WO2015186761A1 - Starting control device for engine - Google Patents

Starting control device for engine Download PDF

Info

Publication number
WO2015186761A1
WO2015186761A1 PCT/JP2015/066104 JP2015066104W WO2015186761A1 WO 2015186761 A1 WO2015186761 A1 WO 2015186761A1 JP 2015066104 W JP2015066104 W JP 2015066104W WO 2015186761 A1 WO2015186761 A1 WO 2015186761A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
engine
period
crank angle
time
Prior art date
Application number
PCT/JP2015/066104
Other languages
French (fr)
Japanese (ja)
Inventor
悠一 馬場
由祐 菊池
高橋 晃
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Priority to CN201580040311.3A priority Critical patent/CN106536909B/en
Publication of WO2015186761A1 publication Critical patent/WO2015186761A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine start control device, and in particular, specifies a target crank angle based on a crank angle signal output in synchronism with engine rotation when the engine is started, and based on the specified target crank angle,
  • the present invention relates to an engine start control device for operating a control device such as an injector.
  • the crank angle signal output from the crank angle sensor has one rotation of the engine as one cycle, the advance side of the compression top dead center is set as the ON period corresponding to the specific angle area, and the other angle areas are alternately set as the OFF period.
  • the target ignition timing is calculated based on the engine speed, the throttle opening, and the like. Specifically, the target ignition timing is calculated as the crank angle from the start timing (reference position) of the ON period of the crank angle signal to the target ignition timing. .
  • the ON period in the current rotation cycle is estimated from the OFF period and the subsequent ON period in the rotation period before the second rotation of the engine and the OFF period in the current rotation period. Then, the crank angle to the target ignition timing is converted into time based on the estimated ON period, and the target ignition timing in the current rotation cycle is specified as time (the required time from the reference position to the target ignition timing) and obtained. The spark plug is activated based on the target ignition timing.
  • the ON period of the current rotation cycle is estimated because the engine reaches the target ignition timing during the ON period, so the ignition plug operation is not in time for the procedure for specifying the target ignition timing after measuring the ON period. Because. For this reason, the ON period and the OFF period before two revolutions are referred to because the combustion cycle of the four-cycle engine is repeated every 720 ° CA, and the engine fluctuations before the two revolutions are not changed even in the current rotation period. This is because the current ON period can be estimated from the ratio of these ON periods and OFF periods and the current OFF period.
  • the present invention has been made to solve such problems, and the object of the present invention is to provide a spark plug, an injector, or the like in synchronization with engine rotation from the beginning of cranking when the engine is started. It is an object of the present invention to provide an engine start control device capable of operating a control device and thereby realizing a quick engine start.
  • the engine start control device provides a first output corresponding to a specific angle region preset on the advance side of the compression top dead center with one rotation of the engine as one cycle.
  • a signal output means for outputting a crank angle signal in which the second output level period corresponding to the level period and the other angle region is alternately switched, and corresponds to the start or end of the first output level period of the crank angle signal
  • a target crank angle setting means for setting a target crank angle for operating the engine control device in synchronism with engine rotation as an angle from the reference position, and a first crank angle in the current rotation cycle of the engine.
  • First target time specifying means for specifying a target time in the current rotation cycle as a time from the reference position, a second output level period in a rotation cycle before two rotations of the engine, and a subsequent first output level period And the second output level period in the current rotation cycle, the first output level period in the current rotation cycle is estimated based on the measurement values of these output level periods, and the estimated first output level period
  • the target crank angle set by the target crank angle setting means is converted into time, and the second target time specifying means for specifying the target time in the current rotation cycle as the time from the reference position, and when starting the engine
  • the engine is based on the target time specified by the first target time specifying means.
  • Engine control means for operating the engine control equipment based on the target time specified by the second target time specification means during the period after the second rotation of the control equipment
  • the engine control device is operated based on the target time specified by the first target time specifying means.
  • the engine control device is operated based on the target time specified by the second target time specifying means during the period after the second rotation. For this reason, when starting the engine, the control device can be operated at an appropriate timing synchronized with the rotation of the engine from the beginning of cracking.
  • the target crank angle setting means sets the target ignition timing by the engine spark plug as the target crank angle
  • the first and second target time specifying means respectively convert the target ignition timing to time and convert
  • the engine control means is configured to operate the spark plug based on the target times specified by the first and second target time specifying means when starting the engine. desirable. In such a configuration, ignition timing control of the spark plug can be started from the beginning of cracking.
  • the target crank angle setting means sets the target injection timing by the engine injector as the target crank angle
  • the first and second target time specifying means respectively convert the target injection timing into time and Desirably, the target time of the rotation cycle is specified
  • the engine control means is configured to operate the injector based on the target times specified by the first and second target time specifying means when starting the engine.
  • the fuel injection control of the injector can be started from the beginning of cracking.
  • a control device such as a spark plug or an injector in synchronization with the rotation of the engine from the beginning of cranking, thereby realizing a quick engine start. Can do.
  • FIG. 1 is a system configuration diagram showing an engine start control device of this embodiment.
  • the engine 1 of this embodiment is configured as a four-cycle single-cylinder gasoline engine with a displacement of 50 cc, and is mounted on a two-wheeled vehicle as a driving power source.
  • the specification of the engine 1 is not limited to this and can be arbitrarily changed.
  • a piston 4 is slidably disposed in a cylinder 3 formed in a cylinder block 2 of the engine 1.
  • the piston 4 is connected to a crankshaft 6 via a connecting rod 5 and interlocked with the reciprocating motion of the piston 4.
  • the crankshaft 6 rotates.
  • a flywheel 7 is attached to the rear end of the crankshaft 6 (on the transmission side (not shown)), and in a predetermined angular region on the outer periphery of the flywheel 7, there is a retractor projection 7a made of a magnetic material for detecting the crank angle. Is formed.
  • an intake port 9a and an exhaust port 9b are formed, and a spark plug 10 is disposed in a posture in which the tip faces the inside of the cylinder.
  • An intake passage 11 connected to the intake port 9a has an air cleaner 12 from the upstream side, a throttle valve 13 that opens and closes in response to the driver's throttle operation, a bypass passage 15 having an ISCV (idle speed control valve) 14, and An injector 16 that injects fuel toward the intake port 9a is provided.
  • the exhaust passage 17 connected to the exhaust port 9b is provided with a three-way catalyst 18 for purifying exhaust gas and a silencer (not shown).
  • An intake valve 20 is disposed in the intake port 9a, and an exhaust valve 21 is disposed in the exhaust port 9b.
  • These intake and exhaust valves 20 and 21 are urged toward the valve closing side by a valve spring 22 and are opened by an intake camshaft 23 and an exhaust camshaft 24 that are driven to rotate in synchronization with the crankshaft 6 on the cylinder head 9.
  • the intake valve 20 and the exhaust valve 21 are opened and closed at a predetermined timing synchronized with the reciprocation of the piston 4, and the combustion cycle of the engine 1 consisting of four strokes of intake, compression, expansion and exhaust is 720 ° CA in crank angle. Repeated every time.
  • the fuel (gasoline) stored in the fuel tank 25 is supplied to the injector 16 by a fuel pump 26.
  • the fuel pump 26 is integrated with the injector 16 and connected to the fuel tank 25 via a supply hose 27 and a return hose 28, respectively.
  • the fuel in the fuel tank 25 is introduced into the fuel pump 26 through the supply hose 27 and pressurized to a predetermined pressure, and the pressurized fuel is supplied to the injector 16 and surplus fuel is supplied. Is recovered in the fuel tank 25 via the return hose 28.
  • fuel of a predetermined pressure is always supplied to the injector 16, and the fuel is injected toward the intake port 9a at a predetermined injection timing and injection amount according to the opening of the injector 16.
  • the combustion cycle of the engine 1 described above is executed based on the control of the ECU 31 (engine control unit).
  • an electromagnetic pickup 32 (signal output means) that is arranged opposite to the flywheel 7 and outputs a detection signal synchronized with the reluctator protrusion 7a, and a throttle sensor 33 that detects the opening of the throttle valve 13 are provided.
  • An O 2 sensor 34 that is arranged in the exhaust passage 17 and changes the output stepwise in accordance with the fluctuation of the exhaust air-fuel ratio centered on the stoichiometric (theoretical air-fuel ratio), and the water temperature sensor that detects the cooling water temperature Tw of the engine 1
  • Various sensors such as 35 are connected.
  • Various devices such as the igniter 36 for driving the ISCV 14, the injector 16 (control device), the fuel pump 26, and the spark plug 10 (control device) are connected to the output side of the ECU 31.
  • the ECU 31 operates the engine 1 by executing various controls such as fuel injection control for driving the injector 16 and ignition timing control for driving the spark plug 10.
  • fuel injection control the ECU 31 determines a target fuel injection amount based on the engine rotational speed Ne calculated from the detection signal of the electromagnetic pickup 32, the throttle opening ⁇ th detected by the throttle sensor 33, and the like at a predetermined timing of the intake stroke.
  • the injector 16 is driven to execute fuel injection.
  • the ECU 31 determines the target ignition timing based on the engine rotational speed Ne, the throttle opening ⁇ th, and the like as the ignition timing control, and responds to the target ignition timing based on the rectangular wave crank angle signal generated from the detection signal of the electromagnetic pickup 32.
  • the ignition timing is determined and the igniter 36 is driven to ignite the spark plug 10 (engine control means).
  • the processing from the generation of the crank angle signal to the ignition timing control of the spark plug 10 executed by the ECU 31 will be described in detail.
  • FIG. 2 is a time chart showing a crank angle signal generation process corresponding to the reluctance protrusion 7a and a target ignition timing specifying process based on the crank angle signal.
  • the relieving projection 7a of the present embodiment is formed on the flywheel 7 over a specific angle region of 60 ° CA. If the end of the rotation projection 7a in the rotational direction of the flywheel 7 is the start and the end of the reverse projection 7a in the counter-rotation direction is the end, the start is a crank that is 80 ° CA advanced from the top dead center of the engine 1.
  • the corner corresponds to the electromagnetic pickup 32, and the terminal end corresponds to the electromagnetic pickup 32 at a crank angle of 20 ° CA advance side from the top dead center.
  • the electromagnetic pickup 32 has a characteristic in which a change in magnetic flux is generated due to contact with and separation from a magnetic body to change the output. For this reason, the detection signal output from the electromagnetic pickup 32 fluctuates in a spike shape every time it corresponds to the start end and the end of the reluctator protrusion 7a. More specifically, the detection signals fluctuate at BTDC (Before Dead Center) 80 ° CA corresponding to the start end of the reluctance protrusion 7a and BTDC 20 ° CA corresponding to the subsequent end, and fluctuations in these detection signals. Is repeated every 360 ° CA.
  • BTDC Before Dead Center
  • the detection signal output from the electromagnetic pickup 32 in this way is input to the ECU 31, and the ECU 31 generates a crank angle signal using the built-in latch circuit 31a (signal output means). That is, the latch circuit 31a raises the crank angle signal at the fluctuation timing of the detection signal corresponding to the start end of the reluctator protrusion 7a and holds it in the ON state (this is the first output level period of the present invention, hereinafter the ON period The crank angle signal is lowered and held in an OFF state at a variation timing corresponding to the end of the subsequent reluctator protrusion 7a (the second output level period of the present invention, hereinafter referred to as the OFF period). This process is repeated by the latch circuit 31a to generate a rectangular wave-shaped crank angle signal that varies in synchronization with the crank angle of the engine 1 with 360 ° CA as one cycle (OFF period + ON period).
  • the present inventor sets the retraction protrusion 7a on the flywheel 7 to the advance side with respect to the normal one (for example, Patent Document 1), and sets the ON period of the crank angle signal to the advance angle. It has been found that if it is shifted to the side, it is possible to secure time for specifying the target ignition timing after the measurement of the ON period.
  • the specific angle region of the reluctator protrusion 7a formed as described above is based on such knowledge.
  • the target ignition timing is converted to time only from the measurement result of the ON period, so at the time of retarded ignition (when the measurement end point and the ignition energization OFF are separated), Compared to conventional methods that reflect the OFF period, accurate ignition timing control is less desirable.
  • the ignition timing control (first target time specifying means of the present invention, hereinafter referred to as the first start mode) is performed during the period from the start of cranking to the time when the engine 1 makes two revolutions (the first ignition amount).
  • the process proceeds to ignition timing control based on the conventional method (second target time specifying means of the present invention, hereinafter referred to as second start mode).
  • the optimum specific angle region of the reluctance protrusion 7a is from BTDC 80 ° CA to BTDC 20 ° CA described above, but is not limited to this, and the starting end of the reluctation protrusion 7a is within the range of BTDC 90 to 60 ° CA. Therefore, the end of the reluctance protrusion 7a may be set within the range of BTDC 20 to 15 ° CA.
  • FIG. 3 is a flowchart showing a start mode selection routine executed by the ECU 31, and the ECU 31 starts the routine at a predetermined control interval when the ignition switch of the vehicle is turned on.
  • step S2 it is determined in step S2 whether or not cranking of the engine 1 has been started. If No (No), the routine is once terminated. If the determination of Yes (Yes) is made at the start of cranking in step S2, the process proceeds to step S4 to determine whether or not the engine 1 has made two revolutions. If the engine has not yet made two revolutions, a determination of No is made and the routine is terminated after the first start mode is selected in step S6. If the engine 1 makes two revolutions and the determination in step S4 is Yes, the process proceeds to step S8. After the transition and the second start mode is selected, the routine is terminated.
  • FIG. 2 shows a case where cranking of the engine 1 is started between the expansion stroke and the exhaust stroke, and at the beginning of the cranking, the first start mode is selected by the routine of FIG.
  • the crank angle signal fluctuates with 360 ° CA as one cycle.
  • the period from the start of the ON period to the end of the ON period located immediately before the compression top dead center is measured as the ON period Ton (n-2) of the rotation cycle of the rotation.
  • These measured values mean the durations of the OFF period Toff (n-2) and the ON period Ton (n-2) (the OFF period Ton (n) and the ON period Ton of the current cycle described later ). The same applies to (n) .
  • energization of the ignition coil is started by the igniter 36 simultaneously with the start of the ON period Ton (n-2) , and the preset target ignition timing and the ON period Ton (n-2) are set. Based on the target ignition timing, the energization of the ignition coil is terminated based on the target ignition timing, and the spark plug 10 is ignited.
  • the fuel is injected from the injector 16 at a predetermined timing of the intake stroke preceding the ignition, and the injected fuel is compressed in the cylinder together with the intake air in the subsequent compression stroke, so that combustion occurs during the expansion stroke by the ignition. become.
  • the target ignition timing specifying process in the first start mode is executed according to the following procedure.
  • the target ignition timing is based on the start timing (rising edge) of the ON period Ton (n-2) as a reference position, and the crank angle from the reference position to the target ignition timing (the target crank angle of the present invention, hereinafter referred to as the ignition target).
  • crank angle Dtgt target crank angle setting means
  • the ignition target crank angle Dtgt at the time of starting the engine is stored in the ECU 31 as a fixed value in advance.
  • the present invention is not limited to this.
  • the ignition target crank angle is based on the cooling water temperature Tw of the engine 1 or the battery voltage.
  • the angle Dtgt may be variably set (target crank angle setting means).
  • the ON period Ton (n-2) measured as described above corresponds to the crank angle in the angle region (60 ° CA) of the reluctance protrusion 7a, and the ON period Ton for rotating the crankshaft 6 by this crank angle. (n-2) is required. Therefore, the ignition target crank angle Dtgt is converted into time using the relationship between the specific angle region of these reluctance protrusions 7a and the ON period Ton (n-2) as an index, and the required time from the reference position to the target ignition timing (the target of the present invention) Time, and hereinafter referred to as ignition target time Ttgt).
  • the reference position is not necessarily the start timing of the ON period, and the end timing (falling edge) of the ON period may be used as the reference position.
  • the first ignition at the beginning of cracking is executed, and the second ignition is executed immediately before the compression top dead center in the rotation cycle after two revolutions of the engine 1 (after 720 ° CA).
  • the second start mode is selected by the routine of FIG. 3, and the target ignition timing specifying process in the second start mode is executed in the following procedure.
  • the OFF period Toff which are already measured in the rotation period of the previous two rotations (n-2) and the ON period Ton (n-2)
  • Ton (n-2) Ton (n-2)
  • Ton (n-2) Ton (n-2)
  • Ton (n-2) Ton (n-2)
  • Ton (n-2) Ton (n-2)
  • the ignition target crank angle Dtgt is time-converted using the relationship between the specific angle region of the reluctator protrusion 7a and the ON period Ton (n) as an index, and the required time from the reference position to the target ignition timing (Ignition target time Ttgt) can be calculated.
  • the ignition target crank angle Dtgt at this time does not necessarily have to be the same value as that in the first start mode, and another predetermined fixed value or a calculated value based on the cooling water temperature Tw of the engine 1 or the battery voltage is ignited. You may apply as target crank angle Dtgt (target crank angle setting means). For detailed processing until the ignition target time Ttgt is calculated in the second start mode described above, refer to Patent Document 1.
  • the engine speed Ne exceeds a preset complete explosion determination value, it is considered that the engine 1 has been started, and the ECU 31 shifts to an operation mode in order to continue its operation.
  • the ignition target crank angle Dtgt is calculated as the target ignition timing based on the operating state of the engine 1 (for example, the engine speed Ne and the throttle opening ⁇ th).
  • the process for converting Dtgt to the ignition target time Ttgt is performed in the same procedure as in the second start mode.
  • the retractor protrusion 7a on the flywheel 7 is moved to the advance side so that the target ignition timing can be specified after measuring the ON period of the crank angle signal.
  • the first ignition at the beginning of cranking is performed by specifying the target ignition timing based on the measured value of the ON period Ton (n-2) of the crank angle signal (first start mode) and the second and subsequent times. Ignition is based on the measured values of the OFF period Toff (n-2) and ON period Ton (n-2) in the rotation period before two rotations and the OFF period Toff (n) in the current rotation period.
  • the ON period Ton (n) is estimated, and the target ignition timing is specified based on the estimated ON period Ton (n) (second start mode). Therefore, when the engine 1 is started, the ignition timing control of the spark plug 10 can be started at an appropriate timing synchronized with the rotation of the engine 1 from the beginning of cracking, and thus a quick engine start can be realized.
  • the engine 1 can be started early after the start.
  • the engine 1 is embodied in the start control device of the engine 1 mounted on the two-wheeled vehicle, but the engine 1 is not limited to this.
  • the present invention may be embodied in a start control device for the engine 1 mounted on a tricycle or a generator.
  • the latch circuit 31a and the electromagnetic pickup 32 of the ECU 31 are used as the signal output means.
  • the present invention is not limited to this, and can be arbitrarily changed.
  • a known photo interrupter may be used.
  • Engine 10 Spark plug (control equipment) 16 Injector 16 (control equipment) 31 ECU (target crank angle setting means, first target time specifying means, Second target time specifying means, engine control means) 31a latch circuit (signal output means) 32 Electromagnetic pickup (Signal output means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

A reluctor projection (7a) on a flywheel (7) is set to an advanced side so that a target ignition timing can be specified after an ON period of a crank angle signal is measured. Then, for the first ignition at the beginning of the start of cranking, the target ignition timing (= ignition target time Ttgt) is specified on the basis of a measurement value of an ON period Ton(n-2) of the crank angle signal (first starting mode). For the second and subsequent ignitions, an ON period Ton(n) in a current rotation cycle is estimated on the basis of measurement values of an OFF period Toff(n-2) and the ON period Ton(n-2) in a rotation cycle two rotations before and an OFF period Toff(n) in the current rotation cycle, and the target ignition period is specified on the basis of the ON period Ton(n) (second starting mode).

Description

エンジンの始動制御装置Engine start control device
 本発明は、エンジンの始動制御装置に係り、特にエンジンの始動時においてエンジンの回転に同期して出力されるクランク角信号に基づき目標クランク角を特定し、特定した目標クランク角に基づき点火プラグやインジェクタ等の制御機器を作動させるエンジンの始動制御装置に関する。 The present invention relates to an engine start control device, and in particular, specifies a target crank angle based on a crank angle signal output in synchronism with engine rotation when the engine is started, and based on the specified target crank angle, The present invention relates to an engine start control device for operating a control device such as an injector.
 エンジンの燃費や排ガス特性等を向上するにはエンジンに対する各種制御の最適化が要求され、例えば点火時期制御による点火プラグの点火や燃料噴射制御によるインジェクタの燃料噴射を最適なタイミングで実行する必要がある。そのために、例えば特許文献1の技術では、エンジンのクランク軸の回転に同期して変動するクランク角信号を生成し、このクランク角信号に基づきエンジンの目標クランク角として目標点火時期を特定して点火時期制御を行っている。
 より詳しく述べると、特許文献1の技術では、エンジンのフライホイールの外周上に特定角度領域に亘ってリラクタ突起を形成し、このフライホイールと対向するようにクランク角センサを配置している。クランク角センサから出力されるクランク角信号はエンジンの1回転を1周期とし、圧縮上死点の進角側を特定角度領域に対応するON期間とし、それ以外の角度領域をOFF期間として交互に切り換えられる矩形波状をなしている。一方、例えば目標点火時期はエンジン回転速度及びスロットル開度等に基づき算出され、具体的には、クランク角信号のON期間の開始タイミング(基準位置)から目標点火時期までのクランク角として算出される。
In order to improve engine fuel efficiency, exhaust gas characteristics, etc., optimization of various controls on the engine is required. For example, ignition of the ignition plug by ignition timing control and fuel injection of the injector by fuel injection control must be executed at the optimal timing. is there. For this purpose, for example, in the technique of Patent Document 1, a crank angle signal that fluctuates in synchronization with the rotation of the crankshaft of the engine is generated, and the target ignition timing is specified as the target crank angle of the engine based on this crank angle signal and ignition is performed. The timing is controlled.
More specifically, in the technique disclosed in Patent Document 1, a relief protrusion is formed over a specific angle region on the outer periphery of an engine flywheel, and a crank angle sensor is disposed so as to face the flywheel. The crank angle signal output from the crank angle sensor has one rotation of the engine as one cycle, the advance side of the compression top dead center is set as the ON period corresponding to the specific angle area, and the other angle areas are alternately set as the OFF period. A rectangular wave that can be switched. On the other hand, for example, the target ignition timing is calculated based on the engine speed, the throttle opening, and the like. Specifically, the target ignition timing is calculated as the crank angle from the start timing (reference position) of the ON period of the crank angle signal to the target ignition timing. .
 エンジンの運転中には、エンジンの2回転前の回転周期におけるOFF期間及びそれに続くON期間と、今回の回転周期におけるOFF期間とから、今回の回転周期におけるON期間が推定される。そして、推定したON期間に基づき目標点火時期までのクランク角が時間換算されて、今回の回転周期における目標点火時期が時間(基準位置から目標点火時期までの所要時間)として特定され、得られた目標点火時期に基づき点火プラグが作動される。 During the operation of the engine, the ON period in the current rotation cycle is estimated from the OFF period and the subsequent ON period in the rotation period before the second rotation of the engine and the OFF period in the current rotation period. Then, the crank angle to the target ignition timing is converted into time based on the estimated ON period, and the target ignition timing in the current rotation cycle is specified as time (the required time from the reference position to the target ignition timing) and obtained. The spark plug is activated based on the target ignition timing.
 今回の回転周期のON期間を推定しているのは、ON期間中にエンジンが目標点火時期に到達することから、ON期間の計測後に目標点火時期を特定する手順では点火プラグの作動が間に合わないためである。また、そのために2回転前のON期間及びOFF期間を参照しているのは、4サイクルエンジンの燃焼サイクルが720°CA毎に繰り返され、2回転前のエンジンの回転変動が今回の回転周期でも再現されるため、これらのON期間及びOFF期間の比及び今回のOFF期間から、今回のON期間を推定可能なためである。 The ON period of the current rotation cycle is estimated because the engine reaches the target ignition timing during the ON period, so the ignition plug operation is not in time for the procedure for specifying the target ignition timing after measuring the ON period. Because. For this reason, the ON period and the OFF period before two revolutions are referred to because the combustion cycle of the four-cycle engine is repeated every 720 ° CA, and the engine fluctuations before the two revolutions are not changed even in the current rotation period. This is because the current ON period can be estimated from the ratio of these ON periods and OFF periods and the current OFF period.
特開2002-317741号公報JP 2002-317741 A
 上記した特許文献1の技術では、目標点火時期を特定するために2回転前のON期間及びOFF期間の情報を必要とする。通常のエンジンの運転中には問題ないが、エンジンを始動する際には、クランキング開始から2回転した後でなければON期間及びOFF期間の情報が得られず、必然的に点火時期制御も開始できない。点火時期制御の開始遅れはエンジン始動の遅延、ひいては車両発進の遅延に繋がるため、従来から迅速にエンジンを始動できる抜本的な対策が要望されていた。 In the technique of Patent Document 1 described above, information on the ON period and the OFF period before two rotations is required to specify the target ignition timing. There is no problem during normal engine operation, but when starting the engine, information on the ON period and OFF period can only be obtained after two revolutions from the start of cranking. I can't start. Since the start delay of the ignition timing control leads to a delay in starting the engine, and thus a delay in starting the vehicle, a drastic measure that can start the engine quickly has been demanded.
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、エンジンを始動する際にクランキングの開始当初からエンジンの回転に同期して点火プラグやインジェクタ等の制御機器を作動させることができ、これにより迅速なエンジン始動を実現することができるエンジンの始動制御装置を提供することにある。 The present invention has been made to solve such problems, and the object of the present invention is to provide a spark plug, an injector, or the like in synchronization with engine rotation from the beginning of cranking when the engine is started. It is an object of the present invention to provide an engine start control device capable of operating a control device and thereby realizing a quick engine start.
 上記の目的を達成するため、本発明のエンジンの始動制御装置は、エンジンの1回転を1周期として、圧縮上死点の進角側に予め設定された特定角度領域に対応する第1の出力レベル期間、及びそれ以外の角度領域に対応する第2の出力レベル期間が交互に切り換えられるクランク角信号を出力する信号出力手段と、クランク角信号の第1の出力レベル期間の始端または終端に対応するエッジを基準位置とし、エンジンの回転に同期してエンジンの制御機器を作動させるための目標クランク角を基準位置からの角度として設定する目標クランク角設定手段と、エンジンの今回の回転周期における第1の出力レベル期間を計測し、第1の出力レベル期間の計測値に基づき目標クランク角設定手段により設定された目標クランク角を時間換算して、基準位置からの時間として今回の回転周期における目標時間を特定する第1の目標時間特定手段と、エンジンの2回転前の回転周期における第2の出力レベル期間及びそれに続く第1の出力レベル期間と今回の回転周期における第2の出力レベル期間とを計測し、これらの出力レベル期間の計測値に基づき今回の回転周期における第1の出力レベル期間を推定し、推定した第1の出力レベル期間に基づき目標クランク角設定手段により設定された目標クランク角を時間換算して、基準位置からの時間として今回の回転周期における目標時間を特定する第2の目標時間特定手段と、エンジンを始動する際に、クランキングの開始からエンジンが2回転するまでの期間中には、第1の目標時間特定手段により特定された目標時間に基づきエンジンの制御機器を作動させ、2回転した後の期間中には、第2の目標時間特定手段により特定された目標時間に基づきエンジンの制御機器を作動させるエンジン制御手段とを具備したことを特徴とする。 In order to achieve the above object, the engine start control device according to the present invention provides a first output corresponding to a specific angle region preset on the advance side of the compression top dead center with one rotation of the engine as one cycle. A signal output means for outputting a crank angle signal in which the second output level period corresponding to the level period and the other angle region is alternately switched, and corresponds to the start or end of the first output level period of the crank angle signal And a target crank angle setting means for setting a target crank angle for operating the engine control device in synchronism with engine rotation as an angle from the reference position, and a first crank angle in the current rotation cycle of the engine. 1 output level period is measured, and the target crank angle set by the target crank angle setting means is time-converted based on the measured value of the first output level period. First target time specifying means for specifying a target time in the current rotation cycle as a time from the reference position, a second output level period in a rotation cycle before two rotations of the engine, and a subsequent first output level period And the second output level period in the current rotation cycle, the first output level period in the current rotation cycle is estimated based on the measurement values of these output level periods, and the estimated first output level period The target crank angle set by the target crank angle setting means is converted into time, and the second target time specifying means for specifying the target time in the current rotation cycle as the time from the reference position, and when starting the engine In addition, during the period from the start of cranking to the second engine rotation, the engine is based on the target time specified by the first target time specifying means. Engine control means for operating the engine control equipment based on the target time specified by the second target time specification means during the period after the second rotation of the control equipment. And
 このように構成したエンジンの制御装置によれば、クランキングの開始からエンジンが2回転するまでの期間中には、第1の目標時間特定手段により特定された目標時間に基づきエンジンの制御機器が作動され、2回転した後の期間中には、第2の目標時間特定手段により特定された目標時間に基づきエンジンの制御機器が作動される。このため、エンジンを始動する際にクラキングの開始当初からエンジンの回転に同期した適切なタイミングで制御機器を作動させることが可能となる。 According to the engine control apparatus configured as described above, during the period from the start of cranking until the engine rotates twice, the engine control device is operated based on the target time specified by the first target time specifying means. The engine control device is operated based on the target time specified by the second target time specifying means during the period after the second rotation. For this reason, when starting the engine, the control device can be operated at an appropriate timing synchronized with the rotation of the engine from the beginning of cracking.
 その他の態様として、目標クランク角設定手段が、目標クランク角としてエンジンの点火プラグによる目標点火時期を設定し、第1及び第2の目標時間特定手段が、それぞれ目標点火時期を時間換算して今回の回転周期の目標時間を特定し、エンジン制御手段が、エンジンの始動の際に第1及び第2の目標時間特定手段により特定された目標時間に基づき点火プラグを作動させるように構成することが望ましい。
 このように構成した場合には、クラキングの開始当初から点火プラグの点火時期制御を開始可能となる。
As another aspect, the target crank angle setting means sets the target ignition timing by the engine spark plug as the target crank angle, and the first and second target time specifying means respectively convert the target ignition timing to time and convert The engine control means is configured to operate the spark plug based on the target times specified by the first and second target time specifying means when starting the engine. desirable.
In such a configuration, ignition timing control of the spark plug can be started from the beginning of cracking.
 その他の態様として、目標クランク角設定手段が、目標クランク角としてエンジンのインジェクタによる目標噴射時期を設定し、第1及び第2の目標時間特定手段が、それぞれ目標噴射時期を時間換算して今回の回転周期の目標時間を特定し、エンジン制御手段が、エンジンの始動の際に第1及び第2の目標時間特定手段により特定された目標時間に基づきインジェクタを作動させるように構成することが望ましい。
 このように構成した場合には、クラキングの開始当初からインジェクタの燃料噴射制御を開始可能となる。
As another aspect, the target crank angle setting means sets the target injection timing by the engine injector as the target crank angle, and the first and second target time specifying means respectively convert the target injection timing into time and Desirably, the target time of the rotation cycle is specified, and the engine control means is configured to operate the injector based on the target times specified by the first and second target time specifying means when starting the engine.
In such a configuration, the fuel injection control of the injector can be started from the beginning of cracking.
 本発明によれば、エンジンを始動する際にクランキングの開始当初からエンジンの回転に同期して点火プラグやインジェクタ等の制御機器を作動させることができ、これにより迅速なエンジン始動を実現することができる。 According to the present invention, when starting the engine, it is possible to operate a control device such as a spark plug or an injector in synchronization with the rotation of the engine from the beginning of cranking, thereby realizing a quick engine start. Can do.
実施形態のエンジンの始動制御装置を示すシステム構成図である。It is a system configuration figure showing an engine starting control device of an embodiment. リラクタ突起に対応したクランク角信号の生成処理、及びクランク角信号に基づく目標点火時期の特定処理を示すタイムチャートである。It is a time chart which shows the production | generation process of the crank angle signal corresponding to a reluctance protrusion, and the specific process of the target ignition timing based on a crank angle signal. ECUが実行する始動モード選択ルーチンを示すフローチャートである。It is a flowchart which shows the starting mode selection routine which ECU performs.
 以下、本発明を二輪車に搭載されるエンジンの始動制御装置に具体化した一実施形態を説明する。
 図1は本実施形態のエンジンの始動制御装置を示すシステム構成図である。
 本実施形態のエンジン1は、排気量50ccの4サイクル単気筒ガソリンエンジンとして構成されており、走行用動力源として二輪車に搭載されている。但し、エンジン1の仕様については、これに限定されるものではなく任意に変更可能である。
Hereinafter, an embodiment in which the present invention is embodied in an engine start control device mounted on a motorcycle will be described.
FIG. 1 is a system configuration diagram showing an engine start control device of this embodiment.
The engine 1 of this embodiment is configured as a four-cycle single-cylinder gasoline engine with a displacement of 50 cc, and is mounted on a two-wheeled vehicle as a driving power source. However, the specification of the engine 1 is not limited to this and can be arbitrarily changed.
 エンジン1のシリンダブロック2に形成されたシリンダ3内にはピストン4が摺動可能に配設され、ピストン4はコンロッド5を介してクランク軸6に連結されてピストン4の往復動に連動してクランク軸6が回転するようになっている。クランク軸6の後端(図示しない変速機側)にはフライホイール7が取り付けられ、フライホイール7の外周上の所定の角度領域にはクランク角を検出するための磁性体からなるリラクタ突起7aが形成されている。 A piston 4 is slidably disposed in a cylinder 3 formed in a cylinder block 2 of the engine 1. The piston 4 is connected to a crankshaft 6 via a connecting rod 5 and interlocked with the reciprocating motion of the piston 4. The crankshaft 6 rotates. A flywheel 7 is attached to the rear end of the crankshaft 6 (on the transmission side (not shown)), and in a predetermined angular region on the outer periphery of the flywheel 7, there is a retractor projection 7a made of a magnetic material for detecting the crank angle. Is formed.
 シリンダブロック2上に固定されたシリンダヘッド9には吸気ポート9a及び排気ポート9bが形成されると共に、先端を筒内に臨ませた姿勢で点火プラグ10が配設されている。吸気ポート9aに接続された吸気通路11には、上流側よりエアクリーナ12、運転者のスロットル操作に応じて開閉されるスロットルバルブ13、ISCV(アイドルスピードコントロールバルブ)14を備えたバイパス通路15、及び吸気ポート9aに向けて燃料を噴射するインジェクタ16が設けられている。また排気ポート9bに接続された排気通路17には、排ガスを浄化するための三元触媒18及び図示しない消音器が設けられている。 In the cylinder head 9 fixed on the cylinder block 2, an intake port 9a and an exhaust port 9b are formed, and a spark plug 10 is disposed in a posture in which the tip faces the inside of the cylinder. An intake passage 11 connected to the intake port 9a has an air cleaner 12 from the upstream side, a throttle valve 13 that opens and closes in response to the driver's throttle operation, a bypass passage 15 having an ISCV (idle speed control valve) 14, and An injector 16 that injects fuel toward the intake port 9a is provided. The exhaust passage 17 connected to the exhaust port 9b is provided with a three-way catalyst 18 for purifying exhaust gas and a silencer (not shown).
 吸気ポート9aには吸気バルブ20が配設され、排気ポート9bには排気バルブ21が配設されている。これらの吸排気バルブ20,21はバルブスプリング22により閉弁側に付勢されると共に、シリンダヘッド9上でクランク軸6に同期して回転駆動される吸気カム軸23及び排気カム軸24により開弁される。これによりピストン4の往復動に同期した所定のタイミングで吸気バルブ20及び排気バルブ21が開閉し、吸気、圧縮、膨張、排気の4つの行程からなるエンジン1の燃焼サイクルがクランク角で720°CA毎に繰り返される。 An intake valve 20 is disposed in the intake port 9a, and an exhaust valve 21 is disposed in the exhaust port 9b. These intake and exhaust valves 20 and 21 are urged toward the valve closing side by a valve spring 22 and are opened by an intake camshaft 23 and an exhaust camshaft 24 that are driven to rotate in synchronization with the crankshaft 6 on the cylinder head 9. To be spoken. As a result, the intake valve 20 and the exhaust valve 21 are opened and closed at a predetermined timing synchronized with the reciprocation of the piston 4, and the combustion cycle of the engine 1 consisting of four strokes of intake, compression, expansion and exhaust is 720 ° CA in crank angle. Repeated every time.
 上記インジェクタ16には、燃料タンク25内に貯留された燃料(ガソリン)が燃料ポンプ26により供給される。燃料ポンプ26はインジェクタ16と一体化され、供給ホース27及びリターンホース28を介してそれぞれ燃料タンク25に対して接続されている。
 燃料ポンプ26が作動すると燃料タンク25内の燃料が供給ホース27を介して燃料ポンプ26内に導かれて所定圧に加圧され、加圧後の燃料がインジェクタ16に供給されると共に、余剰燃料がリターンホース28を介して燃料タンク25に回収される。これによりインジェクタ16には常に所定圧の燃料が供給され、インジェクタ16の開弁に応じて所定の噴射時期及び噴射量で吸気ポート9aに向けて燃料が噴射される。
The fuel (gasoline) stored in the fuel tank 25 is supplied to the injector 16 by a fuel pump 26. The fuel pump 26 is integrated with the injector 16 and connected to the fuel tank 25 via a supply hose 27 and a return hose 28, respectively.
When the fuel pump 26 is operated, the fuel in the fuel tank 25 is introduced into the fuel pump 26 through the supply hose 27 and pressurized to a predetermined pressure, and the pressurized fuel is supplied to the injector 16 and surplus fuel is supplied. Is recovered in the fuel tank 25 via the return hose 28. As a result, fuel of a predetermined pressure is always supplied to the injector 16, and the fuel is injected toward the intake port 9a at a predetermined injection timing and injection amount according to the opening of the injector 16.
 エンジン1の運転中には、吸気行程でピストン4の下降に伴って発生した負圧によりエアクリーナ12を介して吸気通路11内に外気が吸入され、吸入空気はスロットルバルブ13の開度に応じて流量調整された後、インジェクタ16からの噴射燃料と混合しながら吸気バルブ20の開弁中にエンジン1の筒内に流入する。続く圧縮行程での圧縮を経て混合気は圧縮上死点の近傍で点火プラグ10により点火され、膨張行程中に燃焼してピストン4を介してクランク軸6に回転力を付与する。続く排気行程では燃焼後の排ガスが排気バルブ21の開弁中に筒内より排出され、排気通路17を流通しながら三元触媒18及び消音器を経て外部に排出される。 During operation of the engine 1, outside air is sucked into the intake passage 11 through the air cleaner 12 due to the negative pressure generated as the piston 4 descends during the intake stroke, and the intake air is in accordance with the opening of the throttle valve 13. After the flow rate is adjusted, the fuel flows into the cylinder of the engine 1 while the intake valve 20 is opened while being mixed with the fuel injected from the injector 16. After the compression in the subsequent compression stroke, the air-fuel mixture is ignited by the spark plug 10 in the vicinity of the compression top dead center, burns during the expansion stroke, and applies a rotational force to the crankshaft 6 via the piston 4. In the subsequent exhaust stroke, the exhaust gas after combustion is discharged from the cylinder while the exhaust valve 21 is opened, and is discharged outside through the three-way catalyst 18 and the silencer while flowing through the exhaust passage 17.
 以上のエンジン1の燃焼サイクルは、ECU31(エンジン制御ユニット)の制御に基づき実行される。そのためにECU31の入力側には、上記フライホイール7に対向配置されてリラクタ突起7aに同期した検出信号を出力する電磁ピックアップ32(信号出力手段)、スロットルバルブ13の開度を検出するスロットルセンサ33、排気通路17に配設されてストイキ(理論空燃比)を中心とした排気空燃比の変動に応じて出力をステップ状に変動させるO2センサ34、エンジン1の冷却水温Twを検出する水温センサ35等の各種センサ類が接続されている。また、ECU31の出力側には、上記ISCV14、インジェクタ16(制御機器)、燃料ポンプ26、点火プラグ10(制御機器)を駆動するイグナイタ36等の各種デバイス類が接続されている。 The combustion cycle of the engine 1 described above is executed based on the control of the ECU 31 (engine control unit). For this purpose, on the input side of the ECU 31, an electromagnetic pickup 32 (signal output means) that is arranged opposite to the flywheel 7 and outputs a detection signal synchronized with the reluctator protrusion 7a, and a throttle sensor 33 that detects the opening of the throttle valve 13 are provided. , An O 2 sensor 34 that is arranged in the exhaust passage 17 and changes the output stepwise in accordance with the fluctuation of the exhaust air-fuel ratio centered on the stoichiometric (theoretical air-fuel ratio), and the water temperature sensor that detects the cooling water temperature Tw of the engine 1 Various sensors such as 35 are connected. Various devices such as the igniter 36 for driving the ISCV 14, the injector 16 (control device), the fuel pump 26, and the spark plug 10 (control device) are connected to the output side of the ECU 31.
 これらのセンサ情報に基づきECU31は、インジェクタ16を駆動するための燃料噴射制御、点火プラグ10を駆動するための点火時期制御等の各種制御を実行してエンジン1を運転する。
 例えばECU31は燃料噴射制御として、電磁ピックアップ32の検出信号から算出したエンジン回転速度Ne及びスロットルセンサ33により検出されたスロットル開度θth等に基づき目標燃料噴射量を決定し、吸気行程の所定タイミングでインジェクタ16を駆動して燃料噴射を実行する。
Based on these sensor information, the ECU 31 operates the engine 1 by executing various controls such as fuel injection control for driving the injector 16 and ignition timing control for driving the spark plug 10.
For example, as the fuel injection control, the ECU 31 determines a target fuel injection amount based on the engine rotational speed Ne calculated from the detection signal of the electromagnetic pickup 32, the throttle opening θth detected by the throttle sensor 33, and the like at a predetermined timing of the intake stroke. The injector 16 is driven to execute fuel injection.
 またECU31は点火時期制御として、エンジン回転速度Ne及びスロットル開度θth等に基づき目標点火時期を決定する一方、電磁ピックアップ32の検出信号から生成した矩形波状のクランク角信号に基づき目標点火時期に対応するタイミングを特定し、イグナイタ36を駆動して点火プラグ10を点火させる(エンジン制御手段)。
 以下、このようなECU31により実行されるクランク角信号の生成から点火プラグ10の点火時期制御までの処理について詳述する。
Further, the ECU 31 determines the target ignition timing based on the engine rotational speed Ne, the throttle opening θth, and the like as the ignition timing control, and responds to the target ignition timing based on the rectangular wave crank angle signal generated from the detection signal of the electromagnetic pickup 32. The ignition timing is determined and the igniter 36 is driven to ignite the spark plug 10 (engine control means).
Hereinafter, the processing from the generation of the crank angle signal to the ignition timing control of the spark plug 10 executed by the ECU 31 will be described in detail.
 図2はリラクタ突起7aに対応したクランク角信号の生成処理、及びクランク角信号に基づく目標点火時期の特定処理を示すタイムチャートである。
 本実施形態のリラクタ突起7aは、フライホイール7上に60°CAの特定角度領域に亘って形成されている。フライホイール7の回転方向のリラクタ突起7aの端部を始端、反回転方向のリラクタ突起7aの端部を終端とすると、その始端はエンジン1の上死点よりも80°CA進角側のクランク角で電磁ピックアップ32と対応し、終端は上死点よりも20°CA進角側のクランク角で電磁ピックアップ32に対応するようになっている。
FIG. 2 is a time chart showing a crank angle signal generation process corresponding to the reluctance protrusion 7a and a target ignition timing specifying process based on the crank angle signal.
The relieving projection 7a of the present embodiment is formed on the flywheel 7 over a specific angle region of 60 ° CA. If the end of the rotation projection 7a in the rotational direction of the flywheel 7 is the start and the end of the reverse projection 7a in the counter-rotation direction is the end, the start is a crank that is 80 ° CA advanced from the top dead center of the engine 1. The corner corresponds to the electromagnetic pickup 32, and the terminal end corresponds to the electromagnetic pickup 32 at a crank angle of 20 ° CA advance side from the top dead center.
 電磁ピックアップ32は、磁性体への接離により磁束変化を生じて出力を変動させる特性を有する。このため、リラクタ突起7aの始端及び終端と対応する毎に電磁ピックアップ32から出力される検出信号はスパイク状に変動する。より具体的に述べると、リラクタ突起7aの始端に対応するBTDC(Before Top Dead Center)80°CA、及びそれに続く終端に対応するBTDC20°CAでそれぞれ検出信号が変動し、これらの検出信号の変動が360°CA毎に繰り返される。 The electromagnetic pickup 32 has a characteristic in which a change in magnetic flux is generated due to contact with and separation from a magnetic body to change the output. For this reason, the detection signal output from the electromagnetic pickup 32 fluctuates in a spike shape every time it corresponds to the start end and the end of the reluctator protrusion 7a. More specifically, the detection signals fluctuate at BTDC (Before Dead Center) 80 ° CA corresponding to the start end of the reluctance protrusion 7a and BTDC 20 ° CA corresponding to the subsequent end, and fluctuations in these detection signals. Is repeated every 360 ° CA.
 このようにして電磁ピックアップ32から出力される検出信号がECU31に入力され、ECU31は内蔵しているラッチ回路31a(信号出力手段)を用いてクランク角信号を生成する。即ち、ラッチ回路31aは、リラクタ突起7aの始端に対応する検出信号の変動タイミングでクランク角信号を立ち上げてON状態に保持し(本発明の第1の出力レベル期間であり、以下、ON期間と称する)、続くリラクタ突起7aの終端に対応する変動タイミングでクランク角信号を立ち下げてOFF状態に保持する(本発明の第2の出力レベル期間であり、以下、OFF期間と称する)。この処理がラッチ回路31aにより繰り返され、360°CAを1周期(OFF期間+ON期間)としてエンジン1のクランク角に同期して変動する矩形波状のクランク角信号が生成される。 The detection signal output from the electromagnetic pickup 32 in this way is input to the ECU 31, and the ECU 31 generates a crank angle signal using the built-in latch circuit 31a (signal output means). That is, the latch circuit 31a raises the crank angle signal at the fluctuation timing of the detection signal corresponding to the start end of the reluctator protrusion 7a and holds it in the ON state (this is the first output level period of the present invention, hereinafter the ON period The crank angle signal is lowered and held in an OFF state at a variation timing corresponding to the end of the subsequent reluctator protrusion 7a (the second output level period of the present invention, hereinafter referred to as the OFF period). This process is repeated by the latch circuit 31a to generate a rectangular wave-shaped crank angle signal that varies in synchronization with the crank angle of the engine 1 with 360 ° CA as one cycle (OFF period + ON period).
 そして、クランク角信号に基づき点火時期制御が実行されるが、特許文献1の技術と同様に、今回の回転周期のON期間を推定するために2回転前のON期間及びOFF期間を参照すると、エンジン始動が遅延するという問題がある。 Then, ignition timing control is executed based on the crank angle signal. As in the technique of Patent Document 1, referring to the ON period and OFF period before two rotations in order to estimate the ON period of the current rotation cycle, There is a problem that engine start is delayed.
 このような問題点を鑑みて本発明者は、フライホイール7上のリラクタ突起7aを通常のもの(例えば、特許文献1)よりも進角側に設定してクランク角信号のON期間を進角側にずらせば、ON期間の計測後に目標点火時期を特定する時間的な余地を確保できることを見出した。上記のように形成されたリラクタ突起7aの特定角度領域は、このような知見に基づくものである。但し、この手法では、ON期間の計測結果だけから目標点火時期を時間換算するため、遅角点火時(計測終了箇所と点火通電OFFが離れている場合)には、2回転前のON期間及びOFF期間を反映させる従来からの手法に比較すると、正確な点火時期制御は望みにくい。 In view of such a problem, the present inventor sets the retraction protrusion 7a on the flywheel 7 to the advance side with respect to the normal one (for example, Patent Document 1), and sets the ON period of the crank angle signal to the advance angle. It has been found that if it is shifted to the side, it is possible to secure time for specifying the target ignition timing after the measurement of the ON period. The specific angle region of the reluctator protrusion 7a formed as described above is based on such knowledge. However, in this method, the target ignition timing is converted to time only from the measurement result of the ON period, so at the time of retarded ignition (when the measurement end point and the ignition energization OFF are separated), Compared to conventional methods that reflect the OFF period, accurate ignition timing control is less desirable.
 そこで、当該点火時期制御(本発明の第1の目標時間特定手段であり、以下、第1始動モードと称する)はクランキング開始当初からエンジン1が2回転するまでの期間中(初回の点火分)の実行に限り、その後は従来手法に基づく点火時期制御(本発明の第2の目標時間特定手段であり、以下、第2始動モードと称する)に移行するものとしている。
 なお、最適なリラクタ突起7aの特定角度領域は、上記したBTDC80°CAからBTDC20°CAまでであるが、これに限定されるものではなく、リラクタ突起7aの始端はBTDC90~60°CAの範囲内で、リラクタ突起7aの終端はBTDC20~15°CAの範囲内で設定すればよい。
Therefore, the ignition timing control (first target time specifying means of the present invention, hereinafter referred to as the first start mode) is performed during the period from the start of cranking to the time when the engine 1 makes two revolutions (the first ignition amount). As long as the control is executed, the process proceeds to ignition timing control based on the conventional method (second target time specifying means of the present invention, hereinafter referred to as second start mode).
The optimum specific angle region of the reluctance protrusion 7a is from BTDC 80 ° CA to BTDC 20 ° CA described above, but is not limited to this, and the starting end of the reluctation protrusion 7a is within the range of BTDC 90 to 60 ° CA. Therefore, the end of the reluctance protrusion 7a may be set within the range of BTDC 20 to 15 ° CA.
 以上のような知見に基づきECU31により実行されるエンジン始動時の制御を説明する。
 図3はECU31が実行する始動モード選択ルーチンを示すフローチャートであり、ECU31は車両のイグニションスイッチがON操作されたときに当該ルーチンを所定の制御インターバルで開始する。
 まず、ステップS2でエンジン1のクランキングが開始されたか否かを判定し、No(否定)のときには一旦ルーチンを終了する。クランキングの開始によりステップS2でYes(肯定)の判定を下すと、ステップS4に移行してエンジン1が2回転したか否かを判定する。未だ2回転していないときにはNoの判定を下してステップS6で第1始動モードを選択した後にルーチンを終了する、また、エンジン1が2回転してステップS4の判定がYesになるとステップS8に移行して第2始動モードを選択した後にルーチンを終了する。
Based on the above knowledge, the engine start control executed by the ECU 31 will be described.
FIG. 3 is a flowchart showing a start mode selection routine executed by the ECU 31, and the ECU 31 starts the routine at a predetermined control interval when the ignition switch of the vehicle is turned on.
First, it is determined in step S2 whether or not cranking of the engine 1 has been started. If No (No), the routine is once terminated. If the determination of Yes (Yes) is made at the start of cranking in step S2, the process proceeds to step S4 to determine whether or not the engine 1 has made two revolutions. If the engine has not yet made two revolutions, a determination of No is made and the routine is terminated after the first start mode is selected in step S6. If the engine 1 makes two revolutions and the determination in step S4 is Yes, the process proceeds to step S8. After the transition and the second start mode is selected, the routine is terminated.
 以上のECU31による始動モードの選択に基づくエンジン始動時の点火時期制御の実行状況を、図2のタイムチャートに基づきさらに説明する。
 図2では膨張行程と排気行程との間でエンジン1のクランキングが開始された場合を示しており、このクランキングの開始当初は図3のルーチンにより第1始動モードが選択されている。
The execution status of the ignition timing control at the time of engine start based on the selection of the start mode by the ECU 31 will be further described based on the time chart of FIG.
FIG. 2 shows a case where cranking of the engine 1 is started between the expansion stroke and the exhaust stroke, and at the beginning of the cranking, the first start mode is selected by the routine of FIG.
 上記のようにクランク角信号は360°CAを1周期として変動しており、まず排気上死点の直前に位置するOFF期間の開始から圧縮行程中に位置するOFF期間の終了(=ON期間の開始)までが、当該回転の回転周期のOFF期間Toff(n-2)として計測される。続いてON期間の開始から圧縮上死点の直前に位置するON期間の終了までが、当該回転の回転周期のON期間Ton(n-2)として計測される。なお、これらの計測値は、OFF期間Toff(n-2)やON期間Ton(n-2)の継続時間を意味するものとする(後述する今回周期のOFF期間Ton(n)やON期間Ton(n)も同様)。 As described above, the crank angle signal fluctuates with 360 ° CA as one cycle. First, from the start of the OFF period positioned immediately before the exhaust top dead center, the end of the OFF period positioned during the compression stroke (= ON period) Until the start) is measured as an OFF period Toff (n-2) of the rotation period of the rotation. Subsequently, the period from the start of the ON period to the end of the ON period located immediately before the compression top dead center is measured as the ON period Ton (n-2) of the rotation cycle of the rotation. These measured values mean the durations of the OFF period Toff (n-2) and the ON period Ton (n-2) (the OFF period Ton (n) and the ON period Ton of the current cycle described later ). The same applies to (n) .
 これと並行してON期間Ton(n-2)の開始と同時にイグナイタ36により点火コイルの通電が開始され、予め設定されている始動用の目標点火時期、及びON期間Ton(n-2)に基づき目標点火時期が特定され、その目標点火時期に基づき点火コイルの通電が終了して点火プラグ10が点火される。この点火に先行する吸気行程の所定タイミングではインジェクタ16から燃料が噴射され、続く圧縮行程で噴射燃料が吸入空気と共に筒内で圧縮されているため、点火により膨張行程中に燃焼が生起されることになる。 In parallel with this, energization of the ignition coil is started by the igniter 36 simultaneously with the start of the ON period Ton (n-2) , and the preset target ignition timing and the ON period Ton (n-2) are set. Based on the target ignition timing, the energization of the ignition coil is terminated based on the target ignition timing, and the spark plug 10 is ignited. The fuel is injected from the injector 16 at a predetermined timing of the intake stroke preceding the ignition, and the injected fuel is compressed in the cylinder together with the intake air in the subsequent compression stroke, so that combustion occurs during the expansion stroke by the ignition. become.
 このときの第1始動モードによる目標点火時期の特定処理は、以下の手順で実行される。まず目標点火時期はON期間Ton(n-2)の開始タイミング(立ち上がりエッジ)を基準位置とし、この基準位置から目標点火時期までのクランク角(本発明の目標クランク角であり、以下、点火目標クランク角Dtgtと称する)として算出される(目標クランク角設定手段)。なお本実施形態では、エンジン始動時の点火目標クランク角Dtgtを固定値として予めECU31に記憶させているが、これに限るものではなく、例えばエンジン1の冷却水温Twやバッテリ電圧に基づき点火目標クランク角Dtgtを可変設定してもよい(目標クランク角設定手段)。 At this time, the target ignition timing specifying process in the first start mode is executed according to the following procedure. First, the target ignition timing is based on the start timing (rising edge) of the ON period Ton (n-2) as a reference position, and the crank angle from the reference position to the target ignition timing (the target crank angle of the present invention, hereinafter referred to as the ignition target). (Referred to as crank angle Dtgt) (target crank angle setting means). In the present embodiment, the ignition target crank angle Dtgt at the time of starting the engine is stored in the ECU 31 as a fixed value in advance. However, the present invention is not limited to this. For example, the ignition target crank angle is based on the cooling water temperature Tw of the engine 1 or the battery voltage. The angle Dtgt may be variably set (target crank angle setting means).
 上記のようにして計測されたON期間Ton(n-2)はリラクタ突起7aの角度領域(60°CA)のクランク角に相当し、このクランク角だけクランク軸6を回転させるためにON期間Ton(n-2)を要している。よって、これらのリラクタ突起7aの特定角度領域及びON期間Ton(n-2)の関係を指標として点火目標クランク角Dtgtを時間換算し、基準位置から目標点火時期までの所要時間(本発明の目標時間であり、以下、点火目標時間Ttgtと称する)を算出できる。そして、基準位置から点火目標時間Ttgtが経過した目標点火時期のタイミングで点火コイルの通電終了により点火が行われる。
 なお、基準位置は必ずしもON期間の開始タイミングである必要はなく、ON期間の終了タイミング(立ち下がりエッジ)を基準位置としてもよい。
The ON period Ton (n-2) measured as described above corresponds to the crank angle in the angle region (60 ° CA) of the reluctance protrusion 7a, and the ON period Ton for rotating the crankshaft 6 by this crank angle. (n-2) is required. Therefore, the ignition target crank angle Dtgt is converted into time using the relationship between the specific angle region of these reluctance protrusions 7a and the ON period Ton (n-2) as an index, and the required time from the reference position to the target ignition timing (the target of the present invention) Time, and hereinafter referred to as ignition target time Ttgt). Then, ignition is performed by the end of energization of the ignition coil at the timing of the target ignition timing when the ignition target time Ttgt has elapsed from the reference position.
Note that the reference position is not necessarily the start timing of the ON period, and the end timing (falling edge) of the ON period may be used as the reference position.
 以上のようにクラキング開始当初の初回の点火が実行され、2回目の点火は、エンジン1の2回転後(720°CA後)の回転周期における圧縮上死点の直前に実行される。 As described above, the first ignition at the beginning of cracking is executed, and the second ignition is executed immediately before the compression top dead center in the rotation cycle after two revolutions of the engine 1 (after 720 ° CA).
 このときには図3のルーチンにより第2始動モードが選択されており、この第2始動モードによる目標点火時期の特定処理が以下の手順で実行される。
 まず、2回転前の回転周期で既に計測されているOFF期間Toff(n-2)及びON期間Ton(n-2)に加えて、今回の回転周期におけるOFF期間Toff(n)が計測される。これらの計測値(Toff(n-2),Ton(n-2),Toff(n))に基づき、次式(1)に従って今回の回転周期におけるON期間Ton(n)が推定される。
 Ton(n)=Toff(n)・Ton(n-2)/ Toff(n-2) ……(1)
At this time, the second start mode is selected by the routine of FIG. 3, and the target ignition timing specifying process in the second start mode is executed in the following procedure.
First, in addition to the OFF period Toff which are already measured in the rotation period of the previous two rotations (n-2) and the ON period Ton (n-2), the OFF period Toff in the current rotational period (n) is measured . Based on these measured values (Toff (n-2) , Ton (n-2) , Toff (n) ), the ON period Ton (n) in the current rotation cycle is estimated according to the following equation (1).
Ton (n) = Toff (n) · Ton (n-2) / Toff (n-2) ...... (1)
 そして、上記した第1始動モードと同じく、リラクタ突起7aの特定角度領域及びON期間Ton(n)の関係を指標として点火目標クランク角Dtgtを時間換算し、基準位置から目標点火時期までの所要時間(点火目標時間Ttgt)を算出できる。このときの点火目標クランク角Dtgtは、第1始動モードと同一値を適用する必要は必ずしもなく、予め設定された別の固定値、或いはエンジン1の冷却水温Twやバッテリ電圧に基づく算出値を点火目標クランク角Dtgtとして適用してもよい(目標クランク角設定手段)。なお、以上の第2始動モードにより点火目標時間Ttgtを算出するまでの詳細な処理については、特許文献1を参照願いたい。 Then, as in the first start mode described above, the ignition target crank angle Dtgt is time-converted using the relationship between the specific angle region of the reluctator protrusion 7a and the ON period Ton (n) as an index, and the required time from the reference position to the target ignition timing (Ignition target time Ttgt) can be calculated. The ignition target crank angle Dtgt at this time does not necessarily have to be the same value as that in the first start mode, and another predetermined fixed value or a calculated value based on the cooling water temperature Tw of the engine 1 or the battery voltage is ignited. You may apply as target crank angle Dtgt (target crank angle setting means). For detailed processing until the ignition target time Ttgt is calculated in the second start mode described above, refer to Patent Document 1.
 以降はエンジン1のクランキングが継続されると共に、720°CA間隔でインジェクタ16による燃料噴射、及び第2始動モードにより特定された目標点火時期(=点火目標時間Ttgt)に基づく点火プラグ10の点火が繰り返し実行される。
 そして、エンジン回転速度Neが予め設定された完爆判定値を超えるとエンジン1の始動が完了したと見なし、その運転を継続させるためにECU31は運転モードに移行する。この運転モードでは、エンジン始動時とは異なりエンジン1の運転状態(例えば、エンジン回転速度Neやスロットル開度θth)に基づき目標点火時期として点火目標クランク角Dtgtが算出されるものの、点火目標クランク角Dtgtを点火目標時間Ttgtに時間換算する処理については、上記した第2始動モードと同一の手順で実行される。
Thereafter, the cranking of the engine 1 is continued, the fuel is injected by the injector 16 at intervals of 720 ° CA, and the ignition of the spark plug 10 based on the target ignition timing (= ignition target time Ttgt) specified by the second start mode. Is repeatedly executed.
When the engine speed Ne exceeds a preset complete explosion determination value, it is considered that the engine 1 has been started, and the ECU 31 shifts to an operation mode in order to continue its operation. In this operation mode, unlike the engine start, the ignition target crank angle Dtgt is calculated as the target ignition timing based on the operating state of the engine 1 (for example, the engine speed Ne and the throttle opening θth). The process for converting Dtgt to the ignition target time Ttgt is performed in the same procedure as in the second start mode.
 以上のように本実施形態のエンジン1の始動制御装置によれば、クランク角信号のON期間の計測後に目標点火時期を特定可能なように、フライホイール7上のリラクタ突起7aを進角側に設定した上で、クランキングの開始当初の初回の点火は、クランク角信号のON期間Ton(n-2)の計測値に基づき目標点火時期を特定し(第1始動モード)、2回目以降の点火は、2回転前の回転周期におけるOFF期間Toff(n-2)及びON期間Ton(n-2)と今回の回転周期におけるOFF期間Toff(n)との各計測値に基づき今回の回転周期におけるON期間Ton(n)を推定し、推定したON期間Ton(n)に基づき目標点火時期を特定している(第2始動モード)。
 従って、エンジン1を始動する際にはクラキングの開始当初からエンジン1の回転に同期した適切なタイミングで点火プラグ10の点火時期制御を開始でき、ひいては迅速なエンジン始動を実現することができる。
As described above, according to the start control device for the engine 1 of the present embodiment, the retractor protrusion 7a on the flywheel 7 is moved to the advance side so that the target ignition timing can be specified after measuring the ON period of the crank angle signal. After setting, the first ignition at the beginning of cranking is performed by specifying the target ignition timing based on the measured value of the ON period Ton (n-2) of the crank angle signal (first start mode) and the second and subsequent times. Ignition is based on the measured values of the OFF period Toff (n-2) and ON period Ton (n-2) in the rotation period before two rotations and the OFF period Toff (n) in the current rotation period. The ON period Ton (n) is estimated, and the target ignition timing is specified based on the estimated ON period Ton (n) (second start mode).
Therefore, when the engine 1 is started, the ignition timing control of the spark plug 10 can be started at an appropriate timing synchronized with the rotation of the engine 1 from the beginning of cracking, and thus a quick engine start can be realized.
 ところで、本実施形態では、エンジン始動時に目標点火時期を特定するための処理として具体化したが、適用対象は点火時期制御に限るものではなく、例えば燃料噴射制御にも適用できる。そして、クランキングの開始当初の初回の燃料噴射(吸気行程)においても、クランク角信号のON期間Ton(n-2)の計測値に基づき目標噴射時期(=噴射目標時間Ttgt)を特定でき(第1の目標時間特定手段)、その目標噴射時期に基づき初回のインジェクタ16による燃料噴射を実行できるため(エンジン制御手段)、重複する説明はしないが実施形態と同様に、迅速に燃料噴射制御を開始して早期にエンジン1を始動することができる。 By the way, in this embodiment, although it actualized as a process for specifying target ignition timing at the time of engine starting, application object is not restricted to ignition timing control, For example, it can apply also to fuel injection control. In the initial fuel injection (intake stroke) at the beginning of cranking, the target injection timing (= injection target time Ttgt) can be specified based on the measured value of the ON period Ton (n-2) of the crank angle signal ( The first target time specifying means) and the first fuel injection by the injector 16 can be executed based on the target injection timing (engine control means). The engine 1 can be started early after the start.
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、二輪車に搭載されるエンジン1の始動制御装置に具体化したが、エンジン1の搭載対象はこれに限るものではない。例えば三輪車や発電機に搭載されるエンジン1の始動制御装置に具体化してもよい。また上記実施形態では単気筒エンジン1に適用したが、これに代えて多気筒エンジンに適用することもできる。
 また上記実施形態では、信号出力手段としてECU31のラッチ回路31a及び電磁ピックアップ32を用いたが、これに限るものではなく任意に変更可能であり、例えば周知のフォトインタラプタを使用してもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the engine 1 is embodied in the start control device of the engine 1 mounted on the two-wheeled vehicle, but the engine 1 is not limited to this. For example, the present invention may be embodied in a start control device for the engine 1 mounted on a tricycle or a generator. Moreover, although applied to the single cylinder engine 1 in the said embodiment, it can replace with this and can also apply to a multicylinder engine.
In the above embodiment, the latch circuit 31a and the electromagnetic pickup 32 of the ECU 31 are used as the signal output means. However, the present invention is not limited to this, and can be arbitrarily changed. For example, a known photo interrupter may be used.
 1  エンジン
 10 点火プラグ(制御機器)
 16 インジェクタ16(制御機器)
 31 ECU(目標クランク角設定手段、第1の目標時間特定手段、
        第2の目標時間特定手段、エンジン制御手段)
 31aラッチ回路(信号出力手段)
 32 電磁ピックアップ(信号出力手段)
1 Engine 10 Spark plug (control equipment)
16 Injector 16 (control equipment)
31 ECU (target crank angle setting means, first target time specifying means,
Second target time specifying means, engine control means)
31a latch circuit (signal output means)
32 Electromagnetic pickup (Signal output means)

Claims (3)

  1.  エンジンの1回転を1周期として、圧縮上死点の進角側に予め設定された特定角度領域に対応する第1の出力レベル期間、及びそれ以外の角度領域に対応する第2の出力レベル期間が交互に切り換えられるクランク角信号を出力する信号出力手段と、
     上記クランク角信号の上記第1の出力レベル期間の始端または終端に対応するエッジを基準位置とし、上記エンジンの回転に同期して該エンジンの制御機器を作動させるための目標クランク角を上記基準位置からの角度として設定する目標クランク角設定手段と、
     上記エンジンの今回の回転周期における上記第1の出力レベル期間を計測し、該第1の出力レベル期間の計測値に基づき上記目標クランク角設定手段により設定された目標クランク角を時間換算して、上記基準位置からの時間として今回の回転周期における目標時間を特定する第1の目標時間特定手段と、
     上記エンジンの2回転前の回転周期における上記第2の出力レベル期間及びそれに続く第1の出力レベル期間と今回の回転周期における第2の出力レベル期間とを計測し、これらの出力レベル期間の計測値に基づき今回の回転周期における第1の出力レベル期間を推定し、該推定した第1の出力レベル期間に基づき上記目標クランク角設定手段により設定された目標クランク角を時間換算して、上記基準位置からの時間として今回の回転周期における目標時間を特定する第2の目標時間特定手段と、
     上記エンジンを始動する際に、クランキングの開始から該エンジンが2回転するまでの期間中には、上記第1の目標時間特定手段により特定された目標時間に基づき上記エンジンの制御機器を作動させ、2回転した後の期間中には、上記第2の目標時間特定手段により特定された目標時間に基づき上記エンジンの制御機器を作動させるエンジン制御手段と
    を具備したことを特徴とするエンジンの始動制御装置。
    A first output level period corresponding to a specific angle region preset on the advance side of the compression top dead center, and a second output level period corresponding to other angle regions, with one rotation of the engine as one cycle Signal output means for outputting a crank angle signal that is alternately switched,
    An edge corresponding to the start or end of the first output level period of the crank angle signal is set as a reference position, and a target crank angle for operating the engine control device in synchronization with the engine rotation is set as the reference position. Target crank angle setting means for setting as an angle from
    The first output level period in the current rotation period of the engine is measured, and the target crank angle set by the target crank angle setting means based on the measurement value of the first output level period is converted into time, First target time specifying means for specifying the target time in the current rotation cycle as the time from the reference position;
    The second output level period and the subsequent first output level period in the rotation cycle before two revolutions of the engine are measured, and the second output level period in the current rotation cycle is measured, and measurement of these output level periods is performed. The first output level period in the current rotation cycle is estimated based on the value, the target crank angle set by the target crank angle setting means is converted into time based on the estimated first output level period, and the reference Second target time specifying means for specifying the target time in the current rotation cycle as the time from the position;
    When starting the engine, during the period from the start of cranking to the second rotation of the engine, the engine control device is operated based on the target time specified by the first target time specifying means. Engine starting means comprising engine control means for operating the engine control device based on the target time specified by the second target time specifying means during a period after two revolutions Control device.
  2.  上記目標クランク角設定手段は、上記目標クランク角として上記エンジンの点火プラグによる目標点火時期を設定し、
     上記第1及び第2の目標時間特定手段は、それぞれ上記目標点火時期を時間換算して今回の回転周期の目標時間を特定し、
     上記エンジン制御手段は、上記エンジンの始動の際に上記第1及び第2の目標時間特定手段により特定された目標時間に基づき上記点火プラグを作動させる
    ことを特徴とする請求項1に記載のエンジンの始動制御装置。
    The target crank angle setting means sets a target ignition timing by the engine spark plug as the target crank angle,
    The first and second target time specifying means specify the target time of the current rotation period by converting the target ignition timing into time,
    2. The engine according to claim 1, wherein the engine control means operates the spark plug based on the target times specified by the first and second target time specifying means when starting the engine. Start control device.
  3.  上記目標クランク角設定手段は、上記目標クランク角として上記エンジンのインジェクタによる目標噴射時期を設定し、
     上記第1及び第2の目標時間特定手段は、それぞれ上記目標噴射時期を時間換算して今回の回転周期の目標時間を特定し、
     上記エンジン制御手段は、上記エンジンの始動の際に上記第1及び第2の目標時間特定手段により特定された目標時間に基づき上記インジェクタを作動させる
    ことを特徴とする請求項1または2に記載のエンジンの始動制御装置。

     
    The target crank angle setting means sets a target injection timing by the engine injector as the target crank angle,
    The first and second target time specifying means specify the target time of the current rotation period by converting the target injection timing into time,
    3. The engine control unit according to claim 1, wherein the engine control unit operates the injector based on the target times specified by the first and second target time specifying units when the engine is started. 4. Engine start control device.

PCT/JP2015/066104 2014-06-03 2015-06-03 Starting control device for engine WO2015186761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580040311.3A CN106536909B (en) 2014-06-03 2015-06-03 The starting control device of engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114903 2014-06-03
JP2014114903A JP6301204B2 (en) 2014-06-03 2014-06-03 Engine start control device

Publications (1)

Publication Number Publication Date
WO2015186761A1 true WO2015186761A1 (en) 2015-12-10

Family

ID=54766829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066104 WO2015186761A1 (en) 2014-06-03 2015-06-03 Starting control device for engine

Country Status (3)

Country Link
JP (1) JP6301204B2 (en)
CN (1) CN106536909B (en)
WO (1) WO2015186761A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200481B2 (en) 2015-11-25 2017-09-20 株式会社Subaru Outside environment recognition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288137A (en) * 1992-04-03 1993-11-02 Fuji Heavy Ind Ltd Method for controlling ignition timing of sequential turbo engine
JPH10213055A (en) * 1997-01-30 1998-08-11 Fuji Heavy Ind Ltd Engine ignition timing controller
JP2002317741A (en) * 2001-04-24 2002-10-31 Mikuni Corp Ignition timing control device for single cylinder four- cycle engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185956A (en) * 1982-04-23 1983-10-29 Yamaha Motor Co Ltd Electronic speed controller for engine
JPH0252968U (en) * 1988-10-12 1990-04-17
JP3195479B2 (en) * 1993-11-16 2001-08-06 トヨタ自動車株式会社 Fuel injection control system for diesel engine
JPH08326552A (en) * 1995-05-31 1996-12-10 Matsushita Electric Ind Co Ltd Ignition timing control device for internal combustion engine
JPH11351113A (en) * 1998-06-05 1999-12-21 Yamaha Motor Co Ltd Ignition timing controller for internal combustion engine
CN101070793A (en) * 2007-06-15 2007-11-14 清华大学 Engine jet based on crankshaft absolute corner sensor and ignition control device
JP5143877B2 (en) * 2010-09-21 2013-02-13 日立オートモティブシステムズ株式会社 Control device for variable valve timing mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288137A (en) * 1992-04-03 1993-11-02 Fuji Heavy Ind Ltd Method for controlling ignition timing of sequential turbo engine
JPH10213055A (en) * 1997-01-30 1998-08-11 Fuji Heavy Ind Ltd Engine ignition timing controller
JP2002317741A (en) * 2001-04-24 2002-10-31 Mikuni Corp Ignition timing control device for single cylinder four- cycle engine

Also Published As

Publication number Publication date
JP6301204B2 (en) 2018-03-28
CN106536909B (en) 2019-09-20
JP2015229929A (en) 2015-12-21
CN106536909A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5786679B2 (en) Start control device for compression self-ignition engine
JP4853439B2 (en) Control device for internal combustion engine
US9970403B2 (en) Control apparatus for internal combustion engine
JP2009115010A (en) Control device of direct injection internal combustion engine
JP6081248B2 (en) Ignition control device for internal combustion engine
US10465624B2 (en) Start-up control device for engine
US20170107922A1 (en) Control system of internal combustion engine
JP6301204B2 (en) Engine start control device
TWI596274B (en) Engine system and straddled vehicle
JP6302822B2 (en) Control device for internal combustion engine
WO2015186760A1 (en) Control device for engine
US10514012B2 (en) Control device for vehicle
JP6126432B2 (en) Fuel injection control device
JP5888041B2 (en) Start control device for compression self-ignition engine
JP5831168B2 (en) Start control device for compression self-ignition engine
JP2017057803A (en) Engine torque estimation device for internal combustion engine
WO2015186764A1 (en) Rotation control device for engine
JP6064512B2 (en) Engine control device
JP6887919B2 (en) Engine start control device and engine start method
JP2007032459A (en) Ignition timing control device for internal combustion engine
JP5857829B2 (en) Start control device for compression self-ignition engine
JP2006097588A (en) Control device for internal combustion engine and method for calculating air fuel ratio
JP6157882B2 (en) Engine speed control device for internal combustion engine
JP2023013448A (en) engine device
JP2019073996A (en) Engine start controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803650

Country of ref document: EP

Kind code of ref document: A1