WO2015186651A1 - Ultrasound therapeutic device and ultrasound therapeutic system - Google Patents

Ultrasound therapeutic device and ultrasound therapeutic system Download PDF

Info

Publication number
WO2015186651A1
WO2015186651A1 PCT/JP2015/065732 JP2015065732W WO2015186651A1 WO 2015186651 A1 WO2015186651 A1 WO 2015186651A1 JP 2015065732 W JP2015065732 W JP 2015065732W WO 2015186651 A1 WO2015186651 A1 WO 2015186651A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
treatment
ultrasonic wave
trigger
focal point
Prior art date
Application number
PCT/JP2015/065732
Other languages
French (fr)
Japanese (ja)
Inventor
仲本 秀和
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2016525154A priority Critical patent/JP6473149B2/en
Publication of WO2015186651A1 publication Critical patent/WO2015186651A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body

Definitions

  • the present invention relates to an ultrasonic therapy apparatus and an ultrasonic therapy system, and relates to an ultrasonic therapy apparatus for irradiating a target site set in a living body with high-intensity focused ultrasound (HIFU: High Intensity Focused Ultra sound), and The present invention relates to an ultrasonic therapy system.
  • HIFU High Intensity Focused Ultra sound
  • HIFU treatment an embolus with a high blood flow blocking effect is achieved by irradiating the focus set on the treatment site with high-density focused ultrasound to locally heat the lesion and thermally coagulating the tissue in the lesion. It is known as a less invasive treatment for realizing the treatment. For example, it has been proposed to insert a treatment probe into the rectum of a living body and irradiate HIFU to the lesioned part at the site to be treated.
  • the ultrasonic treatment apparatus using HIFU introduced in Patent Document 1 is an ultrasonic electrical signal (hereinafter referred to as an ultrasonic signal) supplied from a multi-channel generator, and a plurality of treatment transducers (transducers). )
  • an ultrasonic signal supplied from a multi-channel generator, and a plurality of treatment transducers (transducers).
  • Transducers a plurality of treatment transducers
  • a pulsed trigger ultrasonic wave with high ultrasonic intensity is irradiated, and then a continuous ultrasonic wave (CW) heating ultrasonic wave with a lower intensity than the trigger ultrasonic wave is irradiated for a predetermined time.
  • CW continuous ultrasonic wave
  • treatment is performed by irradiating a treatment target site with predetermined therapeutic ultrasonic energy.
  • Patent Document 1 does not consider avoiding the risk of burns occurring on the surface of the living body (skin) on the irradiation path of HIFU.
  • a trigger ultrasonic wave is irradiated from all of a plurality of treatment vibrators constituting a multichannel toward a focal point, and then a heating ultrasonic wave is irradiated.
  • HIFU is irradiated between a treatment probe and a living body surface with, for example, a water bag filled with deaerated water interposed therebetween.
  • the trigger ultrasonic waves are reflected at the boundary between the water and the surface of the living body to accumulate ultrasonic energy, and bubbles are generated due to the cavitation phenomenon.
  • the problem to be solved by the present invention is to provide an ultrasonic treatment apparatus and an ultrasonic treatment system that can effectively avoid the risk of skin burns.
  • an ultrasonic treatment apparatus and an ultrasonic treatment system include a treatment probe having a plurality of channels including treatment transducers that generate treatment ultrasonic waves, and a living body from the treatment probe.
  • a treatment probe control unit that repeats a treatment ultrasonic cycle that irradiates a heating ultrasonic wave having a lower intensity than the trigger ultrasonic wave at a focal point set in a treatment target region, and the treatment probe control unit includes: The divided irradiation is performed so that the channel that irradiates the trigger ultrasonic wave toward the focal point and the channel that irradiates the heated ultrasonic wave toward the focal point are different for each treatment ultrasonic cycle.
  • the present invention divides a plurality of channels into a channel for irradiating a trigger ultrasonic wave and a channel for irradiating a heating ultrasonic wave, and switching the channel for irradiating the trigger ultrasonic wave every time the treatment ultrasonic cycle is repeated.
  • the present invention is characterized in that the channels for transmitting the trigger ultrasonic wave and the heating ultrasonic wave are different.
  • the propagation path (ultrasonic beam) of the trigger ultrasonic wave in the vicinity of the body surface and the propagation path (ultrasonic beam) of the heating ultrasonic wave are made different for each treatment ultrasonic cycle.
  • the ultrasonic beam of each channel is focused on the focal point set in the treatment target region.
  • the bubbles generated at the focal point by the trigger ultrasonic wave are irradiated with heating ultrasonic waves from different propagation paths, and the bubbles are destroyed, so that the tissue at the focal point can be thermally coagulated to perform ultrasonic treatment. .
  • the block block diagram of the ultrasonic therapy apparatus of one Embodiment of this invention The figure explaining the structure of the ultrasonic probe of one Embodiment of this invention.
  • Diagram illustrating treatment ultrasound cycle Illustration explaining HIFU treatment The figure explaining the navigation guide display function of the ultrasonic treatment system of one embodiment of the present invention
  • FIG. 8 is a detailed flowchart of a portion related to the characteristic part of the embodiment of the present invention shown in the flowchart of FIG.
  • FIG. 6 is a diagram for explaining a fourth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention
  • FIG. 6 is a diagram for explaining a fifth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention
  • FIG. 6 is a diagram for explaining a sixth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention.
  • FIG. 6 is a diagram for explaining a seventh embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention.
  • the figure which shows an example of the display of the graphic user interface (GUI) of the ultrasonic treatment system of this invention
  • GUI graphic user interface
  • the ultrasonic therapy apparatus includes a treatment probe having a plurality of channels including treatment transducers for generating a treatment ultrasonic wave, and a trigger ultrasound at a focus set from the treatment probe to a treatment target site of a living body.
  • a therapeutic probe control unit that repeats a therapeutic ultrasonic cycle that irradiates a heating ultrasonic wave having a lower intensity than the trigger ultrasonic wave following the acoustic wave, and the therapeutic probe control unit performs the trigger ultrasonic cycle for each therapeutic ultrasonic cycle.
  • the divided irradiation is performed such that the channel that irradiates the sound wave toward the focal point and the channel that irradiates the heating ultrasonic wave toward the focal point are different.
  • the treatment probe control unit compensates for the ultrasonic energy of the trigger ultrasonic wave and the heating ultrasonic wave constituting the therapeutic ultrasonic cycle according to a target value of the therapeutic ultrasonic energy irradiated toward the focal point. It is characterized by doing.
  • the target value of the therapeutic ultrasonic energy is basic therapeutic ultrasonic energy that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from each channel.
  • the treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, When the measurement distance exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels.
  • a monitor that displays an arrangement configuration image of the plurality of channels of the treatment probe is provided, and the monitor irradiates the trigger ultrasonic wave toward the focal point and the heating ultrasonic wave toward the focal point.
  • the irradiation channel is displayed in a different display form.
  • the treatment probe is formed by dividing the hemispherical concave surface into a plurality of concentric annular regions, and further forming the channel in each of a plurality of regions obtained by dividing the annular region in the radial direction, The area of the ultrasonic wave transmission surface of each channel is formed uniformly.
  • the treatment probe control unit divides the plurality of channels into a channel group including a plurality of channels, irradiates the trigger ultrasonic wave from the channels belonging to one channel group toward the focal point, and then the other channels.
  • a treatment ultrasonic cycle for irradiating the heating ultrasonic wave from the channels belonging to the channel group toward the focal point is repeated, and one channel group for irradiating the trigger ultrasonic wave for each repetition of the treatment ultrasonic cycle is changed to another channel group. Switching to one of the channel groups.
  • the treatment probe control unit adjusts at least one of the amplitude, frequency, or irradiation time of the trigger ultrasonic wave or the amplitude of the heating ultrasonic wave in accordance with a target value of the therapeutic ultrasonic energy irradiated toward the focal point.
  • the ultrasonic energy is compensated by adjusting at least one of the frequency and the irradiation time.
  • the target value of the therapeutic ultrasonic energy is a reference therapeutic ultrasonic energy that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from each channel.
  • the treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, When the measurement distance exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels.
  • the treatment probe control unit multiplies the amplitude of the trigger ultrasonic wave by n / m, or The therapeutic ultrasonic energy is compensated by adjusting the trigger ultrasonic energy by multiplying the frequency of the trigger ultrasonic wave by an integer.
  • the treatment probe energy compensation compensates the treatment ultrasound energy
  • a warning to that effect is given by sound or sound.
  • a warning to that effect is given by sound or sound.
  • the upper limit value is set to a value that prevents burns on the body surface of the living body located between the channel and the focal point.
  • the ultrasonic treatment system includes a treatment probe having a plurality of channels including treatment transducers that generate treatment ultrasonic waves, and a focal point set from the treatment probe to a treatment target site of a living body.
  • a treatment probe controller that repeats a treatment ultrasound cycle that irradiates a heating ultrasound that is less intense than the trigger ultrasound following the trigger ultrasound, and is provided at the center of the treatment probe for imaging with the living body
  • An imaging probe having a plurality of imaging transducers for transmitting and receiving the ultrasound, an ultrasound image forming unit for generating an ultrasound image including the focal point generated from a reception signal of the imaging probe, and the ultrasound
  • a display unit for displaying an image, and the treatment probe control unit irradiates the trigger ultrasonic wave toward the focal point for each treatment ultrasonic cycle.
  • a three-dimensional position detector for detecting the position of the treatment probe; a memory in which three-dimensional volume image data including the treatment target portion of the living body is stored; and the three-dimensional position detector
  • a medical image device having a navigation image configuration unit that generates a navigation image corresponding to a tomographic plane of the ultrasonic image from the three-dimensional volume image data based on the position of the treatment probe and displays the navigation image on the display unit;
  • the medical imaging apparatus includes a therapeutic ultrasound beam rendering unit that generates a simulated image of a therapeutic ultrasound beam that connects each channel and the focal point and overlays the navigation image
  • the treatment probe control unit includes: Based on the ultrasonic image displayed on the display unit, the distance from the focal point to the body surface of the living body is measured, and the measurement distance Is performed within the range between a predetermined minimum value and a maximum value, and when the measurement distance exceeds the maximum value, the trigger is exceeded from all the channels instead of the divided irradiation.
  • a basic irradiation is performed in
  • FIG. 1 shows the overall configuration of the ultrasonic therapy system of the present invention.
  • a magnetic resonance imaging (MRI) apparatus 1 which is one of medical imaging apparatuses is, for example, a perpendicular magnetic field permanent magnet type MRI apparatus.
  • the present invention is not limited to the vertical magnetic field permanent magnet type MRI apparatus, and other types of known medical image apparatuses such as an MRI apparatus, a CT apparatus, a PET apparatus, and an ultrasonic image apparatus can be applied.
  • the MRI apparatus 1 of the present embodiment includes an upper magnet 3 and a lower magnet 5 that generate a vertical static magnetic field, a support 7 that connects these magnets and supports the upper magnet 3, a position detection device 9, and an arm. 11, monitors 13 and 14, a monitor support unit 15, a reference tool 17, a personal computer 19, a bed 21, an MRI control unit 23, and the like.
  • a gradient magnetic field generator (not shown) of the MRI apparatus 1 generates a gradient magnetic field.
  • the MRI apparatus 1 includes an RF transmitter (not shown) for generating nuclear magnetic resonance in the patient 24 in a static magnetic field and an RF receiver (not shown) for receiving a nuclear magnetic resonance signal from the patient 24.
  • the position detection device 9 is a three-dimensional position detector that detects the three-dimensional position and posture of the ultrasonic probe 37 (hereinafter collectively referred to as a position). That is, the position detection device 9 includes two infrared cameras 25 and a light emitting diode (not shown) that emits infrared light, and detects the three-dimensional position of the pointer 27 attached to the ultrasonic probe 37.
  • the pointer 27 functions as an instruction device for an imaging tomographic plane of the ultrasonic image and the MR image, together with a function of detecting the position and inclination of the ultrasonic probe 37 (hereinafter collectively referred to as a position).
  • the position detection device 9 is connected to the upper magnet 3 so as to be movable by the arm 11, and is formed so that the arrangement with respect to the MRI apparatus 1 can be appropriately changed.
  • the monitor 13 is connected to the upper magnet 3 by the monitor support portion 15 in the same manner as the infrared camera 25.
  • the reference tool 17 links the coordinate system of the infrared camera 25 and the coordinate system of the MRI apparatus 1, includes three reflection spheres 35, and is provided on the side surface of the upper magnet 3.
  • the position information of the pointer 27 detected and calculated by the infrared camera 25 is transmitted to the personal computer 19 as position data of the ultrasonic probe 37, for example, via the RS232C cable 33.
  • the MRI control unit 23 is composed of a workstation and controls an RF transmitter, an RF receiver, etc. (not shown). Further, the MRI control unit 23 is connected to the personal computer 19. In the personal computer 19, the position data of the pointer 27 detected and calculated by the infrared camera 25 is converted into position data of the imaging range in the MRI apparatus 1 and transmitted to the MRI control unit 23. The position data is reflected in the control of the imaging section of the imaging sequence. The MR image acquired with the new imaging section is displayed on the monitor 13. MR images are simultaneously recorded in the video recording device 34.
  • the ultrasonic therapy apparatus 40 displays an ultrasonic image obtained by the ultrasonic probe 37 to which the pointer 27 is attached on a dedicated monitor 38.
  • the ultrasonic image is transferred to the personal computer 19 for image processing and displayed on the operator monitors 13 and 14.
  • the ultrasonic probe 37 is formed of a non-magnetic material such as ceramic that can be operated even in the magnetic field of the MRI apparatus 1. Further, as will be described with reference to FIG. 3, the ultrasound probe 37 includes a treatment probe 37a for irradiating HIFU treatment ultrasound and an imaging probe 37b for imaging ultrasound images.
  • the ultrasonic therapy apparatus 40 includes a HIFU controller 49 formed by a computer such as a personal computer, and a power amplifier 50 that amplifies the HIFU ultrasonic signal output from the HIFU controller 49.
  • the ultrasonic signal output from the power amplifier 50 is supplied to the treatment probe 37a of the ultrasonic probe 37.
  • HIFU treatment is performed by irradiating the patient 24 with HIFU (high density focused ultrasound) from the treatment probe 37a.
  • FIG. 2 shows a block configuration of the main part of the ultrasonic therapy apparatus 40.
  • the ultrasonic therapy device 40 includes an ultrasonic transmission / reception unit 44 that transmits and receives an ultrasonic signal to and from the imaging probe 37b, and a two-dimensional ultrasonic image (for example, a B-mode image) including a HIFU focus based on the received signal.
  • An ultrasonic image composing unit 45 that constitutes a sound image
  • a monitor 38 that is a display unit that displays an ultrasonic image composed of the ultrasonic image composing unit 45
  • an ultrasonic control unit 47 that controls each component
  • the control panel 48 is configured to give instructions to the sound wave control unit 47.
  • the ultrasound image constructing unit 45 uses a reflected echo signal obtained by transmitting and receiving ultrasound from the imaging probe 37b to the patient 24 by the ultrasound transmitting / receiving unit 44, and a two-dimensional ultrasound image or a three-dimensional image including a treatment target region. An ultrasonic image is formed and displayed on the monitor 38.
  • the HIFU controller 49 drives the imaging probe 37b via the ultrasound control unit 47 to irradiate the patient 24 with weak ultrasound for imaging when the ultrasound therapy apparatus 40 is operated as an ultrasound imaging apparatus. That is, the ultrasound control unit 47 weakens the energy of the ultrasound irradiated to the patient 24 when operating the ultrasound therapy apparatus 40 as a diagnostic apparatus. On the other hand, when the ultrasonic therapy apparatus 40 is operated as a therapy apparatus, the ultrasonic control unit 47, via the HIFU controller 49, increases the intensity of the ultrasonic wave to be irradiated so as to increase the energy of the ultrasonic wave irradiated to the patient 24. To control.
  • the HIFU controller 49 constitutes the treatment probe control unit of the present invention, and outputs an HIFU ultrasonic signal to the power amplifier 50 based on a command output from the ultrasonic control unit 47.
  • the power amplifier 50 amplifies the ultrasonic signal of HIFU and outputs it to the treatment probe 37a. Thereby, a strong ultrasonic wave for treatment is irradiated to a predetermined part of the patient 24 from the treatment probe 37a.
  • the HIFU controller 49 and the power amplifier 50 determine the intensity (energy) of the therapeutic ultrasound beam emitted from the treatment probe 37a including a plurality of treatment transducers 39 that constitute a channel for emitting treatment ultrasound of the treatment probe 37a. Each is to be controlled.
  • the ultrasonic frequency emitted from the treatment probe 37a can be selectively used as 2 MHz or 1 MHz as necessary, and is controlled by the HIFU controller 49.
  • the HIFU controller 49 is linked to the ultrasonic therapy apparatus 40 so that the state transition of the treatment target site before and after the HIFU irradiation can be understood. Before the HIFU irradiation, it also has a function of performing image processing for rendering the skin, which is the body surface of the patient 24, using a diagnostic image inside the ultrasonic therapy apparatus 40. Information generated by the ultrasonic therapy apparatus 40 can be shared with the HIFU controller 49.
  • the ultrasonic diagnostic apparatus 40 is configured to incorporate the ultrasonic diagnostic apparatus, but the ultrasonic diagnostic apparatus and the ultrasonic therapeutic apparatus may be configured as separate apparatuses. Further, although the ultrasonic therapy device 40 and the HIFU controller 49 are separate devices, they may be configured as an integrated device.
  • FIG. 3 and 4 are configuration diagrams of an embodiment of the ultrasonic probe 37 according to the feature of the present invention.
  • 3A is a cross-sectional view of a plane passing through the central axis of the ultrasonic probe 37
  • FIG. 3B is a front view of the ultrasonic probe 37 viewed from the ultrasonic transmission surface side.
  • the ultrasonic probe 37 is formed by including a treatment probe 37a formed on a concave spherical surface and an imaging probe 37b for imaging an ultrasonic image disposed on the central axis of the concave spherical surface.
  • the imaging probe 37b is an imaging ultrasonic probe for imaging and drawing a tomographic image (ultrasonic image) of the fan-shaped region 601 including the focal point of the treatment target region.
  • the treatment probe 37a can be formed by arranging channels C composed of a plurality of treatment transducers 39 on a two-dimensional plane or a three-dimensional curved surface. However, as shown in FIG. 4 (b), the treatment probe 37a of the present embodiment divides the concave spherical surface into a plurality of concentric annular regions, and further includes a plurality of annular regions divided in the radial direction. Each region is formed with a treatment transducer 39 disposed therein. Each therapeutic transducer 39 forms a channel C of a therapeutic ultrasonic beam.
  • the treatment probe 37a is formed of a multichannel including a plurality of treatment transducers 39 that send out a treatment ultrasonic beam.
  • the number of treatment transducers 39 is 40 in the illustrated example for simplification, but the number of treatment transducers 39 is generally a power of 2, for example, 512 And 1024 are used.
  • the imaging probe 37b is an imaging ultrasonic probe for imaging and drawing the tomographic plane 601 including the focus of the treatment target region.
  • the plurality of divided treatment transducers 39 will be described as treatment ultrasound irradiation channels (hereinafter simply referred to as channels).
  • the therapeutic ultrasound beam 404a emitted from each channel Cij is focused on the focal point 403.
  • the transmission angle of the plurality of therapeutic ultrasonic beams 404a can be controlled and focused on the focal point 403.
  • the focus 403 can be moved in three dimensions (front and rear, left and right, depth direction) by phase control of therapeutic ultrasound.
  • Fig. 5 shows the basic pattern of HIFU irradiated from the therapeutic probe 37a.
  • the HIFU repeatedly irradiates a treatment ultrasonic cycle that irradiates a heated ultrasonic wave 802 having a lower intensity than the trigger ultrasonic wave 801 following a trigger ultrasonic wave 801 having a high ultrasonic intensity.
  • the focus 403 is irradiated with HIFU for a total set time T for treatment.
  • each channel Cij is basically driven by the same therapeutic ultrasonic cycle to perform the treatment.
  • the trigger ultrasonic wave 801 is an instantaneous high-intensity pulse for generating bubbles
  • the heating ultrasonic wave 802 is composed of a continuous wave (CW) that destroys the generated bubbles and induces thermal coagulation.
  • CW continuous wave
  • the trigger ultrasonic wave 801 having the amplitude a1 is irradiated with the trigger time t1 (for example, several ⁇ sec), and then the heating ultrasonic wave 802 having the amplitude a2 is irradiated with the heating time t2.
  • This therapeutic ultrasound cycle is defined by the number of repetitions per second: Pulse Repetition Frequency (PRF) and the total set time T, which defines the HIFU intensity. That is, by controlling the amplitude and frequency of the trigger ultrasonic wave 801 and the heating ultrasonic wave 802 and their irradiation time, the HIFU intensity or the intensity of the therapeutic ultrasonic beam 404a (the therapeutic ultrasonic energy) can be controlled.
  • PRF Pulse Repetition Frequency
  • the trigger time t1 is set long and the PRF is set small, bubbles are easily generated.
  • the ablation range at the focal point 403 of the treatment target region becomes large and the treatment effect can be improved. That is, when the trigger ultrasonic wave is irradiated for PRF times x trigger time t1 per second, the cavitation occurrence rate is improved in proportion to the irradiation time of the trigger ultrasonic wave 801. Concerns about skin burns due to the heat of bubble destruction increase.
  • Patent Document 2 introduces the content of transmitting a pulse for generating bubbles and a pulse for increasing the diameter of the generated bubbles to a target region of a living body. As a result, it is possible to realize an embolization treatment that is minimally invasive and has a high blood flow blocking effect.
  • the HIFU beam 404 which is a bundle of therapeutic ultrasound beams 404a transmitted from each treatment transducer 39 of the treatment probe 37a, is focused on a focal point 403 and irradiated.
  • the range of treatment (cauterization) by irradiating one focal point 403 with HIFU is, for example, a diameter ⁇ of 5 to 10 mm. Therefore, when performing treatment with HIFU irradiation, the position of the focal point 403, which is the irradiation position of the HIFU beam 404, is sequentially moved as shown in FIG. Irradiate the beam 404. At that time, the state of treatment is monitored by an ultrasonic image captured by the imaging probe 37b attached to the center of the ultrasonic probe 37.
  • Non-Patent Document 1 Acoustic Radiation Force Impulse
  • the surgeon 29 adjusts the focus 403 of the treatment probe 37a connected to the HIFU controller 49 via the power amplifier 50 with respect to the patient 24 to one point of the treatment target site (target).
  • the position of the ultrasonic probe 37 is detected from the position of the pointer 27 with an infrared camera attached to the position detection device 9, and simulated images of the focal point 403 and the HIFU beam 404 of the treatment probe 37a are displayed on the navigation screens 531 to 534. Each is displayed.
  • the surgeon 29 operates the position of the ultrasonic probe 37 while looking at the navigation screens 531 to 534 to adjust the focus 403 of the treatment probe 37a to the target.
  • a three-dimensional volume rendering screen 534 can be used in addition to the navigation screens 531 to 533 having three-axis cross sections (Axial, Sagittal, and Coronal), but the navigation screen can be freely customized.
  • the operator 29 previously sets a treatment planned area 536 that is a treatment target site, a warning area, a margin, and the like in advance.
  • the navigation image can be configured by using three-dimensional image volume data captured by a medical image apparatus such as an MRI apparatus in addition to an ultrasonic image apparatus.
  • preoperative planning (surgery simulation) information 537 can be superimposed on the navigation image.
  • the treatment scheduled area 536 can be displayed three-dimensionally. Further, it is possible to provide a function of issuing a warning when entering the treatment scheduled area 536 or warning area on the navigation screens 531 to 534. In addition, for example, when the treatment scheduled area 536 enters the warning area, a function of automatically changing an image on the navigation screen and a treatment parameter can be provided.
  • the above-mentioned information is fed back continuously and in real time to the ultrasound treatment system, and the same MRI imaging including a simulated image of the ultrasound probe 37 in the treatment target region A cross-sectional image 508 and an ultrasonic image 509 can be displayed. That is, the surgeon 29 can use the two-dimensional real-time image obtained by the MRI apparatus 1 and the three-dimensional image information obtained by navigation for treatment as necessary.
  • a real-time dynamic imaging method called fluoroscopy fluoroscopic imaging
  • fluoroscopy by repeating imaging and image reconstruction with a period of about 1 second or less, it can be used to extract the dynamics of internal tissues and grasp the position of an instrument inserted from the outside like a fluoroscopic imaging. Generate and display dynamic images. This application is also applied to three-dimensional high-speed imaging.
  • FIG. 8 shows a flowchart of a processing procedure of an embodiment of the ultrasonic therapy system of the present invention.
  • a plurality of three-dimensional volume imaging and three-dimensional image reconstruction are performed using the MRI apparatus 1 (S1).
  • a specific area (segmentation) in which treatment is indispensable is depicted from the three-dimensional image by image processing (S2).
  • image processing S2
  • S3 the area that allows HIFU irradiation and the area that cannot be irradiated are discriminated and set
  • S4 a treatment scheduled area and a margin area including them.
  • the HIFU treatment plan is executed to simulate the position of the ultrasonic probe 37 (S6).
  • the operation support guidance function such as navigation is activated (S7), and the operation is started (S8).
  • a simulated image showing the focal position 403 of the treatment probe 37a and the HIFU beam bundle 404 that is the HIFU irradiation path is superimposed on the navigation image (S9).
  • the operator 29 guides the ultrasonic probe 37 to the planned treatment position (target position) using the images and numerical information displayed on the monitor 38 and the GUI (S10).
  • the position of the target is confirmed with an MR image (for example, a blood flow image) or an ultrasonic image (elastography) (S11).
  • the body surface (skin) of the living body is drawn from the ultrasonic image, MR image or other medical image (S12).
  • the position of the focal point 403 is drawn from the position of the treatment probe 37a detected by the position detection device 9, and the distance from the focal point 403 to the body surface (skin) is calculated (S13).
  • the position data of each treatment transducer 39 stored in advance is determined, and a simulated image of the treatment ultrasound beam 404a transmitted from each treatment transducer 39 and reaching the focal point 403 is at least an ultrasound image and an MR image.
  • the distance from the focal point 403 to the body surface (skin) can be calculated by drawing the image on another medical image. An example of this image is shown in FIG.
  • step S14 the division number N of the channel group G of the channels to be irradiated by dividing the trigger ultrasonic wave and the heating ultrasonic wave is determined according to the distance from the focal point 403 to the body surface (skin) (S14). Specifically, as shown in FIG. 10, it is determined whether or not the distance L from the focal point 403 to the body surface 501 is within a preset distance range (minimum value Xmin to maximum value Xmax). For example, the division number N of the channel group G of the channel is determined according to the distance L. For example, as shown in FIGS.
  • the maximum value Xmax is a distance at which there is no risk of skin burns even when a heating ultrasonic wave is applied following a trigger ultrasonic wave from all of a plurality of channels. Therefore, if L> Xmax, the distance is not required to irradiate the trigger ultrasonic wave and the heating ultrasonic wave separately. That is, the therapeutic ultrasound beam 404a heading from each channel toward the focal point is formed in a tapered pyramid shape as it approaches the focal point 403. Therefore, as the focal point 403 is approached, the cross-sectional area of the therapeutic ultrasonic beam 404a is reduced, and the energy density of the therapeutic ultrasonic beam 404a is increased.
  • the maximum value Xmax is set based on the fact that the body surface 501 is far away from the focal point 403 and the energy density of the treatment ultrasonic beam 404a on the body surface is so low that there is no possibility of causing skin burns.
  • the minimum value of the distance from each channel of the treatment probe 37a to the body surface 501 is set, and if the distance from each channel to the body surface 501 is equal to or less than the minimum value, It may be determined that the energy density of the therapeutic ultrasound beam 404a is low enough not to cause skin burns.
  • the minimum value Xmin is a distance that may cause skin burn even when the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated. That is, when the body surface 501 is close to the focal point 403 and is equal to or less than the minimum value Xmin, not only the energy density of the therapeutic ultrasound beam 404a is increased, but also the wavefront of the trigger ultrasound or heating ultrasound emitted from a plurality of channels is used. The degree of coincidence increases and the intensity of the therapeutic ultrasound beam 404a increases. For this reason, even if the channel for irradiating the trigger ultrasonic wave and the channel for irradiating the heating ultrasonic wave are differentiated and divided irradiation is performed, this is the distance where the possibility of skin burn remains.
  • the channel group G is switched to irradiate the trigger ultrasound, and then all the remaining channel groups G are irradiated.
  • monitoring is performed with MR images or ultrasonic diagnostic images, and the progress of treatment is recorded as appropriate (S15).
  • the treatment process by the treatment ultrasonic cycle is repeated a plurality of times for each focal point 403 of the treatment target region, and after confirming the treatment effect (S16), the necessity of additional treatment is confirmed (S17), and if additional treatment is necessary, step S9 If it is not necessary, the process ends (S18).
  • the processing from steps S12 to S14 in FIG. 8 is executed by the HIFU controller 49, which is a treatment probe control unit.
  • step S14 It is determined whether or not the distance L from the focus 403 calculated in step S13 to the body surface 501 is equal to or greater than a maximum value Xmax of a predetermined distance range (S21). If it is determined in step S21 that L ⁇ Xmax, the process proceeds to step S22 to notify the user of setting conditions related to the HIFU treatment by image information or audio information to prompt the final judgment or determination of the treatment. Return to S15. That is, if L ⁇ Xmax, it is allowed to repeatedly irradiate the focal point 403 with HIFU composed of trigger ultrasound and heating ultrasound from all channels.
  • the HIFU of FIG. 5 consisting of trigger ultrasound and heating ultrasound is referred to as a basic treatment ultrasound cycle.
  • step S21 if it is determined in step S21 that the distance L is less than the maximum value Xmax, it is determined whether or not the distance L is less than the minimum value Xmin that may cause a burn on the body surface (skin) (S23). If this determination is L ⁇ Xmin, the user is notified that HIFU irradiation is not possible, and the movement of the treatment probe 37a is recommended (S24), and the process proceeds to step S9.
  • the present invention in which the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated from different channels is applied to avoid skin burns (S25).
  • step S26 of FIG. 9 the therapeutic ultrasonic energy irradiated to the focal point 403 is compensated for the basic therapeutic ultrasonic energy which is a target value. That is, if the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated from different channels, there is a channel that does not irradiate the trigger ultrasonic wave or the heating ultrasonic wave, so that the therapeutic ultrasonic energy irradiated to the focal point 403 decreases. Even when such a divided therapeutic ultrasonic cycle is repeated, the time for the therapeutic ultrasonic energy irradiated to the focal point 403 to reach the target value becomes longer. Therefore, in step S26, compensation processing is performed to increase the unit therapeutic ultrasonic energy irradiated from each channel so that the therapeutic ultrasonic energy irradiated to the focal point 403 is maintained at the target value.
  • step S26 the therapeutic ultrasonic energy (intensity) of each channel after compensation is compared with a predetermined upper limit value Ecmax to determine whether or not there is a possibility of skin burns. If there is a concern about skin burns, the process proceeds to step S28, notifying the user that HIFU irradiation is not possible, recommending movement of the treatment probe 37a, and proceeding to step S9. On the other hand, even if the intensity of the treatment ultrasound for each channel is compensated, if there is no concern about skin burns, the user is notified of the condition after the setting change and prompts the final decision on treatment (S22).
  • FIG. 12 shows an embodiment of the present invention in which a plurality of n channels of the treatment probe 37a are divided into a channel group G including a plurality of m channels, and a trigger ultrasonic wave and a heating ultrasonic wave are divided into the channel group G and irradiated. 1 is shown.
  • FIG. 10 (a) if the distance L from the focal point 403 to the body surface 501 is within the range of Xmin ⁇ L ⁇ Xmax, a channel including a plurality of n channels according to the distance L is included. Divide into groups G 1 to G 4 .
  • a plurality of intermediate distances Xi (i is a natural number) are set in the range of Xmin to Xmax, and the division number N (n / m) of the channel group G is uniquely determined for each distance section Xi to which the distance L belongs.
  • the channel group G can be divided and set including channels that are not adjacent to each other.
  • the division of the channel group G is automatically performed according to a procedure set in advance by the HIFU controller 49.
  • the channel groups G 1 ⁇ G 2 ⁇ G 3 ⁇ G 4 to which the trigger ultrasonic waves are irradiated are sequentially switched, and heating is performed from the remaining G (N ⁇ 1) channel groups that are not irradiated with the trigger ultrasonic waves.
  • Irradiate with ultrasonic waves That is, in Example 1, the basic treatment ultrasonic cycle shown in FIG. 5 is divided into different channel groups by the divided treatment ultrasonic cycle in which the pulsed trigger ultrasonic wave 801 and the continuous wave heating ultrasonic wave 802 are separated. Divide and irradiate from G 1 to G 4 . Thereby, skin burns can be avoided and therapeutic ultrasound can be irradiated to the focal point. It goes without saying that the split treatment ultrasound cycle is repeated until the treatment ultrasound energy irradiated to the focal point 403 reaches a target value.
  • the division number N of the channel group G can be obtained using a graph set as shown in FIG. 11 (a), for example.
  • the horizontal axis represents the distance L from the focal point to the body surface
  • the vertical axis represents the division number N of the channel group G.
  • the division number N of the channel group G may be set to 1/4 in advance.
  • the division number N of the channel group G on which the trigger ultrasonic waves are divided and irradiated automatically can be determined by the HIFU controller 49.
  • Compensation of therapeutic ultrasonic energy for each channel will be described based on examples.
  • the energy of the trigger ultrasonic wave is multiplied by 4 and the energy of the heated ultrasonic wave is multiplied by 4/3, so that the energy of the target basic treatment ultrasonic cycle can be irradiated (injected) to the focal point 403.
  • a plurality of n channels are divided into a plurality of N channel groups G having a plurality of m channels, and further, a trigger ultrasonic wave is irradiated from one channel group G, and heating is performed from the remaining (N-1) channel groups G.
  • the therapeutic ultrasound cycle that splits and irradiates the ultrasound is less than the energy of the basic therapy ultrasound cycle.
  • the therapeutic ultrasonic energy E of each channel unit of the divided therapeutic ultrasonic cycle can be expressed by Expression (1).
  • Ec [ ⁇ (e 1 ⁇ t 1 ) 1 / N ⁇ ⁇ N + ⁇ (E 2 ⁇ t 2 ) ⁇ (N ⁇ 1) / N ⁇ ⁇ 1 / N] PRF (2)
  • a setting curve 104 in FIG. 11A is a graph of Expression (2).
  • the therapeutic ultrasonic energy compensation value Ec of each channel unit of the present invention is not limited to the above formula (2), but the frequency of the trigger ultrasonic wave is changed as shown by Ec ′ shown in the following formula (3). Also good.
  • the frequency adjustment coefficient k of the trigger ultrasound is changed, the trigger time t 1 becomes 1 / k, and when the treatment ultrasound cycle time is constant, the heating time t 2 is automatically changed to t 3 .
  • Ec ′ ⁇ (e 1 ⁇ t 1 / k) + (e 2 ⁇ t 3 ) ⁇ PRF (3)
  • the compensation of therapeutic ultrasonic energy for each channel can be automatically performed by the HIFU controller 49 according to the setting curve 106 shown in FIG. 5B, the horizontal axis represents the division number N of the channel group G that irradiates the trigger ultrasonic wave, and the vertical axis represents the ultrasonic intensity (energy) of the channel alone.
  • the curve in the figure is a setting curve 106 set in advance to determine the ultrasonic intensity (energy) of a single channel corresponding to the division number N of the channel group G.
  • the setting curve 104 in FIG. An intersection 107 with the setting curve 106 corresponding to the division number N of the channel group G to be irradiated with the trigger ultrasound on the horizontal axis is obtained.
  • the therapeutic ultrasonic energy E (or E ′) of each channel unit on the vertical axis corresponding to the intersection 107 is obtained.
  • Emax on the vertical axis in FIG. 11 (b) is the upper limit value of the treatment ultrasonic energy E in units of channels, and the trigger ultrasonic energy equal to or higher than Emax is a value that may cause spot-like body surface burns. Is set.
  • the intersection 108 with the setting curve 106 corresponding to Emax corresponds to the division number Nmax of the maximum channel group G that cannot further divide the channel group G. Therefore, the hatched area in FIG. 11 (b) is a range where HIFU irradiation is possible. If it is within this range, a message “HIFU irradiation is possible” is finally displayed to the user, and HIFU treatment is performed according to the user instruction.
  • the treatment ultrasound energy input to the focal point is reduced by the amount corresponding to the channel group G that is not irradiated with the trigger ultrasound or the heating ultrasound.
  • the treatment ultrasonic energy that is reduced by the divided irradiation is compensated, the treatment ultrasonic energy is increased and compensated for each channel unit, so that skin burn can be avoided, In addition, it is possible to suppress the lengthening of the HIFU treatment time.
  • FIG. 13 shows a second embodiment of the present invention in which the division form of the channel group G of the first embodiment is changed.
  • the channel group G is composed of a plurality of m channels included in the two fan-shaped regions.
  • the same effect as in the first embodiment can be obtained.
  • the channel group G is separated in the phase angle direction (circumferential direction) between the two fan-shaped regions irradiated with the trigger ultrasonic waves, it is possible to reduce damage in adjacent regions.
  • FIG. 14 shows a third embodiment of the present invention in which the division form of the channel group G of the first embodiment is changed.
  • the channels of two adjacent fan-shaped regions are divided as a channel group G.
  • a part of the channel group G composed of two adjacent fan-shaped regions (two channels on the center side) is shifted in the circumferential direction, that is, the channel in the central region and the channel in the outer region are shifted in the circumferential direction. It is a feature. According to the present embodiment, the same effect as in the first embodiment can be obtained.
  • a plurality of n channels of the treatment probe 37a according to the fourth embodiment of the present invention are divided into a channel group G including a plurality of m channels, and a trigger ultrasonic wave and a heating ultrasonic wave are divided into the channel group G.
  • the figure to irradiate is shown.
  • the distance L falls within the range of Xmin ⁇ L ⁇ X2, as shown in FIG. 10 (b).
  • the number of divisions N of the channel group G is increased to avoid skin burns.
  • the order of the channel group G that irradiates the trigger ultrasound according to the divided therapy ultrasound cycle is not the phase of the adjacent channel group G but the phase of the concave spherical surface of the ultrasound probe 37a.
  • the channel group G is 180 ° apart in angle. Thereby, damage to the body surface corresponding to the adjacent channel group G can be reduced.
  • the treatment ultrasonic energy for each channel is compensated for by heating the ultrasonic wave by compensating the trigger ultrasonic energy by multiplying the amplitude of the trigger ultrasonic wave by 8 as shown in Equation (2). It is necessary to supplement the heating ultrasonic energy by multiplying the amplitude of the sound wave by 8/7. Also, as shown in FIG. 15, the split therapy ultrasound cycle will be repeated at least 8 times.
  • FIG. 16 shows a diagram in which the trigger ultrasonic wave and the heating ultrasonic wave according to the fifth embodiment of the present invention are divided into channel groups G and irradiated.
  • each channel group G is configured by appropriately shifting the positions of ten channels belonging to one channel group G in the phase direction (circumferential direction). In other words, the channel group G is configured by selecting channels arranged in a circle from the outside toward the center.
  • FIG. 17 shows a diagram in which the trigger ultrasonic wave and the heating ultrasonic wave according to the sixth embodiment of the present invention are divided into channel groups G and irradiated.
  • the present embodiment is different from the fourth embodiment in that the channel group G in the fourth embodiment shown in FIG.
  • the order of the channel group G to which the trigger ultrasound is irradiated can be arranged in the arrangement of the concave spherical surface of the ultrasonic probe 37a instead of the adjacent channel group G.
  • the channel group G is as far away as possible. Thereby, damage to the body surface corresponding to the adjacent channel group G can be reduced.
  • FIG. 18 shows a seventh embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave of the present invention are divided into channel groups G.
  • the treatment ultrasonic energy compensation for each channel unit compensates the trigger ultrasonic energy by multiplying the amplitude of the trigger ultrasonic wave by 20, for example, as shown in the equation (2). It is important to adopt in consideration of the effect of sound pressure due to ultrasonic waves on the body surface and the like. For example, considering the extension of the trigger time (irradiation time) and the compensation of the amplitude, the damage to the skin can be reduced and the minimally invasive can be realized while maintaining the therapeutic effect.
  • the present invention divides a plurality of channels (therapeutic transducer 39) into a channel for irradiating a trigger ultrasonic wave and a channel for irradiating a heating ultrasonic wave, and irradiates the trigger ultrasonic wave every time the treatment ultrasonic cycle is repeated. It is characterized by switching channels to be performed.
  • the present invention is characterized in that the channels for transmitting the trigger ultrasonic wave and the heating ultrasonic wave are different.
  • the propagation path (ultrasonic beam) of the trigger ultrasonic wave in the vicinity of the body surface and the propagation path (ultrasonic beam) of the heating ultrasonic wave are made different for each treatment ultrasonic cycle.
  • the pulsed trigger ultrasound is irradiated on or near the body surface, it is extremely short (for example, on the order of ⁇ sec), and the heating time of the heating ultrasound is longer than that of the trigger ultrasound.
  • the heating time of the heating ultrasound is longer than that of the trigger ultrasound.
  • the focal point is irradiated from each channel compared to the case where the trigger ultrasonic wave and the heating ultrasonic wave are irradiated to the focal point from all channels.
  • the therapeutic ultrasonic energy per therapeutic ultrasonic cycle decreases. Therefore, when carrying out the present invention, the HIFU controller 49, which is a treatment probe control unit, matches the trigger ultrasonic wave constituting the treatment ultrasonic cycle according to the target value of the treatment ultrasonic energy irradiated toward the focal point 403. Compensates for the ultrasonic energy of the heated ultrasound.
  • the target value of therapeutic ultrasonic energy can be the basic therapeutic ultrasonic energy that irradiates the focused ultrasonic wave toward the focal point 403 following the trigger ultrasonic wave from each channel.
  • the HIFU controller 49 measures the distance L from the focal point 403 to the body surface 501 of the living body, and performs divided irradiation when the distance L is within a predetermined minimum value Xmin to maximum value Xmax ⁇ . When the distance L exceeds the maximum value Xmax, it is possible to perform basic irradiation that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all channels instead of the divided irradiation.
  • the arrangement configuration image of the plurality of channels of the treatment probe 37a is displayed on the monitor 38, and the channel that irradiates the trigger ultrasonic wave toward the focal point 403 is different from the channel that irradiates the heating ultrasonic wave toward the focal point 403. It is preferable to display in a display form. According to this, the user can easily confirm the content of the divided irradiation.
  • FIG. 19 shows a GUI display example at the time of surgery / treatment of the present invention.
  • the 3D imaging button 1201 When the 3D imaging button 1201 is pressed, the Axial section 1231, Sagittal section 1232, Coronal section 1233, and Volume Rendering screen 1234 are reconfigured. Is done. Further, by depressing the HIFU irradiation enable / disable area setting button 1203, the ultrasound access disabled area 1240 is identified in addition to the area 1219 to be treated with respect to the drawn segmentation information. In addition, by pressing the treatment plan / margin setting button 1204, the treatment route 1238 can be calculated in advance, and guidance can be provided along the treatment route.
  • a target 1219 that is a tumor region (treatment region) and a margin region 1220 including them are set.
  • a treatment parameter setting button 1205 a treatment parameter for the region can be input.
  • Specific input values include the type, shape, output intensity, and unit output intensity for each channel of the ultrasonic probe 37.
  • a navigation button 1206 a surgical support function such as equipment necessary for treatment and navigation operates in conjunction with each other. The position of the HIFU probe 37 is detected and superimposed on the Axial section 1231, the Sagittal section 1232, the Coronal section 1233, and the VolumeingRendering screen 1234.
  • the surgeon guides the ultrasonic probe 37 with reference to the treatment path 1238 obtained in advance.
  • the past path of the ultrasonic probe 37 can be displayed, and the information screen 1225 displays the difference between the tumor area and the treatment area as the log information in addition to the treatment progress / biological information, the number of treatments, the time, the ratio, the number of remaining treatments.
  • the schedule can also be displayed in real time as surgery information.
  • the channel group division calculation button 1207 is pressed to measure the distance from the HIFU focal point 403 to the surface 501, and the channel group is divided using the graph of FIG. To compensate.
  • the calculation result is displayed not only as the number of divisions 1212 as the probe information 1211 but also as an animation display 1213 using a preset parameter 1214.
  • the ultrasound inaccessible area 1240 when there is an ultrasound path in the ultrasound inaccessible area 1240, it also has a warning function that prompts the probe to change its position.
  • the information is visually transmitted to the user.
  • the treatment ultrasound 702 and the image ultrasound 601 are alternately illuminated, and the treatment area 1218 for the target 1219 is displayed in real time on the treatment information / ultrasound image, Various information and warning information can also be displayed on the treatment image.
  • a previously treated area 1218 that has been treated in the past is displayed in a superimposed manner, and a function that issues a warning when the planned margin area 1220 is exceeded or an abnormality occurs in the patient is automatically turned ON / OFF. You can also.
  • the specific area, the margin area, and the ARFI treatment planned area are displayed in the same manner, and images with different tissue contrasts are displayed.
  • the user determines whether to perform retreatment from the image information before and after treatment 1231-1234 and the operation information 1225, and retreats as necessary.
  • Another advantage of MRI is that it can be imaged deep into the body. As a result, the surgeon can move the surgical tool and perform additional treatment while viewing the previous treatment image.
  • the information before and after the treatment can be linked with the operation information 1225 in addition to the ultrasonic image 1217, the triaxial cross sections 1231 to 1233, the Volume Rendering image 1234, and the MRI image.
  • the therapeutic ultrasound probe supports not only manual operation but also machine operation using a manipulator.
  • the position information may be acquired from the position detection device 9 or may be displayed as the three-dimensional displays 1231 to 1234 using the coordinates of the manipulator.

Abstract

An ultrasound therapeutic device has a therapeutic probe (37a). The therapeutic probe (37a) is divided into multiple groups of channels (G1-G4). Each group of channels (G1-G4) has multiple therapeutic oscillators (39). The oscillators (39) belonging to a certain group of channels (G1) first emit a trigger ultrasonic wave (801) toward a focal point (403) in the body of a patient (24). The trigger ultrasonic wave (801) is in the form of pulses and the amplitude (a1) thereof is large. The trigger ultrasonic wave (801) produces bubbles at the focal point (403). The oscillators (39) belonging to the remaining groups of channels (G2-G4) next emit a heating ultrasonic wave (802) toward the focal point (403). The heating ultrasonic wave (802) is a continuous wave and the amplitude (a2) thereof is small. The heating ultrasonic wave (802) destroys the bubbles produced by the trigger ultrasonic wave (801). The heat generated accompanying said destruction induces coagulation of the tissue. The trigger ultrasonic wave (801) and the heating ultrasonic wave (802) reach the same focal point (403) through different parts of the skin. Burns to the skin are thereby avoided.

Description

超音波治療装置及び超音波治療システムUltrasonic therapy apparatus and ultrasonic therapy system
 本発明は、超音波治療装置及び超音波治療システムに係り、高密度焦点式超音波(HIFU:High Intensity Focused Ultra sound)を生体に設定される対象部位に照射して治療する超音波治療装置及び超音波治療システムに関する。 The present invention relates to an ultrasonic therapy apparatus and an ultrasonic therapy system, and relates to an ultrasonic therapy apparatus for irradiating a target site set in a living body with high-intensity focused ultrasound (HIFU: High Intensity Focused Ultra sound), and The present invention relates to an ultrasonic therapy system.
 HIFU治療は、高密度に集束した超音波を治療対象部位に設定した焦点に照射して病変部を局所的に加熱し、その病変部の組織を熱凝固させて血流の遮断効果が高い塞栓治療を実現する侵襲性の低い治療として知られている。例えば、生体の直腸内に治療プローブを挿入し、治療対象部位の病変部にHIFUを照射して治療することが提案されている。 In HIFU treatment, an embolus with a high blood flow blocking effect is achieved by irradiating the focus set on the treatment site with high-density focused ultrasound to locally heat the lesion and thermally coagulating the tissue in the lesion. It is known as a less invasive treatment for realizing the treatment. For example, it has been proposed to insert a treatment probe into the rectum of a living body and irradiate HIFU to the lesioned part at the site to be treated.
 また、特許文献1に紹介されているHIFUを用いた超音波治療装置は、マルチチャンネル発生器から供給される超音波の電気信号(以下、超音波信号という。)で複数の治療振動子(トランスジューサ)をそれぞれ駆動する治療プローブが提案されている。これによれば、各治療振動子から発する超音波の振幅、周波数及び位相をそれぞれ独立に制御することにより、焦点位置を移動させて広範囲の治療対象部位を治療することができる。 In addition, the ultrasonic treatment apparatus using HIFU introduced in Patent Document 1 is an ultrasonic electrical signal (hereinafter referred to as an ultrasonic signal) supplied from a multi-channel generator, and a plurality of treatment transducers (transducers). ) Have been proposed. According to this, by controlling the amplitude, frequency, and phase of the ultrasonic wave emitted from each treatment vibrator independently, it is possible to treat a wide range of treatment target parts by moving the focal position.
 一般に、HIFU治療は、超音波強度が強いパルス状のトリガ超音波を照射した後、続いてトリガ超音波より強度が弱い連続波(CW)の加熱超音波を所定時間照射する治療超音波サイクルを繰り返すことにより、所定の治療超音波エネルギを治療対象部位に照射して治療する。 Generally, in HIFU treatment, a pulsed trigger ultrasonic wave with high ultrasonic intensity is irradiated, and then a continuous ultrasonic wave (CW) heating ultrasonic wave with a lower intensity than the trigger ultrasonic wave is irradiated for a predetermined time. By repeating, treatment is performed by irradiating a treatment target site with predetermined therapeutic ultrasonic energy.
特許第4519905号公報Japanese Patent No. 4519905 特開2011-115461号公報JP 2011-115461 A
 しかし、特許文献1では、HIFUの照射経路上にある生体表面(皮膚)で火傷が発生するおそれを回避することについては考慮されていない。 However, Patent Document 1 does not consider avoiding the risk of burns occurring on the surface of the living body (skin) on the irradiation path of HIFU.
 すなわち、特許文献1では、マルチチャンネルを構成する複数の治療振動子の全てから、焦点に向けてトリガ超音波を照射し、続いて加熱超音波を照射している。通常、治療プローブと生体表面との間に、例えば脱気水を満たした水袋を介在させてHIFUを照射する。この場合、水と生体表面(皮膚)の音響インピーダンスが極端に違うため、水と生体表面の境界でトリガ超音波が反射して超音波エネルギが蓄積され、キャビテーション現象により泡が発生する。その泡に続いて加熱超音波が照射されると泡が破壊され、その破壊熱により皮膚が火傷するおそれがある。皮膚火傷が生じると、治療超音波の伝搬が阻害されて治療対象部位に治療超音波が照射されなくなるだけでなく、正常組織へのダメージが問題となる。 That is, in Patent Document 1, a trigger ultrasonic wave is irradiated from all of a plurality of treatment vibrators constituting a multichannel toward a focal point, and then a heating ultrasonic wave is irradiated. Usually, HIFU is irradiated between a treatment probe and a living body surface with, for example, a water bag filled with deaerated water interposed therebetween. In this case, since the acoustic impedances of water and the surface of the living body (skin) are extremely different, the trigger ultrasonic waves are reflected at the boundary between the water and the surface of the living body to accumulate ultrasonic energy, and bubbles are generated due to the cavitation phenomenon. When heated ultrasonic waves are applied subsequent to the bubbles, the bubbles are destroyed, and the skin may be burned by the heat of destruction. When skin burns occur, not only is the propagation of the treatment ultrasound inhibited and the treatment ultrasound site is not irradiated with the treatment ultrasound, but also damage to normal tissue becomes a problem.
 本発明が解決しようとする課題は、皮膚火傷のおそれを効果的に回避することができる超音波治療装置及び超音波治療システムを提供することにある。 The problem to be solved by the present invention is to provide an ultrasonic treatment apparatus and an ultrasonic treatment system that can effectively avoid the risk of skin burns.
 上記の課題を解決するため、本発明の超音波治療装置及び超音波治療システムは、治療超音波を発生する治療振動子からなるチャンネルを複数有してなる治療プローブと、前記治療プローブから生体の治療対象部位に設定される焦点に、トリガ超音波に続けて前記トリガ超音波より強度が弱い加熱超音波を照射する治療超音波サイクルを繰り返す治療プローブ制御部とを備え、前記治療プローブ制御部は、前記治療超音波サイクルごとに、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと、前記加熱超音波を前記焦点に向けて照射する前記チャンネルとを異ならせる分割照射を行うことを特徴とする。 In order to solve the above-described problems, an ultrasonic treatment apparatus and an ultrasonic treatment system according to the present invention include a treatment probe having a plurality of channels including treatment transducers that generate treatment ultrasonic waves, and a living body from the treatment probe. A treatment probe control unit that repeats a treatment ultrasonic cycle that irradiates a heating ultrasonic wave having a lower intensity than the trigger ultrasonic wave at a focal point set in a treatment target region, and the treatment probe control unit includes: The divided irradiation is performed so that the channel that irradiates the trigger ultrasonic wave toward the focal point and the channel that irradiates the heated ultrasonic wave toward the focal point are different for each treatment ultrasonic cycle. And
 すなわち、本発明は、複数のチャンネルを、トリガ超音波を照射するチャンネルと加熱超音波を照射するチャンネルとに分割し、治療超音波サイクルを繰り返す度にトリガ超音波を照射するチャンネルを切り替えることを特徴とする。つまり、一のチャンネルからトリガ超音波を照射し、続いて同一のチャンネルから加熱超音波を照射すると、トリガ超音波により発生した泡が加熱超音波に破壊されて泡の破壊熱が発生することに鑑み、本発明はトリガ超音波と加熱超音波を送出するチャンネルを異ならせたことを特徴とする。言い換えれば、体表面近傍におけるトリガ超音波の伝搬経路(超音波ビーム)と、加熱超音波の伝搬経路(超音波ビーム)を治療超音波サイクルごとに異ならせる。 That is, the present invention divides a plurality of channels into a channel for irradiating a trigger ultrasonic wave and a channel for irradiating a heating ultrasonic wave, and switching the channel for irradiating the trigger ultrasonic wave every time the treatment ultrasonic cycle is repeated. Features. In other words, when trigger ultrasonic waves are irradiated from one channel and subsequently heated ultrasonic waves are irradiated from the same channel, bubbles generated by the trigger ultrasonic waves are destroyed by the heated ultrasonic waves, and the heat of bubble destruction is generated. In view of the above, the present invention is characterized in that the channels for transmitting the trigger ultrasonic wave and the heating ultrasonic wave are different. In other words, the propagation path (ultrasonic beam) of the trigger ultrasonic wave in the vicinity of the body surface and the propagation path (ultrasonic beam) of the heating ultrasonic wave are made different for each treatment ultrasonic cycle.
 本発明のように、トリガ超音波と加熱超音波を送出するチャンネルを異ならせても、各チャンネルの超音波ビームは治療対象部位に設定された焦点に集束される。そして、トリガ超音波により焦点に発生した気泡に、異なる伝搬経路から加熱超音波が照射され、その気泡が破壊されることから、焦点部の組織が熱凝固して超音波治療を行うことができる。 As in the present invention, even if the channels for transmitting the trigger ultrasonic wave and the heating ultrasonic wave are different, the ultrasonic beam of each channel is focused on the focal point set in the treatment target region. The bubbles generated at the focal point by the trigger ultrasonic wave are irradiated with heating ultrasonic waves from different propagation paths, and the bubbles are destroyed, so that the tissue at the focal point can be thermally coagulated to perform ultrasonic treatment. .
 本発明によれば、効果的に皮膚火傷を回避できる。 According to the present invention, skin burns can be effectively avoided.
本発明の一実施形態の超音波治療システムの全体構成を示す図The figure which shows the whole structure of the ultrasonic treatment system of one Embodiment of this invention. 本発明の一実施形態の超音波治療装置のブロック構成図The block block diagram of the ultrasonic therapy apparatus of one Embodiment of this invention 本発明の一実施形態の超音波プローブの構成を説明する図The figure explaining the structure of the ultrasonic probe of one Embodiment of this invention 本発明の一実施形態の治療プローブの複数の治療振動子から送出される治療超音波ビームと、複数の治療振動子(チャンネル)の配置を示す図The figure which shows arrangement | positioning of the treatment ultrasonic beam and the some treatment vibrator | oscillator (channel) transmitted from the some treatment vibrator | oscillator of the treatment probe of one Embodiment of this invention. 治療超音波サイクルを説明する図Diagram illustrating treatment ultrasound cycle HIFU治療を説明する図Illustration explaining HIFU treatment 本発明の一実施形態の超音波治療システムのナビゲーションガイド表示機能を説明する図The figure explaining the navigation guide display function of the ultrasonic treatment system of one embodiment of the present invention 本発明の一実施形態の超音波治療システムの治療手順を示すフローチャートThe flowchart which shows the treatment procedure of the ultrasonic treatment system of one Embodiment of this invention. 図8のフローチャートに示した本発明の一実施形態の特徴部に係る部分の詳細なフローチャートFIG. 8 is a detailed flowchart of a portion related to the characteristic part of the embodiment of the present invention shown in the flowchart of FIG. 焦点から体表面までの距離に応じてトリガ超音波と加熱超音波を分割照射するチャンネル群の分割を説明する図The figure explaining division | segmentation of the channel group which divides and irradiates a trigger ultrasonic wave and a heating ultrasonic wave according to the distance from a focus to a body surface トリガ超音波と加熱超音波を分割照射するチャンネル群の分割数と、分割照射に係るチャンネル単位の治療超音波エネルギの補償値を求める方法を説明する図The figure explaining the method of calculating | requiring the compensation value of the treatment ultrasonic energy of the channel unit which divides and irradiates a trigger ultrasonic wave and a heating ultrasonic wave, and the channel unit which concerns on a division | segmentation irradiation 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例1を説明する図The figure explaining Example 1 which divides and emits the trigger ultrasonic wave and the heating ultrasonic wave which are the characteristics of this invention 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例2を説明する図The figure explaining Example 2 which divides and irradiates the trigger ultrasonic wave and heating ultrasonic wave which are the characteristics of this invention 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例3を説明する図The figure explaining Example 3 which divides and irradiates the trigger ultrasonic wave and heating ultrasonic wave which are the characteristics of this invention 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例4を説明する図FIG. 6 is a diagram for explaining a fourth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例5を説明する図FIG. 6 is a diagram for explaining a fifth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例6を説明する図FIG. 6 is a diagram for explaining a sixth embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention. 本発明の特徴であるトリガ超音波と加熱超音波を分割照射する実施例7を説明する図FIG. 6 is a diagram for explaining a seventh embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave are separately irradiated, which is a feature of the present invention. 本発明の超音波治療システムのグラフィックユーザインタフェイス(GUI)の表示の一例を示す図The figure which shows an example of the display of the graphic user interface (GUI) of the ultrasonic treatment system of this invention
 本発明に係る超音波治療装置は、治療超音波を発生する治療振動子からなるチャンネルを複数有してなる治療プローブと、前記治療プローブから生体の治療対象部位に設定される焦点に、トリガ超音波に続けて前記トリガ超音波より強度が弱い加熱超音波を照射する治療超音波サイクルを繰り返す治療プローブ制御部とを備え、前記治療プローブ制御部は、前記治療超音波サイクルごとに、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと、前記加熱超音波を前記焦点に向けて照射する前記チャンネルとを異ならせる分割照射を行うことを特徴とする。 The ultrasonic therapy apparatus according to the present invention includes a treatment probe having a plurality of channels including treatment transducers for generating a treatment ultrasonic wave, and a trigger ultrasound at a focus set from the treatment probe to a treatment target site of a living body. A therapeutic probe control unit that repeats a therapeutic ultrasonic cycle that irradiates a heating ultrasonic wave having a lower intensity than the trigger ultrasonic wave following the acoustic wave, and the therapeutic probe control unit performs the trigger ultrasonic cycle for each therapeutic ultrasonic cycle. The divided irradiation is performed such that the channel that irradiates the sound wave toward the focal point and the channel that irradiates the heating ultrasonic wave toward the focal point are different.
 また、前記治療プローブ制御部は、前記焦点に向けて照射する治療超音波エネルギの目標値に合わせて、前記治療超音波サイクルを構成する前記トリガ超音波と前記加熱超音波の超音波エネルギを補償することを特徴とする。 The treatment probe control unit compensates for the ultrasonic energy of the trigger ultrasonic wave and the heating ultrasonic wave constituting the therapeutic ultrasonic cycle according to a target value of the therapeutic ultrasonic energy irradiated toward the focal point. It is characterized by doing.
 また、前記治療超音波エネルギの目標値は、前記各チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本治療超音波エネルギであることを特徴とする。 Further, the target value of the therapeutic ultrasonic energy is basic therapeutic ultrasonic energy that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from each channel.
 また、前記治療プローブ制御部は、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする。 Further, the treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, When the measurement distance exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels. And
 また、前記治療プローブの複数のチャンネルの配置構成画像を表示するモニタを備え、該モニタには、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと前記加熱超音波を前記焦点に向けて照射する前記チャンネルとが、異なる表示形態で表示されることを特徴とする。 In addition, a monitor that displays an arrangement configuration image of the plurality of channels of the treatment probe is provided, and the monitor irradiates the trigger ultrasonic wave toward the focal point and the heating ultrasonic wave toward the focal point. The irradiation channel is displayed in a different display form.
 また、前記治療プローブは、半球状の凹面が同心円状の複数の円環領域に分割され、更に前記円環領域を径方向に分割されてなる複数の領域のそれぞれに前記チャンネルが形成され、前記各チャンネルの超音波送出面の面積が均等に形成されていることを特徴とする。 Further, the treatment probe is formed by dividing the hemispherical concave surface into a plurality of concentric annular regions, and further forming the channel in each of a plurality of regions obtained by dividing the annular region in the radial direction, The area of the ultrasonic wave transmission surface of each channel is formed uniformly.
 また、前記治療プローブ制御部は、前記複数のチャンネルを複数含むチャンネル群に分け、一の前記チャンネル群に属する前記チャンネルから前記トリガ超音波を前記焦点に向けて照射した後、続いて他の前記チャンネル群に属する前記チャンネルから前記加熱超音波を前記焦点に向けて照射する治療超音波サイクルを繰り返し、該治療超音波サイクルの繰返しごとに、前記トリガ超音波を照射する一の前記チャンネル群を他の前記チャンネル群の一に切り替えることを特徴とする。 In addition, the treatment probe control unit divides the plurality of channels into a channel group including a plurality of channels, irradiates the trigger ultrasonic wave from the channels belonging to one channel group toward the focal point, and then the other channels. A treatment ultrasonic cycle for irradiating the heating ultrasonic wave from the channels belonging to the channel group toward the focal point is repeated, and one channel group for irradiating the trigger ultrasonic wave for each repetition of the treatment ultrasonic cycle is changed to another channel group. Switching to one of the channel groups.
 また、前記治療プローブ制御部は、前記焦点に向けて照射する治療超音波エネルギの目標値に合わせて、前記トリガ超音波の振幅、周波数あるいは照射時間の少なくとも一つ、又は前記加熱超音波の振幅、周波数又は照射時間の少なくとも一つを調整して超音波エネルギを補償することを特徴とする。 In addition, the treatment probe control unit adjusts at least one of the amplitude, frequency, or irradiation time of the trigger ultrasonic wave or the amplitude of the heating ultrasonic wave in accordance with a target value of the therapeutic ultrasonic energy irradiated toward the focal point. The ultrasonic energy is compensated by adjusting at least one of the frequency and the irradiation time.
 また、前記治療超音波エネルギの目標値は、前記各チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基準治療超音波エネルギであることを特徴とする。 The target value of the therapeutic ultrasonic energy is a reference therapeutic ultrasonic energy that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from each channel.
 また、前記治療プローブ制御部は、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする。 Further, the treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, When the measurement distance exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels. And
 また、前記複数のチャンネルの数をnとし、前記チャンネル群が有する複数のチャンネルの数をmとした場合、前記治療プローブ制御部は、前記トリガ超音波の振幅をn/m倍すること、又は前記トリガ超音波の周波数を整数倍して前記トリガ超音波エネルギを調整することにより、前記治療超音波エネルギを補償することを特徴とする。 Further, when the number of the plurality of channels is n and the number of the plurality of channels of the channel group is m, the treatment probe control unit multiplies the amplitude of the trigger ultrasonic wave by n / m, or The therapeutic ultrasonic energy is compensated by adjusting the trigger ultrasonic energy by multiplying the frequency of the trigger ultrasonic wave by an integer.
 また、前記治療プローブ制御部は、前記治療超音波エネルギを補償すると、前記トリガ超音波のエネルギ又は前記加熱超音波のエネルギが予め設定された上限値を超える場合、その旨の警報を音声、音又は画像情報により報知することを特徴とする。 In addition, when the treatment probe energy compensation compensates the treatment ultrasound energy, if the energy of the trigger ultrasound or the energy of the heating ultrasound exceeds a preset upper limit value, a warning to that effect is given by sound or sound. Or it alert | reports by image information, It is characterized by the above-mentioned.
 また、前記上限値は、前記チャンネルと前記焦点との間に位置する前記生体の体表面の火傷を防止する値に設定されることを特徴とする。 In addition, the upper limit value is set to a value that prevents burns on the body surface of the living body located between the channel and the focal point.
 また、本発明に係る超音波治療システムは、治療超音波を発生する治療振動子からなるチャンネルを複数有してなる治療プローブと、前記治療プローブから生体の治療対象部位に設定される焦点に、トリガ超音波に続けて前記トリガ超音波より強度が弱い加熱超音波を照射する治療超音波サイクルを繰り返す治療プローブ制御部と、前記治療プローブの中心部に設けられ、前記生体との間で撮像用の超音波を送受する複数の撮像振動子を有してなる撮像プローブと、前記撮像プローブの受信信号から生成される前記焦点を含む超音波画像を生成する超音波画像構成部と、前記超音波画像を表示する表示部と、を備え、前記治療プローブ制御部は、前記治療超音波サイクルごとに、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと、前記加熱超音波を前記焦点に向けて照射する前記チャンネルとを異ならせる分割照射を行うことを特徴とする。 In addition, the ultrasonic treatment system according to the present invention includes a treatment probe having a plurality of channels including treatment transducers that generate treatment ultrasonic waves, and a focal point set from the treatment probe to a treatment target site of a living body. A treatment probe controller that repeats a treatment ultrasound cycle that irradiates a heating ultrasound that is less intense than the trigger ultrasound following the trigger ultrasound, and is provided at the center of the treatment probe for imaging with the living body An imaging probe having a plurality of imaging transducers for transmitting and receiving the ultrasound, an ultrasound image forming unit for generating an ultrasound image including the focal point generated from a reception signal of the imaging probe, and the ultrasound A display unit for displaying an image, and the treatment probe control unit irradiates the trigger ultrasonic wave toward the focal point for each treatment ultrasonic cycle. When, and performing fractionated irradiation made different and the channel for irradiating the heating ultrasound to the focal point.
 また、前記治療プローブの位置を検出する三次元位置検出器と、前記生体の前記治療対象部位を含めた三次元ボリューム画像データが蓄積されたメモリと、前記三次元位置検出器により検出された前記治療プローブの位置に基づいて、前記三次元ボリューム画像データから前記超音波画像の断層面に対応するナビゲーション画像を生成して前記表示部に表示するナビゲーション画像構成部とを有する医用画像装置を備え、前記医用画像装置は、前記各チャンネルと前記焦点を結ぶ治療超音波ビームの模擬画像を生成して前記ナビゲーション画像に重ねて描出する治療超音波ビーム描出部を備え、前記治療プローブ制御部は、前記表示部に表示された前記超音波画像に基づいて、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする。 A three-dimensional position detector for detecting the position of the treatment probe; a memory in which three-dimensional volume image data including the treatment target portion of the living body is stored; and the three-dimensional position detector A medical image device having a navigation image configuration unit that generates a navigation image corresponding to a tomographic plane of the ultrasonic image from the three-dimensional volume image data based on the position of the treatment probe and displays the navigation image on the display unit; The medical imaging apparatus includes a therapeutic ultrasound beam rendering unit that generates a simulated image of a therapeutic ultrasound beam that connects each channel and the focal point and overlays the navigation image, and the treatment probe control unit includes: Based on the ultrasonic image displayed on the display unit, the distance from the focal point to the body surface of the living body is measured, and the measurement distance Is performed within the range between a predetermined minimum value and a maximum value, and when the measurement distance exceeds the maximum value, the trigger is exceeded from all the channels instead of the divided irradiation. A basic irradiation is performed in which the heating ultrasonic wave is irradiated toward the focal point following the sound wave.
 以下、図面を用いて本発明を実施形態に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.
 図1に、本発明の超音波治療システムの全体構成を示す。医用画像装置の一つである磁気共鳴撮像(MRI)装置1は、例えば、垂直磁場永久磁石方式のMRI装置である。しかし、垂直磁場永久磁石方式のMRI装置に限られるものではなく、その他の方式のMRI装置、CT装置、PET装置、超音波画像装置、等々の周知の医用画像装置を適用することができる。 FIG. 1 shows the overall configuration of the ultrasonic therapy system of the present invention. A magnetic resonance imaging (MRI) apparatus 1 which is one of medical imaging apparatuses is, for example, a perpendicular magnetic field permanent magnet type MRI apparatus. However, the present invention is not limited to the vertical magnetic field permanent magnet type MRI apparatus, and other types of known medical image apparatuses such as an MRI apparatus, a CT apparatus, a PET apparatus, and an ultrasonic image apparatus can be applied.
 本実施形態のMRI装置1は、図示のように、垂直な静磁場を発生させる上部磁石3と下部磁石5、これら磁石を連結するとともに上部磁石3を支持する支柱7、位置検出デバイス9、アーム11、モニタ13、14、モニタ支持部15、基準ツール17、パーソナルコンピュータ19、ベッド21、MRI制御部23などを含んで構成されている。MRI装置1の図示しない傾斜磁場発生部は、領斜磁場を発生させる。更に、MRI装置1は、静磁場中の患者24に核磁気共鳴を生じさせるための図示しないRF送信器、患者24からの核磁気共鳴信号を受信する図示しないRF受信器を備えている。 As shown in the figure, the MRI apparatus 1 of the present embodiment includes an upper magnet 3 and a lower magnet 5 that generate a vertical static magnetic field, a support 7 that connects these magnets and supports the upper magnet 3, a position detection device 9, and an arm. 11, monitors 13 and 14, a monitor support unit 15, a reference tool 17, a personal computer 19, a bed 21, an MRI control unit 23, and the like. A gradient magnetic field generator (not shown) of the MRI apparatus 1 generates a gradient magnetic field. Further, the MRI apparatus 1 includes an RF transmitter (not shown) for generating nuclear magnetic resonance in the patient 24 in a static magnetic field and an RF receiver (not shown) for receiving a nuclear magnetic resonance signal from the patient 24.
 位置検出デバイス9は、超音波プローブ37の三次元の位置及び姿勢(以下、位置と総称する。)を検出する三次元位置検出器である。すなわち、位置検出デバイス9は、2台の赤外線カメラ25と、赤外線を発光する図示しない発光ダイオードを含んで構成され、超音波プローブ37に取り付けられたポインタ27の三次元位置を検出する。これにより、ポインタ27は、超音波プローブ37の位置及び傾き(以下、位置と総称する。)を検出する機能とともに、超音波画像とMR画像の撮像断層面の指示デバイスとして機能する。 The position detection device 9 is a three-dimensional position detector that detects the three-dimensional position and posture of the ultrasonic probe 37 (hereinafter collectively referred to as a position). That is, the position detection device 9 includes two infrared cameras 25 and a light emitting diode (not shown) that emits infrared light, and detects the three-dimensional position of the pointer 27 attached to the ultrasonic probe 37. Thus, the pointer 27 functions as an instruction device for an imaging tomographic plane of the ultrasonic image and the MR image, together with a function of detecting the position and inclination of the ultrasonic probe 37 (hereinafter collectively referred to as a position).
 また、位置検出デバイス9は、アーム11により移動可能に上部磁石3に連結され、MRI装置1に対する配置を適宜変更可能に形成されている。モニタ13には、術者29が把持するポインタ27により指示された患者24の断層面の超音波画像が表示される。モニタ13は、モニタ支持部15により赤外線カメラ25と同様に上部磁石3に連結されている。基準ツール17は、赤外線カメラ25の座標系とMRI装置1の座標系をリンクさせるもので、3つの反射球35を備え、上部磁石3の側面に設けられている。 Further, the position detection device 9 is connected to the upper magnet 3 so as to be movable by the arm 11, and is formed so that the arrangement with respect to the MRI apparatus 1 can be appropriately changed. On the monitor 13, an ultrasonic image of the tomographic plane of the patient 24 indicated by the pointer 27 held by the operator 29 is displayed. The monitor 13 is connected to the upper magnet 3 by the monitor support portion 15 in the same manner as the infrared camera 25. The reference tool 17 links the coordinate system of the infrared camera 25 and the coordinate system of the MRI apparatus 1, includes three reflection spheres 35, and is provided on the side surface of the upper magnet 3.
 パーソナルコンピュータ19には、赤外線カメラ25が検出して算出したポインタ27の位置情報が、超音波プローブ37の位置データとして、例えば、RS232Cケーブル33を介して送信される。MRI制御部23は、ワークステーションで構成され、図示しないRF送信器、RF受信器などを制御する。また、MRI制御部23は、パーソナルコンピュータ19と接続されている。パーソナルコンピュータ19では、赤外線カメラ25が検出して算出したポインタ27の位置データをMRI装置1での撮像範囲の位置データに変換し、MRI制御部23へ送信する。位置データは、撮像シーケンスの撮像断面の制御に反映される。新たな撮像断面で取得されたMR画像はモニタ13に表示される。また、MR画像は映像記録装置34に同時記録される。 The position information of the pointer 27 detected and calculated by the infrared camera 25 is transmitted to the personal computer 19 as position data of the ultrasonic probe 37, for example, via the RS232C cable 33. The MRI control unit 23 is composed of a workstation and controls an RF transmitter, an RF receiver, etc. (not shown). Further, the MRI control unit 23 is connected to the personal computer 19. In the personal computer 19, the position data of the pointer 27 detected and calculated by the infrared camera 25 is converted into position data of the imaging range in the MRI apparatus 1 and transmitted to the MRI control unit 23. The position data is reflected in the control of the imaging section of the imaging sequence. The MR image acquired with the new imaging section is displayed on the monitor 13. MR images are simultaneously recorded in the video recording device 34.
 超音波治療装置40は、ポインタ27が取り付けられた超音波プローブ37で得られた超音波画像を専用のモニタ38に映し出すようになっている。また、超音波画像はパーソナルコンピュータ19に転送されて画像処理が行われ、術者用モニタ13、14に映し出される。超音波プローブ37はMRI装置1の磁場内でも作動可能なセラミックなどの非磁性体で形成されている。また、超音波プローブ37は、図3で説明するように、HIFUの治療超音波を照射する治療プローブ37aと、超音波画像撮像用の撮像プローブ37bが備えられている。 The ultrasonic therapy apparatus 40 displays an ultrasonic image obtained by the ultrasonic probe 37 to which the pointer 27 is attached on a dedicated monitor 38. The ultrasonic image is transferred to the personal computer 19 for image processing and displayed on the operator monitors 13 and 14. The ultrasonic probe 37 is formed of a non-magnetic material such as ceramic that can be operated even in the magnetic field of the MRI apparatus 1. Further, as will be described with reference to FIG. 3, the ultrasound probe 37 includes a treatment probe 37a for irradiating HIFU treatment ultrasound and an imaging probe 37b for imaging ultrasound images.
 超音波治療装置40は、パーソナルコンピュータ等のコンピュータで形成されるHIFUコントローラ49と、HIFUコントローラ49から出力されるHIFUの超音波信号を増幅するパワーアンプ50を備えて構成されている。パワーアンプ50から出力される超音波信号は、超音波プローブ37の治療プローブ37aに供給される。これにより治療プローブ37aから患者24にHIFU(高密度焦点式超音波)を照射して、HIFU治療を行うようになっている。 The ultrasonic therapy apparatus 40 includes a HIFU controller 49 formed by a computer such as a personal computer, and a power amplifier 50 that amplifies the HIFU ultrasonic signal output from the HIFU controller 49. The ultrasonic signal output from the power amplifier 50 is supplied to the treatment probe 37a of the ultrasonic probe 37. As a result, HIFU treatment is performed by irradiating the patient 24 with HIFU (high density focused ultrasound) from the treatment probe 37a.
 図2に、超音波治療装置40の主要部のブロック構成を示す。超音波治療装置40は、撮像プローブ37bに超音波信号を送受信する超音波送受信部44と、受信信号に基づいてHIFUの焦点を含む二次元超音波画像(例えば、Bモード画像)或いは三次元超音波画像を構成する超音波画像構成部45と、超音波画像構成部45で構成された超音波画像を表示する表示部であるモニタ38、各構成要素を制御する超音波制御部47と、超音波制御部47に指示を与えるコントロールパネル48とから構成されている。 FIG. 2 shows a block configuration of the main part of the ultrasonic therapy apparatus 40. The ultrasonic therapy device 40 includes an ultrasonic transmission / reception unit 44 that transmits and receives an ultrasonic signal to and from the imaging probe 37b, and a two-dimensional ultrasonic image (for example, a B-mode image) including a HIFU focus based on the received signal. An ultrasonic image composing unit 45 that constitutes a sound image, a monitor 38 that is a display unit that displays an ultrasonic image composed of the ultrasonic image composing unit 45, an ultrasonic control unit 47 that controls each component, The control panel 48 is configured to give instructions to the sound wave control unit 47.
 超音波画像構成部45は、超音波送受信部44により撮像プローブ37bから患者24内に超音波を送受信して得られた反射エコー信号を用い、治療対象部位を含む二次元超音波画像或いは三次元超音波画像を形成してモニタ38に表示するようになっている。 The ultrasound image constructing unit 45 uses a reflected echo signal obtained by transmitting and receiving ultrasound from the imaging probe 37b to the patient 24 by the ultrasound transmitting / receiving unit 44, and a two-dimensional ultrasound image or a three-dimensional image including a treatment target region. An ultrasonic image is formed and displayed on the monitor 38.
 HIFUコントローラ49は、超音波治療装置40を超音波画像装置として動作させる場合は、超音波制御部47を介して撮像プローブ37bを駆動して患者24に撮像用の弱い超音波を照射する。すなわち、超音波制御部47は、超音波治療装置40を診断装置として動作させる場合は患者24に照射する超音波のエネルギを弱める。一方、超音波治療装置40を治療装置として動作させる場合は、超音波制御部47は、HIFUコントローラ49を介して、患者24に照射する超音波のエネルギを強めるように、照射する超音波の大きさを制御する。 The HIFU controller 49 drives the imaging probe 37b via the ultrasound control unit 47 to irradiate the patient 24 with weak ultrasound for imaging when the ultrasound therapy apparatus 40 is operated as an ultrasound imaging apparatus. That is, the ultrasound control unit 47 weakens the energy of the ultrasound irradiated to the patient 24 when operating the ultrasound therapy apparatus 40 as a diagnostic apparatus. On the other hand, when the ultrasonic therapy apparatus 40 is operated as a therapy apparatus, the ultrasonic control unit 47, via the HIFU controller 49, increases the intensity of the ultrasonic wave to be irradiated so as to increase the energy of the ultrasonic wave irradiated to the patient 24. To control.
 すなわち、HIFUコントローラ49は、本発明の治療プローブ制御部を構成し、超音波制御部47から出力される指令に基づいてHIFUの超音波信号をパワーアンプ50に出力する。パワーアンプ50は、HIFUの超音波信号を増幅して治療プローブ37aに出力する。これにより、治療プローブ37aから患者24の所定部位に治療用の強い超音波が照射される。つまり、HIFUコントローラ49とパワーアンプ50は、治療プローブ37aの治療超音波を発するチャンネルを構成する治療振動子39を複数備えた治療プローブ37aから照射される治療超音波ビームの強度(エネルギ)を、それぞれ制御するようになっている。なお、治療プローブ37aから発する超音波周波数は、2MHzや1MHzと必要に応じて使い分けることができ、HIFUコントローラ49により制御される。 That is, the HIFU controller 49 constitutes the treatment probe control unit of the present invention, and outputs an HIFU ultrasonic signal to the power amplifier 50 based on a command output from the ultrasonic control unit 47. The power amplifier 50 amplifies the ultrasonic signal of HIFU and outputs it to the treatment probe 37a. Thereby, a strong ultrasonic wave for treatment is irradiated to a predetermined part of the patient 24 from the treatment probe 37a. In other words, the HIFU controller 49 and the power amplifier 50 determine the intensity (energy) of the therapeutic ultrasound beam emitted from the treatment probe 37a including a plurality of treatment transducers 39 that constitute a channel for emitting treatment ultrasound of the treatment probe 37a. Each is to be controlled. Note that the ultrasonic frequency emitted from the treatment probe 37a can be selectively used as 2 MHz or 1 MHz as necessary, and is controlled by the HIFU controller 49.
 また、HIFUコントローラ49は、超音波治療装置40と連動しており、HIFU照射前後の治療対象部位の状態遷移が分かるようになっている。HIFU照射前には、超音波治療装置40内部で診断画像を用いて、患者24の体表面である皮膚を描出する画像処理を行う機能も有している。超音波治療装置40で生成した情報はHIFUコントローラ49と共有することができる。 In addition, the HIFU controller 49 is linked to the ultrasonic therapy apparatus 40 so that the state transition of the treatment target site before and after the HIFU irradiation can be understood. Before the HIFU irradiation, it also has a function of performing image processing for rendering the skin, which is the body surface of the patient 24, using a diagnostic image inside the ultrasonic therapy apparatus 40. Information generated by the ultrasonic therapy apparatus 40 can be shared with the HIFU controller 49.
 なお、図1,2の例では、超音波治療装置40に超音波診断装置を組み込んで構成したが、超音波診断装置と超音波治療装置を別々の装置として構成してもよい。また、超音波治療装置40とHIFUコントローラ49を別々の装置としているが、一体の装置として構成することもできる。 In the example of FIGS. 1 and 2, the ultrasonic diagnostic apparatus 40 is configured to incorporate the ultrasonic diagnostic apparatus, but the ultrasonic diagnostic apparatus and the ultrasonic therapeutic apparatus may be configured as separate apparatuses. Further, although the ultrasonic therapy device 40 and the HIFU controller 49 are separate devices, they may be configured as an integrated device.
 図3と図4に、本発明の特徴部に係る超音波プローブ37の一実施形態の構成図を示す。図3(a)は、超音波プローブ37の中心軸を通る面における断面図、図3(b)は超音波プローブ37の超音波送出面側から見た正面図である。同図から明らかなように、超音波プローブ37は、凹球面に形成された治療プローブ37aと、凹球面の中心軸に配設された超音波画像の撮像用の撮像プローブ37bを備えて形成されている。撮像プローブ37bは、治療対象部位の焦点を含む図示扇形領域601の断層画像(超音波画像)を撮像して描出するための撮像用の超音波探触子である。 3 and 4 are configuration diagrams of an embodiment of the ultrasonic probe 37 according to the feature of the present invention. 3A is a cross-sectional view of a plane passing through the central axis of the ultrasonic probe 37, and FIG. 3B is a front view of the ultrasonic probe 37 viewed from the ultrasonic transmission surface side. As is clear from the figure, the ultrasonic probe 37 is formed by including a treatment probe 37a formed on a concave spherical surface and an imaging probe 37b for imaging an ultrasonic image disposed on the central axis of the concave spherical surface. ing. The imaging probe 37b is an imaging ultrasonic probe for imaging and drawing a tomographic image (ultrasonic image) of the fan-shaped region 601 including the focal point of the treatment target region.
 治療プローブ37aは、複数の治療振動子39からなるチャンネルCを二次元平面又は三次元曲面に配列して形成することができる。しかし、本実施形態の治療プローブ37aは、図4(b)に示すように、凹球面を同心円状の複数の円環領域に分割し、さらに円環領域を径方向に分割してなる複数の領域に、それぞれ治療振動子39を配設して形成されている。各治療振動子39は治療超音波ビームのチャネルCを形成している。 The treatment probe 37a can be formed by arranging channels C composed of a plurality of treatment transducers 39 on a two-dimensional plane or a three-dimensional curved surface. However, as shown in FIG. 4 (b), the treatment probe 37a of the present embodiment divides the concave spherical surface into a plurality of concentric annular regions, and further includes a plurality of annular regions divided in the radial direction. Each region is formed with a treatment transducer 39 disposed therein. Each therapeutic transducer 39 forms a channel C of a therapeutic ultrasonic beam.
 言い換えれば、治療プローブ37aは、治療超音波ビームを送出する複数の治療振動子39を備えたマルチチャネルで形成されている。ここで、複数の治療振動子39の数は、図示例では簡単化のため40個の例を示しているが、治療振動子39の数は2のべき乗が一般的であり、例えば、512個や1024個のものが用いられている。撮像プローブ37bは、治療対象部位の焦点を含む断層面601を撮像して描出するための撮像用の超音波探触子である。 In other words, the treatment probe 37a is formed of a multichannel including a plurality of treatment transducers 39 that send out a treatment ultrasonic beam. Here, the number of treatment transducers 39 is 40 in the illustrated example for simplification, but the number of treatment transducers 39 is generally a power of 2, for example, 512 And 1024 are used. The imaging probe 37b is an imaging ultrasonic probe for imaging and drawing the tomographic plane 601 including the focus of the treatment target region.
 図4(b)において、分割された複数の治療振動子39を治療超音波照射チャンネル(以下、単に、チャンネルと略す。)と称して説明する。同図に示すように、凹球面を同心円状の複数の円環領域i(図示例では、i=5)に分割し、さらに円環領域を径方向に複数の領域j(図示例では、j=8)に分割して、複数n(n=1,2・・・の任意の自然数。)のチャンネルCijが設けられている。各チャンネルCijから射出される治療超音波ビーム404aは焦点403に集束される。つまり、各チャンネルCijから送出される治療超音波の位相をそれぞれ独立に制御することにより、複数の治療超音波ビーム404aの送出角度を制御して焦点403に集束できる。また、治療超音波の位相制御により、焦点403は、三次元(前後、左右、深度方向)に移動させることができる。 In FIG. 4 (b), the plurality of divided treatment transducers 39 will be described as treatment ultrasound irradiation channels (hereinafter simply referred to as channels). As shown in the figure, the concave spherical surface is divided into a plurality of concentric annular regions i (i = 5 in the illustrated example), and the annular region is further divided into a plurality of regions j in the radial direction (in the illustrated example, j = 8), a plurality of n (n = 1, 2,..., Arbitrary natural numbers) channels Cij are provided. The therapeutic ultrasound beam 404a emitted from each channel Cij is focused on the focal point 403. In other words, by independently controlling the phase of the therapeutic ultrasonic wave transmitted from each channel Cij, the transmission angle of the plurality of therapeutic ultrasonic beams 404a can be controlled and focused on the focal point 403. In addition, the focus 403 can be moved in three dimensions (front and rear, left and right, depth direction) by phase control of therapeutic ultrasound.
 図5に、治療プローブ37aから照射するHIFUの基本パターンを示す。図示のように、HIFUは、超音波強度が強いトリガ超音波801に続けて、トリガ超音波801より強度が弱い加熱超音波802を照射する治療超音波サイクルを、複数回繰り返し照射する。つまり、トリガ超音波801を設定されたトリガ時間t1、加熱超音波802を設定された加熱時間t2照射する治療超音波サイクルを繰り返して、焦点403にHIFUをトータル設定時間T照射することで治療を行う。 Fig. 5 shows the basic pattern of HIFU irradiated from the therapeutic probe 37a. As shown in the figure, the HIFU repeatedly irradiates a treatment ultrasonic cycle that irradiates a heated ultrasonic wave 802 having a lower intensity than the trigger ultrasonic wave 801 following a trigger ultrasonic wave 801 having a high ultrasonic intensity. In other words, by repeating the treatment ultrasonic cycle of irradiating the trigger ultrasonic wave 801 with the set trigger time t1 and the heated ultrasonic wave 802 with the set heating time t2, the focus 403 is irradiated with HIFU for a total set time T for treatment. Do.
 ここで、従来は、各チャンネルCijを基本的に同一の治療超音波サイクルにより駆動して治療を行う。また、トリガ超音波801は、気泡を発生させるための瞬間的な高強度パルスであり、加熱超音波802は発生された気泡を破壊して熱凝固を誘発する連続波(CW)で構成されている。例えば、振幅a1のトリガ超音波801がトリガ時間t1(例えば、数μsec)照射され、その後に振幅a2の加熱超音波802が加熱時間t2照射される。 Here, conventionally, each channel Cij is basically driven by the same therapeutic ultrasonic cycle to perform the treatment. The trigger ultrasonic wave 801 is an instantaneous high-intensity pulse for generating bubbles, and the heating ultrasonic wave 802 is composed of a continuous wave (CW) that destroys the generated bubbles and induces thermal coagulation. Yes. For example, the trigger ultrasonic wave 801 having the amplitude a1 is irradiated with the trigger time t1 (for example, several μsec), and then the heating ultrasonic wave 802 having the amplitude a2 is irradiated with the heating time t2.
 この治療超音波サイクルの定義方法は、1秒間に繰り返す回数:Pulse Repetition Frequency (PRF)とトータル設定時間Tで表記され、これによってHIFU強度が定義される。すなわち、トリガ超音波801と加熱超音波802の振幅、周波数、及びそれらの照射時間を制御することにより、HIFU強度あるいは治療超音波ビーム404aの強度(治療超音波エネルギ)を制御することができる。 This therapeutic ultrasound cycle is defined by the number of repetitions per second: Pulse Repetition Frequency (PRF) and the total set time T, which defines the HIFU intensity. That is, by controlling the amplitude and frequency of the trigger ultrasonic wave 801 and the heating ultrasonic wave 802 and their irradiation time, the HIFU intensity or the intensity of the therapeutic ultrasonic beam 404a (the therapeutic ultrasonic energy) can be controlled.
 例えば、トリガ時間t1を長く、PRFを少なく設定することで気泡生成が容易に発生しやすくなるが、HIFUビーム404aが通過する皮膚にエネルギが集中して火傷を発生させる可能性が高くなる。しかし、治療対象部位の焦点403における焼灼範囲は大きくなり、治療効果を向上させることができるという、相反する特徴がある。つまり、トリガ超音波が1秒間にPRF回×トリガ時間t1だけ照射されると、トリガ超音波801の照射時間に比例してキャビテーション発生率が向上するが、続いて照射される加熱超音波802により気泡の破壊熱による皮膚火傷の懸念が増大する。なお、気泡を生成するパルスと、生成した気泡の径を増大させるパルスを生体の対象領域に送信する内容が、特許文献2に紹介されている。これにより、低侵襲かつ血流の遮断効果が高い塞栓治療を実現できるとしている。 For example, if the trigger time t1 is set long and the PRF is set small, bubbles are easily generated. However, there is a high possibility that energy concentrates on the skin through which the HIFU beam 404a passes to cause burns. However, there is a conflicting feature that the ablation range at the focal point 403 of the treatment target region becomes large and the treatment effect can be improved. That is, when the trigger ultrasonic wave is irradiated for PRF times x trigger time t1 per second, the cavitation occurrence rate is improved in proportion to the irradiation time of the trigger ultrasonic wave 801. Concerns about skin burns due to the heat of bubble destruction increase. Patent Document 2 introduces the content of transmitting a pulse for generating bubbles and a pulse for increasing the diameter of the generated bubbles to a target region of a living body. As a result, it is possible to realize an embolization treatment that is minimally invasive and has a high blood flow blocking effect.
 次に、高密度焦点式超音波(HIFU)を照射して治療を実施する概要について、図6を参照して説明する。図6(a)に示すように、治療プローブ37aの各治療振動子39から送出される治療超音波ビーム404aの束であるHIFUビーム404は、焦点403に集束させて照射される。 Next, an outline of performing treatment by irradiating with high-intensity focused ultrasound (HIFU) will be described with reference to FIG. As shown in FIG. 6 (a), the HIFU beam 404, which is a bundle of therapeutic ultrasound beams 404a transmitted from each treatment transducer 39 of the treatment probe 37a, is focused on a focal point 403 and irradiated.
 また、図6(b)に示すように、1つの焦点403にHIFUを照射して治療(焼灼)される範囲は、例えば直径Φが5~10mmである。したがって、HIFU照射による治療を行う際は、図6(c)に示すように、HIFUビーム404の照射位置である焦点403の位置を順次移動させて、治療対象領域(ターゲット)402の全域にHIFUビーム404を照射する。その際、超音波プローブ37の中心に取り付けられた撮像プローブ37bにより撮像される超音波画像で治療の様子をモニタリングする。 In addition, as shown in FIG. 6 (b), the range of treatment (cauterization) by irradiating one focal point 403 with HIFU is, for example, a diameter Φ of 5 to 10 mm. Therefore, when performing treatment with HIFU irradiation, the position of the focal point 403, which is the irradiation position of the HIFU beam 404, is sequentially moved as shown in FIG. Irradiate the beam 404. At that time, the state of treatment is monitored by an ultrasonic image captured by the imaging probe 37b attached to the center of the ultrasonic probe 37.
 ただし、治療とモニタリングを同時に行うと互いにノイズとして画像に現れてしまう。そこで、治療プローブ37aと撮像プローブ37bを交互に動作させることによりノイズがない明瞭な診断画像を取得する。なお、非特許文献1に示すようなARFI(Acoustic Radiation Force Impulse)による焦点可視化を行うことで理想的な焼灼領域に対して、生体組織内の実際の影響領域が算出され、三次元計測を行うことで立体的な治療予定領域を算出できる。 However, if treatment and monitoring are performed simultaneously, they will appear in the image as noise. Therefore, a clear diagnostic image free from noise is acquired by operating the treatment probe 37a and the imaging probe 37b alternately. In addition, by performing focus visualization with ARFI (Acoustic Radiation Force Impulse) as shown in Non-Patent Document 1, the actual affected area in the living tissue is calculated for the ideal ablation area, and three-dimensional measurement is performed. Thus, a three-dimensional treatment planned area can be calculated.
 次に、図7を参照して、本実施形態のナビゲーションガイド表示機能を説明する。術者29は患者24に対して、HIFUコントローラ49にパワーアンプ50を介して接続された治療プローブ37aの焦点403を治療対象部位(ターゲット)の1点に合わせる。 Next, the navigation guide display function of this embodiment will be described with reference to FIG. The surgeon 29 adjusts the focus 403 of the treatment probe 37a connected to the HIFU controller 49 via the power amplifier 50 with respect to the patient 24 to one point of the treatment target site (target).
 つまり、位置検出デバイス9に取り付けられた赤外線カメラにてポインタ27の位置から超音波プローブ37の位置を検出し、ナビゲーション画面531~534に、治療プローブ37aの焦点403及びHIFUビーム404の模擬画像がそれぞれ表示される。術者29はナビゲーション画面531~534を見ながら、超音波プローブ37の位置を操作して、治療プローブ37aの焦点403をターゲットに合わせる。ナビゲーション画面構成は、例えば、3軸断面(Axial、 Sagittal、Coronal)のナビゲーション画面531~533の他に、三次元のボリュームレンダリング画面534等を用いることができるが、自由にカスタマイズできる。また、術者29は、事前に治療対象部位である治療予定領域536、及び警告領域とマージン等をそれぞれ設定しておく。なお、ナビゲーション画像は超音波画像装置の他、MRI装置などの医療画像装置により撮像された三次元の画像ボリュームデータを用いて構成することができる。 That is, the position of the ultrasonic probe 37 is detected from the position of the pointer 27 with an infrared camera attached to the position detection device 9, and simulated images of the focal point 403 and the HIFU beam 404 of the treatment probe 37a are displayed on the navigation screens 531 to 534. Each is displayed. The surgeon 29 operates the position of the ultrasonic probe 37 while looking at the navigation screens 531 to 534 to adjust the focus 403 of the treatment probe 37a to the target. For example, a three-dimensional volume rendering screen 534 can be used in addition to the navigation screens 531 to 533 having three-axis cross sections (Axial, Sagittal, and Coronal), but the navigation screen can be freely customized. In addition, the operator 29 previously sets a treatment planned area 536 that is a treatment target site, a warning area, a margin, and the like in advance. Note that the navigation image can be configured by using three-dimensional image volume data captured by a medical image apparatus such as an MRI apparatus in addition to an ultrasonic image apparatus.
 また、ナビゲーション画像には、超音波プローブ37の模擬画像の他に、術前プラニング(手術シミュレーション)情報537も画像上に重畳表示することができる。また、ボリュームレンダリング画面534の場合は、治療予定領域536を立体的に表示することができる。さらに、ナビゲーション画面531~534上の治療予定領域536や警告領域内に入った場合に警告を発する機能を備えることができる。また、例えば、治療予定領域536が警告領域内に入った場合に、ナビゲーション画面の画像や治療パラメータを自動的に変更する機能を備えることができる。 In addition to the simulated image of the ultrasonic probe 37, preoperative planning (surgery simulation) information 537 can be superimposed on the navigation image. Further, in the case of the volume rendering screen 534, the treatment scheduled area 536 can be displayed three-dimensionally. Further, it is possible to provide a function of issuing a warning when entering the treatment scheduled area 536 or warning area on the navigation screens 531 to 534. In addition, for example, when the treatment scheduled area 536 enters the warning area, a function of automatically changing an image on the navigation screen and a treatment parameter can be provided.
 上述した操作を、MRI装置のガントリ内部で実施する場合、上述した情報を超音波治療システムに対して連続かつリアルタイムにフィードバックし、治療対象領域における超音波プローブ37の模擬画像を含む同一のMRI撮像断面画像508及び超音波画像509を表示させることができる。つまり、術者29はMRI装置1による二次元リアルタイム画像とナビゲーションによる三次元画像情報を必要に応じて治療に利用することができる。MRI装置1の高速撮像シーケンスの応用のひとつとして、フルオロスコピー(透視撮像)と呼ばれるリアルタイム動態画像化法が臨床応用されつつある。フルオロスコピーでは、1秒以下程度の周期で撮像と画像再構成を繰り返すことにより、あたかもX線透視撮像のように体内組織の動態抽出や体内に外部から挿入した器具の位置把握に用いることができる動態画像を生成して表示する。この応用は三次元高速撮像にも応用されている。 When the above-described operation is performed inside the gantry of the MRI apparatus, the above-mentioned information is fed back continuously and in real time to the ultrasound treatment system, and the same MRI imaging including a simulated image of the ultrasound probe 37 in the treatment target region A cross-sectional image 508 and an ultrasonic image 509 can be displayed. That is, the surgeon 29 can use the two-dimensional real-time image obtained by the MRI apparatus 1 and the three-dimensional image information obtained by navigation for treatment as necessary. As one application of the high-speed imaging sequence of the MRI apparatus 1, a real-time dynamic imaging method called fluoroscopy (fluoroscopic imaging) is being clinically applied. In fluoroscopy, by repeating imaging and image reconstruction with a period of about 1 second or less, it can be used to extract the dynamics of internal tissues and grasp the position of an instrument inserted from the outside like a fluoroscopic imaging. Generate and display dynamic images. This application is also applied to three-dimensional high-speed imaging.
 図8に、本発明の超音波治療システムの一実施形態の処理手順のフローチャートを示す。まず、MRI装置1を用いて複数の三次元ボリューム撮像及び三次元画像の再構成を行う(S1)。次いで、三次元画像から画像処理にて治療が必須な特定領域(セグメンテーション)を描出する(S2)。描出された特定領域を含む画像に基づいてHIFU照射を可とする領域と、不可とする領域を判別して設定する(S3)。次に、治療予定領域及びそれらを含むマージン領域を設定する(S4)。HIFU照射に関して必要なパラメータを入力後(S5)、HIFU治療計画を実施して超音波プローブ37の位置のシミュレーションを行う(S6)。治療計画後にナビゲーション等の手術支援誘導機能を起動し(S7)、手術を開始する(S8)。 FIG. 8 shows a flowchart of a processing procedure of an embodiment of the ultrasonic therapy system of the present invention. First, a plurality of three-dimensional volume imaging and three-dimensional image reconstruction are performed using the MRI apparatus 1 (S1). Next, a specific area (segmentation) in which treatment is indispensable is depicted from the three-dimensional image by image processing (S2). Based on the rendered image including the specific area, the area that allows HIFU irradiation and the area that cannot be irradiated are discriminated and set (S3). Next, a treatment scheduled area and a margin area including them are set (S4). After inputting parameters necessary for HIFU irradiation (S5), the HIFU treatment plan is executed to simulate the position of the ultrasonic probe 37 (S6). After the treatment plan, the operation support guidance function such as navigation is activated (S7), and the operation is started (S8).
 手術時は、超音波プローブ37の位置の変化に追随して、治療プローブ37aの焦点位置403及びHIFU照射経路であるHIFUビーム束404を示す模擬画像をナビゲーション画像上に重畳表示する(S9)。これにより、術者29は、モニタ38及びGUIに表示される画像や数値情報を用いて、超音波プローブ37を治療予定位置(目的位置)へ誘導する(S10)。誘導後は、MR画像(例えば、血流画像)又は超音波画像(エラストグラフィ)にてターゲットの位置を確認する(S11)。 At the time of surgery, following the change in the position of the ultrasonic probe 37, a simulated image showing the focal position 403 of the treatment probe 37a and the HIFU beam bundle 404 that is the HIFU irradiation path is superimposed on the navigation image (S9). As a result, the operator 29 guides the ultrasonic probe 37 to the planned treatment position (target position) using the images and numerical information displayed on the monitor 38 and the GUI (S10). After the guidance, the position of the target is confirmed with an MR image (for example, a blood flow image) or an ultrasonic image (elastography) (S11).
 次に、超音波画像、MR画像あるいは他の医用画像から生体の体表面(皮膚)を描出する(S12)。次いで、位置検出デバイス9により検出された治療プローブ37aの位置から焦点403の位置を描出し、焦点403から体表面(皮膚)までの距離を算出する(S13)。このとき、予め記憶されている各治療振動子39の位置データを割出し、各治療振動子39から送出されて焦点403に至る治療超音波ビーム404aの模擬画像を超音波画像とMR画像の少なくとも一方、又は他の医用画像に重ねて描出して、焦点403から体表面(皮膚)までの距離を算出することができる。この画像例を、図10に示す。 Next, the body surface (skin) of the living body is drawn from the ultrasonic image, MR image or other medical image (S12). Next, the position of the focal point 403 is drawn from the position of the treatment probe 37a detected by the position detection device 9, and the distance from the focal point 403 to the body surface (skin) is calculated (S13). At this time, the position data of each treatment transducer 39 stored in advance is determined, and a simulated image of the treatment ultrasound beam 404a transmitted from each treatment transducer 39 and reaching the focal point 403 is at least an ultrasound image and an MR image. On the other hand, the distance from the focal point 403 to the body surface (skin) can be calculated by drawing the image on another medical image. An example of this image is shown in FIG.
 次に、ステップS14において、焦点403から体表面(皮膚)までの距離に応じて、トリガ超音波と加熱超音波を分割して照射するチャンネルのチャンネル群Gの分割数Nを決める(S14)。具体的には、図10に示すように、焦点403から体表面501までの距離Lが予め設定された距離範囲(最小値Xmin~最大値Xmax)内か否かを判断し、範囲内であれば距離Lに応じてチャンネルのチャンネル群Gの分割数Nを決める。例えば、図10(a),(b)に示すように、Xmin~Xmaxの範囲内に設定された複数の距離X1,X2、・・・、Xmに挟まれる区間Xmin~X1、X1~X2、・・・、Xm~Xmaxに対応して、分割数Nを設定しておく。 Next, in step S14, the division number N of the channel group G of the channels to be irradiated by dividing the trigger ultrasonic wave and the heating ultrasonic wave is determined according to the distance from the focal point 403 to the body surface (skin) (S14). Specifically, as shown in FIG. 10, it is determined whether or not the distance L from the focal point 403 to the body surface 501 is within a preset distance range (minimum value Xmin to maximum value Xmax). For example, the division number N of the channel group G of the channel is determined according to the distance L. For example, as shown in FIGS. 10 (a) and 10 (b), sections Xmin to X1, X1 to X2, sandwiched between a plurality of distances X1, X2,..., Xm set within the range of Xmin to Xmax, ..., the division number N is set in correspondence with Xm to Xmax.
 ここで、最大値Xmaxは、複数のチャンネルの全てからトリガ超音波に続けて加熱超音波を照射しても皮膚火傷のおそれがない距離である。したがって、L>Xmaxであれば、トリガ超音波と加熱超音波を分割して照射する必要のない距離である。つまり、各チャンネルから焦点に向かう治療超音波ビーム404aは、焦点403に近づくにつれて先細りの角錐状に形成される。そのため、焦点403に近くなるにつれて治療超音波ビーム404aの断面積が小さくなり、治療超音波ビーム404aのエネルギ密度が高くなる。そのため、体表面501の位置が焦点403に近づくにつれて皮膚火傷のおそれが生ずる。一方、体表面501が焦点403から遠く離れ、治療超音波ビーム404aの体表面におけるエネルギ密度が、皮膚火傷を起こすおそれがないほど低くなることに基づいて最大値Xmaxを設定する。なお、最大値Xmaxに代えて、逆に、治療プローブ37aの各チャンネルから体表面501までの距離の最小値を設定し、各チャンネルから体表面501までの距離がその最小値以下であれば、治療超音波ビーム404aのエネルギ密度が皮膚火傷を起こすおそれがないほど低いと判定するようにしてもよい。 Here, the maximum value Xmax is a distance at which there is no risk of skin burns even when a heating ultrasonic wave is applied following a trigger ultrasonic wave from all of a plurality of channels. Therefore, if L> Xmax, the distance is not required to irradiate the trigger ultrasonic wave and the heating ultrasonic wave separately. That is, the therapeutic ultrasound beam 404a heading from each channel toward the focal point is formed in a tapered pyramid shape as it approaches the focal point 403. Therefore, as the focal point 403 is approached, the cross-sectional area of the therapeutic ultrasonic beam 404a is reduced, and the energy density of the therapeutic ultrasonic beam 404a is increased. Therefore, there is a risk of skin burns as the position of the body surface 501 approaches the focal point 403. On the other hand, the maximum value Xmax is set based on the fact that the body surface 501 is far away from the focal point 403 and the energy density of the treatment ultrasonic beam 404a on the body surface is so low that there is no possibility of causing skin burns. Instead of the maximum value Xmax, conversely, the minimum value of the distance from each channel of the treatment probe 37a to the body surface 501 is set, and if the distance from each channel to the body surface 501 is equal to or less than the minimum value, It may be determined that the energy density of the therapeutic ultrasound beam 404a is low enough not to cause skin burns.
 また、最小値Xminは、トリガ超音波と加熱超音波を分割して照射しても、皮膚火傷の可能性がある距離である。つまり、体表面501が焦点403に近く、最小値Xmin以下の場合、治療超音波ビーム404aのエネルギ密度が高くなるだけでなく、複数のチャンネルから照射されるトリガ超音波又は加熱超音波の波面の一致度が高くなって治療超音波ビーム404aの強度が高くなる。そのため、例えトリガ超音波を照射するチャンネルと、加熱超音波を照射するチャンネルを異ならせて分割照射しても、皮膚火傷の可能性が残る距離である。 Also, the minimum value Xmin is a distance that may cause skin burn even when the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated. That is, when the body surface 501 is close to the focal point 403 and is equal to or less than the minimum value Xmin, not only the energy density of the therapeutic ultrasound beam 404a is increased, but also the wavefront of the trigger ultrasound or heating ultrasound emitted from a plurality of channels is used. The degree of coincidence increases and the intensity of the therapeutic ultrasound beam 404a increases. For this reason, even if the channel for irradiating the trigger ultrasonic wave and the channel for irradiating the heating ultrasonic wave are differentiated and divided irradiation is performed, this is the distance where the possibility of skin burn remains.
 図8に戻って、ステップS14で分割した複数のチャンネル群Gについて、治療超音波サイクルごとに、チャンネル群Gを切り替えてトリガ超音波を照射し、これに続いて残りの全てのチャンネル群Gに加熱超音波を照射するHIFU治療を開始する。同時に、MR画像あるいは超音波診断画像によるモニタリングを行い、治療経過を適宜記録する(S15)。この治療超音波サイクルによる治療処理を治療対象領域の各焦点403について複数回繰り返し、治療効果確認(S16)後に追加治療必要性の有無を確認(S17)して追加治療が必要であればステップS9へ不要の場合は終了となる(S18)。なお、図8のステップS12~S14までの処理は、治療プローブ制御部であるHIFUコントローラ49により実行される。 Returning to FIG. 8, for each of the plurality of channel groups G divided in step S14, for each treatment ultrasound cycle, the channel group G is switched to irradiate the trigger ultrasound, and then all the remaining channel groups G are irradiated. Start HIFU treatment with heating ultrasound. At the same time, monitoring is performed with MR images or ultrasonic diagnostic images, and the progress of treatment is recorded as appropriate (S15). The treatment process by the treatment ultrasonic cycle is repeated a plurality of times for each focal point 403 of the treatment target region, and after confirming the treatment effect (S16), the necessity of additional treatment is confirmed (S17), and if additional treatment is necessary, step S9 If it is not necessary, the process ends (S18). Note that the processing from steps S12 to S14 in FIG. 8 is executed by the HIFU controller 49, which is a treatment probe control unit.
 次に、図9を参照して、HIFUコントローラ49により実行される処理のうち、上記のステップS14の詳細な処理手順を説明する。ステップS13で算出した焦点403から体表面501までの距離Lが、予め定めた距離範囲の最大値Xmax以上か否かを判断する(S21)。ステップS21の判断で、L≧Xmaxであれば、ステップS22に進んで、ユーザにHIFU治療に関係する設定条件を画像情報あるいは音声情報などにより通知して治療の最終判断ないし決定を促して、ステップS15に戻る。すなわち、L≧Xmaxであれば、トリガ超音波と加熱超音波からなるHIFUを、全てのチャンネルから焦点403に繰り返し照射することを許容する。本明細書では、トリガ超音波と加熱超音波からなる図5のHIFUを基本治療超音波サイクルと称する。 Next, with reference to FIG. 9, a detailed processing procedure of step S14 described above among the processing executed by the HIFU controller 49 will be described. It is determined whether or not the distance L from the focus 403 calculated in step S13 to the body surface 501 is equal to or greater than a maximum value Xmax of a predetermined distance range (S21). If it is determined in step S21 that L ≧ Xmax, the process proceeds to step S22 to notify the user of setting conditions related to the HIFU treatment by image information or audio information to prompt the final judgment or determination of the treatment. Return to S15. That is, if L ≧ Xmax, it is allowed to repeatedly irradiate the focal point 403 with HIFU composed of trigger ultrasound and heating ultrasound from all channels. In this specification, the HIFU of FIG. 5 consisting of trigger ultrasound and heating ultrasound is referred to as a basic treatment ultrasound cycle.
 一方、ステップS21の判断で、距離Lが最大値Xmax未満の場合は、体表面(皮膚)の火傷が懸念される最小値Xmin以下か否かを判断する(S23)。この判断がL≦Xminの場合は、HIFU照射不可であることをユーザに通知するとともに、治療プローブ37aの移動を勧告し(S24)ステップS9へ進む。 On the other hand, if it is determined in step S21 that the distance L is less than the maximum value Xmax, it is determined whether or not the distance L is less than the minimum value Xmin that may cause a burn on the body surface (skin) (S23). If this determination is L ≦ Xmin, the user is notified that HIFU irradiation is not possible, and the movement of the treatment probe 37a is recommended (S24), and the process proceeds to step S9.
 また、ステップS21の判断で距離Lが最大値Xmax未満であり、かつステップS23の判断で距離Lが設定値の最小値Xmin超の場合、つまりXmin<L<Xmaxの場合は、複数のチャンネルの全てからトリガ超音波と加熱超音波を連続して照射すると皮膚が火傷する可能性がある。そこで、トリガ超音波と加熱超音波を異なるチャンネルから分割して照射する本発明を適用して、皮膚火傷を回避する(S25)。 Also, if the distance L is less than the maximum value Xmax as determined in step S21 and the distance L is greater than the minimum set value Xmin as determined in step S23, that is, if Xmin <L <Xmax, If the trigger ultrasonic wave and the heating ultrasonic wave are continuously irradiated from all, the skin may be burned. Therefore, the present invention in which the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated from different channels is applied to avoid skin burns (S25).
 次に、図9のステップS26において、焦点403へ照射する治療超音波エネルギを目標値である基本治療超音波エネルギに補償する。すなわち、トリガ超音波と加熱超音波を異なるチャンネルから分割して照射すれば、トリガ超音波又は加熱超音波を照射しないチャンネルがあるから、焦点403に照射される治療超音波エネルギが減少する。このような分割治療超音波サイクルを繰り返しても、焦点403に照射される治療超音波エネルギが目標値に達する時間が長くなる。そこで、ステップS26において、焦点403に照射する治療超音波エネルギを目標値に保持するように、各チャンネルから照射する単位治療超音波エネルギを増加する補償処理をする。 Next, in step S26 of FIG. 9, the therapeutic ultrasonic energy irradiated to the focal point 403 is compensated for the basic therapeutic ultrasonic energy which is a target value. That is, if the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated from different channels, there is a channel that does not irradiate the trigger ultrasonic wave or the heating ultrasonic wave, so that the therapeutic ultrasonic energy irradiated to the focal point 403 decreases. Even when such a divided therapeutic ultrasonic cycle is repeated, the time for the therapeutic ultrasonic energy irradiated to the focal point 403 to reach the target value becomes longer. Therefore, in step S26, compensation processing is performed to increase the unit therapeutic ultrasonic energy irradiated from each channel so that the therapeutic ultrasonic energy irradiated to the focal point 403 is maintained at the target value.
 次に、ステップS26にて、補償後の各チャンネル単位の治療超音波エネルギ(強度)を予め定めた上限値Ecmaxと比較して、皮膚火傷の可能性が懸念されるか否か判定する。皮膚火傷の懸念があれば、ステップS28に進んで、HIFU照射不可であることをユーザに通知するとともに、治療プローブ37aの移動を勧告しステップS9へ進む。一方、各チャンネル単体の治療超音波の強度を補償しても、皮膚火傷の懸念がなければ、ユーザに設定変更後の条件を通知して治療の最終判断決定を促す(S22)。 Next, in step S26, the therapeutic ultrasonic energy (intensity) of each channel after compensation is compared with a predetermined upper limit value Ecmax to determine whether or not there is a possibility of skin burns. If there is a concern about skin burns, the process proceeds to step S28, notifying the user that HIFU irradiation is not possible, recommending movement of the treatment probe 37a, and proceeding to step S9. On the other hand, even if the intensity of the treatment ultrasound for each channel is compensated, if there is no concern about skin burns, the user is notified of the condition after the setting change and prompts the final decision on treatment (S22).
 以下、本発明の特徴部に係るトリガ超音波と加熱超音波の分割照射と、分割した各チャンネル単位の治療超音波エネルギの補償について、実施例に基づいて詳細に説明する。 Hereinafter, the split irradiation of the trigger ultrasonic wave and the heating ultrasonic wave and the compensation of the therapeutic ultrasonic energy for each divided channel unit according to the feature of the present invention will be described in detail based on examples.
(トリガ超音波と加熱超音波の分割照射)
 図12に、治療プローブ37aの複数nのチャンネルを、複数mのチャンネルを含むチャンネル群Gに分割して、トリガ超音波と加熱超音波をチャンネル群Gに分割して照射する本発明の実施例1を示す。いま、図10(a)において、焦点403から体表面501までの距離Lが、Xmin<L<Xmaxの範囲内であれば、距離Lに応じて複数nのチャンネルを複数mのチャンネルを含むチャンネル群G1~G4に分割する。また、Xmin~Xmaxの範囲に、複数の中間距離Xi(iは、自然数)を設定し、距離Lが属する距離区分Xiごとに、チャンネル群Gの分割数N(n/m)を一義的に設定しておく。例えば、距離LがX2~Xmaxの距離区分に属する場合は、治療プローブ37aの複数n(図示例では、n=40)のチャンネルを複数m(図示例では、m=10)のチャンネルを含むN(=n/m)個の扇形のチャンネル群G1~G4に分割する。これにより、図12に示す実施例1のように、トリガ超音波を分割照射するチャンネル群Gの分割数(N=4)が設定される。なお、実施例1では、1つのチャンネル群Gに、互いに隣接する2つの扇形状の複数のチャンネルが含まれる例を示したが、本発明はこれに限られるものではなく、各チャンネル群Gはm個のチャンネルを含むように設定すれば、互いに隣接しないチャンネルを含めてチャンネル群Gを分割設定できる。チャンネル群Gの分割は、HIFUコントローラ49にて予め設定された手順に従って、自動的に行われるようになっている。
(Split irradiation of trigger ultrasound and heating ultrasound)
FIG. 12 shows an embodiment of the present invention in which a plurality of n channels of the treatment probe 37a are divided into a channel group G including a plurality of m channels, and a trigger ultrasonic wave and a heating ultrasonic wave are divided into the channel group G and irradiated. 1 is shown. In FIG. 10 (a), if the distance L from the focal point 403 to the body surface 501 is within the range of Xmin <L <Xmax, a channel including a plurality of n channels according to the distance L is included. Divide into groups G 1 to G 4 . A plurality of intermediate distances Xi (i is a natural number) are set in the range of Xmin to Xmax, and the division number N (n / m) of the channel group G is uniquely determined for each distance section Xi to which the distance L belongs. Set it. For example, when the distance L belongs to the distance section of X 2 to Xmax, the treatment probe 37a includes a plurality of n channels (n = 40 in the illustrated example) and a plurality of m channels (m = 10 in the illustrated example). Divide into N (= n / m) fan-shaped channel groups G 1 to G 4 . As a result, as in the first embodiment shown in FIG. 12, the division number (N = 4) of the channel group G to which the trigger ultrasonic wave is divided and irradiated is set. In the first embodiment, an example in which a plurality of adjacent fan-shaped channels are included in one channel group G is shown, but the present invention is not limited to this, and each channel group G If set so as to include m channels, the channel group G can be divided and set including channels that are not adjacent to each other. The division of the channel group G is automatically performed according to a procedure set in advance by the HIFU controller 49.
 そして、図12(a)に示すように、それぞれm(=10)個のチャンネルを含むチャンネル群G1に属する全てのチャンネルからトリガ超音波を照射させる。これに続いて、同図(b)に示す残りの(N-1)の3個のチャンネル群G2~G4から加熱超音波を照射させる。次に、チャンネル群G2に属する全てのチャンネルからトリガ超音波を照射させ、これに続いて残りのチャンネル群G1,G3~G4から加熱超音波を照射させる。このようにして、トリガ超音波を照射させるチャンネル群G1→G2→G3→G4に順次切り替えながら、トリガ超音波を照射させなかった残りのチャンネル群G(N-1)個から加熱超音波を照射させる。つまり、実施例1は、図5に示した基本治療超音波サイクルを、パルス状のトリガ超音波801と、連続波の加熱超音波802とを分離した分割治療超音波サイクルにより、それぞれ異なるチャンネル群G1~G4から分割して照射する。これにより、皮膚火傷を回避して治療超音波を焦点に照射することができる。なお、焦点403に照射される治療超音波エネルギが目標値に達するまで、分割治療超音波サイクルを繰り返すことは言うまでもない。 Then, as shown in FIG. 12 (a), it is irradiated with trigger ultrasound from respective m (= 10) all channels belonging to the channel group G 1 including a number of channels. Subsequently, heating ultrasonic waves are applied from the remaining three (N-1) channel groups G 2 to G 4 shown in FIG. Next, trigger ultrasonic waves are irradiated from all channels belonging to the channel group G 2 , and subsequently, heated ultrasonic waves are irradiated from the remaining channel groups G 1 , G 3 to G 4 . In this way, the channel groups G 1 → G 2 → G 3 → G 4 to which the trigger ultrasonic waves are irradiated are sequentially switched, and heating is performed from the remaining G (N−1) channel groups that are not irradiated with the trigger ultrasonic waves. Irradiate with ultrasonic waves. That is, in Example 1, the basic treatment ultrasonic cycle shown in FIG. 5 is divided into different channel groups by the divided treatment ultrasonic cycle in which the pulsed trigger ultrasonic wave 801 and the continuous wave heating ultrasonic wave 802 are separated. Divide and irradiate from G 1 to G 4 . Thereby, skin burns can be avoided and therapeutic ultrasound can be irradiated to the focal point. It goes without saying that the split treatment ultrasound cycle is repeated until the treatment ultrasound energy irradiated to the focal point 403 reaches a target value.
 また、チャンネル群Gの分割数Nは、例えば図11(a)のように設定されたグラフを用いて求めることができる。同図(a)は、横軸が焦点から体表面までの距離Lであり、縦軸がチャンネル群Gの分割数Nを表す。そして、図中の曲線は距離Lに応じてチャンネル群Gの分割数N(=n/m)を決めるために、予め設定した設定曲線104である。したがって、同図(a)の横軸の距離Lに対応する設定曲線104上の点105における縦軸のチャンネル群Gの分割数Nを求める。 Further, the division number N of the channel group G can be obtained using a graph set as shown in FIG. 11 (a), for example. In FIG. 4A, the horizontal axis represents the distance L from the focal point to the body surface, and the vertical axis represents the division number N of the channel group G. A curve in the figure is a setting curve 104 set in advance in order to determine the division number N (= n / m) of the channel group G according to the distance L. Therefore, the division number N of the channel group G on the vertical axis at the point 105 on the setting curve 104 corresponding to the distance L on the horizontal axis in FIG.
 他方、図10(a)に示した例において、距離LがX2~Xmaxの距離区分に属する場合は、予めチャンネル群Gの分割数Nを1/4に設定しておけばよい。これにより、HIFUコントローラ49にて自動でトリガ超音波を分割照射するチャンネル群Gの分割数Nを決めることができる。
(各チャンネル単位の治療超音波エネルギの補償)
 ここで、トリガ超音波と加熱超音波を異なるチャンネルから分割して照射することにより減少する治療超音波エネルギの補償について、実施例に基づいて説明する。いま、図12の実施例1のように、4個のチャンネル群G1~G4に分割し、更に1個のチャンネル群(例えば、G1)からトリガ超音波を照射し、残りのチャンネル群(例えば、G2~G4)から加熱超音波を分離して照射する場合、基本治療超音波サイクルのトリガ超音波801と加熱超音波802のままでは焦点403に照射される治療超音波エネルギが減少する。具体的には、トリガ超音波のエネルギが(1/N=1/4)に減少し、加熱超音波のエネルギが(N-1/N)=3/4に減少する。そこで、トリガ超音波のエネルギを4倍、加熱超音波のエネルギを4/3倍することにより、目標とする基本治療超音波サイクルのエネルギを焦点403に照射(投入)することができる。つまり、複数nのチャンネルを複数mのチャンネルを有する複数Nのチャンネル群Gに分割し、更に一のチャンネル群Gからトリガ超音波を照射し、残りの(N-1)のチャンネル群Gから加熱超音波を分割して照射する治療超音波サイクルは、基本治療超音波サイクルのエネルギよりも減少する。
On the other hand, in the example shown in FIG. 10 (a), when the distance L belongs to the distance section of X 2 to Xmax, the division number N of the channel group G may be set to 1/4 in advance. As a result, the division number N of the channel group G on which the trigger ultrasonic waves are divided and irradiated automatically can be determined by the HIFU controller 49.
(Compensation of therapeutic ultrasonic energy for each channel)
Here, compensation of therapeutic ultrasonic energy, which is reduced by splitting and irradiating trigger ultrasonic waves and heating ultrasonic waves from different channels, will be described based on examples. Now, as in Example 1 of FIG. 12, it is divided into four channel groups G 1 to G 4 and further irradiated with trigger ultrasonic waves from one channel group (for example, G 1 ), and the remaining channel groups When heating ultrasonic waves are separated from (for example, G 2 to G 4 ) and irradiated, the treatment ultrasonic energy irradiated to the focal point 403 is equal to the trigger ultrasonic wave 801 and the heating ultrasonic wave 802 of the basic therapeutic ultrasonic cycle. Decrease. Specifically, the energy of the trigger ultrasonic wave is reduced to (1 / N = 1/4), and the energy of the heating ultrasonic wave is reduced to (N−1 / N) = 3/4. Thus, the energy of the trigger ultrasonic wave is multiplied by 4 and the energy of the heated ultrasonic wave is multiplied by 4/3, so that the energy of the target basic treatment ultrasonic cycle can be irradiated (injected) to the focal point 403. In other words, a plurality of n channels are divided into a plurality of N channel groups G having a plurality of m channels, and further, a trigger ultrasonic wave is irradiated from one channel group G, and heating is performed from the remaining (N-1) channel groups G. The therapeutic ultrasound cycle that splits and irradiates the ultrasound is less than the energy of the basic therapy ultrasound cycle.
 そこで、焦点に投入される治療超音波エネルギを目標値に補償するために、各チャンネル単位の治療超音波エネルギを増加補償する必要がある。ここで、
 トリガ超音波エネルギ:e1(単位時間当たり)
 加熱超音波エネルギ:e2(単位時間当たり)
 トリガ時間:t1
 加熱時間:t2
 PRF:(=初期設定値×任意の自然数倍)
 周波数調整係数:k(初期値=1、任意の自然数)
 全チャンネル数:n
 チャンネル群Gのチャンネル数:m
 チャンネル群Gの分割数:N(=n/m)
と定義する。
Therefore, in order to compensate the therapeutic ultrasonic energy input to the focus to the target value, it is necessary to compensate for the increase of the therapeutic ultrasonic energy for each channel. here,
Trigger ultrasonic energy: e 1 (per unit time)
Heating ultrasonic energy: e 2 (per unit time)
Trigger time: t 1
Heating time: t 2
PRF: (= initial set value x any natural number multiple)
Frequency adjustment factor: k (initial value = 1, any natural number)
Total number of channels: n
Number of channels in channel group G: m
Number of divisions of channel group G: N (= n / m)
It is defined as
 前述したように、各チャンネルの超音波送出面積は均等とすると、分割治療超音波サイクルの各チャンネル単位の治療超音波エネルギEは、式(1)で表すことができる。 As described above, assuming that the ultrasonic wave transmission area of each channel is equal, the therapeutic ultrasonic energy E of each channel unit of the divided therapeutic ultrasonic cycle can be expressed by Expression (1).
 E=[{(e1×t1)1/N}
   +{(e2×t2)×(N-1)/N}]PRF      (1)
つまり、各チャンネル単体の治療超音波エネルギEは、トリガ超音波を照射するチャンネル群Gの分割数Nに応じて、トリガ超音波エネルギが1/Nに減少し、加熱超音波エネルギが(N-1)/Nに減少する。この減少分は、式(2)に示すように、例えば、トリガ超音波のエネルギをN倍し、加熱超音波の強度をN/(N-1)倍すれば補うことができる。Ecは、チャンネル単体の治療超音波エネルギ補償値である。
E = [{(e 1 × t 1 ) 1 / N}
+ {(E 2 × t 2 ) × (N−1) / N}] PRF (1)
In other words, the treatment ultrasonic energy E of each channel alone is reduced to 1 / N according to the division number N of the channel group G that irradiates the trigger ultrasonic wave, and the heating ultrasonic energy (N− 1) Reduced to / N. This decrease can be compensated for, for example, by multiplying the energy of the trigger ultrasonic wave by N and multiplying the intensity of the heated ultrasonic wave by N / (N−1), as shown in equation (2). Ec is the therapeutic ultrasonic energy compensation value of a single channel.
 Ec=[{(e1×t1)1/N}×N
   +{(e2×t2)×(N-1)/N}×1/N]PRF   (2)
図11(a)の設定曲線104は、式(2)をグラフ化したものである。
Ec = [{(e 1 × t 1 ) 1 / N} × N
+ {(E 2 × t 2 ) × (N−1) / N} × 1 / N] PRF (2)
A setting curve 104 in FIG. 11A is a graph of Expression (2).
 本発明の各チャンネル単位の治療超音波エネルギ補償値Ecは、上式(2)に限定されるものではなく、下式(3)に示すEc´のように、トリガ超音波の周波数を変えてもよい。トリガ超音波の周波数調整係数kを変えるとトリガ時間t1が1/kになり、治療超音波サイクル時間を一定とすると、加熱時間t2は自動的にt3に変わる。 The therapeutic ultrasonic energy compensation value Ec of each channel unit of the present invention is not limited to the above formula (2), but the frequency of the trigger ultrasonic wave is changed as shown by Ec ′ shown in the following formula (3). Also good. When the frequency adjustment coefficient k of the trigger ultrasound is changed, the trigger time t 1 becomes 1 / k, and when the treatment ultrasound cycle time is constant, the heating time t 2 is automatically changed to t 3 .
 Ec´={(e1×t1/k)+(e2×t3)}PRF    (3)
 これによれば、トリガ超音波エネルギが1/kとなり、基本治療超音波サイクルの超音波エネルギEとほぼ同等のEc´=E×96%に補償される。このように各チャンネル単位で治療超音波エネルギを補償することにより、焦点に照射(投入)される治療超音波エネルギを同一又はほぼ同一に保ちながら、体表面の皮膚のダメージを1/Nに低減できる。また、トリガ超音波801と加熱超音波802のエネルギを補償することにより、HIFU治療時間の長大化を抑制することができる。
Ec ′ = {(e 1 × t 1 / k) + (e 2 × t 3 )} PRF (3)
According to this, the trigger ultrasonic energy becomes 1 / k, and is compensated to Ec ′ = E × 96%, which is substantially equivalent to the ultrasonic energy E of the basic treatment ultrasonic cycle. By compensating the treatment ultrasonic energy for each channel in this way, the skin damage on the body surface is reduced to 1 / N while keeping the treatment ultrasonic energy irradiated (injected) at the focal point the same or almost the same. it can. Further, by compensating the energy of the trigger ultrasonic wave 801 and the heating ultrasonic wave 802, it is possible to suppress an increase in the HIFU treatment time.
 各チャンネル単位の治療超音波エネルギの補償は、HIFUコントローラ49において、図11(b)に示す設定曲線106に従って自動的に行うことができる。同図(b)は、横軸がトリガ超音波を照射するチャンネル群Gの分割数Nであり、縦軸がチャンネルの単体の超音波強度(エネルギ)を示す。図中の曲線はチャンネル群Gの分割数Nに対応するチャンネルの単体の超音波強度(エネルギ)を決めるために予め設定した設定曲線106である。 The compensation of therapeutic ultrasonic energy for each channel can be automatically performed by the HIFU controller 49 according to the setting curve 106 shown in FIG. In FIG. 5B, the horizontal axis represents the division number N of the channel group G that irradiates the trigger ultrasonic wave, and the vertical axis represents the ultrasonic intensity (energy) of the channel alone. The curve in the figure is a setting curve 106 set in advance to determine the ultrasonic intensity (energy) of a single channel corresponding to the division number N of the channel group G.
 焦点403から体表面501までの距離Lに対応して図11(a)の設定曲線104により、同時にトリガ超音波を照射するチャンネル群Gの分割数Nが求められると、図11(b)の横軸のトリガ超音波を分割照射するチャンネル群Gの分割数Nに対応する設定曲線106との交点107が求まる。交点107に対応する縦軸の各チャンネル単位の治療超音波エネルギE(又はE´)が求まる。なお、図11(b)の縦軸のEmaxは、チャンネル単位の治療超音波エネルギEの上限値であり、Emax以上のトリガ超音波エネルギでは、スポット的な体表面の火傷が懸念される値として設定される。したがって、Emaxに対応する設定曲線106との交点108は、チャンネル群Gをそれ以上分割できない最大チャンネル群Gの分割数Nmaxに対応する。このことから、図11(b)にハッチングを付して示した領域は、HIFU照射可能な範囲である。この範囲内であれば、ユーザに対して最終的に「HIFU照射可能です」というメッセージが表示され、ユーザ指示に従いHIFU治療が行われる。 Corresponding to the distance L from the focal point 403 to the body surface 501, the setting curve 104 in FIG. An intersection 107 with the setting curve 106 corresponding to the division number N of the channel group G to be irradiated with the trigger ultrasound on the horizontal axis is obtained. The therapeutic ultrasonic energy E (or E ′) of each channel unit on the vertical axis corresponding to the intersection 107 is obtained. Note that Emax on the vertical axis in FIG. 11 (b) is the upper limit value of the treatment ultrasonic energy E in units of channels, and the trigger ultrasonic energy equal to or higher than Emax is a value that may cause spot-like body surface burns. Is set. Therefore, the intersection 108 with the setting curve 106 corresponding to Emax corresponds to the division number Nmax of the maximum channel group G that cannot further divide the channel group G. Therefore, the hatched area in FIG. 11 (b) is a range where HIFU irradiation is possible. If it is within this range, a message “HIFU irradiation is possible” is finally displayed to the user, and HIFU treatment is performed according to the user instruction.
 本実施例1によれば、複数のチャンネルを4つのチャンネル群Gに分割し、1つのチャンネル群Gのチャンネルからトリガ超音波を焦点に照射し、このトリガ超音波に続けて残りの3つのチャンネル群Gのチャンネルから加熱超音波を焦点に照射し、次にトリガ超音波を照射するチャンネル群Gを切り替えて、同様に治療超音波サイクルを繰り返していることから、体表面の火傷などによるダメージを1/4(=1/N)に軽減できる。その結果、トリガ超音波と加熱超音波を体表面の皮膚火傷にさえぎられることなく、焦点に照射することができるので、HIFU治療効率が向上して、かつ治療精度を向上することができる。 According to the first embodiment, a plurality of channels are divided into four channel groups G, the trigger ultrasonic waves are irradiated from the channels of one channel group G to the focal point, and the remaining three channels are continued after the trigger ultrasonic waves. Since the heating ultrasonic wave is irradiated to the focal point from the channel of group G, and then the channel group G to which the trigger ultrasonic wave is irradiated is switched, the treatment ultrasonic cycle is repeated in the same manner, so that damage due to burns on the body surface etc. It can be reduced to 1/4 (= 1 / N). As a result, the trigger ultrasonic wave and the heating ultrasonic wave can be irradiated to the focal point without being interrupted by skin burns on the body surface, so that the HIFU treatment efficiency can be improved and the treatment accuracy can be improved.
 また、分割治療超音波サイクルにおいて、トリガ超音波又は加熱超音波を照射しないチャンネル群Gの分だけ、焦点に投入される治療超音波エネルギが低下する。この点、本実施例によれば、分割照射により低下する治療超音波エネルギを補償しているために、各チャンネル単位の治療超音波エネルギを増やして補償しているから、皮膚火傷を回避でき、かつHIFU治療時間の長大化を抑制することができる。 Also, in the split treatment ultrasound cycle, the treatment ultrasound energy input to the focal point is reduced by the amount corresponding to the channel group G that is not irradiated with the trigger ultrasound or the heating ultrasound. In this regard, according to the present embodiment, since the treatment ultrasonic energy that is reduced by the divided irradiation is compensated, the treatment ultrasonic energy is increased and compensated for each channel unit, so that skin burn can be avoided, In addition, it is possible to suppress the lengthening of the HIFU treatment time.
 図13に、実施例1のチャンネル群Gの分割形態を異ならせた本発明の実施例2を示す。本実施例は、複数n(=40)のチャンネルを、複数m(=10)のチャンネルからなる複数N(=4)のチャンネル群Gに分割する点は同じである。本実施例では、図13に示すように、複数m(=10)のチャンネルの位置を実施例1とは異なり、治療プローブ37aの中心角度位置が互いにずれた2つの扇形領域をチャンネル群Gとしている。つまり、2つの扇形領域に含まれる複数mのチャンネルからなるチャンネル群Gに分割したことを特徴とする。本実施例によれば、実施例1と同様の効果を得ることができる。さらに、本実施例によれば、トリガ超音波が照射される2つの扇形領域をチャンネル群Gが位相角方向(周方向)に離れているので、近接する領域のダメージを低減することができる。 FIG. 13 shows a second embodiment of the present invention in which the division form of the channel group G of the first embodiment is changed. This embodiment is the same in that a plurality of n (= 40) channels are divided into a plurality of N (= 4) channel groups G composed of a plurality of m (= 10) channels. In the present embodiment, as shown in FIG. 13, unlike the first embodiment, the positions of the channels of a plurality of m (= 10) channels are two fan-shaped regions whose center angle positions of the treatment probe 37a are shifted from each other as the channel group G. Yes. In other words, the channel group G is composed of a plurality of m channels included in the two fan-shaped regions. According to the present embodiment, the same effect as in the first embodiment can be obtained. Furthermore, according to the present embodiment, since the channel group G is separated in the phase angle direction (circumferential direction) between the two fan-shaped regions irradiated with the trigger ultrasonic waves, it is possible to reduce damage in adjacent regions.
 図14に、実施例1のチャンネル群Gの分割形態を異ならせた本発明の実施例3を示す。本実施例は、複数n(=40)のチャンネルを、複数m(=10)のチャンネルからなる複数N(=4)のチャンネル群Gに分割する点は同じである。実施例1では隣り合う2つの扇形領域のチャンネルをチャンネル群Gとして分割している。本実施例では隣り合う2つの扇形領域からなるチャンネル群Gの一部(中心側の2つのチャンネル)を周方向にずらして、つまり、中心領域のチャンネルと外側領域のチャンネルを周方向にずらしていることが特徴である。本実施例によれば、実施例1と同様の効果を得ることができる。 FIG. 14 shows a third embodiment of the present invention in which the division form of the channel group G of the first embodiment is changed. This embodiment is the same in that a plurality of n (= 40) channels are divided into a plurality of N (= 4) channel groups G composed of a plurality of m (= 10) channels. In the first embodiment, the channels of two adjacent fan-shaped regions are divided as a channel group G. In this embodiment, a part of the channel group G composed of two adjacent fan-shaped regions (two channels on the center side) is shifted in the circumferential direction, that is, the channel in the central region and the channel in the outer region are shifted in the circumferential direction. It is a feature. According to the present embodiment, the same effect as in the first embodiment can be obtained.
 図15に、本発明の実施例4の治療プローブ37aの複数nのチャンネルを、複数mのチャンネルを含むチャンネル群Gに分割して、トリガ超音波と加熱超音波をチャンネル群Gに分割して照射する図を示す。本実施例は、実施例1と同様n=40であるが、チャンネル群Gの分割数N=8とし、m=5としている点が実施例1と異なる。本実施例は、距離Lが図10(b)のように、Xmin<L<X2の範囲に該当する例である。すなわち、実施例1よりも体表面501が焦点403側に近いことから、チャンネル群Gの分割数Nを多くして、皮膚火傷を回避する点で、実施例1と異なる。本実施例は、図16に示すように、複数nのチャンネルを、放射状にm=5のチャンネルからなるN=8のチャンネル群Gに分割し、トリガ超音波を8個のチャンネル群Gに分割して照射するようにしたものである。 In FIG. 15, a plurality of n channels of the treatment probe 37a according to the fourth embodiment of the present invention are divided into a channel group G including a plurality of m channels, and a trigger ultrasonic wave and a heating ultrasonic wave are divided into the channel group G. The figure to irradiate is shown. In the present embodiment, n = 40 as in the first embodiment, but differs from the first embodiment in that the division number N of the channel group G is set to 8 and m = 5. In the present embodiment, the distance L falls within the range of Xmin <L <X2, as shown in FIG. 10 (b). That is, since the body surface 501 is closer to the focal point 403 than in the first embodiment, the number of divisions N of the channel group G is increased to avoid skin burns. In this embodiment, as shown in FIG. 16, a plurality of n channels are radially divided into N = 8 channel groups G each consisting of m = 5 channels, and the trigger ultrasonic waves are divided into eight channel groups G. And then irradiate.
 また、本実施例では、図示矢印で示すように、分割治療超音波サイクルに従ってトリガ超音波を照射するチャンネル群Gの順番を、隣り合うチャンネル群Gではなく、超音波プローブ37aの凹球面の位相角で180°離れたチャンネル群Gにしたことを特徴とする。これにより、隣接するチャンネル群Gに対応する体表面へのダメージを少なくすることができる。 Further, in the present embodiment, as indicated by the arrows in the figure, the order of the channel group G that irradiates the trigger ultrasound according to the divided therapy ultrasound cycle is not the phase of the adjacent channel group G but the phase of the concave spherical surface of the ultrasound probe 37a. The channel group G is 180 ° apart in angle. Thereby, damage to the body surface corresponding to the adjacent channel group G can be reduced.
 また、本実施例によれば、各チャンネル単位の治療超音波エネルギの補償は、式(2)に示したように、トリガ超音波の振幅を8倍してトリガ超音波エネルギを補い、加熱超音波の振幅を8/7倍して加熱超音波エネルギを補う必要がある。また、図15に示すように、分割治療超音波サイクルは、少なくとも8回繰り返すことになる。 In addition, according to the present embodiment, the treatment ultrasonic energy for each channel is compensated for by heating the ultrasonic wave by compensating the trigger ultrasonic energy by multiplying the amplitude of the trigger ultrasonic wave by 8 as shown in Equation (2). It is necessary to supplement the heating ultrasonic energy by multiplying the amplitude of the sound wave by 8/7. Also, as shown in FIG. 15, the split therapy ultrasound cycle will be repeated at least 8 times.
 図16に、本発明の実施例5のトリガ超音波と加熱超音波をチャンネル群Gに分割して照射する図を示す。本実施例は、実施例1又は実施例3のチャンネル群Gの分割形態を異ならせた点が異なる。つまり、本実施例は、複数n(=40)のチャンネルを、複数m(=10)のチャンネルからなる複数N(=4)のチャンネル群Gに分割する点は同じである。しかし、一つのチャンネル群Gに属する10個のチャンネルの位置を、位相方向(周方向)に適宜ずらして各チャンネル群Gを構成したことを特徴とする。言い換えれば、外側から中心に向かって円心状に配列されたチャンネルを選択して、チャンネル群Gを構成していることを特徴とする。これにより、チャンネル群Gごとにトリガ超音波を照射しても、隣り合うチャンネルが少ないので、トリガ超音波を照射するチャンネル群Gにより体表面へ与えるダメージを少なくすることができる。 FIG. 16 shows a diagram in which the trigger ultrasonic wave and the heating ultrasonic wave according to the fifth embodiment of the present invention are divided into channel groups G and irradiated. The present embodiment is different in that the division form of the channel group G in the first or third embodiment is different. That is, this embodiment is the same in that a plurality of n (= 40) channels are divided into a plurality of N (= 4) channel groups G composed of a plurality of m (= 10) channels. However, each channel group G is configured by appropriately shifting the positions of ten channels belonging to one channel group G in the phase direction (circumferential direction). In other words, the channel group G is configured by selecting channels arranged in a circle from the outside toward the center. Thereby, even if the trigger ultrasonic wave is irradiated for each channel group G, since there are few adjacent channels, damage to the body surface by the channel group G irradiated with the trigger ultrasonic wave can be reduced.
 図17に、本発明の実施例6のトリガ超音波と加熱超音波をチャンネル群Gに分割して照射する図を示す。本実施例は、図16の実施例4のチャンネル群Gの分割形態を異ならせた点が異なり、その他の点は実施例4と同様である。本実施例によれば、一のチャンネル群Gに属ずるチャンネルが互いに接していないから、トリガ超音波を照射するチャンネル群Gにより体表面へ与えるダメージを一層少なく、あるいは全く除去することができる。また、本実施例によれば、図示矢印で示すように、トリガ超音波を照射するチャンネル群Gの順番を、隣り合うチャンネル群Gではなく、超音波プローブ37aの凹球面の配置において、可能な限り離れたチャンネル群Gにしたことを特徴とする。これにより、隣接するチャンネル群Gに対応する体表面へのダメージを少なくすることができる。 FIG. 17 shows a diagram in which the trigger ultrasonic wave and the heating ultrasonic wave according to the sixth embodiment of the present invention are divided into channel groups G and irradiated. The present embodiment is different from the fourth embodiment in that the channel group G in the fourth embodiment shown in FIG. According to the present embodiment, since channels belonging to one channel group G are not in contact with each other, damage to the body surface by the channel group G irradiated with the trigger ultrasonic wave can be further reduced or completely eliminated. Further, according to the present embodiment, as indicated by the arrows in the figure, the order of the channel group G to which the trigger ultrasound is irradiated can be arranged in the arrangement of the concave spherical surface of the ultrasonic probe 37a instead of the adjacent channel group G. The channel group G is as far away as possible. Thereby, damage to the body surface corresponding to the adjacent channel group G can be reduced.
 図18に、本発明のトリガ超音波と加熱超音波をチャンネル群Gに分割する実施例7を示す。本実施例は、治療プローブ37aの複数n(=40)のチャンネルを、複数m(=2)のチャンネルを含む分割数N(=20)のチャンネル群Gに分割することを特徴とする。本実施例によれば、分割数を大きくしたことから、その分だけ体表面へのダメージを1/20に少なくすることができる。しかし、逆に、各チャンネル単位の治療超音波エネルギの補償は、式(2)に示したように、例えばトリガ超音波の振幅を20倍してトリガ超音波エネルギを補うことになるので、トリガ超音波による音圧が体表面等に及ぼす影響を考慮して採用することが肝要である。例えば、トリガ時間(照射時間)の延長、振幅の補償を考慮することで治療効果を保ちつつ、皮膚へのダメージを低減して、低侵襲を実現することができる。 FIG. 18 shows a seventh embodiment in which the trigger ultrasonic wave and the heating ultrasonic wave of the present invention are divided into channel groups G. The present embodiment is characterized in that a plurality of n (= 40) channels of the treatment probe 37a are divided into N (= 20) channel groups G including a plurality of m (= 2) channels. According to this embodiment, since the number of divisions is increased, damage to the body surface can be reduced to 1/20 accordingly. However, on the contrary, the treatment ultrasonic energy compensation for each channel unit compensates the trigger ultrasonic energy by multiplying the amplitude of the trigger ultrasonic wave by 20, for example, as shown in the equation (2). It is important to adopt in consideration of the effect of sound pressure due to ultrasonic waves on the body surface and the like. For example, considering the extension of the trigger time (irradiation time) and the compensation of the amplitude, the damage to the skin can be reduced and the minimally invasive can be realized while maintaining the therapeutic effect.
 以上、実施例に基づいて、トリガ超音波と加熱超音波を分割して照射する本発明の特徴について説明した。本発明は、要するに、複数のチャンネル(治療振動子39)を、トリガ超音波を照射するチャンネルと加熱超音波を照射するチャンネルとに分割し、治療超音波サイクルを繰り返す度にトリガ超音波を照射するチャンネルを切り替えることを特徴とする。つまり、一のチャンネルからトリガ超音波を照射し、続いて同一のチャンネルから加熱超音波を照射すると、トリガ超音波により発生した泡が加熱超音波に破壊されて泡の破壊熱が発生することに鑑み、本発明はトリガ超音波と加熱超音波を送出するチャンネルを異ならせたことを特徴とする。言い換えれば、体表面近傍におけるトリガ超音波の伝搬経路(超音波ビーム)と、加熱超音波の伝搬経路(超音波ビーム)を治療超音波サイクルごとに異ならせたのである。これにより、パルス状のトリガ超音波が体表面又はその近傍に照射される間は極めて短く(例えば、μsecオーダー)、加熱超音波の加熱時間はトリガ超音波に比べて長いから、次の治療超音波サイクルにおいて、加熱超音波が照射される前に気泡は消滅しているので、加熱超音波による気泡の破壊は生じない。 As described above, the features of the present invention in which the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated based on the embodiment have been described. In short, the present invention divides a plurality of channels (therapeutic transducer 39) into a channel for irradiating a trigger ultrasonic wave and a channel for irradiating a heating ultrasonic wave, and irradiates the trigger ultrasonic wave every time the treatment ultrasonic cycle is repeated. It is characterized by switching channels to be performed. In other words, when trigger ultrasonic waves are irradiated from one channel and subsequently heated ultrasonic waves are irradiated from the same channel, bubbles generated by the trigger ultrasonic waves are destroyed by the heated ultrasonic waves, and the heat of bubble destruction is generated. In view of the above, the present invention is characterized in that the channels for transmitting the trigger ultrasonic wave and the heating ultrasonic wave are different. In other words, the propagation path (ultrasonic beam) of the trigger ultrasonic wave in the vicinity of the body surface and the propagation path (ultrasonic beam) of the heating ultrasonic wave are made different for each treatment ultrasonic cycle. As a result, while the pulsed trigger ultrasound is irradiated on or near the body surface, it is extremely short (for example, on the order of μsec), and the heating time of the heating ultrasound is longer than that of the trigger ultrasound. In the sonic cycle, since the bubbles disappear before the heating ultrasonic waves are irradiated, the bubbles are not destroyed by the heating ultrasonic waves.
 また、本発明のように、トリガ超音波と加熱超音波を分割して照射すると、全部のチャンネルからトリガ超音波と加熱超音波を焦点に照射する場合に比べて、各チャンネルから焦点に照射される治療超音波サイクル当りの治療超音波エネルギは減少する。そこで、本発明を実施する際は、治療プローブ制御部であるHIFUコントローラ49は、焦点403に向けて照射する治療超音波エネルギの目標値に合わせて、治療超音波サイクルを構成するトリガ超音波と加熱超音波の超音波エネルギを補償する。治療超音波エネルギの目標値は、各チャンネルからトリガ超音波に続けて加熱超音波を焦点403に向けて照射する基本治療超音波エネルギとすることができる。 Further, when the trigger ultrasonic wave and the heating ultrasonic wave are divided and irradiated as in the present invention, the focal point is irradiated from each channel compared to the case where the trigger ultrasonic wave and the heating ultrasonic wave are irradiated to the focal point from all channels. The therapeutic ultrasonic energy per therapeutic ultrasonic cycle decreases. Therefore, when carrying out the present invention, the HIFU controller 49, which is a treatment probe control unit, matches the trigger ultrasonic wave constituting the treatment ultrasonic cycle according to the target value of the treatment ultrasonic energy irradiated toward the focal point 403. Compensates for the ultrasonic energy of the heated ultrasound. The target value of therapeutic ultrasonic energy can be the basic therapeutic ultrasonic energy that irradiates the focused ultrasonic wave toward the focal point 403 following the trigger ultrasonic wave from each channel.
 HIFUコントローラ49は、焦点403から生体の体表面501までの距離Lを計測し、距離Lが予め定めた最小値Xminから最大値Xmax の範囲内である場合に分割照射を行う。距離Lが最大値Xmaxを超えている場合は、分割照射に代えて全てのチャンネルからトリガ超音波に続けて加熱超音波を焦点に向けて照射する基本照射を行うことができる。 The HIFU controller 49 measures the distance L from the focal point 403 to the body surface 501 of the living body, and performs divided irradiation when the distance L is within a predetermined minimum value Xmin to maximum value Xmax 最大. When the distance L exceeds the maximum value Xmax, it is possible to perform basic irradiation that irradiates the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all channels instead of the divided irradiation.
 さらに、モニタ38に治療プローブ37aの複数のチャンネルの配置構成画像を表示し、トリガ超音波を焦点403に向けて照射するチャンネルと、加熱超音波を焦点403に向けて照射するチャンネルとを、異なる表示形態で表示することが好ましい。これによれば、ユーザは分割照射の内容を簡単に確認することができる。 Further, the arrangement configuration image of the plurality of channels of the treatment probe 37a is displayed on the monitor 38, and the channel that irradiates the trigger ultrasonic wave toward the focal point 403 is different from the channel that irradiates the heating ultrasonic wave toward the focal point 403. It is preferable to display in a display form. According to this, the user can easily confirm the content of the divided irradiation.
 図19に本発明の手術・治療時のGUI表示例を示す。3D撮像ボタン1201を押下することで、Axial断面1231、Sagittal断面1232、Coronal断面1233、Volume Rendering画面1234に再構成され、セグメンテーションボタン1202を押下することで自動(又は手動)により、セグメンテーション・領域抽出が行われる。さらに、HIFU照射可/不可領域設定ボタン1203を押下することで、描出したセグメンテーション情報に対して、治療すべき領域1219の他に超音波アクセス不可領域1240を識別する。その他、治療計画・マージン設定ボタン1204を押下することで、治療経路1238を予め算出することもでき、治療時にそれに沿うようガイドすることもできる。 FIG. 19 shows a GUI display example at the time of surgery / treatment of the present invention. When the 3D imaging button 1201 is pressed, the Axial section 1231, Sagittal section 1232, Coronal section 1233, and Volume Rendering screen 1234 are reconfigured. Is done. Further, by depressing the HIFU irradiation enable / disable area setting button 1203, the ultrasound access disabled area 1240 is identified in addition to the area 1219 to be treated with respect to the drawn segmentation information. In addition, by pressing the treatment plan / margin setting button 1204, the treatment route 1238 can be calculated in advance, and guidance can be provided along the treatment route.
 これらの情報は、Volume Rendering画面1234上で自由に回転でき、別視点/角度から閲覧することもできる。また、腫瘍領域(治療領域)であるターゲット1219、それらを含むマージン領域1220を設定する。ここで、治療パラメータ設定ボタン1205を押下することで、上記領域に対する治療パラメータを入力することができる。具体的な入力値として、超音波プローブ37の種類、形状、出力強度、チャンネル毎の単位出力強度などがある。実際の手術時には、ナビゲーションボタン1206を押下することで、治療に必要な機器やナビゲーション等の手術支援機能が連動して動作する。HIFUプローブ37の位置を検出して、Axial断面1231、Sagittal断面1232、Coronal断面1233、Volume Rendering画面1234上に重畳表示される。 These information can be freely rotated on the Volume Rendering screen 1234, and can be viewed from another viewpoint / angle. In addition, a target 1219 that is a tumor region (treatment region) and a margin region 1220 including them are set. Here, by pressing a treatment parameter setting button 1205, a treatment parameter for the region can be input. Specific input values include the type, shape, output intensity, and unit output intensity for each channel of the ultrasonic probe 37. At the time of actual surgery, by pressing a navigation button 1206, a surgical support function such as equipment necessary for treatment and navigation operates in conjunction with each other. The position of the HIFU probe 37 is detected and superimposed on the Axial section 1231, the Sagittal section 1232, the Coronal section 1233, and the VolumeingRendering screen 1234.
 術者は、事前に求めた治療経路1238を参考に超音波プローブ37を誘導する。その他、超音波プローブ37の過去の経路を表示することができ、情報画面1225に治療経過・生体情報の他にログ情報として腫瘍領域と治療領域の差や治療回数、時間、割合、残治療回数予定も手術情報としてリアルタイム表示することができる。治療直前には、チャンネル群分割計算ボタン1207を押下することで、HIFU焦点403から対表面501までの距離を計測し、図11のグラフを用いてチャンネル群の分割、及びチャンネル単位の超音波エネルギの補償を行う。計算結果は、プローブ情報1211として分割数1212として表示されるだけでなく、予め設定したパラメータ1214を用いてアニメーション表示される1213。 The surgeon guides the ultrasonic probe 37 with reference to the treatment path 1238 obtained in advance. In addition, the past path of the ultrasonic probe 37 can be displayed, and the information screen 1225 displays the difference between the tumor area and the treatment area as the log information in addition to the treatment progress / biological information, the number of treatments, the time, the ratio, the number of remaining treatments. The schedule can also be displayed in real time as surgery information. Immediately before treatment, the channel group division calculation button 1207 is pressed to measure the distance from the HIFU focal point 403 to the surface 501, and the channel group is divided using the graph of FIG. To compensate. The calculation result is displayed not only as the number of divisions 1212 as the probe information 1211 but also as an animation display 1213 using a preset parameter 1214.
 ここで、超音波アクセス不可領域1240に超音波経路がある場合には、プローブの位置変更を促す警告機能も有している。治療直前にこれらの情報をナビゲーション画像上に表示することで、ユーザに対して視覚的に情報伝達する。HIFU照射・効果確認ボタン1208を押下することで、治療用超音波702と画像用超音波601が交互に照射され、ターゲット1219に対する治療済領域1218がリアルタイムに治療情報・超音波画像が表示され、治療画像に各種情報および警告情報を表示することもできる。 Here, when there is an ultrasound path in the ultrasound inaccessible area 1240, it also has a warning function that prompts the probe to change its position. By displaying these information on the navigation image immediately before the treatment, the information is visually transmitted to the user. By pressing the HIFU irradiation / effect confirmation button 1208, the treatment ultrasound 702 and the image ultrasound 601 are alternately illuminated, and the treatment area 1218 for the target 1219 is displayed in real time on the treatment information / ultrasound image, Various information and warning information can also be displayed on the treatment image.
 例えば、過去に治療した治療済領域1218を重畳表示し、予定しているマージン領域1220を越えている場合や患者に異常が生じた場合には警告を発する機能を自動的にON/OFFすることもできる。ターゲット1219の他に「残治療領域=ターゲット1219-治療済領域1218」及びマージン1220も表示されていることから、術者には視覚的に残治療領域がわかるようになっており、MR撮像と超音波撮像が連動して交互に撮像する機能も備わっている。MR画像上には特定領域、マージン領域、ARFIによる治療予定領域が同じように表示され、組織コントラストの異なる画像が表示される。 For example, a previously treated area 1218 that has been treated in the past is displayed in a superimposed manner, and a function that issues a warning when the planned margin area 1220 is exceeded or an abnormality occurs in the patient is automatically turned ON / OFF. You can also. In addition to the target 1219, “remaining treatment area = target 1219−treated area 1218” and a margin 1220 are also displayed, so that the operator can visually recognize the remaining treatment area, and MR imaging and It also has a function of imaging alternately in conjunction with ultrasonic imaging. On the MR image, the specific area, the margin area, and the ARFI treatment planned area are displayed in the same manner, and images with different tissue contrasts are displayed.
 ユーザは治療前後の画像情報1231~1234と手術情報1225から再治療を行うかどうか判断し、必要に応じて再治療する。また、MRIの長所としては、身体の深部まで画像化できることが挙げられる。これより、術者は直前の治療画像を目視して術具の移動と追加治療を行うことができる。治療前後の情報は超音波画像1217、3軸断面1231~1233およびVolume Rendering画像1234、MRI画像の他に、手術情報1225が全て連動することができる。 The user determines whether to perform retreatment from the image information before and after treatment 1231-1234 and the operation information 1225, and retreats as necessary. Another advantage of MRI is that it can be imaged deep into the body. As a result, the surgeon can move the surgical tool and perform additional treatment while viewing the previous treatment image. The information before and after the treatment can be linked with the operation information 1225 in addition to the ultrasonic image 1217, the triaxial cross sections 1231 to 1233, the Volume Rendering image 1234, and the MRI image.
 治療用超音波プローブは人手による操作のほかに、マニピュレータによる機械操作にも対応している。位置情報は位置検出デバイス9から取得してもマニピュレータによる座標を用いて三次元表示1231~1234としてもよい。 ¡The therapeutic ultrasound probe supports not only manual operation but also machine operation using a manipulator. The position information may be acquired from the position detection device 9 or may be displayed as the three-dimensional displays 1231 to 1234 using the coordinates of the manipulator.
 以上、本発明を一実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属することは当然のことである。 As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to these, It is possible to implement in the form deform | transformed or changed in the range of the main point of this invention. It will be obvious to those skilled in the art, and it is obvious that such modifications or alterations belong to the scope of the claims of the present application.
 1 MRI装置、3 上部磁石、5 下部磁石、7 支柱、9 位置検出デバイス、11 アーム、13、14 モニタ、15 モニタ支持部、17 基準ツール、19 パーソナルコンピュータ、21 ベッド、23 MRI制御部、24 患者、25 赤外線カメラ、27 ポインタ、29 術者、33 RS232Cケーブル、34 映像記録装置、35 反射球、37 超音波プローブ、38 モニタ、40 超音波治療装置、49 HIFUコントローラ、50 パワーアンプ、C チャンネル、G1、G2、G3,G4 チャンネル群 1 MRI machine, 3 Upper magnet, 5 Lower magnet, 7 posts, 9 Position detection device, 11 Arm, 13, 14 Monitor, 15 Monitor support, 17 Reference tool, 19 Personal computer, 21 Bed, 23 MRI control, 24 Patient, 25 Infrared camera, 27 Pointer, 29 Operator, 33 RS232C cable, 34 Video recording device, 35 Reflective sphere, 37 Ultrasonic probe, 38 Monitor, 40 Ultrasonic therapy device, 49 HIFU controller, 50 Power amplifier, C channel , G 1, G 2, G 3, G 4 group of channels

Claims (15)

  1.  治療超音波を発生する治療振動子からなるチャンネルを複数有してなる治療プローブと、前記治療プローブから生体の治療対象部位に設定される焦点に、トリガ超音波に続けて前記トリガ超音波より強度が弱い加熱超音波を照射する治療超音波サイクルを繰り返す治療プローブ制御部とを備え、
     前記治療プローブ制御部は、前記治療超音波サイクルごとに、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと、前記加熱超音波を前記焦点に向けて照射する前記チャンネルとを異ならせる分割照射を行うことを特徴とする超音波治療装置。
    A treatment probe having a plurality of channels including treatment transducers for generating treatment ultrasound, and a focus set from the treatment probe to a treatment target site of a living body, followed by a trigger ultrasound and an intensity higher than the trigger ultrasound. A treatment probe controller that repeats a treatment ultrasound cycle that irradiates weakly heated ultrasound,
    The treatment probe control unit divides the channel for irradiating the trigger ultrasonic wave toward the focal point and the channel for irradiating the heated ultrasonic wave toward the focal point for each treatment ultrasonic cycle. An ultrasonic therapy apparatus characterized by performing irradiation.
  2.  前記治療プローブ制御部は、前記焦点に向けて照射する治療超音波エネルギの目標値に合わせて、前記治療超音波サイクルを構成する前記トリガ超音波と前記加熱超音波の超音波エネルギを補償することを特徴とする請求項1に記載の超音波治療装置。 The therapeutic probe control unit compensates the ultrasonic energy of the trigger ultrasonic wave and the heating ultrasonic wave that constitute the therapeutic ultrasonic cycle according to a target value of therapeutic ultrasonic energy irradiated toward the focal point. 2. The ultrasonic therapy apparatus according to claim 1, wherein:
  3.  前記治療超音波エネルギの目標値は、前記各チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本治療超音波エネルギであることを特徴とする請求項2に記載の超音波治療装置。 3. The target value of the therapeutic ultrasonic energy is basic therapeutic ultrasonic energy that irradiates the heated ultrasonic wave toward the focal point following the trigger ultrasonic wave from each channel. Ultrasound therapy device.
  4.  前記治療プローブ制御部は、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする請求項1に記載の超音波治療装置。 The treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, and the measurement distance When the value exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels. The ultrasonic therapy apparatus according to claim 1.
  5.  さらに、前記治療プローブの複数のチャンネルの配置構成画像を表示するモニタを備え、該モニタには、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと前記加熱超音波を前記焦点に向けて照射する前記チャンネルとが、異なる表示形態で表示されることを特徴とする請求項1に記載の超音波治療装置。 The monitor further includes a monitor that displays an arrangement image of a plurality of channels of the treatment probe, and the monitor irradiates the trigger ultrasonic wave toward the focal point and the heating ultrasonic wave toward the focal point. 2. The ultrasonic therapy apparatus according to claim 1, wherein the channel to be irradiated is displayed in a different display form.
  6.  前記治療プローブは、半球状の凹面が同心円状の複数の円環領域に分割され、更に前記円環領域を径方向に分割されてなる複数の領域のそれぞれに前記チャンネルが形成され、前記各チャンネルの超音波送出面の面積が均等に形成されていることを特徴とする請求項1に記載の超音波治療装置。 The therapeutic probe has a hemispherical concave surface divided into a plurality of concentric annular regions, and each channel is formed in each of a plurality of regions obtained by dividing the annular region in the radial direction. 2. The ultrasonic therapy apparatus according to claim 1, wherein the ultrasonic transmission surface of each has an equal area.
  7.  前記治療プローブ制御部は、前記複数のチャンネルを複数チャンネル群に分け、一の前記チャンネル群に属する前記チャンネルから前記トリガ超音波を前記焦点に向けて照射した後、続いて他の前記チャンネル群に属する前記チャンネルから前記加熱超音波を前記焦点に向けて照射する治療超音波サイクルを繰り返し、該治療超音波サイクルの繰返しごとに、前記トリガ超音波を照射する一の前記チャンネル群を他の前記チャンネル群の一に切り替えることを特徴とする請求項1に記載の超音波治療装置。 The treatment probe control unit divides the plurality of channels into a plurality of channel groups, irradiates the trigger ultrasonic waves from the channels belonging to one channel group toward the focal point, and subsequently to the other channel groups. The treatment ultrasonic cycle for irradiating the heating ultrasonic wave from the channel to which it is directed toward the focal point is repeated, and one channel group for irradiating the trigger ultrasonic wave for each repetition of the treatment ultrasonic cycle is assigned to the other channel. 2. The ultrasonic therapy apparatus according to claim 1, wherein the apparatus is switched to one of a group.
  8.  前記治療プローブ制御部は、前記焦点に向けて照射する治療超音波エネルギの目標値に合わせて、前記トリガ超音波の振幅、周波数あるいは照射時間の少なくとも一つ、又は前記加熱超音波の振幅、周波数又は照射時間の少なくとも一つを調整して超音波エネルギを補償することを特徴とする請求項7に記載の超音波治療装置。 The therapeutic probe control unit adjusts at least one of the amplitude, frequency, or irradiation time of the trigger ultrasonic wave, or the amplitude, frequency of the heating ultrasonic wave in accordance with a target value of therapeutic ultrasonic energy irradiated toward the focal point. 8. The ultrasonic therapy apparatus according to claim 7, wherein the ultrasonic energy is compensated by adjusting at least one of the irradiation times.
  9.  前記治療超音波エネルギの目標値は、前記各チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基準治療超音波エネルギであることを特徴とする請求項8に記載の超音波治療装置。 9. The target value of the therapeutic ultrasonic energy is reference therapeutic ultrasonic energy for irradiating the heated ultrasonic wave toward the focal point from the channels following the trigger ultrasonic wave. Ultrasound therapy device.
  10.  前記治療プローブ制御部は、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする請求項7に記載の超音波治療装置。 The treatment probe control unit measures the distance from the focal point to the body surface of the living body, and performs the divided irradiation when the measurement distance is within a predetermined minimum value and maximum value range, and the measurement distance When the value exceeds the maximum value, instead of the divided irradiation, basic irradiation is performed by irradiating the heating ultrasonic wave toward the focal point following the trigger ultrasonic wave from all the channels. The ultrasonic therapy apparatus according to claim 7.
  11. 前記複数のチャンネルの数をnとし、前記チャンネル群が有する複数のチャンネルの数をmとした場合、前記治療プローブ制御部は、前記トリガ超音波の振幅をn/m倍すること、又は前記トリガ超音波の周波数を整数倍して前記トリガ超音波エネルギを調整することにより、前記治療超音波エネルギを補償することを特徴とする請求項8に記載の超音波治療装置。 When the number of the plurality of channels is n and the number of the plurality of channels of the channel group is m, the treatment probe control unit multiplies the amplitude of the trigger ultrasonic wave by n / m, or the trigger 9. The ultrasonic therapy apparatus according to claim 8, wherein the therapeutic ultrasonic energy is compensated by adjusting the trigger ultrasonic energy by multiplying an ultrasonic frequency by an integer.
  12.  前記治療プローブ制御部は、前記治療超音波エネルギを補償すると、前記トリガ超音波のエネルギ又は前記加熱超音波のエネルギが予め設定された上限値を超える場合、その旨の警報を音声、音又は画像情報により報知することを特徴とする請求項8に記載の超音波治療装置。 When the therapeutic probe energy compensates the therapeutic ultrasonic energy, if the energy of the trigger ultrasonic wave or the energy of the heating ultrasonic wave exceeds a preset upper limit value, a warning to that effect is made by voice, sound or image 9. The ultrasonic therapy apparatus according to claim 8, which is notified by information.
  13.  前記上限値は、前記チャンネルと前記焦点との間に位置する前記生体の体表面の火傷を防止する値に設定されることを特徴とする請求項12に記載の超音波治療装置。 13. The ultrasonic therapy apparatus according to claim 12, wherein the upper limit value is set to a value for preventing a burn on the body surface of the living body located between the channel and the focal point.
  14.  治療超音波を発生する治療振動子からなるチャンネルを複数有してなる治療プローブと、前記治療プローブから生体の治療対象部位に設定される焦点に、トリガ超音波に続けて前記トリガ超音波より強度が弱い加熱超音波を照射する治療超音波サイクルを繰り返す治療プローブ制御部と、前記治療プローブの中心部に設けられ、前記生体との間で撮像用の超音波を送受する複数の撮像振動子を有してなる撮像プローブと、前記撮像プローブの受信信号から生成される前記焦点を含む超音波画像を生成する超音波画像構成部と、前記超音波画像を表示する表示部と、を備え、
     前記治療プローブ制御部は、前記治療超音波サイクルごとに、前記トリガ超音波を前記焦点に向けて照射する前記チャンネルと、前記加熱超音波を前記焦点に向けて照射する前記チャンネルとを異ならせる分割照射を行うことを特徴とする超音波治療システム。
    A treatment probe having a plurality of channels including treatment transducers for generating treatment ultrasound, and a focus set from the treatment probe to a treatment target site of a living body, followed by a trigger ultrasound and an intensity higher than the trigger ultrasound. A treatment probe controller that repeats a treatment ultrasound cycle that irradiates weakly heated ultrasound, and a plurality of imaging transducers that are provided at the center of the treatment probe and that transmit and receive ultrasound for imaging with the living body An imaging probe comprising: an ultrasound image forming unit that generates an ultrasound image including the focus generated from a reception signal of the imaging probe; and a display unit that displays the ultrasound image.
    The treatment probe control unit divides the channel for irradiating the trigger ultrasonic wave toward the focal point and the channel for irradiating the heated ultrasonic wave toward the focal point for each treatment ultrasonic cycle. An ultrasonic treatment system characterized by performing irradiation.
  15.  さらに、前記治療プローブの位置を検出する三次元位置検出器と、前記生体の前記治療対象部位を含めた三次元ボリューム画像データが蓄積されたメモリと、前記三次元位置検出器により検出された前記治療プローブの位置に基づいて、前記三次元ボリューム画像データから前記超音波画像の断層面に対応するナビゲーション画像を生成して前記表示部に表示するナビゲーション画像構成部とを有する医用画像装置を備え、
     前記医用画像装置は、前記各チャンネルと前記焦点を結ぶ治療超音波ビームの模擬画像を生成して前記ナビゲーション画像に重ねて描出する治療超音波ビーム描出部を備え、
     前記治療プローブ制御部は、前記表示部に表示された前記超音波画像に基づいて、前記焦点から前記生体の体表面までの距離を計測し、該計測距離が予め定めた最小値と最大値の範囲内である場合に前記分割照射を行い、前記計測距離が前記最大値を超えている場合は、前記分割照射に代えて全ての前記チャンネルから前記トリガ超音波に続けて前記加熱超音波を前記焦点に向けて照射する基本照射を行うことを特徴とする請求項14に記載の超音波治療システム。
    Furthermore, a three-dimensional position detector for detecting the position of the treatment probe, a memory in which three-dimensional volume image data including the treatment target portion of the living body is stored, and the three-dimensional position detector A medical image device having a navigation image configuration unit that generates a navigation image corresponding to a tomographic plane of the ultrasonic image from the three-dimensional volume image data based on the position of the treatment probe and displays the navigation image on the display unit;
    The medical imaging apparatus includes a therapeutic ultrasound beam rendering unit that generates a simulated image of a therapeutic ultrasound beam that connects each channel and the focal point, and overlays the rendered image on the navigation image.
    The treatment probe control unit measures a distance from the focal point to the body surface of the living body based on the ultrasonic image displayed on the display unit, and the measurement distance is a predetermined minimum value and maximum value. When the divided irradiation is performed within the range, and the measurement distance exceeds the maximum value, instead of the divided irradiation, the heating ultrasonic wave is transmitted from all the channels following the trigger ultrasonic wave. 15. The ultrasonic therapy system according to claim 14, wherein basic irradiation for irradiating toward a focal point is performed.
PCT/JP2015/065732 2014-06-05 2015-06-01 Ultrasound therapeutic device and ultrasound therapeutic system WO2015186651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525154A JP6473149B2 (en) 2014-06-05 2015-06-01 Ultrasonic therapy apparatus and ultrasonic therapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014116339 2014-06-05
JP2014-116339 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015186651A1 true WO2015186651A1 (en) 2015-12-10

Family

ID=54766723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065732 WO2015186651A1 (en) 2014-06-05 2015-06-01 Ultrasound therapeutic device and ultrasound therapeutic system

Country Status (2)

Country Link
JP (1) JP6473149B2 (en)
WO (1) WO2015186651A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129599A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Ultrasonic treatment apparatus and ultrasonic treatment system
KR20180110857A (en) * 2017-03-30 2018-10-11 서강대학교산학협력단 Apparatus and method of high-intensity focused ultrasound scanning
WO2020012603A1 (en) * 2018-07-12 2020-01-16 ヤーマン株式会社 System supporting operation of light irradiation beauty device
JP7082441B1 (en) 2021-09-22 2022-06-08 ソニア・セラピューティクス株式会社 Ultrasonic oscillator inspection device and inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122650A1 (en) * 2008-04-04 2009-10-08 株式会社日立製作所 Ultrasonic wave irradiation device
JP2014094172A (en) * 2012-11-09 2014-05-22 Hitachi Medical Corp Ultrasonic wave medical treatment device and ultrasonic wave medical treatment support system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754113B2 (en) * 1994-09-17 2006-03-08 株式会社東芝 Ultrasonic therapy device
JPH08243111A (en) * 1995-03-14 1996-09-24 Toshiba Corp Impulse wave generator
JPH08140984A (en) * 1994-09-19 1996-06-04 Toshiba Corp Ultrasonic treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122650A1 (en) * 2008-04-04 2009-10-08 株式会社日立製作所 Ultrasonic wave irradiation device
JP2014094172A (en) * 2012-11-09 2014-05-22 Hitachi Medical Corp Ultrasonic wave medical treatment device and ultrasonic wave medical treatment support system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129599A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Ultrasonic treatment apparatus and ultrasonic treatment system
KR20180110857A (en) * 2017-03-30 2018-10-11 서강대학교산학협력단 Apparatus and method of high-intensity focused ultrasound scanning
KR102087281B1 (en) * 2017-03-30 2020-03-10 서강대학교산학협력단 Apparatus and method of high-intensity focused ultrasound scanning
WO2020012603A1 (en) * 2018-07-12 2020-01-16 ヤーマン株式会社 System supporting operation of light irradiation beauty device
JPWO2020012603A1 (en) * 2018-07-12 2021-07-08 ヤーマン株式会社 A system that supports the operation of light irradiation type beauty equipment
JP7239583B2 (en) 2018-07-12 2023-03-14 ヤーマン株式会社 A system that supports the operation of light irradiation type beauty equipment
JP7082441B1 (en) 2021-09-22 2022-06-08 ソニア・セラピューティクス株式会社 Ultrasonic oscillator inspection device and inspection method
WO2023047605A1 (en) * 2021-09-22 2023-03-30 ソニア・セラピューティクス株式会社 Ultrasonic transducer inspection device and inspection method
JP2023046010A (en) * 2021-09-22 2023-04-03 ソニア・セラピューティクス株式会社 Ultrasonic vibrator inspection device and method

Also Published As

Publication number Publication date
JPWO2015186651A1 (en) 2017-04-20
JP6473149B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
US11648424B2 (en) Histotripsy systems and methods
US8376946B2 (en) Method and apparatus for combined diagnostic and therapeutic ultrasound system incorporating noninvasive thermometry, ablation control and automation
JP5522741B2 (en) Method and apparatus for position tracking of therapeutic ultrasound transducers
JP5117051B2 (en) Ultrasonic diagnostic system and method
CN105828876A (en) System and method for ultrasound and computed tomography image registration for sonothrombolysis treatment
JP5255964B2 (en) Surgery support device
JPH0747079A (en) Ultrasonic therapeutic system
JP6473149B2 (en) Ultrasonic therapy apparatus and ultrasonic therapy system
JP2012045198A (en) Treatment support device, and treatment support system
US20230038498A1 (en) Systems and methods for robotically-assisted histotripsy targeting based on mri/ct scans taken prior to treatment
US20230061534A1 (en) Minimally invasive histotripsy systems and methods
JP6042132B2 (en) Ultrasonic therapy device
JP5731267B2 (en) Treatment support system and medical image processing apparatus
JP2013128731A (en) Ultrasound treatment apparatus and surgery assistance system
JP5779027B2 (en) Ultrasonic therapy device
US20240091565A1 (en) Pre-treatment tissue sensitization for focused ultrasound procedures
JP6297411B2 (en) Ultrasonic therapy apparatus and ultrasonic therapy system
JP5998017B2 (en) Ultrasonic therapy apparatus and ultrasonic therapy support system
JP6386384B2 (en) Ultrasonic therapy apparatus and ultrasonic therapy system
JP5611754B2 (en) Surgery support system
JP2015217247A5 (en)
JP2015146952A (en) Ultrasonic treatment apparatus and ultrasonic treatment system
WO2024040185A2 (en) Histotripsy systems and methods
JP2015156885A (en) Ultrasonic therapy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803573

Country of ref document: EP

Kind code of ref document: A1