WO2015190592A1 - Method for manufacturing solar cell module, and solar cell module - Google Patents

Method for manufacturing solar cell module, and solar cell module Download PDF

Info

Publication number
WO2015190592A1
WO2015190592A1 PCT/JP2015/066988 JP2015066988W WO2015190592A1 WO 2015190592 A1 WO2015190592 A1 WO 2015190592A1 JP 2015066988 W JP2015066988 W JP 2015066988W WO 2015190592 A1 WO2015190592 A1 WO 2015190592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing film
glass plate
solar cell
cell module
side sealing
Prior art date
Application number
PCT/JP2015/066988
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 石渡
敏朗 永井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015190592A1 publication Critical patent/WO2015190592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module and a solar cell module manufactured thereby.
  • a solar cell module generally has a configuration in which a power generation element is sealed with a front surface side sealing film and a back surface side sealing film disposed between a front surface side protective member and a back surface side protective member.
  • a transparent glass plate is used for the front-side protection member to capture light
  • a plastic sheet such as PET is used for the back-side protection member.
  • a film in which an additive such as an organic peroxide is blended with a base resin such as ethylene-vinyl acetate copolymer (EVA) having high adhesiveness is used for the front side sealing film and the back side sealing film.
  • a solar cell module called a so-called double glass structure
  • a glass plate is used instead of a plastic sheet as a back side protection member, and both the front side protection member and the back side protection member are formed of a glass plate ( Patent Document 1).
  • the double glass structure is employed when it is necessary to increase the strength of the solar cell module itself or when long-term durability is required in addition to the case of a double-sided light-receiving solar cell module.
  • a vacuum laminator is usually used for manufacturing a solar cell module.
  • a double vacuum chamber type vacuum laminator 100 including an upper chamber 102 having a diaphragm 103 and a lower chamber 101 provided with a mounting table 105 is used. It is common.
  • a plurality of power generation elements 114 electrically connected by a front surface side protection member 111, a front surface side sealing film 113A, and a connection tab 115, and a back surface
  • the side sealing film 113 ⁇ / b> B and the back surface side protection member 112 are placed in this order on the mounting table 105 to form the stacked body 110, and then the upper chamber 102 and the lower chamber 101 are brought into a vacuum state and built in the mounting table 105.
  • the laminated body 110 is heated by a heater (not shown), and the surface of the laminated body 110 is pressed from the back surface side protection member 112 side by the diaphragm 103 with the inside of the upper chamber 102 being atmospheric pressure.
  • an object of the present invention is to provide a method capable of producing a solar cell module in which both the front surface side protection member and the back surface side protection member are made of glass plates without causing defective filling.
  • the above purpose is a lamination process for obtaining a laminate in which the front side glass plate, the front side sealing film, the power generation element, the back side sealing film and the back side glass plate are arranged in this order, and a heating step for heating the laminate.
  • a pressurizing step of pressurizing the laminate from the front side glass plate side or the back side glass plate side, and a method for producing a solar cell module In the laminating step, an end portion on the back surface of the back surface side sealing film, an end portion on the surface of the back surface side sealing film, an end portion on the back surface of the front surface side sealing film, and the front surface side sealing film
  • a manufacturing method characterized by disposing a band-shaped auxiliary sealing film on at least one of the end portions on the surface of the substrate.
  • the auxiliary sealing film is disposed so as to cover the power generation element in a plan view. Thereby, it is possible to reliably prevent defective filling and to prevent generation of cracks in the power generating element.
  • the front side glass plate, the front side sealing film, the back side sealing film, and the back side glass plate are rectangular, and the auxiliary sealing film is the front side sealing film and / or the back side. It arrange
  • the width of the auxiliary sealing film is 1/30 to 1/5 based on the long side of the back glass plate.
  • the auxiliary sealing film has a thickness of 0.1 to 1.0 mm. (5) The thickness of the front side sealing film and the back side sealing film is 0.1 to 1 mm, respectively. (6) The length of the auxiliary sealing film is substantially the same as the short side of the back glass plate.
  • the method for manufacturing a solar cell module of the present invention it is possible to prevent filling failure due to air remaining inside the solar cell module. Therefore, the quality and productivity of the solar cell module can be improved.
  • FIG. 2 is a perspective view of FIG. 1. It is explanatory drawing of a vacuum laminator. It is a schematic sectional drawing which shows the other example of a laminated body. It is a schematic sectional drawing which shows the other example of a laminated body. It is a schematic sectional drawing which shows the other example of a laminated body. It is explanatory drawing of the conventional heating process and pressurization process. It is explanatory drawing of a filling defect.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of a laminated body in the method for producing a solar cell module of the present invention
  • FIG. 2 is a perspective view thereof (in FIG. 2, a rear side glass plate 12 and a connection tab 15 are illustrated. Not shown).
  • the auxiliary sealing film 16 and the back side glass plate 12 are placed in this order to form the laminate 10.
  • 1 and 2 are schematic views, and the dimensional ratio of each member does not indicate an actual dimensional ratio.
  • the front-side glass plate 11, the front-side sealing film 13A, the back-side sealing film 13B, and the back-side glass plate 12 are rectangular, and the sizes of these members are substantially the same. Therefore, the laminate 10 has a rectangular shape in plan view.
  • Two auxiliary sealing films 16 are arranged on the back surface of the back surface side sealing film 13B, that is, between the back surface side sealing film 13B and the back surface side glass plate 12, in the longitudinal direction of the back surface side sealing film 13B. It is arrange
  • the auxiliary sealing film 16 has a rectangular shape, and is arranged so that the length direction thereof is parallel to the short side of the back surface side sealing film 13B.
  • the width of the auxiliary sealing film 16 is preferably 1/30 to 1/5, and specifically 10 to 30 cm, based on the long side of the back glass plate 12.
  • the length of the auxiliary sealing film 16 is preferably substantially the same as the length of the short side of the back glass plate 12.
  • the thickness of the auxiliary sealing film 16 is usually 0.1 to 1.0 mm, preferably 0.3 to 0.5 mm. If the width is less than 1/30, insufficient filling may not be sufficiently compensated, and if it is greater than 1/5, the time for raising the temperature may increase as the amount of resin increases. Then, there is a problem that the possibility that unmelted residue may occur. Further, if the thickness of the auxiliary sealing film is less than 0.1 mm, insufficient filling may not be solved, and if it is thicker than 1 mm, undissolved material may be generated.
  • the power generation elements 14 are arranged side by side in the vertical and horizontal directions, and the auxiliary sealing film 16 is provided so as to overlap the power generation elements 14 disposed at both ends in the longitudinal direction of the multilayer body 10 in a plan view of the multilayer body 10. Thereby, it is possible to surely prevent the filling failure and to prevent the generation element from cracking.
  • the vacuum laminator shown in FIG. 3 includes an upper chamber 102 that can be evacuated including a diaphragm 103, and a lower chamber 101 that can be evacuated including a mounting table 105 on which the stacked body 10 is mounted.
  • the laminated body 10 (laminated body 10 shown in FIG. 1) is obtained by placing the side glass plates 12 in this order.
  • the upper chamber 102 and the lower chamber 101 are evacuated.
  • the evacuation is performed by a lower chamber vacuum pump 107 connected to the lower chamber exhaust port 106 and an upper chamber vacuum pump 109 connected to the upper chamber exhaust port 108.
  • the upper chamber 102 and the lower chamber 101 are first decompressed to 0.1 to 200 Pa, particularly 0.1 to 100 Pa, respectively. Is preferred.
  • the evacuation time is, for example, 5 to 15 minutes.
  • the pressurization is performed by setting the inside of the upper chamber 102 to 40 to 110 kPa, particularly 60 to 105 kPa, usually atmospheric pressure, by the diaphragm 103, and the laminate 10 being pressed by the diaphragm 103 from the back side glass plate 12 side.
  • the body 10 is pressurized.
  • the upper chamber 102 and the lower chamber 101 are evacuated, and then the laminate 10 is pressurized by the diaphragm 103.
  • the pressing time is, for example, 5 to 15 minutes.
  • a heating method of the laminated body 10 As a heating method of the laminated body 10, a method of heating the entire vacuum laminator 100 shown in FIG. 3 in a high temperature environment such as an oven, or a heating medium such as a heating plate is introduced into the lower chamber 101 of the vacuum laminator 100 shown in FIG. And the method of heating the laminated body 10 etc. are mentioned.
  • a heating plate is used as the mounting table 105, a heating plate is arranged on the upper side and / or lower side of the mounting table 105, or a heating plate is arranged on the upper side and / or lower side of the stacked body. It is done by doing.
  • the laminate is preferably heated to a temperature of 80 to 150 ° C., particularly 90 to 145 ° C.
  • the heating time may be 10 minutes to 1 hour.
  • the laminate is preheated at a temperature of 80 to 120 ° C., then heated at a temperature of 120 to 165 ° C. (particularly around 140 ° C.), and heated stepwise.
  • the pressurization and heating of the laminate 10 are preferably performed by heating the laminate to raise the temperature to the above temperature, evacuating the vacuum laminator, and then expanding the diaphragm. Therefore, the heating process may be performed simultaneously with the vacuuming process and the pressurizing process.
  • a solar cell module of good quality is manufactured without air remaining inside the solar cell module after the members are bonded and integrated.
  • air remains due to the backside glass plate being warped and the applied pressure being concentrated on the end portion.
  • the presence of the auxiliary sealing film 16 has such an influence. Is reduced, and the remaining of air can be prevented.
  • the back side glass plate is disposed on the upper side and the front side glass plate is disposed on the lower side. May be the lower side. In this case, a laminated body is pressurized from the surface side glass plate side.
  • FIG. 4 to 6 are schematic sectional views showing other examples of the laminated body.
  • the front side glass plate 21, the front side sealing film 23A, the power generation element 24, the two auxiliary sealing films 26, the back side sealing film 23B, and the back side glass plate 22 are placed in this order.
  • the laminated body 20 is formed.
  • the auxiliary sealing films 26 are respectively disposed at both ends in the longitudinal direction on the front surface (Omenen) of the back side sealing film 23B, and the back side sealing film 23B and the power generating element are overlapped with the power generating element 24. 24, other portions are arranged between the back surface side sealing film 23B and the front surface side sealing film 23A.
  • the front side glass plate 31, the front side sealing film 33A, the two auxiliary sealing films 36, the power generation element 34, the back side sealing film 33B, and the back side glass plate 32 are placed in this order.
  • the laminated body 30 is formed.
  • the auxiliary sealing film 36 is disposed at both ends in the longitudinal direction on the back surface of the front side sealing film 33A, and the portion overlapping the power generation element 34 is between the front side sealing film 33A and the power generation element 34.
  • Other portions are disposed between the front surface side sealing film 33A and the back surface side sealing film 33B.
  • the front side glass plate 41, the two auxiliary sealing films 46, the front side sealing film 43 ⁇ / b> A, the power generation element 44, the back side sealing film 43 ⁇ / b> B, and the back side glass plate 42 are placed in this order.
  • the laminated body 40 is formed.
  • the auxiliary sealing films 46 are respectively disposed at both ends in the longitudinal direction on the surface (Omenen) of the surface side sealing film 43A, and between the surface side sealing film 43A and the surface side glass plate 41. Has been placed.
  • the solar cell module is manufactured by performing the heating process and the pressurizing process described above after finishing the stacking process of stacking the respective members. Even with the arrangement shown in FIGS. 4 to 6, it is possible to prevent the remaining of air.
  • the auxiliary sealing film has an end on the back side of the back side sealing film, an end on the surface of the back side sealing film, an end on the back side of the front side sealing film, and a surface of the front side sealing film. Although what is necessary is just to arrange
  • the shape of the solar cell module may not be rectangular, but may be trapezoid, ellipse, square, or the like.
  • a strip-shaped auxiliary sealing film may be arranged in parallel to two oblique sides, and in the case of an ellipse, an arc-shaped auxiliary sealing film may be arranged at both ends in the longitudinal direction.
  • the rectangular auxiliary sealing film 16 is illustrated, but the auxiliary sealing film 16 may be in a strip shape, and may be, for example, a shape in which four corners of the rectangular film are chamfered. .
  • the base resin of the front side sealing film, the back side sealing film, and the auxiliary sealing film is a conventionally used resin, for example, an olefin (co) polymer.
  • the olefin (co) polymer means an ethylene / ⁇ -olefin copolymer (for example, an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.), polypropylene, polybutene, etc., and copolymers of olefins and polar monomers. It means a copolymer and has adhesiveness required for a sealing film for solar cells. As the olefin (co) polymer, one of these may be used, or two or more may be mixed and used.
  • an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst low density polyethylene (LDPE), linear low density polyethylene (LLDPE) is used.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion.
  • a polymerized ethylene / ⁇ -olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
  • ethylene-polar monomer copolymer examples include ethylene-acrylic acid copolymers, ethylene-unsaturated carboxylic acid copolymers such as ethylene-methacrylic acid copolymers, and carboxyls of the ethylene-unsaturated carboxylic acid copolymers.
  • the ethylene-polar monomer copolymer it is preferable to use a copolymer having a melt flow rate specified by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min.
  • a solar cell sealing film having excellent processability can be obtained.
  • the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
  • ethylene-polar monomer copolymers examples include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer.
  • EVA ethylene-vinyl acetate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • Ethylene-ethyl acrylate copolymer is preferable, and EVA and EMMA are particularly preferable. Thereby, it is possible to form a sealing film for a solar cell that is suitable for preventing filling defects and extremely excellent in transparency.
  • the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 34% by mass, and particularly preferably 24 to 33% by mass. If the vinyl acetate content is less than 20% by mass, the sealing film may not be sufficiently transparent. If it exceeds 35% by mass, carboxylic acid, alcohol, amine, etc. are generated, and the sealing film and the protective member. There is a risk that foaming is likely to occur at the interface.
  • a resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is added to the base resin in addition to the above-mentioned olefin (co) polymer. You may mix.
  • polyvinyl acetal resin for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB
  • the front side sealing film, the back side sealing film, and the auxiliary sealing film contain an organic peroxide for forming a crosslinked structure of the base resin.
  • organic peroxides can be used, and the content thereof is generally 0.1 to 5 parts by mass.
  • the front side sealing film, the back side sealing film, and the auxiliary sealing film may contain additives such as a crosslinking aid, a silane coupling agent, and an ultraviolet absorber.
  • the cross-linking aid can improve the gel fraction of the base resin and improve the adhesion and durability of the sealing film.
  • the content of these additives is usually 0.1 to 5 parts by mass, respectively.
  • the back side sealing film used in the present invention may contain a colorant.
  • a colorant white colorant with titanium white (titanium dioxide), calcium carbonate, etc .; blue colorant with ultramarine, etc .; black colorant with carbon black, etc .; milky white colorant with glass beads, light diffusing agent, etc. can do.
  • a white colorant based on titanium white can be used.
  • the colorant is preferably contained in an amount of usually 2 to 10 parts by weight, more preferably 3 to 6 parts by weight with respect to 100 parts by weight of the base resin contained in the back side sealing film.
  • the auxiliary sealing film is preferably disposed at the position shown in FIG. Thereby, filling failure can be prevented more reliably.
  • the front side sealing film, the back side sealing film, and the auxiliary sealing film those manufactured by a conventionally known method can be used.
  • the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like.
  • a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film.
  • the heating temperature during film formation is preferably a temperature at which the organic peroxide does not react or hardly reacts.
  • the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C.
  • the thickness of the front surface side sealing film and the back surface side sealing film is, for example, 0.1 to 1 mm, preferably 0.2 to 0.8 mm.
  • a glass substrate such as silicate glass can be usually used.
  • the thickness of the front side glass plate is usually 0.1 to 10 mm, preferably 0.8 to 3.5 mm.
  • the thickness of the back glass plate is usually 0.1 to 10 mm, preferably 0.8 to 3.5 mm.
  • the glass plate may be chemically or thermally strengthened.
  • a double-sided light receiving double glass solar cell module it is preferable to use a white glass plate for both the front side glass plate and the back side glass plate.
  • Power generation element As the power generation element used in the solar cell module, a conventionally used single crystal silicon cell, polycrystalline silicon cell, or the like is used. In the case of a double-sided light receiving type double glass solar cell module, a double-sided light receiving type silicon cell is used.
  • an inner lead such as copper foil applied by solder plating is connected to the electrode of the power generation element, and the power generation element is connected in series and parallel with the inner lead so that a predetermined electrical output can be taken out from the solar cell module.
  • auxiliary sealing film A having a width of 3 cm
  • auxiliary sealing film B having a width of 5 cm
  • auxiliary sealing film C having a width of 10 cm
  • auxiliary sealing having a width of 20 cm
  • auxiliary sealing film E having a width of 30 cm
  • auxiliary sealing film F having a width of 40 cm
  • Each of the auxiliary sealing films A to F has a length of 100 cm and a thickness of 0.5 mm.
  • the inside of the lower chamber 101 was evacuated, and the inside of the lower chamber was maintained at 0.1 Pa for 5 minutes.
  • pressurization by the diaphragm 103 was started.
  • the pressurization was performed at a pressure of 0.1 Pa to 101 kPa over 1 minute 20 seconds, and this pressure was maintained for 10 minutes.
  • Heating was started simultaneously with evacuation, the temperature was raised to 142 ° C., and maintained at this temperature until the pressurization was completed. After cooling, a solar cell module was obtained.
  • Comparative Example 1 is an example in which a solar cell module was produced in the same manner as described above except that the auxiliary sealing film was not used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a method which is capable of manufacturing a solar cell module, in which both a front surface-side protective member and a back surface-side protective member are configured of a glass plate, without causing a filling failure. A method for manufacturing a solar cell module, which comprises: a lamination step wherein a laminate (10) is obtained by disposing a front surface-side glass plate (11), a front surface-side sealing film (13A), a power generation element (14), a back surface-side sealing film (13B) and a back surface-side glass plate (12) in this order; a heating step wherein the laminate (10) is heated; and a pressure application step wherein a pressure is applied to the laminate (10) from the front surface-side glass plate side or from the back surface-side glass plate (12) side. This method for manufacturing a solar cell module is characterized in that a band-like auxiliary sealing film is arranged on at least one end portion selected from among an end portion of the back surface of the back surface-side sealing film (13B), an end portion of the front surface of the back surface-side sealing film (13B), an end portion of the back surface of the front surface-side sealing film (13A) and an end portion of the front surface of the front surface-side sealing film (13A).

Description

太陽電池モジュールの製造方法及び太陽電池モジュールSolar cell module manufacturing method and solar cell module
 本発明は、太陽電池モジュールの製造方法及びこれにより製造された太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell module and a solar cell module manufactured thereby.
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接、変換する太陽電池が広く使用され、さらなる開発が進められている。 In recent years, solar cells that directly convert sunlight into electrical energy have been widely used and further developed in terms of effective use of resources and prevention of environmental pollution.
 太陽電池モジュールは、一般的に、表面側保護部材と裏面側保護部材との間に配置される表面側封止膜及び裏面側封止膜により、発電素子を封止した構成とされている。表面側保護部材には光を取り込むため透明のガラス板が用いられ、裏面側保護部材にはPET等のプラスチックシートが用いられるのが一般的である。また、表面側封止膜及び裏面側封止膜には接着性の高いエチレン-酢酸ビニル共重合体(EVA)等のベース樹脂に有機過酸化物等の添加剤を配合したフィルムが用いられている。 A solar cell module generally has a configuration in which a power generation element is sealed with a front surface side sealing film and a back surface side sealing film disposed between a front surface side protective member and a back surface side protective member. In general, a transparent glass plate is used for the front-side protection member to capture light, and a plastic sheet such as PET is used for the back-side protection member. In addition, a film in which an additive such as an organic peroxide is blended with a base resin such as ethylene-vinyl acetate copolymer (EVA) having high adhesiveness is used for the front side sealing film and the back side sealing film. Yes.
 近年では、裏面側保護部材としてプラスチックシートではなくガラス板を用い、表面側保護部材及び裏面側保護部材がともにガラス板で構成された、いわゆるダブルガラス構造と呼ばれる太陽電池モジュールが知られている(特許文献1)。ダブルガラス構造は、両面受光型の太陽電池モジュールの場合の他、太陽電池モジュール自体の強度を高める必要がある場合や長期耐久性が必要とされる場合等に採用される。 In recent years, a solar cell module called a so-called double glass structure is known in which a glass plate is used instead of a plastic sheet as a back side protection member, and both the front side protection member and the back side protection member are formed of a glass plate ( Patent Document 1). The double glass structure is employed when it is necessary to increase the strength of the solar cell module itself or when long-term durability is required in addition to the case of a double-sided light-receiving solar cell module.
 太陽電池モジュールの製造には通常、真空ラミネータが使用される。真空ラミネータとしては、例えば、図7に示すように、ダイヤフラム103を有する上側チャンバ102と、載置台105が設けられた下側チャンバ101とを備える二重真空室方式の真空ラミネータ100が使用されるのが一般的である。このような真空ラミネータ100を用いて太陽電池モジュールを製造するには、まず、表面側保護部材111、表面側封止膜113A、接続タブ115により電気的に接続された複数の発電素子114、裏面側封止膜113B及び裏面側保護部材112をこの順で載置台105上に載置して積層体110を形成し、次いで上側チャンバ102及び下側チャンバ101を真空状態とし、載置台105に内蔵されたヒータ(図示せず)により積層体110を加熱すると共に、上側チャンバ102内を大気圧としてダイヤフラム103により積層体110を裏面側保護部材112側から面を押圧することにより行われる。 A vacuum laminator is usually used for manufacturing a solar cell module. As the vacuum laminator, for example, as shown in FIG. 7, a double vacuum chamber type vacuum laminator 100 including an upper chamber 102 having a diaphragm 103 and a lower chamber 101 provided with a mounting table 105 is used. It is common. In order to manufacture a solar cell module using such a vacuum laminator 100, first, a plurality of power generation elements 114 electrically connected by a front surface side protection member 111, a front surface side sealing film 113A, and a connection tab 115, and a back surface The side sealing film 113 </ b> B and the back surface side protection member 112 are placed in this order on the mounting table 105 to form the stacked body 110, and then the upper chamber 102 and the lower chamber 101 are brought into a vacuum state and built in the mounting table 105. The laminated body 110 is heated by a heater (not shown), and the surface of the laminated body 110 is pressed from the back surface side protection member 112 side by the diaphragm 103 with the inside of the upper chamber 102 being atmospheric pressure.
国際公開第2011/039860号International Publication No. 2011/039860
 しかしながら、ダブルガラス構造の太陽電池モジュールを製造する場合には、太陽電池モジュール内部にエアの残存が生じて充填不良が発生する場合があった。エアの残存は、長方形の太陽電池モジュールの場合、図8の太陽電池モジュールの概略平面図において符号200で示した場所、すなわち太陽電池モジュール20の長手方向両端部近傍において、裏面側保護部材と裏面側封止膜との間に短辺方向に生じる場合が多い。 However, when manufacturing a solar cell module having a double glass structure, air may remain inside the solar cell module, resulting in poor filling. In the case of a rectangular solar cell module, the air remains in the place indicated by reference numeral 200 in the schematic plan view of the solar cell module in FIG. 8, that is, in the vicinity of both ends in the longitudinal direction of the solar cell module 20. It often occurs in the short side direction between the side sealing film.
 したがって、本発明の目的は、表面側保護部材及び裏面側保護部材がともにガラス板で構成された太陽電池モジュールを、充填不良が生じることなく製造することができる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of producing a solar cell module in which both the front surface side protection member and the back surface side protection member are made of glass plates without causing defective filling.
 上記目的は、表面側ガラス板、表面側封止膜、発電素子、裏面側封止膜及び裏面側ガラス板がこの順で配置された積層体を得る積層工程、前記積層体を加熱する加熱工程、及び前記積層体を表面側ガラス板側又は裏面側ガラス板側から加圧する加圧工程、を含む太陽電池モジュールの製造方法であって、
 前記積層工程において、前記裏面側封止膜の裏面上の端部、前記裏面側封止膜の表面上の端部、前記表面側封止膜の裏面上の端部及び前記表面側封止膜の表面上の端部のうち少なくとも1つに帯状の補助封止膜を配置することを特徴とする製造方法により達成される。
The above purpose is a lamination process for obtaining a laminate in which the front side glass plate, the front side sealing film, the power generation element, the back side sealing film and the back side glass plate are arranged in this order, and a heating step for heating the laminate. And a pressurizing step of pressurizing the laminate from the front side glass plate side or the back side glass plate side, and a method for producing a solar cell module,
In the laminating step, an end portion on the back surface of the back surface side sealing film, an end portion on the surface of the back surface side sealing film, an end portion on the back surface of the front surface side sealing film, and the front surface side sealing film This is achieved by a manufacturing method characterized by disposing a band-shaped auxiliary sealing film on at least one of the end portions on the surface of the substrate.
 充填不良はガラス板が加熱時に反るとともに加圧力が端部に集中すること等が原因と考えられるが、上記構成のように端部に帯状の補助封止膜を配置することでこれらの影響が軽減されるので充填不良を防止することが可能となる。 Poor filling can be attributed to the fact that the glass plate warps during heating and the applied pressure concentrates on the end, etc., but these effects can be achieved by placing a band-shaped auxiliary sealing film on the end as in the above configuration. Can be reduced, so that filling failure can be prevented.
 本発明の好ましい態様は以下のとおりである。
 (1)前記補助封止膜は、平面視で前記発電素子にかかるように配置される。これにより、確実に充填不良を防止することができるとともに、発電素子の割れの発生も防ぐことができる。
 (2)前記表面側ガラス板、表面側封止膜、裏面側封止膜及び裏面側ガラス板は長方形状であり、前記補助封止膜は、前記表面側封止膜及び/又は前記裏面側封止膜の表面上及び/又は裏面上の長手方向両端部にそれぞれ配置される。
 (3)前記補助封止膜の幅は、前記裏面側ガラス板の長辺を基準として1/30~1/5である。
 (4)前記補助封止膜の厚さが0.1~1.0mmである。
 (5)前記表面側封止膜及び裏面側封止膜の厚さがそれぞれ0.1~1mmである。
 (6)前記補助封止膜の長さは、前記裏面側ガラス板の短辺と略同一長さである。
Preferred embodiments of the present invention are as follows.
(1) The auxiliary sealing film is disposed so as to cover the power generation element in a plan view. Thereby, it is possible to reliably prevent defective filling and to prevent generation of cracks in the power generating element.
(2) The front side glass plate, the front side sealing film, the back side sealing film, and the back side glass plate are rectangular, and the auxiliary sealing film is the front side sealing film and / or the back side. It arrange | positions at the longitudinal direction both ends on the surface and / or back surface of a sealing film, respectively.
(3) The width of the auxiliary sealing film is 1/30 to 1/5 based on the long side of the back glass plate.
(4) The auxiliary sealing film has a thickness of 0.1 to 1.0 mm.
(5) The thickness of the front side sealing film and the back side sealing film is 0.1 to 1 mm, respectively.
(6) The length of the auxiliary sealing film is substantially the same as the short side of the back glass plate.
 本発明の太陽電池モジュールの製造方法によれば、太陽電池モジュール内部にエアが残存することによる充填不良を防止することができる。したがって、太陽電池モジュールの品質向上及び生産性の向上が図られる。 According to the method for manufacturing a solar cell module of the present invention, it is possible to prevent filling failure due to air remaining inside the solar cell module. Therefore, the quality and productivity of the solar cell module can be improved.
積層体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a laminated body. 図1の斜視図である。FIG. 2 is a perspective view of FIG. 1. 真空ラミネータの説明図である。It is explanatory drawing of a vacuum laminator. 積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a laminated body. 積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a laminated body. 積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a laminated body. 従来の加熱工程及び加圧工程の説明図である。It is explanatory drawing of the conventional heating process and pressurization process. 充填不良の説明図である。It is explanatory drawing of a filling defect.
 以下、図面を参照して本発明を詳細に説明する。図1は、本発明の太陽電池モジュールの製造方法における積層体の一例を説明する概略断面図であり、図2はその斜視図である(図2では裏面側ガラス板12及び接続タブ15を図示していない)。図示のように、表面側ガラス板11、表面側封止膜13A、銅箔等の導電材によりなる接続タブ15により互いに電気的に接続された発電素子14、裏面側封止膜13B、2枚の補助封止膜16、裏面側ガラス板12がこの順で載置されて積層体10を形成している。なお、図1及び図2は概略図であり、各部材の寸法比は現実の寸法比を示していない。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining an example of a laminated body in the method for producing a solar cell module of the present invention, and FIG. 2 is a perspective view thereof (in FIG. 2, a rear side glass plate 12 and a connection tab 15 are illustrated. Not shown). As shown in the figure, the front side glass plate 11, the front side sealing film 13A, the power generating element 14 electrically connected to each other by the connection tab 15 made of a conductive material such as copper foil, the back side sealing film 13B, two sheets The auxiliary sealing film 16 and the back side glass plate 12 are placed in this order to form the laminate 10. 1 and 2 are schematic views, and the dimensional ratio of each member does not indicate an actual dimensional ratio.
 表面側ガラス板11、表面側封止膜13A、裏面側封止膜13B及び裏面側ガラス板12は長方形状であり、これらの部材の大きさは互いに略同一とされている。そのため、積層体10は平面視で長方形状となっている。 The front-side glass plate 11, the front-side sealing film 13A, the back-side sealing film 13B, and the back-side glass plate 12 are rectangular, and the sizes of these members are substantially the same. Therefore, the laminate 10 has a rectangular shape in plan view.
 補助封止膜16は2枚配置されており、裏面側封止膜13Bの裏面上、すなわち裏面側封止膜13Bと裏面側ガラス板12との間に、裏面側封止膜13Bの長手方向両端部にそれぞれ配置されている。補助封止膜16は長方形状とされ、その長さ方向が裏面側封止膜13Bの短辺に対して平行となるように配置されている。 Two auxiliary sealing films 16 are arranged on the back surface of the back surface side sealing film 13B, that is, between the back surface side sealing film 13B and the back surface side glass plate 12, in the longitudinal direction of the back surface side sealing film 13B. It is arrange | positioned at both ends, respectively. The auxiliary sealing film 16 has a rectangular shape, and is arranged so that the length direction thereof is parallel to the short side of the back surface side sealing film 13B.
 補助封止膜16の幅は、裏面側ガラス板12の長辺を基準として1/30~1/5であることが好ましく、具体的には10~30cmであることが好ましい。補助封止膜16の長さは裏面側ガラス板12の短辺の長さと略同一であることが好ましい。補助封止膜16の厚さは通常0.1~1.0mmであり、0.3~0.5mmであることが好ましい。幅が1/30より狭いと充填不足を十分に補うことができない場合があり、また1/5より広いと樹脂量の増加に伴い昇温する時間が長くなる場合があり、同じ真空引きの時間だと溶け残りが生じる可能性が出てくる問題がある。また補助封止膜の厚さが0.1mmより薄いと充填不足が解消できない場合があり、1mmより厚いと同様に溶け残りが生じる可能性がある。 The width of the auxiliary sealing film 16 is preferably 1/30 to 1/5, and specifically 10 to 30 cm, based on the long side of the back glass plate 12. The length of the auxiliary sealing film 16 is preferably substantially the same as the length of the short side of the back glass plate 12. The thickness of the auxiliary sealing film 16 is usually 0.1 to 1.0 mm, preferably 0.3 to 0.5 mm. If the width is less than 1/30, insufficient filling may not be sufficiently compensated, and if it is greater than 1/5, the time for raising the temperature may increase as the amount of resin increases. Then, there is a problem that the possibility that unmelted residue may occur. Further, if the thickness of the auxiliary sealing film is less than 0.1 mm, insufficient filling may not be solved, and if it is thicker than 1 mm, undissolved material may be generated.
 発電素子14は縦横に並べて配置されており、補助封止膜16は、積層体10の平面視で、積層体10の長手方向両端に配置された発電素子14と重なるように設けられている。これにより、充填不良を確実に防止することが可能であるとともに、発電素子の割れの発生も防ぐことができる。 The power generation elements 14 are arranged side by side in the vertical and horizontal directions, and the auxiliary sealing film 16 is provided so as to overlap the power generation elements 14 disposed at both ends in the longitudinal direction of the multilayer body 10 in a plan view of the multilayer body 10. Thereby, it is possible to surely prevent the filling failure and to prevent the generation element from cracking.
 以下、本発明の太陽電池モジュールの製造方法における積層工程、加熱工程及び加圧工程について、図3に示す真空ラミネータを用いて行う例を説明する。 Hereinafter, an example in which the lamination process, the heating process, and the pressurizing process in the method for manufacturing the solar cell module of the present invention are performed using the vacuum laminator shown in FIG. 3 will be described.
 図3に示す真空ラミネータは、ダイヤフラム103を具備する真空引き可能な上側チャンバ102と、積層体10を載置するための載置台105を具備する真空引き可能な下側チャンバ101とを有する。 The vacuum laminator shown in FIG. 3 includes an upper chamber 102 that can be evacuated including a diaphragm 103, and a lower chamber 101 that can be evacuated including a mounting table 105 on which the stacked body 10 is mounted.
 下側チャンバ101内に設けられた載置台105に、表面側ガラス板11、表面側封止膜13A、複数の発電素子14、裏面側封止膜13B、2枚の補助封止膜16及び裏面側ガラス板12をこの順で載置することにより積層体10(図1で示した積層体10)を得る。 On the mounting table 105 provided in the lower chamber 101, the front side glass plate 11, the front side sealing film 13A, the plurality of power generating elements 14, the back side sealing film 13B, the two auxiliary sealing films 16 and the back side The laminated body 10 (laminated body 10 shown in FIG. 1) is obtained by placing the side glass plates 12 in this order.
 次に、上側チャンバ102及び下側チャンバ101内の真空引きを行う。真空引きは、下側チャンバ用排気口106に接続された下側チャンバ用真空ポンプ107、及び上側チャンバ用排気口108に接続された上側チャンバ用真空ポンプ109により行われる。 Next, the upper chamber 102 and the lower chamber 101 are evacuated. The evacuation is performed by a lower chamber vacuum pump 107 connected to the lower chamber exhaust port 106 and an upper chamber vacuum pump 109 connected to the upper chamber exhaust port 108.
 上側チャンバ102内及び下側チャンバ101内をそれぞれ真空とするには、まず上側チャンバ102及び下側チャンバ101内をそれぞれ、0.1~200Pa、特に0.1~100Paに減圧することにより行われるのが好ましい。真空引きの時間は、例えば5~15分である。 In order to evacuate the upper chamber 102 and the lower chamber 101, first, the upper chamber 102 and the lower chamber 101 are first decompressed to 0.1 to 200 Pa, particularly 0.1 to 100 Pa, respectively. Is preferred. The evacuation time is, for example, 5 to 15 minutes.
 本発明では、積層体10を加熱しながら加圧することが好ましい。加圧は、上側チャンバ102内を40~110kPa、特に60~105kPa、通常大気圧とすることでダイヤフラム103により、積層体10が裏面側ガラス板12側からダイヤフラム103により押圧されることで、積層体10が加圧される。 In the present invention, it is preferable to apply pressure while heating the laminate 10. The pressurization is performed by setting the inside of the upper chamber 102 to 40 to 110 kPa, particularly 60 to 105 kPa, usually atmospheric pressure, by the diaphragm 103, and the laminate 10 being pressed by the diaphragm 103 from the back side glass plate 12 side. The body 10 is pressurized.
 真空ラミネータ100では、上側チャンバ102及び下側チャンバ101内を真空引きした後、ダイヤフラム103により積層体10が加圧される。プレス時間は、例えば、5~15分である。 In the vacuum laminator 100, the upper chamber 102 and the lower chamber 101 are evacuated, and then the laminate 10 is pressurized by the diaphragm 103. The pressing time is, for example, 5 to 15 minutes.
 積層体10の加熱方法としては、図3に示す真空ラミネータ100全体をオーブンなどの高温環境において加熱する方法、図3に示す真空ラミネータ100の下側チャンバ101内に加熱板などの加熱媒体を導入して、積層体10を加熱する方法などが挙げられる。後者の方法は、例えば、載置台105として加熱板を用いたり、載置台105の上側及び/又は下側に加熱板を配置したり、積層体の上側及び/又は下側に加熱板を配置したりすることにより行われる。 As a heating method of the laminated body 10, a method of heating the entire vacuum laminator 100 shown in FIG. 3 in a high temperature environment such as an oven, or a heating medium such as a heating plate is introduced into the lower chamber 101 of the vacuum laminator 100 shown in FIG. And the method of heating the laminated body 10 etc. are mentioned. In the latter method, for example, a heating plate is used as the mounting table 105, a heating plate is arranged on the upper side and / or lower side of the mounting table 105, or a heating plate is arranged on the upper side and / or lower side of the stacked body. It is done by doing.
 これら加熱方法のうち、載置台として加熱板を用いて、表面側ガラス板11側から積層体を加熱することが好ましい。積層体は、80~150℃、特に90~145℃の温度に加熱されるのが好ましい。加熱時間は10分~1時間であればよい。また、積層体を80~120℃の温度で予備加熱した後、120~165℃(特に140℃付近)の温度で加熱し、段階的に加熱を行うのがより好ましい。 Among these heating methods, it is preferable to heat the laminate from the surface side glass plate 11 side using a heating plate as a mounting table. The laminate is preferably heated to a temperature of 80 to 150 ° C., particularly 90 to 145 ° C. The heating time may be 10 minutes to 1 hour. Further, it is more preferable that the laminate is preheated at a temperature of 80 to 120 ° C., then heated at a temperature of 120 to 165 ° C. (particularly around 140 ° C.), and heated stepwise.
 積層体10の加圧及び加熱は、積層体を加熱して上記温度まで昇温させるとともに、真空ラミネータ内を真空引きし、その後にダイヤフラムを膨張させて行うのが好ましい。そのため、加熱工程は、真空引き工程及び加圧工程と同時に行ってよい。以上により、全工程が終了し、太陽電池モジュールが得られる。 The pressurization and heating of the laminate 10 are preferably performed by heating the laminate to raise the temperature to the above temperature, evacuating the vacuum laminator, and then expanding the diaphragm. Therefore, the heating process may be performed simultaneously with the vacuuming process and the pressurizing process. By the above, all processes are complete | finished and a solar cell module is obtained.
 本発明によれば、各部材の接着一体化後に太陽電池モジュールの内部にエアが残存することなく、良好な品質の太陽電池モジュールが製造される。すなわち、従来の技術では、裏面側ガラス板が反るとともに加圧力が端部に集中すること等が原因でエアの残存が発生していたが、補助封止膜16の存在によりこのような影響が軽減され、エアの残存が防止することが可能となる。なお、上記した例では、裏面側ガラス板が上側、表面側ガラス板が下側となるように配置された例を示したが、逆の構成として、表面側ガラス板を上側、裏面側ガラス板を下側としてもよい。この場合には、表面側ガラス板側から積層体が加圧される。 According to the present invention, a solar cell module of good quality is manufactured without air remaining inside the solar cell module after the members are bonded and integrated. In other words, in the conventional technique, air remains due to the backside glass plate being warped and the applied pressure being concentrated on the end portion. However, the presence of the auxiliary sealing film 16 has such an influence. Is reduced, and the remaining of air can be prevented. In the above-described example, an example is shown in which the back side glass plate is disposed on the upper side and the front side glass plate is disposed on the lower side. May be the lower side. In this case, a laminated body is pressurized from the surface side glass plate side.
 図4~図6は、積層体の他の例を示す概略断面図である。図4の例では、表面側ガラス板21、表面側封止膜23A、発電素子24、2枚の補助封止膜26、裏面側封止膜23B及び裏面側ガラス板22がこの順で載置され、積層体20を形成している。補助封止膜26は裏面側封止膜23Bの表面(おもてめん)上の長手方向両端部にそれぞれ配置されており、発電素子24と重なる部分については裏面側封止膜23Bと発電素子24との間に、その他の部分については裏面側封止膜23Bと表面側封止膜23Aとの間に配置されている。 4 to 6 are schematic sectional views showing other examples of the laminated body. In the example of FIG. 4, the front side glass plate 21, the front side sealing film 23A, the power generation element 24, the two auxiliary sealing films 26, the back side sealing film 23B, and the back side glass plate 22 are placed in this order. Thus, the laminated body 20 is formed. The auxiliary sealing films 26 are respectively disposed at both ends in the longitudinal direction on the front surface (Omenen) of the back side sealing film 23B, and the back side sealing film 23B and the power generating element are overlapped with the power generating element 24. 24, other portions are arranged between the back surface side sealing film 23B and the front surface side sealing film 23A.
 図5の例では、表面側ガラス板31、表面側封止膜33A、2枚の補助封止膜36、発電素子34、裏面側封止膜33B及び裏面側ガラス板32がこの順で載置され、積層体30を形成している。補助封止膜36は表面側封止膜33Aの裏面上の長手方向両端部にそれぞれ配置されており、発電素子34と重なる部分については表面側封止膜33Aと発電素子34との間に、その他の部分については表面側封止膜33Aと裏面側封止膜33Bとの間に配置されている。 In the example of FIG. 5, the front side glass plate 31, the front side sealing film 33A, the two auxiliary sealing films 36, the power generation element 34, the back side sealing film 33B, and the back side glass plate 32 are placed in this order. Thus, the laminated body 30 is formed. The auxiliary sealing film 36 is disposed at both ends in the longitudinal direction on the back surface of the front side sealing film 33A, and the portion overlapping the power generation element 34 is between the front side sealing film 33A and the power generation element 34. Other portions are disposed between the front surface side sealing film 33A and the back surface side sealing film 33B.
 図6の例では、表面側ガラス板41、2枚の補助封止膜46、表面側封止膜43A、発電素子44、裏面側封止膜43B及び裏面側ガラス板42がこの順で載置され、積層体40を形成している。補助封止膜46は、表面側封止膜43Aの表面(おもてめん)上の長手方向両端部にそれぞれ配置されており、表面側封止膜43Aと表面側ガラス板41との間に配置されている。 In the example of FIG. 6, the front side glass plate 41, the two auxiliary sealing films 46, the front side sealing film 43 </ b> A, the power generation element 44, the back side sealing film 43 </ b> B, and the back side glass plate 42 are placed in this order. Thus, the laminated body 40 is formed. The auxiliary sealing films 46 are respectively disposed at both ends in the longitudinal direction on the surface (Omenen) of the surface side sealing film 43A, and between the surface side sealing film 43A and the surface side glass plate 41. Has been placed.
 図4~図6のように各部材を積層する積層工程を終えた後、上述した加熱工程及び加圧工程を行うことにより太陽電池モジュールが製造される。図4~図6に示した配置であってもエアの残存を防止することが可能である。補助封止膜は裏面側封止膜の裏面上の端部、裏面側封止膜の表面上の端部、表面側封止膜の裏面上の端部及び表面側封止膜の表面上の端部のうち少なくとも1つに配置すればよいが、これらのうち複数箇所に配置してもよい。図4~図6において、図示した各部材は図1で説明したものと同じものを使用することができる。 4 to 6, the solar cell module is manufactured by performing the heating process and the pressurizing process described above after finishing the stacking process of stacking the respective members. Even with the arrangement shown in FIGS. 4 to 6, it is possible to prevent the remaining of air. The auxiliary sealing film has an end on the back side of the back side sealing film, an end on the surface of the back side sealing film, an end on the back side of the front side sealing film, and a surface of the front side sealing film. Although what is necessary is just to arrange | position to at least 1 among an edge part, you may arrange | position in multiple places among these. 4 to 6, the same members as those illustrated in FIG. 1 can be used.
 本発明において、太陽電池モジュールの形状は長方形でなくてもよく、台形、楕円、正方形等でもよい。台形の場合は2つの斜辺に対して平行に帯状の補助封止膜を配置すればよく、楕円の場合はその長手方向両端部に円弧状の補助封止膜をそれぞれ配置すればよい。また、図2においては、長方形状の補助封止膜16を例示しているが、補助封止膜16は帯状であればよく、例えば長方形状の膜の4角が面取りされた形状等でもよい。 In the present invention, the shape of the solar cell module may not be rectangular, but may be trapezoid, ellipse, square, or the like. In the case of a trapezoid, a strip-shaped auxiliary sealing film may be arranged in parallel to two oblique sides, and in the case of an ellipse, an arc-shaped auxiliary sealing film may be arranged at both ends in the longitudinal direction. Further, in FIG. 2, the rectangular auxiliary sealing film 16 is illustrated, but the auxiliary sealing film 16 may be in a strip shape, and may be, for example, a shape in which four corners of the rectangular film are chamfered. .
 以下、本発明に使用する各部材について説明する。本発明において、表面側封止膜、裏面側封止膜及び補助封止膜のベース樹脂は従来から使用されている樹脂、例えばオレフィン(共)重合体である。ここで、オレフィン(共)重合体とは、エチレン・α-オレフィン共重合体(例えば、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)等)、ポリエチレン(例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等)、ポリプロピレン、ポリブテン等のオレフィンの重合体又は共重合体、及びエチレン-極性モノマー共重合体等のオレフィンと極性モノマーとの共重合体を意味し、太陽電池用封止膜に要求される接着性等を有するものとする。オレフィン(共)重合体として、これらの1種を用いても良く、2種以上を混合して用いても良い。本発明において、オレフィン(共)重合体としては、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン及びエチレン-極性モノマー共重合体からなる群から選択される少なくとも1種以上の重合体であることが好ましい。特に、加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い太陽電池用封止膜を形成することができることから、オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)及び/又はエチレン-極性モノマー共重合体であることが好ましい。 Hereinafter, each member used in the present invention will be described. In the present invention, the base resin of the front side sealing film, the back side sealing film, and the auxiliary sealing film is a conventionally used resin, for example, an olefin (co) polymer. Here, the olefin (co) polymer means an ethylene / α-olefin copolymer (for example, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.), polypropylene, polybutene, etc., and copolymers of olefins and polar monomers. It means a copolymer and has adhesiveness required for a sealing film for solar cells. As the olefin (co) polymer, one of these may be used, or two or more may be mixed and used. In the present invention, as the olefin (co) polymer, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) is used. ), At least one polymer selected from the group consisting of polypropylene, polybutene, and ethylene-polar monomer copolymer. In particular, an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion. A polymerized ethylene / α-olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
 エチレン-極性モノマー共重合体としては、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体等を代表例として例示することができる。 Examples of the ethylene-polar monomer copolymer include ethylene-acrylic acid copolymers, ethylene-unsaturated carboxylic acid copolymers such as ethylene-methacrylic acid copolymers, and carboxyls of the ethylene-unsaturated carboxylic acid copolymers. Ionomer partially or completely neutralized with the above metal, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-isobutyl acrylate copolymer Polymers, ethylene-unsaturated carboxylic acid ester copolymers such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-n-butyl acrylate-methacrylic acid copolymer Ethylene-unsaturated carboxylic acid ester-unsaturated carboxylic acid copolymer and the like It can be exemplified vinyl ester copolymer as a typical example - ionomer in which part or all of the carboxyl groups have been neutralized with the metal, ethylene - ethylene such as vinyl acetate copolymer.
 エチレン-極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3~6g/10分のものを使用するのが好ましい。このようなメルトフローレートを有するエチレン-極性モノマー共重合体を用いることで、加工性に優れた太陽電池用封止膜とすることができる。なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。 As the ethylene-polar monomer copolymer, it is preferable to use a copolymer having a melt flow rate specified by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min. By using an ethylene-polar monomer copolymer having such a melt flow rate, a solar cell sealing film having excellent processability can be obtained. In the present invention, the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
 エチレン-極性モノマー共重合体としては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体が好ましく、特にEVA及びEMMAが好ましい。これにより、充填不良防止に適し且つ極めて透明性に優れる太陽電池用封止膜を形成することができる。 Examples of ethylene-polar monomer copolymers include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer. Ethylene-ethyl acrylate copolymer is preferable, and EVA and EMMA are particularly preferable. Thereby, it is possible to form a sealing film for a solar cell that is suitable for preventing filling defects and extremely excellent in transparency.
 ベース樹脂としてEVAを使用する場合、EVAにおける酢酸ビニルの含有率は、20~35質量%、さらに22~34質量%、特に24~33質量%とするのが好ましい。酢酸ビニルの含有量が20質量%未満であると、封止膜の透明性が充分でない恐れがあり、35質量%を超えると、カルボン酸、アルコール、アミン等が発生し封止膜と保護部材との界面で発泡が生じ易くなる恐れがある。 When EVA is used as the base resin, the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 34% by mass, and particularly preferably 24 to 33% by mass. If the vinyl acetate content is less than 20% by mass, the sealing film may not be sufficiently transparent. If it exceeds 35% by mass, carboxylic acid, alcohol, amine, etc. are generated, and the sealing film and the protective member. There is a risk that foaming is likely to occur at the interface.
 なお、本発明において、ベース樹脂には、上述のオレフィン(共)重合体に加えて副次的にポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)等の樹脂を配合しても良い。 In the present invention, a resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is added to the base resin in addition to the above-mentioned olefin (co) polymer. You may mix.
 本発明において、表面側封止膜、裏面側封止膜及び補助封止膜は、ベース樹脂の架橋構造を形成するための有機過酸化物を含むことが好ましい。有機過酸化物は従来公知のものを使用することができ、その含有量は一般に0.1~5質量部である。 In the present invention, it is preferable that the front side sealing film, the back side sealing film, and the auxiliary sealing film contain an organic peroxide for forming a crosslinked structure of the base resin. Conventionally known organic peroxides can be used, and the content thereof is generally 0.1 to 5 parts by mass.
 また、表面側封止膜、裏面側封止膜及び補助封止膜は、架橋助剤やシランカップリング剤、紫外線吸収剤等の添加剤を含んでいてもよい。前記架橋助剤は、ベース樹脂のゲル分率を向上させ、封止膜の接着性及び耐久性を向上させることができる。これら添加剤の含有量はそれぞれ通常0.1~5質量部である。 Further, the front side sealing film, the back side sealing film, and the auxiliary sealing film may contain additives such as a crosslinking aid, a silane coupling agent, and an ultraviolet absorber. The cross-linking aid can improve the gel fraction of the base resin and improve the adhesion and durability of the sealing film. The content of these additives is usually 0.1 to 5 parts by mass, respectively.
 本発明に使用する裏面側封止膜は着色剤を含んでいてもよい。着色剤としては、チタン白(二酸化チタン)、炭酸カルシウム等による白色着色剤;ウルトラマリン等による青色着色剤;カーボンブラック等による黒色着色剤;ガラスビーズ及び光拡散剤等による乳白色着色剤などを使用することができる。好ましくは、チタン白による白色着色剤を使用することができる。 The back side sealing film used in the present invention may contain a colorant. As the colorant, white colorant with titanium white (titanium dioxide), calcium carbonate, etc .; blue colorant with ultramarine, etc .; black colorant with carbon black, etc .; milky white colorant with glass beads, light diffusing agent, etc. can do. Preferably, a white colorant based on titanium white can be used.
 着色剤は、裏面側封止膜に含まれるベース樹脂100重量部に対して、通常2~10重量部、より好ましくは3~6質量部含まれるのが好ましい。 The colorant is preferably contained in an amount of usually 2 to 10 parts by weight, more preferably 3 to 6 parts by weight with respect to 100 parts by weight of the base resin contained in the back side sealing film.
 裏面側封止膜として着色された封止膜を使用する場合、補助封止膜は図3に示した位置に配置することが好ましい。これにより、充填不良をより確実に防止できる。 When the colored sealing film is used as the back surface side sealing film, the auxiliary sealing film is preferably disposed at the position shown in FIG. Thereby, filling failure can be prevented more reliably.
 表面側封止膜、裏面側封止膜及び補助封止膜は従来公知の方法で製造されたものを使用することができる。例えば、上述した各成分を含む組成物を、通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解させ、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。尚、製膜時の加熱温度は、有機過酸化物が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50~90℃、特に40~80℃とするのが好ましい。表面側封止膜及び裏面側封止膜の厚さは例えば0.1~1mm、好ましくは0.2~0.8mmである。 As the front side sealing film, the back side sealing film, and the auxiliary sealing film, those manufactured by a conventionally known method can be used. For example, the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like. Alternatively, a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film. The heating temperature during film formation is preferably a temperature at which the organic peroxide does not react or hardly reacts. For example, the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C. The thickness of the front surface side sealing film and the back surface side sealing film is, for example, 0.1 to 1 mm, preferably 0.2 to 0.8 mm.
 [表面側ガラス板及び裏面側ガラス板]
 本発明の太陽電池に使用される表面側ガラス板及び裏面側ガラス板は、通常珪酸塩ガラスなどのガラス基板等を使用することができる。表面側ガラス板の厚さは、通常0.1~10mmであり、0.8~3.5mmが好ましい。裏面側ガラス板の厚さは、通常0.1~10mmであり、0.8~3.5mmが好ましい。ガラス板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。また、片面受光型のダブルガラス太陽電池モジュールの場合は、表面側ガラス板は透明度の高い白板ガラス板を用いることが好ましく、裏面ガラス板は白板ガラス板でもよいが、安価なフロートガラスを用いてもよい。一方、両面受光型ダブルガラス太陽電池モジュールの場合には、表面側ガラス板及び裏面側ガラス板何れとも白板ガラス板を用いることが好ましい。
[Front side glass plate and back side glass plate]
As the front side glass plate and the back side glass plate used in the solar cell of the present invention, a glass substrate such as silicate glass can be usually used. The thickness of the front side glass plate is usually 0.1 to 10 mm, preferably 0.8 to 3.5 mm. The thickness of the back glass plate is usually 0.1 to 10 mm, preferably 0.8 to 3.5 mm. In general, the glass plate may be chemically or thermally strengthened. In the case of a single-sided light-receiving type double glass solar cell module, it is preferable to use a white glass plate with high transparency as the front side glass plate, and a white glass plate as the back glass plate, but using an inexpensive float glass. Also good. On the other hand, in the case of a double-sided light receiving double glass solar cell module, it is preferable to use a white glass plate for both the front side glass plate and the back side glass plate.
 [発電素子]
 太陽電池モジュールに用いられる発電素子としては、従来から使用されている単結晶シリコンセル、多結晶シリコンセル等が用いられる。両面受光型タイプのダブルガラス太陽電池モジュールの場合は、両面受光型のシリコンセルが用いられる。
[Power generation element]
As the power generation element used in the solar cell module, a conventionally used single crystal silicon cell, polycrystalline silicon cell, or the like is used. In the case of a double-sided light receiving type double glass solar cell module, a double-sided light receiving type silicon cell is used.
 発電素子を太陽電池モジュールに組み込む際には、従来公知の方法に従って行えばよい。例えば、発電素子の電極にハンダメッキなどで施した銅箔などのインナーリードを接続し、さらに太陽電池モジュールから所定の電気出力を取り出すことができるように、インナーリードで発電素子を直並列に接続する。 When incorporating the power generation element into the solar cell module, a conventionally known method may be used. For example, an inner lead such as copper foil applied by solder plating is connected to the electrode of the power generation element, and the power generation element is connected in series and parallel with the inner lead so that a predetermined electrical output can be taken out from the solar cell module. To do.
 (1)透明封止膜の作製
 下記配合の材料をロールミルに供給し、70℃で混練した。これにより得られた封止膜用組成物を70℃でカレンダ成形し、下記表に示す各厚さの透明封止膜(100cm×150cm、厚さ0.5mm)をそれぞれ作製した。
 ・EVA(酢酸ビニル含有率26質量%、MFR4g/10分)100質量部、
 ・有機過酸化物(2,5-ジメチル2,5-ジ(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B:日本油脂製)1.3質量部
 ・架橋助剤(トリアリルイソシアヌレート(TAIC:日本化成製))1.5質量部
 ・シランカップリング剤(γ‐メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学製))0.5質量部
(1) Preparation of transparent sealing film The material of the following mixing | blending was supplied to the roll mill, and it knead | mixed at 70 degreeC. The sealing film composition thus obtained was calendered at 70 ° C. to produce transparent sealing films (100 cm × 150 cm, thickness 0.5 mm) having respective thicknesses shown in the following table.
-EVA (vinyl acetate content 26 mass%, MFR 4 g / 10 min) 100 mass parts,
・ Organic peroxide (2,5-dimethyl-2,5-di (t-butylperoxy) hexane (Perhexa 25B: manufactured by Nippon Oil & Fats) 1.3 parts by mass ・ Crosslinking aid (triallyl isocyanurate (TAIC: Japan) (Made by Kasei)) 1.5 parts by mass ・ Silane coupling agent (γ-methacryloxypropyltrimethoxysilane (KBM503: manufactured by Shin-Etsu Chemical)) 0.5 parts by mass
 (2)白色封止膜の作製
 (1)の配合に更に二酸化チタン5質量部を加えたこと以外は(1)と同様にして白色封止膜(100cm×150cm、厚さ0.5mm)を作製した。
(2) Production of white sealing film A white sealing film (100 cm × 150 cm, thickness 0.5 mm) was prepared in the same manner as (1) except that 5 parts by mass of titanium dioxide was further added to the formulation of (1). Produced.
 (3)補助封止膜の作製
 (1)と同じ配合で、幅3cmの補助封止膜A、幅5cmの補助封止膜B、幅10cmの補助封止膜C、幅20cmの補助封止膜D、幅30cmの補助封止膜E、幅40cmの補助封止膜Fを作製した。補助封止膜A~Fはいずれも長さ100cm、厚さ0.5mmである。
(3) Production of auxiliary sealing film The same composition as (1), auxiliary sealing film A having a width of 3 cm, auxiliary sealing film B having a width of 5 cm, auxiliary sealing film C having a width of 10 cm, and auxiliary sealing having a width of 20 cm A film D, an auxiliary sealing film E having a width of 30 cm, and an auxiliary sealing film F having a width of 40 cm were produced. Each of the auxiliary sealing films A to F has a length of 100 cm and a thickness of 0.5 mm.
 (4)太陽電池モジュールの作製
 図1に示した構造の積層体を得た。すなわち、表面側ガラス板(白板ガラス100×150cm、厚さ3.0mm)/表面側封止膜(上記透明封止膜)/太陽電池セル(155×155mm、厚さ0.2mm、縦6個、横10個)/裏面側封止膜(上記白色封止膜)/下記表に示す通りの補助封止膜/裏面側ガラス板(フロートガラス100×150cm、厚さ3.2mm)を、図3に示す真空ラミネータ100の下側チャンバ101内の載置台105(加熱板)上に、示した順で図1及び図2に示した通りに各部材を積層し、積層体10を得た。
(4) Production of solar cell module A laminate having the structure shown in FIG. 1 was obtained. That is, surface side glass plate (white plate glass 100 × 150 cm, thickness 3.0 mm) / surface side sealing film (transparent sealing film) / solar cell (155 × 155 mm, thickness 0.2 mm, length 6) , Width 10) / back side sealing film (white sealing film) / auxiliary sealing film / back side glass plate (float glass 100 × 150 cm, thickness 3.2 mm) as shown in the table below, Each member was laminated | stacked as shown in FIG.1 and FIG.2 on the mounting base 105 (heating plate) in the lower chamber 101 in the vacuum laminator 100 shown in FIG. 3, and the laminated body 10 was obtained.
 次に、下側チャンバ101内を真空引きし、下側チャンバ内を0.1Paとした状態で5分間維持した。真空引きが終了してから、ダイヤフラム103による加圧を開始した。加圧は、1分20秒かけて0.1Paから101kPaの圧力とし、この圧力で10分間維持した。加熱は真空引きと同時に開始し、142℃まで昇温させ、加圧が終了するまでこの温度で維持した。放冷後、太陽電池モジュールを得た。 Next, the inside of the lower chamber 101 was evacuated, and the inside of the lower chamber was maintained at 0.1 Pa for 5 minutes. After the evacuation was completed, pressurization by the diaphragm 103 was started. The pressurization was performed at a pressure of 0.1 Pa to 101 kPa over 1 minute 20 seconds, and this pressure was maintained for 10 minutes. Heating was started simultaneously with evacuation, the temperature was raised to 142 ° C., and maintained at this temperature until the pressurization was completed. After cooling, a solar cell module was obtained.
 (4)評価(充填不良)
 得られた太陽電池モジュールについて、エア残りが生じているかどうか目視で確認した。結果を下記表に示す。○はエア残りが全く認められなかったものであり、△はエア残りがわずかにしか認められなかったものであり、×はエア残りが複数箇所認められたものである。比較例1は補助封止膜を使用しなかったこと以外は上記と同様にして太陽電池モジュールを作製した例である。
(4) Evaluation (poor filling)
About the obtained solar cell module, it was confirmed visually whether the air remainder was produced. The results are shown in the table below. ○ indicates that no air residue was observed, Δ indicates that only a small amount of air residue was observed, and × indicates that a plurality of air residues were observed. Comparative Example 1 is an example in which a solar cell module was produced in the same manner as described above except that the auxiliary sealing film was not used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~6の何れにおいてもセル割れが生じることなく、充填不良が発生しないことが認められた。また、図4~図6に示した構成で上記と同様の実験を行ったところ、同じ結果が得られた。 In any of Examples 1 to 6, it was confirmed that no cell cracking occurred and no filling failure occurred. Further, when the same experiment as described above was performed with the configuration shown in FIGS. 4 to 6, the same result was obtained.
 10、20、30、40 積層体
 11、21、31、41 表面側ガラス板
 12、22、32、42 裏面側ガラス板
 13A、23A、33A、43A 表面側封止膜
 13B、23B、33B、43B 裏面側封止膜
 14、24、34、44 発電素子
 15、25、35、45 接続タブ
 16、26、36、46 補助封止膜
 100 真空ラミネータ
 101 下側チャンバ
 102 上側チャンバ
 103 ダイヤフラム
 105 載置台
 106 下側チャンバ用排気口
 107 下側チャンバ用真空ポンプ
 108 上側チャンバ用排気口
 109 上側チャンバ用真空ポンプ
10, 20, 30, 40 Laminate 11, 21, 31, 41 Front side glass plate 12, 22, 32, 42 Back side glass plate 13A, 23A, 33A, 43A Front side sealing film 13B, 23B, 33B, 43B Back surface side sealing film 14, 24, 34, 44 Power generation element 15, 25, 35, 45 Connection tab 16, 26, 36, 46 Auxiliary sealing film 100 Vacuum laminator 101 Lower chamber 102 Upper chamber 103 Diaphragm 105 Mounting table 106 Lower chamber exhaust port 107 Lower chamber vacuum pump 108 Upper chamber exhaust port 109 Upper chamber vacuum pump

Claims (8)

  1.  表面側ガラス板、表面側封止膜、発電素子、裏面側封止膜及び裏面側ガラス板がこの順で配置された積層体を得る積層工程、
     前記積層体を加熱する加熱工程、及び
     前記積層体を表面側ガラス板側又は裏面側ガラス板側から加圧する加圧工程、
     を含む太陽電池モジュールの製造方法であって、
     前記積層工程において、前記裏面側封止膜の裏面上の端部、前記裏面側封止膜の表面上の端部、前記表面側封止膜の裏面上の端部及び前記表面側封止膜の表面上の端部のうち少なくとも1つに帯状の補助封止膜を配置することを特徴とする製造方法。
    Laminating step of obtaining a laminate in which the front side glass plate, the front side sealing film, the power generation element, the back side sealing film and the back side glass plate are arranged in this order,
    A heating step of heating the laminate, and a pressurizing step of pressurizing the laminate from the front glass plate side or the back glass plate side,
    A method for producing a solar cell module comprising:
    In the laminating step, an end portion on the back surface of the back surface side sealing film, an end portion on the surface of the back surface side sealing film, an end portion on the back surface of the front surface side sealing film, and the front surface side sealing film A manufacturing method, wherein a band-shaped auxiliary sealing film is disposed on at least one of the end portions on the surface of the substrate.
  2.  前記補助封止膜は、平面視で前記発電素子にかかるように配置されることを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the auxiliary sealing film is disposed so as to cover the power generation element in a plan view.
  3.  前記表面側ガラス板、表面側封止膜、裏面側封止膜及び裏面側ガラス板は長方形状であり、
     前記補助封止膜は、前記表面側封止膜及び/又は前記裏面側封止膜の表面上及び/又は裏面上の長手方向両端部にそれぞれ配置されることを特徴とする請求項1又は2に記載の製造方法。
    The front side glass plate, the front side sealing film, the back side sealing film and the back side glass plate are rectangular,
    3. The auxiliary sealing film is disposed on the front surface side of the front surface side sealing film and / or the back surface side sealing film and / or at both ends in the longitudinal direction on the back surface, respectively. The manufacturing method as described in.
  4.  前記補助封止膜の幅は、前記裏面側ガラス板の長辺を基準として1/30~1/5であることを特徴とする請求項3に記載の製造方法。 4. The manufacturing method according to claim 3, wherein the width of the auxiliary sealing film is 1/30 to 1/5 based on the long side of the back glass plate.
  5.  前記補助封止膜の厚さが0.1~1mmであることを特徴とする請求項1~4の何れか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the auxiliary sealing film has a thickness of 0.1 to 1 mm.
  6.  前記補助封止膜の長さは、前記裏面側ガラス板の短辺と略同一長さであることを特徴とする請求項3~5の何れか1項に記載の製造方法。 6. The manufacturing method according to claim 3, wherein a length of the auxiliary sealing film is substantially the same as a short side of the back glass plate.
  7.  前記表面側封止膜及び裏面側封止膜の厚さがそれぞれ0.1~1mmであることを特徴とする請求項1~5の何れか1項に記載の製造方法。 6. The manufacturing method according to claim 1, wherein the thickness of the front surface side sealing film and the back surface side sealing film is 0.1 to 1 mm, respectively.
  8.  請求項1~7の何れか1項に記載の製造方法により製造された太陽電池モジュール。 A solar cell module manufactured by the manufacturing method according to any one of claims 1 to 7.
PCT/JP2015/066988 2014-06-13 2015-06-12 Method for manufacturing solar cell module, and solar cell module WO2015190592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122236 2014-06-13
JP2014122236A JP2017139245A (en) 2014-06-13 2014-06-13 Method for manufacturing solar battery module, and solar battery module

Publications (1)

Publication Number Publication Date
WO2015190592A1 true WO2015190592A1 (en) 2015-12-17

Family

ID=54833675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066988 WO2015190592A1 (en) 2014-06-13 2015-06-12 Method for manufacturing solar cell module, and solar cell module

Country Status (2)

Country Link
JP (1) JP2017139245A (en)
WO (1) WO2015190592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174896A (en) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 Solar cell module and manufacturing method of solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356349A (en) * 2003-05-28 2004-12-16 Kyocera Corp Method of manufacturing solar cell module
WO2005104242A1 (en) * 2004-04-27 2005-11-03 Nakajima Glass Co., Inc. Method for manufacturing solar cell module
JP2013256089A (en) * 2012-06-14 2013-12-26 Idemitsu Unitech Co Ltd Surface protective member, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356349A (en) * 2003-05-28 2004-12-16 Kyocera Corp Method of manufacturing solar cell module
WO2005104242A1 (en) * 2004-04-27 2005-11-03 Nakajima Glass Co., Inc. Method for manufacturing solar cell module
JP2013256089A (en) * 2012-06-14 2013-12-26 Idemitsu Unitech Co Ltd Surface protective member, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174896A (en) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 Solar cell module and manufacturing method of solar cell module

Also Published As

Publication number Publication date
JP2017139245A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US8957304B2 (en) Sheet for solar cell encapsulant and solar cell module
JP5820151B2 (en) Manufacturing method of solar cell module
EP2892080A1 (en) Pair of sealing films for solar cell and method for manufacturing solar cell module using same
JP2013533136A (en) Method for producing a transparent multilayer film structure having a perfluorinated copolymer resin layer
JP2011216804A (en) Sealing film for solar cell, solar cell using the same, and method of manufacturing solar cell
WO2015182755A1 (en) Method for manufacturing solar cell module, and solar cell module
JP5466926B2 (en) Solar cell encapsulant sheet and solar cell module
JP6013726B2 (en) A pair of sealing films for solar cells
WO2015190592A1 (en) Method for manufacturing solar cell module, and solar cell module
JP5650775B2 (en) Solar cell module manufacturing method and solar cell module
JP6155680B2 (en) Manufacturing method of solar cell module and solar cell module manufactured by the manufacturing method
JP2013030650A (en) Manufacturing method of solar cell module
JP2017063189A (en) Sheet for solar battery module, and solar battery module
JP2015192000A (en) Method of manufacturing sealing fil for solar cell
JP5624898B2 (en) Manufacturing method of back surface side protective member integrated sealing film for solar cell, solar cell using the same, and manufacturing method thereof
JP2011066196A (en) Solar cell module
JP5604335B2 (en) Solar cell sealing film and solar cell using the same
WO2014049778A1 (en) Filler sheet for solar cell modules, solar cell sealing sheet, and method for manufacturing solar cell module
JP2010080510A (en) Solar cell sealing sheet and solar cell module using the same
JP2017152422A (en) Solar battery module
JP5860227B2 (en) Manufacturing method of solar cell module
JP2014187069A (en) Manufacturing method for solar cell module
JP2012231048A (en) Solar cell module sealing sheet and solar cell module
JP2014107289A (en) Seal-material sheet for solar battery module use, and solar battery module
JP2017123363A (en) Sealant for solar battery module, and solar battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15807464

Country of ref document: EP

Kind code of ref document: A1