WO2015186680A1 - Injection system using needleless syringe - Google Patents

Injection system using needleless syringe Download PDF

Info

Publication number
WO2015186680A1
WO2015186680A1 PCT/JP2015/065833 JP2015065833W WO2015186680A1 WO 2015186680 A1 WO2015186680 A1 WO 2015186680A1 JP 2015065833 W JP2015065833 W JP 2015065833W WO 2015186680 A1 WO2015186680 A1 WO 2015186680A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
space
syringe
needleless syringe
movement
Prior art date
Application number
PCT/JP2015/065833
Other languages
French (fr)
Japanese (ja)
Inventor
良平 山田
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to EP15803686.3A priority Critical patent/EP3153133B1/en
Priority to US15/316,130 priority patent/US20170128182A1/en
Publication of WO2015186680A1 publication Critical patent/WO2015186680A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D7/00Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2053Media being expelled from injector by pressurised fluid or vacuum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • A61M5/3007Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules with specially designed jet passages at the injector's distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers

Definitions

  • the present invention relates to a system for injecting an injection target using a needleless syringe that injects an injection target substance without going through an injection needle.
  • Patent Document 1 discloses a technique that enables continuous vaccination of livestock.
  • an operator presses and releases a switch portion provided in a syringe body, thereby adjusting the flow of compressed air in the syringe body of the syringe, and injecting the injection solution from the syringe body to the outside and the syringe
  • the syringe is configured so that filling of the injection solution into the body is repeated.
  • an injection needle is used to deliver an injection solution to livestock.
  • the syringe used in the prior art is a needled syringe
  • the same injection needle is used across a plurality of livestock, and in that case, the possibility that some infectious disease spreads between livestock is wiped away. Absent.
  • the burden imposed on the operator from the viewpoint of injection management such as applying some markings to the injected livestock is not small. .
  • the fish is returned to a predetermined place such as a ginger after the injection is completed, and therefore, injection management becomes more difficult than on-shore livestock.
  • the present invention reduces the burden on the operator as much as possible when injection is performed on a large number of injection objects such as livestock and the occurrence of various health problems. It aims at providing the injection system which controls.
  • the present invention adopts the following configuration.
  • the present invention is an injection system using a needleless syringe that injects an injection target substance into an injection target by injecting the injection target substance from an injection port without using an injection needle.
  • the needleless syringe according to the present invention does not deliver the injection target substance to the inside of the injection target through the injection needle, but injects the injection target substance from the syringe body, and directly injects the injection target substance with the injection energy by the injection energy.
  • the injection is performed in such a manner that the surface of the object is perforated and the injection target substance is delivered into the injection object.
  • the component which should be delivered to an injection target object is included.
  • the injection target substance inside the needleless syringe can be any liquid, gel-like fluid, powder, granular solid, etc. It doesn't matter.
  • the injection target substance is a liquid, and even if it is a solid, it may be a gel-like solid as long as fluidity enabling injection is ensured.
  • the injection target substance includes a component to be delivered to the target site of the injection target, and the component may exist in a state dissolved in the injection target substance, or the component is simply dissolved without being dissolved. It may be in a mixed state.
  • the needleless syringe is provided in the moving passage connecting the first space and the second space.
  • the first space contains a plurality of injection objects, and each injection object moves from the needleless syringe provided in the movement path to the second space in the process of moving to the second space through the movement path.
  • the detection unit detects the movement of the injection target through the movement path toward the second space. Then, the injection operation of the needleless syringe by the control unit is controlled according to the detection result. That is, when the detection unit detects that the injection target object is sequentially moved to the second space in the movement path, the injection target substance from the needleless syringe is placed in front of the injection port by the control unit. Injection to the injection target is realized by being injected to the target.
  • the injection of the injection target substance by the needleless syringe is controlled with the detection of the movement of the injection target in the movement path by the detection unit as a trigger. Therefore, the operator does not need to touch the injection target in principle and does not need to touch the needleless syringe itself. Therefore, it is considered that the work load on the worker is extremely reduced. Moreover, since the syringe itself does not have an injection needle, the possibility of inducing various hygiene problems (for example, the spread of the above-mentioned infectious diseases) due to the injection needle is suppressed.
  • the detection unit detects or predicts that the injection target reaches the injection port of the needleless syringe, and uses a sensor or a camera that applies ultrasonic waves, infrared rays, or the like to the injection target.
  • a detection device based on image processing can be used. However, any sensor that can detect the above can be used in accordance with the installation location.
  • the injection system may further include a guide device that moves the injection target existing in the first space to the second space via the moving passage. This eliminates the need for the operator himself to guide the injection target.
  • the needleless syringe according to the present invention can be used for the injection if the injection of the injection target substance by the control unit can be performed on the injection target by using the detection result by the detection unit as a trigger.
  • Various known energy generation modes can be employed as the energy source.
  • an igniter that is ignited by an ignition device or a gas generating agent that generates gas by combustion can be employed.
  • explosives containing zirconium and potassium perchlorate explosives containing titanium hydride and potassium perchlorate, explosives containing titanium and potassium perchlorate
  • Explosives containing aluminum and potassium perchlorate explosives containing aluminum and bismuth oxide, explosives containing aluminum and molybdenum oxide, explosives containing aluminum and copper oxide, explosives containing aluminum and iron oxide, Or the explosive which consists of several combinations among these may be sufficient.
  • the characteristics of these igniting agents are that even if the combustion product is a gas in a high temperature state, it does not contain a gas component at room temperature. When used for injection, efficient injection into a shallower part of the injection target region of a living body becomes possible.
  • the gas generating agent when the generated energy of the gas generating agent is used as the injection energy, includes various gases used in single-base smokeless explosives, gas generators for airbags and gas generators for seat belt pretensioners. It is also possible to use a generator.
  • the energy of an elastic member such as a spring may be used as the injection energy of the injection target substance.
  • an electromagnetic valve or solenoid actuator that is driven by voltage application from a power circuit, the piston fixed by the biasing spring is released from the locked state, so that the accumulated biasing spring Elastic energy can be used as injection energy.
  • the pressurized gas energy may be used directly or indirectly as the injection energy of the injection target substance.
  • the needleless syringe includes a syringe serving as a space for storing a predetermined volume of the injection target substance, a piston configured to be reciprocated by supplying and discharging pressurized air, and the piston An air valve that drives a piston, and an air cylinder that pressurizes the injection target substance accommodated in the syringe by reciprocating movement of the piston; and the injection target substance pressurized by the piston And a nozzle including the injection port for injecting toward an object.
  • the injection system further includes a gas supply device that supplies the pressurized gas that drives the piston inside the air cylinder to the needleless syringe.
  • the piston of the air cylinder may inject the injection target substance via a plunger or the like.
  • the energy of the pressurized gas supplied from the gas supply device is used as the injection energy of the injection target substance. That is, the supplied pressurized gas reciprocates the piston of the air cylinder, and the reciprocating motion stores and fills the injection target substance in the syringe and discharges the injection target substance from the syringe to the nozzle. It will be. And the injection target substance discharged
  • the pressure of the pressurized gas supplied by the gas supply device becomes an injection energy source of the injection target substance, the pressure of the pressurized gas is set so that the injection target substance suitable for the injection target is injected. It is preferably adjusted.
  • the needleless syringe is configured to transfer the injection target substance from the vial to the syringe in a communication path formed between the syringe and the vial containing the injection target substance.
  • the injection target substance can flow in only one direction from the syringe to the nozzle.
  • a second valve is used. Then, when the piston moves backward in the air cylinder and the pressure in the syringe becomes negative, the first valve is opened and the second valve is closed, and the communication from the vial is performed.
  • the injection target substance may be supplied into the syringe via a passage.
  • the open / close valve states of the first valve and the second valve are electronically controlled, so that the injection target substance is stored and filled in the syringe, and the injection target substance is transferred from the syringe. Emission may be realized.
  • the injection system described above is provided in the movement path based on the movement detection result of the injection object by the detection unit, and temporarily stops the movement of the injection object in the movement path.
  • the injection system up to the above has moved from the first space to the second space in a predetermined passage range on the second space side from the injection port installation site of the needleless syringe in the moving passage.
  • the blocking unit By providing the blocking unit in this way, it is possible to physically suppress the injection object injected by the needleless syringe from returning to the first space via the moving passage. This greatly contributes to reducing the burden of injection management for the elderly.
  • the blocking portion is inclined toward the second space side with respect to the injection port installation site in the moving passage and protrudes to the inside of the moving passage. A plurality of inclined plates may be used. In addition, you may prevent that an injection target object returns to 1st space by another aspect.
  • the first space, the second space, and the moving passage may be disposed in water, in which case the moving object is a living body that can exist in water, for example, It may be a fish.
  • the load of injection work is greater than on-land injection objects (for example, livestock such as cows and chickens). Therefore, the injection system according to the present invention can be suitably applied.
  • the burden on the operator is reduced as much as possible and the occurrence of various hygiene problems is suppressed. be able to.
  • FIG. 1 is a diagram showing a schematic configuration of an injection system 1.
  • the injection system 1 is a system that performs injection of a chemical solution (corresponding to the injection target substance of the present invention) for preventing infectious diseases on aquacultured fish in water using a needleless syringe 20.
  • a chemical solution corresponding to the injection target substance of the present invention
  • injection of a chemical solution is performed on the cultured fish.
  • the injection target substances injected into the injection target by the needleless syringe 20 are collectively referred to as “medical solution”.
  • this is not intended to limit the content or form of the injected substance.
  • the component to be delivered to the cultured fish or the like that is the injection target may or may not be dissolved, and the injection target substance is also injected to the injection target by the needleless syringe 20.
  • its specific form is not limited, and various forms such as liquid and gel can be adopted.
  • the first space S1 and the second space S2 are spaces formed by being isolated from the surroundings so that the cultured fish can move only by the moving space 7 formed by the moving passage 6. Therefore, the cultured fish cannot travel between the first space S1 and the second space S2 without going through the moving space 7.
  • the movement space 7 has a cross-sectional area in which only about one cultured fish to be injected with the chemical solution can move. Therefore, when the cultured fish moves from the first space S1 to the second space S2, the cultured fish passes through the moving space 7 one by one in front of ultrasonic sensors 8a and 8b and the injection port 21 described later. Become.
  • 1st space S1 and 2nd space S2 the ginger etc. which are generally utilized for aquaculture can be illustrated, In that case, by connecting two ginger with the movement path
  • the moving passage 6 is a passage main body that connects the first space-side connection portion 6b connected to the first space S1, the second space-side connection portion 6c connected to the second space S2, and both the connection portions. 6a.
  • the cultured fish which exists in 1st space S1 enters into the movement space 7 from the 1st space side connection part 6b, passes through the movement space 7 in the channel
  • the second space-side connecting portion 6c is formed by a plurality of inclined plates that are inclined to the second space S1 side and are arranged so as to protrude from the inner wall of the second space-side connecting portion 6c to the moving space 7.
  • the entry blocking device 11 (which corresponds to the blocking unit according to the present invention) is provided. Since the inclined plate of the entry blocking device 11 is inclined toward the second space S2, the movement of the cultured fish from the first space S1 to the second space S2 can be performed relatively easily, while the second space Since the entrance to the moving space 7 is formed to be relatively small when viewed from the cultured fish moved to S2, it is possible to prevent the cultured fish from returning from the second space S2 to the first space S1. It becomes possible.
  • FIG. 2 is a cross-sectional view of the needleless syringe 20 along the longitudinal direction.
  • the left side of the drawing is the distal end side of the needleless syringe 20 and the injection port 21 is disposed.
  • front end side in the present application refers to a side closer to the injection port 21 than “base end side”, and accordingly, the left side in FIG. 2 corresponds to “front end side”. .
  • the needleless syringe 20 can reciprocate in an air valve 30 for accumulating and releasing pressurized air supplied from the outside, and in a sliding hole 28 formed in the syringe body 20a using the pressurized air.
  • pressurized air is supplied to the air valve 30 through a supply tube 3 from a pressurized air supply device (compressor) 2 disposed outside the syringe.
  • the pressure accumulation chamber (not shown) which accumulate
  • a release portion (not shown) is provided.
  • switching between accumulation and release of pressurized air in the air valve 30 is controlled by pressing and releasing the switching button 31.
  • the pressing and releasing of the switching button 31 is performed by the solenoid activation device 4 that is driven in accordance with an activation signal from the control device 10 shown in FIG. 1 (this device corresponds to the control unit according to the present invention).
  • the solenoid activation device 4 receives the activation signal from the control device 10, a drive current flows through the built-in solenoid, the plunger is driven by the magnetic force generated by the solenoid, and the switch button 31 can be pressed.
  • the switch button 31 can be pressed.
  • the plunger returns and the pressing of the switching button 31 is released.
  • a positioning spring (not shown) for determining the relative position of the piston 29 with respect to the air valve 30 is provided between the piston 29 arranged in the sliding hole 28 and the air valve 30. Therefore, although the piston 29 is movable in the sliding hole 28, the piston 29 is in a state of receiving a biasing force from the positioning spring during the movement.
  • the state shown in FIG. 2 represents a state where pressurized air is accumulated in the air valve 30, that is, a state where pressurized air is not released from the air valve 30 to the piston 29.
  • the relative position of the piston 29 with respect to the air valve 30 in this state is a state in which the piston 29 is disposed on the air valve 30 side by the biasing force of the positioning spring.
  • a syringe 24 which is a space in which a drug solution (injection solution) ejected by the needleless syringe 20 is accommodated, is formed on the tip end side (the side opposite to the air valve 30) of the piston 29. .
  • a chemical solution supply passage 25 (the passage corresponds to the communication passage according to the present invention) is opened at a location that does not interfere with the reciprocating piston 29.
  • a vial 5 that stores a chemical solution is connected to the chemical solution supply passage 25 via a first valve 26. When the first valve 26 is in the open state, the chemical solution can be supplied from the vial 5 to the syringe 24 through the chemical solution supply passage 25.
  • the first valve 26 restricts the chemical solution from flowing from the vial 5 toward the syringe 24 in only one direction. Therefore, when the drug solution flows from the syringe 24 toward the vial 5, the first valve 26 is closed by the force generated by the flow. Therefore, in the first valve 26, the valve is pressed in the direction of the vial 5 by elastic means such as a spring and is normally closed. However, the opening and closing of the first valve 26 may be electronically controlled by the control device 10.
  • the distal end side of the syringe 24 communicates with the discharge passage 22 via the second valve 23.
  • An end portion on the front end side of the discharge passage 22 corresponds to the injection port 21. Therefore, when the second valve 23 is in the open state, the chemical liquid in the syringe 24 can be injected from the injection port 21 via the discharge passage 22.
  • the second valve 23 restricts the chemical liquid from flowing from the syringe 24 toward the discharge path 22 in only one direction.
  • the second valve 23 is normally closed while the valve is pressed toward the syringe 24 by an elastic means such as a spring. Only when the chemical solution flows from the syringe 24 toward the discharge path 22, the second valve 23 is opened by the force of the flow.
  • the opening and closing of the second valve 23 may also be electronically controlled by the control device 10.
  • the liquid medicine in the vial 5 can be continuously ejected by the reciprocating motion of the piston 29 in the sliding hole 28 and the opening and closing of the first valve 26 and the second valve 23.
  • medical solution is demonstrated.
  • (1) First Operation In the first operation, the first valve 26 is closed, the second valve 23 is closed, and pressurized air is sent from the compressor 2 to the air valve 30. Then, the pressurized air is accumulated in the valve 30 to a predetermined pressure.
  • the predetermined pressure is a pressure for pressurizing the piston 29 so that the chemical liquid can be injected when the pressurized air is released by a second operation described later.
  • the syringe 24 is filled with a chemical as a result of a third operation described later.
  • the pressurized air accumulated in the air valve 30 is released to the piston 29 by pressing the switching button 31.
  • the piston 29 propels the inside of the sliding hole 28 toward the distal end side against the urging force received from the positioning spring.
  • the chemical solution is discharged out of the syringe 24 by the propulsion of the piston 29.
  • the chemical solution flows toward the first valve 26 and the second valve 23, but the first valve 26 is closed by the flow of the chemical solution, and the chemical solution does not flow into the vial 5.
  • the second valve is opened by the flow of the chemical liquid, and the chemical liquid flows toward the discharge path 22 and is injected from the injection port 21.
  • (3) Third Operation In the third operation performed after the injection of the chemical solution by the second operation, the pressed air released in the second operation is released from the syringe body 20a by releasing the pressing of the switching button 31.
  • the piston 29 is returned to the original position (position shown in FIG. 2), that is, the position of the piston in the first operation by the positioning spring. Then, the volume of the syringe 24 is restored by the return operation of the piston 29, and the inside of the syringe 24 is in a negative pressure state. Therefore, the biasing force from the elastic means is also applied, the second valve 23 is closed, and the first valve 26 is closed.
  • the holding device 40 is disposed at a position facing the injection port 21 of the needleless syringe 20 of the passage main body 6 a.
  • the holding device 40 is a device that holds the cultured fish and presses the cultured fish against the injection port 21 when the cultured fish moves from the first space S1 toward the second space S2 in the moving space 7. .
  • a schematic configuration of the holding device 40 will be described with reference to FIG.
  • the holding device 40 includes a device main body 41 disposed outside the passage main body 6a, a holding plate 42 extending along the passage main body 6a, and a foot 43.
  • the holding plate 42 is connected to the apparatus main body 41 via the foot 43, and the holding plate 42 is disposed in the moving space 7 in the passage main body 6a.
  • the leg part 43 is comprised so that adjustment of the protrusion amount from the apparatus main body 41 is possible, and the distance of the holding
  • the protruding amount of the foot 43 is controlled by the control device 10, and a suitable sealing process is performed so that water does not enter the inside of the device main body 41 when the protruding amount of the foot 43 changes.
  • the protrusion and storage of the foot portion 43 may be performed by supplying or removing compressed air from the compressor 2.
  • the needleless syringe 20 and the holding device 40 are appropriately controlled by the control device 10 so that the medicinal solution is injected into the cultured fish moving from the first space S1 to the second space S2. Processing is executed.
  • the guidance apparatus 12 is installed in 1st space S1.
  • the guidance device 12 excites a plurality of cultured fish existing in the first space by stimulating light, sound, etc., and the cultured fish passes through the moving space 7 which is also a space that can only escape from the first space S1. May be configured to drive the air to the second space.
  • the stimulus of the light and sound given can be determined appropriately in consideration of the biological characteristics of the target cultured fish.
  • the volume of the first space S1 is gradually decreased, or the shape of the first space S1 is deformed so that the cultured fish is difficult to physically stay in the first space S1. It may be a guiding device to be formed.
  • the structure which physically contacts with the cultured fish and drives the said cultured fish into the 1st space side connection part 6b is also employ
  • an ultrasonic wave that detects the presence of cultured fish passing through the corresponding moving space 7 in the vicinity of the connection portion between the first space side connection portion 6b and the first space side connection portion 6b of the passage body 6a.
  • Sensors 8a and 8b are installed.
  • the ultrasonic sensors 8 a and 8 b are installed at an appropriate distance so that the respective detection ranges do not overlap with each other, and the detection signals of the respective ultrasonic sensors are passed to the control device 10. 8b and the control device 10 are electrically connected.
  • the injection processing shown in FIG. 4 is repeatedly executed by the control device 10, thereby realizing continuous injection of the medicinal solution to the cultured fish as described above.
  • the control device 10 is a computer having a memory and an arithmetic device, and the injection process shown in FIG. 4 is executed by executing a predetermined control program.
  • the movement detection of the cultured fish existing in the first space S1 in the moving space 7 from the first space side connecting portion 6b to the passage body 6a is detected. Is done. Specifically, first, when the presence of any object is detected by the ultrasonic sensor 8b within a predetermined time range from the time when the presence of any object is detected by the ultrasonic sensor 8a close to the first space S1, It is assumed that it is detected that the cultured fish in the first space S1 has moved through the moving space 7 to the second space.
  • the predetermined time range is a time width that is assumed to be required to pass between the two ultrasonic sensors when the cultured fish performs the assumed movement.
  • the detection result is obtained by the ultrasonic sensor 8b at a time interval outside the predetermined time range, or when only the ultrasonic sensor 8a is detected, the inside of the moving space 7 is obtained. It is considered that the cultured fish is not moving toward the second space S2, and it is not necessary to perform injection with the needleless syringe 20.
  • detecting the movement of the cultured fish it may be determined that the movement of the cultured fish is detected when a condition other than the above-described detection conditions is satisfied.
  • an apparatus that detects the passage of the injection target in the moving space 7 by a camera or the like by image analysis can be used in combination with the ultrasonic sensor.
  • the time for the target cultured fish to reach the injection position by the needleless syringe 20 is calculated based on the detection result in S101. Specifically, when the presence of the aquaculture fish is detected by the ultrasonic sensors 8a and 8b, the time when the aquaculture fish moves to the moving space 7 from the interval between the respective detection times and the installation distance of both the ultrasonic sensors. The moving speed is calculated. Then, based on the calculated speed and the installation position of the needleless syringe 20 (for example, the distance between the ultrasonic sensor 8b and the needleless syringe 20), there is no change after the cultured fish passes in front of the ultrasonic sensor 8b. The time required to pass in front of the injection port 21 of the needle injector 20 can be calculated as the arrival time. When the process of S102 ends, the process proceeds to S103.
  • the holding device 40 it is determined whether or not the holding device 40 is activated and the cultured fish is held by the holding plate 42.
  • the holding state of the cultured fish can be determined by detecting the force transmitted through the foot 43 by a force sensor (not shown) installed in the apparatus main body 41.
  • the holding device 40 is activated.
  • the determination of whether or not the foot 43 has protruded by a predetermined protrusion amount may be replaced with the determination of the holding state. If an affirmative determination is made in S104, the process proceeds to S105, and if a negative determination is made, the determination in S104 is performed again.
  • the medicinal solution is injected by the needleless syringe 20 in a state where the cultured fish to be injected is held by the holding plate 42 of the holding device 40.
  • the injection of the chemical solution is realized according to the first operation and the second operation described above.
  • the process of S105 ends, the process proceeds to S106.
  • the syringe 24 is filled with the chemical solution according to the third operation.
  • the ultrasonic sensors 8a and 8b are used.
  • the movement is detected, and the cultured fish is automatically positioned with respect to the needleless syringe 20.
  • the injection port 21 is in contact with the body of the cultured fish, it is possible to suitably realize injection by the needleless syringe 20 that injects the drug solution using pressurized air.
  • the blocking device 11 having the inclined plate is arranged in the second space side connection portion 6c, the cultured fish that has been injected and moved to the second space S2 returns to the first space S1, and injection management is performed.
  • a gate is arranged in the 1st space side connection part 6b so that the next injection target object (cultured fish) may not enter the movement passage 6 until the injection by the needleless syringe 20 is completed, and the invasion of the cultured fish is prevented. It is good to do.
  • the gate is opened / closed by the control device 10 and may be closed once after the passage is detected by the ultrasonic sensor 8a, for example, and may be opened again when the injection is completed (the holding device 40 is released).
  • the passage body 6a is arranged so that the injection port 21 of the needleless syringe 20 and the holding plate 42 of the holding device 40 face each other. In this configuration, the body of the cultured fish is pressed against the injection port 21 by the holding plate 42.
  • the needleless syringe 20 and the holding device 40 may be configured integrally so that the injection port 21 of the needleless syringe 20 opens on the holding plate 42. In this case, after the ejection port 21 comes into contact with the body of the cultured fish together with the holding plate 42, the cultured fish is pressed against the inner wall of the opposing passage main body 6a. Even in such a form, when the injection by the needleless syringe 20 is executed, the injection port 21 and the body of the cultured fish are in contact with each other, so that a suitable injection of the chemical solution can be realized.
  • the release energy by the pressurized air is used for the propulsive force of the piston 29.
  • a syringe that realizes continuous injection of a chemical solution is employed as the needleless syringe 20 I do not care.
  • the igniter and the piston 29 are arranged so that combustion products generated by the explosive combustion in the igniter pressurize the piston 29.
  • a gas generating agent or the like that burns with the combustion products and generates gas can be further disposed between each igniter and the piston 29.
  • gas generating agent a single base smokeless gunpowder composed of 98% by mass of nitrocellulose, 0.8% by mass of diphenylamine and 1.2% by mass of potassium sulfate can be mentioned. It is also possible to use various gas generating agents that are used in gas generators for airbags and gas generators for seat belt pretensioners.
  • the igniter used in the igniter preferably includes an explosive (ZPP) containing zirconium and potassium perchlorate, an explosive containing titanium hydride and potassium perchlorate (THPP), and titanium and potassium perchlorate.
  • ZPP an explosive
  • TiPP Gunpowder
  • APP Gunpowder containing aluminum and potassium perchlorate
  • ABO Gunpowder containing aluminum and molybdenum oxide
  • ACO Gunpowder containing aluminum and copper oxide
  • Explosives comprising aluminum and iron oxide (AFO), or explosives composed of a combination of these explosives.
  • These explosives generate high-temperature and high-pressure plasma at the time of combustion immediately after ignition. However, when the combustion product is condensed at a normal temperature and does not contain a gas component, the generated pressure rapidly decreases. As long as appropriate injection is possible, other explosives may be used as igniting agents.
  • the injection system 1 which concerns on said Example implement
  • the livestock for example, a cow, a pig, etc.
  • the holding device 40 shown in FIGS. 1 and 3 is not necessarily provided.
  • the holding device 40 may be installed in the injection system 1 in order to inject the drug solution more stably.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

An injection system comprising: a needleless syringe; a moving passage connecting a first space, in which a plurality of subjects to be injected are housed, and a second space, into which the subjects to be injected move, said moving passage being equipped with the needleless syringe in such a manner that an injection port of the needleless syringe opens within the moving passage; a detection unit which is capable of detecting the movement of the subjects to be injected from the first space toward the second space through the moving passage; and a control unit which performs injection of a substance to be injected to the individual subjects to be injected from the injection port of the needleless syringe depending on the movement of the individual subjects to be injected, when the movement of the subjects to be injected is detected by the detection unit. According to this injection system, a number of subjects to be injected such as livestock can be injected while minimizing a burden of an operator and reducing sanitary problems.

Description

無針注射器による注射システムNeedleless syringe injection system
 本発明は、注射針を介することなく注射目的物質を注射する無針注射器を利用し、注射対象物への注射を行うシステムに関する。 The present invention relates to a system for injecting an injection target using a needleless syringe that injects an injection target substance without going through an injection needle.
 農場等での家畜を伝染病から守るためにワクチン接種を行う必要がある。しかし、一般に家畜の頭数は非常に多いため、家畜に対して一頭ずつワクチン接種のための注射を行っていると、要する時間も多大なものとなり、また作業者の作業負担も少なくはない。そこで、家畜に対する連続的なワクチン接種を可能とする技術が特許文献1に開示されている。当該技術では、作業者が注射器本体に設けられたスイッチ部を押下、解放することで、注射器のシリンジボディでの圧縮空気の流れを調整し、シリンジボディから外部への注射液の射出及び該シリンジボディ内への注射液の充填が繰り返されるように注射器が構成される。なお、当該技術に係る注射器は、家畜へ注射液を送り届けるために注射針が使用されている。 Vaccination is required to protect livestock on farms from infectious diseases. However, since the number of livestock is generally very large, if one animal is injected for vaccination one by one, the time required will be tremendous and the work burden on the operator will be considerable. Therefore, Patent Document 1 discloses a technique that enables continuous vaccination of livestock. In this technique, an operator presses and releases a switch portion provided in a syringe body, thereby adjusting the flow of compressed air in the syringe body of the syringe, and injecting the injection solution from the syringe body to the outside and the syringe The syringe is configured so that filling of the injection solution into the body is repeated. In the syringe according to the technology, an injection needle is used to deliver an injection solution to livestock.
実開平7-24314号公報Japanese Utility Model Publication No. 7-24314
 従来技術によれば、作業者によるスイッチの押下、解放動作をトリガーとして、有針注射器への注射液の充填と射出が繰り返される。したがって、作業者としては注射対象物である家畜等に対して注射器を構え、その注射針を注射対象物に刺したうえで、上記のスイッチの作業を行う必要がある。そのため、作業者が一人で家畜への注射を行う場合には、家畜の動きを抑えた状態で注射器の操作を行う必要があり、作業者の負担は必ずしも軽くない。また作業者一人の作業負担を軽減するためには、複数の作業者を家畜への注射に割り当てる必要がある。 According to the prior art, filling and injection of the injection solution into the needle-injected syringe are repeated, triggered by the operator pressing and releasing the switch. Therefore, it is necessary for an operator to hold a syringe for livestock or the like, which is an injection target, and to stab the injection needle into the injection target before performing the above switch operation. Therefore, when the worker alone injects the livestock, it is necessary to operate the syringe while suppressing the movement of the livestock, and the burden on the worker is not necessarily light. Moreover, in order to reduce the work burden of one worker, it is necessary to assign a plurality of workers to livestock injection.
 また、従来技術で用いられる注射器は有針注射器であるため、複数の家畜にわたって同一の注射針が使用されるケースがあり、その場合、家畜間で何らかの感染症が広がってしまう可能性が拭い去れない。また、注射針に作業者が接触することで、作業者に対する感染の可能性もある。更には、一般に家畜等に対して注射を行う場合、その注射対象が多いため、注射を行った家畜に対しては何らかのマーキングを施すなど注射管理の観点から作業者に課せられる負担も少なくはない。特に、魚類に対して注射を行う場合、注射終了後には、その魚は再び生簀等の所定の場所に戻されることになるため、陸上の家畜と比べて注射管理はより困難なものとなる。 In addition, since the syringe used in the prior art is a needled syringe, there is a case where the same injection needle is used across a plurality of livestock, and in that case, the possibility that some infectious disease spreads between livestock is wiped away. Absent. In addition, there is a possibility of infection to the worker when the worker contacts the injection needle. Furthermore, in general, when injecting livestock and the like, since there are many injection targets, the burden imposed on the operator from the viewpoint of injection management such as applying some markings to the injected livestock is not small. . In particular, when an injection is performed on a fish, the fish is returned to a predetermined place such as a ginger after the injection is completed, and therefore, injection management becomes more difficult than on-shore livestock.
 そこで、本発明は、上記した問題に鑑み、家畜等の多数の注射対象物に対して注射を行う場合に、作業者の負担を可及的に軽減するとともに、衛生上の諸問題の発生を抑制する注射システムを提供することを目的とする。 Therefore, in view of the above-described problems, the present invention reduces the burden on the operator as much as possible when injection is performed on a large number of injection objects such as livestock and the occurrence of various health problems. It aims at providing the injection system which controls.
 上記課題を解決するために、本発明は、以下に示す構成を採用する。具体的には、本発明は、注射針を介することなく、注射目的物質を射出口より射出することによって該注射目的物質を注射対象物に注射する無針注射器による注射システムであって、当該システムは、複数の注射対象物が収容される第1空間と、該複数の注射対象物の移動先である第2空間とを結ぶ移動通路であって、前記無針注射器の射出口が該移動通路の内部に開口するように該無針注射器が設置された移動通路と、前記第1空間に存在する前記注射対象物が前記第2空間に向かうための前記移動通路における移動を検出可能な検出部と、前記検出部によって前記注射対象物の移動が検出されると、該注射対象物の移動に応じて前記無針注射器の前記射出口から注射目的物質の射出を該注射対象物ごとに行う制御部と、を備える。 In order to solve the above problems, the present invention adopts the following configuration. Specifically, the present invention is an injection system using a needleless syringe that injects an injection target substance into an injection target by injecting the injection target substance from an injection port without using an injection needle. Is a movement path connecting a first space in which a plurality of injection objects are accommodated and a second space to which the plurality of injection objects are moved, and the injection port of the needleless syringe is the movement path A moving path in which the needle-free injector is installed so as to open inside, and a detection unit capable of detecting movement in the moving path for the injection target existing in the first space to go to the second space When the movement of the injection object is detected by the detection unit, the injection target substance is ejected from the injection port of the needleless syringe according to the movement of the injection object for each injection object. A section.
 本発明に係る無針注射器は、注射針を介して注射目的物質を注射対象物の内部に届けるのではなく、注射器本体から注射目的物質を射出し、その射出エネルギーにより注射目的物質によって直接注射者対象物の表面を穿孔し、注射対象物内に該注射目的物質を送達させる形態により、注射が行われるものである。そして、当該無針注射器により射出される注射目的物質としては、注射対象物に届けるべき成分を含むものである。そのため、無針注射器内部での注射目的物質の物理的な形態については、少なくとも注射器本体から射出が可能であれば、液体やゲル状等の流体、粉体、粒状の固体等の何れであっても構わない。たとえば、注射目的物質は液体であり、また固体であっても射出を可能とする流動性が担保されればゲル状の固体であってもよい。そして、注射目的物質には、注射対象物の目的部位に送り込むべき成分が含まれ、当該成分は注射目的物質の内部に溶解した状態で存在してもよく、又は当該成分が溶解せずに単に混合された状態であってもよい。 The needleless syringe according to the present invention does not deliver the injection target substance to the inside of the injection target through the injection needle, but injects the injection target substance from the syringe body, and directly injects the injection target substance with the injection energy by the injection energy. The injection is performed in such a manner that the surface of the object is perforated and the injection target substance is delivered into the injection object. And as an injection target substance inject | emitted with the said needleless syringe, the component which should be delivered to an injection target object is included. Therefore, as for the physical form of the injection target substance inside the needleless syringe, at least if it can be ejected from the syringe body, it can be any liquid, gel-like fluid, powder, granular solid, etc. It doesn't matter. For example, the injection target substance is a liquid, and even if it is a solid, it may be a gel-like solid as long as fluidity enabling injection is ensured. The injection target substance includes a component to be delivered to the target site of the injection target, and the component may exist in a state dissolved in the injection target substance, or the component is simply dissolved without being dissolved. It may be in a mixed state.
 ここで、上記注射システムでは、無針注射器が、第1空間と第2空間をつなぐ移動通路に設けられる。この第1空間は、複数の注射対象物が収容されており、そこの各注射対象物が移動通路を通って第2空間に移動する過程において、移動通路に設けられた無針注射器から注射目的物質の注射を受けるように構成される。 Here, in the above injection system, the needleless syringe is provided in the moving passage connecting the first space and the second space. The first space contains a plurality of injection objects, and each injection object moves from the needleless syringe provided in the movement path to the second space in the process of moving to the second space through the movement path. Configured to receive an injection of a substance.
 このとき、注射対象物が移動通路を通って第2空間に向かうための当該移動が、検出部によって検出される。そして、その検出結果に従って制御部による無針注射器の注射動作が制御される。すなわち、検出部が、移動通路において注射対象物が順次第2空間に移動していることを検出すると、制御部により無針注射器から注射目的物質が、その射出口の前に位置するそれぞれの注射対象物に対して射出されることで、注射対象物への注射が実現される。 At this time, the detection unit detects the movement of the injection target through the movement path toward the second space. Then, the injection operation of the needleless syringe by the control unit is controlled according to the detection result. That is, when the detection unit detects that the injection target object is sequentially moved to the second space in the movement path, the injection target substance from the needleless syringe is placed in front of the injection port by the control unit. Injection to the injection target is realized by being injected to the target.
 このように構成される注射システムでは、検出部による移動通路での注射対象物の移動検出をトリガーとして、無針注射器による注射目的物質の射出が制御されている。そのため、作業者は、原則として注射対象物に触れる必要がなく、また、無針注射器そのものに触れる必要もない。そのため作業者の作業負担は極めて小さくなると考えられる。また、注射器自体が注射針を有していないことから、注射針に起因する衛生上の諸問題(例えば、上記の感染症の拡大等)を誘発する可能性が抑えられる。なお、検出部は、注射対象物が無針注射器の射出口に到達することを感知するもの、あるいは予測するものであり、超音波や赤外線等を注射対象物に当てるセンサや、カメラを使用した画像処理による検知装置を使用できる。ただし、上記の感知ができるものであれば、設置する場所にあわせ任意のセンサを使用することができる。 In the injection system configured as described above, the injection of the injection target substance by the needleless syringe is controlled with the detection of the movement of the injection target in the movement path by the detection unit as a trigger. Therefore, the operator does not need to touch the injection target in principle and does not need to touch the needleless syringe itself. Therefore, it is considered that the work load on the worker is extremely reduced. Moreover, since the syringe itself does not have an injection needle, the possibility of inducing various hygiene problems (for example, the spread of the above-mentioned infectious diseases) due to the injection needle is suppressed. The detection unit detects or predicts that the injection target reaches the injection port of the needleless syringe, and uses a sensor or a camera that applies ultrasonic waves, infrared rays, or the like to the injection target. A detection device based on image processing can be used. However, any sensor that can detect the above can be used in accordance with the installation location.
 ここで、上記の構成において、作業者が、所定の目的で注射対象物や無針注射器に触れることを必ずしも妨げるものではない。例えば、注射対象物に注射目的物質を正確に射出するために、作業者が無針注射器に触れその調整を行ってもよい。また、別例として、移動通路における注射対象物の移動を円滑にするために、作業者が注射対象物を誘導する等の作業を行ってもよい。これらに示す場合においても、注射に関する作業者の作業負担は大きく軽減されていることは容易に理解できる。なお、注射対象物の誘導に関し、上記注射システムが、前記第1空間に存在する前記注射対象物を、前記移動通路を経由し前記第2空間に移動させる誘導装置を、更に備えてもよい。これにより、作業者自身は注射対象物の誘導作業を行う必要がなくなる。 Here, in the above configuration, it does not necessarily prevent the operator from touching the injection target or the needleless syringe for a predetermined purpose. For example, in order to accurately inject the injection target substance onto the injection target, the operator may touch the needleless syringe and make the adjustment. As another example, an operator may perform an operation such as guiding an injection object in order to make the injection object move smoothly in the movement path. Even in these cases, it can be easily understood that the burden on the operator regarding injection is greatly reduced. In addition, regarding the guidance of the injection target, the injection system may further include a guide device that moves the injection target existing in the first space to the second space via the moving passage. This eliminates the need for the operator himself to guide the injection target.
 ここで、本発明に係る無針注射器は、検出部による検出結果をトリガーとして、制御部による注射目的物質の射出が注射対象物に対して射出することが可能であれば、その射出のためのエネルギー源としては、様々な公知のエネルギー発生態様を採用することができる。例えば、点火装置によって点火される点火薬や、燃焼によりガスを発生させるガス発生剤を採用することができる。火薬の燃焼エネルギーを射出エネルギーとして利用する場合、点火薬としては、例えば、ジルコニウムと過塩素酸カリウムを含む火薬、水素化チタンと過塩素酸カリウムを含む火薬、チタンと過塩素酸カリウムを含む火薬、アルミニウムと過塩素酸カリウムを含む火薬、アルミニウムと酸化ビスマスを含む火薬、アルミニウムと酸化モリブデンを含む火薬、アルミニウムと酸化銅を含む火薬、アルミニウムと酸化鉄を含む火薬のうち何れか一つの火薬、又はこれらのうち複数の組み合わせからなる火薬であってもよい。これらの点火薬の特徴としては、その燃焼生成物が高温状態では気体であっても常温では気体成分を含まないため、点火後燃焼生成物が直ちに凝縮を行う結果、本発明の注射器を生体に対する注射に用いた場合、生体の注射対象領域のより浅い部位への効率的な注射が可能となる。また、ガス発生剤の発生エネルギーを射出エネルギーとして利用する場合、ガス発生剤としては、シングルベース無煙火薬や、エアバッグ用ガス発生器やシートベルトプリテンショナ用ガス発生器に使用されている各種ガス発生剤を用いることも可能である。 Here, the needleless syringe according to the present invention can be used for the injection if the injection of the injection target substance by the control unit can be performed on the injection target by using the detection result by the detection unit as a trigger. Various known energy generation modes can be employed as the energy source. For example, an igniter that is ignited by an ignition device or a gas generating agent that generates gas by combustion can be employed. When using the combustion energy of explosives as injection energy, for example, explosives containing zirconium and potassium perchlorate, explosives containing titanium hydride and potassium perchlorate, explosives containing titanium and potassium perchlorate Explosives containing aluminum and potassium perchlorate, explosives containing aluminum and bismuth oxide, explosives containing aluminum and molybdenum oxide, explosives containing aluminum and copper oxide, explosives containing aluminum and iron oxide, Or the explosive which consists of several combinations among these may be sufficient. The characteristics of these igniting agents are that even if the combustion product is a gas in a high temperature state, it does not contain a gas component at room temperature. When used for injection, efficient injection into a shallower part of the injection target region of a living body becomes possible. In addition, when the generated energy of the gas generating agent is used as the injection energy, the gas generating agent includes various gases used in single-base smokeless explosives, gas generators for airbags and gas generators for seat belt pretensioners. It is also possible to use a generator.
 また、上記以外の駆動部の態様として、バネ等の弾性部材のエネルギーを注射目的物質の射出エネルギーとして利用してもよい。例えば、電源回路からの電圧印加によって駆動される電磁バルブやソレノイドアクチュエータ等を利用して、付勢バネで固定されているピストンを係止状態から開放させることで、蓄積されていた付勢バネの弾性エネルギーを、射出エネルギーとして利用することができる。 Further, as an aspect of the drive unit other than the above, the energy of an elastic member such as a spring may be used as the injection energy of the injection target substance. For example, by using an electromagnetic valve or solenoid actuator that is driven by voltage application from a power circuit, the piston fixed by the biasing spring is released from the locked state, so that the accumulated biasing spring Elastic energy can be used as injection energy.
 更に、別法として加圧された気体のエネルギーを直接的にあるいは間接的に注射目的物質の射出エネルギーとして利用してもよい。具体的には、上記無針注射器は、所定容量の前記注射目的物質を収容する空間となるシリンジと、加圧空気が供給及び排出されることで往復運動可能なように形成されたピストンと該ピストンを駆動させるエアバルブとを有し、該ピストンの往復運動によって前記シリンジ内に収容されている前記注射目的物質に加圧するエアシリンダと、前記ピストンにより加圧された前記注射目的物質を前記注射対象物に向けて射出するための前記射出口を含むノズルと、を有するように構成されてもよい。その上で、前記注射システムは、前記無針注射器に対して前記エアシリンダ内部のピストンを駆動させる前記加圧気体を供給する気体供給装置を更に備える。エアシリンダのピストンが、プランジャなどを介して注射目的物質を射出するものであってもよい。 Furthermore, as an alternative method, the pressurized gas energy may be used directly or indirectly as the injection energy of the injection target substance. Specifically, the needleless syringe includes a syringe serving as a space for storing a predetermined volume of the injection target substance, a piston configured to be reciprocated by supplying and discharging pressurized air, and the piston An air valve that drives a piston, and an air cylinder that pressurizes the injection target substance accommodated in the syringe by reciprocating movement of the piston; and the injection target substance pressurized by the piston And a nozzle including the injection port for injecting toward an object. In addition, the injection system further includes a gas supply device that supplies the pressurized gas that drives the piston inside the air cylinder to the needleless syringe. The piston of the air cylinder may inject the injection target substance via a plunger or the like.
 このように構成された無針注射器では、気体供給装置から供給される加圧気体のエネルギーが、注射目的物質の射出エネルギーとして利用される。すなわち、供給される加圧気体が、エアシリンダが有するピストンを往復運動させ、その往復運動によってシリンジへの注射目的物質の収容、充填と、該シリンジからノズルへの注射目的物質の排出が行われることになる。そして、ノズルへ排出された注射目的物質は、ノズルの射出口から、注射対象物に向けて射出されることになる。なお、気体供給装置により供給される加圧気体の圧力は、注射目的物質の射出エネルギー源となることから、注射対象物に適した注射目的物質の射出が行われるよう、加圧気体の圧力が調整されるのが好ましい。 In the needleless syringe configured as described above, the energy of the pressurized gas supplied from the gas supply device is used as the injection energy of the injection target substance. That is, the supplied pressurized gas reciprocates the piston of the air cylinder, and the reciprocating motion stores and fills the injection target substance in the syringe and discharges the injection target substance from the syringe to the nozzle. It will be. And the injection target substance discharged | emitted to the nozzle will be inject | emitted toward the injection target object from the injection port of a nozzle. In addition, since the pressure of the pressurized gas supplied by the gas supply device becomes an injection energy source of the injection target substance, the pressure of the pressurized gas is set so that the injection target substance suitable for the injection target is injected. It is preferably adjusted.
 ここで、上記の前記注射システムにおいて、前記無針注射器が、前記シリンジと、前記注射目的物質を収容したバイアルとの間に形成された連通路において、前記注射目的物質を前記バイアルから前記シリンジに向かって一方向のみに流通可能とする第1バルブと、前記ノズルと前記シリンジとの間に形成された排出通路において、前記注射目的物質を前記シリンジから前記ノズルに向かって一方向のみに流通可能とする第2バルブと、を有してもよい。そして、前記エアシリンダ内で前記ピストンが後退してシリンジ内が負圧になったときに、前記第1バルブが開弁状態で且つ前記第2バルブが閉弁状態になり、前記バイアルから前記連通路を経由して、注射目的物質が前記シリンジ内に供給されてもよい。また、このような構成に代えて、第1バルブと第2バルブの開閉弁状態がそれぞれ電子的に制御されることで、シリンジへの注射目的物質の収容、充填、及びシリンジから注射目的物質の排出を実現してもよい。 Here, in the above injection system, the needleless syringe is configured to transfer the injection target substance from the vial to the syringe in a communication path formed between the syringe and the vial containing the injection target substance. In the first valve that allows flow in only one direction, and the discharge passage formed between the nozzle and the syringe, the injection target substance can flow in only one direction from the syringe to the nozzle. And a second valve. Then, when the piston moves backward in the air cylinder and the pressure in the syringe becomes negative, the first valve is opened and the second valve is closed, and the communication from the vial is performed. The injection target substance may be supplied into the syringe via a passage. In addition, instead of such a configuration, the open / close valve states of the first valve and the second valve are electronically controlled, so that the injection target substance is stored and filled in the syringe, and the injection target substance is transferred from the syringe. Emission may be realized.
 また、上述までの注射システムは、前記検出部による前記注射対象物の移動検出結果に基づいて、前記移動通路に設けられ、該移動通路における前記注射対象物の移動を一時的に止めて該注射対象物を保持し、該注射対象物の体表面に前記無針注射器の前記射出口を当接させる保持部を、更に備えてもよい。このように保持部を備えることで、移動通路を移動する注射対象物の動きを一時的に止めて、無針注射器の射出口を注射対象物に当接させることで、より確実な注射を実現することができる。 The injection system described above is provided in the movement path based on the movement detection result of the injection object by the detection unit, and temporarily stops the movement of the injection object in the movement path. You may further provide the holding | maintenance part which hold | maintains a target object and makes the said injection port of the said needleless syringe contact | abut on the body surface of this injection target object. By providing the holding part in this way, the movement of the injection target moving through the moving passage is temporarily stopped, and the injection port of the needleless syringe is brought into contact with the injection target, thereby realizing more reliable injection. can do.
 また、上述までの注射システムは、前記移動通路における前記無針注射器の前記射出口の設置部位より前記第2空間側の所定通路範囲に、前記第1空間から前記第2空間に移動してきた前記注射対象物が、該第1空間に向かって戻るのを阻止する阻止部を、更に備えてもよい。このように阻止部を備えることで、無針注射器によって注射が行われた注射対象物が、移動通路を介して第1空間に戻ることを物理的に抑制することができ、当該構成は、作業者の注射管理の負担軽減に大きく資するものである。なお、当該阻止部の具体的な構成の一例として、前記阻止部は、前記移動通路において前記射出口の設置部位よりも前記第2空間側に向かって傾斜し且つ該移動通路の内側に突出した複数の傾斜板であってもよい。なお、その他の態様により注射対象物が第1空間に戻ることを阻止しても構わない。 Further, the injection system up to the above has moved from the first space to the second space in a predetermined passage range on the second space side from the injection port installation site of the needleless syringe in the moving passage. You may further provide the blocking part which blocks | prevents that an injection target returns toward this 1st space. By providing the blocking unit in this way, it is possible to physically suppress the injection object injected by the needleless syringe from returning to the first space via the moving passage. This greatly contributes to reducing the burden of injection management for the elderly. As an example of a specific configuration of the blocking portion, the blocking portion is inclined toward the second space side with respect to the injection port installation site in the moving passage and protrudes to the inside of the moving passage. A plurality of inclined plates may be used. In addition, you may prevent that an injection target object returns to 1st space by another aspect.
 ここで、上述までの注射システムにおいて、前記第1空間、前記第2空間、及び前記移動通路は水中に配置されてもよく、その場合、前記移動対象物は、水中で存在し得る生体、例えば魚であってもよい。水中の魚については、陸上の注射対象物(例えば、牛や鶏等の家畜)よりも注射作業の負荷が大きくなる。したがって、本願発明に係る注射システムを、好適に適用し得る。 Here, in the injection system described above, the first space, the second space, and the moving passage may be disposed in water, in which case the moving object is a living body that can exist in water, for example, It may be a fish. For underwater fish, the load of injection work is greater than on-land injection objects (for example, livestock such as cows and chickens). Therefore, the injection system according to the present invention can be suitably applied.
 本発明に係る注射システムによれば、家畜等の多数の注射対象物に対して注射を行う場合に、作業者の負担を可及的に軽減するとともに、衛生上の諸問題の発生を抑制することができる。 According to the injection system according to the present invention, when injection is performed on a large number of injection objects such as livestock, the burden on the operator is reduced as much as possible and the occurrence of various hygiene problems is suppressed. be able to.
本発明に係る無針注射器による注射システムの概略図である。It is the schematic of the injection system by the needleless syringe concerning this invention. 図1に示す注射システムで使用される無針注射器の概略構成を示す図である。It is a figure which shows schematic structure of the needleless syringe used with the injection system shown in FIG. 図1に示す注射システムで使用される保持装置の概略構成を示す図である。It is a figure which shows schematic structure of the holding | maintenance apparatus used with the injection system shown in FIG. 図1に示す注射システムで実行される注射処理のフローチャートである。It is a flowchart of the injection process performed with the injection system shown in FIG.
 以下に、図面を参照して本願発明の実施形態に係る注射システム1について説明する。なお、以下の実施形態の構成は例示であり、本願発明はこの実施の形態の構成に限定されるものではない。 Hereinafter, an injection system 1 according to an embodiment of the present invention will be described with reference to the drawings. In addition, the structure of the following embodiment is an illustration and this invention is not limited to the structure of this embodiment.
 図1は、注射システム1の概略構成を示す図である。注射システム1は、水中の養殖魚に対して感染症予防のための薬液(本願発明の注射目的物質に相当する)の注射を無針注射器20により実行するシステムであり、具体的には、第1空間S1に存在する複数の養殖魚を、第1空間S1とは別の空間である第2空間S2に移動させる過程で、該養殖魚に対して薬液の注射を実行する。なお、本願の以降の記載においては、無針注射器20によって注射対象物に注射される注射目的物質は「薬液」と総称する。しかし、これには注射される物質の内容や形態を限定する意図は無い。注射目的物質では、注射対象物である養殖魚等に届けるべき成分が溶解していても溶解していなくてもよく、また注射目的物質も、無針注射器20により注射対象物に対して射出され得るものであれば、その具体的な形態は不問であり、液体、ゲル状等様々な形態が採用できる。 FIG. 1 is a diagram showing a schematic configuration of an injection system 1. The injection system 1 is a system that performs injection of a chemical solution (corresponding to the injection target substance of the present invention) for preventing infectious diseases on aquacultured fish in water using a needleless syringe 20. In the process of moving a plurality of cultured fish existing in one space S1 to the second space S2, which is a space different from the first space S1, injection of a chemical solution is performed on the cultured fish. In the following description of the present application, the injection target substances injected into the injection target by the needleless syringe 20 are collectively referred to as “medical solution”. However, this is not intended to limit the content or form of the injected substance. In the injection target substance, the component to be delivered to the cultured fish or the like that is the injection target may or may not be dissolved, and the injection target substance is also injected to the injection target by the needleless syringe 20. As long as it can be obtained, its specific form is not limited, and various forms such as liquid and gel can be adopted.
 ここで、第1空間S1と第2空間S2は、移動通路6によって形成される移動空間7のみによって養殖魚が移動可能となるように周囲と隔離されて形成される空間である。したがって、養殖魚は、移動空間7を介することなく第1空間S1と第2空間S2との間を往来することはできない。また、移動空間7は、薬液の注射対象となる養殖魚が一匹程度しか移動することができない断面積を有している。そのため、養殖魚が第1空間S1から第2空間S2へ移動するに際しては、移動空間7を養殖魚が一匹ずつ、後述する超音波センサ8a、8bや射出口21の前を通過することになる。なお、第1空間S1と第2空間S2の一例としては、一般的に魚の養殖に利用される生簀等が例示でき、その場合、2つの生簀を移動通路6で接続することで、図1に示す注射システム1を形成することが可能となる。 Here, the first space S1 and the second space S2 are spaces formed by being isolated from the surroundings so that the cultured fish can move only by the moving space 7 formed by the moving passage 6. Therefore, the cultured fish cannot travel between the first space S1 and the second space S2 without going through the moving space 7. Moreover, the movement space 7 has a cross-sectional area in which only about one cultured fish to be injected with the chemical solution can move. Therefore, when the cultured fish moves from the first space S1 to the second space S2, the cultured fish passes through the moving space 7 one by one in front of ultrasonic sensors 8a and 8b and the injection port 21 described later. Become. In addition, as an example of 1st space S1 and 2nd space S2, the ginger etc. which are generally utilized for aquaculture can be illustrated, In that case, by connecting two ginger with the movement path | route 6, in FIG. It is possible to form the injection system 1 shown.
 ここで、移動通路6は、第1空間S1に接続される第1空間側接続部6bと、第2空間S2に接続される第2空間側接続部6cと、両接続部とをつなぐ通路本体6aとから形成される。そして、第1空間S1に存在する養殖魚は、第1空間側接続部6bから移動空間7に入り込み、通路本体6a、第2空間側接続部6c内の移動空間7を通って第2空間S2へと移動可能である。そして、第2空間側接続部6cには、第2空間S1側に傾斜し、且つ第2空間側接続部6cの内壁から移動空間7に突出するように配置された複数の傾斜板によって形成された進入阻止装置11(当該装置が、本願発明に係る阻止部に相当する)が設けられている。進入阻止装置11の傾斜板は第2空間S2側に傾斜しているため、養殖魚の第1空間S1から第2空間S2への移動は比較的容易に行うことができるが、一方で第2空間S2に移動した養殖魚から見ると移動空間7内への進入口が比較的小さく形成されることになるため、養殖魚が第2空間S2から第1空間S1へと戻ることを阻止することが可能となる。 Here, the moving passage 6 is a passage main body that connects the first space-side connection portion 6b connected to the first space S1, the second space-side connection portion 6c connected to the second space S2, and both the connection portions. 6a. And the cultured fish which exists in 1st space S1 enters into the movement space 7 from the 1st space side connection part 6b, passes through the movement space 7 in the channel | path main body 6a and the 2nd space side connection part 6c, and is 2nd space S2. It is possible to move to. The second space-side connecting portion 6c is formed by a plurality of inclined plates that are inclined to the second space S1 side and are arranged so as to protrude from the inner wall of the second space-side connecting portion 6c to the moving space 7. The entry blocking device 11 (which corresponds to the blocking unit according to the present invention) is provided. Since the inclined plate of the entry blocking device 11 is inclined toward the second space S2, the movement of the cultured fish from the first space S1 to the second space S2 can be performed relatively easily, while the second space Since the entrance to the moving space 7 is formed to be relatively small when viewed from the cultured fish moved to S2, it is possible to prevent the cultured fish from returning from the second space S2 to the first space S1. It becomes possible.
 また、通路本体6aには無針注射器20が設置されている。なお、無針注射器20は通路本体6aに設置されると、その射出口21が移動空間7に露出された状態となる。ここで、無針注射器20の構造例について、図2に基づいて説明する。図2は、無針注射器20のその長手方向に沿った断面図であり、図の左側が無針注射器20の先端側となり、射出口21が配置されている。なお、本出願における「先端側」との記載は、「基端側」と比べて射出口21に近い側を指すものとし、したがって、図2において左側が「先端側」に相当することになる。 Also, a needleless syringe 20 is installed in the passage body 6a. When the needleless syringe 20 is installed in the passage main body 6a, the injection port 21 is exposed to the moving space 7. Here, a structural example of the needleless syringe 20 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the needleless syringe 20 along the longitudinal direction. The left side of the drawing is the distal end side of the needleless syringe 20 and the injection port 21 is disposed. In addition, the description of “front end side” in the present application refers to a side closer to the injection port 21 than “base end side”, and accordingly, the left side in FIG. 2 corresponds to “front end side”. .
 無針注射器20は、外部から供給される加圧空気の蓄圧、解放を行うエアバルブ30と、その加圧空気を利用して注射器本体20a内に形成された摺動孔28内を往復動可能なように形成されたピストン29とを含むエアシリンダを有している。具体的には、エアバルブ30には、注射器外部に配置された加圧空気供給装置(コンプレッサ)2から供給チューブ3を介して加圧空気が供給されている。そして、エアバルブ30内には、供給された加圧空気を蓄圧する蓄圧室(図示せず)と、その蓄圧された加圧空気を、ピストン29が配置されている摺動孔28に向かって開放する解放部(図示せず)が設けられている。なお、このエアバルブ30における加圧空気の蓄圧及び解放の切り替えは、切替ボタン31の押下、解放によって制御される。そして、切替ボタン31の押下及び解放については、図1に示す制御装置10(当該装置が、本願発明に係る制御部に相当する)からの起動信号に従い駆動するソレノイド起動装置4によって実行される。このソレノイド起動装置4は、制御装置10から起動信号を受信すると、内蔵するソレノイドに駆動電流が流れ、ソレノイドで発生する磁力によりプランジャを駆動させ、切替ボタン31の押下を可能とする。そして、その駆動電流が停止されるとプランジャが戻り、切替ボタン31の押下が解放される。 The needleless syringe 20 can reciprocate in an air valve 30 for accumulating and releasing pressurized air supplied from the outside, and in a sliding hole 28 formed in the syringe body 20a using the pressurized air. And an air cylinder including the piston 29 formed as described above. Specifically, pressurized air is supplied to the air valve 30 through a supply tube 3 from a pressurized air supply device (compressor) 2 disposed outside the syringe. And in the air valve 30, the pressure accumulation chamber (not shown) which accumulate | stores the supplied pressurized air, and the accumulated pressure air are open | released toward the sliding hole 28 where the piston 29 is arrange | positioned. A release portion (not shown) is provided. Note that switching between accumulation and release of pressurized air in the air valve 30 is controlled by pressing and releasing the switching button 31. The pressing and releasing of the switching button 31 is performed by the solenoid activation device 4 that is driven in accordance with an activation signal from the control device 10 shown in FIG. 1 (this device corresponds to the control unit according to the present invention). When the solenoid activation device 4 receives the activation signal from the control device 10, a drive current flows through the built-in solenoid, the plunger is driven by the magnetic force generated by the solenoid, and the switch button 31 can be pressed. When the drive current is stopped, the plunger returns and the pressing of the switching button 31 is released.
 ここで、摺動孔28に配置されたピストン29とエアバルブ30との間には、エアバルブ30に対するピストン29の相対位置を決定する位置決めバネ(図示せず)が設けられている。したがって、ピストン29は、摺動孔28において移動可能であるものの、その移動に際しては当該位置決めバネからの付勢力を受ける状態となっている。なお、図2に示す状態は、エアバルブ30に加圧空気が蓄圧されている状態、すなわちエアバルブ30からピストン29に対して加圧空気が解放されていない状態を表している。この状態でのエアバルブ30に対するピストン29の相対位置は、当該位置決めバネの付勢力によってピストン29がエアバルブ30側に配置された状態となる。 Here, a positioning spring (not shown) for determining the relative position of the piston 29 with respect to the air valve 30 is provided between the piston 29 arranged in the sliding hole 28 and the air valve 30. Therefore, although the piston 29 is movable in the sliding hole 28, the piston 29 is in a state of receiving a biasing force from the positioning spring during the movement. The state shown in FIG. 2 represents a state where pressurized air is accumulated in the air valve 30, that is, a state where pressurized air is not released from the air valve 30 to the piston 29. The relative position of the piston 29 with respect to the air valve 30 in this state is a state in which the piston 29 is disposed on the air valve 30 side by the biasing force of the positioning spring.
 更に、図2に示す状態において、ピストン29の先端側(エアバルブ30とは反対側)に、無針注射器20によって射出される薬液(注射液)が収容される空間であるシリンジ24が形成される。このシリンジ24において往復動するピストン29と干渉しない箇所に、薬液供給通路25(当該通路が、本願発明に係る連通路に相当する)が開口している。この薬液供給通路25には、第1バルブ26を介して薬液を蓄液しているバイアル5が接続されている。第1バルブ26が開弁状態となっているときに、バイアル5から薬液供給通路25を介してシリンジ24に薬液が供給可能となる。なお、第1バルブ26は、薬液がバイアル5からシリンジ24に向かって一方向のみに流れるように規制する。したがって薬液がシリンジ24からバイアル5に向かって流れるときには、その流れによる力で第1バルブ26が閉じるようになっている。そのため第1バルブ26では弁がバネ等の弾性手段によってバイアル5方向に押し付けられ、常時は閉まっている。ただし第1バルブ26の開閉は制御装置10によって電子的に制御されるものであってもよい。 Further, in the state shown in FIG. 2, a syringe 24, which is a space in which a drug solution (injection solution) ejected by the needleless syringe 20 is accommodated, is formed on the tip end side (the side opposite to the air valve 30) of the piston 29. . In the syringe 24, a chemical solution supply passage 25 (the passage corresponds to the communication passage according to the present invention) is opened at a location that does not interfere with the reciprocating piston 29. A vial 5 that stores a chemical solution is connected to the chemical solution supply passage 25 via a first valve 26. When the first valve 26 is in the open state, the chemical solution can be supplied from the vial 5 to the syringe 24 through the chemical solution supply passage 25. The first valve 26 restricts the chemical solution from flowing from the vial 5 toward the syringe 24 in only one direction. Therefore, when the drug solution flows from the syringe 24 toward the vial 5, the first valve 26 is closed by the force generated by the flow. Therefore, in the first valve 26, the valve is pressed in the direction of the vial 5 by elastic means such as a spring and is normally closed. However, the opening and closing of the first valve 26 may be electronically controlled by the control device 10.
 また、シリンジ24の先端側は、第2バルブ23を介して排出通路22へと連通している。この排出通路22の先端側の端部が、上記射出口21に相当する。したがって、第2バルブ23が開弁状態となっているときに、シリンジ24内の薬液は排出通路22を介して射出口21から射出可能となる。なお、第2バルブ23は、薬液がシリンジ24から排出経路22に向かって一方向のみに流れるように規制する。第2バルブ23は弁がバネ等の弾性手段によってシリンジ24方向に押し付けられ、常時は閉まっている。そして薬液がシリンジか24から排出経路22に向かって流れるときのみ、その流れによる力で第2バルブ23が開くようになっている。ただし第2バルブ23の開閉も制御装置10によって電子的に制御されるものであってもよい。 Further, the distal end side of the syringe 24 communicates with the discharge passage 22 via the second valve 23. An end portion on the front end side of the discharge passage 22 corresponds to the injection port 21. Therefore, when the second valve 23 is in the open state, the chemical liquid in the syringe 24 can be injected from the injection port 21 via the discharge passage 22. Note that the second valve 23 restricts the chemical liquid from flowing from the syringe 24 toward the discharge path 22 in only one direction. The second valve 23 is normally closed while the valve is pressed toward the syringe 24 by an elastic means such as a spring. Only when the chemical solution flows from the syringe 24 toward the discharge path 22, the second valve 23 is opened by the force of the flow. However, the opening and closing of the second valve 23 may also be electronically controlled by the control device 10.
 このように構成される無針注射器20では、摺動孔28におけるピストン29の往復動と、第1バルブ26及び第2バルブ23の開閉により、バイアル5内の薬液を連続して射出することが可能である。以下に、その薬液の連続射出動作について説明する。
(1)第1動作
 第1動作においては、第1バルブ26を閉弁、第2バルブ23を閉弁するとともに、コンプレッサ2からエアバルブ30に加圧空気が送られる。そして、バルブ30において所定圧まで加圧空気を蓄圧する。この所定圧は、後述の第2動作によって加圧空気を解放したときに、薬液の射出が可能となるようにピストン29を加圧し得るための圧力である。なお、この第1動作時には、後述の第3動作の結果、シリンジ24内に薬液が充填された状態となっている。
(2)第2動作
 第2動作においては、切替ボタン31の押下によりエアバルブ30に蓄圧されている加圧空気をピストン29に対して解放する。この結果、ピストン29は、位置決めバネから受ける付勢力に抗しながら摺動孔28内を先端側に向けて推進することになる。そして、シリンジ24には薬液が充填されているため、ピストン29の推進により薬液がシリンジ24外に排出されることになる。このとき薬液が、第1バルブ26および第2バルブ23に向けて流れるが、第1バルブ26は薬液の流れによって閉じられ、薬液がバイアル5に流れ込むことはない。また第2バルブは薬液の流れによって開放され、薬液は排出経路22に向かって流れ、射出口21から射出される。
(3)第3動作
 第2動作による薬液の射出後に行われる第3動作においては、切替ボタン31の押下が解放されることで、第2動作において解放された加圧空気が注射器本体20aの外部に放出されるとともに、位置決めバネによって、ピストン29が元の位置(図2に示す位置)、すなわち第1動作におけるピストンの位置へと復帰することになる。そして、このピストン29の復帰動作によりシリンジ24の容積が回復するとともに、シリンジ24内が負圧状態となるため、弾性手段からの付勢力も加わり、第2バルブ23が閉じるとともに、第1バルブ26が開放し、バイアル5内に蓄液されている薬液がシリンジ24内に吸い込まれ、充填されることになる。そして、第3動作の終了後、再び第1動作以降が繰り返されることで、無針注射器20による連続注射が可能となる。
In the needleless syringe 20 configured as described above, the liquid medicine in the vial 5 can be continuously ejected by the reciprocating motion of the piston 29 in the sliding hole 28 and the opening and closing of the first valve 26 and the second valve 23. Is possible. Below, the continuous injection operation | movement of the chemical | medical solution is demonstrated.
(1) First Operation In the first operation, the first valve 26 is closed, the second valve 23 is closed, and pressurized air is sent from the compressor 2 to the air valve 30. Then, the pressurized air is accumulated in the valve 30 to a predetermined pressure. The predetermined pressure is a pressure for pressurizing the piston 29 so that the chemical liquid can be injected when the pressurized air is released by a second operation described later. In the first operation, the syringe 24 is filled with a chemical as a result of a third operation described later.
(2) Second Operation In the second operation, the pressurized air accumulated in the air valve 30 is released to the piston 29 by pressing the switching button 31. As a result, the piston 29 propels the inside of the sliding hole 28 toward the distal end side against the urging force received from the positioning spring. Since the syringe 24 is filled with the chemical solution, the chemical solution is discharged out of the syringe 24 by the propulsion of the piston 29. At this time, the chemical solution flows toward the first valve 26 and the second valve 23, but the first valve 26 is closed by the flow of the chemical solution, and the chemical solution does not flow into the vial 5. The second valve is opened by the flow of the chemical liquid, and the chemical liquid flows toward the discharge path 22 and is injected from the injection port 21.
(3) Third Operation In the third operation performed after the injection of the chemical solution by the second operation, the pressed air released in the second operation is released from the syringe body 20a by releasing the pressing of the switching button 31. The piston 29 is returned to the original position (position shown in FIG. 2), that is, the position of the piston in the first operation by the positioning spring. Then, the volume of the syringe 24 is restored by the return operation of the piston 29, and the inside of the syringe 24 is in a negative pressure state. Therefore, the biasing force from the elastic means is also applied, the second valve 23 is closed, and the first valve 26 is closed. Is opened, and the chemical stored in the vial 5 is sucked into the syringe 24 and filled. And after completion | finish of 3rd operation | movement, the 1st operation | movement and after are repeated again, and the continuous injection by the needleless syringe 20 is attained.
 ここで、図1に戻ると、注射システム1において、通路本体6aの無針注射器20の射出口21の対向位置に、保持装置40が配置されている。保持装置40は、移動空間7を養殖魚が第1空間S1から第2空間S2に向けて移動するときに、その養殖魚を保持し射出口21に当該養殖魚を押し付け、接触させる装置である。保持装置40の概略構成について、図3に基づいて説明する。保持装置40は、通路本体6aの外側に配置される装置本体41と、通路本体6aに沿って延在する保持板42と、足部43とを有する。保持板42は足部43を介して装置本体41と繋がっており、且つ保持板42は通路本体6a内の移動空間7に配置されている。そして、足部43は、装置本体41からの突出量が調整可能に構成されており、足部43が装置本体41より多く突出することで、保持板42と射出口21との距離が狭まり、移動空間7を移動する養殖魚を保持し、その体を射出口21に対して押し付けることが可能となる。なお、足部43の突出量は、制御装置10によって制御され、また、足部43の突出量の変化に際して装置本体41の内部に水が浸入しないように好適なシール処理が施されている。なお、足部43の突出、収納は、コンプレッサ2からの圧縮空気の供給、排除によって行われるものでもよい。 Here, returning to FIG. 1, in the injection system 1, the holding device 40 is disposed at a position facing the injection port 21 of the needleless syringe 20 of the passage main body 6 a. The holding device 40 is a device that holds the cultured fish and presses the cultured fish against the injection port 21 when the cultured fish moves from the first space S1 toward the second space S2 in the moving space 7. . A schematic configuration of the holding device 40 will be described with reference to FIG. The holding device 40 includes a device main body 41 disposed outside the passage main body 6a, a holding plate 42 extending along the passage main body 6a, and a foot 43. The holding plate 42 is connected to the apparatus main body 41 via the foot 43, and the holding plate 42 is disposed in the moving space 7 in the passage main body 6a. And the leg part 43 is comprised so that adjustment of the protrusion amount from the apparatus main body 41 is possible, and the distance of the holding | maintenance board 42 and the injection port 21 becomes narrow because the leg part 43 protrudes more than the apparatus main body 41, It is possible to hold the cultured fish that moves in the moving space 7 and press the body against the injection port 21. The protruding amount of the foot 43 is controlled by the control device 10, and a suitable sealing process is performed so that water does not enter the inside of the device main body 41 when the protruding amount of the foot 43 changes. The protrusion and storage of the foot portion 43 may be performed by supplying or removing compressed air from the compressor 2.
 図1に示す注射システム1では、無針注射器20と保持装置40が制御装置10によって適切に制御されることで、第1空間S1から第2空間S2へ移動する養殖魚に対して薬液の注射処理が実行される。そして、この養殖魚の第2空間S2への移動を促進させるために、第1空間S1には誘導装置12が設置されている。例えば、誘導装置12は、第1空間に存在する複数の養殖魚に対して光や音等の刺激を与えることで興奮させ、第1空間S1から唯一脱出できる空間でもある移動空間7を通して養殖魚を第2空間へと追いやる構成であってもよい。なお、与えられる光や音の刺激は、対象となる養殖魚の生物的な特性を考慮して適切に決定することができる。 In the injection system 1 shown in FIG. 1, the needleless syringe 20 and the holding device 40 are appropriately controlled by the control device 10 so that the medicinal solution is injected into the cultured fish moving from the first space S1 to the second space S2. Processing is executed. And in order to promote the movement to this 2nd space S2 of this cultured fish, the guidance apparatus 12 is installed in 1st space S1. For example, the guidance device 12 excites a plurality of cultured fish existing in the first space by stimulating light, sound, etc., and the cultured fish passes through the moving space 7 which is also a space that can only escape from the first space S1. May be configured to drive the air to the second space. In addition, the stimulus of the light and sound given can be determined appropriately in consideration of the biological characteristics of the target cultured fish.
 また、誘導装置12の別法として、第1空間S1の容積を徐々に減少させ、又は第1空間S1の空間形状を変形させ、養殖魚が物理的に第1空間S1に滞在しにくい状態を形成する誘導装置であってもよい。また、第1空間S1そのものの大きさや空間形状は変わらずとも養殖魚に対して物理的に接触し、当該養殖魚を第1空間側接続部6bに追い込む構成も、誘導装置12として採用することができる。 As another method of the guidance device 12, the volume of the first space S1 is gradually decreased, or the shape of the first space S1 is deformed so that the cultured fish is difficult to physically stay in the first space S1. It may be a guiding device to be formed. Moreover, the structure which physically contacts with the cultured fish and drives the said cultured fish into the 1st space side connection part 6b is also employ | adopted as the induction | guidance | derivation apparatus 12, even if the magnitude | size and space shape of 1st space S1 itself do not change. Can do.
 更に、第1空間側接続部6bと、通路本体6aの、第1空間側接続部6bとの接続部位近傍のそれぞれに、対応する移動空間7を通る養殖魚の存在を超音波により検出する超音波センサ8a、8bが設置されている。当該超音波センサ8a、8bは、それぞれの検出範囲が重ならないように適切な距離を介して離れて設置され、各超音波センサの検出信号は制御装置10へと渡されるよう、超音波センサ8a、8bと制御装置10とは電気的に接続されている。 Furthermore, an ultrasonic wave that detects the presence of cultured fish passing through the corresponding moving space 7 in the vicinity of the connection portion between the first space side connection portion 6b and the first space side connection portion 6b of the passage body 6a. Sensors 8a and 8b are installed. The ultrasonic sensors 8 a and 8 b are installed at an appropriate distance so that the respective detection ranges do not overlap with each other, and the detection signals of the respective ultrasonic sensors are passed to the control device 10. 8b and the control device 10 are electrically connected.
 このように構成される注射システム1では、制御装置10により図4に示す注射処理が繰り返し実行されることで、上記の通り養殖魚に対する薬液の連続注射が実現される。制御装置10は、メモリ、演算装置を有するコンピュータであり、所定の制御プログラムが実行されることで、図4に示す注射処理が実行されることになる。 In the injection system 1 configured as described above, the injection processing shown in FIG. 4 is repeatedly executed by the control device 10, thereby realizing continuous injection of the medicinal solution to the cultured fish as described above. The control device 10 is a computer having a memory and an arithmetic device, and the injection process shown in FIG. 4 is executed by executing a predetermined control program.
 先ず、S101では、超音波センサ8a、8bからの検出信号に基づいて、第1空間S1に存在している養殖魚の、第1空間側接続部6bから通路本体6aにわたる移動空間7内の移動検出が行われる。具体的には、先ず、第1空間S1に近い超音波センサ8aによって何らかの物体の存在が検出された時点から所定の時間範囲で、超音波センサ8bによって何らかの物体の存在が検出された場合に、「第1空間S1内の養殖魚が、移動空間7を通って第2空間へと移動している」と検出するものとする。なお、当該所定の時間範囲は、養殖魚が想定される移動を行った場合に2つの超音波センサ間を通過するのに要すると想定される、時間幅である。したがって、本実施例では、当該所定の時間範囲から外れた時間間隔で超音波センサ8bにより検出結果が得られた場合、あるいは超音波センサ8aのみの検出があった場合は、移動空間7内を養殖魚が第2空間S2に向かって移動していない状態であり、無針注射器20による注射を行う必要はないと考える。なお、養殖魚の移動の検出に当たっては、上記の検出条件以外の条件が成立したときに養殖魚の移動が検出されたと判断しても構わない。また、正確な検出を行うために、カメラなどによる注射対象物の移動空間7における通過を画像解析によって検出する装置を超音波センサと併用することもできる。S101の処理が終了すると、S102へ進む。 First, in S101, based on the detection signals from the ultrasonic sensors 8a and 8b, the movement detection of the cultured fish existing in the first space S1 in the moving space 7 from the first space side connecting portion 6b to the passage body 6a is detected. Is done. Specifically, first, when the presence of any object is detected by the ultrasonic sensor 8b within a predetermined time range from the time when the presence of any object is detected by the ultrasonic sensor 8a close to the first space S1, It is assumed that it is detected that the cultured fish in the first space S1 has moved through the moving space 7 to the second space. Note that the predetermined time range is a time width that is assumed to be required to pass between the two ultrasonic sensors when the cultured fish performs the assumed movement. Therefore, in this embodiment, when the detection result is obtained by the ultrasonic sensor 8b at a time interval outside the predetermined time range, or when only the ultrasonic sensor 8a is detected, the inside of the moving space 7 is obtained. It is considered that the cultured fish is not moving toward the second space S2, and it is not necessary to perform injection with the needleless syringe 20. In detecting the movement of the cultured fish, it may be determined that the movement of the cultured fish is detected when a condition other than the above-described detection conditions is satisfied. In addition, in order to perform accurate detection, an apparatus that detects the passage of the injection target in the moving space 7 by a camera or the like by image analysis can be used in combination with the ultrasonic sensor. When the process of S101 ends, the process proceeds to S102.
 S102では、S101での検出結果に基づいて、無針注射器20による注射位置に、対象となる養殖魚が到達する時間が算出される。具体的には、超音波センサ8a、8bによって養殖魚の存在が検出されたときに、それぞれの検出時間の間隔と、両超音波センサの設置距離とから、養殖魚が移動空間7移動する際の移動速度が算出される。そして、その算出速度と、無針注射器20の設置位置(例えば、超音波センサ8bと無針注射器20との距離)とに基づいて、養殖魚が超音波センサ8bの前を通過してから無針注射器20の射出口21の前を通過するまでに要する時間を到達時間として算出することができる。S102の処理が終了すると、S103へ進む。 In S102, the time for the target cultured fish to reach the injection position by the needleless syringe 20 is calculated based on the detection result in S101. Specifically, when the presence of the aquaculture fish is detected by the ultrasonic sensors 8a and 8b, the time when the aquaculture fish moves to the moving space 7 from the interval between the respective detection times and the installation distance of both the ultrasonic sensors. The moving speed is calculated. Then, based on the calculated speed and the installation position of the needleless syringe 20 (for example, the distance between the ultrasonic sensor 8b and the needleless syringe 20), there is no change after the cultured fish passes in front of the ultrasonic sensor 8b. The time required to pass in front of the injection port 21 of the needle injector 20 can be calculated as the arrival time. When the process of S102 ends, the process proceeds to S103.
 S103では、S102で算出された到達時間に基づいて養殖魚が無針注射器20の射出口21の前を通過すると想定される時点において、保持板42によって養殖魚を保持し、その体を射出口21に接触させるように、保持装置40が起動される。S103の処理が終了すると、S104へ進む。 In S103, when the cultured fish is assumed to pass in front of the injection port 21 of the needleless syringe 20 based on the arrival time calculated in S102, the cultured fish is held by the holding plate 42, and the body is removed from the injection port. The holding device 40 is activated so as to come into contact with 21. When the process of S103 ends, the process proceeds to S104.
 S104では、保持装置40が起動され、保持板42によって養殖魚が保持された状態に至っているか否かが判定される。例えば、足部43を介して伝えられる力を装置本体41内に設置された力センサ(図示せず)によって検出することで養殖魚の保持状態を判定することもできる。また、別法として、力センサ等の検出装置を利用せずに、想定される養殖魚の大きさを考慮し、足部43の突出量を予め決定している場合には、保持装置40の起動により足部43が所定の突出量分、突出したか否かを判定することを、上記保持状態の判定に代えてもよい。S104で肯定判定されると処理はS105へ進み、否定判定されると再びS104の判定が行われる。 In S104, it is determined whether or not the holding device 40 is activated and the cultured fish is held by the holding plate 42. For example, the holding state of the cultured fish can be determined by detecting the force transmitted through the foot 43 by a force sensor (not shown) installed in the apparatus main body 41. Alternatively, if the projection amount of the foot 43 is determined in advance in consideration of the expected size of the cultured fish without using a detection device such as a force sensor, the holding device 40 is activated. The determination of whether or not the foot 43 has protruded by a predetermined protrusion amount may be replaced with the determination of the holding state. If an affirmative determination is made in S104, the process proceeds to S105, and if a negative determination is made, the determination in S104 is performed again.
 次にS105では、注射対象となる養殖魚が保持装置40の保持板42によって保持された状態において、無針注射器20による薬液の注射が実行される。薬液の注射については、上述した第1動作、第2動作に従い実現される。S105の処理が終了すると、S106へ進む。そして、S106では、S105で無針注射器20による薬液の注射が完了した後に、上記の第3動作に従いシリンジ24への薬液の充填が行われる。 Next, in S105, the medicinal solution is injected by the needleless syringe 20 in a state where the cultured fish to be injected is held by the holding plate 42 of the holding device 40. The injection of the chemical solution is realized according to the first operation and the second operation described above. When the process of S105 ends, the process proceeds to S106. In S106, after the injection of the chemical solution by the needleless syringe 20 is completed in S105, the syringe 24 is filled with the chemical solution according to the third operation.
 このように上記の注射処理によれば、第1空間S1に存在する注射対象である養殖魚が、移動空間7を通って第2空間S2へと移動する際に、超音波センサ8a、8bによりその移動が検出され、自動的に無針注射器20に対する養殖魚の位置決めが行われる。この位置決め状態では、射出口21が養殖魚の体に接触した状態とされているため、加圧空気を利用して薬液を射出する無針注射器20による注射を、好適に実現することが可能となる。また、第2空間側接続部6cに傾斜板を有する阻止装置11が配置されることで、注射が行われ第2空間S2へ移動した養殖魚が第1空間S1に戻ってしまい、注射管理が困難な状態になることを回避することが可能となる。したがって、制御装置10によって上記注射処理が繰り返し実行されることで、複数の養殖魚に対する連続的な薬液の自動注射を実現することが可能となる。なお、無針注射器20による注射が完了するまで、次の注射対象物(養殖魚)が移動通路6に侵入しないよう、第1空間側接続部6bにゲートを配置して、養殖魚の侵入を阻止するものとしてもよい。ゲートの開閉は、制御装置10によって行われ、例えば超音波センサ8aで通過を検知した後に一旦閉まり、注射が完了した(保持装置40が解除された)ときに再度開くようにしてもよい。 As described above, according to the above injection processing, when the cultured fish that is the injection target existing in the first space S1 moves to the second space S2 through the moving space 7, the ultrasonic sensors 8a and 8b are used. The movement is detected, and the cultured fish is automatically positioned with respect to the needleless syringe 20. In this positioning state, since the injection port 21 is in contact with the body of the cultured fish, it is possible to suitably realize injection by the needleless syringe 20 that injects the drug solution using pressurized air. . In addition, since the blocking device 11 having the inclined plate is arranged in the second space side connection portion 6c, the cultured fish that has been injected and moved to the second space S2 returns to the first space S1, and injection management is performed. It becomes possible to avoid a difficult state. Therefore, it is possible to realize continuous automatic injection of a medicinal solution for a plurality of cultured fish by repeatedly executing the injection process by the control device 10. In addition, a gate is arranged in the 1st space side connection part 6b so that the next injection target object (cultured fish) may not enter the movement passage 6 until the injection by the needleless syringe 20 is completed, and the invasion of the cultured fish is prevented. It is good to do. The gate is opened / closed by the control device 10 and may be closed once after the passage is detected by the ultrasonic sensor 8a, for example, and may be opened again when the injection is completed (the holding device 40 is released).
<変形例1>
 図1~図3に示す注射システム1では、通路本体6aにおいて、無針注射器20の射出口21と、保持装置40の保持板42とが対向するように配置されている。この構成では、保持板42によって養殖魚の体が射出口21に押し付けられることになる。一方で、その変形例として、保持板42上に無針注射器20の射出口21が開口するように、無針注射器20と保持装置40とを一体に構成してもよい。この場合は、保持板42とともに射出口21が養殖魚の体に接触した後に、その養殖魚を、対向する通路本体6aの内壁に押さえ付けることになる。このような形態でも、無針注射器20による注射が実行される際には、射出口21と養殖魚の体とが接触した状態になるため、好適な薬液の射出が実現できる。
<Modification 1>
In the injection system 1 shown in FIGS. 1 to 3, the passage body 6a is arranged so that the injection port 21 of the needleless syringe 20 and the holding plate 42 of the holding device 40 face each other. In this configuration, the body of the cultured fish is pressed against the injection port 21 by the holding plate 42. On the other hand, as a modification thereof, the needleless syringe 20 and the holding device 40 may be configured integrally so that the injection port 21 of the needleless syringe 20 opens on the holding plate 42. In this case, after the ejection port 21 comes into contact with the body of the cultured fish together with the holding plate 42, the cultured fish is pressed against the inner wall of the opposing passage main body 6a. Even in such a form, when the injection by the needleless syringe 20 is executed, the injection port 21 and the body of the cultured fish are in contact with each other, so that a suitable injection of the chemical solution can be realized.
<変形例2>
 上記の実施例で使用される無針注射器20では、加圧空気による解放エネルギーをピストン29の推進力に利用している。この形態に代えて、火薬を搭載する点火器を複数搭載し、その複数の点火器を順次、起動させることで、連続的な薬液の射出を実現する注射器を無針注射器20として採用しても構わない。この場合、点火器での火薬燃焼によって生じる燃焼生成物がピストン29を加圧するように、点火器とピストン29を配置させる。また、各点火器とピストン29との間に、上記燃焼生成物によって燃焼しガスを発生させるガス発生剤等を更に配置することもできる。ガス発生剤の一例としては、ニトロセルロース98質量%、ジフェニルアミン0.8質量%、硫酸カリウム1.2質量%からなるシングルベース無煙火薬が挙げられる。また、エアバッグ用ガス発生器やシートベルトプリテンショナ用ガス発生器に使用されている各種ガス発生剤を用いることも可能である。
<Modification 2>
In the needleless syringe 20 used in the above embodiment, the release energy by the pressurized air is used for the propulsive force of the piston 29. Instead of this form, even if a plurality of igniters loaded with explosives are mounted and the plurality of igniters are sequentially activated, a syringe that realizes continuous injection of a chemical solution is employed as the needleless syringe 20 I do not care. In this case, the igniter and the piston 29 are arranged so that combustion products generated by the explosive combustion in the igniter pressurize the piston 29. Further, a gas generating agent or the like that burns with the combustion products and generates gas can be further disposed between each igniter and the piston 29. As an example of the gas generating agent, a single base smokeless gunpowder composed of 98% by mass of nitrocellulose, 0.8% by mass of diphenylamine and 1.2% by mass of potassium sulfate can be mentioned. It is also possible to use various gas generating agents that are used in gas generators for airbags and gas generators for seat belt pretensioners.
 なお、点火器において用いられる点火薬として、好ましくは、ジルコニウムと過塩素酸カリウムを含む火薬(ZPP)、水素化チタンと過塩素酸カリウムを含む火薬(THPP)、チタンと過塩素酸カリウムを含む火薬(TiPP)、アルミニウムと過塩素酸カリウムを含む火薬(APP)、アルミニウムと酸化ビスマスを含む火薬(ABO)、アルミニウムと酸化モリブデンを含む火薬(AMO)、アルミニウムと酸化銅を含む火薬(ACO)、アルミニウムと酸化鉄を含む火薬(AFO)、もしくはこれらの火薬のうちの複数の組合せからなる火薬が挙げられる。これらの火薬は、点火直後の燃焼時には高温高圧のプラズマを発生させるが、常温となり燃焼生成物が凝縮すると気体成分を含まないために発生圧力が急激に低下する特性を示す。適切な注射が可能な限りにおいて、これら以外の火薬を点火薬として用いても構わない。 The igniter used in the igniter preferably includes an explosive (ZPP) containing zirconium and potassium perchlorate, an explosive containing titanium hydride and potassium perchlorate (THPP), and titanium and potassium perchlorate. Gunpowder (TiPP), Gunpowder containing aluminum and potassium perchlorate (APP), Gunpowder containing aluminum and bismuth oxide (ABO), Gunpowder containing aluminum and molybdenum oxide (AMO), Gunpowder containing aluminum and copper oxide (ACO) , Explosives comprising aluminum and iron oxide (AFO), or explosives composed of a combination of these explosives. These explosives generate high-temperature and high-pressure plasma at the time of combustion immediately after ignition. However, when the combustion product is condensed at a normal temperature and does not contain a gas component, the generated pressure rapidly decreases. As long as appropriate injection is possible, other explosives may be used as igniting agents.
<変形例3>
 上記の実施例に係る注射システム1は、水中に存在する養殖魚に対する薬液の注射を実現するものであるが、その態様に代えて、陸上に存在する家畜(例えば、牛や豚等)に対しても適用することが可能である。この場合、無針注射器20と家畜との間には水が存在しないため、無針注射器20から射出される薬液の射出速度が十分に高い状態であれば、その射出口21と家畜の体とが多少離れていても薬液の注射を支障なく行うことができる場合がある。そのような場合には、図1、図3に示す保持装置40を必ずしも設ける必要はない。もちろん、より安定的に薬液の注射を行うために、保持装置40を注射システム1に設置しても構わない。
<Modification 3>
Although the injection system 1 which concerns on said Example implement | achieves the injection of the chemical | medical solution with respect to the cultured fish which exists in water, it replaces with the aspect, and is with respect to the livestock (for example, a cow, a pig, etc.) which exists on land. It is possible to apply. In this case, since there is no water between the needleless syringe 20 and the livestock, if the injection speed of the chemical liquid ejected from the needleless syringe 20 is sufficiently high, the injection port 21 and the body of the livestock In some cases, it is possible to inject the drug solution without any problem even if the distance is slightly apart. In such a case, the holding device 40 shown in FIGS. 1 and 3 is not necessarily provided. Of course, the holding device 40 may be installed in the injection system 1 in order to inject the drug solution more stably.
 1・・・・注射システム
 2・・・・加圧空気供給装置(コンプレッサ)
 4・・・・ソレノイド起動装置
 5・・・・バイアル
 6・・・・移動通路
 7・・・・移動空間
 8a、8b・・・・超音波センサ
 10・・・・制御装置
 11・・・・阻止装置
 12・・・・誘導装置
 20・・・・無針注射器
 21・・・・射出口
 22・・・・排出通路
 23・・・・第2バルブ
 24・・・・シリンジ
 25・・・・薬液供給通路
 26・・・・第1バルブ
 28・・・・摺動孔
 29・・・・ピストン
 30・・・・エアバルブ
 31・・・・切替ボタン
 40・・・・保持装置
 42・・・・保持板
 
1 .... Injection system 2 .... Pressurized air supply device (compressor)
4 .... Solenoid activation device 5 .... Vial 6 .... Movement passage 7 .... Movement space 8a, 8b ...... Ultrasonic sensor 10 .... Control device 11 .... Blocking device 12... Guiding device 20... Needleless syringe 21... Injection port 22 ... Discharge passage 23 ... Second valve 24 ... Syringe 25. Chemical solution supply passage 26... First valve 28... Sliding hole 29 ... Piston 30 ... Air valve 31 ... Switching button 40 ... Holding device 42 ... Holding plate

Claims (8)

  1.  注射針を介することなく、注射目的物質を射出口より射出することによって該注射目的物質を注射対象物に注射する無針注射器と、
     複数の注射対象物が収容される第1空間と、該複数の注射対象物の移動先である第2空間とを結ぶ移動通路であって、前記無針注射器の射出口が該移動通路の内部に開口するように該無針注射器が設置された移動通路と、
     前記第1空間に存在する前記注射対象物が前記第2空間に向かうための前記移動通路における移動を検出可能な検出部と、
     前記検出部によって前記注射対象物の移動が検出されると、該注射対象物の移動に応じて前記無針注射器の前記射出口から注射目的物質の射出を該注射対象物ごとに行う制御部と、
     を備える、無針注射器による注射システム。
    A needleless syringe for injecting the injection target substance into the injection target by injecting the injection target substance from the injection port without going through the injection needle;
    A movement path connecting a first space in which a plurality of injection objects are accommodated and a second space to which the plurality of injection objects are moved, wherein the injection port of the needleless syringe is located inside the movement path A moving passage in which the needleless syringe is installed so as to open to
    A detection unit capable of detecting movement in the movement path for the injection target existing in the first space to go to the second space;
    When the detection unit detects movement of the injection object, a control unit performs injection of the injection target substance from the injection port of the needleless syringe according to the movement of the injection object for each injection object; ,
    A needleless syringe injection system comprising:
  2.  前記無針注射器は、
     所定容量の前記注射目的物質を収容する空間となるシリンジと、
     加圧空気が供給及び排出されることで往復運動可能なように形成されたピストンと、該ピストンを駆動させるエアバルブとを有し、該ピストンの往復運動によって前記シリンジ内に収容されている前記注射目的物質に加圧するエアシリンダと、
     前記ピストンにより加圧された前記注射目的物質を前記注射対象物に向けて射出するための前記射出口を含むノズルと、
     を有し、
     前記注射システムは、
     前記無針注射器に対して前記エアシリンダ内部のピストンを駆動させる前記加圧気体を供給する気体供給装置を更に備える、
     請求項1に記載の無針注射器による注射システム。
    The needleless syringe is
    A syringe serving as a space for accommodating a predetermined volume of the injection target substance;
    The injection having a piston formed so as to be able to reciprocate when pressurized air is supplied and discharged, and an air valve for driving the piston, and is accommodated in the syringe by the reciprocating motion of the piston An air cylinder that pressurizes the target substance;
    A nozzle including the injection port for injecting the injection target substance pressurized by the piston toward the injection target;
    Have
    The injection system comprises:
    A gas supply device that supplies the pressurized gas that drives the piston inside the air cylinder to the needleless syringe;
    An injection system using a needleless syringe according to claim 1.
  3.  前記無針注射器は、
     前記シリンジと、前記注射目的物質を収容したバイアルとの間に形成された連通路において、前記注射目的物質を前記バイアルから前記シリンジに向かって一方向のみに流通可能とする第1バルブと、
     前記ノズルと前記シリンジとの間に形成された排出通路において、前記注射目的物質を前記シリンジから前記ノズルに向かって一方向のみに流通可能とする第2バルブと、
     を有し、
     前記第1バルブが開弁状態で且つ前記第2バルブが閉弁状態において前記エアシリンダ内で前記ピストンが後退してシリンジ内が負圧になったときに、前記バイアルから前記連通路を経由して、注射目的物質が前記シリンジ内に供給される、
     請求項2記載の無針注射器による注射システム。
    The needleless syringe is
    A first valve that allows the injection target substance to flow in only one direction from the vial toward the syringe in a communication path formed between the syringe and the vial containing the injection target substance;
    A second valve that allows the injection target substance to flow in only one direction from the syringe toward the nozzle in a discharge passage formed between the nozzle and the syringe;
    Have
    When the first valve is in the open state and the second valve is in the closed state, when the piston moves backward in the air cylinder and the pressure in the syringe becomes negative, the vial passes through the communication path. A substance to be injected is supplied into the syringe,
    An injection system using a needleless syringe according to claim 2.
  4.  前記検出部による前記注射対象物の移動検出結果に基づいて、前記移動通路に設けられ、該移動通路における前記注射対象物の移動を一時的に止めて該注射対象物を保持し、該注射対象物の体表面に前記無針注射器の前記射出口を当接させる保持部を、更に備える、
     請求項1から請求項3の何れか1項に記載の無針注射器による注射システム。
    Based on the detection result of the movement of the injection object by the detection unit, the movement of the injection object in the movement passage is temporarily stopped to hold the injection object, and the injection object A holding part for bringing the injection port of the needleless syringe into contact with the body surface of an object, further comprising:
    An injection system using a needleless syringe according to any one of claims 1 to 3.
  5.  前記移動通路における前記無針注射器の前記射出口の設置部位より前記第2空間側の所定通路範囲に、前記第1空間から前記第2空間に移動してきた前記注射対象物が、該第1空間に向かって戻るのを阻止する阻止部を、更に備える、
     請求項1から請求項4の何れか1項に記載の無針注射器による注射システム。
    The injection object that has moved from the first space to the second space within a predetermined passage range on the second space side from the injection port installation site of the needleless syringe in the moving passage is the first space. Further comprising a blocking part for blocking the return toward
    An injection system using a needleless syringe according to any one of claims 1 to 4.
  6.  前記阻止部は、前記移動通路において前記射出口の設置部位よりも前記第2空間側に向かって傾斜し且つ該移動通路の内側に突出した複数の傾斜板である、
     請求項5に記載の無針注射器による注射システム。
    The blocking portion is a plurality of inclined plates that are inclined toward the second space side with respect to the installation portion of the injection port in the moving passage and project inside the moving passage.
    An injection system using a needleless syringe according to claim 5.
  7.  前記第1空間に存在する前記注射対象物を、前記移動通路を経由し前記第2空間に移動させる誘導装置を、更に備える、
     請求項1から請求項6の何れか1項に記載の無針注射器による注射システム。
    A guidance device for moving the injection target existing in the first space to the second space via the movement path;
    An injection system using a needleless syringe according to any one of claims 1 to 6.
  8.  前記第1空間、前記第2空間、及び前記移動通路は水中に配置され、
     前記移動対象物は、水中で存在し得る生体である、
     請求項1から請求項7の何れか1項に記載の無針注射器による注射システム。
     
    The first space, the second space, and the moving passage are disposed in water,
    The moving object is a living body that can exist in water.
    An injection system using a needleless syringe according to any one of claims 1 to 7.
PCT/JP2015/065833 2014-06-03 2015-06-02 Injection system using needleless syringe WO2015186680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15803686.3A EP3153133B1 (en) 2014-06-03 2015-06-02 Injection system using needleless syringe
US15/316,130 US20170128182A1 (en) 2014-06-03 2015-06-02 Injection system using needleless syringe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115109A JP6612017B2 (en) 2014-06-03 2014-06-03 Needleless syringe injection system
JP2014-115109 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186680A1 true WO2015186680A1 (en) 2015-12-10

Family

ID=54766750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065833 WO2015186680A1 (en) 2014-06-03 2015-06-02 Injection system using needleless syringe

Country Status (4)

Country Link
US (1) US20170128182A1 (en)
EP (1) EP3153133B1 (en)
JP (1) JP6612017B2 (en)
WO (1) WO2015186680A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018009538B1 (en) * 2015-11-13 2023-02-14 Applied Lifesciences and Systems, LLC SYSTEMS FOR DELIVERING A SUBSTANCE INTO THE EYE OF AN ANIMAL
CN108272526A (en) * 2018-01-16 2018-07-13 贵港市厚顺信息技术有限公司 A kind of execution method for device of having an injection automatically to dog
CN111544153B (en) * 2020-05-19 2022-08-05 山东中林东平湖发展有限公司 Aquaculture grass carp bacterin injection auxiliary device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502408A (en) * 1987-11-27 1991-06-06 トリオ インダストリエール エー.エス Fish vaccination method
JPH05252846A (en) * 1992-01-14 1993-10-05 Sanshin Ind Co Ltd Automatically feeding device for fishes
WO1994017657A1 (en) * 1993-02-01 1994-08-18 Stephen Edward Jackman Removal of parasites from fish
JPH07308140A (en) * 1994-05-17 1995-11-28 Nippon Suisan Kaisha Ltd Method of making attitude of fishes uniform in their direction and apparatus therefor
JPH09215463A (en) * 1997-03-10 1997-08-19 Megumi Sato Trapping cage
US6436709B1 (en) * 2001-10-19 2002-08-20 Bioware Technology Co., Ltd. Low pressure-accelerated particle gene gun
JP2013518583A (en) * 2010-02-05 2013-05-23 ベック,エスベン Apparatus and method for combating fish parasites

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383851A (en) * 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US8591457B2 (en) * 2005-08-10 2013-11-26 Alza Corporation Method for making a needle-free jet injection drug delivery device
CN101496503B (en) * 2009-03-10 2013-04-24 福建省农业科学院生物技术研究所 Device for injecting live fish
CA2847170C (en) * 2011-04-04 2018-10-09 Karim Menassa Needleless injector wand assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502408A (en) * 1987-11-27 1991-06-06 トリオ インダストリエール エー.エス Fish vaccination method
JPH05252846A (en) * 1992-01-14 1993-10-05 Sanshin Ind Co Ltd Automatically feeding device for fishes
WO1994017657A1 (en) * 1993-02-01 1994-08-18 Stephen Edward Jackman Removal of parasites from fish
JPH07308140A (en) * 1994-05-17 1995-11-28 Nippon Suisan Kaisha Ltd Method of making attitude of fishes uniform in their direction and apparatus therefor
JPH09215463A (en) * 1997-03-10 1997-08-19 Megumi Sato Trapping cage
US6436709B1 (en) * 2001-10-19 2002-08-20 Bioware Technology Co., Ltd. Low pressure-accelerated particle gene gun
JP2013518583A (en) * 2010-02-05 2013-05-23 ベック,エスベン Apparatus and method for combating fish parasites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153133A4 *

Also Published As

Publication number Publication date
EP3153133A4 (en) 2018-02-14
JP6612017B2 (en) 2019-11-27
JP2015228913A (en) 2015-12-21
EP3153133B1 (en) 2022-11-23
EP3153133A1 (en) 2017-04-12
US20170128182A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
ATE506981T1 (en) MEDICAL INJECTION DEVICE
JP7053088B2 (en) Dosing device
EP2532378A3 (en) Needle-free injector
JP6612017B2 (en) Needleless syringe injection system
JP6954521B2 (en) Injection device
WO1999010031A1 (en) Device for injecting material beneath the skin of a human or animal
WO2016031613A1 (en) Needless injector
US20190184105A1 (en) Needleless injector
CN107921215B (en) Needleless injector
US7281502B2 (en) Powered devices
CN113301930B (en) Needleless injector
JP6468581B2 (en) Needleless syringe
JP7034076B2 (en) Dosing device
WO2022102244A1 (en) Device assembly for needleless syringe
CN110785197B (en) Injector
JP7168489B2 (en) Dosing device and method for manufacturing the dosing device
JP6367730B2 (en) Needleless injection device
JP6345978B2 (en) Needleless syringe
JPWO2019049315A1 (en) Injector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15316130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015803686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803686

Country of ref document: EP