WO2015190554A1 - Photoelectric conversion element, electric module, and evaluation method for photoelectric conversion elements - Google Patents

Photoelectric conversion element, electric module, and evaluation method for photoelectric conversion elements Download PDF

Info

Publication number
WO2015190554A1
WO2015190554A1 PCT/JP2015/066860 JP2015066860W WO2015190554A1 WO 2015190554 A1 WO2015190554 A1 WO 2015190554A1 JP 2015066860 W JP2015066860 W JP 2015066860W WO 2015190554 A1 WO2015190554 A1 WO 2015190554A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
photoelectric conversion
power generation
substrate
divided
Prior art date
Application number
PCT/JP2015/066860
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 功刀
尚洋 藤沼
純一郎 安西
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015551894A priority Critical patent/JPWO2015190554A1/en
Publication of WO2015190554A1 publication Critical patent/WO2015190554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, an electric module, and a photoelectric conversion element evaluation method.
  • Silicon-based solar cells, dye-sensitized solar cells, and other photoelectric conversion elements have attracted attention as clean energy power generation devices.
  • photoelectric conversion elements electric modules
  • research and development have been promoted for the purpose of maintaining and improving these qualities.
  • the uniformity of the power generation performance of the photoelectrode of the photoelectric conversion element is required.
  • the uniformity of the power generation performance of the photoelectrode greatly affects the performance of the entire photoelectric conversion element.
  • Patent Document 1 discloses an apparatus that uses a spot light source to irradiate only a specific portion of a solar cell with light and evaluates the uniformity of the power generation performance of the photoelectrode from the power generation characteristics of the specific portion.
  • Patent Document 2 discloses an apparatus that irradiates a solar cell with line-shaped light and maps the characteristic distribution on the film surface of the photoelectrode by arithmetic processing based on the output of the solar cell.
  • this invention provides the evaluation method of a photoelectric conversion element, an electric module, and a photoelectric conversion element which can perform evaluation of surface uniformity easily.
  • surface uniformity means the uniformity of the power generation performance of the photoelectrode of the photoelectric conversion element.
  • the photoelectric conversion element of the present invention includes a photoelectrode in which a semiconductor layer is stacked on the conductive film of a first substrate (one substrate) on which a conductive film is formed, and a conductive film on a second substrate (another substrate).
  • the formed counter electrode is stacked with the conductive films facing each other through the semiconductor layer, and at least one of the conductive films facing each other is electrically separated (insulated) from each other.
  • a region formed by a plurality of divided conductive films, where the divided conductive film and the entire conductive film opposed thereto overlap in the stacking direction, or the divided conductive films facing each other are stacked in the stacking direction. The region overlapped when viewed is made energizable and forms a power generation measurement unit.
  • the power generation measurement unit is set by dividing the conductive film of the photoelectric conversion element in an electrically separated state.
  • the power generation performance of a desired power generation measurement unit can be measured simply by forming a terminal at a position where the power generation measurement unit can be energized and connecting a meter capable of measuring current to the terminal.
  • the conductive film (one) of the first substrate of the present invention forms a plurality of divided conductive films extending parallel to each other in one direction, and the conductive film (the other) of the second substrate is viewed in the stacking direction.
  • a plurality of divided conductive films extending in parallel with each other in a direction crossing the one direction may be formed. According to this configuration, the power generation measuring unit of the photoelectric conversion element can be set finely.
  • the divided conductive films facing each other may be orthogonal to each other when viewed in the stacking direction.
  • the power generation measurement unit can be set in a rectangular area.
  • a plurality of the power generation measuring units of the present invention are formed with the same area. According to this configuration, it becomes easy to compare the power generation performance of each power generation measurement unit.
  • a current collecting member may be disposed on at least one of the conductive film of the first substrate and the conductive film of the second substrate of the present invention. According to this configuration, the current generated by the photoelectric conversion element can be collected efficiently.
  • the terminal which consists of a material different from the material which comprises the said electrically conductive film may be installed in the edge part of at least any one of the said electrically conductive film of the 1st board
  • the electrical module of the present invention is formed by connecting a plurality of any of the photoelectric conversion elements described above. According to this configuration, any one of the operations and functions described above is exhibited.
  • the photoelectric conversion element evaluation method of the present invention includes a step of irradiating one of the photoelectric conversion elements with light, a step of detecting the current or voltage of the power generation measurement unit, and a power generation performance based on the detected value. And a step of evaluating. According to this configuration, the power generation performance of the photoelectric conversion element can be easily measured.
  • the current or voltage of the power generation measurement unit may be detected by energizing at least a pair of terminals included in the photoelectric conversion element.
  • the present invention it is possible to easily measure the power generation performance of the photoelectric conversion element using a current or voltage meter having a simple structure.
  • the photoelectric conversion element and electric module of the present invention are dye-sensitized solar cells (hereinafter referred to as “solar cells”). This will be described as an example.
  • the present invention can be applied to other photoelectric conversion elements and electric modules such as organic thin film solar cells, perovskite solar cells, and organic-inorganic hybrid types in addition to dye-sensitized solar cells.
  • the solar cell 1 ⁇ / b> A includes a photoelectrode 5 in which a conductive film 3 and a semiconductor layer 4 are formed on a first substrate 2, and a conductive film on a second substrate 6. 7 is laminated with the conductive films 3 and 7 facing each other.
  • An electrolyte (not shown) is filled between the photoelectrode 5 and the counter electrode 8.
  • the plate surface of the first substrate 2 and the plate surface of the second substrate 6 are continuously adhered by the sealing material 10 at the outer edge portion of each plate surface.
  • a part (front side) of the sealing material 10 is omitted.
  • both the conductive films 3 and 7 facing each other are electrically separated, and a plurality of divided conductive films X1-X5 (X1, X2, X3, X4, X5), a distribution conductive part Y1- Y6 (Y1, Y2, Y3, Y4, Y5, Y6) is formed.
  • both of the conductive films 3 and 7 are divided.
  • at least one of the conductive films 3 and 7 may be divided.
  • a region where the divided conductive films X1-X5 and the distribution conductive parts Y1-Y6 that are opposed to each other overlap in the stacking direction forms a plurality of power generation measuring parts 1p-30p as shown in FIG. ing.
  • power generation measurement unit P may be collectively or individually referred to as “power generation measurement unit P”.
  • the divided conductive films X1-X5 and the distribution conductive parts Y1-Y6 facing each other can be energized to the power generation measurement part P (that is, any one or more of the power generation measurement parts 1p-30p) in at least one section. Terminals 21 and 22 are provided at such positions.
  • the material of the first substrate 2 and the second substrate 6 for example, a resin material or a glass substrate or the like mainly composed of a transparent thermoplastic resin material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) is suitable. Used for.
  • the first substrate 2 and the second substrate 6 may be flexible films.
  • a transparent substrate is used for at least one of the first substrate 2 and the second substrate 6.
  • the conductive film 3 is composed of a plurality of strip-shaped divided conductive films X1-X5 extending in parallel to each other in the direction of the arrow L1 with an interval in the direction of the arrow L2. Note that the number of the divided conductive films shown here is an example. Between each of the divided conductive films X1-X5, the conductive film 3 is not formed, the first substrate 2 is exposed, and a groove shape (strip shape) extending in parallel in one direction (the direction of the arrow L1). Insulating portion 15 is formed.
  • the conductive film 7 is composed of a plurality of strip-shaped divided conductive films Y1-Y6 extending in parallel with each other in the direction of the arrow L2 with an interval in the direction of the arrow L1. Note that the number of the divided conductive films shown here is an example. Between each of the divided conductive films Y1-Y6, the conductive film 7 is not formed, the second substrate 6 is exposed, and a groove-shaped (strip-shaped) insulating portion 16 extending in parallel with the arrow L2 direction. Is forming.
  • the insulating parts 15 and 16 may be provided with an insulating material or a semiconductor material. From the viewpoint of improving the insulation, an insulating material is preferable to a semiconductor material.
  • the region that constitutes one power generation measuring part P (1p-30p).
  • the region is a region composed of the divided conductive films X1-X5 and the divided conductive films Y1-Y5 surrounded by the insulating portions 15, 16 when the insulating portions 15, 16 are projected in the stacking direction.
  • One power generation measurement part P is divided into a plurality of sections by the insulating parts 15 and 16, and these power generation measurement parts 1p-30p are formed in a rectangle having the same area.
  • the interval between the insulating portions 15 and the interval between the insulating portions 16 are set to dimensions that can form the power generation measuring portion P having an appropriate size.
  • the size of the power generation measurement unit P is, for example, preferably in the range of 1 mm to 50 mm on one side, and more preferably in the range of 5 mm to 30 mm.
  • the width of the insulating portions 15 and 16 is, for example, preferably 1 ⁇ m to 3 mm, and more preferably 1 ⁇ m to 1 mm.
  • the formation method of the divided conductive films X1-X5 is not particularly limited, and examples thereof include a method of dividing the conductive film 3 formed on the first substrate 2 into a desired shape by a known photolithography method.
  • the divided conductive films Y1-Y6 can be formed similarly.
  • Examples of the material for the conductive films 3 and 7 include tin-doped indium oxide (ITO), zinc oxide, fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), tin oxide (SnO), and antimony-doped tin oxide (ATO). ), Indium oxide / zinc oxide (IZO), gallium-doped zinc oxide (GZO), and the like.
  • ITO indium oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • SnO tin oxide
  • ATO antimony-doped tin oxide
  • IZO Indium oxide / zinc oxide
  • GZO gallium-doped zinc oxide
  • At least one of the conductive film 3 of the photoelectrode 5 and the conductive film 7 of the counter electrode 8 is preferably a transparent conductive film.
  • the conductive film 7 formed on the second substrate 6 may or may not have a role as a catalyst layer that catalyzes a redox reaction on the electrolyte.
  • a catalyst layer (not shown) is further formed on the conductive film 7.
  • only the conductive film 7 is formed on the second substrate 6.
  • the catalyst layer formed on the surface of the conductive film 7 include a catalyst layer made of carbon paste, platinum, or the like. It is preferable that an h + (hole) blocking layer is provided on the surface of the conductive film 3 of the photoelectrode 5. It is preferable that an electron blocking layer is provided on the surface of the conductive film 7 of the counter electrode 8.
  • stacked as needed is not specifically limited, A well-known method is applicable.
  • the semiconductor layer 4 has a function of receiving and transporting electrons from the sensitizing dye, and is a semiconductor layer in which a semiconductor made of a metal oxide, an organic metal, or the like is formed on the surface of the conductive film 3.
  • the semiconductor layer 4 is continuously formed across the divided conductive films X1-X5.
  • the semiconductor layer 4 may be divided along each insulating portion 15 between the divided conductive films X1 to X5.
  • the metal oxide constituting the semiconductor layer 4 for example, titanium oxide (TiO 2), zinc oxide (ZnO), tin oxide (SnO 2) or the like is used.
  • an organic metal having a perovskite structure such as CH 3 NH 3 PbX 3 (X is a halogen atom) is used.
  • the method for forming the semiconductor layer 4 constituting the photoelectrode 5 is not particularly limited, and a known method can be applied.
  • a method of dividing by a known photolithography method can be applied.
  • the semiconductor layer 4 can carry a sensitizing dye. From the viewpoint of increasing the amount of sensitizing dye supported, the semiconductor layer 4 is preferably porous.
  • the sensitizing dye include known organic dyes and metal complex dyes. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene.
  • the metal complex dye for example, a ruthenium complex is suitable.
  • a separator may be interposed between the photoelectrode 5 and the counter electrode 8.
  • the sealing material 10 is continuously arranged on the entire circumference along the outer edges of the first substrate 2 and the second substrate 6, and a space in which the electrolyte can be held between the first substrate 2 and the second substrate 6. These substrates are bonded together in a state in which is formed.
  • an adhesive such as hot melt resin is suitable.
  • the method for sealing the first substrate 2 and the second substrate 6 is not particularly limited, and a known method can be applied.
  • the terminals 21 and 22 are members or portions that can be energized to any power generation measurement unit P that measures current or voltage among the divided power generation measurement units p1 to p30.
  • the pair of terminals 21 and 22 are provided on the divided conductive films X1-X5 and the divided conductive films Y1-Y6, respectively, and are connected to terminals of external devices that measure current or voltage.
  • a current or voltage in a specific power generation measurement unit P is measured through a specific divided conductive film to which a terminal of the external device is connected.
  • the terminals 21 and 22 may be provided in advance in any of the divided conductive films X1 to X5 and the divided conductive films Y1 to Y6 that form the power generation measurement unit P. Alternatively, when measuring the current or voltage generated by irradiating the power generation measurement unit P with light, the terminals 21 and 22 may be provided as necessary.
  • the position where the terminals 21 and 22 are formed in each of the divided conductive films X1-X5 and Y1-Y6 is not particularly limited as long as it is a position that can be electrically connected to a current or voltage measuring device. As shown in FIG. 1, in this embodiment, the terminals 21 and 22 are provided in advance at the end of the divided conductive film X3 and the end of the divided conductive film Y5 so that the current or voltage of the power generation measurement unit 23p can be measured. It is connected.
  • the terminals 21 and 22 are formed using a known conductive material, and are electrically joined to the divided conductive films X1-X5 and the divided conductive films Y1-Y6.
  • a known conductive material for example, a metal, a conductive carbon compound, or the like is preferably used.
  • the terminals 21 and 22 are metal, for example, copper, aluminum, nickel, steel, brass, or the like is preferably used.
  • the conductive films 3 and 7 and the conductive material may be electrically connected.
  • the conductive films 3 and 7 and the conductive material are joined directly or indirectly. Examples of a method for electrically joining the conductive films 3 and 7 and the conductive material constituting the terminals 21 and 22 include known methods such as welding, plating, and pressure bonding.
  • the shape and attachment method of the terminals 21 and 22 are not particularly limited.
  • a clip-type terminal, a pressing-type terminal, and the like can be given.
  • Examples of the shape of the pressing-type terminal include a rod shape.
  • the clip-type terminal is connected to a predetermined divided conductive film and fixed with the first substrate 2 and the second substrate 6 interposed therebetween.
  • the pressing-type terminal is fixed by pressing from above the conductive layer on the substrate.
  • a part of the conductive films 3 and 7 protrudes from the internal space sealed with the sealing material 10 beyond the sealing material 10 to the outside together with the first substrate 2 or the second substrate 7 and is exposed. Is preferred. Furthermore, it is preferable that the terminals 21 and 22 are formed by laminating copper foil or the like on the exposed conductive films 3 and 4.
  • the electrolyte penetrates into the semiconductor layer 4 and is coated on almost the entire surface thereof.
  • the electrolyte include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquids such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide; supported electrolytes such as lithium iodide and iodine. And the like are mixed.
  • the electrolyte may contain t-butylpyridine for the purpose of preventing reverse electron transfer reaction.
  • Measurement of the power generation performance of the solar cell 1A includes a step of irradiating the solar cell 1A with light, a step of energizing at least a pair of terminals of the solar cell 1A, and a step of detecting a current value or a voltage value of the power generation measurement unit P. And a step of evaluating the detected current value or voltage value.
  • Step of irradiating light to solar cell 1A> Light is emitted including at least one of the plurality of power generation measurement units 1p-30p selected as the power generation measurement unit for measuring current or voltage. At this time, the irradiation range of light may be a part or all of the solar cell 1A.
  • the device for irradiating light is not particularly limited as long as it is a light source capable of irradiating a light wavelength that can be generated, and examples thereof include a xenon lamp, a halogen lamp, and an LED.
  • the step of energizing the terminals 21 and 22 is performed using a current and / or voltage meter.
  • energizing a terminal means that the current or voltage of the power generation measuring unit can be measured via the terminal.
  • the insulating portion 15 is provided between the divided conductive films X3 and Y5 provided with the terminals 21 and 22 and the divided conductive films X2 and X4 and the divided conductive films Y4 and Y6 adjacent thereto.
  • the insulating portion 15 is provided between the divided conductive films X3 and Y5 provided with the terminals 21 and 22 and the divided conductive films X2 and X4 and the divided conductive films Y4 and Y6 adjacent thereto.
  • the insulating portion 15 is provided between the divided conductive films X2 and X4 and the divided conductive films Y4 and Y6 adjacent thereto.
  • 16 are electrically insulated. Therefore, when the terminals 21 and 22 are energized, current flows only between the divided conductive films X3
  • Electrons move in the stacking direction from the counter electrode 8 toward the photoelectrode 5 in the power generation measuring unit 23p generated by light irradiation and viewed from the solar cell 1A in the stacking direction where the divided conductive films X3 and Y5 overlap each other.
  • the electrons transported by the electrolyte move between the conductive films 3 and 7 in the vertical direction (perpendicular direction of the conductive film surface), and almost between the conductive films 3 and 7 in the oblique direction (perpendicular to the normal of the conductive film surface). In the crossing direction). Therefore, the current or voltage output from the terminals 21 and 22 is almost exclusively derived from the power generation measurement unit 23p.
  • the step of detecting a current value or a voltage value generated by photoelectric conversion in the power generation measurement unit can be performed by a known method. For example, using a known current meter (ammeter) or voltage meter (voltmeter), read the current value when an arbitrary voltage is applied, or connect a high resistance to approximate the current to 0 (zero). This can be done by reading the voltage value.
  • a known current meter ammeter
  • voltmeter voltage meter
  • the power generation performance of a specific power generation measurement unit that is a part of the solar cell 1A is measured by evaluating the current value or voltage value obtained in the step of detecting the current value or voltage value after performing the above steps. can do.
  • the conductive film 3 of the solar cell 1A is divided into divided conductive films X1-X5 in an electrically separated state.
  • the opposing conductive film 7 is divided in a state of being electrically separated into divided conductive films Y1-Y6.
  • the longitudinal directions of the divided conductive films X1-X5 and the divided conductive films Y1-Y6 cross (cross) each other when viewed in the stacking direction.
  • the divided conductive films X1-X5 and the divided conductive films Y1-Y6 form the power generation measurement parts 1p-30p surrounded (enclosed) by the insulating parts 15 and 16 and the sealing material 10 projected in the stacking direction,
  • the entire plate surfaces of the first substrate 2 and the second substrate 6 facing each other are respectively covered. Therefore, the current value or voltage value that flows only through the power generation measurement unit 23p can be detected simply by irradiating the entire power generation measurement unit 23p whose current value or voltage value is to be measured and applying power to the terminals 21 and 22.
  • the solar cell 1 ⁇ / b> A evaluates the obtained current value or voltage value, so that the overlapping portion of the divided conductive films X ⁇ b> 3 and Y ⁇ b> 5 and the semiconductor layer that cause the quality of the current or voltage flow are very simple.
  • the effect that the formation state of 4 can be confirmed is acquired. That is, by evaluating the power generation performance in the power generation measurement unit P set as a representative part of the solar cell 1A, it is possible to indirectly evaluate the film formation state of each layer constituting the photoelectrode and the counter electrode in the power generation measurement unit P. it can.
  • the power generation measurement part P is set by arbitrary numbers in the arbitrary locations of the solar cell 1A as needed, it can become a representative part of the solar cell 1A.
  • the region to be evaluated is set by selecting the power generation measurement unit 1p-30p and terminals 21, provided on the divided conductive films X1-X5, Y1-Y6 forming the power generation measurement unit 1p-30p, This can be done by energizing 22. Therefore, the evaluation method of the present invention does not depend on an irradiation apparatus having a special light source that irradiates only a specific region of the solar cell as in the conventional evaluation method.
  • the light source capable of irradiating at least one power generation measuring unit 1p-30p and a simple device such as a general current meter or voltage meter can be used at low cost.
  • the effect that the film-forming state of the electrically conductive films 3 and 7 and the semiconductor layer 4 can be evaluated is acquired.
  • the power generation measurement unit P is rectangular and formed in the same area, the power generation measurement unit P can be set in a compact area, and an evaluation can be easily performed.
  • the terminals 21 and 22 are preferably formed on all the divided conductive films X1-X5 and Y1-Y6. However, when the power generation measurement is performed partially, for example, when the power generation performance of only a specific power generation measurement unit is evaluated, the terminals 21 and 22 are provided only in any one of the divided conductive films X1-X5 and Y1-Y6. It may be formed.
  • the terminals 21 and 22 shown in FIG. 1 may be comprised by the division
  • the conductive films 3 and 7 divided by the insulating units 15 and 16 can be easily connected using a conductive material (not shown). That is, the divided conductive films X1-X5 and the divided conductive films Y1-Y6 can be easily connected to each other using a conductive material (not shown), and current can be extracted from all the divided conductive films X1-X5, Y1-Y6. .
  • the solar cell 1A instead of the configuration in which the conductive film 3 of the first substrate 2 and the conductive film 7 of the second substrate 6 are both electrically divided, only one of the conductive films is divided. Also good. According to this configuration, either the non-divided conductive film 3 or the conductive film 7 formed on the entire first substrate 2 or the second substrate 6 and the divided conductive film 7 or conductive film facing each other. 3 and the overlapping portion viewed in the stacking direction as the power generation measuring unit P, an effect that the current value or the voltage value can be measured is obtained.
  • the insulating portion 15 of the photoelectrode 5 and the insulating portion 16 of the counter electrode 8 cross each other at an acute angle or an obtuse angle when viewed in the stacking direction as shown in FIG. It may be formed.
  • at least one end of each of the split conductive films X1-X5 of the photoelectrode 5 and the split conductive film Y1-Y6 of the counter electrode 8 reaches the side end 10e or the side end 10f of the first substrate 2 or the second substrate 6.
  • the film is continuously formed.
  • the terminal 21 of the photoelectrode 5 protrudes from one side end 10e of the first substrate 2, and the terminal 22 of the counter electrode 8 protrudes from the other side end 10f of the second substrate 6.
  • Solar cell 1B can be easily manufactured by the following method. Using a flexible strip-shaped film material as the first substrate 2 and the second substrate 6 respectively, the solar cell 1B is transported in a direction orthogonal to the terminals 21 and 22 (direction orthogonal to the arrow L2). It can be manufactured easily.
  • a solar cell 1C (electric module) in which solar cells 1A are connected in series will be described with reference to FIG.
  • the same components as those in the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be omitted.
  • the description will focus on differences from the above-described embodiment.
  • the divided conductive Y1-Y6 films of the solar battery 1A constituting one cell are adjacent (adjacent) through the divided conductive film X1 and the conductive material 30.
  • the solar cells 1A are connected in series with the divided conductive films Y1-Y6 in a one-to-one manner in the direction of the arrow L2. That is, the divided conductive films Y1 of two adjacent solar cells 1A, Y2s, Y3s, Y4s, Y5s, Y6s are connected in series via the split conductive film X1 and the conductive material 30. ing.
  • the conductive material 30 and the divided conductive film X1 on which the conductive material 30 is arranged have a plurality of insulating portions 16, 16,... Formed between the divided conductive films Y1-Y6. Insulating portions 17 are formed at positions facing each other. In this configuration, electrons that have flowed into the divided conductive films Y1-Y6 of the counter electrode 8 of one solar cell 1A are partially subdivided by the insulating film 17 (insulating portion 17) facing the divided conductive films Y1-Y6.
  • the power generation measuring unit P is formed in each of the solar cells 1A, terminals (not shown) provided in the divided conductive films X1-X5, Y1-Y6 forming the desired power generation measuring unit P By energizing the current, it is possible to easily evaluate the film formation uniformity of the conductive films 3 and 7 and the semiconductor layer 4 in the region.
  • the solar cell 1C has the same effects and effects as described in the first embodiment.
  • the solar cells 1A and 1A are connected in series via the conductive film X1 and the conductive material 30, and electrons move between the divided conductive film X1 and the divided conductive films Y1-Y6. Can do. Therefore, the current value or voltage value of the power generation measurement unit P of the solar cell 1A is measured by subtracting the current value between any of the divided conductive films X1 and Y1 to Y6 that are connected in series. It is preferable. That is, it is preferable to evaluate the power generation performance in the power generation measurement unit P in consideration of the leakage current and electrical resistance at the site where adjacent solar cells 1A are connected in series.
  • one or more divided conductive films X1-X5, Y1-Y6 in one cell may be provided with a conductive material 30 as a current collecting member along the longitudinal direction thereof. Good. In this case, a short circuit is prevented between the conductive material 30 disposed on one or more of the divided conductive films X1-X5 and Y1-Y6 and the opposing divided conductive film Y1-Y6 or the divided conductive film X1-X5. Insulating material is inserted. With this configuration, the effect of improving the current collection efficiency of the divided conductive film X1 provided with the conductive material 30 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This photoelectric conversion element (1A) is characterized in that a photoelectrode (5) in which a semiconductor layer (4) is stacked upon a conductive film (3) formed on a first substrate (2), and a counter electrode (8) in which a conductive film (7) is formed on a second substrate (6) are stacked such that the conductive films (3, 7) are made to face each other with the semiconductor layer (4) therebetween. The photoelectric conversion element (1A) is further characterized in that: in at least one of the conductive films (3, 7) which face each other, a plurality of conductive film segments (X1-X5, Y1-Y6) are formed which are electrically isolated from each other; either areas where the conductive film segments (X1-X5 or Y1-Y6) overlap the whole conductive film (7 or 3) facing said conductive film segments when viewed from the stacking direction, or areas where the conductive film segments (X1-X5, Y1-Y6) which face each other overlap each other when viewed from the stacking direction form power-generation measurement sections (P); and an electric current can be passed through the conductive films (3, 7) which face each other and which form the power-generation measurement sections (P).

Description

光電変換素子、電気モジュール及び光電変換素子の評価方法Photoelectric conversion element, electric module, and photoelectric conversion element evaluation method
 本発明は、光電変換素子、電気モジュール及び光電変換素子の評価方法に関する。本願は、2014年6月11日に、日本に出願された特願2014-120870号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a photoelectric conversion element, an electric module, and a photoelectric conversion element evaluation method. This application claims priority based on Japanese Patent Application No. 2014-120870 filed in Japan on June 11, 2014, the contents of which are incorporated herein by reference.
 クリーンエネルギーの発電装置として、シリコン系太陽電池、色素増感型太陽電池、その他の光電変換素子(電気モジュール)が注目されている。近年では、これらの品質の保持及び向上を目的として研究開発が進められている。
 光電変換素子の品質を良好とするために、光電変換素子の光電極の発電性能の均一性が求められる。光電変換素子が大型になるほど光電極の発電性能の均一性が、光電変換素子全体の性能に大きな影響を与える。光電変換素子又は電気モジュールの評価方法として、例えば下記特許文献1,2に記載された方法等が開発され、利用されている。
 特許文献1には、スポット光源を用いて、太陽電池の特定部分のみを光照射し、特定部分の発電特性から光電極の発電性能の均一性を評価する装置が開示されている。
 特許文献2には、ライン状の光を太陽電池に照射し、太陽電池の出力に基づいた演算処理により、光電極の膜面における特性分布をマッピングする装置が開示されている。
Silicon-based solar cells, dye-sensitized solar cells, and other photoelectric conversion elements (electric modules) have attracted attention as clean energy power generation devices. In recent years, research and development have been promoted for the purpose of maintaining and improving these qualities.
In order to improve the quality of the photoelectric conversion element, the uniformity of the power generation performance of the photoelectrode of the photoelectric conversion element is required. As the photoelectric conversion element becomes larger, the uniformity of the power generation performance of the photoelectrode greatly affects the performance of the entire photoelectric conversion element. As an evaluation method of a photoelectric conversion element or an electric module, for example, methods described in Patent Documents 1 and 2 below have been developed and used.
Patent Document 1 discloses an apparatus that uses a spot light source to irradiate only a specific portion of a solar cell with light and evaluates the uniformity of the power generation performance of the photoelectrode from the power generation characteristics of the specific portion.
Patent Document 2 discloses an apparatus that irradiates a solar cell with line-shaped light and maps the characteristic distribution on the film surface of the photoelectrode by arithmetic processing based on the output of the solar cell.
特開2004-241449号公報JP 2004-241449 A 特開2010-73800号公報JP 2010-73800 A
 しかし、上記した従来の装置は、光電変換素子の特定部分のみを照射するスポット光源又はライン状の光源等の特殊な光源を備える必要があるため、装置が高額となり、測定に多くの時間を費やすという問題があった。さらに、照射部分のアライメントが必要であったり、複雑な演算処理が必要であったりするため、装置の構成が複雑になるという問題があった。
 そこで、上記課題に鑑み、本発明は、面均一性の評価を容易に行うことができる光電変換素子、電気モジュール及び光電変換素子の評価方法を提供する。
 ここで、「面均一性」とは、光電変換素子の光電極の発電性能の均一性を意味する。当該光電極の複数箇所の発電性能を測定し比較したとき、それらの発電性能が均一であれば、当該光電極の面均一性は高いといえる。
However, since the above-described conventional apparatus needs to include a special light source such as a spot light source or a line light source that irradiates only a specific portion of the photoelectric conversion element, the apparatus is expensive and takes a lot of time for measurement. There was a problem. Furthermore, there is a problem that the configuration of the apparatus becomes complicated because alignment of the irradiated portion is necessary or complicated arithmetic processing is necessary.
Then, in view of the said subject, this invention provides the evaluation method of a photoelectric conversion element, an electric module, and a photoelectric conversion element which can perform evaluation of surface uniformity easily.
Here, “surface uniformity” means the uniformity of the power generation performance of the photoelectrode of the photoelectric conversion element. When the power generation performance at a plurality of locations of the photoelectrode is measured and compared, if the power generation performance is uniform, it can be said that the surface uniformity of the photoelectrode is high.
 本発明の光電変換素子は、導電膜が成膜された第一基板(一の基板)の前記導電膜に半導体層が積層された光電極と、第二基板(他の基板)に導電膜が成膜された対向電極とが、前記半導体層を介して前記導電膜同士を対向させて、積層され、互いに対向する前記導電膜の少なくともいずれか一方は、互いに電気的に分離(絶縁)された複数の分割導電膜により形成されており、前記分割導電膜とこれに対向する導電膜の全体とが積層方向に視て重なった領域が、又は、互いに対向する前記分割導電膜同士が積層方向に視て重なった領域が、通電可能とされて発電測定部を形成していることを特徴とする。
 本発明の構成によれば、光電変換素子の導電膜を電気的に分離された状態で分割することにより、発電測定部が設定される。発電測定部に通電することが可能な位置に端子を形成し、当該端子に電流を測定可能なメータを接続するだけで、所望の発電測定部の発電性能を測定することができる。単一又は複数の光電変換素子において、複数の発電測定部を設定し、各発電測定部の発電性能を測定し比較することによって、当該複数の発電測定部の発電性能の均一性、すなわち当該光電変換素子の面均一性を評価することができる。
The photoelectric conversion element of the present invention includes a photoelectrode in which a semiconductor layer is stacked on the conductive film of a first substrate (one substrate) on which a conductive film is formed, and a conductive film on a second substrate (another substrate). The formed counter electrode is stacked with the conductive films facing each other through the semiconductor layer, and at least one of the conductive films facing each other is electrically separated (insulated) from each other. A region formed by a plurality of divided conductive films, where the divided conductive film and the entire conductive film opposed thereto overlap in the stacking direction, or the divided conductive films facing each other are stacked in the stacking direction. The region overlapped when viewed is made energizable and forms a power generation measurement unit.
According to the configuration of the present invention, the power generation measurement unit is set by dividing the conductive film of the photoelectric conversion element in an electrically separated state. The power generation performance of a desired power generation measurement unit can be measured simply by forming a terminal at a position where the power generation measurement unit can be energized and connecting a meter capable of measuring current to the terminal. By setting a plurality of power generation measurement units in a single or a plurality of photoelectric conversion elements, and measuring and comparing the power generation performance of each power generation measurement unit, the uniformity of the power generation performance of the plurality of power generation measurement units, that is, The surface uniformity of the conversion element can be evaluated.
 本発明の第一基板の(一方の)前記導電膜は、一方向に互いに平行に延びる複数の分割導電膜を形成し、第二基板の(他方の)前記導電膜は、前記積層方向に視て前記一方向に交叉する方向に互いに平行に延びる複数の分割導電膜を形成していてもよい。
 この構成によれば、光電変換素子の発電測定部を細かく設定することができる。
The conductive film (one) of the first substrate of the present invention forms a plurality of divided conductive films extending parallel to each other in one direction, and the conductive film (the other) of the second substrate is viewed in the stacking direction. A plurality of divided conductive films extending in parallel with each other in a direction crossing the one direction may be formed.
According to this configuration, the power generation measuring unit of the photoelectric conversion element can be set finely.
 本発明の互いに対向する前記分割導電膜同士は、前記積層方向に視て直交していてもよい。
 この構成によれば、発電測定部を、矩形にまとまった箇所に設定できる。
In the present invention, the divided conductive films facing each other may be orthogonal to each other when viewed in the stacking direction.
According to this configuration, the power generation measurement unit can be set in a rectangular area.
 本発明の前記発電測定部は、同一面積で複数形成されていることが好ましい。
 この構成によれば、各発電測定部の発電性能の比較が容易となる。
It is preferable that a plurality of the power generation measuring units of the present invention are formed with the same area.
According to this configuration, it becomes easy to compare the power generation performance of each power generation measurement unit.
 本発明の第一基板の前記導電膜及び第二基板の前記導電膜の少なくともいずれか一方に、集電部材が配されていてもよい。
 この構成によれば、光電変換素子で発電された電流を効率よく集電することができる。
 本発明の第一基板の前記導電膜及び第二基板の前記導電膜の少なくともいずれか一方の端部に、前記導電膜を構成する材料とは異なる材料からなる端子が設置されていてもよい。
 この構成によれば、例えば、前記導電膜よりも電気抵抗の低い材料からなる端子を設置すると、当該端子を介して電流計等の測定器を接続して発電性能を測定する時に、当該端子と測定器を接続する際の接触抵抗を低減することができる。この結果、測定誤差を低減することができる。
A current collecting member may be disposed on at least one of the conductive film of the first substrate and the conductive film of the second substrate of the present invention.
According to this configuration, the current generated by the photoelectric conversion element can be collected efficiently.
The terminal which consists of a material different from the material which comprises the said electrically conductive film may be installed in the edge part of at least any one of the said electrically conductive film of the 1st board | substrate of this invention, and the said electrically conductive film of a 2nd board | substrate.
According to this configuration, for example, when a terminal made of a material having a lower electrical resistance than the conductive film is installed, when measuring a power generation performance by connecting a measuring instrument such as an ammeter through the terminal, the terminal and The contact resistance when connecting the measuring instrument can be reduced. As a result, measurement error can be reduced.
 本発明の電気モジュールは、上記いずれかの光電変換素子が複数接続されて形成されていることを特徴とする。  
 この構成によれば、上記いずれかの作用及び機能を発揮する。
The electrical module of the present invention is formed by connecting a plurality of any of the photoelectric conversion elements described above.
According to this configuration, any one of the operations and functions described above is exhibited.
 本発明の光電変換素子の評価方法は、上記いずれかの光電変換素子に光を照射する工程と、前記発電測定部の電流又は電圧の検出を行う工程と、検出された値に基づいて発電性能を評価する工程と、を有することを特徴とする。
 この構成によれば、光電変換素子の発電性能を容易に測定することができる。
 本発明の光電変換素子の評価方法において、前記光電変換素子が有する少なくとも一対の端子に通電することによって、前記発電測定部の電流又は電圧の検出を行ってもよい。
 この構成によれば、分割導電膜で区画された複数の発電測定部のうち、所望の発電測定部に対応する箇所に端子を接続することにより、当該発電測定部の電流又は電圧の測定(検出)を容易に行うことができる。また、端子を接続する箇所を変更することにより、所望の発電測定部について上記測定を行うことができる。
The photoelectric conversion element evaluation method of the present invention includes a step of irradiating one of the photoelectric conversion elements with light, a step of detecting the current or voltage of the power generation measurement unit, and a power generation performance based on the detected value. And a step of evaluating.
According to this configuration, the power generation performance of the photoelectric conversion element can be easily measured.
In the photoelectric conversion element evaluation method of the present invention, the current or voltage of the power generation measurement unit may be detected by energizing at least a pair of terminals included in the photoelectric conversion element.
According to this configuration, by connecting a terminal to a position corresponding to a desired power generation measurement unit among a plurality of power generation measurement units partitioned by the divided conductive film, current (voltage) measurement (detection) of the power generation measurement unit is detected. ) Can be easily performed. Moreover, the said measurement can be performed about a desired electric power generation measurement part by changing the location which connects a terminal.
 本発明によれば、光電変換素子の発電性能を、シンプルな構造の電流又は電圧メータを用いて簡便に測定することができる、という効果を奏する。 According to the present invention, it is possible to easily measure the power generation performance of the photoelectric conversion element using a current or voltage meter having a simple structure.
本発明の第1実施形態の光電変換素子を模式的に示した斜視図である。It is the perspective view which showed typically the photoelectric conversion element of 1st Embodiment of this invention. 本発明の第1実施形態の光電変換素子を模式的に示した平面図である。It is the top view which showed typically the photoelectric conversion element of 1st Embodiment of this invention. 本発明の第1実施形態の光電変換素子の変形例を模式的に示した斜視図である。It is the perspective view which showed typically the modification of the photoelectric conversion element of 1st Embodiment of this invention. 本発明の第1実施形態の光電変換素子の変形例を模式的に示した平面図である。It is the top view which showed typically the modification of the photoelectric conversion element of 1st Embodiment of this invention. 本発明の第2実施形態の電気モジュールを模式的に示した斜視図である。It is the perspective view which showed typically the electric module of 2nd Embodiment of this invention. 本発明の第2実施形態の電気モジュールの一部を拡大して示した斜視図である。It is the perspective view which expanded and showed a part of electric module of 2nd Embodiment of this invention.
 以下、図を参照して本発明の光電変換素子及び電気モジュールの実施形態について、本発明の光電変換素子及び電気モジュールが色素増感太陽電池(以下「太陽電池」と称する。)である場合を例として説明する。
 なお、本願発明は、色素増感太陽電池以外にも有機薄膜太陽電池、ペロブスカイト太陽電池、有機無機ハイブリット型等の他の光電変換素子及び電気モジュールにも適用することができる。
Hereinafter, with respect to the embodiments of the photoelectric conversion element and electric module of the present invention with reference to the drawings, the photoelectric conversion element and electric module of the present invention are dye-sensitized solar cells (hereinafter referred to as “solar cells”). This will be described as an example.
The present invention can be applied to other photoelectric conversion elements and electric modules such as organic thin film solar cells, perovskite solar cells, and organic-inorganic hybrid types in addition to dye-sensitized solar cells.
(第1実施形態)
 図1に示すように、本発明の第1実施形態である太陽電池1Aは、第一基板2に導電膜3及び半導体層4が成膜された光電極5と、第二基板6に導電膜7が成膜された対向電極8とが、導電膜3,7同士を対向させて積層されている。光電極5と対向電極8との間には、電解質(不図示)が充填されている。第一基板2の板面と第二基板6の板面とは、各板面の外縁部において封止材10により連続的に貼着されている。なお、図1では、構造の表示の都合上、封止材10の一部(手前側)を省略して示している。
(First embodiment)
As shown in FIG. 1, the solar cell 1 </ b> A according to the first embodiment of the present invention includes a photoelectrode 5 in which a conductive film 3 and a semiconductor layer 4 are formed on a first substrate 2, and a conductive film on a second substrate 6. 7 is laminated with the conductive films 3 and 7 facing each other. An electrolyte (not shown) is filled between the photoelectrode 5 and the counter electrode 8. The plate surface of the first substrate 2 and the plate surface of the second substrate 6 are continuously adhered by the sealing material 10 at the outer edge portion of each plate surface. In FIG. 1, for convenience of structure display, a part (front side) of the sealing material 10 is omitted.
 太陽電池1Aは、互いに対向する導電膜3,7の双方が、電気的に分離されて、複数の分割導電膜X1-X5(X1,X2,X3,X4,X5)、分電導電部Y1-Y6(Y1,Y2,Y3,Y4,Y5、Y6)を形成している。本実施形態では導電膜3,7の双方が分割されているが、導電膜3,7の少なくともいずれか一方のみが分割された構成であってもよい。
 互いに対向する分割導電膜X1-X5と、分電導電部Y1-Y6が積層方向に視て重なった領域は、図2に示すように、複数に区画された発電測定部1p-30pを形成している。以下、これらの発電測定部を、包括的又は個別的に「発電測定部P」ということがある。互いに対向する分割導電膜X1-X5と、分電導電部Y1-Y6とには、少なくとも一つの区画の発電測定部P(すなわち、発電測定部1p-30pのいずれか1つ以上)に通電可能となる位置に、端子21,22が設けられている。
In the solar cell 1A, both the conductive films 3 and 7 facing each other are electrically separated, and a plurality of divided conductive films X1-X5 (X1, X2, X3, X4, X5), a distribution conductive part Y1- Y6 (Y1, Y2, Y3, Y4, Y5, Y6) is formed. In the present embodiment, both of the conductive films 3 and 7 are divided. However, at least one of the conductive films 3 and 7 may be divided.
A region where the divided conductive films X1-X5 and the distribution conductive parts Y1-Y6 that are opposed to each other overlap in the stacking direction forms a plurality of power generation measuring parts 1p-30p as shown in FIG. ing. Hereinafter, these power generation measurement units may be collectively or individually referred to as “power generation measurement unit P”. The divided conductive films X1-X5 and the distribution conductive parts Y1-Y6 facing each other can be energized to the power generation measurement part P (that is, any one or more of the power generation measurement parts 1p-30p) in at least one section. Terminals 21 and 22 are provided at such positions.
 第一基板2及び第二基板6の材料としては、それぞれ例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の透明の熱可塑性樹脂材料を主材料とする樹脂材料又はガラス基板等が好適に用いられる。第一基板2及び第二基板6は、可撓性を有するフィルムであってもよい。第一基板2及び第二基板6の少なくともいずれかには、透明基板が用いられている。 As the material of the first substrate 2 and the second substrate 6, for example, a resin material or a glass substrate or the like mainly composed of a transparent thermoplastic resin material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) is suitable. Used for. The first substrate 2 and the second substrate 6 may be flexible films. A transparent substrate is used for at least one of the first substrate 2 and the second substrate 6.
 図1に示すように、導電膜3は、矢印L2方向に間隔を空けて、矢印L1方向に互いに平行に延びる複数の短冊状の分割導電膜X1-X5により構成されている。なお、ここで示した分割導電膜の数は一例である。各分割導電膜X1-X5の間においては、導電膜3が成膜されておらず、第一基板2が露出しており、一方向(矢印L1方向)に平行に延びる溝状(条状)の絶縁部15を形成している。
 導電膜7は、矢印L1方向に間隔を空けて、矢印L2方向に互いに平行に延びる複数の短冊状の分割導電膜Y1-Y6により構成されている。なお、ここで示した分割導電膜の数は一例である。各分割導電膜Y1-Y6の間においては、導電膜7が成膜されておらず、第二基板6が露出しており、矢印L2方向に平行に延びる溝状(条状)の絶縁部16を形成している。
 絶縁部15,16には、絶縁材料又は半導体材料が配されていてもよい。その絶縁性を高める観点から、半導体材料よりも絶縁材料の方が好ましい。
As shown in FIG. 1, the conductive film 3 is composed of a plurality of strip-shaped divided conductive films X1-X5 extending in parallel to each other in the direction of the arrow L1 with an interval in the direction of the arrow L2. Note that the number of the divided conductive films shown here is an example. Between each of the divided conductive films X1-X5, the conductive film 3 is not formed, the first substrate 2 is exposed, and a groove shape (strip shape) extending in parallel in one direction (the direction of the arrow L1). Insulating portion 15 is formed.
The conductive film 7 is composed of a plurality of strip-shaped divided conductive films Y1-Y6 extending in parallel with each other in the direction of the arrow L2 with an interval in the direction of the arrow L1. Note that the number of the divided conductive films shown here is an example. Between each of the divided conductive films Y1-Y6, the conductive film 7 is not formed, the second substrate 6 is exposed, and a groove-shaped (strip-shaped) insulating portion 16 extending in parallel with the arrow L2 direction. Is forming.
The insulating parts 15 and 16 may be provided with an insulating material or a semiconductor material. From the viewpoint of improving the insulation, an insulating material is preferable to a semiconductor material.
 第一基板2に形成された各分割導電膜X1-X5と、第二基板6に形成された各分割導電膜Y1-Y6とが、光電極5と対向電極8との積層方向に視て重なっている領域は、一つの発電測定部P(1p-30p)を構成している。前記領域は、各絶縁部15,16を積層方向に投影したときに、各絶縁部15,16により囲まれた分割導電膜X1-X5及び分割導電膜Y1-Y5からなる領域である。一つの発電測定部Pは各絶縁部15,16によって複数の区画に分割されており、これらの発電測定部1p-30pは、同一面積の矩形に形成されている。
 各絶縁部15同士の間隔及び各絶縁部16同士の間隔は、適切な大きさの発電測定部Pを形成できる寸法に設定されている。発電測定部Pの大きさは、例えば、一辺が1mm~50mmの範囲が好ましく、5mm~30mmの範囲がより好ましい。
 また、絶縁部15,16の幅は、例えば、それぞれ1μm~3mmが好ましく、1μm~1mmがより好ましい。
 分割導電膜X1-X5の形成方法は特に限定されず、例えば、第一基板2に形成した導電膜3を公知のフォトリソグラフ法によって、所望の形状に分割する方法が挙げられる。分割導電膜Y1-Y6も同様に形成され得る。
Each divided conductive film X1-X5 formed on the first substrate 2 and each divided conductive film Y1-Y6 formed on the second substrate 6 overlap each other when viewed in the stacking direction of the photoelectrode 5 and the counter electrode 8. The region that constitutes one power generation measuring part P (1p-30p). The region is a region composed of the divided conductive films X1-X5 and the divided conductive films Y1-Y5 surrounded by the insulating portions 15, 16 when the insulating portions 15, 16 are projected in the stacking direction. One power generation measurement part P is divided into a plurality of sections by the insulating parts 15 and 16, and these power generation measurement parts 1p-30p are formed in a rectangle having the same area.
The interval between the insulating portions 15 and the interval between the insulating portions 16 are set to dimensions that can form the power generation measuring portion P having an appropriate size. The size of the power generation measurement unit P is, for example, preferably in the range of 1 mm to 50 mm on one side, and more preferably in the range of 5 mm to 30 mm.
In addition, the width of the insulating portions 15 and 16 is, for example, preferably 1 μm to 3 mm, and more preferably 1 μm to 1 mm.
The formation method of the divided conductive films X1-X5 is not particularly limited, and examples thereof include a method of dividing the conductive film 3 formed on the first substrate 2 into a desired shape by a known photolithography method. The divided conductive films Y1-Y6 can be formed similarly.
 導電膜3,7の材料としては、例えば、スズドープ酸化インジウム(ITO)、酸化亜鉛、フッ素ドープ酸化スズ(FTO)、アルミドープ酸化亜鉛(AZO)、酸化スズ(SnO)、アンチモンドープ酸化スズ(ATO)、酸化インジウム/酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)等が挙げられる。
 光電極5の導電膜3又は対向電極8の導電膜7の少なくともいずれか一方は、透明導電膜であることが好ましい。
Examples of the material for the conductive films 3 and 7 include tin-doped indium oxide (ITO), zinc oxide, fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), tin oxide (SnO), and antimony-doped tin oxide (ATO). ), Indium oxide / zinc oxide (IZO), gallium-doped zinc oxide (GZO), and the like.
At least one of the conductive film 3 of the photoelectrode 5 and the conductive film 7 of the counter electrode 8 is preferably a transparent conductive film.
 第二基板6に成膜される導電膜7は、電解質に対する酸化還元反応を触媒する触媒層としての役割を有していてもよく、有していなくてもよい。前者の場合は、導電膜7上に更に不図示の触媒層が成膜される。後者の場合には導電膜7のみが第二基板6に成膜される。
 導電膜7の表面に成膜される触媒層としては、例えば、カーボンペースト、プラチナ等からなる触媒層が挙げられる。
 光電極5の導電膜3の表面にはh+(正孔)ブロッキング層が備えられていることが好ましい。対向電極8の導電膜7の表面には電子ブロッキング層が備えられていることが好ましい。
 対向電極8を構成する導電膜3および必要に応じて積層される触媒層の形成方法は特に限定されず、公知方法が適用可能である。
The conductive film 7 formed on the second substrate 6 may or may not have a role as a catalyst layer that catalyzes a redox reaction on the electrolyte. In the former case, a catalyst layer (not shown) is further formed on the conductive film 7. In the latter case, only the conductive film 7 is formed on the second substrate 6.
Examples of the catalyst layer formed on the surface of the conductive film 7 include a catalyst layer made of carbon paste, platinum, or the like.
It is preferable that an h + (hole) blocking layer is provided on the surface of the conductive film 3 of the photoelectrode 5. It is preferable that an electron blocking layer is provided on the surface of the conductive film 7 of the counter electrode 8.
The formation method of the electrically conductive film 3 which comprises the counter electrode 8, and the catalyst layer laminated | stacked as needed is not specifically limited, A well-known method is applicable.
 半導体層4は、増感色素から電子を受け取り輸送する機能を有するものであり、金属酸化物、有機金属などからなる半導体が導電膜3の表面に成膜されてなる半導体層である。本実施形態では、半導体層4は、分割導電膜X1-X5間にわたって連続的に成膜されている。しかし、半導体層4は、分割導電膜X1-X5間の各絶縁部15に沿って分割されていてもよい。
 半導体層4を構成する前記金属酸化物としては、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等が用いられる。前記有機金属としては、CH3NH3PbX3(Xはハロゲン原子)などのペロブスカイト構造の有機金属等が用いられる。
 光電極5を構成する半導体層4の成膜方法は特に限定されず、公知方法が適用可能である。半導体層4を導電膜3と同様に分割する場合には、例えば、公知のフォトリソグラフ法により分割する方法が適用できる。
The semiconductor layer 4 has a function of receiving and transporting electrons from the sensitizing dye, and is a semiconductor layer in which a semiconductor made of a metal oxide, an organic metal, or the like is formed on the surface of the conductive film 3. In the present embodiment, the semiconductor layer 4 is continuously formed across the divided conductive films X1-X5. However, the semiconductor layer 4 may be divided along each insulating portion 15 between the divided conductive films X1 to X5.
As the metal oxide constituting the semiconductor layer 4, for example, titanium oxide (TiO 2), zinc oxide (ZnO), tin oxide (SnO 2) or the like is used. As the organic metal, an organic metal having a perovskite structure such as CH 3 NH 3 PbX 3 (X is a halogen atom) is used.
The method for forming the semiconductor layer 4 constituting the photoelectrode 5 is not particularly limited, and a known method can be applied. When the semiconductor layer 4 is divided in the same manner as the conductive film 3, for example, a method of dividing by a known photolithography method can be applied.
 半導体層4は、増感色素を担持することができる。増感色素の担持量を高める観点から、半導体層4は多孔質であることが好ましい。増感色素としては、例えば公知の有機色素、金属錯体色素等が挙げられる。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等の各種有機色素が挙げられる。金属錯体色素としては、例えば、ルテニウム錯体等が好適である。
 本実施形態では図示しないが、光電極5と対向電極8との間にはセパレータが介装されていてもよい。
The semiconductor layer 4 can carry a sensitizing dye. From the viewpoint of increasing the amount of sensitizing dye supported, the semiconductor layer 4 is preferably porous. Examples of the sensitizing dye include known organic dyes and metal complex dyes. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. As the metal complex dye, for example, a ruthenium complex is suitable.
Although not shown in the present embodiment, a separator may be interposed between the photoelectrode 5 and the counter electrode 8.
 封止材10は、第一基板2及び第二基板6の外縁に沿って全周に連続して配されており、第一基板2と第二基板6との間に電解質を保持可能な空間を形成した状態で、これらの基板を貼り合せている。
 封止材10としては、例えばホットメルト樹脂等の接着剤が好適である。
 第一基板2及び第二基板6を封止する方法は特に限定されず、公知方法が適用可能である。
The sealing material 10 is continuously arranged on the entire circumference along the outer edges of the first substrate 2 and the second substrate 6, and a space in which the electrolyte can be held between the first substrate 2 and the second substrate 6. These substrates are bonded together in a state in which is formed.
As the sealing material 10, for example, an adhesive such as hot melt resin is suitable.
The method for sealing the first substrate 2 and the second substrate 6 is not particularly limited, and a known method can be applied.
 端子21,22は、区分けされた複数の発電測定部p1-p30のうち、電流又は電圧を測定する任意の発電測定部Pに通電可能な部材又は部位である。一対の端子21,22は、分割導電膜X1-X5及び分割導電膜Y1-Y6にそれぞれ設置されており、電流又は電圧等を測定する外部装置の端子が接続される。外部装置の端子が接続した特定の分割導電膜を介して、特定の発電測定部Pにおける電流又は電圧等が測定される。
 端子21,22は、発電測定部Pを形成している任意の分割導電膜X1―X5,分割導電膜Y1-Y6に予め設けられていてもよい。又は、発電測定部Pに光を照射して発電される電流又は電圧を測定する際に、必要に応じて端子21,22が設けられてもよい。
The terminals 21 and 22 are members or portions that can be energized to any power generation measurement unit P that measures current or voltage among the divided power generation measurement units p1 to p30. The pair of terminals 21 and 22 are provided on the divided conductive films X1-X5 and the divided conductive films Y1-Y6, respectively, and are connected to terminals of external devices that measure current or voltage. A current or voltage in a specific power generation measurement unit P is measured through a specific divided conductive film to which a terminal of the external device is connected.
The terminals 21 and 22 may be provided in advance in any of the divided conductive films X1 to X5 and the divided conductive films Y1 to Y6 that form the power generation measurement unit P. Alternatively, when measuring the current or voltage generated by irradiating the power generation measurement unit P with light, the terminals 21 and 22 may be provided as necessary.
 各分割導電膜X1-X5,Y1-Y6における端子21,22を形成する位置は、電流又は電圧の測定機器に電気的に接続可能な位置であれば特に限定されない。図1に示すように、本実施形態では、端子21,22は、発電測定部23pの電流又は電圧が測定できるように、分割導電膜X3の端部と分割導電膜Y5の端部とに予め接続されている。 The position where the terminals 21 and 22 are formed in each of the divided conductive films X1-X5 and Y1-Y6 is not particularly limited as long as it is a position that can be electrically connected to a current or voltage measuring device. As shown in FIG. 1, in this embodiment, the terminals 21 and 22 are provided in advance at the end of the divided conductive film X3 and the end of the divided conductive film Y5 so that the current or voltage of the power generation measurement unit 23p can be measured. It is connected.
 端子21,22は、公知の導電材料を用いて形成され、分割導電膜X1-X5,分割導電膜Y1-Y6に電気的に接合されている。導電材料としては、例えば、金属、導電性炭素系化合物等が好適に用いられる。端子21,22が金属の場合、例えば、銅、アルミニウム、ニッケル、鋼鉄、真鍮等が好適に用いられる。
 導電膜3,7と導電材料とは電気的に導通していればよい。導電膜3,7と導電材料とは直接又は間接的に接合されている。導電膜3,7と端子21,22を構成する導電材料とを電気的に接合する方法としては、例えば、溶接、メッキ、圧着等の公知の方法が挙げられる。
The terminals 21 and 22 are formed using a known conductive material, and are electrically joined to the divided conductive films X1-X5 and the divided conductive films Y1-Y6. As the conductive material, for example, a metal, a conductive carbon compound, or the like is preferably used. When the terminals 21 and 22 are metal, for example, copper, aluminum, nickel, steel, brass, or the like is preferably used.
The conductive films 3 and 7 and the conductive material may be electrically connected. The conductive films 3 and 7 and the conductive material are joined directly or indirectly. Examples of a method for electrically joining the conductive films 3 and 7 and the conductive material constituting the terminals 21 and 22 include known methods such as welding, plating, and pressure bonding.
 端子21,22の形状及び取り付け方は特に限定されない。例えば、クリップ式の端子、押し付け式の端子等が挙げられる。押し付け式の端子の形状として、例えば、棒状が挙げられる。クリップ式の端子は、所定の分割導電膜に接続するとともに、第一基板2及び第二基板6を挟んで固定する。押し付け式の端子は、基板上の導電層の上方から押し付けて固定される。 The shape and attachment method of the terminals 21 and 22 are not particularly limited. For example, a clip-type terminal, a pressing-type terminal, and the like can be given. Examples of the shape of the pressing-type terminal include a rod shape. The clip-type terminal is connected to a predetermined divided conductive film and fixed with the first substrate 2 and the second substrate 6 interposed therebetween. The pressing-type terminal is fixed by pressing from above the conductive layer on the substrate.
 導電膜3,7の一部は、封止材10で封止されている内部空間から封止材10を超えて第一基板2又は第二基板7と共に外部に突出するとともに露出していることが好ましい。さらに、露出している導電膜3,4に銅箔等が積層されて、端子21,22が形成されていることが好ましい。 A part of the conductive films 3 and 7 protrudes from the internal space sealed with the sealing material 10 beyond the sealing material 10 to the outside together with the first substrate 2 or the second substrate 7 and is exposed. Is preferred. Furthermore, it is preferable that the terminals 21 and 22 are formed by laminating copper foil or the like on the exposed conductive films 3 and 4.
 電解質は、半導体層4の内部に浸透し、そのほぼ表面全体に塗工されている。
 電解質としては、例えば、アセトニトリル、プロピオニトリル等の非水系溶剤;ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウム等のイオン液体などの液体成分に、ヨウ化リチウム等の支持電解液とヨウ素とが混合された溶液等が挙げられる。また、電解質は、逆電子移動反応を防止する目的で、t-ブチルピリジンを含んでいてもよい。
The electrolyte penetrates into the semiconductor layer 4 and is coated on almost the entire surface thereof.
Examples of the electrolyte include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquids such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide; supported electrolytes such as lithium iodide and iodine. And the like are mixed. The electrolyte may contain t-butylpyridine for the purpose of preventing reverse electron transfer reaction.
 次に、光電変換素子の評価方法の一例として、太陽電池1Aの発電性能の測定方法を説明する。
 太陽電池1Aの発電性能の測定は、太陽電池1Aに光を照射する工程と、太陽電池1Aの少なくとも一対の端子に通電する工程と、発電測定部Pの電流値又は電圧値の検出を行う工程と、検出された電流値又は電圧値を評価する工程とを有する。
Next, a method for measuring the power generation performance of the solar cell 1A will be described as an example of a photoelectric conversion element evaluation method.
Measurement of the power generation performance of the solar cell 1A includes a step of irradiating the solar cell 1A with light, a step of energizing at least a pair of terminals of the solar cell 1A, and a step of detecting a current value or a voltage value of the power generation measurement unit P. And a step of evaluating the detected current value or voltage value.
<太陽電池1Aに光を照射する工程>
 電流又は電圧を測定する発電測定部として選択された、複数の発電測定部1p-30pのうちの少なくともいずれか1つを含んで光を照射する。この際、光の照射範囲は、太陽電池1Aの一部又は全部のいずれであってもよい。
 光を照射する装置としては、発電可能な光波長を照射可能な光源であれば、特に限定されず、例えば、キセノンランプ、ハロゲンランプ、LED、等が挙げられる。
<Step of irradiating light to solar cell 1A>
Light is emitted including at least one of the plurality of power generation measurement units 1p-30p selected as the power generation measurement unit for measuring current or voltage. At this time, the irradiation range of light may be a part or all of the solar cell 1A.
The device for irradiating light is not particularly limited as long as it is a light source capable of irradiating a light wavelength that can be generated, and examples thereof include a xenon lamp, a halogen lamp, and an LED.
<端子に通電する工程> 
 端子21,22に通電する工程は、電流及び/又は電圧メータを用いて行う。ここで、端子に通電するとは、当該端子を介して発電測定部の電流又は電圧を測定可能な状態にすることを意味する。
 図1に示すように、端子21,22が設けられた分割導電膜X3,Y5と、これらにそれぞれに隣り合う分割導電膜X2,X4及び分割導電膜Y4,Y6との間が、絶縁部15,16により電気的に絶縁されている。したがって、端子21,22に通電すると、端子21,22の間で、分割導電膜X3,Y5のみを電流が流れる。光照射によって発電され、積層方向に太陽電池1Aを視て分割導電膜X3,Y5同士が重なった発電測定部23pにおいて電子が対向電極8から光電極5に向かって積層方向に移動する。この際、電解質によって輸送される電子は、導電膜3,7間を垂直方向(導電膜面の垂線方向)に移動し、ほとんど導電膜3,7間を斜め方向(導電膜面の垂線に対して交差する方向)には移動しない。したがって、端子21,22から出力される電流又は電圧は、ほとんど発電測定部23pのみに由来する。
<Process to energize terminals>
The step of energizing the terminals 21 and 22 is performed using a current and / or voltage meter. Here, energizing a terminal means that the current or voltage of the power generation measuring unit can be measured via the terminal.
As shown in FIG. 1, between the divided conductive films X3 and Y5 provided with the terminals 21 and 22 and the divided conductive films X2 and X4 and the divided conductive films Y4 and Y6 adjacent thereto, the insulating portion 15 is provided. , 16 are electrically insulated. Therefore, when the terminals 21 and 22 are energized, current flows only between the divided conductive films X3 and Y5 between the terminals 21 and 22. Electrons move in the stacking direction from the counter electrode 8 toward the photoelectrode 5 in the power generation measuring unit 23p generated by light irradiation and viewed from the solar cell 1A in the stacking direction where the divided conductive films X3 and Y5 overlap each other. At this time, the electrons transported by the electrolyte move between the conductive films 3 and 7 in the vertical direction (perpendicular direction of the conductive film surface), and almost between the conductive films 3 and 7 in the oblique direction (perpendicular to the normal of the conductive film surface). In the crossing direction). Therefore, the current or voltage output from the terminals 21 and 22 is almost exclusively derived from the power generation measurement unit 23p.
<電流値又は電圧値の検出を行う工程>
 発電測定部における光電変換によって生じた電流値又は電圧値の検出を行う工程は、公知方法により行うことができる。例えば、公知の電流メータ(電流計)若しくは電圧メータ(電圧計)を使用し、任意の電圧印加時の電流値を読み取るか、又は、高抵抗を接続し近似的に電流を0(ゼロ)とした場合の電圧値を読み取ることにより行うことができる。
 太陽電池1Aにおいて、端子21,22に通電した場合、ほぼ発電測定部23pのみを電子が移動するため、発電測定部23pを流れる電流値又は電圧値が検出される。
<Step of detecting current value or voltage value>
The step of detecting a current value or a voltage value generated by photoelectric conversion in the power generation measurement unit can be performed by a known method. For example, using a known current meter (ammeter) or voltage meter (voltmeter), read the current value when an arbitrary voltage is applied, or connect a high resistance to approximate the current to 0 (zero). This can be done by reading the voltage value.
In the solar cell 1A, when the terminals 21 and 22 are energized, the electrons move almost only through the power generation measurement unit 23p, so that the current value or voltage value flowing through the power generation measurement unit 23p is detected.
<発電性能を評価する工程>
 上記の工程を経た上で、電流値又は電圧値の検出を行う工程で得られた電流値又は電圧値を評価することで太陽電池1Aの一部である特定の発電測定部の発電性能を測定することができる。
<Process for evaluating power generation performance>
The power generation performance of a specific power generation measurement unit that is a part of the solar cell 1A is measured by evaluating the current value or voltage value obtained in the step of detecting the current value or voltage value after performing the above steps. can do.
 太陽電池1Aの導電膜3は、分割導電膜X1-X5に電気的に分離した状態で分割されている。対向する導電膜7は分割導電膜Y1―Y6に電気的に分離した状態で分割されている。分割導電膜X1-X5と分割導電膜Y1-Y6の長手方向は積層方向に視て互いに交叉(交差)している。分割導電膜X1-X5と分割導電膜Y1-Y6は、積層方向に投影させた絶縁部15,16及び封止材10に囲まれた(囲繞された)発電測定部1p-30pを形成し、対向する第一基板2と第二基板6の板面の全体を、それぞれ覆っている。
 したがって、電流値又は電圧値を測定したい発電測定部23pの全体を光照射し、端子21,22に通電するだけで、発電測定部23pのみを流れる電流値又は電圧値を検出することができる。
The conductive film 3 of the solar cell 1A is divided into divided conductive films X1-X5 in an electrically separated state. The opposing conductive film 7 is divided in a state of being electrically separated into divided conductive films Y1-Y6. The longitudinal directions of the divided conductive films X1-X5 and the divided conductive films Y1-Y6 cross (cross) each other when viewed in the stacking direction. The divided conductive films X1-X5 and the divided conductive films Y1-Y6 form the power generation measurement parts 1p-30p surrounded (enclosed) by the insulating parts 15 and 16 and the sealing material 10 projected in the stacking direction, The entire plate surfaces of the first substrate 2 and the second substrate 6 facing each other are respectively covered.
Therefore, the current value or voltage value that flows only through the power generation measurement unit 23p can be detected simply by irradiating the entire power generation measurement unit 23p whose current value or voltage value is to be measured and applying power to the terminals 21 and 22.
 以上より、太陽電池1Aは、得られた電流値又は電圧値を評価することで、非常に簡便に、電流又は電圧の流れの良否の要因となる分割導電膜X3,Y5の重なり部分及び半導体層4の形成状態を確認することができるという効果が得られる。つまり、太陽電池1Aの代表部分として設定した発電測定部Pにおける発電性能を評価することによって、発電測定部Pにおける光電極及び対向電極を構成する各層の成膜状態を間接的に評価することができる。また、発電測定部Pは、必要に応じて、太陽電池1Aの任意の箇所に任意の数で設定されるので、太陽電池1Aの代表部分となり得る。
 太陽電池1Aにおいて、評価する領域の設定を、発電測定部1p-30pの選択と、発電測定部1p-30pを形成している分割導電膜X1-X5,Y1-Y6に設けられた端子21,22への通電と、によって行うことができる。したがって、本発明の評価方法は、従来の評価方法のように、太陽電池の特定の領域のみを照射する特殊な光源を有する照射装置に依存しない。
As described above, the solar cell 1 </ b> A evaluates the obtained current value or voltage value, so that the overlapping portion of the divided conductive films X <b> 3 and Y <b> 5 and the semiconductor layer that cause the quality of the current or voltage flow are very simple. The effect that the formation state of 4 can be confirmed is acquired. That is, by evaluating the power generation performance in the power generation measurement unit P set as a representative part of the solar cell 1A, it is possible to indirectly evaluate the film formation state of each layer constituting the photoelectrode and the counter electrode in the power generation measurement unit P. it can. Moreover, since the power generation measurement part P is set by arbitrary numbers in the arbitrary locations of the solar cell 1A as needed, it can become a representative part of the solar cell 1A.
In the solar cell 1A, the region to be evaluated is set by selecting the power generation measurement unit 1p-30p and terminals 21, provided on the divided conductive films X1-X5, Y1-Y6 forming the power generation measurement unit 1p-30p, This can be done by energizing 22. Therefore, the evaluation method of the present invention does not depend on an irradiation apparatus having a special light source that irradiates only a specific region of the solar cell as in the conventional evaluation method.
 本発明の評価方法によれば、少なくとも一つの発電測定部1p-30pを照射することのできる光源と、一般的な電流メータ又は電圧メータの簡便な装置を使用して安価に、太陽電池1Aの導電膜3,7及び半導体層4の成膜状態を評価することができる、という効果が得られる。
 また、発電測定部Pが、矩形で同一面積に形成されているため、発電測定部Pをコンパクトにまとまった領域に設定することができるとともに、評価を行いやすい、という効果が得られる。
According to the evaluation method of the present invention, the light source capable of irradiating at least one power generation measuring unit 1p-30p and a simple device such as a general current meter or voltage meter can be used at low cost. The effect that the film-forming state of the electrically conductive films 3 and 7 and the semiconductor layer 4 can be evaluated is acquired.
In addition, since the power generation measurement unit P is rectangular and formed in the same area, the power generation measurement unit P can be set in a compact area, and an evaluation can be easily performed.
 なお、端子21,22は、全ての分割導電膜X1-X5,Y1-Y6に形成されていることが好ましい。しかし、発電測定を部分的に行う場合、例えば特定の発電測定部のみの発電性能を評価する等の場合は、分割導電膜X1-X5,Y1-Y6のいずれかにのみに端子21,22が形成されていてもよい。 The terminals 21 and 22 are preferably formed on all the divided conductive films X1-X5 and Y1-Y6. However, when the power generation measurement is performed partially, for example, when the power generation performance of only a specific power generation measurement unit is evaluated, the terminals 21 and 22 are provided only in any one of the divided conductive films X1-X5 and Y1-Y6. It may be formed.
 また、図1に示す端子21,22は、図3に示すように、分割導電膜によって構成されていてもよい。すなわち、端子21は、封止材10に囲まれた内部空間から封止材10を突き抜けて外側に延設させた、第一基板2上の分割導電膜X1-X5そのものであってもよい。同様に、端子22は、封止材10に囲まれた内部空間から封止材10を突き抜けて外側に延設させた、第二基板6上の分割導電膜Y1-Y6そのものであってもよい。
 この構成により、端子21,22を構成する導電部材を分割導電膜X1-X5,Y1-Y6に接合する工程を省くことができる。また、発電測定部Pの測定後、絶縁部15,16により分割された導電膜3,7を不図示の導電材を用いて容易に接続することができる。つまり、不図示の導電材を用いて分割導電膜X1-X5同士及び分割導電膜Y1-Y6同士を容易に接続し、すべての分割導電膜X1-X5,Y1-Y6から電流を取り出すことができる。
Moreover, the terminals 21 and 22 shown in FIG. 1 may be comprised by the division | segmentation electrically conductive film, as shown in FIG. That is, the terminal 21 may be the divided conductive film X1-X5 itself on the first substrate 2 that extends through the sealing material 10 from the inner space surrounded by the sealing material 10 and extends outward. Similarly, the terminal 22 may be the divided conductive film Y1-Y6 itself on the second substrate 6 that extends through the sealing material 10 from the inner space surrounded by the sealing material 10 and extends outward. .
With this configuration, it is possible to omit the step of bonding the conductive members forming the terminals 21 and 22 to the divided conductive films X1-X5 and Y1-Y6. In addition, after the measurement by the power generation measuring unit P, the conductive films 3 and 7 divided by the insulating units 15 and 16 can be easily connected using a conductive material (not shown). That is, the divided conductive films X1-X5 and the divided conductive films Y1-Y6 can be easily connected to each other using a conductive material (not shown), and current can be extracted from all the divided conductive films X1-X5, Y1-Y6. .
 太陽電池1Aにおいて、第一基板2の導電膜3及び第二基板6の導電膜7が共に電気的に分割された構成に替えて、いずれか一方の導電膜のみが分割された構成であってもよい。
 この構成によれば、第一基板2又は第二基板6の全体に成膜された分割されていない導電膜3又は導電膜7のいずれか一方と、対向する分割された導電膜7又は導電膜3と、の積層方向に視た重なり部分を発電測定部Pとして、電流値又は電圧値を測定することができる、という効果が得られる。
In the solar cell 1A, instead of the configuration in which the conductive film 3 of the first substrate 2 and the conductive film 7 of the second substrate 6 are both electrically divided, only one of the conductive films is divided. Also good.
According to this configuration, either the non-divided conductive film 3 or the conductive film 7 formed on the entire first substrate 2 or the second substrate 6 and the divided conductive film 7 or conductive film facing each other. 3 and the overlapping portion viewed in the stacking direction as the power generation measuring unit P, an effect that the current value or the voltage value can be measured is obtained.
 光電極5の絶縁部15と対向電極8の絶縁部16とは、図4に太陽電池1Bとして示すように、積層方向に視て鋭角又は鈍角に交叉し、平行四辺形の発電測定部Pを形成していてもよい。
 この場合、光電極5の分割導電膜X1-X5及び対向電極8の分割導電膜Y1-Y6は、それぞれの少なくとも一端が第一基板2又は第二基板6の側端10e又は側端10fに達するように、連続して成膜されている。
The insulating portion 15 of the photoelectrode 5 and the insulating portion 16 of the counter electrode 8 cross each other at an acute angle or an obtuse angle when viewed in the stacking direction as shown in FIG. It may be formed.
In this case, at least one end of each of the split conductive films X1-X5 of the photoelectrode 5 and the split conductive film Y1-Y6 of the counter electrode 8 reaches the side end 10e or the side end 10f of the first substrate 2 or the second substrate 6. Thus, the film is continuously formed.
 太陽電池1Bにおいて、光電極5の端子21は第一基板2の一方の側端10eから突出し、対向電極8の端子22は第二基板6の他方の側端10fから突出する。
 太陽電池1Bは次の方法によって容易に製造され得る。第一基板2と第二基板6としてそれぞれ可撓性を有する帯状のフィルム材を使用し、端子21,22間に直交する方向(矢印L2に直交する方向)に搬送しつつ、太陽電池1Bを容易に製造することができる。
In the solar cell 1B, the terminal 21 of the photoelectrode 5 protrudes from one side end 10e of the first substrate 2, and the terminal 22 of the counter electrode 8 protrudes from the other side end 10f of the second substrate 6.
Solar cell 1B can be easily manufactured by the following method. Using a flexible strip-shaped film material as the first substrate 2 and the second substrate 6 respectively, the solar cell 1B is transported in a direction orthogonal to the terminals 21 and 22 (direction orthogonal to the arrow L2). It can be manufactured easily.
<電気モジュール>
 本発明の第2の実施形態として、太陽電池1Aを直列接続させた太陽電池1C(電気モジュール)について、図5を用いて説明する。本実施形態において、前述した実施形態と同一の構成については同一の符号を付してその説明を省略し、前述した実施形態と相違する点を中心に説明する。
 図5に示すように、太陽電池1Cにおいて、一つのセルを構成する太陽電池1Aの各分割導電Y1-Y6膜が、分割導電膜X1及び導電材30を介して、隣接する(隣り合う)他の太陽電池1Aの各分割導電膜Y1-Y6と、一対一で矢印L2方向に直列接続している。すなわち、隣り合う2つの太陽電池1Aの各々の分割導電膜Y1同士、Y2同士、Y3同士、Y4同士、Y5同士、Y6同士が、分割導電膜X1及び導電材30を介して、直列に接続されている。
<Electric module>
As a second embodiment of the present invention, a solar cell 1C (electric module) in which solar cells 1A are connected in series will be described with reference to FIG. In the present embodiment, the same components as those in the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the above-described embodiment.
As shown in FIG. 5, in the solar battery 1C, the divided conductive Y1-Y6 films of the solar battery 1A constituting one cell are adjacent (adjacent) through the divided conductive film X1 and the conductive material 30. The solar cells 1A are connected in series with the divided conductive films Y1-Y6 in a one-to-one manner in the direction of the arrow L2. That is, the divided conductive films Y1 of two adjacent solar cells 1A, Y2s, Y3s, Y4s, Y5s, Y6s are connected in series via the split conductive film X1 and the conductive material 30. ing.
 図6に示すように、太陽電池1Cにおいて、導電材30及び導電材30が配された分割導電膜X1には、分割導電膜Y1-Y6間に形成された複数の絶縁部16,16・・に対向する位置に、絶縁部17がそれぞれ形成されている。
 この構成において、一つの太陽電池1Aの対向電極8の分割導電膜Y1-Y6に流れた電子は、分割導電膜Y1-Y6に対向する分割導電膜X1の一部(絶縁部17によって細分化された各々の分割導電膜X1)に移動した後、分割導電膜Y1-Y6に対応するように分割された(分割導電膜X1と同様に細分化された)導電材30を経由して、隣接する太陽電池1Aの分割導電膜Y1-Y6に順次移動する。
As shown in FIG. 6, in the solar cell 1C, the conductive material 30 and the divided conductive film X1 on which the conductive material 30 is arranged have a plurality of insulating portions 16, 16,... Formed between the divided conductive films Y1-Y6. Insulating portions 17 are formed at positions facing each other.
In this configuration, electrons that have flowed into the divided conductive films Y1-Y6 of the counter electrode 8 of one solar cell 1A are partially subdivided by the insulating film 17 (insulating portion 17) facing the divided conductive films Y1-Y6. After moving to each of the divided conductive films X1), adjacent to each other via the conductive material 30 divided so as to correspond to the divided conductive films Y1-Y6 (subdivided similarly to the divided conductive film X1). It moves sequentially to the divided conductive films Y1-Y6 of the solar cell 1A.
 例えば、各太陽電池1Aの全体に発電測定部Pが形成されていると、所望の発電測定部Pを形成している分割導電膜X1-X5,Y1-Y6に設けられた端子(不図示)に通電することによって、簡便に当該領域の導電膜3,7及び半導体層4の成膜の均一性を評価することができる、という効果が得られる。太陽電池1Cは、第1実施形態で説明した作用及び効果を同様に奏する。 For example, when the power generation measuring unit P is formed in each of the solar cells 1A, terminals (not shown) provided in the divided conductive films X1-X5, Y1-Y6 forming the desired power generation measuring unit P By energizing the current, it is possible to easily evaluate the film formation uniformity of the conductive films 3 and 7 and the semiconductor layer 4 in the region. The solar cell 1C has the same effects and effects as described in the first embodiment.
 太陽電池1A,1A同士の間は、導電膜X1及び導電材30を介して直列に接続されており、この分割導電膜X1と分割導電膜Y1-Y6のいずれかとの間を電子が移動することができる。したがって、太陽電池1Aの発電測定部Pの電流値又は電圧値は、直列接続が行われている分割導電膜X1と分割導電膜Y1-Y6のいずれかとの間の電流値を差し引いて測定されることが好ましい。つまり、隣接する太陽電池1A同士を直列に接続している部位におけるリーク電流や電気抵抗を考慮して、発電測定部Pにおける発電性能を評価することが好ましい。 The solar cells 1A and 1A are connected in series via the conductive film X1 and the conductive material 30, and electrons move between the divided conductive film X1 and the divided conductive films Y1-Y6. Can do. Therefore, the current value or voltage value of the power generation measurement unit P of the solar cell 1A is measured by subtracting the current value between any of the divided conductive films X1 and Y1 to Y6 that are connected in series. It is preferable. That is, it is preferable to evaluate the power generation performance in the power generation measurement unit P in consideration of the leakage current and electrical resistance at the site where adjacent solar cells 1A are connected in series.
 上述した各太陽電池において、一つのセル内の一つ以上の分割導電膜X1-X5,Y1-Y6には、その長手方向に沿って、集電部材としての導電材30が配されていてもよい。
 この場合、一つ以上の分割導電膜X1-X5,Y1-Y6に配された導電材30と、対向する分割導電膜Y1-Y6又は分割導電膜X1-X5との間には、短絡を防止するための絶縁材料が介装される。
 この構成により、導電材30が配された分割導電膜X1の集電効率が向上する、という効果が得られる。
In each of the solar cells described above, one or more divided conductive films X1-X5, Y1-Y6 in one cell may be provided with a conductive material 30 as a current collecting member along the longitudinal direction thereof. Good.
In this case, a short circuit is prevented between the conductive material 30 disposed on one or more of the divided conductive films X1-X5 and Y1-Y6 and the opposing divided conductive film Y1-Y6 or the divided conductive film X1-X5. Insulating material is inserted.
With this configuration, the effect of improving the current collection efficiency of the divided conductive film X1 provided with the conductive material 30 can be obtained.
1A,1B 太陽電池(光電変換素子)
1C  太陽電池(電気モジュール)
2  第一基板
3  導電膜
4  半導体層
5  光電極
6  第二基板
7  導電膜
10 封止材
15 絶縁部
16 絶縁部
17 絶縁部
30 導電材(集電部材)
P  発電測定部
1p-30p 発電測定部
X1-X5(X1,X2,X3,X4,X5) 分割導電膜
Y1-Y6(Y1,Y2,Y3,Y4,Y5,Y6) 分割導電膜
1A, 1B Solar cell (photoelectric conversion element)
1C Solar cell (electric module)
2 First substrate 3 Conductive film 4 Semiconductor layer 5 Photoelectrode 6 Second substrate 7 Conductive film 10 Sealing material 15 Insulating part 16 Insulating part 17 Insulating part 30 Conductive material (current collecting member)
P Power generation measurement unit 1p-30p Power generation measurement unit X1-X5 (X1, X2, X3, X4, X5) Split conductive film Y1-Y6 (Y1, Y2, Y3, Y4, Y5, Y6) Split conductive film

Claims (9)

  1.  導電膜が成膜された第一基板の前記導電膜に半導体層が積層された光電極と、第二基板に導電膜が成膜された対向電極とが、前記半導体層を介して前記導電膜同士を対向させて、積層され、
     互いに対向する前記導電膜の少なくともいずれか一方は、互いに電気的に分離された複数の分割導電膜により形成されており、
     前記分割導電膜とこれに対向する導電膜の全体とが積層方向に視て重なった領域が、又は、互いに対向する前記分割導電膜同士が積層方向に視て重なった領域が、通電可能とされて発電測定部を形成していることを特徴とする光電変換素子。
    A photoelectrode in which a semiconductor layer is stacked on the conductive film of the first substrate on which the conductive film is formed, and a counter electrode on which a conductive film is formed on the second substrate are provided via the semiconductor layer. Laminated, facing each other
    At least one of the conductive films facing each other is formed of a plurality of divided conductive films that are electrically separated from each other,
    A region where the divided conductive film and the entire conductive film opposed thereto overlap in the stacking direction or a region where the divided conductive films facing each other overlap in the stacking direction can be energized. A photoelectric conversion element characterized by forming a power generation measuring unit.
  2.  第一基板の前記導電膜は、一方向に互いに平行に延びる複数の分割導電膜を形成し、
     第二基板の前記導電膜は、前記積層方向に視て前記一方向に交叉する方向に互いに平行に延びる複数の分割導電膜を形成していることを特徴とする請求項1に記載の光電変換素子。
    The conductive film of the first substrate forms a plurality of divided conductive films extending parallel to each other in one direction,
    2. The photoelectric conversion according to claim 1, wherein the conductive film of the second substrate includes a plurality of divided conductive films extending in parallel to each other in a direction crossing the one direction when viewed in the stacking direction. element.
  3.  互いに対向する前記分割導電膜同士は、前記積層方向に視て直交していることを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the divided conductive films facing each other are orthogonal to each other when viewed in the stacking direction.
  4.  前記発電測定部は、同一面積で複数形成されていることを特徴とする請求項1から3のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 3, wherein a plurality of the power generation measurement units are formed with the same area.
  5.  第一基板の前記導電膜及び第二基板の前記導電膜の少なくともいずれか一方に、集電部材が配されていることを特徴とする請求項1から4のいずれか1項に記載の光電変換素子。 5. The photoelectric conversion according to claim 1, wherein a current collecting member is disposed on at least one of the conductive film of the first substrate and the conductive film of the second substrate. 6. element.
  6.  第一基板の前記導電膜及び第二基板の前記導電膜の少なくともいずれか一方の端部に、前記導電膜を構成する材料とは異なる材料からなる端子が設置されていることを特徴とする請求項1~5のいずれか1項に記載の光電変換素子。 The terminal which consists of a material different from the material which comprises the said electrically conductive film is installed in the edge part of at least any one of the said electrically conductive film of a 1st board | substrate, and the said electrically conductive film of a 2nd board | substrate. Item 6. The photoelectric conversion device according to any one of Items 1 to 5.
  7.  請求項1から請求項6のいずれか一項に記載の光電変換素子が複数接続されて形成されていることを特徴とする電気モジュール。 An electric module comprising a plurality of the photoelectric conversion elements according to any one of claims 1 to 6 connected to each other.
  8.  請求項1から6のいずれか一項に記載の光電変換素子に光を照射する工程と、 前記発電測定部の電流又は電圧の検出を行う工程と、
     検出された値に基づいて発電性能を評価する工程と、を有することを特徴とする光電変換素子の評価方法。
    A step of irradiating the photoelectric conversion element according to any one of claims 1 to 6 with light, a step of detecting a current or a voltage of the power generation measurement unit,
    And a step of evaluating the power generation performance based on the detected value. A method for evaluating a photoelectric conversion element, comprising:
  9.  前記光電変換素子が有する少なくとも一対の端子に通電することによって、前記発電測定部の電流又は電圧の検出を行うことを特徴とする請求項8に記載の光電変換素子の評価方法。 The method for evaluating a photoelectric conversion element according to claim 8, wherein the current or voltage of the power generation measurement unit is detected by energizing at least a pair of terminals of the photoelectric conversion element.
PCT/JP2015/066860 2014-06-11 2015-06-11 Photoelectric conversion element, electric module, and evaluation method for photoelectric conversion elements WO2015190554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551894A JPWO2015190554A1 (en) 2014-06-11 2015-06-11 Photoelectric conversion element, electric module, and photoelectric conversion element evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014120870 2014-06-11
JP2014-120870 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190554A1 true WO2015190554A1 (en) 2015-12-17

Family

ID=54833641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066860 WO2015190554A1 (en) 2014-06-11 2015-06-11 Photoelectric conversion element, electric module, and evaluation method for photoelectric conversion elements

Country Status (3)

Country Link
JP (1) JPWO2015190554A1 (en)
TW (1) TW201608820A (en)
WO (1) WO2015190554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302854A (en) * 2016-06-05 2019-02-01 学校法人冲绳科学技术大学院大学学园 System and method for carrying out automatic performance evaluation to perovskite opto-electronic device
EP3586367A4 (en) * 2017-02-24 2020-11-25 Epic Battery Inc. Stable perovskite solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961568A (en) * 2023-07-26 2023-10-27 业成科技(成都)有限公司 Indoor charging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124488A (en) * 2001-10-18 2003-04-25 Seiko Epson Corp Short-circuiting detecting method
JP2013115084A (en) * 2011-11-25 2013-06-10 Rohm Co Ltd Organic thin-film solar cell and method for manufacturing the same
JP2014032808A (en) * 2012-08-02 2014-02-20 Shimane Prefecture Integrated dye-sensitized solar cell module and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278079B2 (en) * 2001-03-29 2009-06-10 富士フイルム株式会社 High sensitivity light receiving element and light sensor
KR100995073B1 (en) * 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
CN104428858B (en) * 2012-10-19 2017-06-20 积水化学工业株式会社 Electrical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124488A (en) * 2001-10-18 2003-04-25 Seiko Epson Corp Short-circuiting detecting method
JP2013115084A (en) * 2011-11-25 2013-06-10 Rohm Co Ltd Organic thin-film solar cell and method for manufacturing the same
JP2014032808A (en) * 2012-08-02 2014-02-20 Shimane Prefecture Integrated dye-sensitized solar cell module and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302854A (en) * 2016-06-05 2019-02-01 学校法人冲绳科学技术大学院大学学园 System and method for carrying out automatic performance evaluation to perovskite opto-electronic device
CN109302854B (en) * 2016-06-05 2020-10-23 学校法人冲绳科学技术大学院大学学园 System and method for automated performance evaluation of perovskite optoelectronic devices
EP3586367A4 (en) * 2017-02-24 2020-11-25 Epic Battery Inc. Stable perovskite solar cell

Also Published As

Publication number Publication date
TW201608820A (en) 2016-03-01
JPWO2015190554A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015190554A1 (en) Photoelectric conversion element, electric module, and evaluation method for photoelectric conversion elements
JP2011204680A (en) Dye-sensitized solar battery
JP2007265635A (en) Connection method of solar cell, and dye-sensitized solar cell
TWI583009B (en) Electrical module
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
TWI650785B (en) Electrical module and method of manufacturing the same
KR20160045621A (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2013016435A5 (en)
KR101091264B1 (en) Dye-sensitized solar cell module
JP5253476B2 (en) Photoelectric conversion element
US20120266955A1 (en) Photoelectric conversion device and method of preparing the same
EP2407986A1 (en) Photoelectric conversion module and method of manufacturing the same
EP2367188A2 (en) Photoelectric conversion module
US20130139879A1 (en) Solar cell
JP6687457B2 (en) Electric module, dye-sensitized solar cell, and method for manufacturing electric module
JP2021150377A (en) Film type solar cell with terminal, electronic device kit, and connection terminal for the film type solar cell
JP7084259B2 (en) Electric module and its manufacturing method
US20130008481A1 (en) Electrically connecting element and photovoltaic module
JP6777482B2 (en) Solar cell
JP6703574B2 (en) Electric module and manufacturing method thereof
JP7164362B2 (en) electrical module
US20130104955A1 (en) Photoelectric conversion module
JP5688344B2 (en) Electric module and method of manufacturing electric module
WO2020050239A1 (en) Solar cell module and solar cell module with protective layer
JP6666706B2 (en) Dye-sensitized solar cell inspection method and dye-sensitized solar cell inspection device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551894

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806800

Country of ref document: EP

Kind code of ref document: A1