WO2015190135A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2015190135A1
WO2015190135A1 PCT/JP2015/055640 JP2015055640W WO2015190135A1 WO 2015190135 A1 WO2015190135 A1 WO 2015190135A1 JP 2015055640 W JP2015055640 W JP 2015055640W WO 2015190135 A1 WO2015190135 A1 WO 2015190135A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
valve
motor
hydraulic pump
Prior art date
Application number
PCT/JP2015/055640
Other languages
English (en)
French (fr)
Inventor
庸子 塚田
徳孝 伊藤
伊君 高志
金子 悟
藤本 隆司
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201580030772.2A priority Critical patent/CN106460889B/zh
Priority to KR1020167034181A priority patent/KR101901047B1/ko
Priority to US15/317,165 priority patent/US10017918B2/en
Priority to EP15805924.6A priority patent/EP3153713A4/en
Publication of WO2015190135A1 publication Critical patent/WO2015190135A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/28Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • B60K2025/065Auxiliary drives from the transmission power take-off the transmission being fluidic, e.g. hydraulic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a work machine that regenerates surplus energy.
  • Patent Document 1 describes a technique of a mechanical hydraulic transmission device applied to a construction machine such as a power shovel. Specifically, “Mechanical type with good transmission efficiency by providing a clutch pressure control valve and engaging the clutch of the mechanical transmission device and disconnecting the clutch of the hydraulic transmission device in the range where the rotation speed of the output shaft is larger than the predetermined value. Power is transmitted to the output shaft by the transmission, and the clutch of the mechanical transmission is disengaged and the power is transmitted to the output shaft when the rotational speed of the output shaft is smaller than a predetermined value.
  • the technology is described. *
  • Patent Document 1 has a problem that it is not possible to regenerate surplus energy generated when the vehicle is decelerated or when the load on a working unit such as a bucket is reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a work machine that can regenerate and use surplus energy.
  • the present invention includes a prime mover, a traveling device, a working device including a hydraulic actuator, a first hydraulic pump that operates by power from the prime mover and supplies hydraulic oil to the hydraulic actuator,
  • a working machine comprising a hydraulic pump / motor for driving the travel device and a control device, wherein a branch flow path through which hydraulic oil flows between the hydraulic actuator and the hydraulic pump / motor, and the branch flow
  • An accumulator provided on a road, a first on-off valve provided between the accumulator and the hydraulic pump / motor, and a second on-off valve provided between the accumulator and the hydraulic actuator,
  • the control device controls the opening and closing of the first on-off valve and the second on-off valve, so that the hydraulic oil from the hydraulic actuator and the By introducing the working oil from the hydraulic pump motor to selectively said accumulator is characterized in that the pressure accumulator.
  • surplus energy of the hydraulic actuator generated when reducing the load on the work device can be stored as regenerative energy in the accumulator.
  • the surplus energy of the hydraulic pump / motor generated when the apparatus is decelerated can be stored in the accumulator as regenerative energy.
  • control device controls the opening and closing of the first on-off valve and the second on-off valve, whereby the hydraulic oil accumulated in the accumulator is supplied to the hydraulic actuator, the hydraulic pump, It is characterized by being selectively supplied to the motor.
  • the regenerative energy accumulated in the accumulator can be regenerated and used to assist the operation of the hydraulic actuator, or can be used to assist the motor operation of the hydraulic pump / motor. Therefore, the surplus energy can be effectively used. This also contributes to an improvement in fuel consumption.
  • the present invention provides a target speed command device that outputs a target speed command for the traveling device, an operating device that outputs a work command for the work device, the first on-off valve, the hydraulic pump, A first pressure detector for detecting a pressure between the motor, a second pressure detector for detecting a pressure between the first on-off valve and the second on-off valve, the second on-off valve, and the hydraulic pressure. It is preferable to further include a third pressure detector that detects a pressure between the actuator and the actuator.
  • the control device is configured such that the target speed command from the target speed command device is a deceleration command, and the first pressure (P14) detected by the first pressure detector is the second pressure detection.
  • the hydraulic pump / motor is operated as a pump, the first on-off valve is opened, and the second on-off valve is closed, so that the hydraulic oil is supplied to the hydraulic pressure. It can be set as the structure which introduces into the said accumulator from a pump motor and accumulates pressure.
  • a second hydraulic pump that operates with power from the prime mover and supplies hydraulic oil to the hydraulic pump / motor
  • a fourth pressure detector that detects a discharge pressure of the second hydraulic pump
  • the control device detects the second pressure (Pacc) detected by the second pressure detector by the fourth pressure detector when the target speed command from the target speed command device is an acceleration command.
  • the hydraulic pump / motor is operated as a motor, the first on-off valve is opened, and the second on-off valve is closed, so that the hydraulic oil accumulated in the accumulator is It is preferable to supply the hydraulic pump / motor.
  • control device may be configured such that a work command from the operation device is a load reduction command, and a third pressure (Plf) detected by the third pressure detector is the second pressure detector.
  • Pacc the pressure is higher than the detected second pressure (Pacc)
  • the second on-off valve is opened, the first on-off valve is closed, and hydraulic oil is introduced from the hydraulic actuator into the accumulator to accumulate pressure.
  • control device further includes a fifth pressure detector that detects a discharge pressure of the first hydraulic pump, and the control device is configured such that a work command from the operation device is a load increase command, and the second pressure detector
  • the second pressure (Pacc) detected at the second pressure is higher than the fifth pressure (P21) detected by the fifth pressure detector, the second on-off valve is opened, the first on-off valve is closed, It is preferable that the hydraulic oil accumulated in the accumulator is supplied to the hydraulic actuator.
  • a gear that transmits power from the prime mover to the traveling device a first clutch provided between the traveling device and the gear, the traveling device, the hydraulic pump, A second clutch provided between the motor and a speed detector for detecting an actual speed of the traveling device; and the control device determines in advance the actual speed detected by the speed detector.
  • the traveling device is driven by the hydraulic pump / motor by disengaging the first clutch and engaging the second clutch, while being detected by the speed detector.
  • the driving device is driven by the prime mover by engaging the first clutch and disconnecting the second clutch.
  • efficient power transmission can be realized with a compact configuration by performing torque transmission by hydraulic pressure in the low speed range and mechanically transmitting torque in the high speed range.
  • FIG. 1 is an overall configuration diagram of a wheel loader according to a first embodiment of the present invention. It is a block diagram which shows the detail of the controller shown in FIG. It is a flowchart which shows the procedure of the process which compares the pressure Pacc, the pressure P14, and the pressure Plf by the pressure comparison part shown in FIG. It is a flowchart which shows the procedure of the process which compares the pressure Pacc and the pressure P12 by the pressure comparison part shown in FIG. It is a flowchart which shows the procedure of the process which compares the pressure Pacc and the pressure P21 by the pressure comparison part shown in FIG.
  • Operation mode No. 2 is a diagram illustrating a flow of hydraulic oil in No. 1.
  • FIG. Operation mode No. 2 is a diagram illustrating a flow of hydraulic oil in No. 1.
  • Operation mode No. 6 is a diagram showing a flow of hydraulic oil in FIG. Operation mode No.
  • FIG. 1 is an overall configuration diagram of a wheel loader according to a first embodiment of the present invention.
  • FIG. 30 is a side view of the wheel loader according to the first embodiment of the present invention.
  • a wheel loader 100 as an embodiment of a work machine according to the present invention is configured to drive a vehicle by rotationally driving four wheels 73 with the power of an engine 10 as a prime mover. Yes.
  • the engine 10 is connected to the transmission 19 via the first gear 16 and the second gear 17, and the transmission 19 is connected to the propeller shaft 11. Therefore, when the engine 10 rotates, the power is mechanically transmitted to the propeller shaft 11 via the first gear 16, the second gear 17, and the transmission 19, and the wheels 73 are rotationally driven by the power.
  • the traveling hydraulic pump (second hydraulic pump) 12 connected to the engine 10 sucks the hydraulic oil from the hydraulic oil tank 50 and discharges the pressure oil toward the traveling hydraulic pump / motor 14. To do.
  • the hydraulic oil is allowed only in one direction from the traveling hydraulic pump 12 to the traveling hydraulic pump / motor by the check valve 49.
  • the traveling hydraulic pump / motor 14 operates as a motor and is driven to rotate by hydraulic oil (pressure oil).
  • hydraulic oil pressure oil
  • the wheel loader 100 transmits the power of the engine 10 to the transmission 19 via the first gear 16, the second gear 17, and the mechanical power clutch (hereinafter referred to as a mechanical clutch) 18 which are mechanical power transmission mechanisms.
  • a traveling hydraulic pump 12 which is a hydraulic power transmission mechanism, a traveling hydraulic pump / motor 14, and a hydraulic power clutch (hereinafter referred to as a hydraulic clutch) 15.
  • the vehicle can be driven by both means configured to transmit to the transmission 19 and rotationally drive the wheels 73.
  • the traveling speed of the vehicle can be adjusted by the depression amount of the accelerator pedal 70.
  • the accelerator pedal 70 is provided in the cab 130 (see FIG. 30). *
  • a speed detector 71 is attached to the wheel 73, and the actual measurement degree of the wheel 73 can be detected by the speed detector 71.
  • the travel hydraulic pump 12 is provided with a regulator 81 for tilting the swash plate, and the travel hydraulic pump / motor 14 is provided with a regulator 80 for tilting the swash plate. , 81 controls the angle of the swash plate based on a control signal from the controller 41.
  • the front operation hydraulic pump (first hydraulic pump) 21 is activated.
  • the front operation hydraulic pump 21 sucks hydraulic oil from the hydraulic oil tank 50 and discharges pressure oil to the control valve 20.
  • the pressure oil from the front operation hydraulic pump 21 is supplied to the work device 90 via the control valve (C / V) 20.
  • the hydraulic oil is allowed only in one direction from the front operation hydraulic pump 21 to the control valve 20 by the check valve 48.
  • the traveling hydraulic pump 12 and the front operation hydraulic pump 21 are of variable displacement type.
  • the traveling hydraulic pump / motor 14 is a variable displacement pump that is tilted in both directions. *
  • the working device 90 includes a bucket cylinder 22 that is a hydraulic actuator that drives the bucket 112, and a steering cylinder 23 that is a hydraulic actuator that bends the vehicle body via the center joint 101 (see FIG. 1). ), And a lift cylinder 24 that is a hydraulic actuator for driving the lift arm 111.
  • the lift arm 111 is attached to the front vehicle body 110 so as to be rotatable in the vertical direction, and is driven to rotate by driving the lift cylinder 24.
  • the bucket 112 is attached to the tip of the lift arm 111 so as to be rotatable in the vertical direction with respect to the lift arm 111, and is driven to rotate by driving the bucket cylinder 22.
  • the front vehicle body 110 and the rear vehicle body 120 are rotatably connected to each other by the center joint 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by the expansion and contraction of the steering cylinder 23.
  • the operation of the work device 90 is performed by an operation lever 72 provided in the cab 130. *
  • a branch flow path 150 through which hydraulic oil flows between the traveling hydraulic pump / motor 14 and the lift cylinder 24 is provided.
  • the branch flow path 150 is formed by connecting the traveling hydraulic pump / motor 14 and the lift cylinder 24 by hydraulic piping, and branches from both the traveling hydraulic pump / motor 14 side and the lift cylinder 24 side. The hydraulic oil can flow into the flow path 150.
  • the accumulator 30 is provided in the branch flow path 150.
  • the accumulator 30 has a structure capable of accumulating hydraulic oil at a predetermined pressure.
  • a fourth electromagnetic valve 34 that is an electromagnetic on-off valve is provided at the inlet of the accumulator 30. The fourth electromagnetic valve 34 is opened when hydraulic oil (pressure oil) is introduced into the accumulator 30 and is closed while the hydraulic oil is stored in the accumulator 30.
  • a second solenoid valve (second on-off valve) 32 which is an electromagnetic on-off valve, is provided between the accumulator 30 and the lift cylinder 24, and between the accumulator 30 and the traveling hydraulic pump / motor 14 is provided.
  • a first electromagnetic valve (first on-off valve) 31 which is an electromagnetic on-off valve.
  • the branch flow path 150 is provided with a discharge flow path 151 for branching from a position between the traveling hydraulic pump / motor 14 and the first electromagnetic valve 31 to discharge the hydraulic oil to the hydraulic oil tank 50.
  • a third electromagnetic valve 33 is provided in the discharge flow channel 151.
  • the third electromagnetic valve 33 is a proportional on-off valve, and is normally closed, and opens at a predetermined opening when the hydraulic oil in the branch flow path 150 is collected in the hydraulic oil tank 50. *
  • the pressure P14 (the first discharge pressure of the traveling hydraulic pump / motor 14)
  • a first pressure detector 61 for detecting (1 pressure) is provided.
  • a second pressure detector 62 for detecting the pressure Pacc (second pressure) of the accumulator 30 is provided.
  • a third pressure detector 63 for detecting the pressure Plf (third pressure) of the hydraulic fluid returned from the lift cylinder 24 is provided.
  • a five pressure detector 65 is provided. *
  • FIG. 2 is a block diagram showing details of the controller 41.
  • the controller 41 includes a pressure comparison unit 401, a lift operation determination unit 402, an acceleration / deceleration determination unit 403, a speed range determination unit 404, an operation mode determination unit 405, and a flow rate adjustment command unit 406. And a clutch command unit 407 and a hydraulic equipment tilt command unit 408.
  • the pressure comparison unit 401 receives the pressure signals from the first pressure detector 61 to the fifth pressure detector 65, compares the pressures P14, Pacc, Plf, P12, and P21, and compares the comparison results with the operation mode. The result is output to the determination unit 405. *
  • the lift operation determination unit 402 receives the operation lever signal (work command) from the operation lever 72, determines the operation state of the lift arm 111, and outputs the determination result to the operation mode determination unit 405. *
  • the acceleration / deceleration determination unit 403 receives a target speed command (depressed amount of the accelerator pedal 70) from an accelerator pedal 70 as a target speed command device and an actual speed signal from a speed detector 71 provided on the wheel 73. The acceleration / deceleration of the vehicle is determined, and the determination result is output to the driving mode determination unit 405. *
  • a speed range determination unit 404 receives an actual speed signal from the speed detector 71 as input, determines whether the vehicle speed range is a low speed range or a high speed range, and determines the determination result as an operation mode determination unit. Output to 405. Note that a reference (threshold value) for determining the low speed range and the high speed range is determined in advance. *
  • the operation mode determination unit 405 determines a vehicle operation mode, which will be described later in detail, based on the comparison result and the determination result, and outputs the determination result to the flow rate adjustment command unit 406 and the clutch command unit 407. *
  • the flow rate adjustment command unit 406 outputs a command related to the opening / closing operation of the solenoid valves 31, 32, 33, 34 according to the determination result output from the operation mode determination unit 405. More specifically, an ON / OFF signal (open / close signal) is output to the first solenoid valve 31, the second solenoid valve 32, and the fourth solenoid valve 34, and the third solenoid valve 33 is opened. A command (degree command) related to the degree is output.
  • the clutch command unit 407 is turned on (coupled) / off with respect to the hydraulic clutch 15 and the mechanical clutch 18 based on the determination result output from the operation mode determination unit 405 and the actual speed information output from the speed detector 71. (Disconnect) command is output. *
  • the hydraulic equipment tilt command unit 408 and the travel hydraulic pump / motor 14 regulator 80 and the travel A swash plate tilt command signal is output to the regulator 81 of the hydraulic pump 12.
  • the discharge flow rates of the traveling hydraulic pump / motor 14 and the traveling hydraulic pump 12 are controlled.
  • FIG. 3 is a flowchart showing a processing procedure for comparing the pressure Pacc, pressure P14, and pressure Plf by the pressure comparison unit 401.
  • FIG. 4 shows a processing procedure for comparing the pressure Pacc and the pressure P12 by the pressure comparison unit 401.
  • FIG. 5 is a flowchart showing a processing procedure for comparing the pressure Pacc and the pressure P21 by the pressure comparison unit 401.
  • FIG. 6 is a flowchart showing a processing procedure for determining the acceleration / deceleration state of the vehicle by the acceleration / deceleration determination unit 403.
  • FIG. 7 is a flowchart showing a procedure of processing for determining the speed range of the vehicle by the speed range determination unit 404
  • FIG. 8 is a flowchart showing a procedure of processing for determining the operating state of the lift arm by the lift operation determination unit 402. *
  • the pressure comparison unit 401 As shown in FIG. 3, in the pressure comparison unit 401, the pressure Pacc is lower than the pressure P14 (S101 / Yes), the pressure Pacc is lower than the pressure Plf (S102 / Yes), and the pressure P14 is lower than the pressure Plf. If there is (S103 / Yes), Pacc ⁇ P14 ⁇ Plf is output (S104). On the other hand, when the pressure P14 is higher than the pressure Plf (S103 / No), the pressure comparison unit 401 outputs Pacc ⁇ Plf ⁇ P14 (S105). When the pressure Pacc is greater than the pressure Plf (S102 / No), the pressure comparison unit 401 outputs Plf ⁇ Pacc ⁇ P14 (S106). *
  • the pressure comparison unit 401 determines whether the pressure Pacc ⁇ Plf is satisfied in S107. If Yes, P14 ⁇ Pacc ⁇ Plf is output (S108). In S109, it is determined whether or not the pressure P14 ⁇ Plf is satisfied. If Yes in S109, the pressure comparison unit 401 outputs P14 ⁇ Plf ⁇ Pacc (S110), and if No, outputs Plf ⁇ P14 ⁇ Pacc (S111). *
  • the pressure comparison unit 401 compares the pressure P12 with the pressure Pacc (S201), and outputs P12 ⁇ Pacc if the pressure P12 is equal to or lower than the pressure Pacc (S201 / Yes). (S202), otherwise (S201 / No), Pacc ⁇ P12 is output (S203). *
  • the pressure comparison unit 401 compares the pressure P21 with the pressure Pacc (S301), and outputs P21 ⁇ Pacc if the pressure P21 is equal to or lower than the pressure Pacc (S301 / Yes). (S302), otherwise (S301 / No), Pacc ⁇ P21 is output (S303).
  • the acceleration / deceleration determination unit 403 compares the actual speed from the speed detector 71 with the target speed command from the accelerator pedal 70 (S401), and the actual speed is smaller than the target speed (S402 / Yes). ), “Acceleration” (acceleration command) is output (S403), and when the actual speed is the same as the target speed (S402 / No), “constant speed” is output (S404). If larger (S401 / No), "Deceleration” (deceleration command) is output (S405). *
  • the speed range determination unit 404 compares the actual speed from the speed detector 71 with the switching speed (S501), and when the actual speed is equal to or lower than the switching speed (S501 / Yes), Is output (S502), and when the actual speed is greater than the switching speed (S501 / No), "high speed” is output (S503).
  • the switching speed is a vehicle speed that serves as a reference (threshold value) for switching from the hydraulic clutch 15 to the mechanical clutch 18. *
  • the lift operation determination unit 402 determines whether the operation lever signal from the operation lever 72 is a command for raising the lift arm 111 (load increase command) (S601). Lift lift is output as lift operation information (S602), and if No, it is determined whether or not the operation lever signal is a command to lower the lift arm 111 (load reduction command) (S603). In the case of Yes in S603, the lift operation determination unit 402 outputs lift lowering as the lift operation information (S604), and in No, outputs the lift stop as the lift operation information (S605). *
  • FIG. 9 summarizes the operations of the clutches 15 and 18 and the solenoid valves 31 to 34 for each operation mode of the wheel loader 100 in a list.
  • FIGS. 10 to 16 show the flow of hydraulic oil using the overall configuration diagram of the typical operation modes shown in FIG.
  • map data related to the operation mode shown in FIG. 9 is stored in the operation mode determination unit 405, and the operation mode determination unit 405 selects a corresponding operation mode based on various inputs and selects the vehicle.
  • the operation mode determination unit 405 may determine the operation mode by calculation each time based on various inputs without storing the map data. *
  • Operation mode No. 1 (see FIG. 10)> Operation mode No. Reference numeral 1 denotes a state in which the wheel loader 100 is in a low speed range, is traveling at an acceleration or a constant speed, and the lift operation is stopped. In this state, the controller 41 sets the hydraulic clutch 15 to “ON (coupled)” and the mechanical clutch 18 to “OFF (disconnected)”, and supplies hydraulic oil from the traveling hydraulic pump 12 to the traveling hydraulic pump / motor 14. . Then, the vehicle is caused to travel by operating the traveling hydraulic pump / motor 14 as a motor.
  • the first solenoid valve 31 is “closed”
  • the second solenoid valve 32 is “closed”
  • the third solenoid valve 33 is “closed”
  • the fourth solenoid valve 34 is “closed”.
  • the mechanical clutch 18 illustrated by a dotted line indicates an off (disconnected) state.
  • Operation mode No. 2 Operation mode No. Reference numeral 2 denotes a state in which the wheel loader 100 is in a high speed region and is traveling at an acceleration or constant speed, and the lift operation is stopped. In this state, the controller 41 turns the hydraulic clutch 15 “off (disengaged)”, the mechanical clutch 18 “on (coupled)”, the first electromagnetic valve 31 “closed”, and the second electromagnetic valve 32 “closed”. The third solenoid valve 33 is “closed” and the fourth solenoid valve 34 is “closed”.
  • Operation mode No. 3 is a state in which the wheel loader 100 is traveling at a reduced speed and the lift operation is stopped. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to rotate the propeller shaft 11. The traveling hydraulic pump / motor 14 is operated as a pump. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • This operation mode includes the pressure P14 detected by the first pressure detector 61 (that is, the discharge pressure of the traveling hydraulic pump / motor 14) and the pressure Pacc detected by the second pressure detector 62 (that is, the inside of the accumulator 30). Therefore, the controller 41 switches the third electromagnetic valve 33 to “open” and returns the hydraulic oil to the hydraulic oil tank 50. At this time, the first solenoid valve 31 is “closed”, the second solenoid valve 32 is “closed”, and the fourth solenoid valve 34 is “closed”. As described above, when the pressure P14 is equal to or lower than the pressure Pacc, the accumulator 30 cannot accumulate pressure, so that the hydraulic oil discharged from the traveling hydraulic pump / motor 14 is discharged via the discharge passage 151 to the hydraulic oil tank 50. Have been collected. *
  • Operation mode No. 4 is a state where the wheel loader 100 is traveling at a reduced speed and the lift operation is stopped. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to rotate the propeller shaft 11. The traveling hydraulic pump / motor 14 is operated as a pump. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • the controller 41 sets the first solenoid valve 31 to “open” and the fourth solenoid valve 34 to “open”. Switch. At this time, the second solenoid valve 32 is “closed” and the third solenoid valve 33 is “closed”. Then, as shown in FIG. 11, the hydraulic oil flows in the branch flow path 150 in the direction of arrow A due to the pressure difference, and is accumulated in the accumulator 30. Thereby, the energy generated when the vehicle is decelerated can be stored in the accumulator 30 as regenerative energy. In FIG. 11, the accumulator 30 illustrated in black indicates that it is in a pressure accumulation state. *
  • Operation mode No. 5 Operation mode No. Reference numeral 5 denotes a state in which the wheel loader 100 is in a low speed range and is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • the relationship between the pressure Pacc and the pressure Plf detected by the third pressure detector 63 (that is, the pressure of the hydraulic fluid returned from the lift cylinder 24) satisfies “Pacc ⁇ Plf”. Therefore, the electromagnetic valves 31, 32, 33, and 34 are kept closed, and the hydraulic oil from the lift cylinder 24 is returned to the hydraulic oil tank 50 via the control valve 20. As described above, when the pressure Plf is equal to or lower than the pressure Pacc, the accumulator 30 cannot accumulate the pressure, so that the hydraulic oil is collected in the hydraulic oil tank 50 as it is. *
  • Operation mode No. 6 (see FIG. 12)> Operation mode No. Reference numeral 6 denotes a state in which the wheel loader 100 is in a low speed region and is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • Operation mode No. 7 Operation mode No. Reference numeral 7 denotes a state in which the wheel loader 100 is in a high speed range, is traveling at an acceleration or a constant speed, and the lift arm 111 is lowered. At this time, the controller 41 turns off the hydraulic clutch 15 and turns on the mechanical clutch 18.
  • Operation mode No. 8 Operation mode No. Reference numeral 8 denotes a state in which the wheel loader 100 is in a high speed region and is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. At this time, the controller 41 turns off the hydraulic clutch 15 and turns on the mechanical clutch 18.
  • Operation mode No. 9 is a state in which the wheel loader 100 travels at a reduced speed and the lift arm 111 is lowered. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to operate the traveling hydraulic pump / motor 14 as a pump by the rotation of the propeller shaft 11. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • This operation mode is a state in which the relationship among the pressure P14, the pressure Pacc, and the pressure Plf satisfies “P14 ⁇ Pacc> Plf”. Therefore, the first solenoid valve 31 is switched to “open” and the fourth solenoid valve 34 is switched to “open”, and the hydraulic oil from the traveling hydraulic pump / motor 14 is accumulated in the accumulator 30. At this time, the second solenoid valve 32 and the third solenoid valve 33 are “closed”. Thus, in this operation mode, the discharge pressure P14 of the traveling hydraulic pump / motor 14 is equal to or higher than the pressure Pacc in the accumulator 30, and the pressure Plf of the hydraulic oil returning from the lift cylinder 24 is the pressure in the accumulator 30. Since it is smaller than Pacc, hydraulic oil from the traveling hydraulic pump / motor 14 is introduced into the accumulator 30 so that the energy generated during deceleration is stored in the accumulator 30 as regenerative energy. *
  • Operation mode No. 10 Operation mode No. Reference numeral 10 denotes a state in which the wheel loader 100 travels at a reduced speed and the lift arm 111 is lowered. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to operate the traveling hydraulic pump / motor 14 as a pump by the rotation of the propeller shaft 11. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • This operation mode is a state in which the relationship between the pressure P14, the pressure Pacc, and the pressure Plf satisfies “P14 ⁇ Pacc ⁇ Plf”. Therefore, the second solenoid valve 32 is switched to “open” and the fourth solenoid valve 34 is switched to “open”, and the hydraulic oil returning from the lift cylinder 24 is accumulated in the accumulator 30. At this time, the first solenoid valve 31 and the third solenoid valve 33 are “closed”.
  • the pressure Plf of the hydraulic oil returning from the lift cylinder 24 is equal to or higher than the pressure Pacc in the accumulator 30, and the discharge pressure P14 of the traveling hydraulic pump / motor 14 is the pressure in the accumulator 30. Since it is smaller than Pacc, the hydraulic oil from the lift cylinder 24 is introduced into the accumulator 30 so that the energy generated during the lowering operation of the lift arm 111 is stored in the accumulator 30 as regenerative energy.
  • Operation mode No. 11 is a state in which the wheel loader 100 travels at a reduced speed and the lift arm 111 is raised. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to operate the traveling hydraulic pump / motor 14 as a pump by the rotation of the propeller shaft 11. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”. That is, this operation mode is a state in which work is performed while applying a load to the lift arm 111 while decelerating.
  • the lift cylinder 24 can perform the lifting operation of the lift arm 111 not only with the hydraulic oil supplied from the front operation hydraulic pump 21 but also with the assistance of the hydraulic oil from the traveling hydraulic pump / motor 14. .
  • the operation mode No. 11 the energy generated when the vehicle is decelerated is used for the lifting operation of the lift arm 111 to eliminate energy waste and improve fuel efficiency.
  • Operation mode No. 12 is a state in which the wheel loader 100 travels at a reduced speed and the lift arm 111 is raised. Therefore, the controller 41 operates the regulator 80 of the traveling hydraulic pump / motor 14 to operate the traveling hydraulic pump / motor 14 as a pump by the rotation of the propeller shaft 11. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”. That is, this operation mode is a state in which work is performed while applying a load to the lift arm 111 while decelerating.
  • Operation mode No. 13 Operation mode No. Reference numeral 13 denotes a state in which the wheel loader 100 is in a low speed range, is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. In this state, the controller 41 turns the hydraulic clutch 15 “on”, the mechanical clutch 18 “off”, and operates the traveling hydraulic pump / motor 14 as a motor to drive the vehicle.
  • This operation mode is a state in which the relationship between the pressure P14 and the pressure Plf satisfies “P14 ⁇ Plf”. Therefore, the hydraulic oil from the lift cylinder 24 cannot be assisted with respect to the motor operation of the traveling hydraulic pump / motor 14. Therefore, the controller 41 maintains the solenoid valves 31, 32, 33, and 34 in a closed state.
  • Operation mode No. 14 (see FIG. 14)> Operation mode No. Reference numeral 14 denotes a state in which the wheel loader 100 is in a low speed range, is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. In this state, the controller 41 turns the hydraulic clutch 15 “on”, the mechanical clutch 18 “off”, and operates the traveling hydraulic pump / motor 14 as a motor to drive the vehicle.
  • This operation mode is a state in which the relationship between the pressure P14 and the pressure Plf satisfies “P14 ⁇ Plf”. Therefore, the controller 41 switches the first electromagnetic valve 31 and the second electromagnetic valve 32 to “open”. At this time, the first solenoid valve 31 is “closed” and the third solenoid valve 33 is “closed”. Then, as shown in FIG. 14, the hydraulic oil flows in the branch flow path 150 in the direction of arrow D due to the pressure difference, and assists the motor operation of the traveling hydraulic pump / motor 14. *
  • the traveling hydraulic pump / motor 14 can rotate the wheel 73 with the assistance of the hydraulic fluid supplied from the traveling hydraulic pump 12 as well as the hydraulic fluid from the lift cylinder 23.
  • the operation mode No. 14 the energy generated during the lowering operation of the lift arm 111 is used for rotational driving of the wheel 73, so that energy is not wasted and fuel efficiency is improved.
  • Operation mode No. 15 Operation mode No. Reference numeral 15 denotes a state in which the wheel loader 100 is in a high speed region and is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. In this state, the controller 41 turns the hydraulic clutch 15 “off”, the mechanical clutch 18 “on”, and rotates the wheels 73 with the power mechanically transmitted from the engine 10.
  • Operation mode No. 16 Operation mode No. Reference numeral 16 denotes a state in which the wheel loader 100 is in a high speed range and is traveling at an acceleration or constant speed, and the lift arm 111 is lowered. At this time, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”.
  • the operation mode No. 16 even when the vehicle is traveling in a high speed range, energy generated by the lowering operation of the lift arm 111 can be used for rotational driving of the wheels 73, so that energy is not wasted and fuel consumption is improved. improves. *
  • Operation mode No. 17 (see FIG. 15)> Operation mode No. Reference numeral 17 denotes a state in which the wheel loader 100 is in a low speed range and is traveling at an acceleration or constant speed, and the lift operation is stopped. At this time, the controller 41 sets the hydraulic clutch 15 to “ON” and the mechanical clutch 18 to “OFF”, and operates the traveling hydraulic pump / motor 14 to drive the vehicle.
  • the relationship between the pressure Pacc and the pressure P12 detected by the fourth pressure detector 64 (that is, the pressure of the hydraulic oil discharged from the traveling hydraulic pump 12) satisfies “Pacc ⁇ P12”. Therefore, the first solenoid valve 31 and the fourth solenoid valve 34 are switched to “open”. At this time, the second solenoid valve 32 and the third solenoid valve 33 are “closed”. Then, the hydraulic oil accumulated in the accumulator 30 flows in the direction of the arrow E in FIG. 15 due to the pressure difference, and is supplied to the traveling hydraulic pump / motor 14. *
  • the traveling hydraulic pump / motor 14 rotates the wheels 73 with the assistance of the pressure of the hydraulic oil stored in the accumulator 30. That is, the operation mode No. In 17, the vehicle is driven using the energy (regenerative power) regenerated and stored in the accumulator 30.
  • Operation mode No. 18 Operation mode No. Reference numeral 18 denotes a state in which the wheel loader 100 is in a low speed range, is traveling at an acceleration or constant speed, and the lift operation is stopped. In this state, the controller 41 sets the hydraulic clutch 15 to “ON” and the mechanical clutch 18 to “OFF” to operate the traveling hydraulic pump / motor 14 to drive the vehicle.
  • Operation mode No. 19 Operation mode No. Reference numeral 19 denotes a state in which the wheel loader 100 is in a high speed range and is traveling at an acceleration or constant speed, and the lift operation is stopped. In this state, since the relationship between the pressure Pacc and the pressure P12 satisfies “Pacc ⁇ P12”, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off”, and turns the traveling hydraulic pump / motor 14 on. The vehicle is driven by operating the motor.
  • the controller 41 switches the first electromagnetic valve 31 and the fourth electromagnetic valve 34 to “open”.
  • the second solenoid valve 32 and the third solenoid valve 33 are “closed”.
  • the hydraulic oil accumulated in the accumulator 30 flows in the branch flow path 150 toward the traveling hydraulic pump / motor 14 due to the pressure difference, and is supplied to the traveling hydraulic pump / motor 14.
  • the traveling hydraulic pump / motor 14 rotates the wheel 73 with the assistance of the pressure of the hydraulic fluid stored in the accumulator 30. That is, the operation mode No. In 19, the vehicle is driven by using the energy (regenerative power) regenerated and stored in the accumulator 30 even when the vehicle is traveling in a high speed range.
  • Operation mode No. 20 Operation mode No. Reference numeral 20 denotes a state in which the wheel loader 100 is in a high speed range and is traveling at an acceleration or constant speed, and the lift operation is stopped.
  • the controller 41 maintains the solenoid valves 31, 32, 33, and 34 in a closed state, sets the hydraulic clutch 15 to “off” and the mechanical clutch 18 to “on”, and mechanically transmits the vehicle from the engine 10. It is made to run with the motive power.
  • Operation mode No. 21 (see FIG. 16)> Operation mode No. Reference numeral 21 denotes a state in which the wheel loader 100 is traveling in a low speed range and the lift arm 111 is raised. At this time, the controller 41 sets the hydraulic clutch 15 to “ON” and the mechanical clutch 18 to “OFF”, and operates the traveling hydraulic pump / motor 14 to drive the vehicle.
  • the controller 41 switches the second electromagnetic valve 32 and the fourth electromagnetic valve 34 to “open”.
  • the first solenoid valve 31 and the third solenoid valve 33 are “closed”.
  • the hydraulic oil stored in the accumulator 30 flows in the branch flow path 150 in the direction of arrow F in FIG. 16 due to the pressure difference, and is supplied to the lift cylinder 24.
  • the lift cylinder 24 raises the lift arm 111 with the assistance of the pressure of the hydraulic oil stored in the accumulator 30. That is, the operation mode No. 21, the energy (regenerative power) regenerated and stored in the accumulator 30 is used for the lifting operation of the lift arm 111.
  • Operation mode No. 22 Operation mode No. Reference numeral 22 denotes a state where the wheel loader 100 is traveling in a low speed range and the lift arm 111 is raised. In this state, the controller 41 turns the hydraulic clutch 15 “on” and the mechanical clutch 18 “off” to operate the traveling hydraulic pump / motor 14 to drive the vehicle.
  • Operation mode No. 23 Operation mode No. Reference numeral 23 denotes a state where the wheel loader 100 is traveling in a high speed range and the lift arm 111 is raised. In this state, the controller 41 turns the hydraulic clutch 15 “OFF” and the mechanical clutch 18 “ON”, and causes the vehicle to travel with the power mechanically transmitted from the engine 10.
  • the lift cylinder 24 raises the lift arm 111 with the assistance of the pressure of the hydraulic oil stored in the accumulator 30. That is, the operation mode No. 23, the energy (regenerative power) regenerated and stored in the accumulator 30 is used for the lifting operation of the lift arm 111.
  • Operation mode No. 24 Operation mode No. Reference numeral 24 denotes a state in which the wheel loader 100 is traveling in a high speed range and the lift arm 111 is raised. In this state, the controller 41 turns the hydraulic clutch 15 “OFF” and the mechanical clutch 18 “ON”, and causes the vehicle to travel with the power mechanically transmitted from the engine 10.
  • FIG. 17 is a diagram showing the transition of the open / close state of each solenoid valve when the wheel loader according to the first embodiment performs a V-shaped excavation operation, which is a series of operations from excavation to earthmoving. As shown in FIG. 17, when the V-shaped excavation operation is performed, the operation proceeds in the order of operations (a) to (j) as time passes.
  • the lift arm 111 operates in the order of stop ⁇ lift lowering ⁇ lift raising ⁇ stop ⁇ lift raising ⁇ stop ⁇ lift lowering as time passes.
  • the controller 41 selects an operation mode according to the states of the pressures Plf, P14, Pacc, P12, and P21 in each of the operations (a) to (j).
  • the excess energy can be regenerated by the accumulator 30, and the regenerated energy can be regenerated according to the work, so that the energy can be effectively used. This also leads to an improvement in fuel consumption.
  • the energy generated when the lift arm 111 is lowered is stored as regenerative energy in the accumulator 30, and the lift arm 111 is raised using the regenerative energy. Or assisting the rotational drive of the wheel 73. Further, the energy generated when the vehicle is decelerated can be stored as regenerative energy in the accumulator 30, and the regenerative energy can be used to assist the lifting operation of the lift arm 111 or the rotational drive of the wheels 73. As a result, waste of energy can be suppressed, and the fuel efficiency can be greatly improved.
  • FIG. 18 is an overall configuration diagram of a wheel loader according to the second embodiment of the present invention.
  • the wheel loader 200 according to the second embodiment is the first in that a mechanism for mechanically transmitting the power from the engine 10 to the wheels 73 is not provided. This is different from the wheel loader 100 according to the embodiment. More specifically, the wheel loader 200 according to the second embodiment does not include the first gear 16, the second gear 17, the hydraulic clutch 15, and the mechanical clutch 17. That is, the wheel loader 200 travels only by hydraulic drive.
  • FIG. 19 summarizes the operations of the solenoid valves 31 to 34 for each operation mode of the wheel loader 200 in a list.
  • the wheel loader 200 has an operation mode No. 31 to 45.
  • the operation mode No. 31 is an operation mode No. 1
  • operation mode no. 32 is an operation mode number.
  • the operation mode No. 33 is an operation mode No. 4
  • the operation mode No. 34 is an operation mode No. 5
  • the operation mode No. 35 is an operation mode No. No. 6
  • operation mode no. 36 is an operation mode No. 9
  • the operation mode No. 37 is the operation mode No. 10
  • the operation mode No. No. 38 is an operation mode No. 11
  • the operation mode No. No. 39 is the operation mode No. 12
  • operation mode no. 40 is an operation mode number.
  • the operation mode No. 41 is an operation mode No. 14 respectively. *
  • the operation mode No. 42 is an operation mode number.
  • the operation mode No. 43 is an operation mode No. 18
  • the operation mode No. No. 44 is an operation mode number.
  • 21, the operation mode No. 45 is the operation mode No. 45. 22 respectively. *
  • the energy generated when the vehicle is decelerated and the energy generated when the lift arm 111 is lowered are regenerated by the accumulator 30 and the regenerated energy is used.
  • the lifting arm 111 can be lifted or the wheels 73 can be rotated and driven. As a result, waste of energy can be suppressed, and the fuel efficiency can be greatly improved.
  • FIG. 20 is an overall configuration diagram of a wheel loader according to a third embodiment of the present invention.
  • the wheel loader 300 according to the third embodiment is such that the position of the branch flow path 150 on the lift cylinder 24 side is between the control valve 20 and the front operation hydraulic pump 21. Is different from the wheel loader 100 according to the first embodiment. Therefore, an electromagnetic switching valve 132 is used instead of the second electromagnetic valve 32.
  • the electromagnetic switching valve 132 has a configuration capable of switching the flow path in three directions.
  • FIGS. 21 to 23 are diagrams showing the flow of hydraulic oil in a typical operation mode of the wheel loader 300 according to the third embodiment.
  • the first solenoid valve 31 and the fourth solenoid valve 34 are opened, and the electromagnetic switching valve 132 is set to the center position shown in FIG. Can be stored in the accumulator 30 as regenerative energy as indicated by an arrow G in the figure. *
  • the fourth electromagnetic valve 34 is opened and the electromagnetic switching valve 132 is moved to the light position. If it is set to, hydraulic oil stored in the accumulator 30 can be supplied to the lift cylinder 23 via the control valve 20 as shown by an arrow I in the figure to assist the lifting operation of the lift arm 111. it can. *
  • the energy generated when the vehicle is decelerated and the energy generated when the lift arm 111 is lowered are regenerated by the accumulator 30 as in the above-described embodiments.
  • the regenerative energy can be used to assist the lifting operation of the lift arm 111 or assist the rotational drive of the wheels 73. As a result, waste of energy can be suppressed, and the fuel efficiency can be greatly improved.
  • FIG. 24 is an overall configuration diagram of a wheel loader according to the fourth embodiment of the present invention.
  • the wheel loader 400 according to the fourth embodiment is not provided with a mechanism for mechanically transmitting the power from the engine 10 to the wheels 73.
  • the wheel loader 300 according to the third embodiment is not provided. And different. More specifically, the wheel loader 400 according to the fourth embodiment does not include the first gear 16, the second gear 17, the hydraulic clutch 15, and the mechanical clutch 17. That is, the wheel loader 400 travels only by hydraulic drive.
  • FIG. 25 is an overall configuration diagram of a wheel loader according to a fifth embodiment of the present invention.
  • the wheel loader 500 according to the fifth embodiment is different from the first embodiment in that the first electromagnetic valve 31a and the second electromagnetic valve 32a are proportional.
  • the flow rate can be controlled appropriately, so that energy loss can be reduced and fuel efficiency is further improved.
  • FIG. 26 is an overall configuration diagram of a wheel loader according to a sixth embodiment of the present invention.
  • the wheel loader 600 according to the sixth embodiment is different from the third embodiment in that the first electromagnetic valve 31a and the electromagnetic switching valve 132a are proportional.
  • the flow rate can be controlled appropriately, so that energy loss can be reduced and fuel consumption can be reduced. Is even better.
  • FIG. 27 is an overall configuration diagram of a wheel loader according to a seventh embodiment of the present invention.
  • the wheel loader 700 according to the seventh embodiment is different from the wheel loader 100 according to the first embodiment in that the front operation hydraulic pump 21 is not provided, as is apparent from a comparison between FIG. 1 and FIG. To do.
  • the traveling hydraulic pump 12 has both functions for traveling and for operating the work device 90. Therefore, the electromagnetic valve 35 is provided between the traveling hydraulic pump 12 and the traveling hydraulic pump / motor 14, and the electromagnetic valve 36 is provided between the traveling hydraulic pump 12 and the control valve 20.
  • the controller 41 switches between opening and closing of the solenoid valves 35 and 36, so that one traveling hydraulic pump 12 drives the rotation of the wheels 73, the operation of the bucket 112, the bending operation of the vehicle body via the center joint 101, the lift arm. 111 is moving up and down.
  • the wheel loader 700 As in the above-described embodiments, energy generated when the vehicle is decelerated or when the lift arm 111 is lowered is regenerated by the accumulator 30, and the regenerative energy is used as necessary. Can be regenerated and converted into power, so that waste of energy can be suppressed and fuel consumption can be improved. Furthermore, according to the seventh embodiment, the number of hydraulic pumps can be reduced, which contributes to cost reduction. *
  • FIG. 28 is an overall configuration diagram of a wheel loader according to an eighth embodiment of the present invention.
  • the wheel loader 800 according to the eighth embodiment is a closed circuit formed by annularly connecting a two-way traveling hydraulic pump 12a and a two-way traveling hydraulic motor 14a with hydraulic piping. It differs from 1st Embodiment by the point which is provided with 95, and the gears 16 and 17 and the mechanical clutch 18 are not provided.
  • Reference numeral 82 denotes a regulator.
  • FIG. 29 is an overall configuration diagram of a wheel loader according to a ninth embodiment of the present invention.
  • the wheel loader 900 according to the ninth embodiment is different from the eighth embodiment in that the first electromagnetic valve 31a and the second electromagnetic valve 32a are proportional.
  • the flow rate can be controlled appropriately, so that energy loss can be reduced and fuel efficiency is further improved.
  • the wheel loader uses the accumulator 30 to regenerate energy when the vehicle is decelerated and when the lift is lowered, and uses the regenerated energy for vehicle acceleration or lift operation. Therefore, waste of energy can be suppressed and fuel consumption can be improved. In addition, since simple configurations such as the branch flow path 150, the accumulator 30, and the electromagnetic valves 31 to 34 are sufficient, the cost can be reduced. *
  • wheel loader described above is an example for explaining the present invention, and is not intended to limit the scope of the present invention only to those embodiments.
  • Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.
  • the present invention can also be applied to work machines other than wheel loaders, such as hydraulic excavators.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 余剰エネルギを回生利用できる作業機械を提供する。本発明に係る作業機械は、油圧アクチュエータ(24)と油圧ポンプ・モータ(14)との間で作動油が流れる分岐流路(150)と、分岐流路に設けられるアキュムレータ(30)と、アキュムレータと油圧ポンプ・モータとの間に設けられる第1開閉弁(31)と、アキュムレータと油圧アクチュエータとの間に設けられる第2開閉弁(32)と、を有する。制御装置(41)は、第1開閉弁および第2開閉弁の開閉を制御することにより、油圧アクチュエータからの作動油と油圧ポンプ・モータからの作動油とを選択的にアキュムレータに導入して蓄圧する。

Description

作業機械
 本発明は、余剰エネルギを回生する作業機械に関する。
 本技術分野の背景技術として、例えば、特許文献1には、パワーショベル等の建設機械に適用される機械油圧式伝動装置の技術が記載されている。具体的には、「クラッチ圧コントロール用バルブを設け、出力軸の回転速度が所定値より大きい範囲では機械式伝動装置のクラッチを接合し油圧式伝動装置のクラッチを切断し伝達効率の良い機械式伝動装置で動力を出力軸に伝え、出力軸の回転速度が所定値より小さい範囲では機械式伝動装置のクラッチを切断するとともに油圧式伝動装置のクラッチを接合し動力を出力軸に伝える。」という技術が記載されている。 
 そして、この特許文献1によれば、「高速時には伝達効率が良いため損失動力を少なくすることが出来るとともに低速時には正転と逆転との間の出力回転速度を円滑に制御し得る。」旨が記載されている。
欧州特許出願公開第0754883号明細書
 しかしながら、特許文献1に記載の技術では、例えば車両の減速時やバケットなどの作業部の負荷が低減するときに発生する余剰エネルギを回生することができないという課題がある。 
 本発明は、上記課題を解決するためになされたものであり、その目的は、余剰エネルギを回生利用できる作業機械を提供することにある。
 上記目的を達成するために、本発明は、原動機と、走行装置と、油圧アクチュエータを含む作業装置と、前記原動機からの動力により作動し、作動油を前記油圧アクチュエータに供給する第1油圧ポンプと、前記走行装置を駆動する油圧ポンプ・モータと、制御装置と、を備える作業機械であって、前記油圧アクチュエータと前記油圧ポンプ・モータとの間で作動油が流れる分岐流路と、前記分岐流路に設けられるアキュムレータと、前記アキュムレータと前記油圧ポンプ・モータとの間に設けられる第1開閉弁と、前記アキュムレータと前記油圧アクチュエータとの間に設けられる第2開閉弁と、を有し、前記制御装置は、前記第1開閉弁および前記第2開閉弁の開閉を制御することにより、前記油圧アクチュエータからの作動油と前記油圧ポンプ・モータからの作動油とを選択的に前記アキュムレータに導入して蓄圧することを特徴としている。 
 本発明によれば、分岐流路を設けて、その分岐流路にアキュムレータを設けることにより、作業装置の負荷低減時に生じる油圧アクチュエータの余剰エネルギをアキュムレータに回生エネルギとして蓄えることができ、また、走行装置の減速時に生じる油圧ポンプ・モータの余剰エネルギをアキュムレータに回生エネルギとして蓄えることができる。 
 また、本発明は、上記構成において、前記制御装置は、前記第1開閉弁および第2開閉弁の開閉を制御することにより、前記アキュムレータに蓄圧された作動油を前記油圧アクチュエータと前記油圧ポンプ・モータとに選択的に供給することを特徴としている。 
 本発明によれば、アキュムレータに蓄圧された回生エネルギを再生して油圧アクチュエータの動作をアシストするために利用したり、あるいは、油圧ポンプ・モータのモータ動作のアシストに利用したりすることができる。よって、余剰エネルギの有効利用を図ることができる。このことは、燃費の改善にも寄与する。 
 ここで、本発明は、上記構成において、前記走行装置に対する目標速度指令を出力する目標速度指令装置と、前記作業装置に対する作業指令を出力する操作装置と、前記第1開閉弁と前記油圧ポンプ・モータとの間の圧力を検出する第1圧力検出器と、前記第1開閉弁と前記第2開閉弁との間の圧力を検出する第2圧力検出器と、前記第2開閉弁と前記油圧アクチュエータとの間の圧力を検出する第3圧力検出器と、をさらに備えることが好ましい。 
 この場合において、余剰エネルギの有効利用と燃費向上を図るため、以下の構成を採用することができる。 
 即ち、上記構成において、前記制御装置は、前記目標速度指令装置からの目標速度指令が減速指令であって、前記第1圧力検出器で検出される第1圧力(P14)が前記第2圧力検出器で検出される第2圧力(Pacc)より高い場合に、前記油圧ポンプ・モータをポンプとして動作させ、前記第1開閉弁を開け、前記第2開閉弁を閉じることで、作動油を前記油圧ポンプ・モータから前記アキュムレータに導入して蓄圧する構成とすることができる。
 この場合に、前記原動機からの動力により作動し、前記油圧ポンプ・モータに作動油を供給する第2油圧ポンプと、前記第2油圧ポンプの吐出圧力を検出する第4圧力検出器と、をさらに備え、前記制御装置は、前記目標速度指令装置からの目標速度指令が加速指令であって、前記第2圧力検出器で検出される第2圧力(Pacc)が前記第4圧力検出器で検出される第4圧力(P12)より高い場合に、前記油圧ポンプ・モータをモータとして動作させ、前記第1開閉弁を開け、前記第2開閉弁を閉じることで、前記アキュムレータに蓄圧された作動油を前記油圧ポンプ・モータに供給する構成とするのが好ましい。 
 また、上記構成において、前記制御装置は、前記操作装置からの作業指令が負荷低減指令であって、前記第3圧力検出器で検出される第3圧力(Plf)が前記第2圧力検出器で検出される第2圧力(Pacc)より高い場合に、前記第2開閉弁を開け、前記第1開閉弁を閉じて、作動油を前記油圧アクチュエータから前記アキュムレータに導入して蓄圧する構成とすることができる。 
 この場合に、前記第1油圧ポンプの吐出圧力を検出する第5圧力検出器をさらに備え、前記制御装置は、前記操作装置からの作業指令が負荷増加指令であって、前記第2圧力検出器で検出される第2圧力(Pacc)が前記第5圧力検出器で検出される第5圧力(P21)より高い場合に、前記第2開閉弁を開け、前記第1開閉弁を閉じて、前記アキュムレータに蓄圧された作動油を前記油圧アクチュエータに供給する構成とするのが好ましい。 
 また、本発明は、上記構成において、前記原動機からの動力を前記走行装置に伝達するギヤと、前記走行装置と前記ギヤとの間に設けられる第1クラッチと、前記走行装置と前記油圧ポンプ・モータとの間に設けられる第2クラッチと、前記走行装置の実速度を検出する速度検出器と、をさらに備え、前記制御装置は、前記速度検出器にて検出された実速度が予め定めた低速度領域内である場合には、前記第1クラッチを切断し、前記第2クラッチを結合することにより、前記油圧ポンプ・モータで前記走行装置を駆動する一方、前記速度検出器にて検出された実速度が前記低速度領域を超えている場合には、前記第1クラッチを結合し、前記第2クラッチを切断することにより、前記原動機で前記走行装置を駆動することを特徴としている。 
 本発明によれば、低速度域ではトルク伝達を油圧により行い、高速度域ではトルク伝達を機械的に行うことにより、コンパクトな構成で効率の良い動力伝達を実現できる。
 本発明によれば、作業車両の走行時や作業時に生じる余剰エネルギを回生利用できる。よって、無駄なエネルギ消費がなく、燃費向上を実現できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1実施形態に係るホイールローダの全体構成図である。 図1に示すコントローラの詳細を示すブロック図である。 図2に示す圧力比較部による圧力Pacc、圧力P14、および圧力Plfの比較を行う処理の手順を示すフローチャートである。 図2に示す圧力比較部による圧力Paccおよび圧力P12の比較を行う処理の手順を示すフローチャートである。 図2に示す圧力比較部による圧力Paccおよび圧力P21の比較を行う処理の手順を示すフローチャートである。 図2に示す加減速判定部による車両の加減速の状態を判定する処理の手順を示すフローチャートである。 図2に示す速度域判定部による車両の速度域を判定する処理の手順を示すフローチャートである。 図2に示すリフト操作判定部によるリフトアームの動作状態を判定する処理の手順を示すフローチャートである。 第1実施形態に係るホイールローダの運転モード毎の各クラッチ、各電磁弁の動作を一覧表にした図である。 運転モードNo.1における作動油の流れを示す図である。 運転モードNo.4における作動油の流れを示す図である。 運転モードNo.6における作動油の流れを示す図である。 運転モードNo.11における作動油の流れを示す図である。 運転モードNo.14における作動油の流れを示す図である。 運転モードNo.17における作動油の流れを示す図である。 運転モードNo.21における作動油の流れを示す図である。 第1実施形態に係るホイールローダがV字掘削動作を行う場合における各電磁弁の開閉状況の推移を示す図である。 本発明の第2実施形態に係るホイールローダの全体構成図である。 第2実施形態に係るホイールローダの運転モード毎の各電磁弁の動作を一覧表にした図である。 本発明の第3実施形態に係るホイールローダの全体構成図である。 第3実施形態に係るホイールローダの代表的な運転モードにおける作動油の流れを示す図である。 第3実施形態に係るホイールローダの代表的な運転モードにおける作動油の流れを示す図である。 第3実施形態に係るホイールローダの代表的な運転モードにおける作動油の流れを示す図である。 本発明の第4実施形態に係るホイールローダの全体構成図である。 本発明の第5実施形態に係るホイールローダの全体構成図である。 本発明の第6実施形態に係るホイールローダの全体構成図である。 本発明の第7実施形態に係るホイールローダの全体構成図である。 本発明の第8実施形態に係るホイールローダの全体構成図である。 本発明の第9実施形態に係るホイールローダの全体構成図である。 本発明の第1実施形態に係るホイールローダの側面図である。
 以下、本発明の各実施形態について図面を用いて説明する。 
 「第1実施形態」
 図1は、本発明の第1実施形態に係るホイールローダの全体構成図である。また、図30は、本発明の第1実施形態に係るホイールローダの側面図である。図1に示すように、本発明に係る作業機械の一実施形態としてのホイールローダ100は、原動機であるエンジン10の動力により4個の車輪73を回転駆動して車両を走行させる構成となっている。具体的には、エンジン10は、第1ギヤ16および第2ギヤ17を介してトランスミッション19と連結しており、このトランスミッション19はプロペラシャフト11と連結している。そのため、エンジン10が回転すると、その動力は、第1ギヤ16、第2ギヤ17、トランスミッション19を介してプロペラシャフト11に機械的に伝達され、その動力によって車輪73が回転駆動する。 
 また、エンジン10が駆動すると、エンジン10と接続した走行用油圧ポンプ(第2油圧ポンプ)12が作動油タンク50から作動油を吸入し、走行用油圧ポンプ・モータ14に向けて圧油を吐出する。なお、作動油は、逆止弁49によって走行用油圧ポンプ12から走行用油圧ポンプ・モータへ向かう方向の一方向のみが許容されている。 
 このとき、走行用油圧ポンプ・モータ14はモータとして作動し、作動油(圧油)によって回転駆動する。この走行用油圧ポンプ・モータ14から出力された駆動力でトランスミッション19を介してプロペラシャフト11が回転することで、車輪73が回転駆動する。 
 即ち、ホイールローダ100は、エンジン10の動力を機械式の動力伝達機構である第1ギヤ16、第2ギヤ17、機械動力用クラッチ(以下、機械クラッチ)18を介してトランスミッション19に伝達して車輪73を回転駆動する構成と、エンジン10の動力を油圧式の動力伝達機構である走行用油圧ポンプ12、走行用油圧ポンプ・モータ14、および油圧動力用クラッチ(以下、油圧クラッチ)15を介してトランスミッション19に伝達して車輪73を回転駆動する構成の両方の手段により、車両を走行させることができる。そして、車両の走行速度は、アクセルペダル70の踏込量によって調整することができる。アクセルペダル70は、運転室130(図30参照)に設けられている。 
 なお、車輪73には速度検出器71が取り付けられており、この速度検出器71によって、車輪73の実測度を検出することができる。また、走行用油圧ポンプ12には、斜板を傾動させるためのレギュレータ81が設けられ、走行用油圧ポンプ・モータ14には、斜板を傾動させるためのレギュレータ80が設けられており、レギュレータ80,81はコントローラ41からの制御信号に基づき斜板の角度を制御する。 
 また、エンジン10を駆動するとフロント操作用油圧ポンプ(第1油圧ポンプ)21が作動する。フロント操作用油圧ポンプ21は作動油タンク50から作動油を吸入し、コントロールバルブ20に圧油を吐出する。このフロント操作用油圧ポンプ21からの圧油がコントロールバルブ(C/V)20を介して作業装置90へと供給される。なお、作動油は、逆止弁48によってフロント操作用油圧ポンプ21からコントロールバルブ20へ向かう一方向のみが許容されている。なお、走行用油圧ポンプ12、フロント操作用油圧ポンプ21は可変容量式である。また、走行用油圧ポンプ・モータ14は可変容量式で両傾転のポンプ・モータである。 
 作業装置90は、図30に示すように、バケット112を駆動する油圧アクチュエータであるバケット用シリンダ22、センタジョイント101を介して車体を屈曲させるための油圧アクチュエータであるステアリング用シリンダ23(図1参照)、およびリフトアーム111を駆動する油圧アクチュエータであるリフト用シリンダ24を備えて構成される。 
 図30に示すように、リフトアーム111は前部車体110に対して上下方向に回動可能に取り付けられ、リフト用シリンダ24の駆動により回動駆動される。バケット112はリフトアーム111の先端において、リフトアーム111に対して上下方向に回動可能に取り付けられ、バケット用シリンダ22の駆動により回動駆動される。前部車体110と後部車体120はセンタジョイント101により互いに回動自在に連結され、ステアリング用シリンダ23の伸縮により後部車体120に対し前部車体110が左右に屈折する。なお、作業装置90の操作は、運転室130内に設けられた操作レバー72によって行われる。 
 さらに、本実施形態では、走行用油圧ポンプ・モータ14とリフト用シリンダ24との間を作動油が流れる分岐流路150が設けられている。この分岐流路150は、走行用油圧ポンプ・モータ14とリフト用シリンダ24とを油圧配管で接続して形成され、走行用油圧ポンプ・モータ14側からとリフト用シリンダ24側からの両方から分岐流路150内へ作動油を流入させることができる構成となっている。 
 そして、分岐流路150にはアキュムレータ30が設けられる。このアキュムレータ30は、作動油を所定の圧力で蓄圧することができる構造からなる。アキュムレータ30の入口には、電磁式の開閉弁である第4電磁弁34が設けられる。この第4電磁弁34は、アキュムレータ30に作動油(圧油)を導入する際に開き、作動油をアキュムレータ30内に蓄えている間は閉じる。 
 また、アキュムレータ30とリフト用シリンダ24との間には電磁式の開閉弁である第2電磁弁(第2開閉弁)32が設けられ、アキュムレータ30と走行用油圧ポンプ・モータ14との間には電磁式の開閉弁である第1電磁弁(第1開閉弁)31が設けられる。さらに、分岐流路150には、走行用油圧ポンプ・モータ14と第1電磁弁31との間の位置から分岐して作動油を作動油タンク50に排出するための排出流路151が設けられており、この排出流路151には第3電磁弁33が設けられている。この第3電磁弁33は、比例式の開閉弁であり、常時は閉じており、分岐流路150内の作動油を作動油タンク50に回収する際に所定の開度で開く。 
 走行用油圧ポンプ・モータ14と第1電磁弁31との間には、走行用油圧ポンプ・モータ14がポンプとして動作した場合における、走行用油圧ポンプ・モータ14の吐出圧力である圧力P14(第1圧力)を検出するための第1圧力検出器61が設けられる。第1電磁弁31と第2電磁弁32との間には、アキュムレータ30の圧力Pacc(第2圧力)を検出するための第2圧力検出器62が設けられる。リフト用シリンダ24と第2電磁弁32との間には、リフト用シリンダ24から戻される作動油の圧力Plf(第3圧力)を検出するための第3圧力検出器63が設けられる。また、走行用油圧ポンプ12の吐出圧力P12(第4圧力)を検出するための第4圧力検出器64、およびフロント操作用油圧ポンプ21の吐出圧力P21(第5圧力)を検出するための第5圧力検出器65が設けられている。 
 次に、コントローラ41の詳細を説明する。図2は、コントローラ41の詳細を示すブロック図である。図2に示すように、コントローラ41は、圧力比較部401と、リフト操作判定部402と、加減速判定部403と、速度域判定部404と、運転モード判定部405と、流量調整指令部406と、クラッチ指令部407と、油圧機器傾転指令部408と、を備えている。
 圧力比較部401は、第1圧力検出器61~第5圧力検出器65からの圧力信号を入力として、各圧力P14、Pacc、Plf、P12、P21の大小を比較し、その比較結果を運転モード判定部405に出力する。 
 リフト操作判定部402は、操作レバー72からの操作レバー信号(作業指令)を入力として、リフトアーム111の動作状態を判定し、その判定結果を運転モード判定部405に出力する。 
 加減速判定部403は、目標速度指令装置としてのアクセルペダル70からの目標速度指令(アクセルペダル70の踏込量)と車輪73に設けられた速度検出器71からの実速度の信号とを入力として、車両の加減速を判定し、その判定結果を運転モード判定部405に出力する。 
 速度域判定部404は、速度検出器71からの実速度の信号を入力として、車両の速度域が低速度域と高速度域の何れであるかを判定し、その判定結果を運転モード判定部405に出力する。なお、低速度域と高速度域とを判断するための基準(閾値)は、予め定められている。 
 運転モード判定部405は、上記した比較結果および判定結果に基づき、詳しくは後述する車両の運転モードを判定し、その判定結果を流量調整指令部406およびクラッチ指令部407に出力する。 
 流量調整指令部406は、運転モード判定部405から出力される判定結果に従って、電磁弁31,32,33,34の開閉動作に関する指令を出力する。より詳細には、第1電磁弁31、第2電磁弁32、第4電磁弁34に対しては、ON/OFF信号(開閉信号)を出力し、第3電磁弁33に対しては弁開度に関する指令(開度指令)を出力する。
 クラッチ指令部407は、運転モード判定部405から出力される判定結果と速度検出器71から出力される実速度の情報とに基づき、油圧クラッチ15、機械クラッチ18に対してオン(結合)/オフ(切断)の指令を出力する。 
 油圧機器傾転指令部408は、運転モード判定部405から出力される判定結果と速度検出器71から出力される実速度の情報とに基づき、走行用油圧ポンプ・モータ14のレギュレータ80および走行用油圧ポンプ12のレギュレータ81に対して斜板の傾転指令信号を出力する。これにより、走行用油圧ポンプ・モータ14および走行用油圧ポンプ12の吐出流量が制御される。 
 続いて、各処理部の具体的な処理フローについて、図3~図8を用いて説明する。図3は圧力比較部401による圧力Pacc、圧力P14、および圧力Plfの比較を行う処理の手順を示すフローチャート、図4は圧力比較部401による圧力Paccおよび圧力P12の比較を行う処理の手順を示すフローチャート、図5は圧力比較部401による圧力Paccおよび圧力P21の比較を行う処理の手順を示すフローチャート、図6は加減速判定部403による車両の加減速の状態を判定する処理の手順を示すフローチャート、図7は速度域判定部404による車両の速度域を判定する処理の手順を示すフローチャート、図8はリフト操作判定部402によるリフトアームの動作状態を判定する処理の手順を示すフローチャートである。 
 図3に示すように、圧力比較部401は、圧力Paccが圧力P14以下であり(S101/Yes)、圧力Paccが圧力Plf以下であり(S102/Yes)であり、圧力P14が圧力Plf以下である場合(S103/Yes)に、Pacc≦P14≦Plfを出力する(S104)。一方、圧力P14が圧力Plfより大きい場合(S103/No)、圧力比較部401は、Pacc≦Plf<P14を出力する(S105)。また、圧力Paccが圧力Plfより大きい場合(S102/No)には、圧力比較部401は、Plf<Pacc≦P14を出力する(S106)。 
 圧力Paccが圧力P14より大きい場合(S101/No)、圧力比較部401はS107において圧力Pacc≦Plfを満たすか判断し、Yesの場合、P14<Pacc≦Plfを出力し(S108)、Noの場合、S109において圧力P14≦Plfを満たすか判断する。そして、S109においてYesの場合、圧力比較部401はP14≦Plf<Paccを出力し(S110)、Noの場合Plf<P14<Paccを出力する(S111)。 
 また、圧力比較部401は、図4に示すように、圧力P12と圧力Paccとの大小を比較し(S201)、圧力P12が圧力Pacc以下である(S201/Yes)ならP12≦Paccを出力し(S202)、そうでなければ(S201/No)、Pacc<P12を出力する(S203)。 
 さらに、圧力比較部401は、図5に示すように、圧力P21と圧力Paccとの大小を比較し(S301)、圧力P21が圧力Pacc以下である(S301/Yes)ならP21≦Paccを出力し(S302)、そうでなければ(S301/No)、Pacc<P21を出力する(S303)。
 加減速判定部403は、図6に示すように、速度検出器71からの実速度とアクセルペダル70からの目標速度指令とを比較し(S401)、実速度が目標速度より小さい(S402/Yes)場合には「加速」(加速指令)を出力し(S403)、実速度が目標速度と同じ(S402/No)場合には「一定速」を出力し(S404)、実速度が目標速度より大きい(S401/No)場合には「減速」(減速指令)を出力する(S405)。 
 速度域判定部404は、図7に示すように、速度検出器71からの実速度と切換速度とを比較し(S501)、実速度が切換速度以下(S501/Yes)の場合には「低速」を出力し(S502)、実速度が切換速度より大きい(S501/No)場合には「高速」を出力する(S503)。なお、切換速度とは、油圧クラッチ15から機械クラッチ18へ切り換える基準(閾値)となる車両の速度のことである。 
 リフト操作判定部402は、図8に示すように、操作レバー72からの操作レバー信号がリフトアーム111の上昇動作の指令(負荷増加指令)であるかを判断し(S601)、Yesであればリフト動作の情報としてリフト上昇を出力し(S602)、Noであれば操作レバー信号がリフトアーム111の下降動作の指令(負荷低減指令)であるか否かを判断する(S603)。S603でYesの場合、リフト操作判定部402はリフト動作の情報としてリフト下降を出力し(S604)、Noの場合、リフト動作の情報としてリフト停止を出力する(S605)。 
 次に、ホイールローダ100の運転モードについて説明する。図9は、ホイールローダ100の運転モード毎のクラッチ15,18、電磁弁31~34の動作を一覧表にまとめたものである。また、図10~図16は、図9に示す運転モードの代表的なものについて、全体構成図を用いて作動油の流れを示したものである。なお、本実施形態では、図9に示す運転モードに関するマップデータが運転モード判定部405に記憶されており、運転モード判定部405が各種入力に基づいて、対応する運転モードを選択して車両を制御する構成としているが、マップデータを記憶させずに、各種入力に基づき、その都度運転モード判定部405が運転モードを演算により決定する構成としても良い。 
 <運転モードNo.1(図10参照)> 
 運転モードNo.1は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オン(結合)」、機械クラッチ18を「オフ(切断)」として、走行用油圧ポンプ12から作動油を走行用油圧ポンプ・モータ14に供給する。そして、走行用油圧ポンプ・モータ14をモータとして動作させて車両を走行させる。このモードでは、第1電磁弁31を「閉」、第2電磁弁32を「閉」、第3電磁弁33を「閉」、第4電磁弁34を「閉」とする。なお、点線で図示された機械クラッチ18はオフ(切断)状態であることを示している。 
 この運転モードNo.1では、油圧クラッチ15をオンにし、機械クラッチ18をオフにすることで、低速度域におけるトルク伝達を油圧によって伝達しているため、コンパクトな構成で、効率の良い動力伝達を実現できる。
 より詳細に言うと、高トルクが必要となる低速度域において動力伝達をギヤ16,17で行うと、ギヤ比を大きくしなければならず装置が大型化するという課題や、トルクコンバータを用いると入出力回転数の差が大きくなるため効率が低くなるという課題や、動力伝達を電気的に行うと低出力のため効率が低くなるという課題があるが、本実施形態では、低速度域におけるトルク伝達を油圧によって伝達することで、これらの課題は解決されている。
 <運転モードNo.2> 
 運転モードNo.2は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オフ(切断)」、機械クラッチ18を「オン(結合)」とし、第1電磁弁31を「閉」、第2電磁弁32を「閉」、第3電磁弁33を「閉」、第4電磁弁34を「閉」とする。
 エンジン10の速度域が高速度域の場合、低トルクを伝達できれば十分であるため、この運転モードでは、ギヤ16,17、機械クラッチ18を用いてエンジン10の動力を車輪73に伝達することで、動力の伝達効率を高めている。 
 <運転モードNo.3> 
 運転モードNo.3は、ホイールローダ100が減速走行しており、リフト動作が停止している状態であるため、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、第1圧力検出器61で検出される圧力P14(即ち、走行用油圧ポンプ・モータ14の吐出圧力)と第2圧力検出器62で検出される圧力Pacc(即ち、アキュムレータ30内部の圧力)との関係が「Pacc≧P14」を満たす状態であるため、コントローラ41は、第3電磁弁33を「開」に切り換えて作動油を作動油タンク50に戻している。このとき、第1電磁弁31は「閉」、第2電磁弁32は「閉」、第4電磁弁34は「閉」である。このように、圧力P14が圧力Pacc以下である場合、アキュムレータ30に蓄圧することができないため、走行用油圧ポンプ・モータ14から吐き出された作動油を排出流路151を経由して作動油タンク50に回収している。 
 <運転モードNo.4(図11参照)> 
 運転モードNo.4は、ホイールローダ100が減速走行しており、リフト動作が停止している状態であるため、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、圧力P14と圧力Paccとの関係が「Pacc<P14」を満たす状態であるため、コントローラ41は、第1電磁弁31を「開」、第4電磁弁34を「開」に切り換える。このとき、第2電磁弁32は「閉」、第3電磁弁33は「閉」である。すると、図11に示すように、作動油は、圧力差により分岐流路150内を矢印Aの方向に流れていき、アキュムレータ30にて蓄圧される。これにより、車両の減速時に発生するエネルギをアキュムレータ30に回生エネルギとして蓄えることができる。なお、図11において、黒塗りで図示されたアキュムレータ30は、蓄圧状態であることを示している。 
 なお、車両速度の大きさによらず、減速時には常に油圧クラッチ15をオン、機械クラッチ18をオフとするよう制御することで、より多くの回生エネルギを得ることができる。 
 <運転モードNo.5> 
 運転モードNo.5は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、圧力Paccと、第3圧力検出器63で検出される圧力Plf(即ち、リフト用シリンダ24から戻される作動油の圧力)との関係が「Pacc≧Plf」を満たす状態であるため、各電磁弁31,32,33,34を閉の状態に維持し、リフト用シリンダ24からの作動油をコントロールバルブ20を介して作動油タンク50に戻す。このように、圧力Plfが圧力Pacc以下である場合、アキュムレータ30に蓄圧することができないため、作動油をそのまま作動油タンク50に回収している。 
 <運転モードNo.6(図12参照)> 
 運転モードNo.6は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、圧力Paccと圧力Plfとの関係が「Pacc<Plf」を満たす状態であるため、コントローラ41は第2電磁弁32および第4電磁弁34を「開」に切り換える。このとき、第1電磁弁31は「閉」、第3電磁弁33は「閉」である。すると、図12に示すように、作動油は、圧力差により分岐流路150内を矢印Bの方向に流れていき、アキュムレータ30にて蓄圧される。これにより、リフトアーム111の下降動作時に発生するエネルギをアキュムレータ30に回生エネルギとして蓄えることができる。なお、図12において、黒塗りで図示されたアキュムレータ30は、蓄圧状態であることを示している。 
 <運転モードNo.7> 
 運転モードNo.7は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この際、コントローラ41は、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とする。 
 この運転モードは、圧力Paccと、第3圧力検出器63で検出される圧力Plfとの関係が「Pacc≧Plf」を満たす状態であるため、コントローラ41は各電磁弁31,32,33,34を閉の状態に維持し、リフト用シリンダ24からの作動油をコントロールバルブ20を介して作動油タンク50に戻す。 
 <運転モードNo.8> 
 運転モードNo.8は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この際、コントローラ41は、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とする。 
 この運転モードは、圧力Paccと圧力Plfとの関係が「Pacc<Plf」を満たす状態であるため、コントローラ41は、第2電磁弁32および第4電磁弁34を開に切り換える。このとき、第1電磁弁31は「閉」、第3電磁弁33は「閉」である。すると、作動油は、圧力差によりリフト用シリンダ24からアキュムレータ30に流れ、アキュムレータ30によって蓄圧される。これにより、リフトアーム111の下降動作時に生じるエネルギをアキュムレータ30に回生エネルギとして蓄えることができる。 
 <運転モードNo.9> 
 運転モードNo.9は、ホイールローダ100が減速走行しており、リフトアーム111が下降している状態である。よって、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、圧力P14と圧力Paccと圧力Plfとの関係が、「P14≧Pacc>Plf」を満たす状態である。そのため、第1電磁弁31を「開」、第4電磁弁34を「開」に切り換えて、走行用油圧ポンプ・モータ14からの作動油をアキュムレータ30に蓄圧する。このとき、第2電磁弁32および第3電磁弁33は「閉」である。このように、この運転モードでは、走行用油圧ポンプ・モータ14の吐出圧P14がアキュムレータ30内部の圧力Pacc以上であり、かつ、リフト用シリンダ24から戻る作動油の圧力Plfがアキュムレータ30内部の圧力Paccより小さいため、走行用油圧ポンプ・モータ14からの作動油をアキュムレータ30に導入して、減速時に生じるエネルギを回生エネルギとしてアキュムレータ30に蓄えるようにしている。 
 <運転モードNo.10> 
 運転モードNo.10は、ホイールローダ100が減速走行しており、リフトアーム111が下降している状態である。よって、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。 
 この運転モードは、圧力P14と圧力Paccと圧力Plfとの関係が、「P14<Pacc≦Plf」を満たす状態である。そのため、第2電磁弁32を「開」、第4電磁弁34を「開」に切り換えて、リフト用シリンダ24から戻る作動油をアキュムレータ30に蓄圧する。このとき、第1電磁弁31および第3電磁弁33は「閉」である。このように、この運転モードでは、リフト用シリンダ24から戻る作動油の圧力Plfがアキュムレータ30内部の圧力Pacc以上であり、かつ、走行用油圧ポンプ・モータ14の吐出圧P14がアキュムレータ30内部の圧力Paccより小さいため、リフト用シリンダ24からの作動油をアキュムレータ30に導入して、リフトアーム111の下降動作時に生じるエネルギを回生エネルギとしてアキュムレータ30に蓄えるようにしている。 
 <運転モードNo.11(図13参照)> 
 運転モードNo.11は、ホイールローダ100が減速走行しており、リフトアーム111が上昇している状態である。よって、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。即ち、この運転モードは、減速しながら、リフトアーム111に負荷をかけて作業を行う状態である。 
 この運転モードは、圧力P14と圧力Plfの圧力の関係が、「P14≧Plf」を満たす状態であるため、コントローラ41は、第1電磁弁31を「開」、第2電磁弁32を「開」に切り換えて、図13に示すように、走行用油圧ポンプ・モータ14からの作動油をC方向に流して、リフト用シリンダ24に導入する。このとき、第3電磁弁33および第4電磁弁34は閉である。 
 リフト用シリンダ24は、フロント操作用油圧ポンプ21から供給される作動油だけでなく、走行用油圧ポンプ・モータ14からの作動油のアシストも受けて、リフトアーム111の上昇動作を行うことが出来る。このように、運転モードNo.11では、車両の減速時に生じるエネルギをリフトアーム111の上昇動作に利用することで、エネルギの無駄をなくし、燃費向上を図っている。 
 <運転モードNo.12> 
 運転モードNo.12は、ホイールローダ100が減速走行しており、リフトアーム111が上昇している状態である。よって、コントローラ41は、走行用油圧ポンプ・モータ14のレギュレータ80を操作して、プロペラシャフト11の回転により走行用油圧ポンプ・モータ14をポンプとして作動させる。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とする。即ち、この運転モードは、減速しながら、リフトアーム111に負荷をかけて作業を行う状態である。 
 この運転モードでは、圧力P14と圧力Plfの圧力の関係が、「P14<Plf」を満たす状態であるため、走行用油圧ポンプ・モータ14からの作動油をリフトアーム111の上昇動作のアシストに用いることが出来ない。そこで、コントローラ41は、電磁弁31,32,33,34を閉の状態のまま維持する。 
 <運転モードNo.13> 
 運転モードNo.13は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」として、走行用油圧ポンプ・モータ14をモータとして動作させて車両を走行させる。 
 この運転モードは、圧力P14と圧力Plfとの関係が「P14≧Plf」を満たす状態である。そのため、リフト用シリンダ24からの作動油を走行用油圧ポンプ・モータ14のモータ動作に対してアシストすることが出来ない。そこで、コントローラ41は、電磁弁31,32,33,34を閉の状態のまま維持する。 
 <運転モードNo.14(図14参照)> 
 運転モードNo.14は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」として、走行用油圧ポンプ・モータ14をモータとして動作させて車両を走行させる。 
 この運転モードは、圧力P14と圧力Plfとの関係が「P14<Plf」を満たす状態である。よって、コントローラ41は、第1電磁弁31および第2電磁弁32を「開」に切り換える。このとき、第1電磁弁31は「閉」、第3電磁弁33は「閉」である。すると、図14に示すように、作動油は、圧力差により分岐流路150内を矢印Dの方向に流れていき、走行用油圧ポンプ・モータ14のモータ動作をアシストする。 
 つまり、走行用油圧ポンプ・モータ14は、走行用油圧ポンプ12から供給される作動油だけでなく、リフト用シリンダ23からの作動油のアシストも受けて、車輪73を回転駆動させることが出来る。このように、運転モードNo.14では、リフトアーム111の下降動作時に生じるエネルギを車輪73の回転駆動に利用することで、エネルギの無駄をなくし、燃費向上を図っている。 
 <運転モードNo.15> 
 運転モードNo.15は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とし、車輪73をエンジン10から機械的に伝達された動力により回転駆動させる。 
 この運転モードは、圧力P14と圧力Plfとの関係が「P14≧Plf」を満たす状態であるため、リフト用シリンダ24からの作動油を走行用油圧ポンプ・モータ14に供給できない。そのため、コントローラ41は、電磁弁31,32,33,34を閉の状態のまま維持する。即ち、車輪73は、エンジン10と連結した第1ギヤ16、第2ギヤ17を介して伝達された動力で回転駆動する。 
 <運転モードNo.16> 
 運転モードNo.16は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフトアーム111が下降している状態である。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」にする。 
 この運転モードは、圧力P14と圧力Plfとの関係が「P14<Plf」を満たす状態であるため、コントローラ41は、第1電磁弁31および第2電磁弁32を「開」に切り換える。このとき、第3電磁弁33は「閉」、第4電磁弁34は「閉」である。すると、作動油は、圧力差によりリフト用シリンダ24から走行用油圧ポンプ・モータ14に向かって分岐流路150内を流れていき、走行用油圧ポンプ・モータ14のモータ動作をアシストする。 
 このように、運転モードNo.16では、車両が高速度域で走行している場合であっても、リフトアーム111の下降動作により生じるエネルギを車輪73の回転駆動に利用することができるから、エネルギの無駄がなくなり、燃費が向上する。 
 次に、アキュムレータ30に蓄えられた回生エネルギを利用(再生)する運転モードについて説明する。 
 <運転モードNo.17(図15参照)> 
 運転モードNo.17は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」とし、走行用油圧ポンプ・モータ14をモータ動作させて車両を走行させる。 
 この運転モードは、圧力Paccと、第4圧力検出器64で検出される圧力P12(即ち、走行用油圧ポンプ12から吐出される作動油の圧力)との関係が「Pacc≧P12」を満たす状態であるため、第1電磁弁31および第4電磁弁34を「開」に切り換える。このとき、第2電磁弁32および第3電磁弁33は「閉」である。すると、アキュムレータ30に蓄圧されている作動油が圧力差によって、分岐流路150内を図15の矢印E方向に流れ、走行用油圧ポンプ・モータ14に供給される。 
 こうして、走行用油圧ポンプ・モータ14は、アキュムレータ30に蓄えられた作動油の圧力によるアシストを受けて、車輪73を回転駆動する。即ち、運転モードNo.17では、アキュムレータ30にて回生され、蓄えられたエネルギ(回生動力)を利用して車両を走行させている。 
 <運転モードNo.18> 
 運転モードNo.18は、ホイールローダ100が低速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」として、走行用油圧ポンプ・モータ14をモータ動作させて車両を走行させる。 
 この運転モードは、圧力Paccと圧力P12との関係が「Pacc<P12」を満たす状態であるため、アキュムレータ30に蓄えられた作動油を走行用油圧ポンプ・モータ14に供給できない。そのため、コントローラ41は、各電磁弁31,32,33,34は閉じたままとし、アキュムレータ30からのアシストを受けることなく、走行用油圧ポンプ・モータ14により車両を走行させている。 
 <運転モードNo.19> 
 運転モードNo.19は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この状態において、圧力Paccと圧力P12の関係が「Pacc≧P12」を満たすため、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」として、走行用油圧ポンプ・モータ14をモータ動作させて車両を走行させる。 
 さらに、コントローラ41は、第1電磁弁31および第4電磁弁34を「開」に切り換える。このとき、第2電磁弁32および第3電磁弁33は「閉」である。すると、アキュムレータ30に蓄圧されている作動油は、圧力差によって分岐流路150内を走行用油圧ポンプ・モータ14に向かって流れ、走行用油圧ポンプ・モータ14に供給される。こうして、走行用油圧ポンプ・モータ14は、アキュムレータ30に蓄えられた作動油の圧力によるアシストを受けて、車輪73を回転駆動する。即ち、運転モードNo.19では、車両が高速度域で走行している場合であっても、アキュムレータ30にて回生され、蓄えられたエネルギ(回生動力)を利用して車両を走行させている。 
 <運転モードNo.20> 
 運転モードNo.20は、ホイールローダ100が高速度域であって、加速または一定速で走行しており、リフト動作が停止している状態である。この運転モードは、圧力Paccと圧力P12との関係が「Pacc<P12」を満たす状態であるため、アキュムレータ30から作動油を走行用油圧ポンプ・モータ14に供給できない。そこで、コントローラ41は、電磁弁31,32,33,34を閉の状態のまま維持し、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とし、車両をエンジン10から機械的に伝達された動力により走行させる。 
 <運転モードNo.21(図16参照)> 
 運転モードNo.21は、ホイールローダ100が低速度域で走行しており、リフトアーム111が上昇している状態である。この際、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」にして、走行用油圧ポンプ・モータ14をモータ動作させて車両を走行させる。 
 この運転モードは、圧力Paccと、第5圧力検出器65で検出される圧力P21(即ち、フロント操作用油圧ポンプ21から吐出される作動油の圧力)との関係が「Pacc≧P21」を満たす状態であるため、コントローラ41は、第2電磁弁32および第4電磁弁34を「開」に切り換える。このとき、第1電磁弁31および第3電磁弁33は「閉」である。すると、図16に示すように、アキュムレータ30に蓄えられた作動油は、圧力差によって分岐流路150内を図16の矢印F方向に流れ、リフト用シリンダ24に供給される。 
 リフト用シリンダ24は、アキュムレータ30に蓄えられた作動油の圧力によるアシストを受けて、リフトアーム111を上昇動作させる。即ち、運転モードNo.21では、アキュムレータ30にて回生され、蓄えられたエネルギ(回生動力)をリフトアーム111の上昇動作に利用している。 
 <運転モードNo.22> 
 運転モードNo.22は、ホイールローダ100が低速度域で走行しており、リフトアーム111が上昇している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オン」、機械クラッチ18を「オフ」にして、走行用油圧ポンプ・モータ14をモータ動作させて車両を走行させる。 
 この運転モードは、圧力Paccと圧力P21との関係が「Pacc<P21」を満たす状態であるため、アキュムレータ30に蓄えられた作動油をリフト用シリンダ24に供給できない。そのため、コントローラ41は、各電磁弁31,32,33,34を閉じたままとし、アキュムレータ30からのアシストを受けることなく、リフトアーム111の上昇動作を行う。 
 <運転モードNo.23> 
 運転モードNo.23は、ホイールローダ100が高速度域で走行しており、リフトアーム111が上昇している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とし、エンジン10から機械的に伝達された動力により車両を走行させる。 
 この運転モードは、圧力Paccと圧力P21との関係が「Pacc≧P21」を満たす状態であるため、コントローラ41は、第2電磁弁32および第4電磁弁34を「開」に切り換える。このとき、第1電磁弁31および第3電磁弁33は「閉」である。すると、アキュムレータ30に蓄圧されている作動油は、圧力差によってリフト用シリンダ24に向かって流れ、リフト用シリンダ24に供給される。 
 リフト用シリンダ24は、アキュムレータ30に蓄えられた作動油の圧力によるアシストを受けて、リフトアーム111を上昇動作させる。即ち、運転モードNo.23では、アキュムレータ30にて回生され、蓄えられたエネルギ(回生動力)をリフトアーム111の上昇動作に利用している。 
 <運転モードNo.24> 
 運転モードNo.24は、ホイールローダ100が高速度域で走行しており、リフトアーム111が上昇している状態である。この状態において、コントローラ41は、油圧クラッチ15を「オフ」、機械クラッチ18を「オン」とし、エンジン10から機械的に伝達された動力により車両を走行させる。 
 この運転モードは、圧力Paccと圧力P21との関係が「Pacc<P21」を満たす状態であるため、アキュムレータ30に蓄えられた作動油をリフト用シリンダ24に供給できない。そのため、コントローラ41は、各電磁弁31,32,33,34を閉じたままとし、アキュムレータ30からのアシストを受けることなく、リフトアーム111の上昇動作を行う。 
 図17は、第1実施形態に係るホイールローダが、掘削から放土までの一連の動作であるV字掘削動作を行う場合における各電磁弁の開閉状況の推移を示す図である。図17に示すように、V字掘削動作が行われると、時間の経過とともに、作業(a)から(j)の順で動作が進行する。即ち、(a)初期位置から掘削場所に向かって加速(前進)→(b)減速(前進)→(c)掘削→(d)初期位置に向かって加速(後進)→(e)減速(後進)→(f)放土場所に向かって加速(前進)→(g)減速(前進)→(h)放土→(i)初期位置に向かって加速(後進)→(j)減速(後進)の順に車両の状態がV字を描くようにして変化する。V字掘削動作では、この順序で車両状態の変化が繰り返される。 
 この一連のV字掘削動作において、リフトアーム111は、時間の経過とともに、停止→リフト下降→リフト上昇→停止→リフト上昇→停止→リフト下降の順で動作する。このとき、コントローラ41は、各作業(a)から(j)において,圧力Plf,P14,Pacc,P12,P21の状態に応じて運転モードを選択する。こうして、エネルギの余剰分をアキュムレータ30にて回生し、その回生エネルギを作業に応じて再生することにより、エネルギの有効利用を図ることができる。このことは、燃費の向上にもつながる。 
 以上説明したように、第1実施形態に係るホイールローダ100によれば、リフトアーム111の下降動作時に生じるエネルギをアキュムレータ30において回生エネルギとして蓄え、その回生エネルギを利用してリフトアーム111の上昇動作のアシストまたは車輪73の回転駆動のアシストを行うことができる。また、車両の減速時に生じるエネルギをアキュムレータ30において回生エネルギとして蓄え、その回生エネルギを利用してリフトアーム111の上昇動作のアシストまたは車輪73の回転駆動のアシストを行うことができる。その結果、エネルギの無駄を抑止でき、燃費向上にも大いに貢献する。 
 「第2実施形態」 
 以下、第2実施形態に係るホイールローダ200について説明するが、上記した実施形態と重複する部分については同一符号を付して、その説明は省略する。図18は、本発明の第2実施形態に係るホイールローダの全体構成図である。第2実施形態に係るホイールローダ200は、図1と図18とを比較すれば明らかなように、エンジン10からの動力を機械的に車輪73に伝達する機構が設けられていない点において、第1実施形態に係るホイールローダ100と相違する。より具体的には、第2実施形態に係るホイールローダ200は、第1ギヤ16、第2ギヤ17、油圧クラッチ15、機械クラッチ17を備えていない。即ち、ホイールローダ200は、油圧駆動によってのみ走行する。 
 図19は、ホイールローダ200の運転モード毎の電磁弁31~34の動作を一覧表にまとめたものである。図19に示すように、ホイールローダ200は、運転モードNo.31~45を有している。ここで、運転モードNo.31は運転モードNo.1に、運転モードNo.32は運転モードNo.3に、運転モードNo.33は運転モードNo.4に、運転モードNo.34は運転モードNo.5に、運転モードNo.35は運転モードNo.6に、運転モードNo.36は運転モードNo.9に、運転モードNo.37は運転モードNo.10に、運転モードNo.38は運転モードNo.11に、運転モードNo.39は運転モードNo.12に、運転モードNo.40は運転モードNo.13に、運転モードNo.41は運転モードNo.14に、それぞれ相当する。 
 また、運転モードNo.42は運転モードNo.17に、運転モードNo.43は運転モードNo.18に、運転モードNo.44は運転モードNo.21に、運転モードNo.45は運転モードNo.22に、それぞれ相当する。 
 第2実施形態に係るホイールローダ200においても、第1実施形態と同様に、車両の減速時に生じるエネルギおよびリフトアーム111の下降動作時に生じるエネルギをアキュムレータ30にて回生して、その回生エネルギを用いてリフトアーム111の上昇動作のアシストまたは車輪73の回転駆動のアシストを行うことができる。その結果、エネルギの無駄を抑止でき、燃費向上にも大いに貢献する。 
 「第3実施形態」 
 以下、第3実施形態に係るホイールローダ300について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図20は、本発明の第3実施形態に係るホイールローダの全体構成図である。図20に示すように、第3実施形態に係るホイールローダ300は、分岐流路150のリフト用シリンダ24側の位置が、コントロールバルブ20とフロント操作用油圧ポンプ21との間の位置にある点が第1実施形態に係るホイールローダ100と相違する。そのため、第2電磁弁32の代わりに電磁式切換弁132が用いられている。この電磁式切換弁132は、流路を三方向に切り替え可能な構成からなる。 
 図21~図23は、第3実施形態に係るホイールローダ300の代表的な運転モードにおける作動油の流れを示す図である。図21に示すように、車両減速時には、第1電磁弁31および第4電磁弁34を開け、電磁式切換弁132を図21に示すセンターポジションにセットすれば、走行用油圧ポンプ・モータ14からの油圧エネルギを、図中の矢印Gに示すように回生エネルギとしてアキュムレータ30に蓄えることができる。 
 また、リフトアーム111の下降動作中は、図22に示すように、第4電磁弁34を開け、電磁式切換弁132を図22に示すレフトポジションにセットすれば、リフトアーム111の下降動作時に生じる油圧エネルギを、図中の矢印Hに示すように回生エネルギとしてアキュムレータ30に蓄えることができる。 
 一方、アキュムレータ30に蓄えられた回生エネルギを再生して、リフトアーム111の上昇動作に用いる場合には、図23に示すように、第4電磁弁34を開け、電磁式切換弁132をライトポジションにセットすれば、アキュムレータ30に蓄えられた作動油を図中の矢印Iに示すように、コントロールバルブ20を介してリフト用シリンダ23に供給して、リフトアーム111の上昇動作をアシストすることができる。 
 このように、第3実施形態に係るホイールローダ300においても、上記した各実施形態と同様に、車両の減速時に生じるエネルギおよびリフトアーム111の下降動作時に生じるエネルギをアキュムレータ30にて回生して、その回生エネルギを用いてリフトアーム111の上昇動作のアシストまたは車輪73の回転駆動のアシストを行うことができる。その結果、エネルギの無駄を抑止でき、燃費向上にも大いに貢献する。 
 「第4実施形態」
 以下、第4実施形態に係るホイールローダ400について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図24は、本発明の第4実施形態に係るホイールローダの全体構成図である。図24に示すように、第4実施形態に係るホイールローダ400は、エンジン10からの動力を機械的に車輪73に伝達する機構が設けられていない点において、第3実施形態に係るホイールローダ300と相違する。より具体的には、第4実施形態に係るホイールローダ400は、第1ギヤ16、第2ギヤ17、油圧クラッチ15、機械クラッチ17を備えていない。即ち、ホイールローダ400は、油圧駆動によってのみ走行する。 
 第4実施形態に係るホイールローダ400においても、上記した各実施形態と同様に、車両の減速時あるいはリフトアーム111の下降動作時に生じるエネルギをアキュムレータ30にて回生し、必要に応じてその回生エネルギを再生して動力に変換することができるから、エネルギの無駄を抑止でき、燃費を改善させることができる。 
 「第5実施形態」
 以下、第5実施形態に係るホイールローダ500について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図25は、本発明の第5実施形態に係るホイールローダの全体構成図である。図25に示すように、第5実施形態に係るホイールローダ500は、第1電磁弁31aおよび第2電磁弁32aを比例式とした点において、第1実施形態と構成が相違する。第5実施形態によれば、電磁弁31,32を開閉弁とした第1実施形態と比べて、流量を好適に制御することができるため、エネルギ損失を低減でき、燃費が一層良くなる。 
 「第6実施形態」
 以下、第6実施形態に係るホイールローダ600について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図26は、本発明の第6実施形態に係るホイールローダの全体構成図である。図26に示すように、第6実施形態に係るホイールローダ600は、第1電磁弁31aおよび電磁式切換弁132aを比例式とした点において、第3実施形態と構成が相違する。第6実施形態によれば、第1電磁弁31および電磁式切換弁132を開閉弁とした第3実施形態と比べて、流量を好適に制御することができるため、エネルギ損失を低減でき、燃費が一層良くなる。 
 「第7実施形態」
 以下、第7実施形態に係るホイールローダ700について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図27は、本発明の第7実施形態に係るホイールローダの全体構成図である。第7実施形態に係るホイールローダ700は、図1と図27とを比較すれば明らかなように、フロント操作用油圧ポンプ21を設けていない点において、第1実施形態に係るホイールローダ100と相違する。 
 より具体的には、第7実施形態に係るホイールローダ700は、走行用油圧ポンプ12が走行用と作業装置90の操作用との両方の機能を兼ねている。そのため、走行用油圧ポンプ12と走行用油圧ポンプ・モータ14との間に電磁弁35を設け、走行用油圧ポンプ12とコントロールバルブ20との間に電磁弁36を設ける構成としている。そして、コントローラ41が電磁弁35,36の開閉を切り換えることにより、1つの走行用油圧ポンプ12で車輪73の回転駆動、バケット112の動作、センタジョイント101を介しての車体の屈曲動作、リフトアーム111の上昇・下降動作を行っている。 
 第7実施形態に係るホイールローダ700においても、上記した各実施形態と同様に、車両の減速時あるいはリフトアーム111の下降動作時に生じるエネルギをアキュムレータ30にて回生し、必要に応じてその回生エネルギを再生して動力に変換することができるから、エネルギの無駄を抑止でき、燃費を改善させることができる。さらに、第7実施形態によれば、油圧ポンプの数を削減できるため、コスト低減にも寄与する。 
 「第8実施形態」
 以下、第8実施形態に係るホイールローダ800について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図28は、本発明の第8実施形態に係るホイールローダの全体構成図である。第8実施形態に係るホイールローダ800は、図28に示すように、2方向の走行用油圧ポンプ12aと2方向の走行用油圧モータ14aとを油圧配管で環状に接続して形成された閉回路95を備えている点と、ギヤ16,17、機械クラッチ18を備えていない点で第1実施形態と相違する。なお、符号82はレギュレータである。 
 第8実施形態に係るホイールローダ800においても、上記した各実施形態と同様に、車両の減速時あるいはリフトアーム111の下降動作時に生じるエネルギをアキュムレータ30にて回生し、必要に応じてその回生エネルギを再生して動力に変換することができるから、エネルギの無駄を抑止でき、燃費を改善させることができる。 
 「第9実施形態」
 以下、第9実施形態に係るホイールローダ900について説明するが、上記した各実施形態と重複する部分については同一符号を付して、その説明は省略する。図29は、本発明の第9実施形態に係るホイールローダの全体構成図である。第9実施形態に係るホイールローダ900は、図29に示すように、第1電磁弁31aおよび第2電磁弁32aを比例式とした点において、第8実施形態と構成が相違する。第9実施形態によれば、電磁弁31,32を開閉弁とした第8実施形態と比べて、流量を好適に制御することができるため、エネルギ損失を低減でき、燃費が一層良くなる。 
 以上説明したように、本発明の各実施形態に係るホイールローダは、車両の減速時とリフト下降時におけるエネルギをアキュムレータ30にて回生し、その回生エネルギを車両の加速またはリフトの上昇動作に利用できるため、エネルギの無駄を抑え、燃費の向上を図ることができる。また、分岐流路150、アキュムレータ30、電磁弁31~34などの簡単な構成で済むため、コスト低減を図ることもできる。 
 なお、上述したホイールローダの各実施形態は本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。また、本発明は、ホイールローダ以外の作業機械、例えば、油圧ショベル等にも適用することができる。
 10 エンジン(原動機)
 11 プロペラシャフト(走行装置)
 12 走行用油圧ポンプ(第2油圧ポンプ)
 14 走行用油圧ポンプ・モータ(油圧ポンプ・モータ)
 15 油圧動力用クラッチ(第2クラッチ)
 16 第1ギヤ(ギヤ) 
 17 第2ギヤ(ギヤ)
 18 機械動力用クラッチ(第1クラッチ)
 19 トランスミッション(走行装置)
 21 フロント操作用油圧ポンプ(第1油圧ポンプ)
 22 バケット用シリンダ 
 23 ステアリング用シリンダ
 24 リフト用シリンダ(油圧アクチュエータ)
 30 アキュムレータ
 31 第1電磁弁(第1開閉弁)
 32 第2電磁弁(第2開閉弁)
 33 第3電磁弁
 34 第4電磁弁
 41 コントローラ(制御装置)
 61 第1圧力検出器
 62 第2圧力検出器
 63 第3圧力検出器
 64 第4圧力検出器
 65 第5圧力検出器
 70 アクセルペダル(目標速度指令装置)
 71 速度検出器
 72 操作レバー(操作装置)
 73 車輪73(走行装置)
 90 作業装置
100 ホイールローダ
111 リフトアーム
112 バケット
150 分岐流路
151 排出流路  

Claims (8)

  1.  原動機と、走行装置と、油圧アクチュエータを含む作業装置と、前記原動機からの動力により作動し、作動油を前記油圧アクチュエータに供給する第1油圧ポンプと、前記走行装置を駆動する油圧ポンプ・モータと、制御装置と、を備える作業機械であって、
     前記油圧アクチュエータと前記油圧ポンプ・モータとの間で作動油が流れる分岐流路と、
     前記分岐流路に設けられるアキュムレータと、
     前記アキュムレータと前記油圧ポンプ・モータとの間に設けられる第1開閉弁と、
     前記アキュムレータと前記油圧アクチュエータとの間に設けられる第2開閉弁と、を有し、
     前記制御装置は、前記第1開閉弁および前記第2開閉弁の開閉を制御することにより、
    前記油圧アクチュエータからの作動油と前記油圧ポンプ・モータからの作動油とを選択的に前記アキュムレータに導入して蓄圧することを特徴とする作業機械。
  2.  請求項1において、
     前記制御装置は、前記第1開閉弁および第2開閉弁の開閉を制御することにより、前記アキュムレータに蓄圧された作動油を前記油圧アクチュエータと前記油圧ポンプ・モータとに選択的に供給することを特徴とする作業機械。
  3.  請求項2において、
     前記走行装置に対する目標速度指令を出力する目標速度指令装置と、
     前記作業装置に対する作業指令を出力する操作装置と、
     前記第1開閉弁と前記油圧ポンプ・モータとの間の圧力を検出する第1圧力検出器と、
     前記第1開閉弁と前記第2開閉弁との間の圧力を検出する第2圧力検出器と、
     前記第2開閉弁と前記油圧アクチュエータとの間の圧力を検出する第3圧力検出器と、
    をさらに備えることを特徴とする作業機械。
  4.  請求項3において、
     前記制御装置は、前記目標速度指令装置からの目標速度指令が減速指令であって、前記第1圧力検出器で検出される第1圧力が前記第2圧力検出器で検出される第2圧力より高い場合に、前記油圧ポンプ・モータをポンプとして動作させ、前記第1開閉弁を開け、前記第2開閉弁を閉じることで、作動油を前記油圧ポンプ・モータから前記アキュムレータに導入して蓄圧することを特徴とする作業機械。
  5.  請求項4において、
     前記原動機からの動力により作動し、前記油圧ポンプ・モータに作動油を供給する第2油圧ポンプと、
     前記第2油圧ポンプの吐出圧力を検出する第4圧力検出器と、をさらに備え、
     前記制御装置は、前記目標速度指令装置からの目標速度指令が加速指令であって、前記第2圧力検出器で検出される第2圧力が前記第4圧力検出器で検出される第4圧力より高い場合に、前記油圧ポンプ・モータをモータとして動作させ、前記第1開閉弁を開け、前記第2開閉弁を閉じることで、前記アキュムレータに蓄圧された作動油を前記油圧ポンプ・モータに供給することを特徴とする作業機械。
  6.  請求項3において、
     前記制御装置は、前記操作装置からの作業指令が負荷低減指令であって、前記第3圧力検出器で検出される第3圧力が前記第2圧力検出器で検出される第2圧力より高い場合に、前記第2開閉弁を開け、前記第1開閉弁を閉じて、作動油を前記油圧アクチュエータから前記アキュムレータに導入して蓄圧することを特徴とする作業機械。
  7.  請求項6において、
     前記第1油圧ポンプの吐出圧力を検出する第5圧力検出器をさらに備え、
     前記制御装置は、前記操作装置からの作業指令が負荷増加指令であって、前記第2圧力検出器で検出される第2圧力が前記第5圧力検出器で検出される第5圧力より高い場合に、前記第2開閉弁を開け、前記第1開閉弁を閉じて、前記アキュムレータに蓄圧された作動油を前記油圧アクチュエータに供給することを特徴とする作業機械。
  8.  請求項3において、
     前記原動機からの動力を前記走行装置に伝達するギヤと、
     前記走行装置と前記ギヤとの間に設けられる第1クラッチと、
     前記走行装置と前記油圧ポンプ・モータとの間に設けられる第2クラッチと、
     前記走行装置の実速度を検出する速度検出器と、をさらに備え、
     前記制御装置は、前記速度検出器にて検出された実速度が予め定めた低速度領域内である場合には、前記第1クラッチを切断し、前記第2クラッチを結合することにより、前記油圧ポンプ・モータで前記走行装置を駆動する一方、前記速度検出器にて検出された実速度が前記低速度領域を超えている場合には、前記第1クラッチを結合し、前記第2クラッチを切断することにより、前記原動機で前記走行装置を駆動することを特徴とする作業機械。
PCT/JP2015/055640 2014-06-09 2015-02-26 作業機械 WO2015190135A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580030772.2A CN106460889B (zh) 2014-06-09 2015-02-26 作业机械
KR1020167034181A KR101901047B1 (ko) 2014-06-09 2015-02-26 작업 기계
US15/317,165 US10017918B2 (en) 2014-06-09 2015-02-26 Working machine
EP15805924.6A EP3153713A4 (en) 2014-06-09 2015-02-26 Operation machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-118932 2014-06-09
JP2014118932A JP6268043B2 (ja) 2014-06-09 2014-06-09 作業機械

Publications (1)

Publication Number Publication Date
WO2015190135A1 true WO2015190135A1 (ja) 2015-12-17

Family

ID=54833245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055640 WO2015190135A1 (ja) 2014-06-09 2015-02-26 作業機械

Country Status (6)

Country Link
US (1) US10017918B2 (ja)
EP (1) EP3153713A4 (ja)
JP (1) JP6268043B2 (ja)
KR (1) KR101901047B1 (ja)
CN (1) CN106460889B (ja)
WO (1) WO2015190135A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687150B2 (ja) * 2011-07-25 2015-03-18 日立建機株式会社 建設機械
FR3026811B1 (fr) * 2014-10-03 2016-12-09 Poclain Hydraulics Ind Procede d'assistance hydraulique de l'entrainement d'un vehicule a basse vitesse
DE102016124505A1 (de) * 2016-12-15 2018-06-21 Jungheinrich Aktiengesellschaft Flurförderzeug mit einer Steuereinheit zur Regelung der Bewegung einer Kolbenstange eines Hydraulikzylinders sowie ein solches Verfahren
WO2018202314A1 (en) * 2017-05-05 2018-11-08 Volvo Construction Equipment Ab A working machine driveline
DE102018216006A1 (de) * 2018-09-20 2020-03-26 Robert Bosch Gmbh Steuerungsstruktur für eine mobile Arbeitsmaschine, Verfahren und Arbeitsmaschine
EP3867453A1 (en) * 2018-10-18 2021-08-25 Volvo Construction Equipment AB A hydraulic energy handling system, a hydraulic parallel hybrid driveline and a working machine
IT201900021831A1 (it) * 2019-11-21 2021-05-21 Cnh Ind Italia Spa Metodo per controllare l'aggressivita' idraulica di un veicolo da lavoro
KR102406200B1 (ko) * 2020-12-22 2022-06-08 울산대학교 산학협력단 붐 시스템의 에너지 절약을 위해 유압 플라이휠을 탑재한 연속 가변 파워 트레인
EP4271582A1 (en) * 2020-12-30 2023-11-08 Artemis Intelligent Power Limited Controller for hydraulic apparatus for a vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096759A (ja) * 2004-09-11 2005-04-14 Saxa Inc 油圧装置
JP2009275772A (ja) * 2008-05-13 2009-11-26 Caterpillar Japan Ltd 流体圧制御回路
JP2013133216A (ja) * 2011-12-27 2013-07-08 Mitsubishi Heavy Ind Ltd 産業用車両

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417283B1 (en) * 1988-05-31 1997-08-06 Kabushiki Kaisha Komatsu Seisakusho Mechanical-hydraulic transmission gear and method of controlling same
JP2844459B2 (ja) * 1988-05-31 1999-01-06 株式会社小松製作所 機械油圧式伝動装置とその制御方法
JPH05287774A (ja) 1992-04-09 1993-11-02 Komatsu Ltd 油圧式掘削機のエネルギー再生装置
US7269944B2 (en) * 2005-09-30 2007-09-18 Caterpillar Inc. Hydraulic system for recovering potential energy
DE102007056400A1 (de) * 2007-07-02 2009-01-08 Robert Bosch Gmbh Wandler und Verfahren zum Wandeln von mechanischer Energie in elektrische Energie
JP2010121726A (ja) * 2008-11-20 2010-06-03 Caterpillar Japan Ltd 作業機械における油圧制御システム
US8087733B2 (en) 2008-12-09 2012-01-03 Développement Effenco Inc. Braking energy recovery system for a vehicle and vehicle equipped with the same
CN101704336B (zh) 2009-09-25 2013-01-02 徐工集团工程机械有限公司 装载机的节能液压混合动力系统
US9346347B2 (en) * 2010-04-21 2016-05-24 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Methods for safe operation of hydraulic hybrid vehicles with over-center pump/motors
CN201825036U (zh) * 2010-10-28 2011-05-11 湖南山河智能机械股份有限公司 混合动力挖掘机驱动及能量回收系统
CN102418354B (zh) * 2011-10-28 2013-09-18 华侨大学 基于泵/马达的混联式液压挖掘机驱动系统
CN104039682B (zh) 2012-01-09 2017-04-12 伊顿公司 用于使用单一输入获得全范围升降速度的方法
JP6218751B2 (ja) 2012-01-11 2017-10-25 ディベロップメント イフェンコ インコーポレイテッドDeveloppement Effenco Inc. エンジン停止状態の車輌の再始動を容易にする燃料節約システム
JP5858818B2 (ja) * 2012-02-17 2016-02-10 日立建機株式会社 建設機械
CN102912821B (zh) 2012-04-27 2014-12-17 华侨大学 一种液压挖掘节能系统
CN102756636B (zh) * 2012-08-02 2015-06-03 徐工集团工程机械股份有限公司 一种混凝土搅拌车的混合动力驱动装置及混凝土搅拌车
JP6054414B2 (ja) * 2012-11-09 2016-12-27 住友重機械工業株式会社 ショベル
CN103042602B (zh) * 2012-12-27 2015-05-20 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种液压混合动力混凝土搅拌运输车控制系统
JP6090781B2 (ja) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル エンジンアシスト装置および作業機械
CN105190052B (zh) * 2013-03-14 2018-10-19 斗山英维高株式会社 工程机械的液压系统
JP6006666B2 (ja) * 2013-03-28 2016-10-12 株式会社神戸製鋼所 油圧ショベル
JP2014206222A (ja) * 2013-04-12 2014-10-30 株式会社竹内製作所 油圧駆動装置および油圧駆動方法
EP3118465B1 (en) * 2014-03-11 2021-01-20 Sumitomo Heavy Industries, Ltd. Shovel
GB2529909B (en) * 2014-09-30 2016-11-23 Artemis Intelligent Power Ltd Industrial system with synthetically commutated variable displacement fluid working machine
US9611619B1 (en) * 2015-10-22 2017-04-04 Cnh Industrial America Llc Hydraulic hybrid circuit with energy storage for excavators or other heavy equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096759A (ja) * 2004-09-11 2005-04-14 Saxa Inc 油圧装置
JP2009275772A (ja) * 2008-05-13 2009-11-26 Caterpillar Japan Ltd 流体圧制御回路
JP2013133216A (ja) * 2011-12-27 2013-07-08 Mitsubishi Heavy Ind Ltd 産業用車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153713A4 *

Also Published As

Publication number Publication date
CN106460889A (zh) 2017-02-22
KR101901047B1 (ko) 2018-09-20
KR20170002571A (ko) 2017-01-06
JP6268043B2 (ja) 2018-01-24
US10017918B2 (en) 2018-07-10
EP3153713A1 (en) 2017-04-12
JP2015232354A (ja) 2015-12-24
EP3153713A4 (en) 2018-01-24
US20170130426A1 (en) 2017-05-11
CN106460889B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
JP6268043B2 (ja) 作業機械
EP3212446B1 (en) Hydraulic hybrid propel circuit with hydrostatic option and method of powering an accessory function of a hydraulic system for a mobile work vehicle
EP2802529B1 (en) Method for obtaining a full range of lift speeds using a single input
KR101942603B1 (ko) 건설 기계
JP4509877B2 (ja) 作業機械のハイブリッドシステム
JP5513395B2 (ja) コンバイナ弁制御システムおよび方法
EP1852388B1 (en) Load handling regeneration system for battery type industrial vehicle
JP5000430B2 (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
US10399572B2 (en) Hydraulic hybrid propel circuit with hydrostatic option and method of operation
WO2012033064A1 (ja) 建設機械のハイブリッドシステム
WO2012105345A1 (ja) 作業機械の動力回生装置
EP3647500B1 (en) Travel control system for construction machinery and travel control method for construction machinery
WO2019049435A1 (ja) 建設機械
CN114763700A (zh) 具有牵引马达驱动液压回路的传动系统及其控制方法
US20140069092A1 (en) Traction Control System for a Hydrostatic Drive
JP4448777B2 (ja) 静油圧式変速車両および静油圧式変速機のコントローラ
KR101735113B1 (ko) 크롤러 타입 굴삭기의 직진주행제어장치 및 그 방법
CN111344459A (zh) 工程机械的驱动系统
KR20180093399A (ko) 굴착기의 자동 변속 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034181

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015805924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015805924

Country of ref document: EP