflux buffer A zone is in communication with the rapid precipitation zone, and the reflux buffer is in communication with the circulating circulation zone.
  • a communication hole may be disposed between the reflow buffer and the rapid precipitation zone, and a communication hole is disposed between the reflow buffer and the circulation circulation zone.
  • the reflow buffer may be a rectangular groove or a square groove; two adjacent sidewalls of the reflow buffer are respectively associated with the rapid precipitation zone and the The circulation circulation zone is altogether.
  • the recirculation buffer may be provided with a flow stabilizing device and an air release device to ensure a stable flow state at the bottom of the rapid sedimentation zone and a sufficient release of gas in the muddy water mixture.
  • the particle size of the bacterial micelle in the sewage denitrification treatment system is below 100 ⁇ , and may also be below 90 ⁇ . , which may also be 80 ⁇ ; the dissolved oxygen in the sewage denitrification treatment system fluctuates in a range of 0.1 mg/L to 0.3 mg/L; the lateral flow velocity of the water in the sewage denitrification treatment system is 0.05 m /s ⁇ 0.2 m/s, which can be specifically 0.05 m/s, 0.1 m/s, 0.15 m/s or 0.2 m/s.
  • the present invention controls the particle size of the bacterial micelle by controlling the velocity of the lateral flow of the water body and the concentration of the dissolved oxygen.
  • the invention provides a sewage denitrification treatment method, comprising the following steps:
  • the sewage to be treated enters the sewage denitrification treatment system from the inflow area;
  • the sludge in the rapid sedimentation zone flows back to the circulation circulation zone via a reflux buffer zone; the circulation circulation zone exchanges sludge with the biological multiplication zone through a sludge exchange pipeline.
  • the method provided by the present invention enters the sewage to be treated into the sewage denitrification treatment system by the water inlet of the water inlet zone of the above technical solution, and then sequentially flows through the first aerodynamic treatment zone, the circulation circulation zone, and the second air.
  • the power zone and the rapid sedimentation zone complete the treatment of the sewage; the treated sewage is discharged through the water outlet of the rapid sedimentation zone.
  • the rapid precipitation zone is in communication with the reflux buffer, and the partially treated sewage is discharged from the water outlet of the rapid sedimentation zone, and partially flows into the reflux buffer through the communication hole of the rapid precipitation zone and the reflux buffer. It is then re-flowed back to the circulating circulation zone.
  • the particle size of the bacterial micelle in the sewage denitrification treatment system is controlled to be below 100 ⁇ , or may be below 90 ⁇ , and may also be 80 ⁇ ;
  • the dissolved oxygen in the sewage denitrification treatment system fluctuates in a range of 0.1 mg/L to 0.3 mg/L;
  • the lateral flow velocity of the water in the sewage denitrification treatment system is 0.05 m/s to 0.2 m/s, Specifically, it is 0.05 m/s, 0.1 m/s, 0.15 m/s or 0.2 m/s.
  • the present invention controls the particle size of the bacterial micelle by controlling the velocity of the lateral flow of the water body and the concentration of the dissolved oxygen.
  • the sludge concentration in the sewage denitrification treatment system may be 6 g/L to 10 g/L, and may also be 7 g/L to 9 g/L, in some embodiments. In particular, it may be 7 g/L, 8 g/L or 9 g/L.
  • the biological doubled sewage denitrification treatment system provided by the invention performs sludge exchange through the circulating circulation zone and the biological multiplication tank, and utilizes the organic matter in the raw water to denitrify the sewage to the maximum extent; and supplements the air into the water body to treat the sewage
  • the ammonia nitrogen is partially oxidized to nitrite, and the nitrite can oxidize the ammonia nitrogen in the sewage, thereby reducing the demand for the denitrifying carbon source, and finally achieving the denitrification treatment of the sewage.
  • the sewage treated by the sewage denitrification treatment system provided by this application can meet the standard of total nitrogen emission control to be implemented. The results show that the sewage treated by the sewage denitrification treatment system provided by the present invention has a total nitrogen content of 5 mg/L or less and a removal rate of more than 90%.
  • the municipal sewage is treated with the sewage treatment system of the structure shown in Figure 1.
  • the dissolved oxygen concentration is 0.2 mg/L
  • the sludge concentration is 8 g/L
  • the lateral velocity of the water is 0.1 m/s.
  • Table 1 shows that Table 1 is an index before and after municipal sewage treatment in Example 1 of the present invention.
  • Table 2 is an index before and after sewage treatment in an industrial park in Example 2 of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种生物倍增污水脱氮处理系统,待处理的污水经过进水区进入生物倍增污水脱氮处理系统中,然后依次经过第一空气动力区、循环环流区、第二空气动力区和快速沉淀区,最后由快速沉淀区排出;快速沉淀区的污泥经由回流缓冲区流回循环环流区,且所述循环环流区通过污泥交换管路与生物倍增池进行污泥交换。本发明提供的生物倍增污水脱氮处理系统通过循环环流区与生物倍增池进行污泥交换,最大限度的利用了水中的有机物进行脱氮;且向水体中通入空气,能够把污水中的氨氮部分氧化为亚硝酸盐,并使亚硝酸盐氧化污水中的氨氮,减少了反硝化碳源的需求量,从而提升了排水的出水指标,能够满足即将施行的总氮的排放控制标准。

Description

一种生物倍增污水脱氮处理系统和污水脱氮处理方法 技术领域
本发明涉及污水处理技术领域,尤其涉及一种生物倍增污水脱氮处理 系统和污水脱氮处理方法。 背景技术
总氮 (简称 TN )是指水中各种形态无机和有机氮的总量, 包括 N03-、 Ν02·和 NH4 +等无机氮和蛋白质、 氨基酸和有机胺等有机氮, 以每升水含 氮毫克数计算。 常被用来表示水体受营养物质污染的程度。 地表水中氮、 磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。
关于工业废水的排放, 我们国家也针对不同行业设定了不同的标准, 如 GB3544-2008制浆造纸工业水污染物排放标准中规定,制浆企业的总氮 排放限值为 18 mg/L, 废纸制浆和造纸企业的总氮排放限值为 15 mg/L, 其 他制浆和造纸企业的总氮排放限值为 15 mg/L, 造纸企业的总氮排放限值 为 15 mg/L;再如 GB 21904-2008化学合成类制药工业水污染物排放标准中 规定, 对于现有企业来说, 其总氮排放限值为 50 ( 40 ) mg/L; 对于新建 企业来说, 其总氮排放限值为 35 ( 20 ) mg/L。
目前国内外对于废水的脱氮方法可分为物化法和生物脱氮方法,其中 物化法包括空气吹脱法、折点加氯法、 沸石吸附法和絮凝沉淀法。 空气吹 脱法和絮凝沉淀法都可用于高氨氮废水的预处理, 氮后者比前者运行费 高;折点加氯法和沸石吸附法都适用于深度处理, 氮前者液氯费用太高且 难保存, 氮可弥补吹脱法对寒冷季节的不适,而后者再生液的处理仍是一 个问题。 生物脱氮方法包括传统工艺脱氮法, 以氨化、 硝化、 反硝化三项 反应为基础, A/0 (缺氧 /好氧)脱氮工艺、 氧化沟硝化脱氮法和 SBR (间 歇曝气活性污泥法)。 生化法脱氮的形式多种多样, 且因其经济和无二次 污染等特点而具有^ ^大的潜力。 然而现有技术公开的上述方法在实现脱氮处理的排放要求中,不能充 分利用原水中的碳源,从而需要补充的碳源多; 而且随着经济的发展和国 家对环保越来越重视,对于总氮的排放标准也在不断的提高,如美国将于 2020年实施 TN 5mg/l排放标准, 现有处理技术达不到该排放标准的要求。
发明内容
有鉴于此,本发明的目的在于提供一种生物倍增污水脱氮处理系统和 方法,本发明提供的污水脱氮处理系统处理后的排水总氮含量符合排放控 制标准。
本发明提供了一种生物倍增污水脱氮处理系统, 包括进水区,所述进 水区设置有进水口;
与所述进水区连通的第一空气动力区;
与所述第一空气动力区连通的循环环流区;
与所述循环环流区连通的第二空气动力区;
与所述第二空气动力区连通的快速沉淀区,所述快速沉淀区设置有出 水口;
与所述快速沉淀区连通的回流緩冲区 ,所述回流緩冲区与所述循环环 流区连通;
所述循环环流区壁上设置有污泥部分交换管路,所述循环环流区通过 所述污泥交换管路与生物倍增池进行污泥交换。
优选的,所述沉淀区相邻的三个侧壁分别与所述循环环流区、所述回 流緩冲区和所述第二空气动力区共壁。
优选的, 所述循环环流区为环形沟体、 正方形沟体、 长方形沟体、 圓 形沟体或椭圓形沟体。
优选的, 所述快速沉淀区底部设置有稳流板;
所述稳流板上设置有空气反冲洗装置, 斜板沉降器和斜管沉降器; 所述空气反冲洗装置与所述斜板沉降器间隔设置;
所述斜管沉降器设置在所述斜板沉降器上。 优选的, 所述循环环流区设置有风机;
所述风机抽取气体对所述循环环流区内污水进行搅拌。
优选的, 所述进水区和所述第一空气动力区设置在所述循环环流区 内。
优选的, 所述循环环流区内沿长度方向上设置有分隔墙;
所述进水区和所述第一空气动力区设置在所述分隔墙和所述循环环 流区外壁之间。
本发明提供了一种污水脱氮处理方法, 包括以下步骤:
将待处理的污水由进水区进入污水脱氮处理系统;
再依次经过第一空气动力区处理、循环环流区处理、第二空气动力区 处理和快速沉淀区处理, 处理后的污水由所述快速沉淀区排出;
所述快速沉淀区的污泥经由回流緩冲区流回所述循环环流区; 所述循环环流区通过污泥交换管路与生物倍增池交换污泥。
优选的, 所述污水脱氮处理系统中的菌胶团粒径在 100 μπι以下。 优选的, 所述污水脱氮处理系统中溶解氧在 0.1 mg/L~0.3 mg/L的区 间内离散型波动。
优选的, 所述污水脱氮处理系统中水体横向流动的速度为 0.05m/s~0.2 m/s。
本发明提供了一种生物倍增污水脱氮处理系统, 包括进水区,所述进 水区设置有进水口; 与所述进水区连通的第一空气动力区; 与所述第一空 气动力区连通的循环环流区; 与所述循环环流区连通的第二空气动力区; 与所述第二空气动力区连通的快速沉淀区, 所述快速沉淀区设置有出水 口; 与所述快速沉淀区连通的回流緩冲区,所述回流緩冲区与所述循环环 流区连通; 所述循环环流区壁上设置有污泥交换管路,所述循环环流区通 过所述污泥交换管路与生物倍增池进行部分污泥交换。待处理的污水经过 进水区进入本申请提供的生物倍增污水脱氮处理系统中,然后依次经过第 一空气动力区、循环环流区、 第二空气动力区和快速沉淀区, 最后由快速 沉淀区排出; 快速沉淀区的污泥经由回流緩冲区流回循环环流区,且所述 循环环流区通过污泥交换管路与生物倍增池进行污泥交换。本发明提供的 生物倍增污水脱氮处理系统通过循环环流区与生物倍增池进行污泥交换, 最大限度的利用了水中的有机物进行脱氮;且向水体中通入空气, 能够把 污水中的氨氮部分氧化为亚硝酸盐,并使亚硝酸盐氧化污水中的氨氮,减 少了反硝化碳源的需求量,从而提升了排水的出水指标, 能够满足即将施 行的总氮的排放控制标准。 实验结果表明,釆用本申请提供的生物倍增污 水脱氮处理系统处理后的污水, 总氮指标小于 5 mg/L。
另外, 釆用本发明提供的系统对污水进行脱氮处理的工艺流程简单, 出水 TN能稳定达标排放。
附图说明
图 1为本发明实施例提供的生物倍增污水处理系统的俯视图; 图 2 为本发明实施例提供的生物倍增污水处理系统中循环环流区的 俯视图;
图 3 为本发明实施例提供的生物倍增污水处理系统中快速沉淀区的 纵剖视图。 具体实施方式
本发明提供了一种生物倍增污水脱氮处理系统, 包括进水区,所述进 水区设置有进水口;
与所述进水区连通的第一空气动力区;
与所述第一空气动力区连通的循环环流区;
与所述循环环流区连通的第二空气动力区;
与所述第二空气动力区连通的快速沉淀区,所述快速沉淀区设置有出 水口;
与所述快速沉淀区连通的回流緩冲区 ,所述回流緩冲区与所述循环环 流区连通;
所述循环环流区壁上设置有污泥交换管路,所述循环环流区通过所述 污泥交换管路与生物倍增池进行污泥交换。 本申请提供的生物倍增污水脱氮处理系统通过其中的循环环流区与 生物倍增池进行污泥交换,最大限度地利用原水中的有机物对污水进行脱 氮; 而且向水体中补充空气, 把污水中的氨氮部分氧化为亚硝酸盐, 并且 亚硝酸盐又可以氧化污水中的氨氮,从而减少了反硝化碳源的需求量,并 最终实现了对污水的脱氮处理。釆用本申请提供的污水脱氮处理系统处理 后的污水能够符合即将施行的总氮排放控制标准。
参见图 1 , 图 1为本发明实施例提供的生物倍增污水处理系统的俯视 图, 其中 001为循环环流区, 002为进水区, 003为第一空气动力区, 004 为第二空气动力区, 005为回流緩冲区, 006为快速沉淀区, 021为进水 区的进水管, 061 为快速沉淀区的出水管, 011 为第一污泥交换管, 012 为第二污泥交换管。
本发明提供的生物倍增污水脱氮处理系统包括循环环流区 001 ,在所 述循环环流区内设置有进水区 002和第一空气动力区 003。
本发明对所述循环环流区的形状没有特殊的限制, 可以为环形沟体、 正方形沟体、 长方形沟体、 圓形沟体或椭圓形沟体, 本领域技术人员可根 据需要,设置适合形状的循环环流区。 在本发明的实施例中, 所述循环环 流区可具体为长方形沟体。为了能够形成环流通道,在本发明的实施例中, 所述循环环流区内沿长度方向设置有分隔墙,所述分隔墙与所述进水区垂 直设置,所述进水区与所述第一空气动力区平行设置,所述进水区和所述 第一空气动力区与所述分隔墙共壁。
在本发明中,所述循环环流区上设置有污泥交换管路,具体的设置有 第一污泥交换管 011和第二污泥交换管 012, 所述第一污泥交换管和第二 污泥交换管分别为循环环流区的污泥进管和污泥出管。在本发明的实施例 中,所述第一污泥交换管和第二污泥交换管分别设置在所述循环环流区相 对侧壁上。 在本发明中, 所述污泥交换管路还与生物倍增池相连通, 所述 循环换流去通过所述污泥交换管路与生物倍增池进行污泥交换,从而实最 大限度地利用原水中的有机物进行脱氮, 提高了脱氮效果。
本发明对所述污泥交换管路的直径、所述循环环流区的大小没有特殊 的限制,本领域技术人员可根据实际需要设置合适直径的污泥交换管路和 合适大小的循环环流区。
参见图 2, 图 2为本发明实施例提供的生物倍增污水处理系统中循环 环流区的俯视图, 其中 007为风机。
在本发明中, 所述循环环流区还可以设置风机 007 , 所述风机 007抽 取循环环流区内的气体, 具体的可以为有氧气体、也可以为无氧气体, 进 行搅拌。在本发明的实施例中,所述风机的进气口处可设置气体分配装置, 所述气体分配装置连同风机,可以向循环环流区内补充空气,利于污水的 脱氮处理。
本发明提供的生物倍增污水脱氮处理系统包括进水区 002,具体的所 述进水区可以设置在所述循环环流区内,所述进水区与所述第一空气动力 区连通, 具体的可以在所述进水区和所述第一空气动力区之间设置连通 孔, 从而使污水由进水区流入第一空气动力区。在本发明的实施例中, 所 述进水区可以为长方形沟体, 垂直于所述循环环流区长度方向的侧壁设 置, 所述进水区与所述循环环流区相邻侧壁共用一壁。 在本发明中, 所述 进水区 002设置有进水区的进水管 021 ,用于待处理污水进入污水脱氮处 理系统进行脱氮处理。
本发明提供的生物倍增污水脱氮处理系统包括第一空气动力区 003 , 所述第一空气动力区设置在所述循环环流区内,所述第一空气动力区与所 述循环环流区相同,具体的,可以在所述第一空气动力区与所述循环环流 区之间设置连通孔,从而使污水由第一空气动力区流入循环环流区。在本 发明的实施例中,所述第一空气动力区与所述进水区平行设置。本发明对 所述进水区与所述第一空气动力区之间的垂直距离没有特殊的限制,本领 域技术人员可以根据实际需要进行进水区和第一空气动力区的设置。在本 发明中,所述进水区的出水口与所述第一空气动力区的进水口相连。在本 发明的实施例中,所述第一空气动力区内设置有第一气体提升装置,所述 第一气体提升装置为均衡空气释放装置,此装置释放的空气通过一个狭长 上升通道,带来大量水向上的流动; 所述第一气体提升装置向所述第一空 气动力区内排放空气, 利于对污水进行脱氮处理。
本发明提供的生物倍增污水脱氮处理系统包括第二空气动力区 004 , 所述第二空气动力区与所述循环环流区具有类似功能,具体的可以在所述 第二空气动力区与所述循环环流区之间设置连通孔。 在本发明的实施例 中, 所述第二空气动力区可以为长方形沟体, 也可以为长方形沟体; 所述 第二空气动力区相邻两侧壁分别与循环环流区和快速沉淀区共壁。本发明 对所述第二空气动力区的大小没有特殊的限制,本领域技术人员可根据处 理污水的实际需要,设置合适尺寸的第二空气动力区。在本发明的实施例 中,所述第二空气动力区内设置有第二气体提升装置,所述第二气体提升 装置向所述第二空气动力区内排放空气, 利于对污水进行脱氮处理。
本发明提供的生物倍增污水脱氮处理系统包括快速沉淀区 006 ,所述 快速沉淀区与所述第二空气动力区相同。本发明对所述快速沉淀区的大小 和形状没有特殊的限制,本领域技术人员可根据需要设置合适尺寸和形状 的快速沉淀区。在本发明的实施例中 ,所述快速沉淀区可以为长方形沟体 , 也可以为正方形沟体;所述快速沉淀区相邻的三个侧壁分别与所述第二空 气动力区、 所述循环环流区和所述回流緩冲区共壁。
参见图 3 , 图 3为本发明实施例提供的生物倍增污水处理系统中沉淀 区的纵剖视图, 其中 062为斜管沉降器, 063为斜板沉降器, 064为气冲 洗装置, 065为稳流板, 066为斜板沉淀器的支撑平台。
在本发明的实施例中,所述快速沉淀区的底部设置有稳流板,在所述 稳流板上设置有气冲洗装置,在所述气冲洗装置的上方依次设置有斜板沉 降器和斜管沉降器,所述斜管沉降器设置在所述斜板沉降器上,所述斜板 沉降器与所述气冲洗装置间隔设置。在本发明中,所述快速沉淀区釆用上 述结构, 利于对污水进行脱氮处理, 利于水与污泥的分离,从而得到符合 排放要求的排水。
在本发明中,所述快速沉淀区设置有出水口,所述出水口用于将处理 后的污水排出。
本发明提供的生物倍增污水脱氮系统包括回流緩冲区,所述回流緩冲 区与所述快速沉淀区连通,且所述回流緩冲区与所述循环环流区连通。具 体的,可以在所述回流緩冲区与所述快速沉淀区之间设置连通孔,在所述 回流緩冲区与所述循环环流区之间设置连通孔。在本发明的实施例中,所 述回流緩冲区可以为长方形沟体,也可以为正方形沟体; 所述回流緩冲区 相邻的两个侧壁分别与所述快速沉淀区和所述循环环流区共壁。
在本发明的实施例中,所述回流緩冲区内可以设置有稳流装置及空气 释放装置,从而保证快速沉淀区底部稳定的流态及泥水混合物中的气体充 分释放。
为了便于上述生物倍增污水脱氮处理系统对污水进行脱氮处理,在本 发明的实施例中,所述污水脱氮处理系统中的菌胶团粒径在 100 μπι以下, 也可以为 90 μπι以下,还可以为 80 μπι; 所述污水脱氮处理系统中溶解氧 在 0.1 mg/L~0.3 mg/L的区间内离散型波动; 所述污水脱氮处理系统中水 体横向流动的速度为 0.05 m/s~0.2 m/s,可具体为 0.05m/s、0.1 m/s、0.15 m/s 或 0.2 m/s。 本发明通过控制所述水体横向流动的速度和所述溶解氧的浓 度, 控制所述菌胶团的粒径。
本发明提供了一种污水脱氮处理方法, 包括以下步骤:
将待处理的污水由进水区进入污水脱氮处理系统;
再依次经过第一空气动力区处理、循环环流区处理、第二空气动力区 处理和快速沉淀区处理, 处理后的污水由所述快速沉淀区排出;
所述快速沉淀区的污泥经由回流緩冲区流回所述循环环流区; 所述循环环流区通过污泥交换管路与生物倍增池交换污泥。
本发明提供的方法将待处理的污水由上述技术方案所述进水区的进 水口进入所述污水脱氮处理系统中, 然后依次流过第一空气动力处理区、 循环环流区、 第二空气动力区和快速沉淀区, 完成污水的处理; 处理后的 污水经由快速沉淀区的出水口排出。所述快速沉淀区与所述回流緩冲区连 通,部分处理后的污水由快速沉淀区的出水口排出,部分经由快速沉淀区 与所述回流緩冲区的连通孔,流入回流緩冲区,再重新流回到所述循环环 流区。 在对所述待处理污水进行处理的过程中 ,本发明控制所述污水脱氮处 理系统中的菌胶团粒径在 100 μπι以下, 也可以为 90 μπι以下, 还可以为 80 μπι;所述污水脱氮处理系统中溶解氧在 0.1 mg/L~0.3 mg/L的区间内离 散型波动; 所述污水脱氮处理系统中水体横向流动的速度为 0.05 m/s~0.2 m/s, 可具体为 0.05m/s、 0.1 m/s, 0.15 m/s或 0.2 m/s。 本发明通过控制所 述水体横向流动的速度和所述溶解氧的浓度,控制所述菌胶团的粒径。在 本发明的实施例中 ,所述污水脱氮处理系统中的污泥浓度可以为 6 g/L~10 g/L, 还可以为 7 g/L~9 g/L, 在某些实施例中, 可具体为 7 g/L、 8 g/L或 9 g/L。
本发明提供的生物倍增污水脱氮处理系统通过其中的循环环流区与 生物倍增池进行污泥交换,最大限度地利用原水中的有机物对污水进行脱 氮; 而且向水体中补充空气, 把污水中的氨氮部分氧化为亚硝酸盐, 并且 亚硝酸盐又可以氧化污水中的氨氮,从而减少了反硝化碳源的需求量,并 最终实现了对污水的脱氮处理。釆用本申请提供的污水脱氮处理系统处理 后的污水能够符合即将施行的总氮排放控制标准。结果表明,釆用本发明 提供的污水脱氮处理系统处理过的污水, 其总氮含量在 5 mg/L或更低, 去除率最高超过 90%。
为了进一步说明本发明,下面结合实施例对本发明提供的一种生物倍 增污水脱氮处理系统和污水脱氮处理方法进行详细地描述,但不能将它们 理解为对本发明保护范围的限定。
实施例 1
釆用图 1所示结构的污水处理系统对市政污水进行处理,其中溶解氧 的浓度为 0.2 mg/L , 污泥浓度为 8 g/L , 水体横向流动的速度为 0.1 m/s , 结果如表 1所示, 表 1为本发明实施例 1中市政污水处理前后的指标。
表 1 本发明实施例 1中市政污水处理前后的指标
项目 COD ( mg/L ) H3-N ( mg/L ) TN ( mg/L ) 进水指标 <350 <35 <50
出水指标 <50 <1 <5 由表 1可以看出,釆用本申请提供的污水处理系统对市政污水进行处 理后, 总氮指标满足排放控制标准。
实施例 2
釆用图 1所示结构的污水处理系统对工业园区污水进行处理,控制溶 解氧的浓度为 0.2 mg/L, 污泥浓度为 8 g/L, 水体横向流动的速度为 0.2 m/s, 结果如表 2所示, 表 2为本发明实施例 2中工业园区污水处理前后 的指标。
表 2 本发明实施例 2 工业园区污水处理前后的指标
Figure imgf000012_0001
由表 2可以看出,釆用本申请提供的污水处理系统对工业园区污水进 行处理后, 总氮指标满足排放控制标准。
实施例 3
釆用图 1所示结构的污水处理系统对丙烯腈污水进行处理,控制溶解 氧的浓度为 0.2 mg/L, 污泥浓度为 8 g/L,水体横向流动的速度为 0.2 m/s, 结果如表 3所示, 表 3为本发明实施例 3中丙烯腈污水处理前后的指标。
表 3 本发明实施例 3中丙烯腈污水处理前后的指标
Figure imgf000012_0002
由表 3可以看出,釆用本申请提供的污水处理系统对丙烯腈污水进行 处理后, 其总氮指标符合排放控制标准。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应 当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前 提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发 明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术 人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。 因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。

Claims

权 利 要 求
1、 一种生物倍增污水脱氮处理系统, 包括进水区, 所述进水区设置 有进水口;
与所述进水区连通的第一空气动力区;
与所述第一空气动力区连通的循环环流区;
与所述循环环流区连通的第二空气动力区;
与所述第二空气动力区连通的快速沉淀区,所述快速沉淀区设置有出 水口;
与所述快速沉淀区连通的回流緩冲区 ,所述回流緩冲区与所述循环环 流区连通;
所述循环环流区壁上设置有污泥交换管路,所述循环环流区通过所述 污泥交换管路与生物倍增池进行污泥交换。
2、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述沉淀区相邻的三个侧壁分别与所述循环环流区、所述回流緩冲区和所 述第二空气动力区共壁。
3、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述循环环流区为环形沟体、正方形沟体、 长方形沟体、 圓形沟体或椭圓 形沟体。
4、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述快速沉淀区底部设置有稳流板;
所述稳流板上设置有气冲洗装置 , 斜板沉降器和斜管沉降器; 所述气冲洗装置与所述斜板沉降器间隔设置;
所述斜管沉降器设置在所述斜板沉降器上。
5、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述循环环流区设置有风机;
所述风机抽取气体对所述循环环流区内污水进行搅拌。
6、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述进水区和所述第一空气动力区设置在所述循环环流区内。
7、根据权利要求 1所述的生物倍增污水脱氮处理系统,其特征在于, 所述循环环流区内沿长度方向上设置有分隔墙;
所述进水区和所述第一空气动力区设置在所述分隔墙和所述循环环 流区外壁之间。
8、 一种污水脱氮处理方法, 包括以下步骤:
将待处理的污水由进水区进入污水脱氮处理系统;
再依次经过第一空气动力区处理、循环环流区处理、第二空气动力区 处理和快速沉淀区处理, 处理后的污水由所述快速沉淀区排出;
所述快速沉淀区的污泥经由回流緩冲区流回所述循环环流区; 所述循环环流区通过污泥交换管路与生物倍增池交换污泥。
9、 根据权利要求 8所述的污水脱氮处理方法, 其特征在于, 所述污 水脱氮处理系统中的菌胶团粒径在 100 μπι以下。
10、根据权利要求 8所述的污水脱氮处理方法, 其特征在于, 所述污 水脱氮处理系统中溶解氧在 0.1 mg/L~0.3 mg/L的区间内离散型波动。
11、根据权利要求 8所述的污水脱氮处理方法, 其特征在于, 所述污 水脱氮处理系统中水体横向流动的速度为 0.05m/s~0.2 m/s。
PCT/CN2014/080375 2014-06-20 2014-06-20 一种生物倍增污水脱氮处理系统和污水脱氮处理方法 WO2015192367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/080375 WO2015192367A1 (zh) 2014-06-20 2014-06-20 一种生物倍增污水脱氮处理系统和污水脱氮处理方法
US14/401,460 US9957178B2 (en) 2014-06-20 2014-06-20 BDP sewage denitrogenation treatment system and method for sewage denitrogenation treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080375 WO2015192367A1 (zh) 2014-06-20 2014-06-20 一种生物倍增污水脱氮处理系统和污水脱氮处理方法

Publications (1)

Publication Number Publication Date
WO2015192367A1 true WO2015192367A1 (zh) 2015-12-23

Family

ID=54934720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080375 WO2015192367A1 (zh) 2014-06-20 2014-06-20 一种生物倍增污水脱氮处理系统和污水脱氮处理方法

Country Status (2)

Country Link
US (1) US9957178B2 (zh)
WO (1) WO2015192367A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609804A (zh) * 2018-05-04 2018-10-02 山东默锐环境产业股份有限公司 一种bdp废水处理方法
CN110194530A (zh) * 2018-02-27 2019-09-03 梁家源 废水及污水处理系统
CZ307958B6 (cs) * 2017-10-05 2019-09-11 BIOTAL CZ s.r.o. Způsob čištění odpadní vody a zařízení pro jeho realizaci

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542590A (zh) 2018-01-26 2020-08-14 宝洁公司 包含香料的水溶性单位剂量制品
WO2019147533A1 (en) * 2018-01-26 2019-08-01 The Procter & Gamble Company Water-soluble unit dose articles comprising enzyme
CN109368724A (zh) * 2018-12-24 2019-02-22 欧基(上海)环保科技有限公司 一种污水处理系统
FR3132519A1 (fr) 2022-02-09 2023-08-11 Vinci Construction Grands Projets Procédé de traitement de l’eau usée

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857185A (en) * 1987-04-13 1989-08-15 Gaetan Desjardins Aerated facultative basin having a dual function aeration and sludge removal pump in adjacent well
US5961826A (en) * 1997-07-10 1999-10-05 Kim; Woon-Chang Biological waste water treatment system having a sedimentation tank vertically combined with an aeration tank therein
JP2008086991A (ja) * 2006-09-07 2008-04-17 Nikko Co 循環式し尿処理方法及びその装置
CN101602541A (zh) * 2008-06-13 2009-12-16 必德普(北京)环保科技有限公司 生物污水处理工艺及装置
CN201883002U (zh) * 2010-11-04 2011-06-29 美舒环保科技(北京)有限公司 一种空气驱动的曝气循环中和沉淀装置
CN203079741U (zh) * 2012-10-30 2013-07-24 武汉宝捷能环境工程技术有限公司 一种污水生化处理一体化装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649911B2 (ja) 2004-08-19 2011-03-16 栗田工業株式会社 有機物及び窒素含有排水の処理方法
US7404897B2 (en) * 2005-10-26 2008-07-29 D.C. Water & Sewer Authority Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
CN201729739U (zh) 2010-03-23 2011-02-02 中国市政工程华北设计研究总院 一种合理分配碳源的污水高效处理系统
CN102180543B (zh) 2010-06-22 2012-04-18 凌志环保有限公司 高效稳定生物倍增工艺污水处理装置
CN102795745A (zh) 2012-08-18 2012-11-28 江苏凌志市政工程设计研究院有限公司 一体化多循环生物倍增污水处理系统
CN203382563U (zh) 2013-07-04 2014-01-08 哈尔滨瀚科环保科技有限公司 一种一体式生物积效工艺污水处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857185A (en) * 1987-04-13 1989-08-15 Gaetan Desjardins Aerated facultative basin having a dual function aeration and sludge removal pump in adjacent well
US5961826A (en) * 1997-07-10 1999-10-05 Kim; Woon-Chang Biological waste water treatment system having a sedimentation tank vertically combined with an aeration tank therein
JP2008086991A (ja) * 2006-09-07 2008-04-17 Nikko Co 循環式し尿処理方法及びその装置
CN101602541A (zh) * 2008-06-13 2009-12-16 必德普(北京)环保科技有限公司 生物污水处理工艺及装置
CN201883002U (zh) * 2010-11-04 2011-06-29 美舒环保科技(北京)有限公司 一种空气驱动的曝气循环中和沉淀装置
CN203079741U (zh) * 2012-10-30 2013-07-24 武汉宝捷能环境工程技术有限公司 一种污水生化处理一体化装置及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307958B6 (cs) * 2017-10-05 2019-09-11 BIOTAL CZ s.r.o. Způsob čištění odpadní vody a zařízení pro jeho realizaci
CN110194530A (zh) * 2018-02-27 2019-09-03 梁家源 废水及污水处理系统
CN108609804A (zh) * 2018-05-04 2018-10-02 山东默锐环境产业股份有限公司 一种bdp废水处理方法
CN108609804B (zh) * 2018-05-04 2021-12-03 山东默锐环境产业股份有限公司 一种bdp废水处理方法

Also Published As

Publication number Publication date
US20170096354A1 (en) 2017-04-06
US9957178B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2015192367A1 (zh) 一种生物倍增污水脱氮处理系统和污水脱氮处理方法
CN108264202A (zh) 一种达标至地表水ⅳ类水的城镇污水处理工艺
JP2009523598A (ja) 活性汚泥とバラスト凝集を用いる汚水処理
CN108585350A (zh) 一种达标至地表水ⅳ类水的城镇污水处理系统
CN203820608U (zh) 一种乡镇污水处理及深度净化的一体化设备
CN105565581B (zh) 煤制乙烯污水综合处理方法
RU2570002C1 (ru) Способ очистки сточных вод
CN105800872A (zh) 一种病死牲畜加工废水的处理工艺
WO2020211525A1 (zh) 一种应用生物倍增和流化床工艺的集成式一体化污水处理罐
CN106587350A (zh) 基于磁混凝aas和磁化mabr的污水处理系统及处理方法
CN109368782A (zh) 一种基于侧流sbr强化连续流工艺污水短程硝化方法与系统
CN209759227U (zh) 一种一体化短程高效污水处理装置
WO2022057124A1 (zh) 一种泥水分流双污泥反应装置及反应方法
CN107055940B (zh) 基于短程硝化反硝化的高氨氮污水深度处理工艺
KR100889377B1 (ko) 혐기성 및 호기성 반응처리법이 적용된 폐수처리장치
KR101087673B1 (ko) 기존 침전지 개량형 총인(t-p)제거 하수고도처리시스템 및 방법
CN105541040B (zh) 一种在人工湿地实现短程硝化反硝化的方法及其装置
CN216191773U (zh) 一种强化除磷的污水生化处理系统
CN104003517B (zh) 一种生物倍增污水脱氮处理系统和污水脱氮处理方法
CN107364968B (zh) 一种针对微污染水源的同步脱氮除磷处理系统
CN110342727A (zh) 一种城市污水用于热电厂冷却循环水的处理工艺
CN102381817A (zh) 丙烯酰胺生产废水的处理系统及其处理方法
CN102276062A (zh) 一种多级厌氧缺氧循环尾段好氧活性污泥工艺
CN104355493B (zh) 一种一体化好氧深度处理装置
CN107572731A (zh) 一种高盐高氨氮高磷废水的好氧‑沉淀处理装置及处理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14401460

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895319

Country of ref document: EP

Kind code of ref document: A1