WO2015190264A1 - Battery separator and production method therefor - Google Patents

Battery separator and production method therefor Download PDF

Info

Publication number
WO2015190264A1
WO2015190264A1 PCT/JP2015/064694 JP2015064694W WO2015190264A1 WO 2015190264 A1 WO2015190264 A1 WO 2015190264A1 JP 2015064694 W JP2015064694 W JP 2015064694W WO 2015190264 A1 WO2015190264 A1 WO 2015190264A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
laminated
layer
battery separator
microporous membrane
Prior art date
Application number
PCT/JP2015/064694
Other languages
French (fr)
Japanese (ja)
Inventor
水野 直樹
まさみ 菅田
孝一 又野
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to KR1020167032477A priority Critical patent/KR102137377B1/en
Priority to CN201580030582.0A priority patent/CN106463679B/en
Priority to JP2015543611A priority patent/JP5876628B1/en
Publication of WO2015190264A1 publication Critical patent/WO2015190264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery separator having at least a laminated polyethylene microporous membrane suitable for laminating a modified porous layer and a modified porous layer. It is a battery separator useful as a lithium ion battery separator.
  • Thermoplastic resin microporous membranes are widely used as separators and filters.
  • separators for lithium ion secondary batteries nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, and reverse osmosis filtration membranes, ultrafiltration membranes for filters And microfiltration membranes.
  • it is used for moisture permeable waterproof clothing, medical materials, and the like.
  • a separator for lithium ion secondary battery it has ion permeability by impregnation with electrolyte, is excellent in electrical insulation, electrolyte resistance, and oxidation resistance.
  • a polyethylene microporous membrane having a pore blocking effect that blocks ion permeability and suppresses excessive temperature rise is suitably used.
  • a film breakage may occur due to a decrease in the viscosity of the polyethylene constituting the film or a contraction of the film. This phenomenon is not limited to polyethylene, and even when other thermoplastic resins are used, the phenomenon cannot be avoided beyond the melting point of the resin constituting the microporous film.
  • Lithium-ion battery separators are related to battery characteristics, battery productivity, and battery safety, and include mechanical characteristics, heat resistance, permeability, dimensional stability, pore plugging characteristics (shutdown characteristics), and melt-breaking characteristics (meltdown). Characteristics) and the like are required. Furthermore, in order to improve the cycle characteristics of the battery, it is required to improve the adhesion with the electrode material and to improve the electrolyte permeability to improve the productivity.
  • modified porous layer a polyamide-imide resin, a polyimide resin, a polyamide resin and / or a fluorine-based resin excellent in electrode adhesion, which have both heat resistance and electrolyte solution permeability are preferably used.
  • a water-soluble or water-dispersible binder capable of laminating a modified porous layer using a relatively simple washing step and drying step is also widely used.
  • the modified porous layer in the present invention refers to a layer containing a resin that imparts or improves at least one function such as heat resistance, adhesion to an electrode material, and electrolyte permeability.
  • the battery separator needs to increase the area that can be filled in the container in order to improve the battery capacity, and it is predicted that the thinning will proceed.
  • microporous membranes are easily deformed in the planar direction as the film thickness is reduced, battery separators in which a modified porous layer is laminated on microporous membranes are modified during processing, in the slitting process, or in the battery assembly process.
  • the porous layer may be peeled off, making it more difficult to ensure safety.
  • the battery assembly process will be accelerated in order to cope with cost reduction. Even in such high-speed processing, high adhesion between the microporous membrane and the modified porous layer is required, with less trouble such as peeling of the modified porous layer.
  • the resin contained in the modified porous layer is sufficiently permeated into the polyethylene microporous membrane in order to improve the adhesion, there is a problem that the increase in the air resistance increases.
  • Patent Document 1 polyvinylidene fluoride is applied to a polyethylene microporous film having a thickness of 9 ⁇ m, and a part of the polyvinylidene fluoride bites into the pores of the polyethylene porous film appropriately so as to express an anchor effect.
  • a composite microporous membrane having a peel strength (T-type peel strength) at the interface between the porous membrane and the polyvinylidene fluoride coating layer of 1.0 to 5.3 N / 25 mm is disclosed.
  • Patent Document 2 a heat-resistant porous layer containing a self-crosslinkable acrylic resin and plate-like boehmite is provided on a corona discharge-treated polyethylene microporous film having a thickness of 16 ⁇ m, and a polyethylene microporous film and a heat-resistant porous layer are provided.
  • a separator having a peel strength at 180 ° (T-type peel strength) of 1.1 to 3.0 N / 10 mm is disclosed.
  • Example 1 of Patent Document 3 polyethylene having a viscosity average molecular weight of 200,000, 47.5 parts by mass, 2.5 parts by mass of polypropylene having a viscosity average molecular weight of 400,000, and 50 parts by mass of a composition comprising an antioxidant and liquid paraffin
  • a polyethylene resin solution consisting of 50 parts by mass is extruded from an extruder at 200 ° C., and a gel-like molded product is obtained while being drawn with a cooling roll adjusted to 25 ° C., and then biaxially so as to be 7 ⁇ 6.4 times. Stretching to obtain a polyethylene resin porous membrane.
  • a laminated microporous membrane obtained by laminating a coating layer made of polyvinyl alcohol and alumina particles on the surface of the polyethylene resin microporous membrane is disclosed.
  • Example 6 of Patent Document 4 a polyethylene resin solution having a weight average molecular weight of 41.5 million, a weight average molecular weight of 560,000, a polyethylene composition of 30% by weight and a mixed solvent of liquid paraffin and decalin of 70% by weight is extruded. Extruded from the machine at 148 ° C., cooled in a water bath to obtain a gel-like molded product, and then biaxially stretched to a size of 5.5 ⁇ 11.0 to obtain a polyethylene microporous membrane. A separator for a non-aqueous secondary battery obtained by laminating a coating layer made of meta-type wholly aromatic polyamide and alumina particles on the surface of this polyethylene microporous membrane is disclosed.
  • Example 1 of Patent Document 5 47 parts by mass of homopolymer polyethylene having a viscosity average molecular weight of 700,000, 46 parts by mass of homopolymer polyethylene having a viscosity average molecular weight of 250,000, and 7 parts by mass of polypropylene having a homopolymer of Mv 400,000 Dry blended using a tumbler blender.
  • Patent Document 6 discloses a separator for a lithium ion secondary battery in which a ceramic layer is laminated on a porous resin base material having a porous polyethylene layer as an inner layer and a porous polypropylene layer as an outer layer.
  • Patent Document 7 discloses a technique for producing a microporous film by stretching a laminate having a layer to which a low-melting-point resin is added and a layer not containing the layer.
  • JP 2012-037662 A Republished 2010-104127 Japanese Patent No. 4931083 Japanese Patent No. 4460028 JP 2011-000832 A JP 2011-071009 A Special table 2012-521914 gazette
  • An object of the present invention is to provide a battery separator suitable for high-speed processing, in which a modified porous layer is laminated on a laminated polyethylene microporous membrane suitable for lamination of a modified porous layer.
  • FIG. 1 schematically shows the state of the side surface of a laminated sample of a laminated polyethylene microporous membrane and a modified porous layer pulled by a tensile tester (not shown).
  • 1 is a laminated sample
  • 2 is a laminated polyethylene microporous membrane
  • 3 is a modified porous layer
  • 4 is a double-sided pressure-sensitive adhesive tape
  • the aluminum plate (5) and the aluminum plate (5 ′) are pulled in parallel in opposite directions using a tensile tester at a tensile rate of 10 mm / min, and the strength when the modified porous layer is peeled is measured.
  • the peel strength is 130 N / 15 mm or more in this evaluation method, the laminated modified porous layer is being conveyed or processed even if the thickness of the laminated polyethylene microporous membrane is 10 ⁇ m or less, for example. There is almost no peeling phenomenon.
  • the T-type peel strength or 180 ° peel strength conventionally used as a peel strength measurement method is the peel force when the coating layer is peeled from the surface of the battery separator vertically or obliquely backward. is there. According to this evaluation method, it is possible to evaluate the abrasion resistance in the slit process and the battery assembly process more practically as compared with these conventional evaluation methods.
  • the battery separator of the present invention has the following configuration. That is, A battery separator having a laminated polyethylene microporous membrane and a modified porous layer present on at least one surface thereof, wherein the laminated polyethylene microporous membrane comprises at least an A layer and a B layer.
  • the laminate has a shutdown temperature of 128 to 135 ° C., a rate of increase in air permeability resistance from 30 ° C. to 105 ° C.
  • the modified porous layer is laminated on a surface having a projection of the laminated microporous polyethylene membrane, and a tensile strength of 5N / mm 2 or more
  • a battery separator comprising a binder and inorganic particles.
  • the laminated polyethylene microporous membrane preferably has a three-layer structure of A layer / B layer / A layer.
  • the surface facing the outside world means that at least one of the surfaces of each layer constituting the laminated polyolefin microporous membrane faces the side (interface side) in contact with the surface of the other layer, but on the interface side. The other surface that does not face.
  • the B layer preferably comprises a low melting point resin having a melt flow rate of 25 to 150 g / 10 min and a melting point of 120 ° C. or higher and lower than 130 ° C.
  • the low melting point resin is a low density polyethylene or a linear low density polyethylene ethylene / ⁇ -olefin copolymer.
  • the content of the low melting point resin in the B layer is preferably 20% by mass or more and 35% by mass or less, based on 100% by mass of the entire polyethylene resin of the B layer.
  • the thickness of the B layer is preferably 3 ⁇ m or more and 15 ⁇ m or less.
  • the binder is preferably polyvinyl alcohol or an acrylic resin.
  • the inorganic particles include at least one selected from the group consisting of calcium carbonate, alumina, titania, barium sulfate and boehmite.
  • the battery separator manufacturing method of the present invention has the following configuration.
  • Step (b) Low melting point resin and molding solvent for the polyethylene resin constituting the B layer Step (c) of preparing polyethylene resin solution B by extruding polyethylene resin solutions A and B obtained in steps (a) and (b) from a die, and adding at least one of Step (d) of forming a laminated gel-like molded product by cooling with a cooling roll having a surface from which the molding solvent has been removed by the molding solvent removing means, and stretching the laminated gel-like molded product in the machine direction and the width direction.
  • step (E) A step of obtaining a laminated stretched molded product
  • step (e) A step of extracting and removing the solvent for lamination molding from the laminated stretched molded product and drying to obtain a laminated porous molded product
  • step (f) Laminated porous molded product Heat treating, dissolved obtain a laminated microporous polyethylene membrane step (g) the surface of the laminated polyethylene cooling roll was in contact microporous membrane, tensile strength 5N / mm 2 or more binders, inorganic particles and a binder Or the manufacturing method of the separator for batteries including the process of forming a laminated film using the coating liquid containing the solvent which can be disperse
  • the forming solvent removing means in the step (c) is preferably a means for scraping off using a doctor blade.
  • a battery separator in which a modified porous layer is laminated on a laminated polyethylene microporous film having excellent adhesion to the modified porous layer, and the modified porous layer does not peel even during high-speed conveyance. Is obtained.
  • the laminated polyethylene microporous membrane used in the present invention adjusts a specific polyethylene resin solution and highly controls the cooling rate of the polyethylene resin solution extruded from the extruder via the die, so that the surface has an appropriate amount. It has shape and number of protrusions.
  • the invention when a modified porous layer containing inorganic particles and a binder having a tensile strength of 5 N / mm 2 or more is laminated on a laminated polyethylene microporous membrane, the invention is provided between the laminated polyethylene microporous membrane and the modified porous layer. With this, extremely excellent peel strength can be obtained.
  • the projection referred to in the present invention is essentially different from the projection obtained by adding, for example, inorganic particles to a laminated polyethylene microporous film.
  • the protrusions obtained by adding inorganic particles to the laminated polyethylene microporous membrane are usually extremely small in height, and if it is intended to form protrusions with a height of 0.5 ⁇ m or more by the same means, the laminated polyethylene microporous film It is necessary to add particles having a particle size equal to or greater than the thickness of the film. However, when such particles are added, the strength of the laminated polyethylene microporous membrane is lowered, which is not realistic.
  • the protrusions referred to in the present invention are those in which a part of the surface layer of the laminated polyethylene microporous membrane is grown to a moderately raised shape, and do not deteriorate the basic characteristics of the laminated polyethylene microporous membrane. .
  • the irregularly scattered projections referred to in the present invention are arranged with regularity or periodicity obtained by passing through an embossing roll before or after the stretching step in the production of a laminated polyethylene microporous membrane. It is clearly different from the protrusion. Press work such as embossing is basically not preferred because it forms protrusions by compressing and tends to cause a decrease in air resistance and electrolyte permeability.
  • the moderately shaped protrusion as used in the present invention means a protrusion having a size of 5 ⁇ m or more and 50 ⁇ m or less and a height of 0.5 ⁇ m or more. That is, 5 ⁇ m ⁇ W ⁇ 50 ⁇ m (W is the size of the protrusion) and 0.5 ⁇ m ⁇ H (H is the height of the protrusion).
  • W is the size of the protrusion
  • H is the height of the protrusion.
  • Such a protrusion functions as an anchor when the modified porous layer is laminated on the laminated polyethylene microporous film, and as a result, the battery separator having a large 0 ° peel strength is obtained.
  • the upper limit of the height is not particularly limited, but 3.0 ⁇ m is sufficient.
  • the lower limit of the number of the protrusions is preferably three / cm 2, more preferably 5 / cm 2, more preferably is 10 / cm 2.
  • the upper limit of the number of protrusions is preferably 200 / cm 2 , more preferably 150 / cm 2 .
  • the lower limit of the height of the protrusion is preferably 0.5 ⁇ m, more preferably 0.8 ⁇ m, and still more preferably 1.0 ⁇ m.
  • protrusion in this invention say the value measured with the measuring method mentioned later.
  • the increase in the air resistance referred to in the present invention means a difference between the air resistance of the laminated polyethylene microporous membrane and the air resistance of the battery separator, and is preferably 90 seconds / 100 cc Air or less. Preferably it is 80 cc Air, more preferably 50 cc Air.
  • the upper limit of the thickness of the laminated polyethylene microporous membrane used in the present invention is preferably 25 ⁇ m, more preferably 20 ⁇ m, and even more preferably 16 ⁇ m.
  • the lower limit is preferably 7 ⁇ m, more preferably 9 ⁇ m. If the thickness of the laminated polyethylene microporous membrane is within the above preferred range, practical membrane strength and pore blocking function can be retained, and the area per unit volume of the battery case is not restricted, and will proceed in the future. It is suitable for increasing the capacity of batteries.
  • the shutdown temperature of the laminated polyethylene microporous membrane is preferably 128 ° C or higher and lower than 135 ° C.
  • the upper limit is more preferably less than 133 ° C, and even more preferably less than 130 ° C. If the shutdown temperature is lower than 135 ° C., the pores are quickly closed due to heat generation when the battery is abnormal, and the battery reaction is stopped, so that the safety of the battery is increased.
  • the upper limit of the air resistance of the laminated polyethylene microporous membrane is preferably 300 sec / 100 cc Air, more preferably 200 sec / 100 cc Air, still more preferably 150 sec / 100 cc Air, and the lower limit is preferably 50 sec / 100 cc Air, more preferably 70 sec. / 100 cc Air, more preferably 100 sec / 100 cc Air.
  • the rate of increase in air resistance of the laminated polyethylene microporous membrane per 20 ⁇ m when the temperature is changed from 30 ° C. to 105 ° C. is preferably 1.5 sec / 100 cc Air / ° C. or less, more preferably 1.2 sec / 100 cc Air / ° C. or less, Preferably, it is 1.0 sec / 100 cc Air / ° C. or less. If the rate of increase in air permeability resistance is 1.5 sec / 100 cc Air / ° C. or less, sufficient ion permeability can be secured even when heat is applied during coating or battery production.
  • the upper limit of the porosity of the laminated polyethylene microporous membrane is preferably 70%, more preferably 60%, and even more preferably 55%.
  • the lower limit is preferably 30%, more preferably 35%, still more preferably 40%.
  • the average pore size of the laminated polyethylene microporous membrane greatly affects the pore closing performance, so it is preferably 0.01 to 1.0 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, still more preferably 0.1 to 0. .3 ⁇ m.
  • the average pore size of the laminated polyethylene microporous membrane is within the above preferred range, the 0 ° peel strength of the modified porous layer sufficient due to the anchor effect of the functional resin is obtained, and when the modified porous layer is laminated, The air resistance is not greatly deteriorated, and the response to the temperature of the hole closing phenomenon is not slowed, and the hole closing temperature due to the heating rate is not shifted to a higher temperature side.
  • the A layer of the present invention is a microporous membrane mainly composed of polyethylene.
  • the polyethylene content is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass, based on 100% by mass of the entire resin.
  • polyethylene high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ⁇ 0.94g / cm 3, density of from 0.93 g / cm 3
  • high density polyethylene such as density exceeding 0.94 g / cm 3
  • density of from 0.93 g / cm 3 examples include low low density polyethylene, ultra high molecular weight polyethylene, and linear low density polyethylene. From the viewpoint of strength, it is preferable to contain high-density polyethylene and ultrahigh molecular weight polyethylene.
  • the ultra high molecular weight polyethylene is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other ⁇ -olefin.
  • the ⁇ -olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • a laminated microporous membrane especially when it is produced by a coextrusion method, it may be difficult to control the physical property unevenness in the width direction due to a difference in viscosity of each layer, but by using ultrahigh molecular weight polyethylene for the A layer.
  • the molecular network of the entire film becomes strong, non-uniform deformation hardly occurs, and a microporous film having excellent uniformity of physical properties can be obtained.
  • the weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 ⁇ 10 5 or more, and more preferably 2 ⁇ 10 5 or more.
  • the upper limit is preferably 8 ⁇ 10 5 for Mw, more preferably 7 ⁇ 10 5 for Mw. If Mw is within the above range, the stability of film formation and the finally obtained puncture strength can both be achieved.
  • the Mw of the ultra high molecular weight polyethylene is preferably 1 ⁇ 10 6 or more and less than 4 ⁇ 10 6 .
  • the Mw of the ultra high molecular weight polyethylene having an Mw of 1 ⁇ 10 6 or more and less than 4 ⁇ 10 6 .
  • the pores and fibrils can be miniaturized and the puncture strength can be increased.
  • Mw is 4 ⁇ 10 6 or more
  • the viscosity of the melt becomes too high, so that there may be a problem in the film forming process such that the resin cannot be extruded from the die.
  • this invention when the viscosity difference with B layer mentioned later becomes high too much, especially in the lamination
  • the content of ultra high molecular weight polyethylene is 100% by mass with respect to the entire polyethylene resin of the A layer, and the lower limit is preferably 15% by mass, more preferably 18% by mass.
  • the upper limit is preferably 45% by mass, more preferably 40% by mass. Within this range, it is easy to obtain both puncture strength and air resistance, and a microporous membrane with less variation in air resistance can be obtained.
  • the content of the ultrahigh molecular weight polyethylene is within a preferable range, a sufficiently high protrusion can be obtained.
  • the modified porous layer is laminated by this projection, the projection functions as an anchor, and extremely strong peeling resistance can be obtained with respect to the force applied in parallel to the surface direction of the laminated polyethylene microporous film. Moreover, even when the thickness of the laminated polyethylene microporous film is reduced, sufficient tensile strength can be obtained.
  • the tensile strength is preferably 100 MPa or more. There is no particular upper limit.
  • the layer A does not substantially contain a low melting point resin.
  • “Substantially free of low melting point resin” means that, for example, the fraction of an elution component of 90 ° C. or less extracted by a cross fractionation chromatograph or the like is preferably 5.0% by mass or less, more preferably 2.5% by mass. % Or less. This is because even if a low-melting point resin is not added intentionally, the polymer has a distribution in molecular weight, and therefore low-molecular components that can have a low melting point are included, so it is difficult to achieve 0% by mass. It is. When the low melting point resin is present in all layers, the air permeability resistance may be easily deteriorated when heated even before shutdown.
  • the elution component by a cross fractionation chromatograph can be calculated
  • Measurement device Cross fractionation chromatograph CFC2 type (manufactured by Polymer ChAR)
  • Detector Infrared spectrophotometer IR4 type (manufactured by Polymer ChAR) ⁇ Detection wavelength: 3.42 ⁇ m
  • Temperature drop time 140 minutes (140 ° C ⁇ 0 ° C) -Elution component amount below 90 ° C: The total extraction amount is the sum of the weights from 0 ° C to 90 ° C among the extraction amounts when fractionating from 0 ° C to 140 ° C every 10
  • the B layer of the present invention is a microporous membrane mainly composed of polyethylene.
  • the B layer preferably contains 50% by mass or more of high-density polyethylene from the viewpoint of strength.
  • the weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 ⁇ 10 5 or more, more preferably 2 ⁇ 10 5 or more.
  • the upper limit of Mw is preferably 8 ⁇ 10 5 for Mw, more preferably 7 ⁇ 10 5 for Mw. If Mw is in the above range, the stability of the film formation and the finally obtained puncture strength can both be achieved.
  • a low melting point resin such as low density polyethylene, linear low density polyethylene, ethylene / ⁇ -olefin copolymer
  • the B layer can be provided with a shutdown function at a low temperature, and the characteristics as a battery separator can be improved.
  • the above-mentioned thing is mentioned as an alpha olefin.
  • the melt flow rate (MFR) of the low melting point resin is 25 g / 10 min or more.
  • the lower limit is preferably 50 g / 10 min, more preferably 100 g / min. If the MFR is 25 g / 10 min or more, the fluidity is good, so that it is difficult to produce uneven thickness in the stretching process, and a uniform film thickness distribution can be obtained. Further, since the molecular mobility is good, residual strain hardly remains, and since the molecules are sufficiently relaxed at a low temperature, the pores are hardly clogged due to the residual strain at a temperature lower than the melting point. Therefore, an increase in air permeability can be suppressed in the range of 30 ° C. to 105 ° C.
  • the upper limit is preferably 180 g / min, more preferably 150 g / min.
  • the MFR is 180 g / min or more, the viscosity of the melt is too low, and therefore, in the coextrusion with the A layer, each layer may not be extruded uniformly. Further, in the stretching process at the time of production, the microporous membrane may be broken due to low viscosity.
  • the melting point of the low melting point resin is 120 ° C. or higher and lower than 130 ° C.
  • the melting point is less than 120 ° C., the melting point is too low, so that when the stretching temperature is raised to a temperature at which the laminate can be sufficiently stretched when laminated with the A layer containing ultrahigh molecular weight polyethylene, There is a risk of adverse effects and deterioration of air resistance.
  • the entire stretching temperature is lowered to prevent the pores from being blocked, the softening of the entire laminate becomes insufficient, and the thickness uniformity expected by adding ultrahigh molecular weight polyethylene in the A layer You may not be able to get the full effect.
  • the melting point is 130 ° C. or higher, it is difficult to achieve a target low shutdown temperature.
  • the content of the low melting point resin is 100% by mass with respect to the entire polyethylene resin constituting the B layer, and the lower limit is preferably 20% by mass, more preferably 25% by mass.
  • the upper limit is preferably 35% by mass, more preferably 30% by mass. If it is 20% by mass or more, the shutdown temperature can be lowered. Further, when it is 30% by mass or less, breakage of the microporous membrane caused by low viscosity can be suppressed.
  • the B layer preferably contains ultrahigh molecular weight polyethylene.
  • the ultra high molecular weight polyethylene may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other ⁇ -olefin.
  • the puncture strength can be improved by adding ultrahigh molecular weight polyethylene.
  • the Mw of the ultra high molecular weight polyethylene is preferably 1 ⁇ 10 6 or more and less than 4 ⁇ 10 6 .
  • the content of ultrahigh molecular weight polyethylene is 100% by mass with respect to the entire polyethylene resin, and the lower limit is preferably 10% by mass, more preferably 18% by mass.
  • the upper limit is more preferably 40% by mass, and even more preferably 30% by mass. Since ultrahigh molecular weight polyethylene has a large difference in molecular mobility with a low melting point resin, if it exceeds 40% by mass, separation from the low melting point resin is likely to proceed during melt-kneading, and the microporous membrane finally obtained May cause poor appearance.
  • the polyethylene microporous membrane of the present invention has an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an anti-blocking agent and a filling material, as long as both the A layer and the B layer do not impair the effects of the present invention.
  • Various additives such as materials may be included.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyethylene resin.
  • Appropriate selection of the type and amount of the antioxidant and heat stabilizer is important for adjusting or enhancing the characteristics of the microporous membrane.
  • the laminated polyethylene microporous membrane used in the present invention preferably contains substantially no inorganic particles.
  • substantially free of inorganic particles means, for example, a content that is 50 ppm or less, more preferably 10 ppm or less, and even more preferably a detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. To do. Even if particles are not actively added to the laminated polyethylene microporous membrane, contaminants derived from foreign substances, and dirt attached to the lines and equipment in the manufacturing process of the raw resin or polyolefin microporous membrane peel off, It may be mixed in the film and may be detected at 50 ppm or less.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyethylene resin composition of the B layer together with the A layer is preferably in the range of 5 to 200, more preferably 10 to 100. is there.
  • Mw / Mn is the above preferred range, extrusion of the polyethylene solution is easy.
  • the polyethylene microporous film can obtain a sufficient number of protrusions on the surface, and even when the thickness of the polyethylene microporous film is reduced, sufficient mechanical strength can be obtained.
  • Mw / Mn is used as a measure of molecular weight distribution.
  • Mw / Mn of polyethylene composed of a single substance can be appropriately adjusted by multistage polymerization of polyethylene.
  • Mw / Mn of the mixture of polyethylene can be suitably adjusted by adjusting the molecular weight and mixing ratio of each component.
  • the present inventors consider the mechanism by which protrusions are formed in the present invention as follows.
  • the resin solution of the melted polyethylene resin and the molding solvent is extruded from the die, and at the same time, the crystallization of polyethylene is started.
  • the crystallization speed is increased by contacting the cooling roll and quenching.
  • a spherulite having a symmetric structure having a crystal nucleus is formed (FIG. 2).
  • the heat transfer rate between the cooling roll surface and the molten polyethylene resin is relatively low, the crystallization rate is low, and as a result, spherulites having relatively small crystal nuclei are formed.
  • the heat transfer rate is high, the spherulite has a relatively large crystal nucleus.
  • a laminated polyethylene microporous membrane can be freely selected according to the purpose as long as it satisfies the above various characteristics.
  • Microporous membrane production methods include the foaming method, phase separation method, dissolution recrystallization method, stretch pore opening method, powder sintering method, etc. Among these, in terms of homogenizing fine pores and cost, A separation method is preferred.
  • phase separation method for example, polyethylene and a molding solvent are heated and melt-kneaded, and the obtained molten mixture is extruded from a die and cooled to form a gel-like molded product, and the obtained gel-like molding is obtained.
  • examples include a method of obtaining a microporous film by stretching the product in at least a uniaxial direction and removing the molding solvent.
  • the method for producing a laminated polyethylene microporous membrane of the present invention includes the following steps (a) to (f).
  • the polyethylene resin solutions A and B obtained in steps (a) and (b) are extruded from a die, and at least one of them is molded.
  • a molding solvent polyethylene is sufficient If it can melt
  • Nonvolatile solvents such as liquid paraffin are preferred for obtaining.
  • the dissolution by heating is performed by a method in which the polyethylene composition is completely dissolved and stirred and uniformly mixed in an extruder.
  • the temperature varies depending on the polymer and solvent to be used when it is dissolved in an extruder or in a solvent while stirring, but it is preferably in the range of 140 to 250 ° C., for example.
  • the concentration of the polyethylene resin is preferably 15 to 40% by mass, more preferably 25 to 40% by mass, and further preferably 28 to 35% by mass, where the total of the polyethylene resin and the molding solvent is 100% by mass.
  • concentration of the polyethylene resin is within the above preferable range, a sufficient number of crystal nuclei for forming protrusions are formed, and a sufficient number of protrusions are formed.
  • swell and neck-in are suppressed at the die outlet when extruding the polyethylene resin solution, and the moldability and self-supporting property of the extruded product are maintained.
  • a laminated microporous membrane having a structure (gradient structure) in which the average pore diameter is changed in the film thickness direction can be obtained.
  • the average pore diameter of the layer formed using the resin solution having the lower concentration is larger than the average pore diameter of the layer formed using the resin solution having the higher concentration.
  • Which concentration of the resin solution A or B is to be increased can be appropriately selected according to the physical properties required for the laminated microporous membrane. For example, if the inner layer is a dense structure layer of 0.01 to 0.05 ⁇ m and the surface layer is a coarse structure layer 1.2 to 5.0 times the dense structure layer, the balance between ion permeability and pin puncture strength is improved. be able to.
  • the method of melt kneading is not particularly limited, but is usually performed by uniformly kneading in an extruder. This method is suitable for preparing highly concentrated solutions of polyethylene.
  • the melt kneading temperature varies depending on the polyethylene resin used. For example, since the polyethylene composition has a melting point of about 130 to 140 ° C., the lower limit of the melt kneading temperature is preferably 140 ° C., more preferably 160 ° C., and further preferably 170 ° C. The upper limit is preferably 250 ° C, more preferably 230 ° C, and even more preferably 200 ° C.
  • the molding solvent may be added before the start of kneading, or may be added from the middle of the extruder during kneading and further melt kneaded. In melt kneading, it is preferable to add an antioxidant to prevent oxidation of polyethylene.
  • the melt kneading temperature is preferably low, but if it is lower than the above-mentioned temperature, an unmelted product is generated in the extrudate extruded from the die, causing film breakage or the like in the subsequent stretching step. It may be a cause.
  • the temperature is higher than the above-described temperature, the thermal decomposition of polyethylene becomes severe, and physical properties of the resulting microporous film, such as puncture strength and tensile strength, may be inferior.
  • the ratio (L / D) of the screw length (L) to the diameter (D) (L / D) of the twin screw extruder is preferably 20 to 100 from the viewpoint of obtaining good process kneadability and resin dispersibility / distributability.
  • the lower limit is more preferably 35.
  • the upper limit value is more preferably 70.
  • L / D is 20 or more, melt-kneading is sufficient.
  • L / D is 100 or less, the residence time of the polyethylene solution does not increase excessively.
  • the inner diameter of the twin-screw extruder is preferably 40 to 100 mm.
  • the screw rotation speed (Ns) of the twin screw extruder is 150 rpm or more.
  • the ratio of the extrusion rate Q (kg / h) of the polyethylene solution to Ns (rpm), Q / Ns is preferably 0.64 kg / h / rpm or less, more preferably 0.35 kg / h / rpm or less.
  • the polyethylene resin solutions A and B obtained in (a) and (b) are extruded from a die, and at least one of them is a cooling roll having a surface from which the molding solvent is removed by the molding solvent removing means.
  • the step of cooling and forming a laminated gel-like molded product The polyethylene resin solutions A and B melt-kneaded by an extruder are pushed up directly from a die or through another extruder and cooled by a cooling roll. To form a laminated gel-like molded product.
  • a method for separately laminating gel-shaped molded products to be laminated and then pasting them through a calender roll or the like (sticking method), or supplying a polyethylene solution separately to an extruder is desired.
  • Any method may be used such as a method of melting at a temperature of 5 ° C, joining in a polymer tube or die, coextrusion and laminating, and then forming a laminated gel-like molded product (coextrusion method). From the viewpoint of adhesion, it is preferable to use a coextrusion method.
  • a gel-like molded product is formed by bringing a polyethylene resin solution extruded from a die into contact with a rotating cooling roll set at a surface temperature of 20 ° C. to 40 ° C. with a refrigerant.
  • the extruded polyethylene resin solution is preferably cooled to 25 ° C. or lower.
  • the cooling rate in the temperature range where crystallization is substantially performed becomes important.
  • the extruded polyethylene resin solution is cooled at a cooling rate of 10 ° C./second or more in a temperature range where crystallization is substantially performed to obtain a gel-like molded product.
  • the cooling rate is preferably 20 ° C./second or more, more preferably 30 ° C./second or more, and further preferably 50 ° C./second or more.
  • the cooling rate can be estimated by simulating from the extrusion temperature of the gel-shaped molded product, the thermal conductivity of the gel-shaped molded product, the thickness of the gel-shaped molded product, the molding solvent, the cooling roll, and the heat transfer coefficient of air.
  • the polyethylene resin solution is cooled by wrapping around a rotating cooling roll to become a gel-like molded product, but the molding solvent adheres to the surface of the cooling roll after the gel-like molded product is pulled apart.
  • the polyethylene resin solution is cooled by wrapping around a rotating cooling roll to become a gel-like molded product, but the molding solvent adheres to the surface of the cooling roll after the gel-like molded product is pulled apart.
  • the polyethylene resin solution is cooled by wrapping around a rotating cooling roll to become a gel-like molded product, but the molding solvent adheres to the surface of the cooling roll after the gel-like molded product is pulled apart.
  • the polyethylene resin solution is cooled by wrapping around a rotating cooling roll to become a gel-like molded product, but the molding solvent adheres to the surface of the cooling roll after the gel-like molded product is pulled apart.
  • the polyethylene resin solution comes into contact with the polyethylene resin solution again as it is.
  • the cooling rate becomes slow due to the heat insulating effect, and it becomes
  • the method for removing the molding solvent that is, the method for removing the molding solvent from the cooling roll is not particularly limited, but the doctor blade is placed on the cooling roll so as to be parallel to the width direction of the gel-like molded article and passed through the doctor blade.
  • a method is preferably employed in which the molding solvent is scraped off to the extent that the cooling roll surface is invisible until immediately after the gel-like molded product comes into contact.
  • it can be removed by means such as blowing with compressed air, suction, or a combination of these methods.
  • the method of scraping off using a doctor blade is preferable because it can be carried out relatively easily, and it is more preferable to use a plurality of doctor blades in order to improve the removal efficiency of the forming solvent.
  • the material of the doctor blade is not particularly limited as long as it is resistant to the molding solvent, but is preferably made of resin or rubber rather than metal. If it is made of metal, the cooling roll may be scratched.
  • the resin doctor blade include polyester, polyacetal, and polyethylene.
  • the thickness of the polyethylene resin solution during extrusion is preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m or less, and still more preferably 800 ⁇ m or less.
  • the cooling rate on the surface on the side of the cooling roll is preferably not slow.
  • a laminated gel-like molded product is obtained by the bonding method, if at least one of the polyethylene resin solutions to be the A layer or the B layer is formed as a gel-like molded product under the above cooling conditions. Good.
  • stack so that the surface which contacted the cooling roll of the layer formed on the said cooling conditions may become the surface.
  • the polyethylene resin solution laminated and extruded from the die may be formed as a laminated gel-like molded product under the above cooling conditions.
  • the laminated polyolefin is a porous laminate comprising at least an A layer and a B layer.
  • the layer structure of the laminated polyethylene may be at least two layers of the A layer and the B layer from the viewpoint of physical properties balance such as shutdown characteristics and strength and permeability, but from the viewpoint of the balance between the front and back of the final film, A three-layer structure of A layer / B layer / A layer or B layer / A layer / B layer is more preferable.
  • the protrusions may be formed on either the A layer or the B layer, but from the viewpoint of the balance between permeability and strength, the surface layer is the A layer,
  • the inner layer is preferably a B layer.
  • the surface layer is B and the inner layer is A.
  • the ratio of the B layer is preferably 30% by mass or more and 80% by mass or less with respect to the mass of all layers.
  • the lower limit is more preferably 40% by mass, and the upper limit is more preferably 70% by mass. If the ratio of the B layer is within the above range, the balance between the low shutdown characteristics due to the low melting point component, the stability of the permeability in the usage range of the separator, and the puncture strength can be made good.
  • the thickness of layer B of the laminated polyethylene microporous membrane is preferably 3 ⁇ m or more and 15 ⁇ m or less.
  • the upper limit is more preferably 10 ⁇ m, further preferably 7 ⁇ m, and most preferably 6 ⁇ m.
  • the lower limit is more preferably 4 ⁇ m.
  • the thickness of the B layer refers to the total thickness of each B layer when the laminated polyethylene microporous membrane has two or more B layers.
  • the laminated gel-like molded product is stretched to obtain a stretched molded product. Stretching is performed by heating the gel-like molded product and performing normal tenter method, roll method, or a combination of these methods at a predetermined magnification in two directions of MD and TD.
  • the stretching may be either simultaneous stretching (simultaneous biaxial stretching) or sequential stretching in MD and TD (machine direction and width direction). In the sequential stretching, the order of MD and TD is not limited, and at least one of MD and TD may be stretched in multiple stages.
  • the draw ratio varies depending on the thickness of the original fabric, but is preferably 9 times or more, more preferably 16 to 400 times in terms of surface magnification.
  • stretching at the same magnification of MD and TD such as 3 ⁇ 3, 5 ⁇ 5, or 7 ⁇ 7 is preferable.
  • the surface magnification is in the above preferred range, stretching is sufficient and a highly elastic, high strength microporous membrane can be obtained.
  • a desired air resistance can be obtained by adjusting the stretching temperature.
  • the stretching temperature is preferably not higher than the melting point of the low melting point resin added to the B layer.
  • the melting point is lower than the melting point of the low melting point resin added to the layer B, poor cracking of the hole due to melting of the low melting point resin is prevented, and it becomes possible to efficiently orient the molecular chain by stretching, so that it has good strength. Can be obtained.
  • stretching temperature is more than the crystal dispersion temperature of the polyethylene resin which comprises A layer.
  • the stretching temperature is equal to or higher than the crystal dispersion temperature of the polyethylene resin constituting the A layer, the polyethylene resin is sufficiently softened even in the A layer, so that nonuniform deformation that may occur due to insufficient softening is suppressed, and A Since uniform opening by the molecular network formed by the ultrahigh molecular weight polyethylene added to the layer is possible, in addition to good permeability, the physical properties are also uniform. Further, since the stretching tension of the entire laminate can be sufficiently lowered, the film-forming property is improved, and it is difficult to break the film during stretching, and stretching at a high magnification is possible.
  • the crystal dispersion temperature Tcd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065. Or it may obtain
  • (E) A step of extracting and removing the molding solvent from the laminated stretched molded product and drying to obtain a laminated porous molded product.
  • the stretched molded product is treated with a washing solvent to remove the remaining molding solvent, A porous membrane is obtained.
  • Cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. Volatile ones can be used.
  • These washing solvents are appropriately selected according to the molding solvent used for dissolving polyethylene, and used alone or in combination.
  • the cleaning method can be performed by a method of immersing and extracting in a cleaning solvent, a method of showering the cleaning solvent, a method of sucking the cleaning solvent from the opposite side of the stretched molded product, or a method of a combination thereof. Washing as described above is performed until the residual solvent in the stretched molded product, which is a stretched molded product, is less than 1% by mass. Thereafter, the cleaning solvent is dried.
  • the cleaning solvent can be dried by heat drying, air drying, or the like.
  • (F) Step of heat-treating the laminated porous molded product to obtain a laminated polyethylene microporous membrane The laminated porous molded product obtained by drying is heat-treated to obtain a laminated polyethylene microporous membrane.
  • the heat treatment temperature is preferably 90 to 150 ° C. When the heat treatment temperature is within the above preferred range, the heat shrinkage rate of the obtained laminated polyethylene microporous membrane can be reduced, and the air resistance can be ensured.
  • the heat treatment time is not particularly limited, but it is usually preferably 1 second to 10 minutes, more preferably 3 seconds to 2 minutes.
  • any of a tenter method, a roll method, a rolling method, and a free method can be adopted.
  • the heat treatment step it is preferable to grip in both the MD (machine direction) and TD (width direction) directions and contract in at least one direction of MD and TD.
  • the contraction rate for contracting in at least one direction of MD and TD is preferably 0.01 to 50%, more preferably 3 to 20%.
  • the shrinkage rate is within the above preferable range, the thermal shrinkage rate at 105 ° C. and 8 hours is improved, and the air resistance is maintained.
  • TD or MD may be further performed before the heat treatment, or redrawing of about 5% to 20% in both directions may be performed.
  • the microporous membrane may be hydrophilized.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • the corona discharge treatment can be performed in air, nitrogen, or a mixed atmosphere of carbon dioxide and nitrogen.
  • the modified porous layer is preferably laminated on the side of the laminated polyethylene microporous membrane having the protrusions.
  • a modified porous layer is provided on both sides of a laminated polyethylene microporous membrane, the modified porous layer on the side to which parallel stress is more strongly applied by the contact of a roll or a bar in a subsequent process such as a slitting process or a conveying process.
  • Lamination is preferably performed on the side of the laminated polyethylene microporous membrane having the protrusions because the effect of the present invention is exhibited.
  • the modified porous layer referred to in the present invention imparts or improves at least one function such as heat resistance, adhesion to an electrode material, and electrolyte permeability.
  • the modified porous layer contains inorganic particles and a binder having a tensile strength of 5 N / mm 2 or more.
  • a binder having a tensile strength of 5 N / mm 2 or more By using a binder having a tensile strength of 5 N / mm 2 or more, a battery separator having an extremely excellent 0 ° peel strength can be obtained by the synergistic effect of the protrusions present on the surface of the laminated polyethylene microporous membrane and the tensile strength of the binder. .
  • the battery separator does not significantly increase the air resistance as compared with the case of a laminated polyethylene microporous membrane alone. This is because sufficient 0 ° peel strength can be obtained without allowing a large amount of binder to penetrate into the pores of the laminated polyethylene microporous membrane.
  • Tensile strength of the binder is at 5N / mm 2 or more, the lower limit is preferably 10 N / mm 2, more preferably 20 N / mm 2, more preferably 30 N / mm 2. There is no particular upper limit, but 100 N / mm 2 is sufficient.
  • the tensile strength of the binder refers to a value measured by the method described later.
  • the use tensile strength of 5N / mm 2 or more binders in the present invention although the tensile strength is not particularly limited as long as 5N / mm 2 or more, e.g., polyvinyl alcohol, cellulose ether resins, and acrylic resins .
  • the cellulose ether resin include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, oxyethyl cellulose and the like.
  • the acrylic resin a cross-linked acrylic resin is preferable. Commercially available aqueous solutions or aqueous dispersions can also be used.
  • Examples of commercially available products include “POVACOAT” (registered trademark) manufactured by Nisshin Kasei Co., Ltd., “Jurimer” (registered trademark) AT-510, ET-410, FC-60 manufactured by Toa Gosei Co., Ltd.
  • Examples include SEK-301, UW-223SX, UW-550CS manufactured by Taisei Fine Chemical Co., Ltd., WE-301, EC-906EF, CG-8490 manufactured by DIC Corporation.
  • polyvinyl alcohol and acrylic resins having electrode adhesion, high affinity with non-aqueous electrolytes, suitable heat resistance, and relatively high tensile strength are preferable.
  • the coating liquid in this specification contains a binder having a tensile strength of 5 N / mm 2 or more, inorganic particles, and a solvent capable of dissolving or dispersing the binder, and is used for forming a modified porous layer.
  • the binder has at least a role of bonding inorganic particles and a role of bonding the laminated polyethylene microporous membrane and the modified porous layer.
  • the solvent include water, alcohols, acetone, and n-methylpyrrolidone.
  • the effect of preventing internal short circuit (dendrite prevention effect) due to the growth of the dendritic crystals of the electrode inside the battery, the effect of reducing the heat shrinkage, and the provision of slipperiness are also obtained. be able to.
  • the upper limit of the amount of added particles is preferably 98% by mass, more preferably 95% by mass.
  • the lower limit is preferably 80% by mass, and more preferably 85% by mass.
  • the average particle size of the inorganic particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less of the average pore size of the laminated polyethylene microporous membrane.
  • the average particle size of the particles is within the above-mentioned preferable range, the pores of the laminated polyethylene microporous membrane are blocked in a state where the heat-resistant resin and the particles are mixed, and as a result, the air resistance is maintained, and further, the battery is assembled. In the process, the particles are prevented from falling off and causing a serious defect of the battery.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite and the like.
  • the heat-resistant crosslinked polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, and crosslinked methyl methacrylate particles.
  • Examples of the shape of the inorganic particles include a true spherical shape, a substantially spherical shape, a plate shape, a needle shape, and a polyhedral shape, but are not particularly limited.
  • the solid content concentration of the coating solution is not particularly limited as long as it can be uniformly applied, but is preferably 50% by mass or more and 98% by mass or less, and more preferably 80% by mass or more and 95% by mass or less.
  • the solid content concentration of the coating solution is in the above preferred range, the modified porous layer is prevented from becoming brittle, and a sufficient peel strength of 0 ° of the modified porous layer can be obtained.
  • the film thickness of the modified porous layer is preferably 1 to 5 ⁇ m, more preferably 1 to 4 ⁇ m, and still more preferably 1 to 3 ⁇ m.
  • the battery separator obtained by laminating the modified porous layer can ensure the film breaking strength and insulation when melted / shrinked at the melting point or higher, and A sufficient pore blocking function can be obtained and abnormal reactions can be prevented.
  • the winding volume can be suppressed, which is suitable for increasing the battery capacity. In addition, suppressing curling leads to improved productivity in the battery assembly process.
  • the porosity of the modified porous layer is preferably 30 to 90%, more preferably 40 to 70%.
  • the desired porosity can be obtained by appropriately adjusting the concentration of inorganic particles, the binder concentration, and the like.
  • the battery separator obtained by laminating the modified porous layer has a low electrical resistance of the membrane, a large current flows easily, and the membrane strength is maintained.
  • the upper limit of the total film thickness of the battery separator obtained by laminating the modified porous layer is preferably 25 ⁇ m, more preferably 20 ⁇ m.
  • the lower limit is preferably 6 ⁇ m or more, more preferably 7 ⁇ m or more.
  • the air resistance of the battery separator is one of the most important characteristics, and is preferably 50 to 600 sec / 100 cc Air, more preferably 100 to 500 sec / 100 cc Air, and still more preferably 100 to 400 sec / 100 cc Air.
  • the desired air resistance can be obtained by adjusting the porosity of the modified porous layer and adjusting the degree of penetration of the binder into the laminated polyethylene microporous membrane.
  • the air permeability resistance of the battery separator is within the above preferable range, sufficient insulation is obtained, and foreign matter clogging, short circuit and film breakage are prevented. Further, by suppressing the film resistance, charge / discharge characteristics and life characteristics within a practically usable range can be obtained.
  • the method for laminating the modified porous layer on the laminated polyethylene microporous membrane of the present invention includes the following step (g).
  • (G) A coating liquid containing a binder having a tensile strength of 5 N / mm 2 or more, an inorganic particle, and a solvent capable of dissolving or dispersing the binder on the surface of the laminated polyethylene microporous film in contact with the cooling roll.
  • Step of forming and drying laminated film As a method of laminating the modified porous layer on the laminated polyethylene microporous film, a known method can be used.
  • the coating solution is applied to the laminated polyethylene microporous film by a method described later so as to have a predetermined film thickness, and the drying temperature is 40 to 80 ° C. and the drying time is 5 seconds to 60 seconds. It can be obtained by a drying method.
  • a coating solution in which a binder is soluble and dissolved in a solvent miscible with water is laminated on a predetermined laminated polyethylene microporous film using a coating method described later, placed in a specific humidity environment, and the binder and water It is also possible to use a method in which the solvent to be mixed is phase-separated and the binder is further solidified by adding it to a water bath (coagulation bath).
  • Examples of methods for applying the coating liquid include reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, Mayer bar coating method, pipe doctor method, blade coating. Method, die coating method and the like, and these methods can be carried out singly or in combination.
  • the battery separator of the present invention is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
  • the battery separator of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a secondary battery such as a lithium secondary battery, a lithium polymer secondary battery, and a plastic film capacitor, ceramic Although it can be used as a separator for a capacitor, an electric double layer capacitor, etc., it is particularly preferably used as a separator for a lithium ion secondary battery.
  • a lithium ion secondary battery will be described as an example.
  • a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the electrode is not particularly limited, and may be a known structure.
  • the positive electrode usually has a current collector and a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions formed on the surface of the current collector.
  • the positive electrode active material include transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), inorganic compounds such as transition metal sulfides, and the like.
  • the transition metal include V, Mn, Fe, Co, and Ni.
  • Preferred examples of the lithium composite oxide among the positive electrode active materials include lithium nickelate, lithium cobaltate, lithium manganate, and a layered lithium composite oxide based on an ⁇ -NaFeO 2 type structure.
  • the negative electrode has a current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the current collector.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black.
  • the electrolytic solution can be obtained by dissolving a lithium salt in an organic solvent.
  • Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , Examples include LiN (C 2 F 5 SO 2 ) 2 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. These may be used alone or in admixture of two or more.
  • organic solvent examples include organic solvents having a high boiling point and a high dielectric constant such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and ⁇ -butyrolactone, and tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like.
  • organic solvents having a low boiling point and a low viscosity These may be used alone or in admixture of two or more.
  • a high dielectric constant organic solvent has a high viscosity
  • a low viscosity organic solvent has a low dielectric constant. Therefore, it is preferable to use a mixture of both.
  • the separator of the present invention can be impregnated with an electrolytic solution to impart ion permeability to the separator.
  • the impregnation treatment is performed by immersing the microporous membrane in an electrolytic solution at room temperature.
  • a battery can be obtained by inserting this electrode element into a battery can, impregnating with the above electrolyte, and caulking a battery lid also serving as a positive electrode terminal provided with a safety valve via a gasket.
  • the measured value in an Example is a value measured with the following method.
  • protrusions The number and size of protrusions were measured after stabilizing the light source using a confocal microscope (HD100 manufactured by Lasertec Corporation) placed on a base isolation table.
  • a confocal microscope HD100 manufactured by Lasertec Corporation
  • a 1 cm ⁇ 1 cm square frame was drawn with an ultrafine oil pen on the surface of the laminated polyethylene microporous membrane obtained in Examples and Comparative Examples that was in contact with a cooling roll during film formation.
  • the surface on which the square frame was drawn was placed on the sample stage, and was fixed to the sample stage using an electrostatic contact apparatus attached to the confocal microscope.
  • an objective lens with a magnification of 5 times a ring-shaped trace derived from a polyethylene spherulite as shown in FIG.
  • a TOD 3 is displayed on a monitor as a two-dimensional image (referred to as a REAL screen in this apparatus), and the ring-shaped trace is displayed.
  • the position of the sample stage was adjusted so that the darkest part of was positioned almost at the center of the monitor screen.
  • the object of the projection height measurement was such that the major axis of the ring-shaped trace derived from the polyethylene spherulites was 0.2 mm or more.
  • the cursor was placed on both ends of the ring in the major axis direction in the two-dimensional image, and the length was read.
  • FIG. 1 schematically shows the evaluation method.
  • 1 is a laminated sample
  • 2 is a laminated polyethylene microporous membrane
  • 3 is a modified porous layer
  • 4 is a double-sided pressure-sensitive adhesive tape
  • a double-sided adhesive tape (NW-K50 manufactured by Nichiban Co., Ltd.) 4 having the same size was attached to an aluminum plate 5 having a size of 50 mm ⁇ 25 mm and a thickness of 0.5 mm.
  • the surface of the laminated polyethylene microporous membrane 2 of Sample 1 (battery separator) cut out to a width of 50 mm and a length of 100 mm is pasted on the aluminum plate 5 so that 40 mm overlaps from the edge of one side of the 25 mm length. Attached and cut off the protruding part.
  • a double-sided adhesive tape is attached to one side of an aluminum plate 5 ′ having a length of 100 mm, a width of 15 mm, and a thickness of 0.5 mm, so that 20 mm overlaps from the end of one side of the 25 mm long sample side of the aluminum plate 5. Pasted on.
  • the aluminum plate 5 and the aluminum plate 5 ′ sandwiching the sample are attached to a tensile testing machine (Autograph AGS-J load cell capacity 1 kN, manufactured by Shimadzu Corporation), and the aluminum plate 5 and the aluminum plate 5 ′ are opposite in parallel.
  • the film was pulled in the direction at a pulling speed of 10 mm / min, and the strength when the modified porous layer was peeled was measured. This measurement was performed for any three points with an interval of 30 cm or more in the longitudinal direction, and the average value was taken as the 0 ° peel strength of the modified porous layer.
  • Average pore diameter The average pore diameter of the laminated polyethylene microporous membrane was measured by the following method. The sample was fixed on the measurement cell using double-sided tape, platinum or gold was vacuum-deposited for several minutes, and the surface of the film was subjected to SEM measurement at an appropriate magnification. Arbitrary ten places were selected on the image obtained by SEM measurement, and the average value of the pore diameters at these ten places was taken as the average pore diameter of the sample.
  • Air permeability resistance (sec / 100ccAir) Using a Gurley Densometer Type B manufactured by Tester Sangyo Co., Ltd., fix the laminated polyethylene microporous membrane or battery separator so that there are no wrinkles between the clamping plate and the adapter plate, and in accordance with JIS P8117 It was measured.
  • the sample was a 10 cm square, the measurement points were a total of 5 points at the center and 4 corners of the sample, and the average value was used as the air resistance. When the length of one side of the sample is less than 10 cm, a value obtained by measuring five points at intervals of 5 cm may be used.
  • the increase width of the air permeability resistance was obtained from the following formula.
  • the evaluation area was 100 mm wide ⁇ 500 m long. (When the width was less than 100 mm, the length was adjusted so that the same evaluation area was obtained.) Judgment criteria ⁇ (very good): 5 or less ⁇ (good): 6 to 15 ⁇ (defect): 16 or more
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) Mw and Mw / Mn were determined by gel permeation chromatography (GPC) method under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Measurement device GPC-150C manufactured by Waters Corporation Column: “Shodex” (registered trademark) UT806M manufactured by Showa Denko KK -Column temperature: 135 ° C
  • Injection volume 500 ⁇ l -Detector: Differential refractometer manufactured by Waters Corporation-Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
  • Example 1 An antioxidant tetrakis- [methylene was added to 100% by mass of a composition comprising 18% by mass of ultrahigh molecular weight polyethylene (UHMWPE) having a weight average molecular weight of 2 million and 82% by mass of high density polyethylene (HDPE) having a weight average molecular weight of 350,000. -(3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane) 0.375% by mass was added to obtain a polyethylene composition A (melting point: 135 ° C.). 25% by mass of this polyethylene composition A was charged into a twin screw extruder.
  • UHMWPE ultrahigh molecular weight polyethylene
  • HDPE high density polyethylene
  • polyethylene composition B 0.375% by mass of polyethylene composition B (melting point 128 ° C.) was obtained. 25% by mass of this polyethylene composition B was charged into a twin screw extruder. 75% by mass of liquid paraffin was supplied from the side feeder of this twin screw extruder, melted and kneaded, and a polyethylene resin solution B was prepared in the extruder. The obtained polyethylene resin solutions A and B were co-extruded at 190 ° C. from the laminated die so that the layer configuration was A / B / A and the solution ratio was 1/2/1, and the internal cooling water temperature was 25 ° C.
  • a laminated gel-like molded product was formed while being taken up by a cooling roll having a diameter of 800 mm kept at the same temperature. At this time, one polyester doctor blade is placed between the point where the laminated gel-like molded article is separated from the cooling roll and the point where the laminated polyethylene resin solution extruded from the die contacts the cooling roll. The liquid paraffin adhering to the cooling roll was scraped off in contact with the cooling roll in parallel with the direction. Subsequently, the laminated gel-like molded product was simultaneously biaxially stretched 5 ⁇ 5 times while adjusting the temperature so as to obtain a desired air permeability resistance to obtain a stretched molded product.
  • the obtained stretched molded product was washed with methylene chloride to extract and remove the remaining liquid paraffin, and dried to obtain a porous molded product. Thereafter, the microporous film is held in the tenter, and is reduced by 10% only in the TD (width direction) direction, and heat-treated at 123 ° C. for 3 seconds.
  • the thickness is 14 ⁇ m
  • the porosity is 44%
  • the average pore diameter is 0.45 ⁇ m
  • Polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more), alumina particles having an average particle diameter of 0.5 ⁇ m, and ion-exchanged water were blended in a weight ratio of 6:54:40, respectively, and zirconium oxide beads (Toray Industries, Inc. ) “Traceram” (registered trademark) beads, 0.5 mm in diameter) and placed in a polypropylene container, and dispersed for 6 hours with a paint shaker (manufactured by Toyo Seiki Seisakusho). Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (a).
  • a coating liquid (a) is applied by gravure coating to the surface of the laminated polyethylene microporous membrane that was in contact with the cooling roll during film formation, and dried by passing through a hot air drying oven at 50 ° C. for 10 seconds.
  • a battery separator having a final thickness of 16 ⁇ m was obtained.
  • Example 2 A battery separator was obtained in the same manner as in Example 1 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
  • UHMWPE ultrahigh molecular weight polyethylene
  • HDPE high density polyethylene
  • Example 3 A battery separator was obtained in the same manner as in Example 2 except that two polyester doctor blades were applied to the cooling roll at an interval of 20 mm.
  • Example 4 A battery separator was obtained in the same manner as in Example 2 except that three polyester doctor blades were applied to the cooling rolls at intervals of 20 mm.
  • Example 5 Two-part curable aqueous acrylic urethane resin (solid content concentration 45% by mass) composed of aqueous acrylic polyol and water-dispersible polyisocyanate (curing agent), alumina particles having an average particle size of 0.5 ⁇ m, and ion-exchanged water are respectively 10:40: 50 weight ratio, zirconium oxide beads (Toraysemu "Traceram” (registered trademark) beads, diameter 0.5mm) together with polypropylene container, paint shaker (Toyo Seiki Seisakusho) For 6 hours. Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (b). A modified porous layer was laminated in the same manner as in Example 2 except that the coating liquid (a) was changed to the coating liquid (b) to obtain a battery separator.
  • curing agent aqueous acrylic polyol and water-dispersible polyisocyanate
  • POVACOATR polyvinyl alcohol, acrylic acid and methyl methacrylate
  • the solution was filtered through a filter having a filtration limit of 5 ⁇ m to obtain a coating solution (c).
  • a modified porous layer was laminated in the same manner as in Example 2 except that the coating liquid (a) was changed to the coating liquid (c) to obtain a battery separator.
  • Example 7 A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was maintained at 35 ° C.
  • Example 8 A battery separator was obtained in the same manner as in Example 2, except that the layer structure was B / A / B and the solution ratio was 1/2/1.
  • Examples 9-12 A battery separator was obtained in the same manner as in Example 2 except that the low melting point resin contained in the polyethylene composition B was changed as described in Table 1.
  • Example 13 A battery separator was obtained in the same manner as in Example 2 except that the amount of the low melting point resin contained in the polyethylene composition B was adjusted as shown in Table 1-1.
  • Example 14 A battery separator was obtained in the same manner as in Example 2 except that the extrusion amounts of the polyethylene resin solutions A and B were adjusted to obtain a laminated polyethylene microporous membrane having a thickness of 9 ⁇ m.
  • Example 15 Alumina particles are replaced with crosslinked polymer particles (polymethyl methacrylate-based crosslinked product particles (“Eposter” (registered trademark) MA1002, manufactured by Nippon Shokubai Co., Ltd., average particle size: 2.5 ⁇ m)). Varnish (d) was obtained with a blending ratio of -methyl-2-pyrrolidone of 35:10:55 (weight ratio). A battery separator was obtained in the same manner as in Example 2 except that the varnish (d) was used.
  • the mixture was dispersed with a shaker (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 6 hours, and then filtered through a filter having a filtration limit of 5 ⁇ m to obtain varnish (e), which was the same as Example 2 except that varnish (e) was used. Thus, a battery separator was obtained.
  • Example 17 Acrylic emulsion (“Polysol” (registered trademark) AT-731 manufactured by Showa Denko KK, nonvolatile content 47%), alumina particles having an average particle size of 0.5 ⁇ m, and ion-exchanged water in a weight ratio of 2:55:43, respectively.
  • Polysol registered trademark
  • alumina particles having an average particle size of 0.5 ⁇ m
  • ion-exchanged water in a weight ratio of 2:55:43, respectively.
  • zirconium oxide beads Toraysemu "Traceram” (registered trademark) beads, diameter 0.5mm
  • Toyo Seiki Seisakusho Toyo Seiki Seisakusho
  • Example 18 A battery separator was obtained in the same manner as in Example 2 except that the coating liquid (g) in which the alumina particles were changed to barium sulfate fine particles (average particle size: 0.3 ⁇ m) was used.
  • Example 19 A battery separator was obtained in the same manner as in Example 2 except that the layer configuration was A / B / A and the solution ratio was 1.5 / 2 / 1.5.
  • Example 20 A battery separator was obtained in the same manner as in Example 2 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
  • UHMWPE ultrahigh molecular weight polyethylene
  • HDPE high density polyethylene
  • Example 21 The blending ratio of ultra high molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE) in polyethylene composition A and the ratio of each polyethylene composition A to liquid paraffin were adjusted as shown in Table 1-1.
  • a battery separator was obtained in the same manner as in Example 2 except that the extrusion amounts of the polyethylene solutions A and B were adjusted as described.
  • Comparative Example 1 Except that only the polyethylene solution A was used to extrude from a single-layer die at 190 ° C. to form a single-layer gel-like molding, and the single-layer gel-like molding obtained instead of the laminated gel-like molding was used. A battery separator was obtained in the same manner as in Example 2.
  • Comparative Example 2 A battery separator was obtained in the same manner as in Example 2 except that an ethylene / 1-hexene copolymer having an MFR of 3.2 g / 10 min was used as the low melting point resin contained in the polyethylene composition B.
  • Comparative Example 3 A battery separator was obtained in the same manner as in Example 1 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
  • UHMWPE ultrahigh molecular weight polyethylene
  • HDPE high density polyethylene
  • Comparative Example 4 The polyethylene resin solution extruded from the die was cooled with a cooling roll, and when the gel-like molded product was obtained, the doctor blade was not used and the liquid paraffin adhering to the cooling roll was not scraped off. Similarly, a battery separator was obtained.
  • Comparative Example 5 A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was kept at 0 ° C. and the doctor blade was not used.
  • Comparative Example 6 Instead of cooling the polyethylene resin solution extruded from the die with a cooling roll, a battery separator was obtained in the same manner as in Example 2 except that the polyethylene resin solution was immersed in water kept at 25 ° C. for 1 minute.
  • Comparative Example 7 A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was kept at 50 ° C.
  • a polyamide-imide resin solution, alumina particles having an average particle size of 0.5 ⁇ m, and N-methyl-2-pyrrolidone were blended in a weight ratio of 26:34:40, respectively, and zirconium oxide beads (“Traceram” manufactured by Toray Industries, Inc. (registered) (Trademark) beads, 0.5 mm in diameter) were placed in a polypropylene container and dispersed for 6 hours with a paint shaker (Toyo Seiki Seisakusho). Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (h). The coating liquid (h) was applied to the laminated polyethylene microporous membrane obtained in the same manner as in Example 2 by the gravure coating method in the same manner as in Example 2 to obtain a battery separator.
  • zirconium oxide beads (“Traceram” manufactured by Toray Industries, Inc. (registered) (Trademark) beads, 0.5 mm in diameter) were placed in a polypropylene
  • Example 1-1 and Table 1-2 The manufacturing conditions of Examples 1 to 21 and Comparative Examples 1 to 8 are shown in Table 1-1 and Table 1-2.
  • Table 2 shows the characteristics of the obtained laminated polyethylene microporous membrane and battery separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a battery separator on the assumption that battery separators will become increasingly thin and cost less in the future. This battery separator has extremely high peel strength with respect to a modified porous layer, is suitable for high-speed processing in slit processing and battery assembly processing, has excellent shutdown characteristics, and is suitable for a lithium ion battery. The battery separator comprises: a layered polyethylene microporous membrane in which at least two layers of a polyethylene microporous membrane are layered; and a modified porous layer that is present on at least one of the surfaces of the layered polyethylene microporous membrane. The layered polyethylene microporous membrane has a shutdown temperature of 128-135 °C, exhibits an air permeation resistance increase rate of less than 1.5 sec/100 cc air/°C from 30 °C to 105 °C as calculated by converting to a thickness of 20 µm, and comprises 3 to 200 protrusions per cm2 that comprise polyethylene and that are present in an irregular manner on at least one outwardly facing surface thereof. The protrusions satisfy 0.5 µm ≤ H (H represents the height of the protrusions) and 5 µm ≤ W ≤ 50 µm (W represents the size of the protrusions). The modified porous layer is layered on the surface of the layered polyethylene microporous membrane that comprises the protrusions. The battery separator also comprises a binder that has a tensile strength of 5 N/mm2 or more and inorganic particles.

Description

電池用セパレータ及びその製造方法Battery separator and method for producing the same
 本発明は改質多孔層の積層に適した積層ポリエチレン微多孔質膜と改質多孔層とを少なくとも有する電池用セパレータに関する。リチウムイオン電池用セパレータとして有用な電池用セパレータである。 The present invention relates to a battery separator having at least a laminated polyethylene microporous membrane suitable for laminating a modified porous layer and a modified porous layer. It is a battery separator useful as a lithium ion battery separator.
 熱可塑性樹脂微微多孔質膜は、隔離材やフィルター等として広く用いられている。たとえば、隔離材としてはリチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、フィルターとしては逆浸透濾過膜、限外濾過膜、精密濾過膜等が挙げられる。その他にも透湿防水衣料、医療用材料等に用いられる。特にリチウムイオン二次電池用セパレータとしては、電解液含浸によりイオン透過性を有し、電気絶縁性、耐電解液性、耐酸化性に優れ、電池異常昇温時には120~150℃程度の温度においてイオン透過性を遮断し、過度の昇温を抑制する孔閉塞効果をも備えているポリエチレン製微多孔質膜が好適に使用されている。しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、膜を構成するポリエチレンの粘度低下や膜の収縮により、破膜を生じることがある。この現象はポリエチレンに限定された現象ではなく、他の熱可塑性樹脂を用いた場合においても、その微多孔質膜を構成する樹脂の融点以上では避けることができない。 Thermoplastic resin microporous membranes are widely used as separators and filters. For example, separators for lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, and reverse osmosis filtration membranes, ultrafiltration membranes for filters And microfiltration membranes. In addition, it is used for moisture permeable waterproof clothing, medical materials, and the like. In particular, as a separator for lithium ion secondary battery, it has ion permeability by impregnation with electrolyte, is excellent in electrical insulation, electrolyte resistance, and oxidation resistance. A polyethylene microporous membrane having a pore blocking effect that blocks ion permeability and suppresses excessive temperature rise is suitably used. However, if the temperature continues to rise after clogging for some reason, a film breakage may occur due to a decrease in the viscosity of the polyethylene constituting the film or a contraction of the film. This phenomenon is not limited to polyethylene, and even when other thermoplastic resins are used, the phenomenon cannot be avoided beyond the melting point of the resin constituting the microporous film.
 リチウムイオン電池用セパレータは電池特性、電池生産性、電池安全性に関わっており、機械的特性、耐熱性、透過性、寸法安定性、孔閉塞特性(シャットダウン特性)、溶融破膜特性(メルトダウン特性)等が要求される。さらに、電池のサイクル特性向上のために電極材料との密着性向上、生産性向上のための電解液浸透性の向上などが要求される。 Lithium-ion battery separators are related to battery characteristics, battery productivity, and battery safety, and include mechanical characteristics, heat resistance, permeability, dimensional stability, pore plugging characteristics (shutdown characteristics), and melt-breaking characteristics (meltdown). Characteristics) and the like are required. Furthermore, in order to improve the cycle characteristics of the battery, it is required to improve the adhesion with the electrode material and to improve the electrolyte permeability to improve the productivity.
 そのため、これまでに微多孔質膜にさまざまな改質多孔層を積層することが検討されている。改質多孔層としては耐熱性及び電解液浸透性を併せ持つポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂及び/又は電極密着性に優れたフッ素系樹脂などが好適に用いられている。また、比較的簡易な水洗工程、乾燥工程を用いて改質多孔層が積層できる水溶性または水分散性バインダーも広く用いられている。なお、本発明でいう改質多孔層とは、耐熱性、電極材料との密着性、電解液浸透性などの機能を少なくとも一つ以上、付与または向上させる樹脂を含む層をいう。 Therefore, it has been studied to stack various modified porous layers on a microporous membrane. As the modified porous layer, a polyamide-imide resin, a polyimide resin, a polyamide resin and / or a fluorine-based resin excellent in electrode adhesion, which have both heat resistance and electrolyte solution permeability are preferably used. In addition, a water-soluble or water-dispersible binder capable of laminating a modified porous layer using a relatively simple washing step and drying step is also widely used. The modified porous layer in the present invention refers to a layer containing a resin that imparts or improves at least one function such as heat resistance, adhesion to an electrode material, and electrolyte permeability.
 さらに、電池用セパレータは電池容量の向上のため、容器内に充填できる面積を増加させる必要があり、薄膜化が進むことが予測されている。しかしながら、微多孔質膜は薄膜化が進むと平面方向に変形しやすくなるため、微多孔質膜に改質多孔質層を積層した電池用セパレータは加工中やスリット工程あるいは電池組み立て工程において、改質多孔層が剥離することがあり、安全性を確保することがより困難となる。 Furthermore, the battery separator needs to increase the area that can be filled in the container in order to improve the battery capacity, and it is predicted that the thinning will proceed. However, since microporous membranes are easily deformed in the planar direction as the film thickness is reduced, battery separators in which a modified porous layer is laminated on microporous membranes are modified during processing, in the slitting process, or in the battery assembly process. The porous layer may be peeled off, making it more difficult to ensure safety.
 また、低コスト化に対応するため、電池組み立て工程の高速化が進むことが予想される。このような高速加工においても改質多孔層の剥離等のトラブルが少ない、微多孔質膜と改質多孔層との高い密着性が求められる。しかしながら、密着性の向上を図るために、改質多孔層に含まれる樹脂をポリエチレン微多孔質膜に十分に浸透させると、透気抵抗度の上昇幅が大きくなるという問題がある。 Also, it is expected that the battery assembly process will be accelerated in order to cope with cost reduction. Even in such high-speed processing, high adhesion between the microporous membrane and the modified porous layer is required, with less trouble such as peeling of the modified porous layer. However, if the resin contained in the modified porous layer is sufficiently permeated into the polyethylene microporous membrane in order to improve the adhesion, there is a problem that the increase in the air resistance increases.
 特許文献1では、厚み9μmのポリエチレン製微多孔質膜にポリフッ化ビニリデンを塗布し、ポリフッ化ビニリデンの一部がポリエチレン製多孔膜の細孔に適度に食い込みアンカー効果を発現させることによって、ポリエチレン製多孔膜とポリフッ化ビニリデンの塗布層界面での剥離強度(T型剥離強度)が1.0~5.3N/25mmの複合微多孔質膜を開示している。 In Patent Document 1, polyvinylidene fluoride is applied to a polyethylene microporous film having a thickness of 9 μm, and a part of the polyvinylidene fluoride bites into the pores of the polyethylene porous film appropriately so as to express an anchor effect. A composite microporous membrane having a peel strength (T-type peel strength) at the interface between the porous membrane and the polyvinylidene fluoride coating layer of 1.0 to 5.3 N / 25 mm is disclosed.
 特許文献2では、厚みが16μmのコロナ放電処理されたポリエチレン製微多孔質膜に自己架橋性のアクリル樹脂と板状ベーマイトを含む耐熱多孔層を設け、ポリエチレン製微多孔質膜と耐熱多孔層との180°での剥離強度(T型剥離強度)が1.1~3.0N/10mmのセパレータが開示されている。 In Patent Document 2, a heat-resistant porous layer containing a self-crosslinkable acrylic resin and plate-like boehmite is provided on a corona discharge-treated polyethylene microporous film having a thickness of 16 μm, and a polyethylene microporous film and a heat-resistant porous layer are provided. A separator having a peel strength at 180 ° (T-type peel strength) of 1.1 to 3.0 N / 10 mm is disclosed.
 特許文献3の実施例1では、粘度平均分子量20万のポリエチレン、47.5質量部と粘度平均分子量40万のポリプロピレン2.5質量部、および酸化防止剤からなる組成物50質量部と流動パラフィン50質量部からなるポリエチレン樹脂溶液を押出機から200℃で押し出し、25℃に温調された冷却ロールで引き取りながらゲル状成形物を得て、次いで7×6.4倍になるように二軸延伸を行い、ポリエチレン樹脂多孔膜を得る。このポリエチレン樹脂微多孔質膜の表面にポリビニルアルコール、アルミナ粒子からなる塗布層を積層して得た積層微多孔質膜が開示されている。 In Example 1 of Patent Document 3, polyethylene having a viscosity average molecular weight of 200,000, 47.5 parts by mass, 2.5 parts by mass of polypropylene having a viscosity average molecular weight of 400,000, and 50 parts by mass of a composition comprising an antioxidant and liquid paraffin A polyethylene resin solution consisting of 50 parts by mass is extruded from an extruder at 200 ° C., and a gel-like molded product is obtained while being drawn with a cooling roll adjusted to 25 ° C., and then biaxially so as to be 7 × 6.4 times. Stretching to obtain a polyethylene resin porous membrane. A laminated microporous membrane obtained by laminating a coating layer made of polyvinyl alcohol and alumina particles on the surface of the polyethylene resin microporous membrane is disclosed.
 特許文献4の実施例6では、重量平均分子量415万と重量平均分子量56万、重量比1:9のポリエチレン組成物30質量%と流動パラフィンとデカリンの混合溶媒70質量%のポリエチレン樹脂溶液を押出機から148℃で押し出し、水浴中で冷却しゲル状成形物を得て、次いで5.5×11.0倍になるように二軸延伸を行い、ポリエチレン微多孔質膜を得る。このポリエチレン微多孔質膜の表面にメタ型全芳香族ポリアミドとアルミナ粒子からなる塗布層を積層して得た非水系二次電池用セパレータが開示されている。 In Example 6 of Patent Document 4, a polyethylene resin solution having a weight average molecular weight of 41.5 million, a weight average molecular weight of 560,000, a polyethylene composition of 30% by weight and a mixed solvent of liquid paraffin and decalin of 70% by weight is extruded. Extruded from the machine at 148 ° C., cooled in a water bath to obtain a gel-like molded product, and then biaxially stretched to a size of 5.5 × 11.0 to obtain a polyethylene microporous membrane. A separator for a non-aqueous secondary battery obtained by laminating a coating layer made of meta-type wholly aromatic polyamide and alumina particles on the surface of this polyethylene microporous membrane is disclosed.
 特許文献5の実施例1では、粘度平均分子量70万のホモポリマーのポリエチレン47質量部と粘度平均分子量25万のホモポリマーのポリエチレン46質量部とMv40万のホモポリマーのポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドしたポリエチレン組成物を溶融混練し、表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ2000μmのシート状のポリエチレン組成物を得て、次いで7×7倍になるように二軸延伸を行なって得たポリエチレン微多孔質膜に焼成カオリンとラテックスの水分散液を塗工することによって得られる積層多孔膜が開示されている。 In Example 1 of Patent Document 5, 47 parts by mass of homopolymer polyethylene having a viscosity average molecular weight of 700,000, 46 parts by mass of homopolymer polyethylene having a viscosity average molecular weight of 250,000, and 7 parts by mass of polypropylene having a homopolymer of Mv 400,000 Dry blended using a tumbler blender. 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99% by mass of the obtained pure polymer mixture, and again A polyethylene composition that has been dry-blended using a tumbler blender is melt-kneaded and extruded and cast onto a cooling roll controlled to a surface temperature of 25 ° C. to obtain a polyethylene composition in the form of a sheet having a thickness of 2000 μm. A laminated porous membrane obtained by applying an aqueous dispersion of calcined kaolin and latex to a polyethylene microporous membrane obtained by biaxial stretching so as to be × 7 times is disclosed.
 特許文献6では内部層としての多孔性ポリエチレン層と、外部層としての多孔性ポリプロピレン層とを有する多孔性樹脂基材にセラミックス層を積層させたリチウムイオン二次電池用セパレータを開示している。 Patent Document 6 discloses a separator for a lithium ion secondary battery in which a ceramic layer is laminated on a porous resin base material having a porous polyethylene layer as an inner layer and a porous polypropylene layer as an outer layer.
 特許文献7では、低融点樹脂を添加した層と含まない層とを有する積層物を延伸して微多孔膜を作製する技術が開示されている。 Patent Document 7 discloses a technique for producing a microporous film by stretching a laminate having a layer to which a low-melting-point resin is added and a layer not containing the layer.
 しかしながら、今後急速に進むであろう低コスト化による高速加工化、高容量化に伴うセパレータの薄膜化の要求に対して、これら従来の技術ではスリット加工や電池組み立て加工中に局所的に改質多孔層が剥離するため、安全性を確保することは困難となることが予想される。特に、基材となるポリエチレン微多孔質膜が薄くなれば、改質多孔層のポリエチレン微多孔質膜に対する十分なアンカー効果が得にくくなるため、安全性の確保はいっそう困難となる。 However, in response to the demand for high-speed processing due to cost reduction, which will progress rapidly in the future, and the demand for thinner separators due to higher capacities, these conventional technologies locally improve during slit processing and battery assembly processing. Since the porous layer is peeled off, it is expected that it is difficult to ensure safety. In particular, if the polyethylene microporous membrane serving as a base material becomes thin, it becomes difficult to obtain a sufficient anchoring effect of the modified porous layer on the polyethylene microporous membrane, and thus it becomes more difficult to ensure safety.
特開2012-043762号公報JP 2012-037662 A 再公表2010-104127号公報Republished 2010-104127 特許第4931083号公報Japanese Patent No. 4931083 特許第4460028号公報Japanese Patent No. 4460028 特開2011-000832号公報JP 2011-000832 A 特開2011-071009号公報JP 2011-071009 A 特表2012-521914号公報Special table 2012-521914 gazette
 本発明は電池用セパレータの薄膜化、加工の高速化が今後ますます進んだ場合を想定し、改質多孔層と積層ポリエチレン微多孔質膜との剥離強度が高く、スリット工程や電池組み立て工程における高速加工に適した、改質多孔層の積層に適した積層ポリエチレン微多孔質膜に改質多孔層を積層する電池用セパレータを提供することである。 The present invention assumes the case where the battery separator is made thinner and the processing speed is further advanced, and the peel strength between the modified porous layer and the laminated polyethylene microporous film is high. An object of the present invention is to provide a battery separator suitable for high-speed processing, in which a modified porous layer is laminated on a laminated polyethylene microporous membrane suitable for lamination of a modified porous layer.
 本明細書でいう、セパレータにおける積層ポリエチレン微多孔質膜と改質多孔層との剥離強度とは、以下の方法により測定される値である(以下、0°剥離強度という場合がある。)。
 図1に、引張試験機(図示しない)によって引っ張った状態の積層ポリエチレン微多孔質膜と改質多孔層との積層試料の側面の様子を模式的に示している。1が積層試料、2が積層ポリエチレン微多孔質膜、3が改質多孔層、4が両面粘着テープ、5及び5’がアルミニウム板であり、図中の矢印が引張方向である。大きさ50mm×25mm、厚さ0.5mmのアルミニウム板(5)に同じ大きさの両面粘着テープ(4)を貼り付け、その上に幅50mm×長さ100mmに切り出した試料(1)の積層ポリエチレン微多孔質膜(2)の面を前記アルミニウム板(5)の25mm長さの片辺の端から40mmが重なるように貼り付け、はみ出た部分を切り取る。次いで、長さ100mm、幅15mm、厚さ0.5mmのアルミニウム板(5’)の片面に両面粘着テープを貼り付け、前記アルミニウム板(5)の25mm長さの試料側の片辺の端から20mmが重なるように貼り付ける。その後、アルミニウム板(5)とアルミニウム板(5’)を平行に反対方向に引張試験機を用いて、引張速度10mm/minで引っ張り、改質多孔層が剥離したときの強度を測定する。本評価方法で剥離強度が130N/15mm以上であれば、積層ポリエチレン微多孔質膜の厚さが例えば10μm以下のような場合であっても、積層された改質多孔層が搬送中、あるいは加工中に剥がれ現象はほとんど生じない。
 剥離強度の測定法として従来から用いられているT型剥離強度または180°での剥離強度は、塗布層を電池用セパレータの表面に対して垂直または垂直から斜め後方に引きはがす時の剥離力である。本評価方法によれば、これら従来の評価方法に比べてスリット工程や電池組み立て工程における擦れ耐性をより実際に即して評価することができる。
The peel strength between the laminated polyethylene microporous membrane and the modified porous layer in the separator in the present specification is a value measured by the following method (hereinafter sometimes referred to as 0 ° peel strength).
FIG. 1 schematically shows the state of the side surface of a laminated sample of a laminated polyethylene microporous membrane and a modified porous layer pulled by a tensile tester (not shown). 1 is a laminated sample, 2 is a laminated polyethylene microporous membrane, 3 is a modified porous layer, 4 is a double-sided pressure-sensitive adhesive tape, 5 and 5 'are aluminum plates, and the arrows in the figure are tensile directions. Lamination of sample (1) cut to a width of 50 mm x length of 100 mm on a double-sided adhesive tape (4) of the same size on an aluminum plate (5) of size 50 mm x 25 mm and thickness 0.5 mm The surface of the polyethylene microporous membrane (2) is pasted so that 40 mm overlaps from the end of one side of the 25 mm length of the aluminum plate (5), and the protruding part is cut off. Next, a double-sided adhesive tape is attached to one side of an aluminum plate (5 ′) having a length of 100 mm, a width of 15 mm, and a thickness of 0.5 mm. From the end of one side of the aluminum plate (5) on the 25 mm-long sample side. Paste so that 20mm overlaps. Thereafter, the aluminum plate (5) and the aluminum plate (5 ′) are pulled in parallel in opposite directions using a tensile tester at a tensile rate of 10 mm / min, and the strength when the modified porous layer is peeled is measured. If the peel strength is 130 N / 15 mm or more in this evaluation method, the laminated modified porous layer is being conveyed or processed even if the thickness of the laminated polyethylene microporous membrane is 10 μm or less, for example. There is almost no peeling phenomenon.
The T-type peel strength or 180 ° peel strength conventionally used as a peel strength measurement method is the peel force when the coating layer is peeled from the surface of the battery separator vertically or obliquely backward. is there. According to this evaluation method, it is possible to evaluate the abrasion resistance in the slit process and the battery assembly process more practically as compared with these conventional evaluation methods.
 上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
すなわち、
 積層ポリエチレン微多孔質膜とその少なくとも一方の表面に存在する改質多孔層とを有する電池用セパレータであって、前記積層ポリエチレン微多孔質膜は、少なくともA層とB層を含んでなる多孔質積層体であり、シャットダウン温度が128~135℃、厚み20μmあたり30℃から105℃における透気抵抗度上昇率が1.5sec/100ccAir/℃未満であり、少なくとも一方の外界に面した表面に3個/cm以上、200個/cm以下のポリエチレンからなる突起が不規則に存在し、前記突起は0.5μm≦H(Hは突起の高さ)および5μm≦W≦50μm(Wは突起の大きさ)をみたし、前記改質多孔層は前記積層ポリエチレン微多孔質膜の突起を有する面上に積層され、かつ、引っ張り強度が5N/mm以上のバインダーと無機粒子とを含む電池用セパレータである。
 本発明の電池用セパレータは、前記積層ポリエチレン微多孔質膜は、A層/B層/A層の3層構造であることが好ましい。
 ここで、外界に面した表面とは、積層ポリオレフィン微多孔質膜を構成する各層の表面のうち少なくとも一方の表面は他の層の表面と接する側(界面側)に面するが、界面側に面しないもう一方の表面のことをいう。
 本発明の電池用セパレータは、前記B層がメルトフローレートが25~150g/10min、融点が120℃以上130℃未満である低融点樹脂を含んでなることが好ましい。
 本発明の電池用セパレータは、前記低融点樹脂が低密度ポリエチレン、直鎖状低密度ポリエチレンエチレン・α-オレフィン共重合体であることが好ましい。
 本発明の電池用セパレータは、前記B層中の低融点樹脂の含有量がB層のポリエチレン樹脂全体を100質量%として、20質量%以上、35質量%以下であることが好ましい。
 本発明の電池用セパレータは、前記B層の厚みが3μm以上、15μm以下であることが好ましい。
 本発明の電池用セパレータは、前記バインダーがポリビニルアルコール又はアクリル系樹脂であることが好ましい。
 本発明の電池用セパレータは、前記無機粒子が炭酸カルシウム、アルミナ、チタニア、硫酸バリウム及びベーマイトからなる群から選ばれる少なくとも1種を含むことが好ましい。
 上記課題を解決するために本発明の電池用セパレータの製造方法は以下の構成を有する。すなわち、
(a)A層を構成するポリエチレン樹脂に成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Aを調製する工程
(b)B層を構成するポリエチレン樹脂に低融点樹脂および、成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Bを調製する工程
(c)工程(a)及び(b)にて得られたポリエチレン樹脂溶液A及びBをダイより押し出して、うち少なくとも一方を、成形用溶剤の除去手段により成形用溶剤が除去した表面を有する冷却ロールにて冷却し、積層ゲル状成形物を形成する工程
(d)前記積層ゲル状成形物を機械方向および幅方向に延伸し、積層延伸成形物を得る工程
(e)前記積層成形用溶剤を積層延伸成形物から前記成形用溶剤を抽出除去し、乾燥し、積層多孔質成形物を得る工程
(f)積層多孔質成形物を熱処理し、積層ポリエチレン微多孔質膜を得る工程
(g)前記冷却ロールが接していた積層ポリエチレン微多孔質膜の表面に、引っ張り強度が5N/mm以上のバインダー、無機粒子及びバインダーを溶解または分散しうる溶媒とを含む塗布液を用いて積層膜を形成し、乾燥する工程を含む、電池用セパレータの製造方法。
 本発明の電池用セパレータの製造方法は、前記(c)工程における成形用溶剤の除去手段がドクターブレードを用いて掻き落とす手段であることが好ましい。
In order to solve the above problems, the battery separator of the present invention has the following configuration.
That is,
A battery separator having a laminated polyethylene microporous membrane and a modified porous layer present on at least one surface thereof, wherein the laminated polyethylene microporous membrane comprises at least an A layer and a B layer. The laminate has a shutdown temperature of 128 to 135 ° C., a rate of increase in air permeability resistance from 30 ° C. to 105 ° C. per 20 μm thickness is less than 1.5 sec / 100 cc Air / ° C., and at least one of the surfaces facing the outside is 3 There are irregular projections made of polyethylene of not less than 200 / cm 2 and not more than 200 / cm 2 , and the projections are 0.5 μm ≦ H (H is the height of the projection) and 5 μm ≦ W ≦ 50 μm (W is the projection) it viewed in magnitude), the modified porous layer is laminated on a surface having a projection of the laminated microporous polyethylene membrane, and a tensile strength of 5N / mm 2 or more A battery separator comprising a binder and inorganic particles.
In the battery separator of the present invention, the laminated polyethylene microporous membrane preferably has a three-layer structure of A layer / B layer / A layer.
Here, the surface facing the outside world means that at least one of the surfaces of each layer constituting the laminated polyolefin microporous membrane faces the side (interface side) in contact with the surface of the other layer, but on the interface side. The other surface that does not face.
In the battery separator of the present invention, the B layer preferably comprises a low melting point resin having a melt flow rate of 25 to 150 g / 10 min and a melting point of 120 ° C. or higher and lower than 130 ° C.
In the battery separator of the present invention, it is preferable that the low melting point resin is a low density polyethylene or a linear low density polyethylene ethylene / α-olefin copolymer.
In the battery separator of the present invention, the content of the low melting point resin in the B layer is preferably 20% by mass or more and 35% by mass or less, based on 100% by mass of the entire polyethylene resin of the B layer.
In the battery separator of the present invention, the thickness of the B layer is preferably 3 μm or more and 15 μm or less.
In the battery separator of the present invention, the binder is preferably polyvinyl alcohol or an acrylic resin.
In the battery separator of the present invention, it is preferable that the inorganic particles include at least one selected from the group consisting of calcium carbonate, alumina, titania, barium sulfate and boehmite.
In order to solve the above-described problems, the battery separator manufacturing method of the present invention has the following configuration. That is,
(A) Step of adding a molding solvent to the polyethylene resin constituting the A layer and then melt-kneading to prepare the polyethylene resin solution A (b) Low melting point resin and molding solvent for the polyethylene resin constituting the B layer Step (c) of preparing polyethylene resin solution B by extruding polyethylene resin solutions A and B obtained in steps (a) and (b) from a die, and adding at least one of Step (d) of forming a laminated gel-like molded product by cooling with a cooling roll having a surface from which the molding solvent has been removed by the molding solvent removing means, and stretching the laminated gel-like molded product in the machine direction and the width direction. (E) A step of obtaining a laminated stretched molded product (e) A step of extracting and removing the solvent for lamination molding from the laminated stretched molded product and drying to obtain a laminated porous molded product (f) Laminated porous molded product Heat treating, dissolved obtain a laminated microporous polyethylene membrane step (g) the surface of the laminated polyethylene cooling roll was in contact microporous membrane, tensile strength 5N / mm 2 or more binders, inorganic particles and a binder Or the manufacturing method of the separator for batteries including the process of forming a laminated film using the coating liquid containing the solvent which can be disperse | distributed, and drying.
In the method for producing a battery separator of the present invention, the forming solvent removing means in the step (c) is preferably a means for scraping off using a doctor blade.
 本発明によれば、改質多孔層との優れた密着性を有する積層ポリエチレン微多孔質膜に改質多孔層を積層する、高速搬送時においても改質多孔層の剥離が生じない電池用セパレータが得られる。 According to the present invention, a battery separator in which a modified porous layer is laminated on a laminated polyethylene microporous film having excellent adhesion to the modified porous layer, and the modified porous layer does not peel even during high-speed conveyance. Is obtained.
0°剥離強度の測定方法を示す概略図。Schematic which shows the measuring method of 0 degree peeling strength. 積層ポリエチレン微多孔質膜におけるポリエチレンの球晶構造および結晶核を示す概略図。Schematic which shows the spherulite structure and crystal nucleus of polyethylene in a laminated polyethylene microporous membrane. 積層ポリエチレン微多孔質膜におけるポリエチレンの球晶に由来するリング状痕の顕微鏡写真。The microscope picture of the ring-shaped trace derived from the spherulite of polyethylene in a laminated polyethylene microporous membrane. ポリエチレン樹脂溶液を押出機の先端に設置されたダイから押し出し、冷却ロールで冷却しながら積層ゲル状成形物を形成する工程を示す概略図。Schematic which shows the process of forming a laminated gel-like molding, extruding a polyethylene resin solution from the die | dye installed in the front-end | tip of an extruder, and cooling with a cooling roll.
 本発明に用いる積層ポリエチレン微多孔質膜は、特定のポリエチレン樹脂溶液を調整し、押し出し機からダイを経由して押し出されたポリエチレン樹脂溶液の冷却速度を高度に制御することで、表面に適度な形状と数の突起を有する。本発明は、無機粒子及び引っ張り強度が5N/mm以上のバインダーを含む改質多孔層を積層ポリエチレン微多孔質膜に積層した場合において、積層ポリエチレン微多孔質膜と改質多孔層との間で極めて優れた剥離強度を得ることができる。 The laminated polyethylene microporous membrane used in the present invention adjusts a specific polyethylene resin solution and highly controls the cooling rate of the polyethylene resin solution extruded from the extruder via the die, so that the surface has an appropriate amount. It has shape and number of protrusions. In the present invention, when a modified porous layer containing inorganic particles and a binder having a tensile strength of 5 N / mm 2 or more is laminated on a laminated polyethylene microporous membrane, the invention is provided between the laminated polyethylene microporous membrane and the modified porous layer. With this, extremely excellent peel strength can be obtained.
 本発明でいう突起とは、積層ポリエチレン微多孔質膜に、例えば無機粒子等を添加して得られる突起とは本質的に異なる。積層ポリエチレン微多孔質膜に無機粒子を添加して得られる突起は通常、極めて高さが小さいものであり、同手段で高さ0.5μm以上の突起を形成しようとすれば積層ポリエチレン微多孔質膜の厚さと同等かそれ以上の粒径を有する粒子の添加が必要となる。しかし、このような粒子を添加すると積層ポリエチレン微多孔質膜の強度が低下してしまい現実的ではない。 The projection referred to in the present invention is essentially different from the projection obtained by adding, for example, inorganic particles to a laminated polyethylene microporous film. The protrusions obtained by adding inorganic particles to the laminated polyethylene microporous membrane are usually extremely small in height, and if it is intended to form protrusions with a height of 0.5 μm or more by the same means, the laminated polyethylene microporous film It is necessary to add particles having a particle size equal to or greater than the thickness of the film. However, when such particles are added, the strength of the laminated polyethylene microporous membrane is lowered, which is not realistic.
 本発明でいう突起とは、積層ポリエチレン微多孔質膜の表層の一部を適度な形状の隆起に成長させたものであり、積層ポリエチレン微多孔質膜の基本的な特性を低下させるものではない。 The protrusions referred to in the present invention are those in which a part of the surface layer of the laminated polyethylene microporous membrane is grown to a moderately raised shape, and do not deteriorate the basic characteristics of the laminated polyethylene microporous membrane. .
 本発明でいう不規則に点在する突起とは、積層ポリエチレン微多孔質膜の製造に際して、延伸工程の前、あるいは後にエンボス加工ロールを通過させて得られる規則性、あるいは周期性のある配置する突起とは明確に異なる。エンボス加工等のプレス加工は基本的に圧縮することによって突起を形成するものであり、透気抵抗度、電解液浸透性の低下を生じやすいため好ましくない。 The irregularly scattered projections referred to in the present invention are arranged with regularity or periodicity obtained by passing through an embossing roll before or after the stretching step in the production of a laminated polyethylene microporous membrane. It is clearly different from the protrusion. Press work such as embossing is basically not preferred because it forms protrusions by compressing and tends to cause a decrease in air resistance and electrolyte permeability.
 本発明でいう適度な形状の突起とは、大きさ5μm以上、50μm以下で、かつ、高さ0.5μm以上の突起を意味する。すなわち、5μm≦W≦50μm(Wは突起の大きさ)、かつ0.5μm≦H(Hは突起の高さ)である。このような突起は積層ポリエチレン微多孔質膜に改質多孔層を積層した際、アンカーとして機能し、その結果、前述の0°剥離強度の大きい電池用セパレータが得られる。一方、高さの上限は特に限定されないが、3.0μmもあれば十分である。十分な高さの突起が数多くあるほど0°剥離強度は高くなる傾向にある。すなわち、0°剥離強度は高さ0.5μm以上の突起の数とその平均高さに影響される。突起の数の下限値は3個/cmが好ましく、より好ましくは5個/cm、さらに好ましくは10個/cmである。突起の数の上限値は200個/cmが好ましく、より好ましくは150個/cmである。突起の高さの下限値は0.5μmが好ましく、より好ましくは0.8μm、さらに好ましくは1.0μmである。なお、本発明における突起の大きさ及び高さは、後述する測定方法で測定した値をいう。 The moderately shaped protrusion as used in the present invention means a protrusion having a size of 5 μm or more and 50 μm or less and a height of 0.5 μm or more. That is, 5 μm ≦ W ≦ 50 μm (W is the size of the protrusion) and 0.5 μm ≦ H (H is the height of the protrusion). Such a protrusion functions as an anchor when the modified porous layer is laminated on the laminated polyethylene microporous film, and as a result, the battery separator having a large 0 ° peel strength is obtained. On the other hand, the upper limit of the height is not particularly limited, but 3.0 μm is sufficient. The more the protrusions are sufficiently high, the higher the 0 ° peel strength tends to be. That is, the 0 ° peel strength is affected by the number of protrusions having a height of 0.5 μm or more and the average height thereof. The lower limit of the number of the protrusions is preferably three / cm 2, more preferably 5 / cm 2, more preferably is 10 / cm 2. The upper limit of the number of protrusions is preferably 200 / cm 2 , more preferably 150 / cm 2 . The lower limit of the height of the protrusion is preferably 0.5 μm, more preferably 0.8 μm, and still more preferably 1.0 μm. In addition, the magnitude | size and height of a processus | protrusion in this invention say the value measured with the measuring method mentioned later.
 本発明でいう透気抵抗度の上昇幅とは、積層ポリエチレン微多孔質膜の透気抵抗度と電池用セパレータとの透気抵抗度の差を意味し、90秒/100ccAir以下が好ましく、より好ましくは80ccAir、さらに好ましくは50ccAirである。 The increase in the air resistance referred to in the present invention means a difference between the air resistance of the laminated polyethylene microporous membrane and the air resistance of the battery separator, and is preferably 90 seconds / 100 cc Air or less. Preferably it is 80 cc Air, more preferably 50 cc Air.
 本発明の積層ポリエチレン微多孔質膜、改質多孔層、及び電池用セパレータについて概要を説明するが、当然この代表例に限定されるものではない。 The outline of the laminated polyethylene microporous membrane, the modified porous layer, and the battery separator of the present invention will be described, but it is naturally not limited to this representative example.
 まず、本発明に用いる積層ポリエチレン微多孔質膜について説明する。
 本発明に用いる積層ポリエチレン微多孔質膜の厚さの上限値は25μmが好ましく、より好ましくは20μm、さらに好ましくは16μmである。下限値は7μmが好ましく、より好ましくは9μmである。積層ポリエチレン微多孔質膜の厚さが上記好ましい範囲であると、実用的な膜強度と孔閉塞機能を保有させることが出来き、電池ケースの単位容積当たりの面積が制約されず、今後、進むであろう電池の高容量化に適する。
First, the laminated polyethylene microporous membrane used in the present invention will be described.
The upper limit of the thickness of the laminated polyethylene microporous membrane used in the present invention is preferably 25 μm, more preferably 20 μm, and even more preferably 16 μm. The lower limit is preferably 7 μm, more preferably 9 μm. If the thickness of the laminated polyethylene microporous membrane is within the above preferred range, practical membrane strength and pore blocking function can be retained, and the area per unit volume of the battery case is not restricted, and will proceed in the future. It is suitable for increasing the capacity of batteries.
 積層ポリエチレン微多孔質膜のシャットダウン温度は128℃以上、135℃未満が好ましい。上限値は133℃未満がより好ましく、さらに好ましくは130℃未満である。シャットダウン温度が135℃未満であれば、電池の異常時に発熱により速やかに細孔が閉塞して電池反応が停止するために、電池の安全性が高くなる。 The shutdown temperature of the laminated polyethylene microporous membrane is preferably 128 ° C or higher and lower than 135 ° C. The upper limit is more preferably less than 133 ° C, and even more preferably less than 130 ° C. If the shutdown temperature is lower than 135 ° C., the pores are quickly closed due to heat generation when the battery is abnormal, and the battery reaction is stopped, so that the safety of the battery is increased.
 積層ポリエチレン微多孔質膜の透気抵抗度の上限値は300sec/100ccAirが好ましく、より好ましくは200sec/100ccAir、さらに好ましくは150sec/100ccAirであり、下限値は50sec/100ccAirが好ましく、より好ましくは70sec/100ccAir、さらに好ましくは100sec/100ccAirである。 The upper limit of the air resistance of the laminated polyethylene microporous membrane is preferably 300 sec / 100 cc Air, more preferably 200 sec / 100 cc Air, still more preferably 150 sec / 100 cc Air, and the lower limit is preferably 50 sec / 100 cc Air, more preferably 70 sec. / 100 cc Air, more preferably 100 sec / 100 cc Air.
 30℃から105℃にしたときの20μmあたりの積層ポリエチレン微多孔質膜の透気抵抗度上昇率は1.5sec/100ccAir/℃以下が好ましく、より好ましくは1.2sec/100ccAir/℃以下、さらに好ましくは1.0sec/100ccAir/℃以下である。透気抵抗度上昇率が1.5sec/100ccAir/℃以下であれば、コーティング時や電池の作製時において熱がかかることがあっても十分なイオン透過性が確保できる。 The rate of increase in air resistance of the laminated polyethylene microporous membrane per 20 μm when the temperature is changed from 30 ° C. to 105 ° C. is preferably 1.5 sec / 100 cc Air / ° C. or less, more preferably 1.2 sec / 100 cc Air / ° C. or less, Preferably, it is 1.0 sec / 100 cc Air / ° C. or less. If the rate of increase in air permeability resistance is 1.5 sec / 100 cc Air / ° C. or less, sufficient ion permeability can be secured even when heat is applied during coating or battery production.
 積層ポリエチレン微多孔質膜の空孔率は、上限値は70%が好ましく、より好ましくは60%、さらに好ましくは55%である。下限値は30%が好ましく、より好ましくは35%、さらに好ましくは40%である。透気抵抗度および空孔率が上記好ましい範囲であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)および電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮する。また、十分な機械的強度と絶縁性が得られることで充放電時に短絡が起こる可能性が低くなる。 The upper limit of the porosity of the laminated polyethylene microporous membrane is preferably 70%, more preferably 60%, and even more preferably 55%. The lower limit is preferably 30%, more preferably 35%, still more preferably 40%. When the air permeability resistance and the porosity are within the above preferred ranges, sufficient battery charge / discharge characteristics, particularly ion permeability (charge / discharge operating voltage) and battery life (closely related to the amount of electrolyte retained) The battery functions sufficiently as a battery. Moreover, since sufficient mechanical strength and insulating properties are obtained, the possibility of a short circuit during charge / discharge is reduced.
 積層ポリエチレン微多孔質膜の平均孔径は、孔閉塞性能に大きく影響を与えるため、好ましくは0.01~1.0μm、より好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。積層ポリエチレン微多孔質膜の平均孔径が上記好ましい範囲であると、機能性樹脂のアンカー効果により十分な改質多孔層の前記0°の剥離強度が得られ、改質多孔層を積層した際に透気抵抗度が大幅に悪化せず、また、孔閉塞現象の温度に対する応答が緩慢になることもなく昇温速度による孔閉塞温度がより高温側にシフトすることもない。 The average pore size of the laminated polyethylene microporous membrane greatly affects the pore closing performance, so it is preferably 0.01 to 1.0 μm, more preferably 0.05 to 0.5 μm, still more preferably 0.1 to 0. .3 μm. When the average pore size of the laminated polyethylene microporous membrane is within the above preferred range, the 0 ° peel strength of the modified porous layer sufficient due to the anchor effect of the functional resin is obtained, and when the modified porous layer is laminated, The air resistance is not greatly deteriorated, and the response to the temperature of the hole closing phenomenon is not slowed, and the hole closing temperature due to the heating rate is not shifted to a higher temperature side.
 以下、本発明で用いるポリエチレン樹脂について詳述する。
[1]第一の層(A層)におけるポリエチレン樹脂
 本発明のA層はポリエチレンを主成分とする微多孔質膜である。ポリエチレンの含有量は透過性と突刺強度を向上させるために、樹脂全体を100質量%として、80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは100質量%である。
Hereinafter, the polyethylene resin used in the present invention will be described in detail.
[1] Polyethylene resin in the first layer (A layer) The A layer of the present invention is a microporous membrane mainly composed of polyethylene. In order to improve the permeability and puncture strength, the polyethylene content is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass, based on 100% by mass of the entire resin.
 ポリエチレンの種類としては、密度が0.94g/cmを越えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、超高分子量ポリエチレン、直鎖状低密度ポリエチレン等が挙げられる。強度の観点より、高密度ポリエチレンと超高分子量ポリエチレンを含有することが好ましい。 The types of polyethylene, high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ~ 0.94g / cm 3, density of from 0.93 g / cm 3 Examples include low low density polyethylene, ultra high molecular weight polyethylene, and linear low density polyethylene. From the viewpoint of strength, it is preferable to contain high-density polyethylene and ultrahigh molecular weight polyethylene.
 超高分子量ポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。α-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。積層微多孔膜においては、特に共押出法により製造する場合、各層の粘度差などにより幅方向の物性ムラの制御が困難となることがあるが、A層に超高分子量ポリエチレンを使用することによって、膜全体の分子ネットワークが強固となるために不均一変形が起こりにくく、物性の均一性にすぐれる微多孔質膜を得ることができる。 The ultra high molecular weight polyethylene is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other α-olefin. Examples of the α-olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like. In a laminated microporous membrane, especially when it is produced by a coextrusion method, it may be difficult to control the physical property unevenness in the width direction due to a difference in viscosity of each layer, but by using ultrahigh molecular weight polyethylene for the A layer. In addition, since the molecular network of the entire film becomes strong, non-uniform deformation hardly occurs, and a microporous film having excellent uniformity of physical properties can be obtained.
 高密度ポリエチレンの重量平均分子量(以下、Mwという)は1×10以上が好ましく、2×10以上がより好ましい。上限値はMwが8×10が好ましく、より好ましくはMwが7×10である。Mwが上記範囲内であれば、製膜の安定性と最終的に得られる突刺強度とを両立することができる。 The weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 × 10 5 or more, and more preferably 2 × 10 5 or more. The upper limit is preferably 8 × 10 5 for Mw, more preferably 7 × 10 5 for Mw. If Mw is within the above range, the stability of film formation and the finally obtained puncture strength can both be achieved.
 超高分子量ポリエチレンのMwは、1×10以上4×10未満であることが好ましい。Mwが1×10以上4×10未満の超高分子量ポリエチレンを使用することで、孔およびフィブリルを微細化することができ、突刺強度を高めることが可能となる。また、Mwが4×10以上であると、溶融物の粘度が高くなりすぎるために、口金(ダイ)から樹脂を押し出せないなど製膜工程において不具合が出る場合がある。また、本発明においては後述するB層との粘度差が高くなりすぎると、特に共押出方法による積層において、各層を均一に押し出すことができない場合がある。 The Mw of the ultra high molecular weight polyethylene is preferably 1 × 10 6 or more and less than 4 × 10 6 . By using ultra high molecular weight polyethylene having an Mw of 1 × 10 6 or more and less than 4 × 10 6 , the pores and fibrils can be miniaturized and the puncture strength can be increased. Further, if Mw is 4 × 10 6 or more, the viscosity of the melt becomes too high, so that there may be a problem in the film forming process such that the resin cannot be extruded from the die. Moreover, in this invention, when the viscosity difference with B layer mentioned later becomes high too much, especially in the lamination | stacking by a coextrusion method, each layer may be unable to be extruded uniformly.
 超高分子量ポリエチレンの含有量はA層のポリエチレン樹脂全体を100質量%として、下限値は15質量%が好ましく、より好ましくは18質量%である。上限値は45質量%が好ましく、より好ましくは40質量%である。この範囲内であると突刺強度と透気抵抗度の両立が得られやすくなり、また、透気抵抗度のバラツキが少ない微多孔質膜を得ることができる。超高分子量ポリエチレンの含有量が好ましい範囲内であると、十分な高さの突起が得られる。この突起によって改質多孔層を積層した場合に突起がアンカーとして機能し、積層ポリエチレン微多孔質膜の面方向に平行に加わる力に対し極めて強い剥離耐性を得ることができる。また、積層ポリエチレン微多孔質膜の厚さを薄膜化させた場合であっても、十分な引っ張り強度が得られる。引っ張り強度は100MPa以上が好ましい。上限は特に定めない。 The content of ultra high molecular weight polyethylene is 100% by mass with respect to the entire polyethylene resin of the A layer, and the lower limit is preferably 15% by mass, more preferably 18% by mass. The upper limit is preferably 45% by mass, more preferably 40% by mass. Within this range, it is easy to obtain both puncture strength and air resistance, and a microporous membrane with less variation in air resistance can be obtained. When the content of the ultrahigh molecular weight polyethylene is within a preferable range, a sufficiently high protrusion can be obtained. When the modified porous layer is laminated by this projection, the projection functions as an anchor, and extremely strong peeling resistance can be obtained with respect to the force applied in parallel to the surface direction of the laminated polyethylene microporous film. Moreover, even when the thickness of the laminated polyethylene microporous film is reduced, sufficient tensile strength can be obtained. The tensile strength is preferably 100 MPa or more. There is no particular upper limit.
 A層には、実質的に低融点樹脂を含まない。「実質的に低融点樹脂を含まず」とは、例えばクロス分別クロマトグラフなどで抽出される90℃以下の溶出成分の分率が5.0質量%以下が好ましく、より好ましくは2.5質量%以下であることを意味する。これは意図的に低融点樹脂を添加しなくても、高分子においては、分子量に分布をもつために、低融点となりうる低分子成分が含まれてしまうため0質量%とするのは困難だからである。低融点樹脂が全層にわたって存在すると、シャットダウン前においても、加熱した際に透気抵抗度が悪化しやすくなる場合がある。 The layer A does not substantially contain a low melting point resin. “Substantially free of low melting point resin” means that, for example, the fraction of an elution component of 90 ° C. or less extracted by a cross fractionation chromatograph or the like is preferably 5.0% by mass or less, more preferably 2.5% by mass. % Or less. This is because even if a low-melting point resin is not added intentionally, the polymer has a distribution in molecular weight, and therefore low-molecular components that can have a low melting point are included, so it is difficult to achieve 0% by mass. It is. When the low melting point resin is present in all layers, the air permeability resistance may be easily deteriorated when heated even before shutdown.
 クロス分別クロマトグラフによる溶出成分は、例えば以下のように求めることができる。
・測定装置:クロス分別クロマトグラフ CFC2 型(Polymer ChAR社製)
・検出器:赤外分光光度計IR4型(Polymer ChAR社製)
・検出波長:3.42μm
・カラム:昭和電工(株)製“Shodex”(登録商標) UT806M
・カラム温度:140℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0ml/分
・試料濃度:3.0mg/ml
・降温時間:140分(140℃→0℃)
・90℃以下の溶出成分量:0℃から140℃までを10℃ごとに分画した際の各抽出量の内、0℃から90℃までの重量を足し合わせたものを全体の抽出量で除すことにより、90℃以下の溶出成分量を算出する。
The elution component by a cross fractionation chromatograph can be calculated | required as follows, for example.
Measurement device: Cross fractionation chromatograph CFC2 type (manufactured by Polymer ChAR)
Detector: Infrared spectrophotometer IR4 type (manufactured by Polymer ChAR)
・ Detection wavelength: 3.42 μm
Column: “Shodex” (registered trademark) UT806M manufactured by Showa Denko KK
-Column temperature: 140 ° C
Solvent (mobile phase): o-dichlorobenzene Solvent flow rate: 1.0 ml / min Sample concentration: 3.0 mg / ml
・ Temperature drop time: 140 minutes (140 ° C → 0 ° C)
-Elution component amount below 90 ° C: The total extraction amount is the sum of the weights from 0 ° C to 90 ° C among the extraction amounts when fractionating from 0 ° C to 140 ° C every 10 ° C. By dividing, the amount of elution component of 90 ° C. or less is calculated.
[2]第二の層(B層)におけるポリエチレン樹脂組成物
 本発明のB層は、ポリエチレンを主成分とする微多孔質膜である。B層は、強度の観点から高密度ポリエチレンを50質量%以上含むことが好ましい。また、高密度ポリエチレンの重量平均分子量(以下、Mwという)は1×10以上が好ましく、より好ましくは2×10以上である。Mwの上限値はMwが8×10が好ましく、より好ましくはMwが7×10である。Mwが上記範囲であれば、製膜の安定性と最終的に得られる突刺強度とを両立することができる。
[2] Polyethylene resin composition in the second layer (B layer) The B layer of the present invention is a microporous membrane mainly composed of polyethylene. The B layer preferably contains 50% by mass or more of high-density polyethylene from the viewpoint of strength. Further, the weight average molecular weight (hereinafter referred to as Mw) of the high density polyethylene is preferably 1 × 10 5 or more, more preferably 2 × 10 5 or more. The upper limit of Mw is preferably 8 × 10 5 for Mw, more preferably 7 × 10 5 for Mw. If Mw is in the above range, the stability of the film formation and the finally obtained puncture strength can both be achieved.
 本発明においては、B層に低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・αオレフィン共重合体などの低融点樹脂を添加することが重要である。これらのいずれかを添加することによって、B層に低温でのシャットダウン機能を付与し、電池用セパレータとしての特性を向上させることができる。ここで、α-オレフィンとしては上述のものが挙げられる。 In the present invention, it is important to add a low melting point resin such as low density polyethylene, linear low density polyethylene, ethylene / α-olefin copolymer to the B layer. By adding any of these, the B layer can be provided with a shutdown function at a low temperature, and the characteristics as a battery separator can be improved. Here, the above-mentioned thing is mentioned as an alpha olefin.
 低融点樹脂のメルトフローレート(MFR)は25g/10min以上であることが重要である。下限値は50g/10minが好ましく、より好ましくは100g/minである。MFRが25g/10min以上であると、流動性が良いために、延伸過程において厚みのムラを作りにくく均一な膜厚分布とすることができる。また、分子運動性が良いために残留ひずみが残りにくく、低温で十分に分子が緩和しているために、融点より低い温度で残留ひずみによる孔の閉塞が起こりにくい。そのため、30℃~105℃の範囲において、透気度の上昇を抑制することができる。上限値は180g/minが好ましく、より好ましくは150g/minである。MFRが180g/min以上であると、溶融物の粘度が低すぎるために、A層との共押出において、各層が均一に押し出せない場合がある。また、製造時の延伸工程において、粘度が低いために微多孔質膜の破断が起こることがある。 It is important that the melt flow rate (MFR) of the low melting point resin is 25 g / 10 min or more. The lower limit is preferably 50 g / 10 min, more preferably 100 g / min. If the MFR is 25 g / 10 min or more, the fluidity is good, so that it is difficult to produce uneven thickness in the stretching process, and a uniform film thickness distribution can be obtained. Further, since the molecular mobility is good, residual strain hardly remains, and since the molecules are sufficiently relaxed at a low temperature, the pores are hardly clogged due to the residual strain at a temperature lower than the melting point. Therefore, an increase in air permeability can be suppressed in the range of 30 ° C. to 105 ° C. The upper limit is preferably 180 g / min, more preferably 150 g / min. When the MFR is 180 g / min or more, the viscosity of the melt is too low, and therefore, in the coextrusion with the A layer, each layer may not be extruded uniformly. Further, in the stretching process at the time of production, the microporous membrane may be broken due to low viscosity.
 低融点樹脂の融点は120℃以上130℃未満であることが重要である。融点が120℃未満の場合、融点が低すぎるために、超高分子量ポリエチレンを含んだA層との積層時に積層体が十分に延伸できる温度まで延伸温度を上げた場合にB層の孔形成に悪影響を及ぼし、透気抵抗度が悪化する恐れがある。一方で、孔の閉塞を防ぐために全体の延伸温度を下げた場合には、積層体全体としての軟化が不十分となり、A層にて超高分子量ポリエチレンを添加することで期待される厚み均一性の効果を十分に得ることができない恐れがある。一方、融点が130℃以上の場合、目標とする低いシャットダウン温度を達成することが困難となる。 It is important that the melting point of the low melting point resin is 120 ° C. or higher and lower than 130 ° C. When the melting point is less than 120 ° C., the melting point is too low, so that when the stretching temperature is raised to a temperature at which the laminate can be sufficiently stretched when laminated with the A layer containing ultrahigh molecular weight polyethylene, There is a risk of adverse effects and deterioration of air resistance. On the other hand, when the entire stretching temperature is lowered to prevent the pores from being blocked, the softening of the entire laminate becomes insufficient, and the thickness uniformity expected by adding ultrahigh molecular weight polyethylene in the A layer You may not be able to get the full effect. On the other hand, when the melting point is 130 ° C. or higher, it is difficult to achieve a target low shutdown temperature.
 低融点樹脂の含有量はB層を構成するポリエチレン樹脂全体を100質量%として、下限値は20質量%が好ましく、より好ましくは25質量%である。上限値は35質量%が好ましく、より好ましくは30質量%である。20質量%以上であるとシャットダウン温度を低温にすることができる。また、30質量%以下であると、粘度が低いために起こる微多孔質膜の破断を抑制することができる。 The content of the low melting point resin is 100% by mass with respect to the entire polyethylene resin constituting the B layer, and the lower limit is preferably 20% by mass, more preferably 25% by mass. The upper limit is preferably 35% by mass, more preferably 30% by mass. If it is 20% by mass or more, the shutdown temperature can be lowered. Further, when it is 30% by mass or less, breakage of the microporous membrane caused by low viscosity can be suppressed.
 A層と同様に、強度および突起の形成の観点より、B層においても超高分子量ポリエチレンを含有することが好ましい。超高分子量ポリエチレンは、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。超高分子量ポリエチレンを添加することによって、突刺強度を向上させることができる。超高分子量ポリエチレンのMwとしては、1×10以上4×10未満であることが好ましい。Mwが1×10以上4×10未満の超高分子量ポリエチレンを使用することで、孔およびフィブリルを微細化することが可能となる。これにより、低融点樹脂による孔の閉塞が早く、より効果的にシャットダウン温度を下げることが可能となる。 Similar to the A layer, from the viewpoint of strength and formation of protrusions, the B layer preferably contains ultrahigh molecular weight polyethylene. The ultra high molecular weight polyethylene may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other α-olefin. The puncture strength can be improved by adding ultrahigh molecular weight polyethylene. The Mw of the ultra high molecular weight polyethylene is preferably 1 × 10 6 or more and less than 4 × 10 6 . By using ultra high molecular weight polyethylene having an Mw of 1 × 10 6 or more and less than 4 × 10 6 , the pores and fibrils can be miniaturized. As a result, the hole is quickly closed by the low melting point resin, and the shutdown temperature can be lowered more effectively.
 超高分子量ポリエチレンの含有量はポリエチレン樹脂全体を100質量%として、下限値は10質量%が好ましく、より好ましくは18質量%である。上限値は40質量%がより好ましく、さらに好ましくは30質量%である。超高分子量ポリエチレンは低融点樹脂との分子運動性の差が大きいために、40質量%を超えると、溶融混練時に低融点樹脂との分離が進みやすく、最終的に得られる微多孔質膜の外観不良を引き起こす可能性がある。 The content of ultrahigh molecular weight polyethylene is 100% by mass with respect to the entire polyethylene resin, and the lower limit is preferably 10% by mass, more preferably 18% by mass. The upper limit is more preferably 40% by mass, and even more preferably 30% by mass. Since ultrahigh molecular weight polyethylene has a large difference in molecular mobility with a low melting point resin, if it exceeds 40% by mass, separation from the low melting point resin is likely to proceed during melt-kneading, and the microporous membrane finally obtained May cause poor appearance.
 本発明のポリエチレン微多孔質膜は、A層およびB層ともに、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリエチレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤や熱安定剤の種類および添加量を適宜選択することは微多孔質膜の特性の調整又は増強として重要である。 The polyethylene microporous membrane of the present invention has an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an anti-blocking agent and a filling material, as long as both the A layer and the B layer do not impair the effects of the present invention. Various additives such as materials may be included. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyethylene resin. Appropriate selection of the type and amount of the antioxidant and heat stabilizer is important for adjusting or enhancing the characteristics of the microporous membrane.
 本発明に用いる積層ポリエチレン微多孔質膜には、実質的に無機粒子を含まないことが好ましい。「実質的に無機粒子を含まず」とは、例えばケイ光X線分析で無機元素を定量した場合に50ppm以下が好ましく、より好ましくは10ppm以下、さらに好ましくは検出限界以下となる含有量を意味する。積極的に粒子を積層ポリエチレン微多孔質膜に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはポリオレフィン微多孔質膜の製造工程におけるラインや装置に付着した汚れが剥離して、膜中に混入する場合があり、50ppm以下で検出される可能性がある。 The laminated polyethylene microporous membrane used in the present invention preferably contains substantially no inorganic particles. “Substantially free of inorganic particles” means, for example, a content that is 50 ppm or less, more preferably 10 ppm or less, and even more preferably a detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. To do. Even if particles are not actively added to the laminated polyethylene microporous membrane, contaminants derived from foreign substances, and dirt attached to the lines and equipment in the manufacturing process of the raw resin or polyolefin microporous membrane peel off, It may be mixed in the film and may be detected at 50 ppm or less.
 A層とともに、B層のポリエチレン樹脂組成物の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は5~200の範囲内が好ましく、より好ましくは10~100である。Mw/Mnの範囲が上記好ましい範囲であると、ポリエチレンの溶液の押出が容易である。またポリエチレン微多孔質膜はその表面に十分な数の突起を得られ、さらにポリエチレン微多孔質膜の厚さを薄膜化させた場合でも、十分な機械的強度が得られる。Mw/Mnは分子量分布の尺度として用いられるものであり、例えば、単一物からなるポリエチレンの場合、この値が大きい程分子量分布の幅が大きい。単一物からなるポリエチレンのMw/Mnはポリエチレンの多段重合により適宜調整することができる。また、ポリエチレンの混合物のMw/Mnは各成分の分子量や混合割合を調整することにより適宜調整することができる。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyethylene resin composition of the B layer together with the A layer is preferably in the range of 5 to 200, more preferably 10 to 100. is there. When the range of Mw / Mn is the above preferred range, extrusion of the polyethylene solution is easy. In addition, the polyethylene microporous film can obtain a sufficient number of protrusions on the surface, and even when the thickness of the polyethylene microporous film is reduced, sufficient mechanical strength can be obtained. Mw / Mn is used as a measure of molecular weight distribution. For example, in the case of polyethylene consisting of a single substance, the larger this value, the wider the molecular weight distribution. The Mw / Mn of polyethylene composed of a single substance can be appropriately adjusted by multistage polymerization of polyethylene. Moreover, Mw / Mn of the mixture of polyethylene can be suitably adjusted by adjusting the molecular weight and mixing ratio of each component.
 本発明でいう突起が形成されるメカニズムについて、本発明者らは以下のように考えている。溶融したポリエチレン樹脂と成形用溶剤との樹脂溶液がダイから押し出されると同時にポリエチレンの結晶化が開始され、冷却ロールに接触し急冷されることで結晶化速度は増大する。この時、結晶核を有する対称構造の球晶が形成される(図2)。冷却ロール表面と前記溶融したポリエチレン樹脂間の熱伝達速度が比較的小さい場合は結晶化速度は小さく、その結果、比較的小さい結晶核を有する球晶となる。熱伝達速度が大きい場合は比較的大きい結晶核を有する球晶となる。これら球晶の結晶核は後工程であるTD(幅方向)及び/又はMD(機械方向)延伸時に突起となる。また、球晶は積層ポリエチレン微多孔質膜の表面にリング状痕となって現れる(図3)。 The present inventors consider the mechanism by which protrusions are formed in the present invention as follows. The resin solution of the melted polyethylene resin and the molding solvent is extruded from the die, and at the same time, the crystallization of polyethylene is started. The crystallization speed is increased by contacting the cooling roll and quenching. At this time, a spherulite having a symmetric structure having a crystal nucleus is formed (FIG. 2). When the heat transfer rate between the cooling roll surface and the molten polyethylene resin is relatively low, the crystallization rate is low, and as a result, spherulites having relatively small crystal nuclei are formed. When the heat transfer rate is high, the spherulite has a relatively large crystal nucleus. The crystal nuclei of these spherulites become protrusions during TD (width direction) and / or MD (machine direction) stretching, which is a subsequent process. Spherulites appear as ring-shaped marks on the surface of the laminated polyethylene microporous membrane (FIG. 3).
[3]積層ポリエチレン微多孔質膜の製造方法
 積層ポリエチレン微多孔質膜は、上記の各種特徴を満足する範囲内ならば、目的に応じた製造方法を自由に選択することができる。微多孔質膜の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。
[3] Method for Producing Laminated Polyethylene Microporous Membrane A laminated polyethylene microporous membrane can be freely selected according to the purpose as long as it satisfies the above various characteristics. Microporous membrane production methods include the foaming method, phase separation method, dissolution recrystallization method, stretch pore opening method, powder sintering method, etc. Among these, in terms of homogenizing fine pores and cost, A separation method is preferred.
 相分離法による製造方法としては、例えばポリエチレンと成形用溶剤とを加熱溶融混練し、得られた溶融混合物をダイより押出し、冷却することによりゲル状成形物を形成し、得られたゲル状成形物に対して少なくとも一軸方向に延伸を実施し、前記成形用溶剤を除去することによって微多孔質膜を得る方法などが挙げられる。 As a manufacturing method by the phase separation method, for example, polyethylene and a molding solvent are heated and melt-kneaded, and the obtained molten mixture is extruded from a die and cooled to form a gel-like molded product, and the obtained gel-like molding is obtained. Examples include a method of obtaining a microporous film by stretching the product in at least a uniaxial direction and removing the molding solvent.
 本発明に用いる積層ポリエチレン微多孔質膜の製造方法について説明する。
本発明の積層ポリエチレン微多孔質膜の製造方法は以下の(a)~(f)の工程を含むものである。
(a)A層を構成するポリエチレン樹脂組成物に成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Aを調製する工程
(b)B層を構成するポリエチレン樹脂組成物に成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Bを調製する工程
(c)工程(a)及び(b)にて得られたポリエチレン樹脂溶液A及びBをダイより押し出して、うち少なくとも一方を、成形用溶剤の除去手段により成形用溶剤を除去した表面を有する冷却ロールにて冷却し、積層ゲル状成形物を形成する工程
(d)積層ゲル状成形物を機械方向および幅方向に延伸し、積層延伸成形物を得る工程
(e)積層延伸成形物から成形用溶剤を抽出除去し、乾燥し、積層多孔質成形物を得る工程
(f)積層多孔質成形物を熱処理し、積層ポリエチレン微多孔質膜を得る工程
 さらに、工程(a)の前、工程(a)~(f)の途中、または工程(f)の後に親水化処理、除電処理等の他の工程を追加することもできる。また、工程(f)の後に、再延伸工程を設けることもできる。
A method for producing a laminated polyethylene microporous membrane used in the present invention will be described.
The method for producing a laminated polyethylene microporous membrane of the present invention includes the following steps (a) to (f).
(A) Step of adding a molding solvent to the polyethylene resin composition constituting the A layer and then melt-kneading to prepare a polyethylene resin solution A (b) Adding a molding solvent to the polyethylene resin composition constituting the B layer After adding, melt-kneading and preparing polyethylene resin solution B (c) The polyethylene resin solutions A and B obtained in steps (a) and (b) are extruded from a die, and at least one of them is molded. Step (d) of forming a laminated gel-like molded product by cooling with a cooling roll having a surface from which the molding solvent has been removed by the solvent removal means, and stretching the laminated gel-like molded product in the machine direction and width direction Step of obtaining stretched molded product (e) Step of extracting and removing molding solvent from laminated stretched molded product and drying to obtain laminated porous molded product (f) Heat treatment of laminated porous molded product, Obtaining a Shitsumaku Furthermore, it prior to step (a), during the process (a) ~ (f), or hydrophilic treatment after step (f), also add other steps neutralization treatment. Moreover, a redrawing process can also be provided after a process (f).
 以下、各工程について詳述する。
(a)、(b)A層及びB層を構成するポリエチレン樹脂に成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液A及びBを調製する工程
 成形用溶剤としては、ポリエチレンを十分に溶解できるものであれば特に限定されない。例えば、ノナン、デカン、ウンデカン、ドデカン、流動パラフィンなどの脂肪族または環式の炭化水素、あるいは沸点がこれらに対応する鉱油留分などがあげられるが、溶剤含有量が安定なゲル状成形物を得るためには流動パラフィンのような不揮発性の溶剤が好ましい。加熱溶解は、ポリエチレン組成物が完全に溶解する温度で攪拌または押出機中で均一混合して溶解する方法で行う。その温度は、押出機中又は溶媒中で攪拌しながら溶解する場合は使用する重合体及び溶媒により異なるが、例えば140~250℃の範囲が好ましい。
Hereinafter, each process is explained in full detail.
(A), (b) Step of adding a molding solvent to the polyethylene resin constituting the A layer and the B layer and then melt-kneading to prepare polyethylene resin solutions A and B. As a molding solvent, polyethylene is sufficient If it can melt | dissolve, it will not specifically limit. For example, nonane, decane, undecane, dodecane, liquid paraffin and other aliphatic or cyclic hydrocarbons, or mineral oil fractions with boiling points corresponding to these, gel-like molded products with a stable solvent content Nonvolatile solvents such as liquid paraffin are preferred for obtaining. The dissolution by heating is performed by a method in which the polyethylene composition is completely dissolved and stirred and uniformly mixed in an extruder. The temperature varies depending on the polymer and solvent to be used when it is dissolved in an extruder or in a solvent while stirring, but it is preferably in the range of 140 to 250 ° C., for example.
 ポリエチレン樹脂の濃度は、ポリエチレン樹脂と成形用溶剤の合計を100質量%として、15~40質量%が好ましく、より好ましくは25~40質量%、さらに好ましくは28~35質量%である。ポリエチレン樹脂の濃度が上記の好ましい範囲であると、突起を形成するための結晶核の数が十分形成され、十分な数の突起が形成される。また、ポリエチレン樹脂溶液を押し出す際のダイス出口でスウェルやネックインを抑え、押出し成形体の成形性及び自己支持性が維持される。 The concentration of the polyethylene resin is preferably 15 to 40% by mass, more preferably 25 to 40% by mass, and further preferably 28 to 35% by mass, where the total of the polyethylene resin and the molding solvent is 100% by mass. When the concentration of the polyethylene resin is within the above preferable range, a sufficient number of crystal nuclei for forming protrusions are formed, and a sufficient number of protrusions are formed. In addition, swell and neck-in are suppressed at the die outlet when extruding the polyethylene resin solution, and the moldability and self-supporting property of the extruded product are maintained.
 樹脂溶液A及びBの樹脂濃度に差を設けると、平均細孔径が膜厚方向において変化した構造(傾斜構造)を有する積層微多孔質膜を得ることができる。濃度の低い方の樹脂溶液を用いて形成した層の平均細孔径は、濃度の高い方の樹脂溶液を用いて形成した層の平均細孔径より大きくなる。樹脂溶液A又はBのどちらの濃度を高くするかは、積層微多孔質膜に要求される物性に応じて適宜選択することができる。例えば、内層が0.01~0.05μmの緻密構造層とし、表層が緻密構造層の1.2~5.0倍の粗大構造層とすると、イオン透過性と突刺強度のバランスを良好にすることができる。 When a difference is provided between the resin concentrations of the resin solutions A and B, a laminated microporous membrane having a structure (gradient structure) in which the average pore diameter is changed in the film thickness direction can be obtained. The average pore diameter of the layer formed using the resin solution having the lower concentration is larger than the average pore diameter of the layer formed using the resin solution having the higher concentration. Which concentration of the resin solution A or B is to be increased can be appropriately selected according to the physical properties required for the laminated microporous membrane. For example, if the inner layer is a dense structure layer of 0.01 to 0.05 μm and the surface layer is a coarse structure layer 1.2 to 5.0 times the dense structure layer, the balance between ion permeability and pin puncture strength is improved. be able to.
 溶融混練の方法は特に限定されないが、通常は押出機中で均一に混練することにより行う。この方法は、ポリエチレンの高濃度溶液を調製するのに適する。溶融混練温度は、使用するポリエチレン樹脂によって異なる。例えば、ポリエチレン組成物は約130~140℃の融点を有するので、溶融混練温度の下限値は140℃が好ましく、より好ましくは160℃、さらに好ましくは170℃である。上限値は250℃が好ましく、より好ましくは230℃、さらに好ましくは200℃である。成形用溶剤は混練開始前に添加しても、混練中に押出機の途中から添加しさらに溶融混練してもよい。溶融混練にあたってはポリエチレンの酸化を防止するために酸化防止剤を添加するのが好ましい。 The method of melt kneading is not particularly limited, but is usually performed by uniformly kneading in an extruder. This method is suitable for preparing highly concentrated solutions of polyethylene. The melt kneading temperature varies depending on the polyethylene resin used. For example, since the polyethylene composition has a melting point of about 130 to 140 ° C., the lower limit of the melt kneading temperature is preferably 140 ° C., more preferably 160 ° C., and further preferably 170 ° C. The upper limit is preferably 250 ° C, more preferably 230 ° C, and even more preferably 200 ° C. The molding solvent may be added before the start of kneading, or may be added from the middle of the extruder during kneading and further melt kneaded. In melt kneading, it is preferable to add an antioxidant to prevent oxidation of polyethylene.
 樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合がある。また、上述の温度より高いと、ポリエチレンの熱分解が激しくなり、得られる微多孔質膜の物性、例えば、突刺強度、引張強度等が劣る場合がある。 From the viewpoint of suppressing the deterioration of the resin, the melt kneading temperature is preferably low, but if it is lower than the above-mentioned temperature, an unmelted product is generated in the extrudate extruded from the die, causing film breakage or the like in the subsequent stretching step. It may be a cause. On the other hand, when the temperature is higher than the above-described temperature, the thermal decomposition of polyethylene becomes severe, and physical properties of the resulting microporous film, such as puncture strength and tensile strength, may be inferior.
 二軸押出機のスクリュー長さ(L)と直径(D)の比(L/D)は良好な加工混練性と樹脂の分散性・分配性を得る観点から、20~100が好ましい。下限値はより好ましくは35である。上限値はより好ましくは70である。L/Dを20以上にすると、溶融混練が十分となる。L/Dを100以下にすると、ポリエチレン溶液の滞留時間が増大し過ぎない。混練する樹脂の劣化を防ぎながら良好な分散性・分配性を得る観点から、二軸押出機のシリンダ内径は40~100mmであるのが好ましい。 The ratio (L / D) of the screw length (L) to the diameter (D) (L / D) of the twin screw extruder is preferably 20 to 100 from the viewpoint of obtaining good process kneadability and resin dispersibility / distributability. The lower limit is more preferably 35. The upper limit value is more preferably 70. When L / D is 20 or more, melt-kneading is sufficient. When L / D is 100 or less, the residence time of the polyethylene solution does not increase excessively. From the viewpoint of obtaining good dispersibility and distribution while preventing deterioration of the resin to be kneaded, the inner diameter of the twin-screw extruder is preferably 40 to 100 mm.
 押出物中にポリエチレンを良好に分散させて、優れた微多孔質膜の厚み均一性を得るために、二軸押出機のスクリュー回転数(Ns)を150rpm以上とすることが好ましい。Ns(rpm)に対するポリエチレン溶液の押出量Q(kg/h)の比、Q/Nsを0.64kg/h/rpm以下が好ましく、より好ましくは0.35kg/h/rpm以下である。 In order to disperse polyethylene well in the extrudate and to obtain excellent thickness uniformity of the microporous membrane, it is preferable that the screw rotation speed (Ns) of the twin screw extruder is 150 rpm or more. The ratio of the extrusion rate Q (kg / h) of the polyethylene solution to Ns (rpm), Q / Ns is preferably 0.64 kg / h / rpm or less, more preferably 0.35 kg / h / rpm or less.
(c)(a)および(b)にて得られたポリエチレン樹脂溶液A及びBをダイより押し出して、うち少なくとも一方を、成形用溶剤除去手段により成形用溶剤を除去した表面を有する冷却ロールにて冷却し、積層ゲル状成形物を形成する工程
 押出機で溶融混練したポリエチレン樹脂溶液AおよびBを直接に、あるいはさらに別の押出機を介して、ダイから押し立し、冷却ロールにて冷却し、積層ゲル状成形物を形成する。積層ゲル状成形物を得る方法としては、積層するゲル状成形物を別々に作製した後、カレンダーロール等を通して貼り合わせる方法(貼りあわせ法)や、ポリエチレン溶液を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて共押出して積層させ、その後に積層ゲル状成形物とする方法(共押出法)などのどの方法を使用しても良いが、層間の密着性の観点からは、共押出法を用いることが好ましい。
(C) The polyethylene resin solutions A and B obtained in (a) and (b) are extruded from a die, and at least one of them is a cooling roll having a surface from which the molding solvent is removed by the molding solvent removing means. The step of cooling and forming a laminated gel-like molded product The polyethylene resin solutions A and B melt-kneaded by an extruder are pushed up directly from a die or through another extruder and cooled by a cooling roll. To form a laminated gel-like molded product. As a method for obtaining a laminated gel-like molded product, a method for separately laminating gel-shaped molded products to be laminated and then pasting them through a calender roll or the like (sticking method), or supplying a polyethylene solution separately to an extruder is desired. Any method may be used such as a method of melting at a temperature of 5 ° C, joining in a polymer tube or die, coextrusion and laminating, and then forming a laminated gel-like molded product (coextrusion method). From the viewpoint of adhesion, it is preferable to use a coextrusion method.
 ダイから押し出されたポリエチレン樹脂溶液を冷媒で表面温度20℃から40℃に設定した回転する冷却ロールに接触させることによりゲル状成形物を形成する。押出されたポリエチレン樹脂溶液は25℃以下まで冷却するのが好ましい。ここで、実質的に結晶化が行われる温度域での冷却速度が重要となる。例えば、実質的に結晶化が行われる温度域での冷却速度が10℃/秒以上で、押し出されたポリエチレン樹脂溶液を冷却し、ゲル状成形物を得る。冷却速度は20℃/秒以上が好ましく、より好ましくは30℃/秒以上、さらに好ましくは50℃/秒以上である。このような冷却を行うことによりポリエチレン相が溶剤によりミクロ相分離された構造を固定化し、冷却ロールと接していたゲル状成形物の表面に比較的大きな核を有する球晶が形成され、延伸後に適度な形状の突起を形成することができる。冷却速度は、ゲル状成形物の押し出し温度、ゲル状成形物の熱伝導度、ゲル状成形物の厚み、成形用溶剤、冷却ロール、空気の熱伝達率よりシミュレーションすることによって推定できる。 A gel-like molded product is formed by bringing a polyethylene resin solution extruded from a die into contact with a rotating cooling roll set at a surface temperature of 20 ° C. to 40 ° C. with a refrigerant. The extruded polyethylene resin solution is preferably cooled to 25 ° C. or lower. Here, the cooling rate in the temperature range where crystallization is substantially performed becomes important. For example, the extruded polyethylene resin solution is cooled at a cooling rate of 10 ° C./second or more in a temperature range where crystallization is substantially performed to obtain a gel-like molded product. The cooling rate is preferably 20 ° C./second or more, more preferably 30 ° C./second or more, and further preferably 50 ° C./second or more. By carrying out such cooling, the structure in which the polyethylene phase is microphase-separated by the solvent is fixed, and spherulites having relatively large nuclei are formed on the surface of the gel-like molded product in contact with the cooling roll. Appropriately shaped protrusions can be formed. The cooling rate can be estimated by simulating from the extrusion temperature of the gel-shaped molded product, the thermal conductivity of the gel-shaped molded product, the thickness of the gel-shaped molded product, the molding solvent, the cooling roll, and the heat transfer coefficient of air.
 本発明ではダイから押し出したポリエチレン樹脂溶液と接する部分の冷却ロール表面に付着している成形用溶剤を極力除去しておくことが重要である。図4に示すように、ポリエチレン樹脂溶液は回転する冷却ロールに巻きつくことにより冷却されゲル状成形物となるが、ゲル状成形物が引き離された後の冷却ロール表面には成形用溶剤が付着しており、通常はそのままの状態で再びポリエチレン樹脂溶液と接触することになる。しかし、成形用溶剤が冷却ロール表面に多く付着しているとその断熱効果により、冷却速度が緩慢になり、突起が形成されにくくなる。そのため、冷却ロールが再びポリエチレン樹脂溶液と接触するまでに成形用溶剤を極力除去しておくことが重要となる。 In the present invention, it is important to remove as much as possible the forming solvent adhering to the surface of the cooling roll in contact with the polyethylene resin solution extruded from the die. As shown in FIG. 4, the polyethylene resin solution is cooled by wrapping around a rotating cooling roll to become a gel-like molded product, but the molding solvent adheres to the surface of the cooling roll after the gel-like molded product is pulled apart. Usually, it comes into contact with the polyethylene resin solution again as it is. However, if a large amount of the forming solvent adheres to the surface of the cooling roll, the cooling rate becomes slow due to the heat insulating effect, and it becomes difficult to form protrusions. Therefore, it is important to remove the forming solvent as much as possible before the cooling roll comes into contact with the polyethylene resin solution again.
 成形用溶剤除去手段、すなわち成形用溶剤を冷却ロールから除去する方法は特に限定されないが、冷却ロール上にドクターブレードをゲル状成形物の幅方向と平行になるようにあてて、ドクターブレードを通過した直後からゲル状成形物が接するまでの冷却ロール表面に成形用溶剤が視認できない程度に掻き落とす方法が好ましく採用される。あるいは圧縮空気で吹き飛ばす、吸引する、またはこれらの方法を組み合わせる等の手段で除去することもできる。なかでもドクターブレードを用いて掻き落とす方法は比較的容易に実施できるため好ましく、ドクターブレードは1枚より複数枚用いるのが成形用溶剤の除去効率を向上させる上でさらに好ましい。 The method for removing the molding solvent, that is, the method for removing the molding solvent from the cooling roll is not particularly limited, but the doctor blade is placed on the cooling roll so as to be parallel to the width direction of the gel-like molded article and passed through the doctor blade. A method is preferably employed in which the molding solvent is scraped off to the extent that the cooling roll surface is invisible until immediately after the gel-like molded product comes into contact. Alternatively, it can be removed by means such as blowing with compressed air, suction, or a combination of these methods. Among them, the method of scraping off using a doctor blade is preferable because it can be carried out relatively easily, and it is more preferable to use a plurality of doctor blades in order to improve the removal efficiency of the forming solvent.
 ドクターブレードの材質は成形用溶剤に耐性を有するものであれば特に限定されないが金属製より樹脂製、あるいはゴム製のものが好ましい。金属製の場合、冷却ロールをキズつけてしまう恐れがある。樹脂製ドクターブレードとしてはポリエステル製、ポリアセタール製、ポリエチレン製などが挙げられる。 The material of the doctor blade is not particularly limited as long as it is resistant to the molding solvent, but is preferably made of resin or rubber rather than metal. If it is made of metal, the cooling roll may be scratched. Examples of the resin doctor blade include polyester, polyacetal, and polyethylene.
 冷却ロールの温度を20℃未満に設定しても、これだけでは成形用溶剤の断熱効果により十分な冷却速度が得られないだけでなく、冷却ロールへの結露によってゲル状成形物に表面荒れを引き起こす場合がある。 Even if the temperature of the cooling roll is set to less than 20 ° C., this alone does not only provide a sufficient cooling rate due to the heat insulating effect of the forming solvent, but also causes surface roughness on the gel-like molded product due to condensation on the cooling roll. There is a case.
 押し出し時のポリエチレン樹脂溶液の厚みは1500μm以下が好ましく、より好ましくは1000μm以下、さらに好ましくは800μm以下である。押し出し時のポリエチレン樹脂溶液の厚みが上記範囲内であると、冷却ロール側の面の冷却速度が緩慢にならず好ましい。 The thickness of the polyethylene resin solution during extrusion is preferably 1500 μm or less, more preferably 1000 μm or less, and still more preferably 800 μm or less. When the thickness of the polyethylene resin solution at the time of extrusion is within the above range, the cooling rate on the surface on the side of the cooling roll is preferably not slow.
 ここで、貼りあわせ法によって、積層ゲル状成形物を得る場合には、A層もしくはB層となるポリエチレン樹脂溶液のうち、少なくとも一方が上記冷却条件によって、ゲル状成形物として形成されていればよい。なお、貼りあわせる際には、上記冷却条件によって形成された層の冷却ロールに接触した面が表面となるように積層する必要がある。また、共押出法によって積層ゲル状成形物を得る場合には、積層されてダイより押し出されたポリエチレン樹脂溶液が、上記冷却条件によって、積層ゲル状成形物として形成されればよい。 Here, when a laminated gel-like molded product is obtained by the bonding method, if at least one of the polyethylene resin solutions to be the A layer or the B layer is formed as a gel-like molded product under the above cooling conditions. Good. In addition, when bonding together, it is necessary to laminate | stack so that the surface which contacted the cooling roll of the layer formed on the said cooling conditions may become the surface. Further, when a laminated gel-like molded product is obtained by the coextrusion method, the polyethylene resin solution laminated and extruded from the die may be formed as a laminated gel-like molded product under the above cooling conditions.
 積層ポリオレフィンは少なくともA層とB層を含んでなる多孔質積層体である。積層ポリエチレンの層構成は、シャットダウン特性と強度および透過性などの物性バランスの観点からは、少なくともA層とB層の2層であればよいが、最終的なフィルムの表裏バランスの観点からは、A層/B層/A層もしくはB層/A層/B層の3層構成とすることがより好ましい。改質多孔層との密着性の観点においては、突起はA層およびB層のどちらに形成されていても構わないが、透過性と強度とのバランスの観点からは、表層をA層とし、内層をB層とすることが好ましい。一方、シャットダウンの観点からは、表層をBとし、内層をAとすることが好ましい。 The laminated polyolefin is a porous laminate comprising at least an A layer and a B layer. The layer structure of the laminated polyethylene may be at least two layers of the A layer and the B layer from the viewpoint of physical properties balance such as shutdown characteristics and strength and permeability, but from the viewpoint of the balance between the front and back of the final film, A three-layer structure of A layer / B layer / A layer or B layer / A layer / B layer is more preferable. In terms of adhesion to the modified porous layer, the protrusions may be formed on either the A layer or the B layer, but from the viewpoint of the balance between permeability and strength, the surface layer is the A layer, The inner layer is preferably a B layer. On the other hand, from the viewpoint of shutdown, it is preferable that the surface layer is B and the inner layer is A.
 B層の比率は、全層の質量に対して、30質量%以上80質量%以下であることが好ましい。下限値はより好ましくは40質量%であり、上限値はより好ましくは70質量%である。B層の比率が上記範囲内であれば、低融点成分による低いシャットダウン特性と、セパレータの使用範囲における透過性の安定性ならびに突刺強度のバランスを良好な範囲とすることができる。 The ratio of the B layer is preferably 30% by mass or more and 80% by mass or less with respect to the mass of all layers. The lower limit is more preferably 40% by mass, and the upper limit is more preferably 70% by mass. If the ratio of the B layer is within the above range, the balance between the low shutdown characteristics due to the low melting point component, the stability of the permeability in the usage range of the separator, and the puncture strength can be made good.
 積層ポリエチレン微多孔質膜のB層の厚さは3μm以上、15μm以下が好ましい。上限値は10μmがより好ましく、さらに好ましくは7μm、最も好ましくは6μmである。また下限値は4μmがより好ましい。B層の厚さは積層ポリエチレン微多孔質膜が2層以上のB層を有する場合には、各B層の合計の厚さをいう。 The thickness of layer B of the laminated polyethylene microporous membrane is preferably 3 μm or more and 15 μm or less. The upper limit is more preferably 10 μm, further preferably 7 μm, and most preferably 6 μm. The lower limit is more preferably 4 μm. The thickness of the B layer refers to the total thickness of each B layer when the laminated polyethylene microporous membrane has two or more B layers.
(d)積層ゲル状成形物をMD(機械方向)およびTD(幅方向)に延伸し、積層延伸成形物を得る工程
 積層ゲル状成形物を延伸し、延伸成形物とする。延伸は、ゲル状成形物を加熱し、通常のテンター法、ロール法、もしくはこれらの方法の組み合わせによってMD及びTDの二方向に所定の倍率で行う。延伸はMD及びTD(機械方向と幅方向)の同時延伸(同時2軸延伸)または逐次延伸のいずれでもよい。逐次延伸はMDとTDの順序は問わず、MD及びTDの少なくとも一方を多段で延伸してもよい。また延伸倍率は、原反の厚さによって異なるが面倍率で9倍以上が好ましく、より好ましくは16~400倍である。MD及びTDの同時延伸であれば3×3、5×5、又は7×7などのMD及びTD同倍率での延伸が好ましい。面倍率が上記好ましい範囲であると、延伸が十分であり高弾性、高強度の微多孔質膜が得られる。また、延伸温度を調整することによって所望の透気抵抗度を得ることができる。
(D) Step of stretching laminated gel-like molded product in MD (machine direction) and TD (width direction) to obtain laminated stretched molded product The laminated gel-like molded product is stretched to obtain a stretched molded product. Stretching is performed by heating the gel-like molded product and performing normal tenter method, roll method, or a combination of these methods at a predetermined magnification in two directions of MD and TD. The stretching may be either simultaneous stretching (simultaneous biaxial stretching) or sequential stretching in MD and TD (machine direction and width direction). In the sequential stretching, the order of MD and TD is not limited, and at least one of MD and TD may be stretched in multiple stages. The draw ratio varies depending on the thickness of the original fabric, but is preferably 9 times or more, more preferably 16 to 400 times in terms of surface magnification. For simultaneous stretching of MD and TD, stretching at the same magnification of MD and TD such as 3 × 3, 5 × 5, or 7 × 7 is preferable. When the surface magnification is in the above preferred range, stretching is sufficient and a highly elastic, high strength microporous membrane can be obtained. Moreover, a desired air resistance can be obtained by adjusting the stretching temperature.
 延伸温度はB層に添加した低融点樹脂の融点以下にするのが好ましい。B層に添加した低融点樹脂の融点以下であると、低融点樹脂の溶融による孔の開裂不良が防がれ、延伸によって分子鎖を効率的に配向せしめることが可能となるため、良好な強度を得ることができる。また、延伸温度の下限はA層を構成するポリエチレン樹脂の結晶分散温度以上であることが好ましい。延伸温度がA層を構成するポリエチレン樹脂の結晶分散温度以上であれば、A層においてもポリエチレン樹脂の軟化が十分となるため、軟化が不十分なために起こりうる不均一変形が抑制され、A層に添加した超高分子量ポリエチレンによって形成された分子ネットワークによる均一な開孔が可能となるために、透過性が良好となることに加えて、物性の均一性も良好となる。また、積層体全体の延伸張力を十分に低くすることが可能となるため、製膜性が良好となり、延伸時に破膜しにくく高倍率での延伸が可能となる。結晶分散温度TcdはASTM D 4065に従って測定した動的粘弾性の温度特性から求める。または、NMRから求める場合もある。 The stretching temperature is preferably not higher than the melting point of the low melting point resin added to the B layer. When the melting point is lower than the melting point of the low melting point resin added to the layer B, poor cracking of the hole due to melting of the low melting point resin is prevented, and it becomes possible to efficiently orient the molecular chain by stretching, so that it has good strength. Can be obtained. Moreover, it is preferable that the minimum of extending | stretching temperature is more than the crystal dispersion temperature of the polyethylene resin which comprises A layer. If the stretching temperature is equal to or higher than the crystal dispersion temperature of the polyethylene resin constituting the A layer, the polyethylene resin is sufficiently softened even in the A layer, so that nonuniform deformation that may occur due to insufficient softening is suppressed, and A Since uniform opening by the molecular network formed by the ultrahigh molecular weight polyethylene added to the layer is possible, in addition to good permeability, the physical properties are also uniform. Further, since the stretching tension of the entire laminate can be sufficiently lowered, the film-forming property is improved, and it is difficult to break the film during stretching, and stretching at a high magnification is possible. The crystal dispersion temperature Tcd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065. Or it may obtain | require from NMR.
(e)積層延伸成形物から成形用溶剤を抽出除去し、乾燥し、積層多孔質成形物を得る工程
 延伸された延伸成形物を洗浄溶剤で処理して残留する成形用溶剤を除去し、微多孔質膜を得る。洗浄溶剤としては、ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類などの易揮発性のものを用いることができる。これらの洗浄溶剤はポリエチレンの溶解に用いた成形用溶剤に応じて適宜選択し、単独もしくは混合して用いる。洗浄方法は、洗浄溶剤に浸漬し抽出する方法、洗浄溶剤をシャワーする方法、洗浄溶剤を延伸成形物の反対側から吸引する方法、またはこれらの組合せによる方法などにより行うことができる。上述のような洗浄は、延伸成形物である延伸成形物中の残留溶剤が1質量%未満になるまで行う。その後、洗浄溶剤を乾燥するが、洗浄溶剤の乾燥方法は加熱乾燥、風乾などの方法で行うことができる。
(E) A step of extracting and removing the molding solvent from the laminated stretched molded product and drying to obtain a laminated porous molded product. The stretched molded product is treated with a washing solvent to remove the remaining molding solvent, A porous membrane is obtained. Cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. Volatile ones can be used. These washing solvents are appropriately selected according to the molding solvent used for dissolving polyethylene, and used alone or in combination. The cleaning method can be performed by a method of immersing and extracting in a cleaning solvent, a method of showering the cleaning solvent, a method of sucking the cleaning solvent from the opposite side of the stretched molded product, or a method of a combination thereof. Washing as described above is performed until the residual solvent in the stretched molded product, which is a stretched molded product, is less than 1% by mass. Thereafter, the cleaning solvent is dried. The cleaning solvent can be dried by heat drying, air drying, or the like.
(f)積層多孔質成形物を熱処理し、積層ポリエチレン微多孔質膜を得る工程
 乾燥して得られた積層多孔質成形物を熱処理し、積層ポリエチレン微多孔質膜を得る。熱処理温度は90~150℃にて行うのが好ましい。熱処理温度が上記好ましい範囲であると、得られた積層ポリエチレン微多孔質膜の熱収縮率を低減し、透気抵抗度を確保することができる。熱処理時間は、特に限定されることはないが、通常は1秒以上10分以下が好ましく、より好ましくは3秒から2分以下で行われる。熱処理は、テンター方式、ロール方式、圧延方式、フリー方式のいずれも採用できる。
(F) Step of heat-treating the laminated porous molded product to obtain a laminated polyethylene microporous membrane The laminated porous molded product obtained by drying is heat-treated to obtain a laminated polyethylene microporous membrane. The heat treatment temperature is preferably 90 to 150 ° C. When the heat treatment temperature is within the above preferred range, the heat shrinkage rate of the obtained laminated polyethylene microporous membrane can be reduced, and the air resistance can be ensured. The heat treatment time is not particularly limited, but it is usually preferably 1 second to 10 minutes, more preferably 3 seconds to 2 minutes. For the heat treatment, any of a tenter method, a roll method, a rolling method, and a free method can be adopted.
 熱処理工程では、MD(機械方向)、TD(幅方向)の両方向に対して把持し、MD、TDの少なくとも一方向に収縮させるのが好ましい。MD、TDの少なくとも一方向に収縮させる収縮率は、0.01~50%が好ましく、より好ましくは3~20%である。収縮率が上記好ましい範囲であると、105℃、8hrにおける熱収縮率が改善され、透気抵抗度が維持される。また、突刺強度等の突刺強度を向上させるために熱処理の前にさらにTD、またはMD、あるいは両方向に5%~20%程度の再延伸を施してもよい。 In the heat treatment step, it is preferable to grip in both the MD (machine direction) and TD (width direction) directions and contract in at least one direction of MD and TD. The contraction rate for contracting in at least one direction of MD and TD is preferably 0.01 to 50%, more preferably 3 to 20%. When the shrinkage rate is within the above preferable range, the thermal shrinkage rate at 105 ° C. and 8 hours is improved, and the air resistance is maintained. Further, in order to improve the puncture strength such as the puncture strength, TD or MD may be further performed before the heat treatment, or redrawing of about 5% to 20% in both directions may be performed.
 必要に応じて、微多孔質膜に親水化処理を施してもよい。親水化処理を行うことによって、例えば耐熱性樹脂層をコーティングする際に、微多孔質膜表面と改質多孔層層との接着性および塗工膜の均一性をより改善することができる。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。コロナ放電処理は、空気あるいは窒素あるいは炭酸ガスと窒素の混合雰囲気中で行うことができる。 If necessary, the microporous membrane may be hydrophilized. By performing the hydrophilization treatment, for example, when coating a heat-resistant resin layer, the adhesion between the surface of the microporous membrane and the modified porous layer and the uniformity of the coating film can be further improved. The hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge or the like. Monomer grafting is preferably performed after the crosslinking treatment. The corona discharge treatment can be performed in air, nitrogen, or a mixed atmosphere of carbon dioxide and nitrogen.
 次に、本発明に用いる改質多孔層について説明する。
 改質多孔層は積層ポリエチレン微多孔質膜の突起を有する面側に積層するのが好ましい形態である。積層ポリエチレン微多孔質膜の両面に改質多孔層を設ける場合は、スリット工程や搬送工程などの後工程において、ロールやバーなどの接触によって平行な応力がより強くかかる側の改質多孔層を積層ポリエチレン微多孔質膜の突起を有する面側に積層するのが、本発明による効果が発揮されるため好ましい。
Next, the modified porous layer used in the present invention will be described.
The modified porous layer is preferably laminated on the side of the laminated polyethylene microporous membrane having the protrusions. When a modified porous layer is provided on both sides of a laminated polyethylene microporous membrane, the modified porous layer on the side to which parallel stress is more strongly applied by the contact of a roll or a bar in a subsequent process such as a slitting process or a conveying process. Lamination is preferably performed on the side of the laminated polyethylene microporous membrane having the protrusions because the effect of the present invention is exhibited.
 本発明でいう改質多孔層とは耐熱性、電極材料との密着性、電解液浸透性などの機能を少なくとも一つ付与、または向上させるものである。改質多孔層には無機粒子と引っ張り強度が5N/mm以上のバインダーとを含む。引っ張り強度が5N/mm以上のバインダーを用いることによって積層ポリエチレン微多孔質膜の表面に存在する突起と該バインダーの抗張力の相乗効果で前記0°剥離強度が極めて優れた電池用セパレータが得られる。また、積層ポリエチレン微多孔質膜単独の場合と比較して、改質多孔層を積層しても電池用セパレータは大幅に透気抵抗度が上昇しない。これは積層ポリエチレン微多孔質膜の細孔内に多くのバインダーを浸透させなくとも十分な0°剥離強度が得られるためである。 The modified porous layer referred to in the present invention imparts or improves at least one function such as heat resistance, adhesion to an electrode material, and electrolyte permeability. The modified porous layer contains inorganic particles and a binder having a tensile strength of 5 N / mm 2 or more. By using a binder having a tensile strength of 5 N / mm 2 or more, a battery separator having an extremely excellent 0 ° peel strength can be obtained by the synergistic effect of the protrusions present on the surface of the laminated polyethylene microporous membrane and the tensile strength of the binder. . Moreover, even if a modified porous layer is laminated, the battery separator does not significantly increase the air resistance as compared with the case of a laminated polyethylene microporous membrane alone. This is because sufficient 0 ° peel strength can be obtained without allowing a large amount of binder to penetrate into the pores of the laminated polyethylene microporous membrane.
 バインダーの引っ張り強度は5N/mm以上であり、下限値は10N/mmが好ましく、より好ましくは20N/mm、さらに好ましくは30N/mmである。上限は特に定めないが100N/mmもあれば十分である。バインダーの引っ張り強度は後述する方法で測定した値をいう。 Tensile strength of the binder is at 5N / mm 2 or more, the lower limit is preferably 10 N / mm 2, more preferably 20 N / mm 2, more preferably 30 N / mm 2. There is no particular upper limit, but 100 N / mm 2 is sufficient. The tensile strength of the binder refers to a value measured by the method described later.
 本発明に用いる引っ張り強度が5N/mm以上のバインダーとしては、引っ張り強度が5N/mm以上であれば特に限定されないが、例えば、ポリビニルアルコール、セルロースエーテル系樹脂、アクリル系樹脂などが挙げられる。セルロースエーテル系樹脂としてはカルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、オキシエチルセルロース等が挙げられる。アクリル系樹脂としては架橋型アクリル樹脂が好ましい。また、市販されている水溶液または水分散液を用いることもできる。市販されているものとしては、例えば、日新化成(株)製“POVACOAT”(登録商標)、東亜合成(株)製“ジュリマー”(登録商標)AT-510、ET-410、FC-60、SEK-301、大成ファインケミカル(株)製UW-223SX、UW-550CS、DIC(株)製WE-301、EC-906EF、CG-8490などが挙げられる。なかでも、電極接着性を有し、非水電解液とも親和性が高く、しかも耐熱性が適切であり、比較的大きい引っ張り強度を有するポリビニルアルコール、アクリル系樹脂が好適である。 The use tensile strength of 5N / mm 2 or more binders in the present invention, although the tensile strength is not particularly limited as long as 5N / mm 2 or more, e.g., polyvinyl alcohol, cellulose ether resins, and acrylic resins . Examples of the cellulose ether resin include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, oxyethyl cellulose and the like. As the acrylic resin, a cross-linked acrylic resin is preferable. Commercially available aqueous solutions or aqueous dispersions can also be used. Examples of commercially available products include “POVACOAT” (registered trademark) manufactured by Nisshin Kasei Co., Ltd., “Jurimer” (registered trademark) AT-510, ET-410, FC-60 manufactured by Toa Gosei Co., Ltd. Examples include SEK-301, UW-223SX, UW-550CS manufactured by Taisei Fine Chemical Co., Ltd., WE-301, EC-906EF, CG-8490 manufactured by DIC Corporation. Of these, polyvinyl alcohol and acrylic resins having electrode adhesion, high affinity with non-aqueous electrolytes, suitable heat resistance, and relatively high tensile strength are preferable.
 改質多孔層を積層することによる積層ポリエチレン微多孔質膜のカールを低減させるために、改質多孔層を形成するための塗布液に無機粒子を含むことが重要である。本明細書における塗布液とは引っ張り強度が5N/mm以上のバインダー、無機粒子及び前記バインダーを溶解または分散しうる溶媒を含むものであり、改質多孔層を形成するために用いる。バインダーとは、少なくとも無機粒子同士を結合させる役割及び積層ポリエチレン微多孔質膜と改質多孔層とを結合させる役割を有するものである。溶媒とは、例えば、水、アルコール類、アセトン又はn-メチルピロリドンなどが挙げられる。塗布液に無機粒子を添加することによって、電池の内部における電極の樹枝状結晶の成長に起因する内部短絡の防止効果(デンドライト防止効果)、熱収縮率を低減、滑り性付与などの効果も得ることができる。粒子添加量の上限値は98質量%が好ましく、より好ましくは95質量%である。下限値は80質量%が好ましく、より好ましくは85質量%である。粒子添加量が上記好ましい範囲であるとカール低減効果が十分であり、改質多孔層の総体積に対して機能性樹脂の割合が最適であり、かつ、改質多孔層の十分な0°の剥離強度が得られる。 In order to reduce curling of the laminated polyethylene microporous membrane by laminating the modified porous layer, it is important to include inorganic particles in the coating solution for forming the modified porous layer. The coating liquid in this specification contains a binder having a tensile strength of 5 N / mm 2 or more, inorganic particles, and a solvent capable of dissolving or dispersing the binder, and is used for forming a modified porous layer. The binder has at least a role of bonding inorganic particles and a role of bonding the laminated polyethylene microporous membrane and the modified porous layer. Examples of the solvent include water, alcohols, acetone, and n-methylpyrrolidone. By adding inorganic particles to the coating solution, the effect of preventing internal short circuit (dendrite prevention effect) due to the growth of the dendritic crystals of the electrode inside the battery, the effect of reducing the heat shrinkage, and the provision of slipperiness are also obtained. be able to. The upper limit of the amount of added particles is preferably 98% by mass, more preferably 95% by mass. The lower limit is preferably 80% by mass, and more preferably 85% by mass. When the amount of particles added is in the above preferred range, the curl reduction effect is sufficient, the ratio of the functional resin to the total volume of the modified porous layer is optimal, and sufficient 0 ° of the modified porous layer is obtained. Peel strength is obtained.
 無機粒子の平均粒径は積層ポリエチレン微多孔質膜の平均細孔径の1.5倍以上、50倍以下が好ましく、より好ましくは2.0倍以上、20倍以下である。粒子の平均粒径が上記好ましい範囲であると、耐熱性樹脂と粒子が混在した状態で積層ポリエチレン微多孔質膜の細孔を塞いでしまい、結果として透気抵抗度を維持し、さらに電池組み立て工程において該粒子が脱落し、電池の重大な欠陥を招くのを防ぐ。 The average particle size of the inorganic particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less of the average pore size of the laminated polyethylene microporous membrane. When the average particle size of the particles is within the above-mentioned preferable range, the pores of the laminated polyethylene microporous membrane are blocked in a state where the heat-resistant resin and the particles are mixed, and as a result, the air resistance is maintained, and further, the battery is assembled. In the process, the particles are prevented from falling off and causing a serious defect of the battery.
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。また、必要に応じて耐熱性架橋高分子粒子を添加してもよい。耐熱性架橋高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系粒子などが挙げられる。無機粒子の形状は真球形状、略球形状、板状、針状、多面体形状が挙げられるが特に限定されない。 Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite and the like. Moreover, you may add a heat resistant crosslinked polymer particle as needed. Examples of the heat-resistant crosslinked polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, and crosslinked methyl methacrylate particles. Examples of the shape of the inorganic particles include a true spherical shape, a substantially spherical shape, a plate shape, a needle shape, and a polyhedral shape, but are not particularly limited.
 塗布液の固形分濃度は、均一に塗布できれば特に制限されないが、50質量%以上、98質量%以下が好ましく、80質量%以上、95質量%以下がより好ましい。塗布液の固形分濃度が上記好ましい範囲であると、改質多孔層が脆くなるのを防ぎ、改質多孔層の十分な0°の剥離強度が得られる。 The solid content concentration of the coating solution is not particularly limited as long as it can be uniformly applied, but is preferably 50% by mass or more and 98% by mass or less, and more preferably 80% by mass or more and 95% by mass or less. When the solid content concentration of the coating solution is in the above preferred range, the modified porous layer is prevented from becoming brittle, and a sufficient peel strength of 0 ° of the modified porous layer can be obtained.
 改質多孔層の膜厚は1~5μmが好ましく、より好ましくは1~4μm、さらに好ましくは1~3μmである。改質多孔層の膜厚が上記好ましい範囲であると、改質多孔層を積層して得られた電池用セパレータは融点以上で溶融・収縮した際の破膜強度と絶縁性を確保でき、また十分な孔閉塞機能が得られ異常反応を防ぐことができる。また、巻き嵩を抑制することができ電池の高容量化には適する。さらにカールを抑えることで電池組み立て工程での生産性の向上に繋がる。 The film thickness of the modified porous layer is preferably 1 to 5 μm, more preferably 1 to 4 μm, and still more preferably 1 to 3 μm. When the film thickness of the modified porous layer is within the above preferred range, the battery separator obtained by laminating the modified porous layer can ensure the film breaking strength and insulation when melted / shrinked at the melting point or higher, and A sufficient pore blocking function can be obtained and abnormal reactions can be prevented. Moreover, the winding volume can be suppressed, which is suitable for increasing the battery capacity. In addition, suppressing curling leads to improved productivity in the battery assembly process.
 改質多孔層の空孔率は30~90%が好ましく、より好ましくは40~70%である。所望の空孔率にするには、無機粒子の濃度、バインダー濃度などを適宜調整することにより得られる。改質多孔層の空孔率が上記好ましい範囲であると、改質多孔層を積層して得られた電池用セパレータは膜の電気抵抗が低く、大電流が流れやすく、また膜強度が維持される。 The porosity of the modified porous layer is preferably 30 to 90%, more preferably 40 to 70%. The desired porosity can be obtained by appropriately adjusting the concentration of inorganic particles, the binder concentration, and the like. When the porosity of the modified porous layer is within the above preferred range, the battery separator obtained by laminating the modified porous layer has a low electrical resistance of the membrane, a large current flows easily, and the membrane strength is maintained. The
 改質多孔層を積層して得られた電池用セパレータの全体の膜厚の上限値は25μmが好ましく、より好ましくは20μmである。下限値は6μm以上が好ましく、より好ましくは7μm以上である。電池用セパレータの全体の膜厚が上記好ましい範囲であると、改質多孔層を積層して得られた電池用セパレータは十分な機械強度と絶縁性を確保できる。また、容器内に充填できる電極面積が減少することにより容量の低下を回避できる。 The upper limit of the total film thickness of the battery separator obtained by laminating the modified porous layer is preferably 25 μm, more preferably 20 μm. The lower limit is preferably 6 μm or more, more preferably 7 μm or more. When the total thickness of the battery separator is within the above preferable range, the battery separator obtained by laminating the modified porous layer can ensure sufficient mechanical strength and insulation. In addition, a decrease in capacity can be avoided by reducing the electrode area that can be filled in the container.
 電池用セパレータの透気抵抗度は、もっとも重要な特性のひとつであり、好ましくは50~600sec/100ccAir、より好ましくは100~500sec/100ccAir、さらに好ましくは100~400sec/100ccAirである。所望の透気抵抗度にするには、改質多孔層の空孔率を調整し、バインダーの積層ポリエチレン微多孔質膜への浸み込み程度を調整することにより得られる。電池用セパレータの透気抵抗度が上記好ましい範囲であると、十分な絶縁性が得られ、異物詰まり、短絡および破膜を防ぐ。また、膜抵抗を抑えることで実使用可能な範囲の充放電特性、寿命特性が得られる。 The air resistance of the battery separator is one of the most important characteristics, and is preferably 50 to 600 sec / 100 cc Air, more preferably 100 to 500 sec / 100 cc Air, and still more preferably 100 to 400 sec / 100 cc Air. The desired air resistance can be obtained by adjusting the porosity of the modified porous layer and adjusting the degree of penetration of the binder into the laminated polyethylene microporous membrane. When the air permeability resistance of the battery separator is within the above preferable range, sufficient insulation is obtained, and foreign matter clogging, short circuit and film breakage are prevented. Further, by suppressing the film resistance, charge / discharge characteristics and life characteristics within a practically usable range can be obtained.
 次に本発明における積層ポリエチレン微多孔質膜に改質多孔層を積層する方法について説明する。本発明の積層ポリエチレン微多孔質膜に改質多孔層を積層する方法は、以下の(g)の工程を含むものである。
(g)前記冷却ロールが接していた積層ポリエチレン微多孔質膜の表面に、引っ張り強度が5N/mm以上のバインダー、無機粒子及びバインダーを溶解または分散しうる溶媒とを含む塗布液を用いて積層膜を形成し、乾燥する工程
 積層ポリエチレン微多孔質膜に改質多孔層を積層する方法は、公知の方法を用いることができる。具体的には、前記塗布液を積層ポリエチレン微多孔質膜に所定の膜厚になるように後述する方法で塗工し、乾燥温度40~80℃、乾燥時間5秒から60秒の条件下で乾燥させる方法で得ることができる。また、バインダーが可溶でかつ水と混和する溶媒で溶解した塗布液を所定の積層ポリエチレン微多孔質膜に後述する塗布法を用いて積層し、特定の湿度環境下に置き、バインダーと水とを混和する溶媒を相分離させ、さらに水浴(凝固浴)に投入してバインダーを凝固させる方法も用いることができる。
Next, a method for laminating the modified porous layer on the laminated polyethylene microporous membrane in the present invention will be described. The method for laminating the modified porous layer on the laminated polyethylene microporous membrane of the present invention includes the following step (g).
(G) A coating liquid containing a binder having a tensile strength of 5 N / mm 2 or more, an inorganic particle, and a solvent capable of dissolving or dispersing the binder on the surface of the laminated polyethylene microporous film in contact with the cooling roll. Step of forming and drying laminated film As a method of laminating the modified porous layer on the laminated polyethylene microporous film, a known method can be used. Specifically, the coating solution is applied to the laminated polyethylene microporous film by a method described later so as to have a predetermined film thickness, and the drying temperature is 40 to 80 ° C. and the drying time is 5 seconds to 60 seconds. It can be obtained by a drying method. In addition, a coating solution in which a binder is soluble and dissolved in a solvent miscible with water is laminated on a predetermined laminated polyethylene microporous film using a coating method described later, placed in a specific humidity environment, and the binder and water It is also possible to use a method in which the solvent to be mixed is phase-separated and the binder is further solidified by adding it to a water bath (coagulation bath).
 塗布液を塗布する方法としては、例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法は単独又は組み合わせて行うことができる。 Examples of methods for applying the coating liquid include reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, Mayer bar coating method, pipe doctor method, blade coating. Method, die coating method and the like, and these methods can be carried out singly or in combination.
 本発明の電池用セパレータは、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。 The battery separator of the present invention is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
 本発明の電池用セパレータは、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池、およびプラスチックフィルムコンデンサ、セラミックコンデンサ、電気二重層コンデンサなどのセパレータとして用いることができるが、特にリチウムイオン二次電池のセパレータとして用いるのが好ましい。以下にリチウムイオン二次電池を例にとって説明する。 The battery separator of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a secondary battery such as a lithium secondary battery, a lithium polymer secondary battery, and a plastic film capacitor, ceramic Although it can be used as a separator for a capacitor, an electric double layer capacitor, etc., it is particularly preferably used as a separator for a lithium ion secondary battery. Hereinafter, a lithium ion secondary battery will be described as an example.
 リチウムイオン二次電池は、正極と負極がセパレータを介して積層されており、セパレータは電解液(電解質)を含有している。電極の構造は特に限定されず、公知の構造であってもよい。例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。 In a lithium ion secondary battery, a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte). The structure of the electrode is not particularly limited, and may be a known structure. For example, an electrode structure (coin type) in which disc-shaped positive electrodes and negative electrodes are opposed to each other, an electrode structure in which flat plate-like positive electrodes and negative electrodes are alternately stacked (stacked type), and belt-shaped positive electrodes and negative electrodes are stacked. It can be set as a structure such as a wound electrode structure (winding type).
 正極は、通常集電体とその表面に形成されたリチウムイオンを吸蔵放出可能な正極活物質を含む正極活物質層とを有する。正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム複合酸化物)、遷移金属硫化物等の無機化合物等が挙げられる。遷移金属としては、V、Mn、Fe、Co、Ni等が挙げられる。正極活物質の中でリチウム複合酸化物の好ましい例としては、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、α-NaFeO型構造を母体とする層状リチウム複合酸化物等が挙げられる。 The positive electrode usually has a current collector and a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions formed on the surface of the current collector. Examples of the positive electrode active material include transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), inorganic compounds such as transition metal sulfides, and the like. Examples of the transition metal include V, Mn, Fe, Co, and Ni. Preferred examples of the lithium composite oxide among the positive electrode active materials include lithium nickelate, lithium cobaltate, lithium manganate, and a layered lithium composite oxide based on an α-NaFeO 2 type structure.
 負極は、集電体とその表面に形成された負極活物質を含む負極活物質層とを有する。負極活物質としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素質材料が挙げられる。電解液はリチウム塩を有機溶媒に溶解することにより得られる。リチウム塩としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、LiN(CSO、LiPF(CF、LiPF(C、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、γ-ブチロラクトン等の高沸点及び高誘電率の有機溶媒や、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、ジメチルカーボネート、ジエチルカーボネート等の低沸点及び低粘度の有機溶媒が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。特に高誘電率の有機溶媒は粘度が高く、低粘度の有機溶媒は誘電率が低いため、両者を混合して用いるのが好ましい。 The negative electrode has a current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the current collector. Examples of the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black. The electrolytic solution can be obtained by dissolving a lithium salt in an organic solvent. Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , Examples include LiN (C 2 F 5 SO 2 ) 2 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. These may be used alone or in admixture of two or more. Examples of the organic solvent include organic solvents having a high boiling point and a high dielectric constant such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and γ-butyrolactone, and tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like. Examples include organic solvents having a low boiling point and a low viscosity. These may be used alone or in admixture of two or more. In particular, a high dielectric constant organic solvent has a high viscosity, and a low viscosity organic solvent has a low dielectric constant. Therefore, it is preferable to use a mixture of both.
 電池を組み立てる際に、本発明のセパレータに電解液を含浸させ、セパレータにイオン透過性を付与することができる。通常、含浸処理は微多孔質膜を常温で電解液に浸漬して行う。例えば、円筒型電池を組み立てる場合、まず正極シート、セパレータ、及び負極シートをこの順に積層し、この積層体を一端より巻き取って巻回型電極素子とする。次にこの電極素子を電池缶に挿入し、上記電解液を含浸させ、さらに安全弁を備えた正極端子を兼ねる電池蓋を、ガスケットを介してかしめることにより電池を得ることができる。 When assembling the battery, the separator of the present invention can be impregnated with an electrolytic solution to impart ion permeability to the separator. Usually, the impregnation treatment is performed by immersing the microporous membrane in an electrolytic solution at room temperature. For example, when assembling a cylindrical battery, first, a positive electrode sheet, a separator, and a negative electrode sheet are laminated in this order, and this laminate is wound from one end to form a wound electrode element. Next, a battery can be obtained by inserting this electrode element into a battery can, impregnating with the above electrolyte, and caulking a battery lid also serving as a positive electrode terminal provided with a safety valve via a gasket.
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. In addition, the measured value in an Example is a value measured with the following method.
1.バインダーの引っ張り強度(N/mm
 実施例および比較例で用いたバインダーが可溶な溶媒に十分溶解または水分散させ、JIS K 7113に規定の2号形試験片作製用のダンベル型に乾燥後の膜厚が約100μmになるように入れて25℃で自然乾燥させ、さらに25℃で8時間真空乾燥(真空度3mmHg)を行って溶媒を十分除去して得られた試料シートを引っ張り強度測定に供した。
 引張試験機((株)島津製作所製 Autograph AGS-J ロードセル容量1kN)を用いて以下の条件で測定した。サンプルフィルム、測定条件は以下の通りであり、3回測定を行い、その平均値をバインダーの引っ張り強度とした。
 チャック間距離:40mm
 試験速度:20mm/min
 測定環境:気温20℃、相対湿度60%
1. Tensile strength of binder (N / mm 2 )
The binder used in the examples and comparative examples is sufficiently dissolved or dispersed in a solvent so that the film thickness after drying is about 100 μm to the dumbbell type for preparing No. 2 type test piece defined in JIS K 7113. The sample sheet obtained by natural drying at 25 ° C. and further vacuum-drying at 25 ° C. for 8 hours (vacuum degree 3 mmHg) to sufficiently remove the solvent was subjected to tensile strength measurement.
Measurement was performed under the following conditions using a tensile tester (Autograph AGS-J, load cell capacity: 1 kN, manufactured by Shimadzu Corporation). The sample film and measurement conditions were as follows. The measurement was performed three times, and the average value was defined as the tensile strength of the binder.
Distance between chucks: 40mm
Test speed: 20 mm / min
Measurement environment: temperature 20 ° C, relative humidity 60%
2.突起の数
 突起の数と大きさは免震台上に設置したコンフォーカル(共焦点)顕微鏡(レーザーテック(株)製 HD100)を用いて、光源を安定化させた後に測定した。
(手順)
(1)実施例および比較例で得られた積層ポリエチレン微多孔質膜を製膜時に冷却ロールに接していた面に1cm×1cmの正方形の枠を極細油性ペンで描いた。
(2)上記正方形の枠を描いた面を上にしてサンプルステージに載せ、コンフォーカル顕微鏡付属の静電気密着装置を用いてサンプルステージに密着固定させた。
(3)倍率5倍の対物レンズを用いて、図3のようなポリエチレンの球晶に由来するリング状痕をモニターに二次元画像(本装置ではREAL画面と称す)として表示させ、リング状痕の最も色の濃い部分がモニター画面のほぼ中央に位置するようにサンプルステージ位置を調整した。リング状痕が2つ連なっている場合はその接点に合わせた。突起高さ測定の対象は前記ポリエチレンの球晶に由来するリング状痕の長径が0.2mm以上のものとした。リング状痕の長径は前記二次元画像にて長径方向にリングの両端にカーソルを合わせ、その長さを読み取った。
(4)対物レンズを20倍レンズに替え、モニター画面の中央部にフォーカスを合わせて(本装置ではモニター画面の中央部が最も明るく表示されようにする)、この高さ位置を基準高さとした(本装置ではREF SETと称す)。
(5)高さ方向の測定範囲は前記基準高さを0μmとして上下15μmに設定した。また、スキャン時間120秒、STEP移動距離0.1μm/Stepとし、三次元データを取り込んだ。
(6)三次元データ取り込み後、データ処理用画像(本装置ではZ画像と称す)を表示させ、スムージング処理を行った(スムージング条件:フィルタサイズ3x3、マトリックスタイプ SMOOTH3-0、回数1回)。また、必要に応じて水平補正画面にて水平補正を行った。
(7)データ処理用画像にて最も高い突起を通る位置(最も明るい部分)に水平方向にカーソルを置き、前記カーソルに対応した断面プロファイルを、断面プロファイル画像に表示させた。
(8)断面プロファイル画像にて垂直方向に2本のカーソルを突起の両袖の変曲点に合わせ両カーソル間の距離を突起の大きさとした。
(9)断面プロファイル画像にて水平方向に2本のカーソルを突起の頂点と突起の両袖の変曲点に合わせ(突起の両袖の変曲点の高さが異なる場合は低い方)両カーソル間の距離を突起の高さとした。
(10)前記操作を前記1cm×1cmの正方形の枠内で繰り返し、大きさ5μm以上、50μm以下、高さ0.5μm以上、3.0μm以下の突起の数を数え1cm当たりの突起数を求め、さらにその突起の高さ平均値を求めた。
2. Number of protrusions The number and size of protrusions were measured after stabilizing the light source using a confocal microscope (HD100 manufactured by Lasertec Corporation) placed on a base isolation table.
(procedure)
(1) A 1 cm × 1 cm square frame was drawn with an ultrafine oil pen on the surface of the laminated polyethylene microporous membrane obtained in Examples and Comparative Examples that was in contact with a cooling roll during film formation.
(2) The surface on which the square frame was drawn was placed on the sample stage, and was fixed to the sample stage using an electrostatic contact apparatus attached to the confocal microscope.
(3) Using an objective lens with a magnification of 5 times, a ring-shaped trace derived from a polyethylene spherulite as shown in FIG. 3 is displayed on a monitor as a two-dimensional image (referred to as a REAL screen in this apparatus), and the ring-shaped trace is displayed. The position of the sample stage was adjusted so that the darkest part of was positioned almost at the center of the monitor screen. When two ring-shaped marks were connected, the contact was made. The object of the projection height measurement was such that the major axis of the ring-shaped trace derived from the polyethylene spherulites was 0.2 mm or more. As for the major axis of the ring-shaped mark, the cursor was placed on both ends of the ring in the major axis direction in the two-dimensional image, and the length was read.
(4) Change the objective lens to a 20x lens and focus on the center of the monitor screen (in this device, the center of the monitor screen is displayed brightest), and this height position is used as the reference height (This device is called REF SET).
(5) The measurement range in the height direction was set to 15 μm above and below, with the reference height being 0 μm. Also, the scan time was 120 seconds, the STEP moving distance was 0.1 μm / Step, and the three-dimensional data was captured.
(6) After capturing the three-dimensional data, an image for data processing (referred to as a Z image in the present apparatus) was displayed and smoothing was performed (smoothing condition: filter size 3 × 3, matrix type SMOOTH3-0, number of times once). In addition, horizontal correction was performed on the horizontal correction screen as necessary.
(7) A cursor was placed in a horizontal direction at a position (the brightest part) passing through the highest protrusion in the data processing image, and a cross-sectional profile corresponding to the cursor was displayed on the cross-sectional profile image.
(8) In the cross-sectional profile image, the two cursors were aligned with the inflection points of the sleeves of the protrusions in the vertical direction, and the distance between the cursors was taken as the protrusion size.
(9) In the cross-sectional profile image, align the two cursors in the horizontal direction with the inflection points of the top of the protrusion and the sleeves of the protrusion (if the height of the inflection points of the sleeves of the protrusion is different) The distance between the cursors was the height of the protrusion.
(10) The above operation is repeated within the 1 cm × 1 cm square frame, and the number of protrusions having a size of 5 μm or more and 50 μm or less, a height of 0.5 μm or more and 3.0 μm or less is counted, and the number of protrusions per 1 cm 2 is obtained. Further, the average height of the protrusions was obtained.
3.改質多孔層の0°剥離強度(N/15mm)
 図1に、評価方法を模式的に示す。1が積層試料、2が積層ポリエチレン微多孔質膜、3が改質多孔層、4が両面粘着テープ、5及び5’がアルミニウム板であり、図中の矢印が引張方向である。大きさ50mm×25mm、厚さ0.5mmのアルミニウム板5に同じ大きさの両面粘着テープ(ニチバン(株)製NW-K50)4を貼り付けた。その上に幅50mm×長さ100mmに切り出した試料1(電池用セパレータ)の積層ポリエチレン微多孔質膜2の面を前記アルミニウム板5の25mm長さの片辺の端から40mmが重なるように貼り付け、はみ出た部分を切り取った。次いで、長さ100mm、幅15mm、厚さ0.5mmのアルミニウム板5’の片面に両面粘着テープを貼り付け、前記アルミニウム板5の25mm長さの試料側の片辺の端から20mmが重なるように貼り付けた。その後、試料を挟持したアルミニウム板5とアルミニウム板5’を引張試験機((株)島津製作所製 Autograph AGS-J ロードセル容量1kN)に取り付け、アルミニウム板5とアルミニウム板5’のそれぞれを平行に反対方向に引張速度10mm/minで引っ張り、改質多孔層が剥離したときの強度を測定した。この測定を長手方向に30cm以上の間隔を空けた任意の3点について行い、その平均値を改質多孔層の0°剥離強度とした。
3. 0 ° peel strength of modified porous layer (N / 15mm)
FIG. 1 schematically shows the evaluation method. 1 is a laminated sample, 2 is a laminated polyethylene microporous membrane, 3 is a modified porous layer, 4 is a double-sided pressure-sensitive adhesive tape, 5 and 5 'are aluminum plates, and the arrows in the figure are tensile directions. A double-sided adhesive tape (NW-K50 manufactured by Nichiban Co., Ltd.) 4 having the same size was attached to an aluminum plate 5 having a size of 50 mm × 25 mm and a thickness of 0.5 mm. The surface of the laminated polyethylene microporous membrane 2 of Sample 1 (battery separator) cut out to a width of 50 mm and a length of 100 mm is pasted on the aluminum plate 5 so that 40 mm overlaps from the edge of one side of the 25 mm length. Attached and cut off the protruding part. Next, a double-sided adhesive tape is attached to one side of an aluminum plate 5 ′ having a length of 100 mm, a width of 15 mm, and a thickness of 0.5 mm, so that 20 mm overlaps from the end of one side of the 25 mm long sample side of the aluminum plate 5. Pasted on. Thereafter, the aluminum plate 5 and the aluminum plate 5 ′ sandwiching the sample are attached to a tensile testing machine (Autograph AGS-J load cell capacity 1 kN, manufactured by Shimadzu Corporation), and the aluminum plate 5 and the aluminum plate 5 ′ are opposite in parallel. The film was pulled in the direction at a pulling speed of 10 mm / min, and the strength when the modified porous layer was peeled was measured. This measurement was performed for any three points with an interval of 30 cm or more in the longitudinal direction, and the average value was taken as the 0 ° peel strength of the modified porous layer.
4.膜厚
 接触式膜厚計((株)ミツトヨ製 ライトマチック series318)を使用して20点の測定値を平均することによって求めた。超硬球面測定子φ9.5mmを用い、加重0.01Nの条件で測定した。
4). Film thickness It calculated | required by averaging the measured value of 20 points | pieces using the contact-type film thickness meter (Mitutoyo Corporation light matic series 318). The measurement was performed under the condition of a weight of 0.01 N using a carbide spherical measuring element φ9.5 mm.
5.平均孔径
 積層ポリエチレン微多孔質膜の平均孔径は以下の方法で測定した。試料を測定用セルの上に両面テープを用いて固定し、プラチナまたは金を数分間真空蒸着させ、適度な倍率で膜の表面をSEM測定した。SEM測定で得られた画像上で任意の10箇所を選択し、それら10箇所の孔径の平均値を試料の平均孔径とした。
5. Average pore diameter The average pore diameter of the laminated polyethylene microporous membrane was measured by the following method. The sample was fixed on the measurement cell using double-sided tape, platinum or gold was vacuum-deposited for several minutes, and the surface of the film was subjected to SEM measurement at an appropriate magnification. Arbitrary ten places were selected on the image obtained by SEM measurement, and the average value of the pore diameters at these ten places was taken as the average pore diameter of the sample.
6.透気抵抗度(sec/100ccAir)
 テスター産業(株)製のガーレー式デンソメーターB型を使用して、積層ポリエチレン微多孔質膜又は電池用セパレータをクランピングプレートとアダプタープレートの間にシワが入らないように固定し、JIS P8117に従って測定した。試料は10cm角とし、測定点は試料の中央部と4隅の計5点として、その平均値を透気抵抗度として用いた。なお、試料の1辺の長さが10cmに満たない場合は5cm間隔で5点測定した値を用いてもよい。
 透気抵抗度の上昇幅は下記の式より求めた。
透気抵抗度の上昇幅=(Y)-(X)sec/100ccAir
積層ポリエチレン微多孔質膜の透気抵抗度(X)sec/100ccAir
電池用セパレータの透気抵抗度(Y)sec/100ccAir
6). Air permeability resistance (sec / 100ccAir)
Using a Gurley Densometer Type B manufactured by Tester Sangyo Co., Ltd., fix the laminated polyethylene microporous membrane or battery separator so that there are no wrinkles between the clamping plate and the adapter plate, and in accordance with JIS P8117 It was measured. The sample was a 10 cm square, the measurement points were a total of 5 points at the center and 4 corners of the sample, and the average value was used as the air resistance. When the length of one side of the sample is less than 10 cm, a value obtained by measuring five points at intervals of 5 cm may be used.
The increase width of the air permeability resistance was obtained from the following formula.
Increasing width of air resistance = (Y) − (X) sec / 100 cc Air
Air permeability resistance of laminated polyethylene microporous membrane (X) sec / 100ccAir
Air permeability resistance of battery separator (Y) sec / 100ccAir
7.シャットダウン温度
 積層ポリエチレン微多孔質膜を5℃/minの昇温速度で加熱しながら、王研式透気抵抗度計(旭精工株式会(株)製、EGO-1T)により透気抵抗度を測定し、透気抵抗度が検出限界である1×10秒/100ccAirに到達した温度を求め、シャットダウン温度(℃)とした。
7). Shutdown temperature While heating the laminated polyethylene microporous membrane at a heating rate of 5 ° C / min, the air resistance was measured by the Oken type air resistance meter (Asahi Seiko Co., Ltd., EGO-1T). The temperature at which the air permeation resistance reached the detection limit of 1 × 10 5 seconds / 100 cc Air was determined and used as the shutdown temperature (° C.).
8.透気抵抗度上昇率
 上記7.のシャットダウン温度測定において得られた、厚みT1(μm)の積層ポリエチレン微多孔質膜の、温度と透気抵抗度Pのデータから、温度30℃~105℃における温度と透気抵抗度Pの相関図を作図し、最小二乗法により傾きPa(sec/100ccAir/℃)を算出した。算出したPaを式:Pb=Pa/T1×20により、膜厚を20μmとして規格化し、30℃~105℃における透気抵抗度上昇率Pb(秒/100ccAir/μm/℃)を算出した。
8). Permeability increase rate 7. Of temperature and air resistance P of laminated polyethylene microporous film with thickness T1 (μm) obtained in the shutdown temperature measurement of 3 ° C. from 30 ° C. to 105 ° C. The figure was drawn and the slope Pa (sec / 100 cc Air / ° C.) was calculated by the least square method. The calculated Pa was normalized by the formula: Pb = Pa / T1 × 20 with a film thickness of 20 μm, and the air resistance increase rate Pb (second / 100 cc Air / μm / ° C.) at 30 ° C. to 105 ° C. was calculated.
9.積層ポリエチレン微多孔質膜の空孔率
 10cm角の試料を用意し、その試料体積(cm)と質量(g)を測定し得られた結果から次式を用いて空孔率(%)を計算した。
空孔率=(1-質量/(樹脂密度×試料体積))×100
9. Porosity of laminated polyethylene microporous membrane Prepare a 10 cm square sample, measure the sample volume (cm 3 ) and mass (g), and use the following formula to determine the porosity (%). Calculated.
Porosity = (1−mass / (resin density × sample volume)) × 100
10.耐擦れ性
 実施例及び比較例で得られたロール状電池用セパレータを巻きだしながら、両端をスリット加工した。スリット加工はスリッター((株)西村製作所製 WA177A型)を用いて速度20m/分、張力60N/100mmの条件で行った。加工中、塗工面に接触するロールはハードクロムメッキロール2本(いずれもフリーロール)とした。次いで、スリット加工済のロール状電池用セパレータを巻き戻しながら目視、および拡大率10倍のスケール付きルーペ(PEAK社SCALE LUPE×10)を用いて、長径0.5mm以上の改質多孔層の剥離欠点を数え、以下の判定基準で評価した。評価面積は幅100mm×長さ500mとした。(幅が100mmに満たない場合は長さを調整し、同様の評価面積になるようにした。)
判定基準
○(極めて良好):5ヶ以下
△(良好):6~15ヶ
×(不良):16ヶ以上
10. Scratch resistance Both ends of the battery were slit while the roll battery separators obtained in Examples and Comparative Examples were wound. Slit processing was performed using a slitter (WA177A model manufactured by Nishimura Seisakusho Co., Ltd.) under conditions of a speed of 20 m / min and a tension of 60 N / 100 mm. During processing, the rolls that contact the coated surface were two hard chrome plating rolls (both free rolls). Next, peeling the modified porous layer having a major axis of 0.5 mm or more using a loupe with a scale (PEAK Co., Ltd. SCALE LUPE × 10) visually while rewinding the slit processed roll battery separator. The defects were counted and evaluated according to the following criteria. The evaluation area was 100 mm wide × 500 m long. (When the width was less than 100 mm, the length was adjusted so that the same evaluation area was obtained.)
Judgment criteria ○ (very good): 5 or less △ (good): 6 to 15 × (defect): 16 or more
11.重量平均分子量(Mw)および分子量分布(Mw/Mn)
 MwおよびMw/Mnは以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工(株)製“Shodex”(登録商標) UT806M 
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0ml/分
・試料濃度:0.1質量%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数用いて作製した。
11. Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)
Mw and Mw / Mn were determined by gel permeation chromatography (GPC) method under the following conditions.
・ Measurement device: GPC-150C manufactured by Waters Corporation
Column: “Shodex” (registered trademark) UT806M manufactured by Showa Denko KK
-Column temperature: 135 ° C
Solvent (mobile phase): o-dichlorobenzene Solvent flow rate: 1.0 ml / min Sample concentration: 0.1% by mass (dissolution condition: 135 ° C./1 h)
・ Injection volume: 500μl
-Detector: Differential refractometer manufactured by Waters Corporation-Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
12.メルトフローレート(MFR)
 JIS-K7210に準じて、温度190℃、荷重2.16gで測定した。
12 Melt flow rate (MFR)
According to JIS-K7210, the temperature was 190 ° C. and the load was 2.16 g.
13.融点
 エスアイアイ・ナノテクノロジー株式会社製の示差走査熱量計(DSC)DSC6220を用い、窒素ガス雰囲気下で樹脂試料5mgを昇温速度20℃/分で昇温したとき観察される融解ピークの頂点温度を融点とした。
13. Melting point The peak temperature of the melting peak observed when 5 mg of a resin sample is heated at a heating rate of 20 ° C./min in a nitrogen gas atmosphere using a differential scanning calorimeter (DSC) DSC 6220 manufactured by SII Nanotechnology Inc. Was the melting point.
実施例1
 重量平均分子量が200万の超高分子量ポリエチレン(UHMWPE)18質量%及び重量平均分子量が35万の高密度ポリエチレン(HDPE)82質量%からなる組成物100質量%に、酸化防止剤テトラキス-[メチレン-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン)0.375質量%を加えたポリエチレン組成物A(融点135℃)を得た。このポリエチレン組成物A25質量%を二軸押出機に投入した。この二軸押出機のサイドフィーダーから流動パラフィン75質量%を供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液Aを調製した。
 一方、重量平均分子量が200万の超高分子量ポリエチレン(UHMWPE)17.5質量%及び重量平均分子量が30万の高密度ポリエチレン(HDPE)57.5質量%、MFRが135g/10minで、融点が124℃の直鎖状低密度ポリエチレン(エチレン・1-ヘキセン共重合体)25質量%からなる組成物100質量%に、酸化防止剤(テトラキス-[メチレン-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン)0.375質量%を加えたポリエチレン組成物B(融点128℃)を得た。このポリエチレン組成物B25質量%を二軸押出機に投入した。この二軸押出機のサイドフィーダーから流動パラフィン75質量%を供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液Bを調製した。
 得られたポリエチレン樹脂溶液AおよびBを、層構成がA/B/Aで溶液比率が1/2/1となるように積層ダイから190℃で共押し出しして、内部冷却水温度を25℃に保った直径800mmの冷却ロールで引き取りながら積層ゲル状成形物を形成した。この時、積層ゲル状成形物が冷却ロールから離れる点からダイから押し出された積層ポリエチレン樹脂溶液と冷却ロールとが接する点までの間に1枚のポリエステル製ドクターブレードを積層ゲル状成形物の幅方向と平行に冷却ロールに接するようにあてて、冷却ロール上に付着している流動パラフィンを掻き落とした。続いてこの積層ゲル状成形物を、所望の透気抵抗度になるように温度を調節しながら5×5倍に同時2軸延伸を行い、延伸成形物を得た。得られた延伸成形物を塩化メチレンで洗浄して残留する流動パラフィンを抽出除去し、乾燥して多孔質成形物を得た。その後、テンターに微多孔質膜を保持し、TD(幅方向)方向にのみ10%縮幅し、123℃で3秒間熱処理し、厚さ14μm、空孔率44%、平均孔径0.45μm、透気抵抗度195sec/100ccAir、シャットダウン温度130℃、透気抵抗度上昇率0.8sec/100ccAir/℃/20μmの積層ポリエチレン微多孔質膜を得た。
 ポリビニルアルコール(平均重合度1700、ケン化度99%以上)、平均粒径0.5μmのアルミナ粒子、イオン交換水をそれぞれ6:54:40の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗布液(a)を得た。
 前記積層ポリエチレン微多孔質膜の、製膜時に冷却ロールに接していた面に塗布液(a)をグラビアコート法にて塗布し、50℃の熱風乾燥炉を10秒間通過させることで乾燥して、最終厚み16μmの電池用セパレータを得た。
Example 1
An antioxidant tetrakis- [methylene was added to 100% by mass of a composition comprising 18% by mass of ultrahigh molecular weight polyethylene (UHMWPE) having a weight average molecular weight of 2 million and 82% by mass of high density polyethylene (HDPE) having a weight average molecular weight of 350,000. -(3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane) 0.375% by mass was added to obtain a polyethylene composition A (melting point: 135 ° C.). 25% by mass of this polyethylene composition A was charged into a twin screw extruder. 75% by mass of liquid paraffin was supplied from the side feeder of this twin screw extruder, melted and kneaded, and a polyethylene resin solution A was prepared in the extruder.
On the other hand, 17.5 mass% of ultra high molecular weight polyethylene (UHMWPE) with a weight average molecular weight of 2 million, 57.5 mass% of high density polyethylene (HDPE) with a weight average molecular weight of 300,000, MFR of 135 g / 10 min, melting point An antioxidant (tetrakis- [methylene- (3 ′, 5′-di-t) was added to 100% by mass of a composition comprising 25% by mass of linear low-density polyethylene (ethylene / 1-hexene copolymer) at 124 ° C. -Butyl-4'-hydroxyphenyl) propionate] methane) 0.375% by mass of polyethylene composition B (melting point 128 ° C.) was obtained. 25% by mass of this polyethylene composition B was charged into a twin screw extruder. 75% by mass of liquid paraffin was supplied from the side feeder of this twin screw extruder, melted and kneaded, and a polyethylene resin solution B was prepared in the extruder.
The obtained polyethylene resin solutions A and B were co-extruded at 190 ° C. from the laminated die so that the layer configuration was A / B / A and the solution ratio was 1/2/1, and the internal cooling water temperature was 25 ° C. A laminated gel-like molded product was formed while being taken up by a cooling roll having a diameter of 800 mm kept at the same temperature. At this time, one polyester doctor blade is placed between the point where the laminated gel-like molded article is separated from the cooling roll and the point where the laminated polyethylene resin solution extruded from the die contacts the cooling roll. The liquid paraffin adhering to the cooling roll was scraped off in contact with the cooling roll in parallel with the direction. Subsequently, the laminated gel-like molded product was simultaneously biaxially stretched 5 × 5 times while adjusting the temperature so as to obtain a desired air permeability resistance to obtain a stretched molded product. The obtained stretched molded product was washed with methylene chloride to extract and remove the remaining liquid paraffin, and dried to obtain a porous molded product. Thereafter, the microporous film is held in the tenter, and is reduced by 10% only in the TD (width direction) direction, and heat-treated at 123 ° C. for 3 seconds. The thickness is 14 μm, the porosity is 44%, the average pore diameter is 0.45 μm, A laminated polyethylene microporous film having an air resistance of 195 sec / 100 cc Air, a shutdown temperature of 130 ° C., and an air resistance increase rate of 0.8 sec / 100 cc Air / ° C./20 μm was obtained.
Polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more), alumina particles having an average particle diameter of 0.5 μm, and ion-exchanged water were blended in a weight ratio of 6:54:40, respectively, and zirconium oxide beads (Toray Industries, Inc. ) “Traceram” (registered trademark) beads, 0.5 mm in diameter) and placed in a polypropylene container, and dispersed for 6 hours with a paint shaker (manufactured by Toyo Seiki Seisakusho). Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (a).
A coating liquid (a) is applied by gravure coating to the surface of the laminated polyethylene microporous membrane that was in contact with the cooling roll during film formation, and dried by passing through a hot air drying oven at 50 ° C. for 10 seconds. A battery separator having a final thickness of 16 μm was obtained.
実施例2
 ポリエチレン組成物Aの超高分子量ポリエチレン(UHMWPE)と高密度ポリエチレン(HDPE)の配合比を表1-1のとおりに調整した以外は実施例1と同様にして電池用セパレータを得た。
Example 2
A battery separator was obtained in the same manner as in Example 1 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
実施例3
 2枚のポリエステル製ドクターブレードを20mmの間隔で冷却ロールにあてた以外は実施例2と同様にして電池用セパレータを得た。
Example 3
A battery separator was obtained in the same manner as in Example 2 except that two polyester doctor blades were applied to the cooling roll at an interval of 20 mm.
実施例4
 3枚のポリエステル製ドクターブレードをそれぞれ20mmの間隔で冷却ロールにあてた以外は実施例2と同様にして電池用セパレータを得た。
Example 4
A battery separator was obtained in the same manner as in Example 2 except that three polyester doctor blades were applied to the cooling rolls at intervals of 20 mm.
実施例5
 水性アクリルポリオールと水分散性ポリイソシアネート(硬化剤)からなる2液硬化型水性アクリルウレタン樹脂(固形分濃度45質量%)平均粒径0.5μmのアルミナ粒子、イオン交換水をそれぞれ10:40:50の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗布液(b)を得た。塗布液(a)を塗布液(b)に替えた以外は実施例2と同様に改質多孔層を積層させ、電池用セパレータを得た。
Example 5
Two-part curable aqueous acrylic urethane resin (solid content concentration 45% by mass) composed of aqueous acrylic polyol and water-dispersible polyisocyanate (curing agent), alumina particles having an average particle size of 0.5 μm, and ion-exchanged water are respectively 10:40: 50 weight ratio, zirconium oxide beads (Toraysemu "Traceram" (registered trademark) beads, diameter 0.5mm) together with polypropylene container, paint shaker (Toyo Seiki Seisakusho) For 6 hours. Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (b). A modified porous layer was laminated in the same manner as in Example 2 except that the coating liquid (a) was changed to the coating liquid (b) to obtain a battery separator.
実施例6
 ポリビニルアルコールとアクリル酸、メタクリル酸メチルの共重合体(日新化成(株)製“POVACOATR”(登録商標))、平均粒径0.5μmのアルミナ粒子、溶媒(イオン交換水:エタノール=70:30)をそれぞれ5:45:50の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。濾過限界5μmのフィルターで濾過し、塗布液(c)を得た。塗布液(a)を塗布液(c)に替えた以外は実施例2と同様に改質多孔層を積層させ、電池用セパレータを得た。
Example 6
Copolymer of polyvinyl alcohol, acrylic acid and methyl methacrylate (“POVACOATR” (registered trademark) manufactured by Nisshin Kasei Co., Ltd.), alumina particles having an average particle size of 0.5 μm, solvent (ion-exchanged water: ethanol = 70: 30) were mixed at a weight ratio of 5:45:50, respectively, and placed in a polypropylene container together with zirconium oxide beads ("Traceram" (registered trademark) beads, diameter 0.5 mm) manufactured by Toray Industries, Inc.) (Toyo Seiki Seisakusho Co., Ltd.) for 6 hours. The solution was filtered through a filter having a filtration limit of 5 μm to obtain a coating solution (c). A modified porous layer was laminated in the same manner as in Example 2 except that the coating liquid (a) was changed to the coating liquid (c) to obtain a battery separator.
実施例7
 冷却ロールの内部冷却水温度を35℃に保った以外は実施例2と同様にして電池用セパレータを得た。
Example 7
A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was maintained at 35 ° C.
実施例8
 層構成をB/A/B、溶液比率を1/2/1となるように共押出した以外は実施例2と同様にして電池用セパレータを得た。
Example 8
A battery separator was obtained in the same manner as in Example 2, except that the layer structure was B / A / B and the solution ratio was 1/2/1.
実施例9~12
 ポリエチレン組成物B中に含まれる低融点樹脂を表に1記載のとおりに変更した以外は実施例2と同様にして電池用セパレータを得た。
Examples 9-12
A battery separator was obtained in the same manner as in Example 2 except that the low melting point resin contained in the polyethylene composition B was changed as described in Table 1.
実施例13
 ポリエチレン組成物B中に含まれる低融点樹脂の添加量を表1-1のとおりに調整した以外は実施例2と同様にして電池用セパレータを得た。
Example 13
A battery separator was obtained in the same manner as in Example 2 except that the amount of the low melting point resin contained in the polyethylene composition B was adjusted as shown in Table 1-1.
実施例14
 ポリエチレン樹脂溶液AおよびBの押し出し量を調整し、厚さ9μmの積層ポリエチレン微多孔質膜を得た以外は実施例2と同様にして、電池用セパレータを得た。
Example 14
A battery separator was obtained in the same manner as in Example 2 except that the extrusion amounts of the polyethylene resin solutions A and B were adjusted to obtain a laminated polyethylene microporous membrane having a thickness of 9 μm.
実施例15
 アルミナ粒子を架橋高分子粒子(ポリメタクリル酸メチル系架橋物粒子(“エポスター”(登録商標)MA1002、(株)日本触媒製、平均粒子径2.5μm))に替え、架橋高分子粒子、N-メチル-2-ピロリドンの配合比率をそれぞれ35:10:55(重量比率)としてワニス(d)を得た。ワニス(d)を用いた以外は実施例2と同様にして電池用セパレータを得た。
Example 15
Alumina particles are replaced with crosslinked polymer particles (polymethyl methacrylate-based crosslinked product particles (“Eposter” (registered trademark) MA1002, manufactured by Nippon Shokubai Co., Ltd., average particle size: 2.5 μm)). Varnish (d) was obtained with a blending ratio of -methyl-2-pyrrolidone of 35:10:55 (weight ratio). A battery separator was obtained in the same manner as in Example 2 except that the varnish (d) was used.
実施例16
 フッ素系樹脂溶液(呉羽化学工業(株)製“KFポリマー”(登録商標)#9300(ポリフッ化ビニリデン(5%N-メチルピロリドン溶液)及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンをそれぞれ16:34:50の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共に、ポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、ワニス(e)を得た。ワニス(e)を用いた以外は実施例2と同様にして、電池用セパレータを得た。
Example 16
Fluorine resin solution (“KF polymer” (registered trademark) # 9300 (polyvinylidene fluoride (5% N-methylpyrrolidone solution) manufactured by Kureha Chemical Industry Co., Ltd.) and alumina particles having an average particle size of 0.5 μm, N-methyl- 2-pyrrolidone was blended at a weight ratio of 16:34:50, respectively, and placed in a polypropylene container together with zirconium oxide beads ("Traceram" (registered trademark) beads, diameter 0.5 mm) manufactured by Toray Industries, Inc. The mixture was dispersed with a shaker (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 6 hours, and then filtered through a filter having a filtration limit of 5 μm to obtain varnish (e), which was the same as Example 2 except that varnish (e) was used. Thus, a battery separator was obtained.
実施例17
 アクリルエマルジョン(昭和電工(株)製“ポリゾール”(登録商標)AT‐731、不揮発分47%)、平均粒径0.5μmのアルミナ粒子、イオン交換水をそれぞれ2:55:43の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で12時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗布液(f)を得た。塗布液(f)を、実施例2の積層ポリエチレン微多孔質膜に実施例2と同様に塗布し、電池用セパレータを得た。
Example 17
Acrylic emulsion (“Polysol” (registered trademark) AT-731 manufactured by Showa Denko KK, nonvolatile content 47%), alumina particles having an average particle size of 0.5 μm, and ion-exchanged water in a weight ratio of 2:55:43, respectively. Combined, put together with zirconium oxide beads (Toraysemu "Traceram" (registered trademark) beads, diameter 0.5mm) in a polypropylene container and dispersed for 12 hours in a paint shaker (Toyo Seiki Seisakusho) It was. Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (f). The coating liquid (f) was applied to the laminated polyethylene microporous membrane of Example 2 in the same manner as in Example 2 to obtain a battery separator.
実施例18
 アルミナ粒子を硫酸バリウム微粒子(平均粒子径0.3μm)替えた塗布液(g)を用いた以外は実施例2と同様にして、電池用セパレータを得た。
Example 18
A battery separator was obtained in the same manner as in Example 2 except that the coating liquid (g) in which the alumina particles were changed to barium sulfate fine particles (average particle size: 0.3 μm) was used.
実施例19
 層構成がA/B/Aで溶液比率が1.5/2/1.5となるようにした以外は実施例2と同様にして、電池用セパレータを得た。
Example 19
A battery separator was obtained in the same manner as in Example 2 except that the layer configuration was A / B / A and the solution ratio was 1.5 / 2 / 1.5.
実施例20
 ポリエチレン組成物Aの超高分子量ポリエチレン(UHMWPE)と高密度ポリエチレン(HDPE)の配合比を表1-1のとおりに調整した以外は実施例2と同様にして電池用セパレータを得た。
Example 20
A battery separator was obtained in the same manner as in Example 2 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
実施例21
 ポリエチレン組成物Aの超高分子量ポリエチレン(UHMWPE)と高密度ポリエチレン(HDPE)の配合比、ならびに各ポリエチレン組成物Aと流動パラフィンの比率を表1-1のとおりに調整し、厚みが表2に記載のとおりになるようにポリエチレン溶液AおよびBの押し出し量を調整した以外は実施例2と同様にして電池用セパレータを得た。
Example 21
The blending ratio of ultra high molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE) in polyethylene composition A and the ratio of each polyethylene composition A to liquid paraffin were adjusted as shown in Table 1-1. A battery separator was obtained in the same manner as in Example 2 except that the extrusion amounts of the polyethylene solutions A and B were adjusted as described.
比較例1
 ポリエチレン溶液Aのみを用いて、190℃で単層ダイから押し出しして単層ゲル状成形物を成形し、積層ゲル状成形物の代わりに得られた単層ゲル状成形物を使用した以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 1
Except that only the polyethylene solution A was used to extrude from a single-layer die at 190 ° C. to form a single-layer gel-like molding, and the single-layer gel-like molding obtained instead of the laminated gel-like molding was used. A battery separator was obtained in the same manner as in Example 2.
比較例2
 ポリエチレン組成物B中に含まれる低融点樹脂としてMFRが3.2g/10minのエチレン・1-ヘキセン共重合体を用いた以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 2
A battery separator was obtained in the same manner as in Example 2 except that an ethylene / 1-hexene copolymer having an MFR of 3.2 g / 10 min was used as the low melting point resin contained in the polyethylene composition B.
比較例3
 ポリエチレン組成物Aの超高分子量ポリエチレン(UHMWPE)と高密度ポリエチレン(HDPE)の配合比を表1-1のとおりに調整した以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 3
A battery separator was obtained in the same manner as in Example 1 except that the blending ratio of the ultrahigh molecular weight polyethylene (UHMWPE) and the high density polyethylene (HDPE) of the polyethylene composition A was adjusted as shown in Table 1-1.
比較例4
 ダイから押し出されたポリエチレン樹脂溶液を冷却ロールで冷却し、ゲル状成形物を得る際にドクターブレードを用いず、冷却ロール上に付着している流動パラフィンを掻き落とさなかった以外は実施例2と同様にして、電池用セパレータを得た。
Comparative Example 4
The polyethylene resin solution extruded from the die was cooled with a cooling roll, and when the gel-like molded product was obtained, the doctor blade was not used and the liquid paraffin adhering to the cooling roll was not scraped off. Similarly, a battery separator was obtained.
比較例5
 冷却ロールの内部冷却水温度を0℃に保ち、ドクターブレードを用いなかった以外は実施例2と同様にして、電池用セパレータを得た。
Comparative Example 5
A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was kept at 0 ° C. and the doctor blade was not used.
比較例6
 ダイから押し出されたポリエチレン樹脂溶液を冷却ロールで冷却する替わりに、25℃に保った水中に1分間浸漬した以外は実施例2と同様にして、電池用セパレータを得た。
Comparative Example 6
Instead of cooling the polyethylene resin solution extruded from the die with a cooling roll, a battery separator was obtained in the same manner as in Example 2 except that the polyethylene resin solution was immersed in water kept at 25 ° C. for 1 minute.
比較例7
 冷却ロールの内部冷却水温度を50℃に保った以外は実施例2と同様にして、電池用セパレータを得た。
Comparative Example 7
A battery separator was obtained in the same manner as in Example 2 except that the internal cooling water temperature of the cooling roll was kept at 50 ° C.
比較例8
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、o-トリジンジイソシアネート(TODI)0.8モル、2,4-トリレンジイソシアネート(TDI)0.2モル、フッ化カリウム0.01モルを固形分濃度が14%となるようにN-メチル-2-ピロリドンと共に仕込み、100℃で5時間攪拌した後、固形分濃度が14%となるようにN-メチル-2-ピロリドンで希釈してポリアミドイミド樹脂溶液を合成した。
 ポリアミドイミド樹脂溶液及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンをそれぞれ26:34:40の重量比率で配合し、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗布液(h)を得た。塗布液(h)を実施例2と同様にして得られた積層ポリエチレン微多孔質膜にグラビアコート法にて実施例2と同様に塗布し、電池用セパレータを得た。
Comparative Example 8
In a four-necked flask equipped with a thermometer, cooling tube, and nitrogen gas inlet tube, 1 mol of trimellitic anhydride (TMA), 0.8 mol of o-tolidine diisocyanate (TODI), 2,4-tolylene diisocyanate (TDI) ) 0.2 mol and 0.01 mol of potassium fluoride were charged together with N-methyl-2-pyrrolidone so that the solid concentration was 14%, and stirred at 100 ° C. for 5 hours. A polyamide-imide resin solution was synthesized by diluting with N-methyl-2-pyrrolidone.
A polyamide-imide resin solution, alumina particles having an average particle size of 0.5 μm, and N-methyl-2-pyrrolidone were blended in a weight ratio of 26:34:40, respectively, and zirconium oxide beads (“Traceram” manufactured by Toray Industries, Inc. (registered) (Trademark) beads, 0.5 mm in diameter) were placed in a polypropylene container and dispersed for 6 hours with a paint shaker (Toyo Seiki Seisakusho). Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and obtained the coating liquid (h). The coating liquid (h) was applied to the laminated polyethylene microporous membrane obtained in the same manner as in Example 2 by the gravure coating method in the same manner as in Example 2 to obtain a battery separator.
 実施例1~21、比較例1~8の製造条件を表1-1、表1-2に示す。また、得られた積層ポリエチレン微多孔質膜および電池用セパレータの特性を表2に示す。 The manufacturing conditions of Examples 1 to 21 and Comparative Examples 1 to 8 are shown in Table 1-1 and Table 1-2. In addition, Table 2 shows the characteristics of the obtained laminated polyethylene microporous membrane and battery separator.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1  電池用セパレータ
2  積層ポリエチレン微多孔質膜
3  改質多孔層
4  両面粘着テープ
5、5’ アルミニウム板
6  ポリエチレン球晶の結晶核
7  ダイ
8  ポリエチレン樹脂溶液
9  冷却ロール
10 ドクターブレード
11 ゲル状成形物
DESCRIPTION OF SYMBOLS 1 Battery separator 2 Laminated polyethylene microporous film 3 Modified porous layer 4 Double-sided adhesive tape 5, 5 'Aluminum plate 6 Polyethylene spherulite crystal nucleus 7 Die 8 Polyethylene resin solution 9 Cooling roll 10 Doctor blade 11 Gel-like molded product

Claims (10)

  1. 積層ポリエチレン微多孔質膜とその少なくとも一方の表面に存在する改質多孔層とを有する電池用セパレータであって、前記積層ポリエチレン微多孔質膜は、少なくともA層とB層を含んでなる多孔質積層体であり、シャットダウン温度が128~135℃、厚み20μmあたりの30℃から105℃における透気抵抗度上昇率が1.5sec/100ccAir/℃未満であり、少なくとも一方の外界に面した表面に3個/cm以上、200個/cm以下のポリエチレンからなる突起が不規則に存在し、前記突起は0.5μm≦H(Hは突起の高さ)および5μm≦W≦50μm(Wは突起の大きさ)をみたし、前記改質多孔層は前記積層ポリエチレン微多孔質膜の突起を有する面上に積層され、かつ、引っ張り強度が5N/mm以上のバインダーと無機粒子とを含む電池用セパレータ。 A battery separator having a laminated polyethylene microporous membrane and a modified porous layer present on at least one surface thereof, wherein the laminated polyethylene microporous membrane comprises at least an A layer and a B layer. A laminated body having a shutdown temperature of 128 to 135 ° C., a rate of increase in air resistance from 30 ° C. to 105 ° C. per 20 μm thickness of less than 1.5 sec / 100 cc Air / ° C., and at least one surface facing the outside world There are irregular projections made of polyethylene of 3 pieces / cm 2 or more and 200 pieces / cm 2 or less, and the projections are 0.5 μm ≦ H (H is the height of the projection) and 5 μm ≦ W ≦ 50 μm (W is it viewed magnitude) of the projections, the modified porous layer is laminated on a surface having a projection of the laminated microporous polyethylene membrane, and a tensile strength of 5N / mm 2 or more Battery separator comprising the binder and the inorganic particles.
  2. 積層ポリエチレン微多孔質膜がA層/B層/A層の3層構造である請求項1に記載の電池用セパレータ。 The battery separator according to claim 1, wherein the laminated polyethylene microporous membrane has a three-layer structure of A layer / B layer / A layer.
  3. 積層ポリエチレン微多孔質膜を形成するB層に、メルトフローレートが25~150g/10min、融点が120℃以上130℃未満である低融点樹脂を含んでなる請求項1または2に記載の電池用セパレータ。 3. The battery according to claim 1, wherein the layer B forming the laminated polyethylene microporous membrane comprises a low melting point resin having a melt flow rate of 25 to 150 g / 10 min and a melting point of 120 ° C. or higher and lower than 130 ° C. Separator.
  4. 低融点樹脂が低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・α-オレフィン共重合体からなる群から選ばれる少なくとも1種である請求項1~3のいずれか1つに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3, wherein the low melting point resin is at least one selected from the group consisting of low density polyethylene, linear low density polyethylene, and ethylene / α-olefin copolymer. .
  5. 積層ポリエチレン微多孔質膜を形成するB層中の低融点樹脂の含有量はポリエチレン樹脂全体を100質量%として、20質量%以上、35質量%以下である請求項1~4のいずれか1つに記載の電池用セパレータ。 The content of the low-melting-point resin in the layer B forming the laminated polyethylene microporous membrane is 20% by mass or more and 35% by mass or less, based on 100% by mass of the entire polyethylene resin. The battery separator described in 1.
  6. B層の厚みが3μm以上、15μm以下である請求項1~5のいずれか1つに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 5, wherein the thickness of the B layer is 3 µm or more and 15 µm or less.
  7. バインダーがポリビニルアルコール又はアクリル系樹脂である請求項1~6のいずれか1つに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 6, wherein the binder is polyvinyl alcohol or an acrylic resin.
  8. 無機粒子が炭酸カルシウム、アルミナ、チタニア、硫酸バリウム及びベーマイトからなる群から選ばれる少なくとも1種を含む請求項1~7のいずれか1つに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 7, wherein the inorganic particles include at least one selected from the group consisting of calcium carbonate, alumina, titania, barium sulfate, and boehmite.
  9. 以下の工程(a)~(g)を含む、請求項1~8のいずれか1つに記載の電池用セパレータの製造方法。
    (a)A層を構成するポリエチレン樹脂に成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Aを調製する工程
    (b)B層を構成するポリエチレン樹脂に低融点樹脂および、成形用溶剤を添加した後、溶融混練し、ポリエチレン樹脂溶液Bを調製する工程
    (c)工程(a)及び(b)にて得られたポリエチレン樹脂溶液A及びBをダイより押し出して、うち少なくとも一方を、成形用溶剤除去手段により成形用溶剤が除去した表面を有する冷却ロールにて冷却し、積層ゲル状成形物を形成する工程
    (d)前記積層ゲル状成形物を機械方向および幅方向に延伸し、積層延伸成形物を得る工程
    (e)前記積層成形用溶剤を積層延伸成形物から前記成形用溶剤を抽出除去し、乾燥し、積層多孔質成形物を得る工程
    (f)積層多孔質成形物を熱処理し、積層ポリエチレン微多孔質膜を得る工程
    (g)前記冷却ロールが接していた積層ポリエチレン微多孔質膜の表面に、引っ張り強度が5N/mm以上のバインダー、無機粒子及びバインダーを溶解または分散しうる溶媒とを含む塗布液を用いて積層膜を形成し、乾燥する工程。
    The method for producing a battery separator according to any one of claims 1 to 8, comprising the following steps (a) to (g).
    (A) Step of adding a molding solvent to the polyethylene resin constituting the A layer and then melt-kneading to prepare the polyethylene resin solution A (b) Low melting point resin and molding solvent for the polyethylene resin constituting the B layer Step (c) of preparing polyethylene resin solution B by extruding polyethylene resin solutions A and B obtained in steps (a) and (b) from a die, and adding at least one of Step (d) of forming a laminated gel-like molded product by cooling with a cooling roll having a surface from which the molding solvent has been removed by the molding solvent removing means, and stretching the laminated gel-like molded product in the machine direction and the width direction, Step (e) of obtaining a laminated stretched molded product (e) Step of extracting the solvent for molding from the laminated stretched molded product and removing the molding solvent and drying to obtain a laminated porous molded product (f) Laminated porous molded product Heat treatment, the surface of the step of obtaining a laminated microporous polyethylene membrane (g) the cooling roll was in contact laminating the microporous polyethylene membrane, the tensile strength of 5N / mm 2 or more binders, dissolved inorganic particles and a binder or The process of forming a laminated film using the coating liquid containing the solvent which can be disperse | distributed, and drying.
  10. 前記(c)工程における成形用溶剤除去手段がドクターブレードを用いて掻き落とす手段である請求項9に記載の電池用セパレータの製造方法。 The method for producing a battery separator according to claim 9, wherein the forming solvent removing means in the step (c) is means for scraping off using a doctor blade.
PCT/JP2015/064694 2014-06-10 2015-05-22 Battery separator and production method therefor WO2015190264A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167032477A KR102137377B1 (en) 2014-06-10 2015-05-22 Battery separator and production method therefor
CN201580030582.0A CN106463679B (en) 2014-06-10 2015-05-22 Battery separator and its manufacturing method
JP2015543611A JP5876628B1 (en) 2014-06-10 2015-05-22 Battery separator and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014119717 2014-06-10
JP2014-119717 2014-06-10

Publications (1)

Publication Number Publication Date
WO2015190264A1 true WO2015190264A1 (en) 2015-12-17

Family

ID=54833369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064694 WO2015190264A1 (en) 2014-06-10 2015-05-22 Battery separator and production method therefor

Country Status (4)

Country Link
JP (1) JP5876628B1 (en)
KR (1) KR102137377B1 (en)
CN (1) CN106463679B (en)
WO (1) WO2015190264A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340342A1 (en) 2016-12-20 2018-06-27 Asahi Kasei Kabushiki Kaisha Separator for power storage device, laminated body, roll, lithium-ion secondary battery or power storage device using it
EP3340343A1 (en) 2016-12-20 2018-06-27 Asahi Kasei Kabushiki Kaisha Separator for power storage device, and laminated body, roll and secondary battery using it
KR20180071959A (en) 2016-12-20 2018-06-28 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll, lithium ion secondary battery or energy storage device using the same
KR20180071961A (en) 2016-12-20 2018-06-28 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll and secondary battery using the same
WO2019093184A1 (en) * 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
JP2020136094A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2020225108A1 (en) * 2019-05-09 2020-11-12 Brückner Maschinenbau GmbH & Co. KG Film with at least two layers and method for producing the same
EP3843200A1 (en) 2019-12-25 2021-06-30 Ricoh Company, Ltd. Porous structure, insulating layer, electrode, power storage element, method for manufacturing porous structure, apparatus for manufacturing porous structure, carrier, separation layer, and reaction layer
KR20220115606A (en) 2020-01-31 2022-08-17 아사히 가세이 가부시키가이샤 Microporous membrane and manufacturing method thereof
CN114976473A (en) * 2022-06-08 2022-08-30 派恩(中山)科技有限公司 Modified cellulose membrane used for high-temperature lithium ion battery diaphragm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201925296A (en) 2017-11-16 2019-07-01 美商3M新設資產公司 Method of making polymer matrix composites
CN113839147A (en) * 2021-08-27 2021-12-24 湖北亿纬动力有限公司 Diaphragm, preparation method thereof and lithium ion secondary battery
CN117895188A (en) * 2024-03-12 2024-04-16 宁德新能源科技有限公司 Separator, electrochemical device, and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537845A (en) * 2007-08-31 2010-12-09 東燃化学株式会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2012076255A (en) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc Laminated porous film, separator for nonaqueous secondary battery, and nonaqueous electrolyte secondary battery
JP2012521914A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous polymer membrane, battery separator, and production method thereof
WO2013146585A1 (en) * 2012-03-30 2013-10-03 東レバッテリーセパレータフィルム株式会社 Polyethylene microporous membrane and process for manufacturing same
WO2013165151A1 (en) * 2012-04-30 2013-11-07 주식회사 엘지화학 Separator and an electro-chemical device having the same
WO2014132791A1 (en) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 Porous polyolefin film, battery separator obtained using same, and processes for producing these

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931083B1 (en) 1970-08-17 1974-08-19
JP4931163B2 (en) 2001-04-24 2012-05-16 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
CN1897329A (en) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 Microporous polyolefin laminated diaphragm for lithium-ion battery and its production
EP2169742A4 (en) 2007-06-06 2013-06-26 Teijin Ltd Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
KR101147604B1 (en) * 2007-10-12 2012-05-23 주식회사 엘지화학 Preparation Process for Preventing Deformation of Jelly-roll Type Electrode Assembly
CN101271968A (en) * 2008-05-16 2008-09-24 辽源市鸿图纸业有限公司 Mercury-free diaphragm paper for laminated cell
KR101044700B1 (en) 2009-03-16 2011-06-28 (주)베이직테크 Power suppling apparatus of light emitted diode dispaly and the methoe thereof
JP5323590B2 (en) 2009-06-19 2013-10-23 旭化成イーマテリアルズ株式会社 Multilayer porous membrane, resin binder and coating solution
JP5327540B2 (en) 2009-09-28 2013-10-30 トヨタ自動車株式会社 Separator for lithium ion secondary battery and manufacturing method thereof
JP2011159506A (en) * 2010-02-01 2011-08-18 Sharp Corp Nonaqueous secondary battery
JP5495210B2 (en) 2010-07-21 2014-05-21 東レバッテリーセパレータフィルム株式会社 Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP5296917B1 (en) 2012-11-16 2013-09-25 東レバッテリーセパレータフィルム株式会社 Battery separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537845A (en) * 2007-08-31 2010-12-09 東燃化学株式会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2012521914A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous polymer membrane, battery separator, and production method thereof
JP2012076255A (en) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc Laminated porous film, separator for nonaqueous secondary battery, and nonaqueous electrolyte secondary battery
WO2013146585A1 (en) * 2012-03-30 2013-10-03 東レバッテリーセパレータフィルム株式会社 Polyethylene microporous membrane and process for manufacturing same
WO2013165151A1 (en) * 2012-04-30 2013-11-07 주식회사 엘지화학 Separator and an electro-chemical device having the same
WO2014132791A1 (en) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 Porous polyolefin film, battery separator obtained using same, and processes for producing these

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340342A1 (en) 2016-12-20 2018-06-27 Asahi Kasei Kabushiki Kaisha Separator for power storage device, laminated body, roll, lithium-ion secondary battery or power storage device using it
EP3340343A1 (en) 2016-12-20 2018-06-27 Asahi Kasei Kabushiki Kaisha Separator for power storage device, and laminated body, roll and secondary battery using it
KR20180071959A (en) 2016-12-20 2018-06-28 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll, lithium ion secondary battery or energy storage device using the same
JP2018101613A (en) * 2016-12-20 2018-06-28 旭化成株式会社 Separator for electric storage device, laminate using the same, wound body, lithium ion secondary battery, or electric storage device
KR20180071961A (en) 2016-12-20 2018-06-28 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll and secondary battery using the same
KR20200030045A (en) 2016-12-20 2020-03-19 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll and secondary battery using the same
KR20200030046A (en) 2016-12-20 2020-03-19 아사히 가세이 가부시키가이샤 Separator for energy storage device, and laminated body, roll, lithium ion secondary battery or energy storage device using the same
WO2019093184A1 (en) * 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
JP2020136094A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7096978B2 (en) 2019-02-20 2022-07-07 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2020225108A1 (en) * 2019-05-09 2020-11-12 Brückner Maschinenbau GmbH & Co. KG Film with at least two layers and method for producing the same
EP3843200A1 (en) 2019-12-25 2021-06-30 Ricoh Company, Ltd. Porous structure, insulating layer, electrode, power storage element, method for manufacturing porous structure, apparatus for manufacturing porous structure, carrier, separation layer, and reaction layer
US11811072B2 (en) 2019-12-25 2023-11-07 Ricoh Company, Ltd. Porous structure, insulating layer, electrode, power storage element, method for manufacturing porous structure, apparatus for manufacturing porous structure, carrier, separation layer, and reaction layer
KR20220115606A (en) 2020-01-31 2022-08-17 아사히 가세이 가부시키가이샤 Microporous membrane and manufacturing method thereof
CN114976473A (en) * 2022-06-08 2022-08-30 派恩(中山)科技有限公司 Modified cellulose membrane used for high-temperature lithium ion battery diaphragm
CN114976473B (en) * 2022-06-08 2024-05-07 派恩(中山)科技有限公司 Modified cellulose membrane for high-temperature lithium ion battery separator

Also Published As

Publication number Publication date
KR102137377B1 (en) 2020-07-24
JPWO2015190264A1 (en) 2017-04-20
CN106463679B (en) 2019-04-19
JP5876628B1 (en) 2016-03-02
CN106463679A (en) 2017-02-22
KR20170016827A (en) 2017-02-14

Similar Documents

Publication Publication Date Title
JP5876628B1 (en) Battery separator and method for producing the same
JP5876629B1 (en) Battery separator and method for producing the same
JP5845381B1 (en) Polyolefin laminated porous membrane, battery separator using the same, and method for producing polyolefin laminated porous membrane
JP6323449B2 (en) Laminated porous membrane, method for producing the same, and battery separator
JP5857151B2 (en) Polyolefin porous membrane, battery separator using the same, and production method thereof
JP5857155B2 (en) Polyolefin porous membrane, battery separator using the same, and production method thereof
JP5801983B1 (en) Battery separator and method for producing the same
KR102157492B1 (en) Laminated polyolefin microporous membrane, a battery separator, and a method for producing the same
JP6558363B2 (en) Polyolefin laminated porous membrane, battery separator using the same, and production method thereof
JP5792914B1 (en) Laminated porous membrane and method for producing the same
JP6398498B2 (en) Battery separator using polyolefin laminated porous membrane and method for producing the same
JP6398328B2 (en) Battery separator and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015543611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032477

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806427

Country of ref document: EP

Kind code of ref document: A1