WO2015190146A1 - Inkjet recording device - Google Patents

Inkjet recording device Download PDF

Info

Publication number
WO2015190146A1
WO2015190146A1 PCT/JP2015/057545 JP2015057545W WO2015190146A1 WO 2015190146 A1 WO2015190146 A1 WO 2015190146A1 JP 2015057545 W JP2015057545 W JP 2015057545W WO 2015190146 A1 WO2015190146 A1 WO 2015190146A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
unit
line sensor
recording medium
nozzles
Prior art date
Application number
PCT/JP2015/057545
Other languages
French (fr)
Japanese (ja)
Inventor
亨 大内
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016527666A priority Critical patent/JPWO2015190146A1/en
Publication of WO2015190146A1 publication Critical patent/WO2015190146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/46Applications of alarms, e.g. responsive to approach of end of line

Definitions

  • the present invention relates to an ink jet recording apparatus.
  • an ink jet recording apparatus that forms an image on a recording medium by applying ink to a recording medium such as paper.
  • a recording head that has a nozzle array that extends in a direction perpendicular to the conveyance direction of the recording medium (hereinafter referred to as a width direction) and is arranged over a range wider than the width of the recording medium.
  • a width direction a direction perpendicular to the conveyance direction of the recording medium
  • a single-pass type that forms an image by ejecting ink while conveying a recording medium.
  • a single-pass inkjet recording apparatus is highly productive because it can print at high speed.
  • a predetermined test pattern is formed by ejecting ink from individual nozzles in order to improve nozzle ejection failure and other formation image quality, and downstream of the transport direction.
  • a test pattern is read by a provided line sensor to detect defective nozzles and other image quality.
  • An object of the present invention is to appropriately read a test pattern at an overlapping portion when a plurality of line sensors are arranged side by side so as to cause overlapping.
  • An inkjet recording apparatus that forms an image with a full-line type head module that discharges ink from a plurality of nozzles to a recording medium conveyed in a predetermined conveyance direction, A plurality of line sensors for reading a first test pattern formed by the head module, arranged along a direction intersecting the conveyance direction of the recording medium, The plurality of line sensors are arranged such that end portions in a direction intersecting a conveyance direction of the recording medium in the detection range overlap each other, A positional relationship information acquisition unit that acquires, for each line sensor, a positional relationship in a direction intersecting a conveyance direction of the recording medium between the plurality of line sensors and the plurality of nozzles; With reference to the positional relationship acquired by the positional relationship information acquisition unit, an analysis unit that analyzes the reading result of the first test pattern for each line sensor, It is characterized by providing.
  • the head module includes a plurality of inkjet heads having a plurality of nozzles arranged along a direction intersecting a conveyance direction of the recording medium,
  • the plurality of inkjet heads are arranged such that the plurality of nozzles are arranged along a direction intersecting the recording medium conveyance direction, and the nozzles at the ends in the direction intersecting the recording medium conveyance direction are overlapped with each other. It is characterized by being.
  • the invention according to claim 3 is the ink jet recording apparatus according to claim 2,
  • the plurality of line sensors and the plurality of inkjet heads are arranged so that the overlapping range of the inkjet heads does not straddle one end or both ends of the overlapping range of the line sensors.
  • the analysis unit analyzes a reading result of the first test pattern of only one of the line sensors.
  • the invention according to claim 5 is the inkjet recording apparatus according to any one of claims 1 to 4,
  • the positional relationship information acquisition unit is based on the reading result of each line sensor of the second test pattern for detecting the positional relationship and the position of the nozzle used for recording the second test pattern among the plurality of nozzles. The positional relationship is obtained for each line sensor.
  • the invention according to claim 6 is the ink jet recording apparatus according to any one of claims 1 to 5,
  • the first test pattern includes a non-discharge detection pattern for detecting non-discharge of each of the plurality of nozzles
  • the analysis unit refers to the positional relationship acquired by the positional relationship information acquisition unit, analyzes the reading result of the non-ejection detection pattern for each line sensor, and identifies the position of the non-ejection nozzle. It is characterized by.
  • FIG. 1 is a diagram illustrating a main configuration of an image forming system according to an embodiment of the present invention. It is a bottom view of a head module. It is a bottom view of a reading unit. It is explanatory drawing which shows the positional relationship of an inkjet head and a line sensor. It is a block diagram which shows the control system which concerns on an image forming system. It is explanatory drawing which shows the test pattern which detects a discharge failure nozzle. It is explanatory drawing which shows the positional relationship of each photoelectric conversion element of each line sensor, and the line of a test pattern. It is a figure which shows the detection output of the line of the test pattern by each photoelectric conversion element of each line sensor. It is explanatory drawing which shows the relationship between the detection output of the line of the test pattern by each photoelectric conversion element of each line sensor, and the passage position calculated
  • FIG. 1 is a diagram illustrating a main configuration of an image forming system 1 according to an embodiment of the present invention.
  • the image forming system 1 includes a supply unit 10, a main body unit 100, and a discharge unit 20.
  • the supply unit 10, the main body unit 100, and the discharge unit 20 are provided and connected along a predetermined direction (the X direction shown in FIG. 1).
  • the supply unit 10 stores a recording medium P (for example, paper) on which an image is formed by the image forming unit 120 provided in the main body unit 100 and supplies the recording medium P to the main body unit 100 one by one.
  • a recording medium P for example, paper
  • the main body 100 forms an image on the recording medium P supplied from the supply unit 10 and discharges the recording medium P on which the image is formed to the discharge unit 20.
  • the main body 100 includes a transport unit 110 that transports the recording medium P, an image forming unit 120 that forms an image on the recording medium P, and an irradiation unit 130 that irradiates the recording medium P on which the image is formed by the image forming unit 120 with energy rays.
  • the image forming system 1 includes a reading unit 140 that reads a formed image on a medium conveyed to the conveying unit 110, and functions as an ink jet recording apparatus in the image forming system 1.
  • the transport unit 110 transports the medium to the image forming unit 120, the irradiation unit 130, and the reading unit 140.
  • the transport unit 110 includes, for example, a cylindrical drum 110a.
  • the drum 110a is provided so as to be rotatable about an axis passing through the circular center of the cylinder, and carries the recording medium P on the cylindrical outer peripheral surface of the drum 110a.
  • the conveyance unit 110 conveys one surface of the recording medium P carried on the outer peripheral surface while facing the image forming unit 120, the irradiation unit 130, and the reading unit 140 by rotating the drum 110a.
  • the image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided along the outer peripheral surface in the vicinity of the position where the outer peripheral surface of the rotating drum 110a passes. Specifically, as illustrated in FIG. 1, the image forming unit 120, the irradiation unit 130, and the reading unit 140 are supplied from the supply unit 10 in a conveyance path along which the recording medium P is conveyed by passing through the outer peripheral surface of the drum 110 a.
  • the image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided in this order from the upstream side to the downstream side along the conveyance path for conveying the supplied recording medium P to the discharge unit 20 side.
  • the transport unit 110 has a detection unit 110b that detects the rotation angle of the drum 110a (see FIG. 5), and is carried on the outer peripheral surface of the drum 110a by the rotation angle of the drum 110a detected by the detection unit 110b.
  • the position of the transported recording medium P is provided so that it can be detected.
  • the detection unit 110b is, for example, an encoder provided on the rotation shaft of the drum 110a.
  • the detection unit 110b is an example and is not limited to this, and may be any configuration that can detect the rotation angle of the drum 110a.
  • the transport unit 110 has a mechanism for inverting the front and back of the recording medium P.
  • the transport unit 110 includes, for example, a switchback unit 115.
  • the switchback unit 115 reverses and conveys the recording medium P by switchback.
  • the switchback unit 115 includes, for example, two cylinders (first cylinder 115a and second cylinder 115b) and a pair of belt loops (belt loop 115c) shown in FIG.
  • the recording medium P is transferred from the drum 110a to the first cylinder 115a that rotates counterclockwise in FIG. 1 through the cylinder 111 that rotates clockwise in FIG. 1, and then rotates in the clockwise direction in FIG. It is delivered to the two cylinders 115b.
  • the belt loop 115c reverses in the clockwise direction in FIG. To the drum 110a.
  • the recording medium P returned to the drum 110a by the belt loop 115c is again carried on the drum 110a in a state where the surface on which the image is formed abuts on the outer peripheral surface of the drum 110a. That is, the recording medium P is turned over by the switchback unit 115. Further, the leading end along the conveyance direction of the recording medium P returned to the drum 110a is the end on the trailing side when the recording medium P is conveyed by the drum 110a before being returned. That is, the recording medium P is turned over by being conveyed by the switchback unit 115 so as to be reversed. As described above, the transport unit 110 can transport the recording medium P such that the both surfaces of the recording medium P are sequentially opposed to the image forming unit 120 by reversing and transporting the recording medium P by the switchback unit 115. It is provided as possible.
  • the position where the first cylinder 115a of the switchback unit 115 takes over the conveyance of the recording medium P from the drum 110a is downstream of the irradiation unit 130 in the conveyance direction of the recording medium P. Further, when the belt loop 115c returns the recording medium P to the drum 110a, the returned recording medium P is conveyed again to the image forming unit 120 from the upstream side of the image forming unit 120.
  • the switchback unit 115 reverses the front and back of the recording medium P on which the image is formed on one side, It functions as a reversing unit that transports the recording medium P to the upstream side of the image forming unit 120 in the transport direction 110.
  • the reading unit 140 is provided on the downstream side of the image forming unit 120 in the transport direction and on the upstream side of the switchback unit 115. Therefore, the switchback unit 115 conveys the recording medium P conveyed by the conveyance unit 110 through the image forming unit 120 and the reading unit 140 to the upstream side of the reading unit 140 in the conveyance direction of the conveyance unit 110. Then, it functions as a re-conveying unit that conveys the conveying unit 110 again.
  • the image forming unit 120 forms an image on the recording medium P.
  • the image forming unit 120 includes, for example, a head module 121 provided with a plurality of inkjet heads 122 each having a nozzle for ejecting ink onto a recording medium P carried on the drum 110a.
  • the head module 121 is individually provided for each color of ink ejected onto the recording medium P (for example, four colors of cyan (C), magenta (M), yellow (Y), and black (K)).
  • the image forming unit 120 having the head module 121 forms an image on the recording medium P by ejecting ink.
  • FIG. 2 is a bottom view showing a surface (bottom surface) facing the recording medium P in the K (black) head module 121.
  • the Y (yellow), M (magenta), and C (cyan) head modules 121 have the same configuration.
  • Each head module 121 includes a plurality of nozzles N in which openings are arranged facing the conveyance surface of the recording medium P, a drive circuit (not shown), and an ink ejection unit.
  • the ink ejection unit is operated by the drive voltage output from the drive circuit based on the control signal from the control unit 250, and the ink is ejected by timing control from the openings of the plurality of nozzles N. .
  • the head module 121 is a full-line type line head, and nozzles N are arranged so that ink can be ejected over the entire width of the recording medium P where an image can be formed in the width direction perpendicular to the transport direction. . Further, as described above, the head module 121 is provided for each of the four colors Y (yellow), M (magenta), C (cyan), and K (black), but these are all the same structure.
  • FIG. 2 shows only one head module 121.
  • a plurality of inkjet heads 122 are arranged in a staggered arrangement in a direction (width direction W) orthogonal to the conveyance direction M of the recording medium P.
  • a plurality of nozzles N are arranged along the width direction, and some of the nozzles N provided at the end in the width direction W of each inkjet head 122 are other inkjet heads. It arrange
  • the irradiation unit 130 irradiates an energy ray for fixing the image on the recording medium P on which the image is formed by the image forming unit 120.
  • the energy rays irradiated by the irradiation unit 130 depend on the ink characteristics. For example, when ultraviolet curable ink that is cured by irradiation of ultraviolet rays is used in the head module 121 of the image forming unit 120, the energy rays irradiated from the irradiation unit 130 are ultraviolet rays.
  • the irradiation unit 130 shields a light source such as a light emitting diode (LED) that emits ultraviolet (UV) light, and a range irradiated with the ultraviolet light emitted from the light source as a predetermined irradiation region.
  • a light source such as a light emitting diode (LED) that emits ultraviolet (UV) light
  • UV ultraviolet
  • the predetermined irradiation region is a region in a path through which the outer peripheral surface of the drum 110a of the transport unit 110 carries the recording medium P and passes.
  • the irradiation unit 130 irradiates the recording medium P that is transported by the transport unit 110 and passes through a predetermined irradiation region with ultraviolet rays.
  • the irradiation unit 130 When the energy beam is irradiated by the irradiation unit 130, the ink ejected on the recording surface of the recording medium P is cured and fixed on the recording surface.
  • the irradiation unit 130 functions as a fixing unit that fixes an image on the recording medium P on which the image is formed by the image forming unit 120.
  • the reading unit 140 reads a formed image on the medium conveyed to the conveyance unit 110. Specifically, as shown in FIG. 3, the reading unit 140 is not illustrated with two line sensors 141 ⁇ / b> A and 141 ⁇ / b> B composed of, for example, CCDs (charge-coupled devices) in which photoelectric conversion elements are arranged along the longitudinal direction. The reflected light from the recording medium P illuminated by the illumination is detected by the two line sensors 141A and 141B, and an electrical signal corresponding to the detection result is output. Based on the electrical signal output from the photoelectric conversion element of the reading unit 140, data corresponding to the reading result is generated and processed as the reading result.
  • CCDs charge-coupled devices
  • the two line sensors 141A and 141B are arranged in the vicinity of the outer peripheral surface of the drum 110a so that the alignment direction of the photoelectric conversion elements is parallel to the width direction W.
  • the reading unit 140 reads the entire image forming range in the width direction W of each head module 121 described above by the two line sensors 141A and 141B.
  • These adjacent line sensors 141A and 141B are arranged such that an overlapping range K in which some photoelectric conversion elements provided at the end in the width direction W overlap is formed. Further, in order to arrange in this way, the two adjacent line sensors 141A and 141B are arranged so as to be shifted by a length L in the transport direction M.
  • the plurality of line sensors 141A and 141B and the plurality of inkjet heads are arranged so that the overlapping range J of the plurality of inkjet heads 122 does not straddle one end or both ends of the overlapping range K of the line sensors 141A and 141B.
  • 122 are arranged. That is, the width of the overlapping range J of the inkjet head 122 is smaller than the width of the overlapping range K of the line sensors 141A and 141B, and only one of the overlapping ranges J of the plurality of inkjet heads 122 has a width as shown in FIG.
  • the direction W is inside the overlapping range K of the line sensors 141A and 141B, and all the overlapping ranges J of the other inkjet heads 122 are outside the overlapping range K of the line sensors 141A and 141B.
  • the CCD is exemplified as the line sensors 141A and 141B, but a CIS (Contact Image Sensor) in which photoelectric conversion elements are arranged in the width direction W may be used as the line sensors 141A and 141B.
  • a CIS Contact Image Sensor
  • the discharge unit 20 causes the recording medium P to stand by until the recording medium P discharged from the drum 110a of the main body unit 100 via the cylinder 111, the belt loop 112, and the discharge switching guide 113 is collected by the user.
  • the control unit 250 controls whether the recording medium P is discharged to the discharge unit 20 via the cylinder 111 or conveyed to the switchback unit 115.
  • FIG. 5 is a block diagram illustrating a control system of the image forming system 1.
  • the image forming system 1 includes, for example, a setting unit 210, an acquisition unit 220, a storage unit 230, a change unit 240, a control unit 250, a display unit 260, and the like in the main body unit 100.
  • the setting unit 210 includes input devices such as buttons, keys, and a touch panel used for input for various settings related to the operation of the image forming system 1, and corresponds to setting contents corresponding to user operations on the input devices. To the control unit 250. Specifically, for example, the setting unit 210 outputs a signal for executing image formation by the image forming unit 120 to the control unit 250 in accordance with a user operation.
  • the acquisition unit 220 acquires data that is the basis of an image formed by the image forming unit 120.
  • the acquisition unit 220 includes a configuration related to communication such as a network interface card (NIC), for example, and a print job transmitted from an external device such as a PC connected via the communication. To get.
  • the print job includes image data corresponding to the image formed by the image forming unit 120.
  • the storage unit 230 stores the image data of the first and second test patterns and the positional relationship between the plurality of line sensors 141A and 141B and the plurality of nozzles N in the direction (width direction W) intersecting the recording medium conveyance direction. Data memory.
  • the first test pattern for example, there is a non-ejection detection pattern for detecting ejection failure nozzles in each head module 121.
  • the second test pattern there is a test pattern for obtaining a positional deviation in the width direction in the two line sensors 141A and 141B described above.
  • the changing unit 240 changes a condition relating to image formation by the image forming unit 120 based on the reading result by the reading unit 140.
  • the changing unit 240 includes, for example, an integrated circuit such as a PLD or an ASIC, or a combination thereof, and the conditions related to image formation are determined by the cooperation of the processing unit and the storage device mounted on the circuit. Processing is performed.
  • a CPU that executes predetermined software may be configured to realize the function as the changing unit 240.
  • the condition relating to ink ejection from the nozzles is changed to a condition that considers that ink ejection from defective ejection nozzles is not performed.
  • the changing unit 240 makes a change such as increasing the printing rate (dot appearance rate) of the nozzle N adjacent to the defective nozzle N to compensate for the defective portion due to the defective discharge. Thereby, it is possible to reduce the influence of the defective nozzle N on the image quality.
  • the control unit 250 controls the operation of each unit of the image forming system 1.
  • the control unit 250 includes, for example, a CPU, a RAM, a ROM, and the like.
  • the CPU reads and executes various programs, data, and the like corresponding to the processing contents from a storage device such as a ROM, and controls the operation of each unit of the image forming system 1 according to the executed processing contents.
  • the RAM temporarily stores various programs and data processed by the CPU.
  • the ROM stores various programs and data read by the CPU or the like.
  • the display unit 260 performs various displays related to the operation of the image forming system 1 under the control of the control unit 250.
  • the display unit 260 includes, for example, a display device such as a liquid crystal display provided integrally with an input device for performing input in a touch panel format, and performs various displays using the display device.
  • the liquid crystal display is merely an example of a display device, and may be another display device (for example, an organic EL (Electroluminescence) display).
  • the control system of the reading unit 140 will be described in detail.
  • a first test pattern for detecting an ejection failure nozzle in each head module 121 that is read by the line sensors 141A and 141B of the reading unit 140 will be exemplified.
  • the first test pattern for detecting defective ejection nozzles is composed of lines having a predetermined length in the transport direction M individually ejected from all nozzles N of all inkjet heads 122. Yes.
  • each nozzle N forms a line by shifting the position in the transport direction M in units of four (which may be two or more depending on the sensor resolution, but is not limited to four).
  • each line of the first test pattern can be formed at a pitch four times the dot pitch in the width direction W, and good reading can be performed by the line sensors 141A and 141B with low resolution.
  • the line sensors 141A and 141B do not read the line at the position where it should be, and the nozzle N with defective ejection is specified by the undetected line.
  • each line sensor 141A, 141B has a photoelectric conversion element that should originally detect the line. There is a possibility that a photoelectric conversion element next to the line detects a line, which may cause a false detection.
  • a second test pattern for detecting the relative positional relationship in the width direction W between some of the nozzles of the inkjet head 122 and the photoelectric conversion elements of the line sensors 141A and 141B at an initial stage such as before shipment. Is detected, and the amount of displacement (positional displacement) in the width direction W of the line sensors 141A and 141B is detected.
  • the “partial nozzles N of the inkjet head 122” indicate a plurality of nozzles N that form the second test pattern.
  • the second test pattern is arranged in the transport direction M in an arrangement passing through the overlapping range K of the line sensors 141A and 141B in the width direction W as shown in FIG.
  • each line is comprised from the 1 or several line formed along.
  • the second test pattern is composed of a plurality of lines, it is desirable that each line be formed at a uniform interval in the width direction W.
  • the number of lines is sufficient, the more accurate displacement can be obtained as the number of lines increases.
  • the case where there are three lines L1 to L3 is illustrated for ease of explanation, but in reality, the width of the overlapping range K of the line sensors 141A and 141B is wide and the number of lines is more than three. There are many.
  • the number of photoelectric conversion elements included in the overlapping range K is larger than that in the illustrated example of FIG.
  • the ratio of the width of each line L1 to L3 and the width of each photoelectric conversion element is not limited to the example of FIG. 7, and can be changed according to the resolution of the line sensor.
  • the line sensor 141 ⁇ / b> A and the line sensor 141 ⁇ / b> B are displaced by a displacement amount S in the width direction W.
  • the outputs of the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B in the overlapping range K are shown in FIG.
  • the outer rectangles lined up in the width direction W are the cell lines of the line sensor, and the slightly smaller rectangles inside are the photoelectric conversion elements.
  • the detection outputs read by the photoelectric conversion elements A to H and a to h are converted into% display and shown in FIG. In FIG.
  • the output when one line is detected by one photoelectric conversion element is normalized as 100%, and the output when no line is detected is normalized as 0%. It is ideal that the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B have the same arrangement in the width direction W. However, as described above, they are actually shifted by the shift amount S. Yes. In this case, as shown in FIG. 8, the line L1 is detected at 80% and 20% output by the photoelectric conversion elements B and C of the line sensor 141A, and 40% by the photoelectric conversion elements a and b of the line sensor 141B. Detected at 60% output.
  • the line L2 is detected with 40% and 60% output by the photoelectric conversion elements D and E of the line sensor 141A, and is detected with 100% output by the photoelectric conversion element d of the line sensor 141B.
  • the line L3 is detected with 90% and 10% output by the photoelectric conversion elements G and H of the line sensor 141A, and detected with 40% and 60% output by the photoelectric conversion elements f and g of the line sensor 141B. Yes.
  • the output of the photoelectric conversion element is 100%.
  • the output decreases as the line moves away from the center of the photoelectric conversion element.
  • the relative positional relationship between the line and the photoelectric conversion element is determined.
  • the line L1 detected by the photoelectric conversion elements a and b of the line sensor 141B has an output of 40% and 60%, so the line L1 is between the center of the photoelectric conversion element a and the center of the photoelectric conversion element b. It can be specified that the vehicle passes through a position with a ratio of 6: 4.
  • FIG. 9 shows the relationship between the detection outputs of the lines L1 to L3 by the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B and the passing positions obtained therefrom.
  • the horizontal axes 1 to 8 in FIG. 9 indicate the center positions of the photoelectric conversion elements A to H of the line sensor 141A or the photoelectric conversion elements a to h of the line sensor 141B in the width direction W, and the vertical axis represents the photoelectric conversion elements.
  • the detection output is shown.
  • LA1 to LA3 indicate detection positions of the lines L1 to L3 obtained from the detection of the line sensor 141A
  • la1 to la3 indicate detection positions of the lines L1 to L3 obtained from the detection of the line sensor 141B.
  • the line L1 is detected at 80% and 20% by the photoelectric conversion elements B and C of the line sensor 141A, a ratio of 2: 8 is provided between the center of the photoelectric conversion element B and the center of the photoelectric conversion element C. Passing through position [2.2].
  • a ratio of 6: 4 is provided between the center of the photoelectric conversion element a and the center of the photoelectric conversion element b. It passes the position [1.6]. Since these difference values are 0.6, the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is required to be 0.6 times the photoelectric conversion element pitch.
  • the line L2 is detected at 40% and 60% by the photoelectric conversion elements D and E of the line sensor 141A, a ratio of 6: 4 between the center of the photoelectric conversion element D and the center of the photoelectric conversion element E is obtained. It passes the position [4.6]. Further, since the line L2 is detected at 100% by the photoelectric conversion element d of the line sensor 141B, the line L2 passes through the position [4.0] which is the center of the photoelectric conversion element d. Since these difference values are 0.6, the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is required to be 0.6 times the photoelectric conversion element pitch.
  • the line L3 is detected by 90% and 10% by the photoelectric conversion elements G and H of the line sensor 141A, a ratio of 1: 9 is provided between the center of the photoelectric conversion element G and the center of the photoelectric conversion element H. It passes through position [7.1]. Further, since the line L3 is detected at 40% and 60% by the photoelectric conversion elements f and g of the line sensor 141B, a ratio of 6: 4 is provided between the center of the photoelectric conversion element f and the center of the photoelectric conversion element g. It passes through the position [6.6]. Since these difference values are 0.5, it is required that the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is 0.5 times the photoelectric conversion element pitch.
  • the deviation in the width direction W between the line sensor 141A and the line sensor 141B obtained for each of the lines L1 to L3 in accordance with the resolution of the line sensors 141A and 141B varies, and thus the deviation in the width direction W. It is desirable to average. As described above, since the actual number of lines is more than three, more shift amounts in the width direction W can be acquired, and the line sensor 141A and the line can be obtained by obtaining an average value of the larger shift amounts. The shift amount in the width direction W of the sensor 141B can be obtained with higher accuracy.
  • the relative positional relationship in the width direction W of the photoelectric conversion element included in the line sensor 141A and the photoelectric conversion element included in the line sensor 141B is acquired.
  • the second test pattern is read by the two line sensors 141A and 141B, the three nozzles N of the inkjet head 122 and the line sensor 141A that have formed the second test pattern, the photoelectric conversion elements and the line sensor 141B.
  • the relative positional relationship in the width direction W of the photoelectric conversion element included in is acquired.
  • control unit 250 reads “the position of the nozzle N used for recording the second test pattern among the plurality of nozzles N and the reading results of the line sensors 141A and 141B of the second test pattern for detecting the positional relationship”. Based on the above, it functions as a “positional relationship information acquisition unit that obtains a positional relationship for each line sensor”.
  • all the nozzles of all the ink jet heads 122 are arranged at a prescribed nozzle pitch, so that the relative positional relationship in the width direction W of all the nozzles N can be acquired from some of the nozzles N. Therefore, from these, the relative positional relationship in the width direction W of all the nozzles N of all the inkjet heads 122, the photoelectric conversion elements included in the line sensor 141A, and the photoelectric conversion elements included in the line sensor 141B (“total positional relationship”). ”).
  • the correspondence relationship in the width direction W between the photoelectric conversion element of the line sensor 141A and the plurality of nozzles N corresponding to the line sensor 141A can be obtained. That is, it is grasped by which photoelectric conversion element of the line sensor 141A the dot or line formed by each nozzle N is read, and at which position in the width direction W of which photoelectric conversion element is read. be able to.
  • the same applies to the line sensor 141B and the correspondence relationship in the width direction W between the photoelectric conversion element of the line sensor 141B and the plurality of nozzles N corresponding to the line sensor 141B can be obtained. That is, it is grasped by which photoelectric conversion element of the line sensor 141B the dot or line formed by each nozzle N is read, and at which position in the width direction W of which photoelectric conversion element is read. be able to.
  • the control unit 250 obtains the comprehensive positional relationship by executing the positional relationship information acquisition program and stores it in the storage unit 230. That is, the control unit 250 obtains “a positional relationship in which each of the line sensors 141A and 141B and the plurality of nozzles N acquires the positional relationship in the direction (width direction W) intersecting the recording medium conveyance direction for each line sensor. It will function as an “information acquisition unit”.
  • FIG. 10 shows a control system of the reading unit 140. That is, the reading unit 140 includes two line sensors 141A and 141B, data storage units 142A and 142B that store detection data for one line of each of the line sensors 141A and 141B as digital data by A / D conversion, and line Refer to the inter-sensor gap correction unit 143 that adjusts the deviation of the detection timing according to the length L (see FIG. 3) of the positional deviation of the sensors 141A and 141B in the transport direction M, and the comprehensive positional relationship stored in the storage unit 230.
  • An analysis unit 144 that analyzes the read result of the first test pattern is provided for each line sensor. From detection by the two line sensors 141A and 141B to storage of data is executed in parallel processing.
  • the above-described first test pattern (see FIG. 6) is read to each of the line sensors 141A and 141B, and a detection signal corresponding to the output of the photoelectric conversion element that detects each line is output.
  • the data storage units 142A and 142B convert the detection signals from the line sensors 141A and 141B into digital data by A / D conversion and store them.
  • the inter-sensor gap correction unit 143 divides the length L by the conveyance speed of the recording medium P because the line sensor 141B is positioned upstream of the line sensor 141A by the length L in the conveyance direction. In 141A and 141B, a timing difference for reading the same pattern is calculated. Then, the detection data of the line sensor 141 ⁇ / b> B is input to the analysis unit 144 after being delayed by the calculated timing difference. Alternatively, the detection unit 110b provided in the drum 110a detects that the drum 110a has been fed by the length L, and then inputs the detection data of the line sensor 141B to the analysis unit 144.
  • the analysis unit 144 detects, based on the detection data based on the reading result of the first test pattern, each line of the first test pattern at any position in the width direction W of any photoelectric conversion element. It is determined whether or not a line has been detected, a line that has not been detected due to nozzle non-ejection is detected by referring to the data on the overall positional relationship stored in the storage unit 230, and which nozzle is the line. Identify.
  • the changing unit 240 described above has a printing rate of the surrounding nozzles for correcting the nozzle missing due to the ejection failure of the nozzles from the ejection failure nozzles identified by the analysis unit 144 based on the above (1) and (2).
  • the increase / decrease value of the dot appearance rate is determined.
  • the reading unit 140 includes two line sensors 141 ⁇ / b> A and 141 ⁇ / b> B in an overlapping arrangement in the width direction W, and the width direction of the plurality of line sensors 141 ⁇ / b> A and 141 ⁇ / b> B and the plurality of nozzles N is provided.
  • the positional relationship of W is acquired for each line sensor 141A, 141B and held in the storage unit 230, and the reading result of the first test pattern is analyzed for each line sensor 141A, 141B with reference to this positional relationship.
  • 144 is analyzing.
  • the relative positional relationship in the width direction W between one line sensor 141A and the nozzle N corresponding to the sensor is acquired, and the width direction between the other line sensor 141B and the nozzle N corresponding to the sensor is acquired. Since the relative positional relationship of W is also acquired, the detection of the non-ejection nozzle by reading the first test pattern in the overlapping portion of the line sensors 141A and 141B is the positional relationship of either the line sensor 141A or 141B. Therefore, it is possible to appropriately read the first test pattern in the overlapping portion. Further, since it is not necessary to synthesize the sensor outputs of the two line sensors 141A and 141B for the overlapping parts of the line sensors 141A and 141B, it is possible to reduce the processing load and speed up the processing.
  • Each head module 121 of the main body 100 of the image forming system 1 includes a plurality of ink jet heads 122 having a plurality of nozzles N arranged along the width direction W of the recording medium P.
  • the nozzles at the ends in the direction W are arranged so as to overlap each other. This eliminates the need for an inkjet head having a large and enormous number of nozzles equal to the entire width of the image forming range, and allows the use of a narrow inkjet head that is easy to manufacture and easy to maintain and replace, and that can improve productivity and maintainability. Can be realized.
  • each line sensor 141A, 141B and each inkjet head 122 are arrange
  • the analysis unit 144 analyzes the reading result of the first test pattern of one line sensor 141A in the overlapping range K of the line sensors 141A and 141B. Therefore, it is possible to reduce the overlapping processing in the overlapping range K, further reduce the processing load, and speed up the processing. Note that the processing of the overlapping range K is performed based on the detection data of the line sensor 141A, but may be performed based on the detection data of the line sensor 141B.
  • the control unit 250 functioning as a positional relationship information acquisition unit was used to record the reading results of the line sensors 141A and 141B of the second test pattern for detecting the positional relationship and the second test pattern among the plurality of nozzles N. Based on the position of the nozzle N, the positional relationship between the line sensor 141A and the nozzle N corresponding to the line sensor 141A and the positional relationship between the line sensor 141B and the nozzle N corresponding to the line sensor 141B are shown in the line sensors 141A and 141B. Asking for every one. Thereby, without reading the first test pattern (for example, see FIG.
  • the first test pattern includes a non-discharge detection pattern for detecting non-discharge of each of the plurality of nozzles N, and the analysis unit 144 is a position acquired by the control unit 250 as a positional relationship information acquisition unit.
  • the reading result of the non-ejection detection pattern is analyzed for each of the line sensors 141A and 141B, and the position of the non-ejection nozzle is specified. For this reason, it is possible to properly detect the non-ejection nozzles while reducing the processing load.
  • the main body unit 100 includes the two line sensors 141 ⁇ / b> A and 141 ⁇ / b> B is illustrated, but the number of individuals may be larger.
  • the line that passes through the overlap area of the first line sensor and the second line sensor from one end in the width direction the overlap of the second line sensor and the third line sensor
  • the first line sensor and the second line according to a second test pattern having a line passing through the region and known by accurately measuring or detecting the position in the width direction W of these lines.
  • a first positional deviation in the width direction of the sensor is obtained, and further, a second positional deviation in the width direction of the second line sensor and the third line sensor is obtained.
  • the positional relationship in the width direction W is obtained based on the first positional deviation for the second line sensor, and the first line sensor is used for the first line sensor.
  • the positional relationship in the width direction between the first line sensor and the third line sensor is obtained based on the added value of the positional deviation and the second positional deviation.
  • the present invention is not limited to this, and obliquely intersects the transport direction. They may be arranged in a staggered arrangement in the direction.
  • the plurality of nozzles N of each inkjet head 122 are not limited to the direction (width direction W) orthogonal to the transport direction, but may be provided along a direction obliquely intersecting the transport direction.
  • the arrangement direction of the line sensors 141A and 141B and the arrangement direction of the plurality of photoelectric conversion elements of the line sensors 141A and 141B are parallel to the direction orthogonal to the transport direction (width direction W) is illustrated, Not limited to this, it may be parallel to a direction that obliquely intersects the transport direction. In that case, since a difference occurs in the detection timing of each photoelectric conversion element, detection is performed in the same manner as when each photoelectric conversion element is arranged along the width direction W by appropriately controlling the detection timing for each element. It is possible.
  • the positional deviation between the sensors in the width direction W is obtained by a common line passing through the overlapping range of the line sensors 141A and 141B, but passes through the detection range other than the overlapping range of the line sensor 141A. It is also possible to obtain the positional deviation between the sensors in the width direction W by using a second test pattern including a line to be detected and a line that passes through a detection range other than the overlapping range of the line sensor 141B. In this case, it is assumed that the distance in the width direction W between the line on the line sensor 141A side and the line on the line sensor 141B side is known by being accurately measured or detected.
  • the first test pattern may be a test pattern for detecting the displacement of the landing position in the width direction W of the formed dots of all the nozzles of the head module 121.
  • the same test pattern as that for detecting a non-ejection nozzle shown in FIG. 6 can be used. That is, the first test pattern is read by each line sensor 141A, 141B, and the first test pattern is read from the above-described comprehensive positional relationship data stored in the storage unit 230 for each line sensor 141A, 141B.
  • the position in the width direction W of the dot (line) formed by each nozzle obtained from the result is compared with the position of the corresponding nozzle determined in the overall positional relationship, and the difference is obtained as the positional deviation of the landing position.
  • the positional deviation of the landing position may be obtained from the reading result of either one of the line sensors 141A or 141B.
  • the changing unit 240 detects the displacement of the formation dots. Based on the result of reading the test pattern, adjustment of the printing rate (dot appearance rate) of the nozzle N in which the positional deviation has occurred and the surrounding nozzles N is executed. That is, the change unit 240, when the density of the dots of the nozzle N that has caused the positional deviation has occurred, changes the printing rate (dot appearance rate) of the nozzle N that is adjacent to the nozzle N that has caused the positional deviation due to the balance with the surrounding dots. ) Can be adjusted so that the contrast becomes inconspicuous.
  • the positional relationship (total positional relationship) in the width direction W between the photoelectric conversion element of the line sensor 141A, the photoelectric conversion element of the line sensor 141B, and all the nozzles of all the inkjet heads 122 is acquired.
  • the photoelectric conversion elements of the line sensor 141B are read by reading the test patterns formed by all the nozzles as in the first test pattern of FIG. 6 by the line sensor 141B. And the positional relationship in the width direction W with a plurality of nozzles within the reading range of the line sensor 141A may be acquired. That is, the positional relationship with each nozzle is acquired by each of the line sensors 141A and 141B, and in the analysis by the analysis unit 144, the positional relationship corresponding to each of the line sensors 141A and 141B is referred to, and no ejection is performed.
  • the nozzle may be specified.
  • Image Forming System 100 Main Body (Inkjet Recording Device) DESCRIPTION OF SYMBOLS 120 Image formation part 121 Head module 122 Inkjet head 140 Reading part 141A, 141B Line sensor 142A, 142B Data storage part 143 Intersensor gap correction part 144 Analysis part 230 Storage part 240 Change part 250 Control part (Position relation information acquisition part) J Overlapping range K Overlapping range L1 to L3 Line M Conveying direction N Nozzle P Recording medium S Deviation amount W Width direction (direction orthogonal to the conveying direction)

Abstract

An inkjet recording device (100) for forming an image using a full-line head module (121) for discharging ink from a plurality of nozzles (N) and equipped with a plurality of line sensors (141A, 141B) for reading a first test pattern formed by the head module and arranged in a direction (W) which intersects the transport direction (M) of the recording medium (P), wherein the plurality of line sensors are equipped with: a position relationship information acquisition unit (250) for acquiring, for each line sensor, the position relationship in the intersecting direction (W) between the plurality of line sensors and the plurality of nozzles, and positioned in a manner such that the end sections in the intersecting direction (W) in the line sensor detection range overlap; and an analysis unit (144) for referring to the position relationship acquired by the position relationship information acquisition unit, and analyzing the first test pattern reading results for each line sensor.

Description

インクジェット記録装置Inkjet recording device
 本発明は、インクジェット記録装置に関する。 The present invention relates to an ink jet recording apparatus.
 従来、用紙等の記録媒体にインクを付与して記録媒体に画像を形成するインクジェット記録装置が知られている。このようなインクジェット記録装置においては、記録媒体の搬送方向とは垂直の方向(以下、幅方向という)に延び、記録媒体の幅よりも広い範囲に亘って配列されたノズル列を有する記録ヘッドを備え、記録媒体を搬送させながらインクを吐出することにより画像形成を行ういわゆるシングルパス形式のものがある。シングルパス形式のインクジェット記録装置は、高速で印刷が可能なことから生産性が高いものである。 Conventionally, an ink jet recording apparatus that forms an image on a recording medium by applying ink to a recording medium such as paper is known. In such an ink jet recording apparatus, a recording head that has a nozzle array that extends in a direction perpendicular to the conveyance direction of the recording medium (hereinafter referred to as a width direction) and is arranged over a range wider than the width of the recording medium. There is a so-called single-pass type that forms an image by ejecting ink while conveying a recording medium. A single-pass inkjet recording apparatus is highly productive because it can print at high speed.
 このような、シングルパス形式のインクジェット記録装置では、ノズルの吐出不良、その他の形成画質の向上のために、個々のノズルからのインク吐出により所定のテストパターンを形成し、その搬送方向下流側に設けられたラインセンサーでテストパターンを読み取り、吐出不良のノズルの検出やその他の画質の良否について検出を行っている。 In such a single-pass inkjet recording apparatus, a predetermined test pattern is formed by ejecting ink from individual nozzles in order to improve nozzle ejection failure and other formation image quality, and downstream of the transport direction. A test pattern is read by a provided line sensor to detect defective nozzles and other image quality.
 しかしながら、ラインセンサーのサイズを変えずに画像形成範囲の全幅まで読み取り範囲を広げる場合、そのための光学系が必要となり、読み取りのための構成部分が大型化し且つコストアップとなる上に、読み取り解像度も低下する。
 このため、特許文献1のインクジェット記録装置では、記録媒体の表面については光学系を使用した単体のCCD(Charge Coupled Devices)による読み取りを行っているが、記録媒体の裏面については接触型のCIS(Contact Image Sensor)を記録媒体の幅方向に沿って一部重複するように三つ並べて読み取りを行っていた。
However, when the reading range is expanded to the full width of the image formation range without changing the size of the line sensor, an optical system for that purpose is required, the size of the reading component is increased and the cost is increased, and the reading resolution is also increased. descend.
For this reason, in the inkjet recording apparatus of Patent Document 1, the surface of the recording medium is read by a single CCD (Charge Coupled Devices) using an optical system, but the back surface of the recording medium is contact type CIS ( Three contact image sensors) were read out side by side along the width direction of the recording medium so as to partially overlap.
特開2010-114648号公報JP 2010-114648 A
 しかしながら、上述のように複数のラインセンサーを一部重複を生じるように幅方向並べて配置した場合、光電変換素子列方向(幅方向)及び垂直方向(記録媒体搬送方向)の2センサー間の各光電変換素子間ずれの影響により重複部分のテストパターンの読み取りが適正に行われないおそれがあった。
 特許文献1のインクジェット記録装置では、CISの重複部分はテストパターンを形成しないで、当該重複部分のテストパターンは表面側の単体のCCDで読み取りを行っていた。即ち、CISの重複部分でのテストパターンの読み取りについては事実上回避する構造となっていた。
However, when a plurality of line sensors are arranged side by side in the width direction so as to partially overlap as described above, each photoelectric sensor between the two sensors in the photoelectric conversion element array direction (width direction) and the vertical direction (recording medium conveyance direction). There is a possibility that the test pattern of the overlapped portion may not be properly read due to the influence of the shift between the conversion elements.
In the ink jet recording apparatus of Patent Document 1, a test pattern is not formed on the overlapping portion of the CIS, and the test pattern on the overlapping portion is read by a single CCD on the front side. In other words, the test pattern reading at the overlapping portion of the CIS is practically avoided.
 本発明の課題は、重複を生じるように複数のラインセンサーを並べて配置した場合に重複部分でのテストパターンの適正な読み取りを行うことである。 An object of the present invention is to appropriately read a test pattern at an overlapping portion when a plurality of line sensors are arranged side by side so as to cause overlapping.
 以上の課題を解決するため、請求項1に記載の発明は、
 所定の搬送方向に搬送される記録媒体に対して複数のノズルからインクを吐出させるフルライン型のヘッドモジュールにより画像を形成するインクジェット記録装置であって、
 前記記録媒体の搬送方向に交差する方向に沿って並び、前記ヘッドモジュールが形成する第一テストパターンを読み取る複数のラインセンサーを備え、
 前記複数のラインセンサーは、その検出範囲における前記記録媒体の搬送方向に交差する方向の端部同士が重複を生じるように配置され、
 前記複数のラインセンサーと前記複数のノズルとの前記記録媒体の搬送方向に交差する方向の位置関係を各ラインセンサーごとに取得する位置関係情報取得部と、
 前記位置関係情報取得部で取得されている位置関係を参照して、各ラインセンサーごとに前記第一テストパターンの読み取り結果を解析する解析部と、
を備えることを特徴とする。
In order to solve the above problems, the invention described in claim 1
An inkjet recording apparatus that forms an image with a full-line type head module that discharges ink from a plurality of nozzles to a recording medium conveyed in a predetermined conveyance direction,
A plurality of line sensors for reading a first test pattern formed by the head module, arranged along a direction intersecting the conveyance direction of the recording medium,
The plurality of line sensors are arranged such that end portions in a direction intersecting a conveyance direction of the recording medium in the detection range overlap each other,
A positional relationship information acquisition unit that acquires, for each line sensor, a positional relationship in a direction intersecting a conveyance direction of the recording medium between the plurality of line sensors and the plurality of nozzles;
With reference to the positional relationship acquired by the positional relationship information acquisition unit, an analysis unit that analyzes the reading result of the first test pattern for each line sensor,
It is characterized by providing.
 請求項2に記載の発明は、請求項1に記載のインクジェット記録装置において、
 前記ヘッドモジュールは、前記記録媒体の搬送方向に交差する方向に沿って並んだ複数のノズルを有するインクジェットヘッドを複数備え、
 前記複数のインクジェットヘッドは、前記複数のノズルが前記記録媒体の搬送方向に交差する方向に沿って並び、前記記録媒体の搬送方向に交差する方向の端部のノズル同士が重複を生じるように配置されていることを特徴とする。
According to a second aspect of the present invention, in the ink jet recording apparatus according to the first aspect,
The head module includes a plurality of inkjet heads having a plurality of nozzles arranged along a direction intersecting a conveyance direction of the recording medium,
The plurality of inkjet heads are arranged such that the plurality of nozzles are arranged along a direction intersecting the recording medium conveyance direction, and the nozzles at the ends in the direction intersecting the recording medium conveyance direction are overlapped with each other. It is characterized by being.
 請求項3に記載の発明は、請求項2に記載のインクジェット記録装置において、
 前記インクジェットヘッドの重複範囲が、前記ラインセンサーの重複範囲の一端または両端を跨がないように、前記複数のラインセンサーと前記複数のインクジェットヘッドとが配置されていることを特徴とする。
The invention according to claim 3 is the ink jet recording apparatus according to claim 2,
The plurality of line sensors and the plurality of inkjet heads are arranged so that the overlapping range of the inkjet heads does not straddle one end or both ends of the overlapping range of the line sensors.
 請求項4に記載の発明は、請求項1から3のいずれか一項に記載のインクジェット記録装置において、
 前記解析部は、前記ラインセンサーの重複範囲においては、いずれか一方のみの前記ラインセンサーの前記第一テストパターンの読み取り結果を解析することを特徴とする。
According to a fourth aspect of the present invention, in the ink jet recording apparatus according to any one of the first to third aspects,
In the overlapping range of the line sensors, the analysis unit analyzes a reading result of the first test pattern of only one of the line sensors.
 請求項5に記載の発明は、請求項1から4のいずれか一項に記載のインクジェット記録装置において、
 前記位置関係情報取得部は、位置関係検出用の第二テストパターンの各ラインセンサーの読み取り結果と、前記複数のノズルのうち前記第二テストパターンの記録に用いられたノズルの位置と、に基づいて前記位置関係を各ラインセンサーごとに求めることを特徴とする。
The invention according to claim 5 is the inkjet recording apparatus according to any one of claims 1 to 4,
The positional relationship information acquisition unit is based on the reading result of each line sensor of the second test pattern for detecting the positional relationship and the position of the nozzle used for recording the second test pattern among the plurality of nozzles. The positional relationship is obtained for each line sensor.
 請求項6に記載の発明は、請求項1から5のいずれか一項に記載のインクジェット記録装置において、
 前記第一テストパターンは、前記複数のノズルの各々の不吐出を検出するための不吐出検出パターンを含み、
 前記解析部は、前記位置関係情報取得部で取得されている位置関係を参照して、各ラインセンサーごとに前記不吐出検出パターンの読み取り結果を解析して、不吐出ノズルの位置を特定することを特徴とする。
The invention according to claim 6 is the ink jet recording apparatus according to any one of claims 1 to 5,
The first test pattern includes a non-discharge detection pattern for detecting non-discharge of each of the plurality of nozzles,
The analysis unit refers to the positional relationship acquired by the positional relationship information acquisition unit, analyzes the reading result of the non-ejection detection pattern for each line sensor, and identifies the position of the non-ejection nozzle. It is characterized by.
 本発明によれば、重複を生じるように複数のラインセンサーを並べて配置した場合にテストパターンの適正な読み取りを行うことが可能となる。 According to the present invention, it is possible to appropriately read a test pattern when a plurality of line sensors are arranged side by side so as to cause duplication.
本発明の一実施形態である画像形成システムの主要構成を示す図である。1 is a diagram illustrating a main configuration of an image forming system according to an embodiment of the present invention. ヘッドモジュールの底面図である。It is a bottom view of a head module. 読取部の底面図である。It is a bottom view of a reading unit. インクジェットヘッドとラインセンサーの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of an inkjet head and a line sensor. 画像形成システムに係る制御系を示すブロック図である。It is a block diagram which shows the control system which concerns on an image forming system. 吐出不良ノズルを検出するテストパターンを示す説明図である。It is explanatory drawing which shows the test pattern which detects a discharge failure nozzle. 各ラインセンサーの各光電変換素子とテストパターンのラインの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of each photoelectric conversion element of each line sensor, and the line of a test pattern. 各ラインセンサーの各光電変換素子によるテストパターンのラインの検出出力を示す図である。It is a figure which shows the detection output of the line of the test pattern by each photoelectric conversion element of each line sensor. 各ラインセンサーの各光電変換素子によるテストパターンのラインの検出出力とそこから求まる通過位置との関係を示す説明図である。It is explanatory drawing which shows the relationship between the detection output of the line of the test pattern by each photoelectric conversion element of each line sensor, and the passage position calculated | required there. 読取部の制御系を示すブロック図である。It is a block diagram which shows the control system of a reading part.
[実施形態の概略構成]
 以下に、本発明の実施形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
[Schematic Configuration of Embodiment]
Embodiments of the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
 図1は、本発明の一実施形態である画像形成システム1の主要構成を示す図である。
 画像形成システム1は、供給部10、本体部100、排出部20を備える。供給部10、本体部100、排出部20は、所定の方向(図1に示すX方向)に沿って設けられて連結している。
FIG. 1 is a diagram illustrating a main configuration of an image forming system 1 according to an embodiment of the present invention.
The image forming system 1 includes a supply unit 10, a main body unit 100, and a discharge unit 20. The supply unit 10, the main body unit 100, and the discharge unit 20 are provided and connected along a predetermined direction (the X direction shown in FIG. 1).
[供給部]
 供給部10は、本体部100に設けられた画像形成部120により画像が形成される記録媒体P(例えば、用紙等)を備蓄するとともに、記録媒体Pを一枚ずつ本体部100に供給する。
[Supply section]
The supply unit 10 stores a recording medium P (for example, paper) on which an image is formed by the image forming unit 120 provided in the main body unit 100 and supplies the recording medium P to the main body unit 100 one by one.
[本体部:全体]
 本体部100は、供給部10から供給された記録媒体Pに画像を形成し、画像が形成された記録媒体Pを排出部20に排出する。
[Main part: Overall]
The main body 100 forms an image on the recording medium P supplied from the supply unit 10 and discharges the recording medium P on which the image is formed to the discharge unit 20.
 本体部100は、記録媒体Pを搬送する搬送部110、記録媒体Pに画像を形成する画像形成部120、画像形成部120により画像が形成された記録媒体Pにエネルギー線を照射する照射部130、搬送部110に搬送される媒体上の形成画像を読み取る読取部140等を備え、画像形成システム1におけるインクジェット記録装置として機能する。 The main body 100 includes a transport unit 110 that transports the recording medium P, an image forming unit 120 that forms an image on the recording medium P, and an irradiation unit 130 that irradiates the recording medium P on which the image is formed by the image forming unit 120 with energy rays. The image forming system 1 includes a reading unit 140 that reads a formed image on a medium conveyed to the conveying unit 110, and functions as an ink jet recording apparatus in the image forming system 1.
[本体部:搬送部]
 搬送部110は、画像形成部120、照射部130及び読取部140に媒体を搬送する。
 具体的には、搬送部110は、例えば、円筒状のドラム110aを有する。ドラム110aは、円筒の円中心を通る軸を中心に回転可能に設けられて、ドラム110aの円筒状の外周面で記録媒体Pを担持する。搬送部110は、ドラム110aを回転させることで、外周面に担持された記録媒体Pの一面を画像形成部120、照射部130及び読取部140に対向させながら搬送する。
 画像形成部120、照射部130及び読取部140は、回転するドラム110aの外周面が通過する位置の近傍に、当該外周面に沿って設けられる。具体的には、画像形成部120、照射部130及び読取部140は、図1に示すように、ドラム110aの外周面の通過により記録媒体Pが搬送される搬送経路のうち、供給部10から供給された記録媒体Pを排出部20側に搬送する搬送経路に沿って、上流側から下流側に向かって、画像形成部120、照射部130、読取部140の順に設けられる。
[Main unit: Transport unit]
The transport unit 110 transports the medium to the image forming unit 120, the irradiation unit 130, and the reading unit 140.
Specifically, the transport unit 110 includes, for example, a cylindrical drum 110a. The drum 110a is provided so as to be rotatable about an axis passing through the circular center of the cylinder, and carries the recording medium P on the cylindrical outer peripheral surface of the drum 110a. The conveyance unit 110 conveys one surface of the recording medium P carried on the outer peripheral surface while facing the image forming unit 120, the irradiation unit 130, and the reading unit 140 by rotating the drum 110a.
The image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided along the outer peripheral surface in the vicinity of the position where the outer peripheral surface of the rotating drum 110a passes. Specifically, as illustrated in FIG. 1, the image forming unit 120, the irradiation unit 130, and the reading unit 140 are supplied from the supply unit 10 in a conveyance path along which the recording medium P is conveyed by passing through the outer peripheral surface of the drum 110 a. The image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided in this order from the upstream side to the downstream side along the conveyance path for conveying the supplied recording medium P to the discharge unit 20 side.
 また、搬送部110は、ドラム110aの回転角度を検知する検知部110bを有し(図5参照)、検知部110bにより検知されたドラム110aの回転角度により、ドラム110aの外周面に担持されて搬送される記録媒体Pの位置を検知可能に設けられている。検知部110bは、例えば、ドラム110aの回転軸に設けられたエンコーダーであるが、一例であってこれに限られるものでなく、ドラム110aの回転角度を検知可能な構成であればよい。 Further, the transport unit 110 has a detection unit 110b that detects the rotation angle of the drum 110a (see FIG. 5), and is carried on the outer peripheral surface of the drum 110a by the rotation angle of the drum 110a detected by the detection unit 110b. The position of the transported recording medium P is provided so that it can be detected. The detection unit 110b is, for example, an encoder provided on the rotation shaft of the drum 110a. However, the detection unit 110b is an example and is not limited to this, and may be any configuration that can detect the rotation angle of the drum 110a.
 また、搬送部110は、記録媒体Pの表裏を反転させる機構を有する。
 具体的には、搬送部110は、例えば、スイッチバック部115を有する。スイッチバック部115は、スイッチバックにより記録媒体Pを反転して搬送する。
Further, the transport unit 110 has a mechanism for inverting the front and back of the recording medium P.
Specifically, the transport unit 110 includes, for example, a switchback unit 115. The switchback unit 115 reverses and conveys the recording medium P by switchback.
 より具体的には、スイッチバック部115は、例えば、図1に示す2つのシリンダー(第1シリンダー115a、第2シリンダー115b)と1対のベルトループ(ベルトループ115c)から構成される。
 記録媒体Pは、ドラム110aから図1における時計方向に回転するシリンダー111を介して図1における反時計方向に回転する第1シリンダー115aに受け渡され、続いて図1における時計方向に回転する第2シリンダー115bに受け渡される。記録媒体Pの後端が第2シリンダー115bと図1における反時計方向に回転するベルトループ115cのニップ部近傍に到達するとベルトループ115cは図1における時計方向に逆転し、記録媒体Pを吸着してドラム110aまで搬送する。ここで、ベルトループ115cによりドラム110aに戻された記録媒体Pは、画像が形成された面がドラム110aの外周面に当接する状態でドラム110aに再び担持される。即ち、記録媒体Pは、スイッチバック部115により裏返される。また、ドラム110aに戻された記録媒体Pの搬送方向に沿った先頭側の端部は、戻される前にドラム110aにより搬送されていた時の末尾側の端部となる。即ち、記録媒体Pは、スイッチバック部115により反転するように搬送されることで裏返った状態となる。
 このように、搬送部110は、スイッチバック部115により記録媒体Pの表裏を反転して搬送することにより記録媒体P等の媒体の両面を順次、画像形成部120に対向させて搬送することが可能に設けられている。
More specifically, the switchback unit 115 includes, for example, two cylinders (first cylinder 115a and second cylinder 115b) and a pair of belt loops (belt loop 115c) shown in FIG.
The recording medium P is transferred from the drum 110a to the first cylinder 115a that rotates counterclockwise in FIG. 1 through the cylinder 111 that rotates clockwise in FIG. 1, and then rotates in the clockwise direction in FIG. It is delivered to the two cylinders 115b. When the rear end of the recording medium P reaches the nip portion of the belt loop 115c that rotates counterclockwise in FIG. 1 with the second cylinder 115b, the belt loop 115c reverses in the clockwise direction in FIG. To the drum 110a. Here, the recording medium P returned to the drum 110a by the belt loop 115c is again carried on the drum 110a in a state where the surface on which the image is formed abuts on the outer peripheral surface of the drum 110a. That is, the recording medium P is turned over by the switchback unit 115. Further, the leading end along the conveyance direction of the recording medium P returned to the drum 110a is the end on the trailing side when the recording medium P is conveyed by the drum 110a before being returned. That is, the recording medium P is turned over by being conveyed by the switchback unit 115 so as to be reversed.
As described above, the transport unit 110 can transport the recording medium P such that the both surfaces of the recording medium P are sequentially opposed to the image forming unit 120 by reversing and transporting the recording medium P by the switchback unit 115. It is provided as possible.
 スイッチバック部115の第1シリンダー115aがドラム110aから記録媒体Pの搬送を引き継ぐ位置は、記録媒体Pの搬送方向における照射部130の下流側である。また、ベルトループ115cがドラム110aに記録媒体Pを戻すことで、戻された記録媒体Pは、画像形成部120の上流側から再度、画像形成部120に搬送されることとなる。
 このように、スイッチバック部115は、画像形成部120により記録媒体Pの両面に画像の形成が行われる場合、一方の面に画像が形成された記録媒体Pの表裏を反転させて、搬送部110の搬送方向における画像形成部120の上流側に記録媒体Pを搬送する反転部として機能する。
 また、読取部140は、搬送方向における画像形成部120の下流側であって、スイッチバック部115の上流側に設けられる。このことから、スイッチバック部115は、搬送部110により画像形成部120及び読取部140を通過して搬送された記録媒体Pを、搬送部110の搬送方向における読取部140の上流側に搬送して搬送部110に再度搬送させる再搬送部として機能する。
The position where the first cylinder 115a of the switchback unit 115 takes over the conveyance of the recording medium P from the drum 110a is downstream of the irradiation unit 130 in the conveyance direction of the recording medium P. Further, when the belt loop 115c returns the recording medium P to the drum 110a, the returned recording medium P is conveyed again to the image forming unit 120 from the upstream side of the image forming unit 120.
Thus, when the image forming unit 120 forms images on both sides of the recording medium P, the switchback unit 115 reverses the front and back of the recording medium P on which the image is formed on one side, It functions as a reversing unit that transports the recording medium P to the upstream side of the image forming unit 120 in the transport direction 110.
The reading unit 140 is provided on the downstream side of the image forming unit 120 in the transport direction and on the upstream side of the switchback unit 115. Therefore, the switchback unit 115 conveys the recording medium P conveyed by the conveyance unit 110 through the image forming unit 120 and the reading unit 140 to the upstream side of the reading unit 140 in the conveyance direction of the conveyance unit 110. Then, it functions as a re-conveying unit that conveys the conveying unit 110 again.
[本体部:画像形成部]
 画像形成部120は、記録媒体Pに画像を形成する。
 具体的には、画像形成部120は、例えば、ドラム110aに担持された記録媒体Pにインクを吐出するノズルを備えたインクジェットヘッド122が複数設けられたヘッドモジュール121を有する。ヘッドモジュール121は、記録媒体Pに吐出されるインクの色(例えば、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の四色)ごとに個別に設けられる。係るヘッドモジュール121を有する画像形成部120は、インクの吐出により記録媒体Pに画像を形成する。
[Main unit: Image forming unit]
The image forming unit 120 forms an image on the recording medium P.
Specifically, the image forming unit 120 includes, for example, a head module 121 provided with a plurality of inkjet heads 122 each having a nozzle for ejecting ink onto a recording medium P carried on the drum 110a. The head module 121 is individually provided for each color of ink ejected onto the recording medium P (for example, four colors of cyan (C), magenta (M), yellow (Y), and black (K)). The image forming unit 120 having the head module 121 forms an image on the recording medium P by ejecting ink.
 図2は、K(ブラック)のヘッドモジュール121における記録媒体Pとの対向面(底面)を示す底面図である。なお、Y(イエロー)、M(マジェンタ)、C(シアン)のそれぞれのヘッドモジュール121も同様の構成となっている。
 それぞれのヘッドモジュール121は、記録媒体Pの搬送面に対向して開口部が配列された複数のノズルNと、図示しない駆動回路と、インク吐出部とを有する。ヘッドモジュール121では、制御部250からの制御信号に基づいて駆動回路から出力される駆動電圧によりインク吐出部が動作することで、複数のノズルNの開口部からタイミング制御されてインクが吐出される。この吐出されたインクが搬送される記録媒体P上に着弾して画像が形成される。このヘッドモジュール121は、フルライン型のラインヘッドであり、搬送方向に垂直な幅方向に対し、記録媒体Pの画像形成可能な幅全体に亘ってインクを吐出可能にノズルNが配列されている。また、ヘッドモジュール121は、前述したように、Y(イエロー)、M(マジェンタ)、C(シアン)、K(ブラック)の4色についてそれぞれ個別に設けられているが、これらは全て同一構造なので、図2ではヘッドモジュール121を一つのみ図示している。
FIG. 2 is a bottom view showing a surface (bottom surface) facing the recording medium P in the K (black) head module 121. The Y (yellow), M (magenta), and C (cyan) head modules 121 have the same configuration.
Each head module 121 includes a plurality of nozzles N in which openings are arranged facing the conveyance surface of the recording medium P, a drive circuit (not shown), and an ink ejection unit. In the head module 121, the ink ejection unit is operated by the drive voltage output from the drive circuit based on the control signal from the control unit 250, and the ink is ejected by timing control from the openings of the plurality of nozzles N. . An image is formed by landing on the recording medium P on which the ejected ink is conveyed. The head module 121 is a full-line type line head, and nozzles N are arranged so that ink can be ejected over the entire width of the recording medium P where an image can be formed in the width direction perpendicular to the transport direction. . Further, as described above, the head module 121 is provided for each of the four colors Y (yellow), M (magenta), C (cyan), and K (black), but these are all the same structure. FIG. 2 shows only one head module 121.
 このヘッドモジュール121には、複数のインクジェットヘッド122が記録媒体Pの搬送方向Mに直交する方向(幅方向Wとする)に千鳥配置で配列されている。これらのインクジェットヘッド122には、それぞれ複数のノズルNが幅方向に沿って配列されており、各インクジェットヘッド122の幅方向Wにおける端部に設けられた一部のノズルNは、他のインクジェットヘッド122の幅方向Wにおける端部に設けられた一部のノズルNと重複する重複範囲Jが形成されるように配置されている。 In the head module 121, a plurality of inkjet heads 122 are arranged in a staggered arrangement in a direction (width direction W) orthogonal to the conveyance direction M of the recording medium P. In each of these inkjet heads 122, a plurality of nozzles N are arranged along the width direction, and some of the nozzles N provided at the end in the width direction W of each inkjet head 122 are other inkjet heads. It arrange | positions so that the overlapping range J which overlaps with the one part nozzle N provided in the edge part in the width direction 122 of 122 may be formed.
[本体部:照射部]
 照射部130は、画像形成部120により画像が形成された記録媒体Pに画像を定着させるためのエネルギー線を照射する。
 照射部130により照射されるエネルギー線は、インクの特性に応じる。例えば、画像形成部120のヘッドモジュール121において紫外線の照射により硬化する紫外線硬化性インクが用いられる場合、照射部130から照射されるエネルギー線は、紫外線である。この場合、照射部130は、例えば、紫外線(ultraviolet:UV)を発する発光ダイオード(Light Emitting Diode:LED)等の光源、光源から発せられた紫外線が照射される範囲を所定の照射領域とする遮蔽部等を有する。ここで、所定の照射領域は、搬送部110のドラム110aの外周面が記録媒体Pを担持して通過する経路における領域である。照射部130は、搬送部110により搬送されて所定の照射領域を通過する記録媒体Pに対して紫外線を照射する。
 照射部130によりエネルギー線が照射されると、記録媒体Pの記録面上に吐出されたインクが硬化して、記録面に定着されることとなる。このように、照射部130は、画像形成部120により画像が形成された記録媒体Pに画像を定着させる定着部として機能する。
[Main unit: Irradiation unit]
The irradiation unit 130 irradiates an energy ray for fixing the image on the recording medium P on which the image is formed by the image forming unit 120.
The energy rays irradiated by the irradiation unit 130 depend on the ink characteristics. For example, when ultraviolet curable ink that is cured by irradiation of ultraviolet rays is used in the head module 121 of the image forming unit 120, the energy rays irradiated from the irradiation unit 130 are ultraviolet rays. In this case, for example, the irradiation unit 130 shields a light source such as a light emitting diode (LED) that emits ultraviolet (UV) light, and a range irradiated with the ultraviolet light emitted from the light source as a predetermined irradiation region. Part. Here, the predetermined irradiation region is a region in a path through which the outer peripheral surface of the drum 110a of the transport unit 110 carries the recording medium P and passes. The irradiation unit 130 irradiates the recording medium P that is transported by the transport unit 110 and passes through a predetermined irradiation region with ultraviolet rays.
When the energy beam is irradiated by the irradiation unit 130, the ink ejected on the recording surface of the recording medium P is cured and fixed on the recording surface. As described above, the irradiation unit 130 functions as a fixing unit that fixes an image on the recording medium P on which the image is formed by the image forming unit 120.
[本体部:読取部]
 読取部140は、搬送部110に搬送される媒体上の形成画像を読み取る。
 具体的には、読取部140は、図3に示すように、長手方向に沿って光電変換素子が並んだ、例えば、CCD(charge-coupled device)からなる二つのラインセンサー141A,141Bと図示しない照明とを有し、照明により照らされた記録媒体Pからの反射光を二つのラインセンサー141A,141Bにより検知して、検知結果に応じた電気信号を出力する。読取部140の光電変換素子から出力された電気信号に基づいて、読取結果に応じたデータが生成され、読取結果として処理される。
 二つのラインセンサー141A,141Bは、いずれも光電変換素子の並ぶ方向が幅方向Wに平行となるようにドラム110aの外周面近傍に配置されている。読取部140は、前述した各ヘッドモジュール121の幅方向Wにおける画像形成範囲の全体を二つのラインセンサー141A,141Bにより分担して読み取りを行う。
 そして、隣接するこれらのラインセンサー141A,141Bは、幅方向Wにおける端部に設けられた一部の光電変換素子が重複する重複範囲Kが形成されるように配置されている。また、このように配置するために、隣接する二つのラインセンサー141A,141Bは搬送方向Mについて長さLだけずらして配置されている。
[Main unit: Reading unit]
The reading unit 140 reads a formed image on the medium conveyed to the conveyance unit 110.
Specifically, as shown in FIG. 3, the reading unit 140 is not illustrated with two line sensors 141 </ b> A and 141 </ b> B composed of, for example, CCDs (charge-coupled devices) in which photoelectric conversion elements are arranged along the longitudinal direction. The reflected light from the recording medium P illuminated by the illumination is detected by the two line sensors 141A and 141B, and an electrical signal corresponding to the detection result is output. Based on the electrical signal output from the photoelectric conversion element of the reading unit 140, data corresponding to the reading result is generated and processed as the reading result.
The two line sensors 141A and 141B are arranged in the vicinity of the outer peripheral surface of the drum 110a so that the alignment direction of the photoelectric conversion elements is parallel to the width direction W. The reading unit 140 reads the entire image forming range in the width direction W of each head module 121 described above by the two line sensors 141A and 141B.
These adjacent line sensors 141A and 141B are arranged such that an overlapping range K in which some photoelectric conversion elements provided at the end in the width direction W overlap is formed. Further, in order to arrange in this way, the two adjacent line sensors 141A and 141B are arranged so as to be shifted by a length L in the transport direction M.
 また、幅方向Wについて、複数のインクジェットヘッド122の重複範囲Jが、ラインセンサー141A,141Bの重複範囲Kの一端または両端を跨がないように、複数のラインセンサー141A,141Bと複数のインクジェットヘッド122とが配置されている。
 つまり、インクジェットヘッド122の重複範囲Jの幅はラインセンサー141A,141Bの重複範囲Kの幅よりも小さく、複数あるインクジェットヘッド122の重複範囲Jの一つのみが、図4に示すように、幅方向Wについて、ラインセンサー141A,141Bの重複範囲Kの内側となっており、その他のインクジェットヘッド122の重複範囲Jは全てラインセンサー141A,141Bの重複範囲Kの外側となっている。
Further, in the width direction W, the plurality of line sensors 141A and 141B and the plurality of inkjet heads are arranged so that the overlapping range J of the plurality of inkjet heads 122 does not straddle one end or both ends of the overlapping range K of the line sensors 141A and 141B. 122 are arranged.
That is, the width of the overlapping range J of the inkjet head 122 is smaller than the width of the overlapping range K of the line sensors 141A and 141B, and only one of the overlapping ranges J of the plurality of inkjet heads 122 has a width as shown in FIG. The direction W is inside the overlapping range K of the line sensors 141A and 141B, and all the overlapping ranges J of the other inkjet heads 122 are outside the overlapping range K of the line sensors 141A and 141B.
 なお、上記の説明ではラインセンサー141A,141BとしてCCDを例示したが、ラインセンサー141A,141Bとして幅方向Wに沿って光電変換素子が並んだCIS(Contact Image Sensor)を利用しても良い。 In the above description, the CCD is exemplified as the line sensors 141A and 141B, but a CIS (Contact Image Sensor) in which photoelectric conversion elements are arranged in the width direction W may be used as the line sensors 141A and 141B.
[排出部]
 排出部20は、本体部100のドラム110aからシリンダー111、ベルトループ112、排出切替ガイド113を介して排出された記録媒体Pがユーザーに回収されるまで、記録媒体Pを待機させる。記録媒体Pがシリンダー111を介して排出部20に排出されるか、スイッチバック部115に搬送されるかは、制御部250により制御される。
[Discharge part]
The discharge unit 20 causes the recording medium P to stand by until the recording medium P discharged from the drum 110a of the main body unit 100 via the cylinder 111, the belt loop 112, and the discharge switching guide 113 is collected by the user. The control unit 250 controls whether the recording medium P is discharged to the discharge unit 20 via the cylinder 111 or conveyed to the switchback unit 115.
[制御系]
 図5は、画像形成システム1の制御系を示すブロック図である。
 画像形成システム1は、例えば、設定部210、取得部220、記憶部230、変更部240、制御部250、表示部260等を本体部100に備える。
[Control system]
FIG. 5 is a block diagram illustrating a control system of the image forming system 1.
The image forming system 1 includes, for example, a setting unit 210, an acquisition unit 220, a storage unit 230, a change unit 240, a control unit 250, a display unit 260, and the like in the main body unit 100.
 設定部210は、画像形成システム1の動作に係る各種の設定のための入力に用いられるボタン、キー、タッチパネル等の入力装置を有し、当該入力装置に対するユーザーの操作に応じた設定内容に対応する信号を制御部250に出力する。
 具体的には、設定部210は、例えば、ユーザーの操作に応じて、画像形成部120による画像の形成を実行するための信号を制御部250に出力する。
The setting unit 210 includes input devices such as buttons, keys, and a touch panel used for input for various settings related to the operation of the image forming system 1, and corresponds to setting contents corresponding to user operations on the input devices. To the control unit 250.
Specifically, for example, the setting unit 210 outputs a signal for executing image formation by the image forming unit 120 to the control unit 250 in accordance with a user operation.
 取得部220は、画像形成部120により形成される画像の元となるデータを取得する。
 具体的には、取得部220は、例えば、ネットワークインターフェースカード(Network Interface Card:NIC)等の通信に係る構成を備え、通信を介して接続されたPC等の外部の機器から送信された印刷ジョブを取得する。印刷ジョブには、画像形成部120により形成される画像に対応する画像データが含まれる。
The acquisition unit 220 acquires data that is the basis of an image formed by the image forming unit 120.
Specifically, the acquisition unit 220 includes a configuration related to communication such as a network interface card (NIC), for example, and a print job transmitted from an external device such as a PC connected via the communication. To get. The print job includes image data corresponding to the image formed by the image forming unit 120.
 記憶部230は、第一及び第二テストパターンの画像データと複数のラインセンサー141A,141Bと複数のノズルNとの記録媒体の搬送方向に交差する方向(幅方向W)の位置関係とを記憶するデータメモリである。
 第一テストパターンとしては、例えば、各ヘッドモジュール121における吐出不良ノズルを検出するための不吐出検出パターンがある。
 また、第二テストパターンとしては、前述した二つのラインセンサー141A,141Bにおける幅方向の位置ずれを求めるためのテストパターンがある。
The storage unit 230 stores the image data of the first and second test patterns and the positional relationship between the plurality of line sensors 141A and 141B and the plurality of nozzles N in the direction (width direction W) intersecting the recording medium conveyance direction. Data memory.
As the first test pattern, for example, there is a non-ejection detection pattern for detecting ejection failure nozzles in each head module 121.
Further, as the second test pattern, there is a test pattern for obtaining a positional deviation in the width direction in the two line sensors 141A and 141B described above.
 変更部240は、読取部140による読取結果に基づいて画像形成部120による画像形成に係る条件を変更する。
 具体的には、変更部240は、例えば、PLD又はASICのような集積回路あるいはこれらの組み合わせによる回路からなり、当該回路に実装された処理部及び記憶装置の協働により画像形成に係る条件のための処理が行われる。または、所定のソフトウェアを実行するCPUが変更部240としての機能を実現する構成としても良い。
 例えば、読取部140による吐出不良ノズルを検出するための第一テストパターンの読取結果に基づいて、ヘッドモジュール121に設けられたインクジェットヘッド122のいずれかのノズルの吐出不良が検知された場合に、画像形成に係る条件のうち、ノズルからのインクの吐出に係る条件を、吐出不良ノズルからのインクの吐出が行われなくなることが考慮された条件とするよう変更する。
 即ち、変更部240は、吐出不良のノズルNに近接するノズルNの印画率(ドット出現率)を増やすなどの変更を行い、吐出不良による欠損箇所を補う。これにより、吐出不良のノズルNが画質に与える影響を低減することができる。
The changing unit 240 changes a condition relating to image formation by the image forming unit 120 based on the reading result by the reading unit 140.
Specifically, the changing unit 240 includes, for example, an integrated circuit such as a PLD or an ASIC, or a combination thereof, and the conditions related to image formation are determined by the cooperation of the processing unit and the storage device mounted on the circuit. Processing is performed. Alternatively, a CPU that executes predetermined software may be configured to realize the function as the changing unit 240.
For example, when a discharge failure of any nozzle of the inkjet head 122 provided in the head module 121 is detected based on the reading result of the first test pattern for detecting a discharge failure nozzle by the reading unit 140, Of the conditions relating to image formation, the condition relating to ink ejection from the nozzles is changed to a condition that considers that ink ejection from defective ejection nozzles is not performed.
In other words, the changing unit 240 makes a change such as increasing the printing rate (dot appearance rate) of the nozzle N adjacent to the defective nozzle N to compensate for the defective portion due to the defective discharge. Thereby, it is possible to reduce the influence of the defective nozzle N on the image quality.
 制御部250は、画像形成システム1の各部の動作を制御する。
 具体的には、制御部250は、例えば、CPU、RAM、ROM等を有する。
 CPUは、ROM等の記憶装置から処理内容に応じた各種のプログラムやデータ等を読み出して実行し、実行された処理内容に応じて画像形成システム1の各部の動作を制御する。RAMは、CPUにより処理される各種のプログラムやデータ等を一時的に記憶する。ROMは、CPU等により読み出される各種のプログラムやデータ等を記憶する。
The control unit 250 controls the operation of each unit of the image forming system 1.
Specifically, the control unit 250 includes, for example, a CPU, a RAM, a ROM, and the like.
The CPU reads and executes various programs, data, and the like corresponding to the processing contents from a storage device such as a ROM, and controls the operation of each unit of the image forming system 1 according to the executed processing contents. The RAM temporarily stores various programs and data processed by the CPU. The ROM stores various programs and data read by the CPU or the like.
 表示部260は、制御部250の制御下で、画像形成システム1の動作に係る各種の表示を行う。
 具体的には、表示部260は、例えば、タッチパネル形式による入力を行うための入力装置と一体的に設けられた液晶ディスプレイ等の表示装置を有し、当該表示装置により各種の表示を行う。なお、液晶ディスプレイは、あくまで表示装置の一例であり、他の表示装置(例えば、有機EL(Electroluminescence)ディスプレイ等)であってもよい。
The display unit 260 performs various displays related to the operation of the image forming system 1 under the control of the control unit 250.
Specifically, the display unit 260 includes, for example, a display device such as a liquid crystal display provided integrally with an input device for performing input in a touch panel format, and performs various displays using the display device. The liquid crystal display is merely an example of a display device, and may be another display device (for example, an organic EL (Electroluminescence) display).
[ラインセンサーの幅方向の位置ずれの算出]
 ここで読取部140の制御系について詳細に説明する。
 まず、前提として、読取部140のラインセンサー141A,141Bにより読み取りが行われる各ヘッドモジュール121における吐出不良ノズルを検出するための第一テストパターンについて例示する。
 図6に示すように、吐出不良ノズルを検出するための第一テストパターンは、全インクジェットヘッド122の全ノズルNから個別に吐出された搬送方向Mについて所定の長さを有するラインから構成されている。
[Calculation of misalignment of line sensor in width direction]
Here, the control system of the reading unit 140 will be described in detail.
First, as a premise, a first test pattern for detecting an ejection failure nozzle in each head module 121 that is read by the line sensors 141A and 141B of the reading unit 140 will be exemplified.
As shown in FIG. 6, the first test pattern for detecting defective ejection nozzles is composed of lines having a predetermined length in the transport direction M individually ejected from all nozzles N of all inkjet heads 122. Yes.
 なお、ヘッドモジュール121の幅方向Wのドットピッチはラインセンサー141A,141Bの光電変換素子のピッチよりも狭く、ヘッドモジュール121の方が解像度が高いことを前提とする。
 このため、各ノズルNは四個単位(センサー解像度にもよるが二個以上であれば良く、四つに限定されない)で搬送方向Mに位置をずらしてラインを形成する。これにより、第一テストパターンの各ラインを幅方向Wについてドットピッチの四倍のピッチで形成することができ、解像度が低いラインセンサー141A,141Bでの良好な読み取りが可能となっている。
 そして、例えば、No.10のノズルNが吐出不良である場合には、図6に示すように、対応するラインが形成されず、或いは不鮮明となる。これにより、ラインセンサー141A,141Bでは、本来あるべき位置でラインの読み取りが行われず、このラインの未検出によって吐出不良のノズルNが特定される。
It is assumed that the dot pitch in the width direction W of the head module 121 is narrower than the pitch of the photoelectric conversion elements of the line sensors 141A and 141B, and the head module 121 has a higher resolution.
For this reason, each nozzle N forms a line by shifting the position in the transport direction M in units of four (which may be two or more depending on the sensor resolution, but is not limited to four). Thereby, each line of the first test pattern can be formed at a pitch four times the dot pitch in the width direction W, and good reading can be performed by the line sensors 141A and 141B with low resolution.
For example, when the No. 10 nozzle N is defective in ejection, the corresponding line is not formed or becomes unclear as shown in FIG. As a result, the line sensors 141A and 141B do not read the line at the position where it should be, and the nozzle N with defective ejection is specified by the undetected line.
 このような形で、第一テストパターンの読み取りが行われるため、ラインセンサー141Aとラインセンサー141Bとが幅方向Wについて位置ずれを生じ、ラインセンサー141Aの光電変換素子とラインセンサー141Bの光電変換素子と後述するインクジェットヘッド122のノズルNとの幅方向Wにおける相対的な位置関係が把握されていない状況であった場合には、各ラインセンサー141A,141Bにおいて、本来ラインを検出すべき光電変換素子の隣の光電変換素子がラインを検出するなどの状態が生じ、誤検出を生じるおそれがある。 Since the first test pattern is read in this manner, the line sensor 141A and the line sensor 141B are displaced in the width direction W, and the photoelectric conversion element of the line sensor 141A and the photoelectric conversion element of the line sensor 141B When the relative positional relationship in the width direction W with the nozzle N of the inkjet head 122, which will be described later, is not grasped, each line sensor 141A, 141B has a photoelectric conversion element that should originally detect the line. There is a possibility that a photoelectric conversion element next to the line detects a line, which may cause a false detection.
 そこで、出荷前等の当初の段階で、インクジェットヘッド122の一部のノズルとラインセンサー141A,141Bの各光電変換素子との幅方向Wにおける相対的な位置関係を検出するための第二テストパターンの読み取りを行い、ラインセンサー141A,141Bの相対的な幅方向Wのずれ量(位置ずれ)の検出が行われる。なお、上記「インクジェットヘッド122の一部のノズルN」とは、この第二テストパターンを形成する複数のノズルNのことを示す。
 ラインセンサー141A,141Bの位置ずれを検出するために、第二テストパターンは、図7に示すように、幅方向Wについて、ラインセンサー141A,141Bの重複範囲Kを通過する配置で搬送方向Mに沿って形成された一又は複数のラインから構成されている。なお、第二テストパターンを複数のラインから構成する場合には、各ラインは幅方向Wについて均一間隔で形成することが望ましい。また、ラインの本数は一つでも足りるが、本数が多いほどより正確な位置ずれ量を得ることが出来る。ここでは、説明を分かりやすくするためにラインL1~L3が三本である場合を例示するが、実際には、ラインセンサー141A,141Bの重複範囲Kの幅は広く、ラインの本数も三本よりも多い。また、当該重複範囲Kに含まれる光電変換素子の数も図7の図示例よりも多い。また、各ラインL1~L3の幅と各光電変換素子の幅の比率は図7の例に限定されず、ラインセンサーの解像度に応じて変更可能である。
Therefore, a second test pattern for detecting the relative positional relationship in the width direction W between some of the nozzles of the inkjet head 122 and the photoelectric conversion elements of the line sensors 141A and 141B at an initial stage such as before shipment. Is detected, and the amount of displacement (positional displacement) in the width direction W of the line sensors 141A and 141B is detected. The “partial nozzles N of the inkjet head 122” indicate a plurality of nozzles N that form the second test pattern.
In order to detect misalignment of the line sensors 141A and 141B, the second test pattern is arranged in the transport direction M in an arrangement passing through the overlapping range K of the line sensors 141A and 141B in the width direction W as shown in FIG. It is comprised from the 1 or several line formed along. When the second test pattern is composed of a plurality of lines, it is desirable that each line be formed at a uniform interval in the width direction W. Further, although the number of lines is sufficient, the more accurate displacement can be obtained as the number of lines increases. Here, the case where there are three lines L1 to L3 is illustrated for ease of explanation, but in reality, the width of the overlapping range K of the line sensors 141A and 141B is wide and the number of lines is more than three. There are many. Further, the number of photoelectric conversion elements included in the overlapping range K is larger than that in the illustrated example of FIG. Further, the ratio of the width of each line L1 to L3 and the width of each photoelectric conversion element is not limited to the example of FIG. 7, and can be changed according to the resolution of the line sensor.
 図7に示すように、ラインセンサー141Aとラインセンサー141Bとは、幅方向Wについてずれ量Sだけ位置ずれを生じていることを前提とする。
 重複範囲Kにおけるラインセンサー141Aの光電変換素子A~Hとラインセンサー141Bの光電変換素子a~hの出力を図8に示す。
 なお、図7において、幅方向Wに沿って並んだ外側の長方形はラインセンサーのセルであり、その内側のやや小さい長方形が光電変換素子である。そして、各光電変換素子A~H及びa~hで読み込んだ検出出力を%表示に直し、図8に示した。図8では、1つの光電変換素子で一本のラインを全て検出した場合の出力を100%、全く検出しない場合の出力を0%として正規化した。
 ラインセンサー141Aの光電変換素子A~Hとラインセンサー141Bの光電変換素子a~hは幅方向Wの配置が一致していることが理想的だが、上述したように実際にはずれ量Sだけずれている。この場合、図8に示すように、ラインL1は、ラインセンサー141Aの光電変換素子B,Cにより80%,20%の出力で検出され、ラインセンサー141Bの光電変換素子a,bにより40%,60%の出力で検出されている。
 また、ラインL2は、ラインセンサー141Aの光電変換素子D,Eにより40%,60%の出力で検出され、ラインセンサー141Bの光電変換素子dにより100%の出力で検出されている。
 また、ラインL3は、ラインセンサー141Aの光電変換素子G,Hにより90%,10%の出力で検出され、ラインセンサー141Bの光電変換素子f,gにより40%,60%の出力で検出されている。
As shown in FIG. 7, it is assumed that the line sensor 141 </ b> A and the line sensor 141 </ b> B are displaced by a displacement amount S in the width direction W.
The outputs of the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B in the overlapping range K are shown in FIG.
In FIG. 7, the outer rectangles lined up in the width direction W are the cell lines of the line sensor, and the slightly smaller rectangles inside are the photoelectric conversion elements. Then, the detection outputs read by the photoelectric conversion elements A to H and a to h are converted into% display and shown in FIG. In FIG. 8, the output when one line is detected by one photoelectric conversion element is normalized as 100%, and the output when no line is detected is normalized as 0%.
It is ideal that the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B have the same arrangement in the width direction W. However, as described above, they are actually shifted by the shift amount S. Yes. In this case, as shown in FIG. 8, the line L1 is detected at 80% and 20% output by the photoelectric conversion elements B and C of the line sensor 141A, and 40% by the photoelectric conversion elements a and b of the line sensor 141B. Detected at 60% output.
The line L2 is detected with 40% and 60% output by the photoelectric conversion elements D and E of the line sensor 141A, and is detected with 100% output by the photoelectric conversion element d of the line sensor 141B.
The line L3 is detected with 90% and 10% output by the photoelectric conversion elements G and H of the line sensor 141A, and detected with 40% and 60% output by the photoelectric conversion elements f and g of the line sensor 141B. Yes.
 前述したように、ラインL1~L3は1つの光電変換素子で一本のラインを全て検出した場合、即ち,光電変換素子の中心をラインが通過する場合には当該光電変換素子の出力が100%となり、ラインが光電変換素子の中心から離れるにつれてその出力は低減する。これにより、ラインと光電変換素子の相対的な位置関係が確定する。例えば、ラインセンサー141Bの光電変換素子a,bに検出されたラインL1は、それぞれの出力が40%と60%なので、ラインL1は光電変換素子aの中心と光電変換素子bの中心との間で6:4の比率
となる位置を通過していると特定できる。
As described above, when all the lines L1 to L3 are detected by one photoelectric conversion element, that is, when the line passes through the center of the photoelectric conversion element, the output of the photoelectric conversion element is 100%. Thus, the output decreases as the line moves away from the center of the photoelectric conversion element. Thereby, the relative positional relationship between the line and the photoelectric conversion element is determined. For example, the line L1 detected by the photoelectric conversion elements a and b of the line sensor 141B has an output of 40% and 60%, so the line L1 is between the center of the photoelectric conversion element a and the center of the photoelectric conversion element b. It can be specified that the vehicle passes through a position with a ratio of 6: 4.
 上記原理を元に、ラインセンサー141Aの光電変換素子A~Hとラインセンサー141Bの光電変換素子a~hによる各ラインL1~L3の検出出力とそこから求まる通過位置との関係を図9に示す。
 図9の横軸の1~8は、ラインセンサー141Aの光電変換素子A~H又はラインセンサー141Bの光電変換素子a~hの幅方向Wにおける中心位置を示し、縦軸は各光電変換素子の検出出力を示している。
 また、LA1~LA3はラインセンサー141Aの検出から求まるラインL1~L3の検出位置を示し、la1~la3はラインセンサー141Bの検出から求まるラインL1~L3の検出位置を示す。
Based on the above principle, FIG. 9 shows the relationship between the detection outputs of the lines L1 to L3 by the photoelectric conversion elements A to H of the line sensor 141A and the photoelectric conversion elements a to h of the line sensor 141B and the passing positions obtained therefrom. .
The horizontal axes 1 to 8 in FIG. 9 indicate the center positions of the photoelectric conversion elements A to H of the line sensor 141A or the photoelectric conversion elements a to h of the line sensor 141B in the width direction W, and the vertical axis represents the photoelectric conversion elements. The detection output is shown.
LA1 to LA3 indicate detection positions of the lines L1 to L3 obtained from the detection of the line sensor 141A, and la1 to la3 indicate detection positions of the lines L1 to L3 obtained from the detection of the line sensor 141B.
 例えば、ラインL1はラインセンサー141Aの光電変換素子B,Cにより80%と20%で検出されているので、光電変換素子Bの中心と光電変換素子Cの中心との間で2:8の比率となる位置[2.2]を通過している。また、ラインL1はラインセンサー141Bの光電変換素子a,bにより40%と60%で検出されているので、光電変換素子aの中心と光電変換素子bの中心との間で6:4の比率となる位置[1.6]を通過している。これらの差分値は0.6なので、ラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量は、光電変換素子ピッチの0.6倍であることが求められる。
 また、ラインL2はラインセンサー141Aの光電変換素子D,Eにより40%と60%で検出されているので、光電変換素子Dの中心と光電変換素子Eの中心との間で6:4の比率となる位置[4.6]を通過している。また、ラインL2はラインセンサー141Bの光電変換素子dにより100%で検出されているので、光電変換素子dの中心となる位置[4.0]を通過している。これらの差分値は0.6なので、ラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量は、光電変換素子ピッチの0.6倍であることが求められる。
 また、ラインL3はラインセンサー141Aの光電変換素子G,Hにより90%と10%で検出されているので、光電変換素子Gの中心と光電変換素子Hの中心との間で1:9の比率となる位置[7.1]を通過している。また、ラインL3はラインセンサー141Bの光電変換素子f,gにより40%と60%で検出されているので、光電変換素子fの中心と光電変換素子gの中心との間で6:4の比率となる位置[6.6]を通過している。これらの差分値は0.5なので、ラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量は、光電変換素子ピッチの0.5倍であることが求められる。
 なお、ラインセンサー141A,141Bの解像度に応じて各ラインL1~L3ごとに求まるラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量には、ばらつきが生じるので、これらの幅方向Wのずれ量は平均化することが望ましい。前述したように、実際のラインの本数は3本より多いので、幅方向Wのずれ量はより多く取得することができ、より多くのずれ量の平均値を求めることにより、ラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量をより高精度に求めることができる。
For example, since the line L1 is detected at 80% and 20% by the photoelectric conversion elements B and C of the line sensor 141A, a ratio of 2: 8 is provided between the center of the photoelectric conversion element B and the center of the photoelectric conversion element C. Passing through position [2.2]. Moreover, since the line L1 is detected at 40% and 60% by the photoelectric conversion elements a and b of the line sensor 141B, a ratio of 6: 4 is provided between the center of the photoelectric conversion element a and the center of the photoelectric conversion element b. It passes the position [1.6]. Since these difference values are 0.6, the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is required to be 0.6 times the photoelectric conversion element pitch.
Further, since the line L2 is detected at 40% and 60% by the photoelectric conversion elements D and E of the line sensor 141A, a ratio of 6: 4 between the center of the photoelectric conversion element D and the center of the photoelectric conversion element E is obtained. It passes the position [4.6]. Further, since the line L2 is detected at 100% by the photoelectric conversion element d of the line sensor 141B, the line L2 passes through the position [4.0] which is the center of the photoelectric conversion element d. Since these difference values are 0.6, the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is required to be 0.6 times the photoelectric conversion element pitch.
Further, since the line L3 is detected by 90% and 10% by the photoelectric conversion elements G and H of the line sensor 141A, a ratio of 1: 9 is provided between the center of the photoelectric conversion element G and the center of the photoelectric conversion element H. It passes through position [7.1]. Further, since the line L3 is detected at 40% and 60% by the photoelectric conversion elements f and g of the line sensor 141B, a ratio of 6: 4 is provided between the center of the photoelectric conversion element f and the center of the photoelectric conversion element g. It passes through the position [6.6]. Since these difference values are 0.5, it is required that the amount of deviation in the width direction W between the line sensor 141A and the line sensor 141B is 0.5 times the photoelectric conversion element pitch.
Note that the deviation in the width direction W between the line sensor 141A and the line sensor 141B obtained for each of the lines L1 to L3 in accordance with the resolution of the line sensors 141A and 141B varies, and thus the deviation in the width direction W. It is desirable to average. As described above, since the actual number of lines is more than three, more shift amounts in the width direction W can be acquired, and the line sensor 141A and the line can be obtained by obtaining an average value of the larger shift amounts. The shift amount in the width direction W of the sensor 141B can be obtained with higher accuracy.
 上記ラインセンサー141Aとラインセンサー141Bの幅方向Wのずれ量が求まることにより、ラインセンサー141Aが有する光電変換素子とラインセンサー141Bが有する光電変換素子の幅方向Wにおける相対的な位置関係が取得される。
 さらに、第二テストパターンを二つのラインセンサー141Aとラインセンサー141Bにより読み取っているので、第二テストパターンを形成したインクジェットヘッド122の三つのノズルNとラインセンサー141Aが有する光電変換素子とラインセンサー141Bが有する光電変換素子の幅方向Wにおける相対的な位置関係を取得する。
 即ち、上記制御部250は、「位置関係検出用の第二テストパターンの各ラインセンサー141A、141Bの読み取り結果と、複数のノズルNのうち第二テストパターンの記録に用いられたノズルNの位置とに基づいて位置関係を各ラインセンサーごとに求める位置関係情報取得部」として機能することとなる。
By obtaining the amount of shift in the width direction W of the line sensor 141A and the line sensor 141B, the relative positional relationship in the width direction W of the photoelectric conversion element included in the line sensor 141A and the photoelectric conversion element included in the line sensor 141B is acquired. The
Furthermore, since the second test pattern is read by the two line sensors 141A and 141B, the three nozzles N of the inkjet head 122 and the line sensor 141A that have formed the second test pattern, the photoelectric conversion elements and the line sensor 141B. The relative positional relationship in the width direction W of the photoelectric conversion element included in is acquired.
That is, the control unit 250 reads “the position of the nozzle N used for recording the second test pattern among the plurality of nozzles N and the reading results of the line sensors 141A and 141B of the second test pattern for detecting the positional relationship”. Based on the above, it functions as a “positional relationship information acquisition unit that obtains a positional relationship for each line sensor”.
 全インクジェットヘッド122の全ノズルは、原則として、規定のノズルピッチで配列されているので、一部のノズルNから全ノズルNの幅方向Wの相対的な位置関係を取得することができる。
 従って、これらから、全てのインクジェットヘッド122の全てのノズルNとラインセンサー141Aが有する光電変換素子とラインセンサー141Bが有する光電変換素子の幅方向Wにおける相対的な位置関係(「総合的な位置関係」とする)を取得することができる。
In principle, all the nozzles of all the ink jet heads 122 are arranged at a prescribed nozzle pitch, so that the relative positional relationship in the width direction W of all the nozzles N can be acquired from some of the nozzles N.
Therefore, from these, the relative positional relationship in the width direction W of all the nozzles N of all the inkjet heads 122, the photoelectric conversion elements included in the line sensor 141A, and the photoelectric conversion elements included in the line sensor 141B (“total positional relationship”). ”).
 当該総合的な位置関係を取得することにより、ラインセンサー141Aの光電変換素子とラインセンサー141Aに対応する複数ノズルNとの幅方向Wにおける対応関係を求めることができる。つまり、各ノズルNによって形成されるドット又はラインがラインセンサー141Aのいずれの光電変換素子によって読み取られるか、さらには、いずれの光電変換素子の幅方向Wにおけるいずれの位置で読み取られるかを把握することができる。
 ラインセンサー141Bについても同様であり、ラインセンサー141Bの光電変換素子とラインセンサー141Bに対応する複数ノズルNとの幅方向Wにおける対応関係を求めることができる。つまり、各ノズルNによって形成されるドット又はラインがラインセンサー141Bのいずれの光電変換素子によって読み取られるか、さらには、いずれの光電変換素子の幅方向Wにおけるいずれの位置で読み取られるかを把握することができる。
By acquiring the comprehensive positional relationship, the correspondence relationship in the width direction W between the photoelectric conversion element of the line sensor 141A and the plurality of nozzles N corresponding to the line sensor 141A can be obtained. That is, it is grasped by which photoelectric conversion element of the line sensor 141A the dot or line formed by each nozzle N is read, and at which position in the width direction W of which photoelectric conversion element is read. be able to.
The same applies to the line sensor 141B, and the correspondence relationship in the width direction W between the photoelectric conversion element of the line sensor 141B and the plurality of nozzles N corresponding to the line sensor 141B can be obtained. That is, it is grasped by which photoelectric conversion element of the line sensor 141B the dot or line formed by each nozzle N is read, and at which position in the width direction W of which photoelectric conversion element is read. be able to.
 制御部250は、位置関係情報取得プログラムを実行することにより、上記総合的な位置関係を求め、記憶部230に格納する。
 即ち、上記制御部250は、「複数のラインセンサー141A,141Bと複数のノズルNとの記録媒体の搬送方向に交差する方向(幅方向W)の位置関係を各ラインセンサーごとに取得する位置関係情報取得部」として機能することとなる。
The control unit 250 obtains the comprehensive positional relationship by executing the positional relationship information acquisition program and stores it in the storage unit 230.
That is, the control unit 250 obtains “a positional relationship in which each of the line sensors 141A and 141B and the plurality of nozzles N acquires the positional relationship in the direction (width direction W) intersecting the recording medium conveyance direction for each line sensor. It will function as an “information acquisition unit”.
[読取部の制御系]
 図10は読取部140が有する制御系を示している。
 即ち、読取部140は、二つのラインセンサー141A,141Bと、各ラインセンサー141A,141Bの1ライン分の検出信号をA/D変換によりデジタルデータ化して記憶するデータ記憶部142A,142Bと、ラインセンサー141A,141Bの搬送方向Mの位置ずれの長さL(図3参照)による検出タイミングの乖離を調整するセンサー間ギャップ補正部143と、記憶部230に格納された総合的な位置関係を参照して、各ラインセンサーごとに前記第一テストパターンの読み取り結果を解析する解析部144とを備えている。
 二つのラインセンサー141A,141Bによる検出からデータの記憶までは並行処理で実行される。
[Scanner control system]
FIG. 10 shows a control system of the reading unit 140.
That is, the reading unit 140 includes two line sensors 141A and 141B, data storage units 142A and 142B that store detection data for one line of each of the line sensors 141A and 141B as digital data by A / D conversion, and line Refer to the inter-sensor gap correction unit 143 that adjusts the deviation of the detection timing according to the length L (see FIG. 3) of the positional deviation of the sensors 141A and 141B in the transport direction M, and the comprehensive positional relationship stored in the storage unit 230. An analysis unit 144 that analyzes the read result of the first test pattern is provided for each line sensor.
From detection by the two line sensors 141A and 141B to storage of data is executed in parallel processing.
 各ラインセンサー141A,141Bに前述した第一テストパターン(図6参照)の読み取りを行い、個々のラインを検出した光電変換素子の出力に応じた検出信号を出力する。
 データ記憶部142A,142Bは、各ラインセンサー141A,141Bからの検出信号をA/D変換によりデジタルデータ化して記憶する。
The above-described first test pattern (see FIG. 6) is read to each of the line sensors 141A and 141B, and a detection signal corresponding to the output of the photoelectric conversion element that detects each line is output.
The data storage units 142A and 142B convert the detection signals from the line sensors 141A and 141B into digital data by A / D conversion and store them.
 上記センサー間ギャップ補正部143は、ラインセンサー141Bがラインセンサー141Aに対して長さLだけ搬送方向上流側に位置しているので、長さLを記録媒体Pの搬送速度で除算し、ラインセンサー141Aと141Bとにおいて、同一のパターンを読み取るタイミング差を算出する。そして、算出したタイミング差の分だけ遅延させて解析部144にラインセンサー141Bの検出データを入力する。或いは、ドラム110aに設けられた検知部110bによりドラム110aが長さLだけ送られたことを検知してから、解析部144にラインセンサー141Bの検出データを入力する。 The inter-sensor gap correction unit 143 divides the length L by the conveyance speed of the recording medium P because the line sensor 141B is positioned upstream of the line sensor 141A by the length L in the conveyance direction. In 141A and 141B, a timing difference for reading the same pattern is calculated. Then, the detection data of the line sensor 141 </ b> B is input to the analysis unit 144 after being delayed by the calculated timing difference. Alternatively, the detection unit 110b provided in the drum 110a detects that the drum 110a has been fed by the length L, and then inputs the detection data of the line sensor 141B to the analysis unit 144.
 解析部144は、各ラインセンサー141A,141Bごとに、第一テストパターンの読み取り結果に基づく検出データから、第一テストパターンのそれぞれのラインがいずれの光電変換素子の幅方向Wにおけるいずれの位置で検出されたかを求め、記憶部230に格納された総合的な位置関係のデータを参照して、ノズルの不吐出により検出されなかったラインを検出すると共に、当該ラインがいずれのノズルであるかを特定する。 For each line sensor 141A, 141B, the analysis unit 144 detects, based on the detection data based on the reading result of the first test pattern, each line of the first test pattern at any position in the width direction W of any photoelectric conversion element. It is determined whether or not a line has been detected, a line that has not been detected due to nozzle non-ejection is detected by referring to the data on the overall positional relationship stored in the storage unit 230, and which nozzle is the line. Identify.
即ち、
(1)ラインセンサー141Aによる検出範囲(重複範囲Kを含む)の検出データから、総合的な位置関係のデータを参照して、上記検出範囲を通過する予定の複数のラインの中で、検出されないラインを特定し、当該ラインに対応するノズルNを特定する。
(2)ラインセンサー141Bによる検出範囲から重複範囲Kを除いた範囲の検出データから、総合的な位置関係のデータを参照して、上記検出範囲を通過する予定の複数のラインの中で、検出されないラインを特定し、当該ラインに対応するノズルNを特定する。
That is,
(1) From the detection data of the detection range (including the overlapping range K) by the line sensor 141A, referring to the comprehensive positional relationship data, it is not detected in a plurality of lines scheduled to pass the detection range. A line is specified, and the nozzle N corresponding to the line is specified.
(2) From the detection data of the range obtained by removing the overlapping range K from the detection range by the line sensor 141B, with reference to the comprehensive positional relationship data, detection is made among a plurality of lines scheduled to pass the detection range. A line that is not to be processed is specified, and a nozzle N corresponding to the line is specified.
 前述した変更部240は、解析部144が上記(1),(2)に基づいて特定した吐出不良のノズルから当該ノズルの吐出不良によるノズル欠を補正するためのその周辺のノズルの印画率(ドット出現率)の増減値を決定する。 The changing unit 240 described above has a printing rate of the surrounding nozzles for correcting the nozzle missing due to the ejection failure of the nozzles from the ejection failure nozzles identified by the analysis unit 144 based on the above (1) and (2). The increase / decrease value of the dot appearance rate is determined.
[実施形態の技術的効果]
 画像形成システム1の本体部100は、その読取部140が、幅方向Wについて重複する配置で二つのラインセンサー141A,141Bを備え、複数のラインセンサー141A,141Bと複数のノズルNとの幅方向Wの位置関係を各ラインセンサー141A,141Bごとに取得して記憶部230に保有すると共に、この位置関係を参照して、各ラインセンサー141A,141Bごとに第一テストパターンの読み取り結果を解析部144が解析している。
 即ち、一方のラインセンサー141Aと当該センサーに対応するノズルNとの幅方向Wの相対的な位置関係が取得されており、もう一方のラインセンサー141Bと当該センサーに対応するノズルNとの幅方向Wの相対的な位置関係も取得されているので、ラインセンサー141A,141Bの重複部分における第一テストパターンの読み取りによる不吐出のノズルの検出は、ラインセンサー141A又は141Bのいずれか一方の位置関係から行うことができ、重複部分における第一テストパターンの読み取りを適正に行うことが可能となる。
 また、ラインセンサー141A,141Bの重複部分について、二つのラインセンサー141A,141Bのセンサー出力を合成する処理が不要なので、処理負担の軽減及び処理の迅速化を図ることが可能となる。
[Technical effects of the embodiment]
In the main body 100 of the image forming system 1, the reading unit 140 includes two line sensors 141 </ b> A and 141 </ b> B in an overlapping arrangement in the width direction W, and the width direction of the plurality of line sensors 141 </ b> A and 141 </ b> B and the plurality of nozzles N is provided. The positional relationship of W is acquired for each line sensor 141A, 141B and held in the storage unit 230, and the reading result of the first test pattern is analyzed for each line sensor 141A, 141B with reference to this positional relationship. 144 is analyzing.
That is, the relative positional relationship in the width direction W between one line sensor 141A and the nozzle N corresponding to the sensor is acquired, and the width direction between the other line sensor 141B and the nozzle N corresponding to the sensor is acquired. Since the relative positional relationship of W is also acquired, the detection of the non-ejection nozzle by reading the first test pattern in the overlapping portion of the line sensors 141A and 141B is the positional relationship of either the line sensor 141A or 141B. Therefore, it is possible to appropriately read the first test pattern in the overlapping portion.
Further, since it is not necessary to synthesize the sensor outputs of the two line sensors 141A and 141B for the overlapping parts of the line sensors 141A and 141B, it is possible to reduce the processing load and speed up the processing.
 また、画像形成システム1の本体部100の各ヘッドモジュール121は、記録媒体Pの幅方向Wに沿って並んだ複数のノズルNを有するインクジェットヘッド122を複数備え、これらのインクジェットヘッド122は、幅方向Wの端部のノズル同士が重複を生じるように配置されている。
 このため、画像形成範囲の全幅に等しい長大且つ膨大なノズルを有するインクジェットヘッドを不要とし、製造が容易でメンテナンスや交換が容易な幅の狭いインクジェットヘッドを使用することができ、生産性、保守性に優れる画像形成システムを実現することができる。
Each head module 121 of the main body 100 of the image forming system 1 includes a plurality of ink jet heads 122 having a plurality of nozzles N arranged along the width direction W of the recording medium P. The nozzles at the ends in the direction W are arranged so as to overlap each other.
This eliminates the need for an inkjet head having a large and enormous number of nozzles equal to the entire width of the image forming range, and allows the use of a narrow inkjet head that is easy to manufacture and easy to maintain and replace, and that can improve productivity and maintainability. Can be realized.
 さらに、各インクジェットヘッド122の重複範囲Jが、ラインセンサー141A,141Bの重複範囲Kの一端または両端を跨がないように、各ラインセンサー141A,141Bと各インクジェットヘッド122とが配置されている(図4参照)。
 このため、インクジェットヘッド122の重複範囲J内にセンサー繋ぎ目が配置されることを回避でき、インクジェットヘッド122の重複範囲Jにおけるラインセンサーの繋目部分に生じる画質に対する影響を低減し、取得ノズル位置誤差の影響を低減することが可能となる。
Furthermore, each line sensor 141A, 141B and each inkjet head 122 are arrange | positioned so that the overlapping range J of each inkjet head 122 may not straddle the one end or both ends of the overlapping range K of line sensor 141A, 141B ( (See FIG. 4).
For this reason, it can avoid that a sensor joint is arrange | positioned in the overlapping range J of the inkjet head 122, the influence with respect to the image quality which arises in the joint part of the line sensor in the overlapping range J of the inkjet head 122 is reduced, and acquisition nozzle position It is possible to reduce the influence of errors.
 また、解析部144は、ラインセンサー141A,141Bの重複範囲Kにおいては、一方のラインセンサー141Aの第一テストパターンの読み取り結果を解析している。従って、重複範囲Kおいて重複する処理を低減し、さらなる処理負担の軽減及び処理の迅速化を図ることが可能となる。
 なお、重複範囲Kの処理は、ラインセンサー141Aの検出データに基づいて行っているが、ラインセンサー141Bの検出データに基づいて行っても良い。
Further, the analysis unit 144 analyzes the reading result of the first test pattern of one line sensor 141A in the overlapping range K of the line sensors 141A and 141B. Therefore, it is possible to reduce the overlapping processing in the overlapping range K, further reduce the processing load, and speed up the processing.
Note that the processing of the overlapping range K is performed based on the detection data of the line sensor 141A, but may be performed based on the detection data of the line sensor 141B.
 位置関係情報取得部として機能する制御部250は、位置関係検出用の第二テストパターンの各ラインセンサー141A,141Bの読み取り結果と、複数のノズルNのうち第二テストパターンの記録に用いられたノズルNの位置とに基づいてラインセンサー141Aと当該ラインセンサー141Aに対応するノズルNとの位置関係及びラインセンサー141Bと当該ラインセンサー141Bに対応するノズルNとの位置関係を各ラインセンサー141A,141Bごとに求めている。
 これにより、全ノズルNによって形成される第一テストパターン(例えば、図6参照)の読み取りを行うことなく、ラインセンサー141Aと当該ラインセンサー141Aに対応するノズルNとの位置関係及びラインセンサー141Bと当該ラインセンサー141Bに対応するノズルNとの位置関係を取得することができ、全ノズルNによって形成される第一テストパターンの読み取り及びこれに伴う処理を不要とし、さらなる処理負担の軽減及び処理の迅速化を図ることが可能となる。
The control unit 250 functioning as a positional relationship information acquisition unit was used to record the reading results of the line sensors 141A and 141B of the second test pattern for detecting the positional relationship and the second test pattern among the plurality of nozzles N. Based on the position of the nozzle N, the positional relationship between the line sensor 141A and the nozzle N corresponding to the line sensor 141A and the positional relationship between the line sensor 141B and the nozzle N corresponding to the line sensor 141B are shown in the line sensors 141A and 141B. Asking for every one.
Thereby, without reading the first test pattern (for example, see FIG. 6) formed by all the nozzles N, the positional relationship between the line sensor 141A and the nozzle N corresponding to the line sensor 141A, and the line sensor 141B The positional relationship with the nozzle N corresponding to the line sensor 141B can be acquired, the reading of the first test pattern formed by all the nozzles N and the processing associated therewith are not required, and the processing load is further reduced and the processing is reduced. It is possible to speed up.
 また、第一テストパターンは、複数のノズルNの各々の不吐出を検出するための不吐出検出パターンを含み、解析部144は、位置関係情報取得部としての制御部250で取得されている位置関係を参照して、各ラインセンサー141A,141Bごとに不吐出検出パターンの読み取り結果を解析して、不吐出ノズルの位置を特定している。
 このため、処理負担の軽減を図りつつも適正に不吐出のノズルを適正に検出することが可能となる。
The first test pattern includes a non-discharge detection pattern for detecting non-discharge of each of the plurality of nozzles N, and the analysis unit 144 is a position acquired by the control unit 250 as a positional relationship information acquisition unit. With reference to the relationship, the reading result of the non-ejection detection pattern is analyzed for each of the line sensors 141A and 141B, and the position of the non-ejection nozzle is specified.
For this reason, it is possible to properly detect the non-ejection nozzles while reducing the processing load.
[その他]
 上記画像形成システム1では、本体部100が二つのラインセンサー141A,141Bを備える場合を例示したが、その個体数はより多くとも良い。
 例えば、ラインセンサーを三個とする場合には、幅方向一端部から一番目のラインセンサーと二番目のラインセンサーの重複領域を通過するラインと二番目のラインセンサーと三番目のラインセンサーの重複領域とを通過するラインとを有し、これらのラインの互いの幅方向Wの位置が正確に測定又は検出される等により既知である第二テストパターンにより一番目のラインセンサーと二番目のラインセンサーの幅方向の第一の位置ずれを求め、さらに、二番目のラインセンサーと三番目のラインセンサーの幅方向の第二の位置ずれを求める。
 そして、例えば、一番目のラインセンサーを基準とする場合には、二番目のラインセンサーについては第一の位置ずれに基づいて幅方向Wにおける位置関係を求め、三番目のラインセンサーについては第一の位置ずれと第二の位置ずれとの加算値に基づいて第一のラインセンサーと第三のラインセンサーとの幅方向の位置関係を求める。
 そして、これらにより、第一~第三のラインセンサーの全ての幅方向における位置関係を取得することができる。
[Others]
In the image forming system 1, the case where the main body unit 100 includes the two line sensors 141 </ b> A and 141 </ b> B is illustrated, but the number of individuals may be larger.
For example, when there are three line sensors, the line that passes through the overlap area of the first line sensor and the second line sensor from one end in the width direction, the overlap of the second line sensor and the third line sensor The first line sensor and the second line according to a second test pattern having a line passing through the region and known by accurately measuring or detecting the position in the width direction W of these lines. A first positional deviation in the width direction of the sensor is obtained, and further, a second positional deviation in the width direction of the second line sensor and the third line sensor is obtained.
For example, when the first line sensor is used as a reference, the positional relationship in the width direction W is obtained based on the first positional deviation for the second line sensor, and the first line sensor is used for the first line sensor. The positional relationship in the width direction between the first line sensor and the third line sensor is obtained based on the added value of the positional deviation and the second positional deviation.
By these, it is possible to acquire the positional relationships in the width direction of all of the first to third line sensors.
 なお、ヘッドモジュール121の複数のインクジェットヘッド122は、搬送方向に直交する方向(幅方向W)に千鳥配置で配列されている場合を例示したが、これに限らず、搬送方向に斜めに交差する方向に千鳥配置で配列しても良い。また、同様に、各インクジェットヘッド122の複数のノズルNは搬送方向に直交する方向(幅方向W)に限らず、搬送方向に斜めに交差する方向に沿って設けても良い。
 これらの場合、各インクジェットヘッドや各ノズルごとに搬送方向について配置に違いを生じるが、各ノズルの吐出タイミングを適宜制御することで、各インクジェットヘッドが幅方向Wに沿って配列されている場合や各ノズルが幅方向Wに沿って配列されている場合と同様に画像を形成することが可能である。
In addition, although the case where the plurality of inkjet heads 122 of the head module 121 are arranged in a staggered arrangement in the direction orthogonal to the transport direction (width direction W) is illustrated, the present invention is not limited to this, and obliquely intersects the transport direction. They may be arranged in a staggered arrangement in the direction. Similarly, the plurality of nozzles N of each inkjet head 122 are not limited to the direction (width direction W) orthogonal to the transport direction, but may be provided along a direction obliquely intersecting the transport direction.
In these cases, there is a difference in the arrangement in the transport direction for each inkjet head or each nozzle, but when each inkjet head is arranged along the width direction W by appropriately controlling the ejection timing of each nozzle, An image can be formed in the same manner as when the nozzles are arranged along the width direction W.
 また、ラインセンサー141A,141Bの並び方向及び各ラインセンサー141A,141Bの複数の光電変換素子の並び方向が、搬送方向に直交する方向(幅方向W)に平行である場合を例示したが、これに限らず、搬送方向に斜めに交差する方向に平行であっても良い。その場合、各光電変換素子の検出タイミングに違いを生じるので、素子ごとに検出タイミングを適宜制御することで、各光電変換素子が幅方向Wに沿って配列されている場合と同様に検出を行うことが可能である。 Moreover, although the case where the arrangement direction of the line sensors 141A and 141B and the arrangement direction of the plurality of photoelectric conversion elements of the line sensors 141A and 141B are parallel to the direction orthogonal to the transport direction (width direction W) is illustrated, Not limited to this, it may be parallel to a direction that obliquely intersects the transport direction. In that case, since a difference occurs in the detection timing of each photoelectric conversion element, detection is performed in the same manner as when each photoelectric conversion element is arranged along the width direction W by appropriately controlling the detection timing for each element. It is possible.
 また、第二テストパターンは、ラインセンサー141A,141Bの重複範囲を通過する共通のラインにより幅方向Wのセンサー間の位置ずれを求めているが、ラインセンサー141Aの重複範囲以外の検出範囲を通過するラインとラインセンサー141Bの重複範囲以外の検出範囲を通過するラインとからなる第二テストパターンを用いて幅方向Wのセンサー間の位置ずれを求めることも可能である。
 この場合、ラインセンサー141A側のラインとラインセンサー141B側のラインの幅方向Wの間隔が正確に測定又は検出される等により既知であることを前提する。
In the second test pattern, the positional deviation between the sensors in the width direction W is obtained by a common line passing through the overlapping range of the line sensors 141A and 141B, but passes through the detection range other than the overlapping range of the line sensor 141A. It is also possible to obtain the positional deviation between the sensors in the width direction W by using a second test pattern including a line to be detected and a line that passes through a detection range other than the overlapping range of the line sensor 141B.
In this case, it is assumed that the distance in the width direction W between the line on the line sensor 141A side and the line on the line sensor 141B side is known by being accurately measured or detected.
 また、第一テストパターンは、ヘッドモジュール121の全ノズルの形成ドットの幅方向Wにおける着弾位置の位置ずれを検出するテストパターンであっても良い。
 この第一テストパターンとしては、図6に示す不吐出のノズルを検出するためのテストパターンと同じものを利用することができる。
 即ち、各ラインセンサー141A,141Bで、第一テストパターンを読み取り、各ラインセンサー141A,141Bごとに、記憶部230に格納された前述の総合的な位置関係のデータから、第一テストパターンの読み取り結果から求まる各ノズルで形成されたドット(ライン)の幅方向Wにおける位置と総合的な位置関係に定められた対応するノズルの位置とを比較し、その差が着弾位置の位置ずれとして求まる。
 この場合も、ラインセンサー141A,141Bの重複範囲については、いずれか一方のラインセンサー141A又は141B読み取り結果から着弾位置の位置ずれを求めても良い。
In addition, the first test pattern may be a test pattern for detecting the displacement of the landing position in the width direction W of the formed dots of all the nozzles of the head module 121.
As the first test pattern, the same test pattern as that for detecting a non-ejection nozzle shown in FIG. 6 can be used.
That is, the first test pattern is read by each line sensor 141A, 141B, and the first test pattern is read from the above-described comprehensive positional relationship data stored in the storage unit 230 for each line sensor 141A, 141B. The position in the width direction W of the dot (line) formed by each nozzle obtained from the result is compared with the position of the corresponding nozzle determined in the overall positional relationship, and the difference is obtained as the positional deviation of the landing position.
Also in this case, regarding the overlapping range of the line sensors 141A and 141B, the positional deviation of the landing position may be obtained from the reading result of either one of the line sensors 141A or 141B.
 また、上記第一テストパターンがヘッドモジュール121の全ノズルの形成ドットの幅方向Wにおける着弾位置の位置ずれを検出するテストパターンである場合には、変更部240では、形成ドットの位置ずれを検出するテストパターンの読取結果に基づいて位置ずれを生じたノズルN及びその周囲のノズルNの印画率(ドット出現率)の調節を実行する。
 即ち、変更部240は、位置ずれを生じたノズルNのドットにより濃淡が生じた場合に、周辺ドットのとの兼ね合いから位置ずれを生じたノズルNに近接するノズルNの印画率(ドット出現率)を調節し、濃淡が目立たなくなるように調整することができる。
When the first test pattern is a test pattern for detecting the displacement of the landing positions in the width direction W of the formation dots of all the nozzles of the head module 121, the changing unit 240 detects the displacement of the formation dots. Based on the result of reading the test pattern, adjustment of the printing rate (dot appearance rate) of the nozzle N in which the positional deviation has occurred and the surrounding nozzles N is executed.
That is, the change unit 240, when the density of the dots of the nozzle N that has caused the positional deviation has occurred, changes the printing rate (dot appearance rate) of the nozzle N that is adjacent to the nozzle N that has caused the positional deviation due to the balance with the surrounding dots. ) Can be adjusted so that the contrast becomes inconspicuous.
 また、上記実施形態では、ラインセンサー141Aの光電変換素子とラインセンサー141Bの光電変換素子と全インクジェットヘッド122の全ノズルとの幅方向Wにおける位置関係(総合的な位置関係)を取得し、ラインセンサー141Aとラインセンサー141Bのそれぞれの第一テストパターンの読み取り結果の解析の際に上記総合的な位置関係を参照する場合を例示している。
 しかしながら、ラインセンサー141Aによって図6の第一テストパターンのように全ノズルで形成されたテストパターンを読み取ることで、ラインセンサー141Aの各光電変換素子と当該ラインセンサー141Aの読み取り範囲内の複数のノズルとの幅方向Wにおける位置関係を取得し、同様に、ラインセンサー141Bによって図6の第一テストパターンのように全ノズルで形成されたテストパターンを読み取ることで、ラインセンサー141Bの各光電変換素子と当該ラインセンサー141Aの読み取り範囲内の複数のノズルとの幅方向Wにおける位置関係を取得しても良い。即ち、それぞれのラインセンサー141A,141Bとに各ノズルとの位置関係を取得し、解析部144による解析の際には、ラインセンサー141A,141Bごとにそれぞれ対応する位置関係を参照して、不吐出ノズルの特定などを行っても良い。
In the above-described embodiment, the positional relationship (total positional relationship) in the width direction W between the photoelectric conversion element of the line sensor 141A, the photoelectric conversion element of the line sensor 141B, and all the nozzles of all the inkjet heads 122 is acquired. The case where the above-mentioned comprehensive positional relationship is referred to when analyzing the reading results of the first test patterns of the sensor 141A and the line sensor 141B is illustrated.
However, by reading the test pattern formed by all the nozzles as in the first test pattern of FIG. 6 by the line sensor 141A, each photoelectric conversion element of the line sensor 141A and a plurality of nozzles within the reading range of the line sensor 141A. 6 in the width direction W. Similarly, the photoelectric conversion elements of the line sensor 141B are read by reading the test patterns formed by all the nozzles as in the first test pattern of FIG. 6 by the line sensor 141B. And the positional relationship in the width direction W with a plurality of nozzles within the reading range of the line sensor 141A may be acquired. That is, the positional relationship with each nozzle is acquired by each of the line sensors 141A and 141B, and in the analysis by the analysis unit 144, the positional relationship corresponding to each of the line sensors 141A and 141B is referred to, and no ejection is performed. The nozzle may be specified.
 テストパターンを読み取る複数のラインセンサーが重複して配置されたインクジェット記録装置の分野において利用可能性がある。 There is a possibility of being used in the field of an ink jet recording apparatus in which a plurality of line sensors that read a test pattern are arranged in an overlapping manner.
1 画像形成システム
100 本体部(インクジェット記録装置)
120 画像形成部
121 ヘッドモジュール
122 インクジェットヘッド
140 読取部
141A,141B ラインセンサー
142A,142B データ記憶部
143 センサー間ギャップ補正部
144 解析部
230 記憶部
240 変更部
250 制御部(位置関係情報取得部)
J 重複範囲
K 重複範囲
L1~L3 ライン
M 搬送方向
N ノズル
P 記録媒体
S ずれ量
W 幅方向(搬送方向に直交する方向)
1 Image Forming System 100 Main Body (Inkjet Recording Device)
DESCRIPTION OF SYMBOLS 120 Image formation part 121 Head module 122 Inkjet head 140 Reading part 141A, 141B Line sensor 142A, 142B Data storage part 143 Intersensor gap correction part 144 Analysis part 230 Storage part 240 Change part 250 Control part (Position relation information acquisition part)
J Overlapping range K Overlapping range L1 to L3 Line M Conveying direction N Nozzle P Recording medium S Deviation amount W Width direction (direction orthogonal to the conveying direction)

Claims (6)

  1.  所定の搬送方向に搬送される記録媒体に対して複数のノズルからインクを吐出させるフルライン型のヘッドモジュールにより画像を形成するインクジェット記録装置であって、
     前記記録媒体の搬送方向に交差する方向に沿って並び、前記ヘッドモジュールが形成する第一テストパターンを読み取る複数のラインセンサーを備え、
     前記複数のラインセンサーは、その検出範囲における前記記録媒体の搬送方向に交差する方向の端部同士が重複を生じるように配置され、
     前記複数のラインセンサーと前記複数のノズルとの前記記録媒体の搬送方向に交差する方向の位置関係を各ラインセンサーごとに取得する位置関係情報取得部と、
     前記位置関係情報取得部で取得されている位置関係を参照して、各ラインセンサーごとに前記第一テストパターンの読み取り結果を解析する解析部と、
    を備えることを特徴とするインクジェット記録装置。
    An inkjet recording apparatus that forms an image with a full-line type head module that discharges ink from a plurality of nozzles to a recording medium conveyed in a predetermined conveyance direction,
    A plurality of line sensors for reading a first test pattern formed by the head module, arranged along a direction intersecting the conveyance direction of the recording medium,
    The plurality of line sensors are arranged such that end portions in a direction intersecting a conveyance direction of the recording medium in the detection range overlap each other,
    A positional relationship information acquisition unit that acquires, for each line sensor, a positional relationship in a direction intersecting a conveyance direction of the recording medium between the plurality of line sensors and the plurality of nozzles;
    With reference to the positional relationship acquired by the positional relationship information acquisition unit, an analysis unit that analyzes the reading result of the first test pattern for each line sensor,
    An ink jet recording apparatus comprising:
  2.  前記ヘッドモジュールは、前記記録媒体の搬送方向に交差する方向に沿って並んだ複数のノズルを有するインクジェットヘッドを複数備え、
     前記複数のインクジェットヘッドは、前記複数のノズルが前記記録媒体の搬送方向に交差する方向に沿って並び、前記記録媒体の搬送方向に交差する方向の端部のノズル同士が重複を生じるように配置されていることを特徴とする請求項1記載のインクジェット記録装置。
    The head module includes a plurality of inkjet heads having a plurality of nozzles arranged along a direction intersecting a conveyance direction of the recording medium,
    The plurality of inkjet heads are arranged such that the plurality of nozzles are arranged along a direction intersecting the recording medium conveyance direction, and the nozzles at the ends in the direction intersecting the recording medium conveyance direction are overlapped with each other. The ink jet recording apparatus according to claim 1, wherein the ink jet recording apparatus is provided.
  3.  前記インクジェットヘッドの重複範囲が、前記ラインセンサーの重複範囲の一端または両端を跨がないように、前記複数のラインセンサーと前記複数のインクジェットヘッドとが配置されていることを特徴とする請求項2記載のインクジェット記録装置。 The plurality of line sensors and the plurality of inkjet heads are arranged so that an overlapping range of the inkjet heads does not straddle one end or both ends of the overlapping range of the line sensors. The ink jet recording apparatus described.
  4.  前記解析部は、前記ラインセンサーの重複範囲においては、いずれか一方のみの前記ラインセンサーの前記第一テストパターンの読み取り結果を解析することを特徴とする請求項1から3のいずれか一項に記載のインクジェット記録装置。 4. The analysis unit according to claim 1, wherein the analysis unit analyzes a reading result of the first test pattern of only one of the line sensors in an overlapping range of the line sensors. 5. The ink jet recording apparatus described.
  5.  前記位置関係情報取得部は、位置関係検出用の第二テストパターンの各ラインセンサーの読み取り結果と、前記複数のノズルのうち前記第二テストパターンの記録に用いられたノズルの位置と、に基づいて前記位置関係を各ラインセンサーごとに求めることを特徴とする請求項1から4のいずれか一項に記載のインクジェット記録装置。 The positional relationship information acquisition unit is based on the reading result of each line sensor of the second test pattern for detecting the positional relationship and the position of the nozzle used for recording the second test pattern among the plurality of nozzles. The ink jet recording apparatus according to claim 1, wherein the positional relationship is obtained for each line sensor.
  6.  前記第一テストパターンは、前記複数のノズルの各々の不吐出を検出するための不吐出検出パターンを含み、
     前記解析部は、前記位置関係情報取得部で取得されている位置関係を参照して、各ラインセンサーごとに前記不吐出検出パターンの読み取り結果を解析して、不吐出ノズルの位置を特定することを特徴とする請求項1から5のいずれか一項に記載のインクジェット記録装置。
    The first test pattern includes a non-discharge detection pattern for detecting non-discharge of each of the plurality of nozzles,
    The analysis unit refers to the positional relationship acquired by the positional relationship information acquisition unit, analyzes the reading result of the non-ejection detection pattern for each line sensor, and identifies the position of the non-ejection nozzle. The ink jet recording apparatus according to claim 1, wherein:
PCT/JP2015/057545 2014-06-09 2015-03-13 Inkjet recording device WO2015190146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016527666A JPWO2015190146A1 (en) 2014-06-09 2015-03-13 Inkjet recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014118520 2014-06-09
JP2014-118520 2014-06-09

Publications (1)

Publication Number Publication Date
WO2015190146A1 true WO2015190146A1 (en) 2015-12-17

Family

ID=54833255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057545 WO2015190146A1 (en) 2014-06-09 2015-03-13 Inkjet recording device

Country Status (2)

Country Link
JP (1) JPWO2015190146A1 (en)
WO (1) WO2015190146A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163968A (en) * 2015-03-06 2016-09-08 富士ゼロックス株式会社 Image forming device and program
JP2017193075A (en) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 Ink jet recording device, imaging data processing method of ink jet image
JP2018043398A (en) * 2016-09-14 2018-03-22 コニカミノルタ株式会社 Inkjet recording device and ink impact position adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096462A (en) * 2000-07-21 2002-04-02 Fuji Photo Film Co Ltd Recording head
JP2005074697A (en) * 2003-08-28 2005-03-24 Seiko Epson Corp Ejection inspecting device, ejection inspecting method, program, and printing system
JP2010114648A (en) * 2008-11-06 2010-05-20 Ricoh Co Ltd Image processor, image processing method, and program executable by computer
JP2011194734A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Method and apparatus for detecting fine pattern position, method and apparatus for detecting defective nozzle, method and apparatus for discharging liquid
JP2014028463A (en) * 2012-07-31 2014-02-13 Ricoh Co Ltd Image forming apparatus, pattern position detection method, image formation system, and method for producing printed matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096462A (en) * 2000-07-21 2002-04-02 Fuji Photo Film Co Ltd Recording head
JP2005074697A (en) * 2003-08-28 2005-03-24 Seiko Epson Corp Ejection inspecting device, ejection inspecting method, program, and printing system
JP2010114648A (en) * 2008-11-06 2010-05-20 Ricoh Co Ltd Image processor, image processing method, and program executable by computer
JP2011194734A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Method and apparatus for detecting fine pattern position, method and apparatus for detecting defective nozzle, method and apparatus for discharging liquid
JP2014028463A (en) * 2012-07-31 2014-02-13 Ricoh Co Ltd Image forming apparatus, pattern position detection method, image formation system, and method for producing printed matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163968A (en) * 2015-03-06 2016-09-08 富士ゼロックス株式会社 Image forming device and program
JP2017193075A (en) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 Ink jet recording device, imaging data processing method of ink jet image
JP2018043398A (en) * 2016-09-14 2018-03-22 コニカミノルタ株式会社 Inkjet recording device and ink impact position adjustment method

Also Published As

Publication number Publication date
JPWO2015190146A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10105948B2 (en) Image inspection device, image inspection method, program, and ink jet printing system
JPWO2014208587A1 (en) Image forming apparatus
US20170064142A1 (en) Method for correcting density irregularity, printing apparatus, and imaging module
JP2016026918A (en) Nozzle inspection apparatus and image forming apparatus
US8820876B2 (en) Printing apparatus and inspection method
WO2015190146A1 (en) Inkjet recording device
EP3318411B1 (en) Printing apparatus and adjustment method for printing apparatus
JP6543906B2 (en) Image forming apparatus and control method of image forming apparatus
US20170057265A1 (en) Printing apparatus and imaging module
JP7008078B2 (en) Image analyzer, printing device, printing method and program
JP6282912B2 (en) Inspection chart and printing device
JP6384478B2 (en) Image forming apparatus
JP6186947B2 (en) Image forming apparatus and image reading method
JP5563561B2 (en) Printer calibration method
JP2006060713A (en) Image forming apparatus
JP6906059B2 (en) Printing equipment, image analysis methods, programs, and image analysis equipment
US20160031668A1 (en) Transport Apparatus and Recording Apparatus
JP5915166B2 (en) Printing apparatus and correction method
JP2007196568A (en) Program for controlling image forming apparatus, and image forming apparatus
US11679598B2 (en) Printing apparatus and printing method
US20220032647A1 (en) Printing apparatus and printing method
JP6111900B2 (en) Image forming system
JP6379908B2 (en) Nozzle inspection apparatus, image forming apparatus, and nozzle inspection method
JP2018079624A (en) Ink jet device and dyeing system
US11845269B2 (en) Printing apparatus and printing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806474

Country of ref document: EP

Kind code of ref document: A1