WO2015186533A1 - Image sensor, electronic apparatus, ad conversion device, and drive method - Google Patents

Image sensor, electronic apparatus, ad conversion device, and drive method Download PDF

Info

Publication number
WO2015186533A1
WO2015186533A1 PCT/JP2015/064675 JP2015064675W WO2015186533A1 WO 2015186533 A1 WO2015186533 A1 WO 2015186533A1 JP 2015064675 W JP2015064675 W JP 2015064675W WO 2015186533 A1 WO2015186533 A1 WO 2015186533A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
unit
amplification
attenuation
signal
Prior art date
Application number
PCT/JP2015/064675
Other languages
French (fr)
Japanese (ja)
Inventor
延幸 嶋村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015186533A1 publication Critical patent/WO2015186533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present technology relates to an image sensor, an electronic device, an AD converter, and a driving method, and more particularly, to an image sensor, an electronic device, an AD converter, and a driving method that can reduce noise, for example.
  • CMOS Complementary Metal Oxide Semiconductor
  • a reference signal to be compared with an electrical signal obtained from a pixel is shared by a plurality of ADCs (Analog-to-Digital Converter), and an electrical signal obtained from a plurality of pixels such as pixels on one horizontal line.
  • ADCs Analog-to-Digital Converter
  • Parallel AD conversion is performed in which the AD conversion is performed in parallel (see, for example, Patent Document 1).
  • a reference signal is shared by a plurality of ADCs that perform AD conversion of electrical signals obtained from pixels of one horizontal line. Therefore, if the noise (random noise) included in the reference signal is not sufficiently small compared to the noise (random noise) included in the electrical signal obtained from the pixel, in the image obtained from the CMOS image sensor in the horizontal line direction. Correlated horizontal stripe noise appears to such an extent that it can be visually observed, and the image quality deteriorates.
  • the present technology has been made in view of such a situation, and makes it possible to reduce noise of a reference signal.
  • An image sensor includes a photoelectric conversion element that performs photoelectric conversion, a pixel that outputs an electrical signal, a reference signal output unit that outputs a reference signal whose level changes, and the reference signal that is one or more times higher
  • An amplification unit that outputs an amplified reference signal amplified at an amplification factor of K, an attenuation unit that attenuates the amplified reference signal at an attenuation factor of 1 / K and outputs an attenuation reference signal, and is output from the pixel
  • an AD converter that performs AD (Analog-to-Digital) conversion of the electrical signal by comparing the electrical signal with the attenuated reference signal.
  • An image sensor driving method includes a photoelectric conversion element that performs photoelectric conversion, the image sensor including a pixel that outputs an electrical signal and a reference signal output unit that outputs a reference signal whose level changes.
  • An amplified reference signal obtained by amplifying the reference signal with an amplification factor of 1 or more times K is output, the amplified reference signal is attenuated by an attenuation factor of 1 / K, and an attenuated reference signal is output from the pixel.
  • the driving method includes a step of performing AD (Analog-to-Digital) conversion of the electrical signal by comparing the output electrical signal with the attenuated reference signal.
  • AD Analog-to-Digital
  • An electronic apparatus includes an optical system that collects light and an image sensor that receives light and picks up an image.
  • the image sensor includes a photoelectric conversion element that performs photoelectric conversion, and outputs an electrical signal.
  • a reference signal output unit that outputs a reference signal whose level changes, an amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more, and the amplification reference
  • the signal is attenuated by an attenuation factor of 1 / K times, and an attenuation unit that outputs an attenuation reference signal is compared with the electric signal output from the pixel and the attenuation reference signal.
  • an AD converter that performs AD (Analog-to-Digital) conversion.
  • An AD conversion apparatus of the present technology a reference signal output unit that outputs a reference signal whose level changes, an amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times, and
  • the AD conversion apparatus includes an attenuator that attenuates the amplified reference signal at an attenuation factor of 1 / K and outputs an attenuated reference signal, an electric signal, and a comparator that compares the attenuated reference signal.
  • an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more is output, and the amplified reference signal is attenuated by an attenuation factor of 1 / K, so that an attenuated reference signal is obtained. Is output. Then, AD conversion of the electrical signal is performed by comparing the electrical signal with the attenuated reference signal.
  • image sensor and the AD conversion device may be independent devices or may be internal blocks constituting one device.
  • the noise of the reference signal can be reduced.
  • FIG. 2 is a block diagram illustrating a configuration example of an image sensor 2.
  • FIG. It is a circuit diagram which shows the structural example of the pixel 11m, n .
  • FIG. 6 is a flowchart for explaining an example of the operation of the column parallel AD conversion unit 22. It is a circuit diagram showing a configuration example of the attenuation section 111 n. 3 is a circuit diagram illustrating a first configuration example of a reference signal output unit 33. FIG. 6 is a circuit diagram illustrating a second configuration example of a reference signal output unit 33.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a digital camera to which the present technology is applied.
  • the digital camera can capture both still images and moving images.
  • the digital camera includes an optical system 1, an image sensor 2, a memory 3, a signal processing unit 4, an output unit 5, and a control unit 6.
  • the optical system 1 has, for example, a zoom lens, a focus lens, a diaphragm, and the like (not shown), and makes light from the outside enter the image sensor 2.
  • the image sensor 2 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor that receives incident light from the optical system 1, performs photoelectric conversion, and outputs image data corresponding to the incident light from the optical system 1. To do.
  • CMOS Complementary Metal Oxide Semiconductor
  • the memory 3 temporarily stores image data output from the image sensor 2.
  • the signal processing unit 4 performs processing such as noise removal and white balance adjustment as signal processing using the image data stored in the memory 3 and supplies the processed signal to the output unit 5.
  • the output unit 5 outputs the image data from the signal processing unit 4.
  • the output unit 5 has a display (not shown) made of, for example, liquid crystal, and displays an image corresponding to the image data from the signal processing unit 4 as a so-called through image.
  • the output unit 5 includes a driver (not shown) that drives a recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and records the image data from the signal processing unit 4 on the recording medium.
  • a driver (not shown) that drives a recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and records the image data from the signal processing unit 4 on the recording medium.
  • the control unit 6 controls each block constituting the digital camera in accordance with a user operation or the like.
  • the image sensor 2 receives incident light from the optical system 1 and outputs image data according to the incident light.
  • the image data output from the image sensor 2 is supplied to and stored in the memory 3.
  • the image data stored in the memory 3 is subjected to signal processing by the signal processing unit 4, and the resulting image data is supplied to the output unit 5 and output.
  • FIG. 2 is a block diagram showing a configuration example of the image sensor 2 of FIG.
  • the image sensor 2 includes a pixel array 10, a control unit 20, a pixel driving unit 21, a column parallel AD conversion unit 22, and an output unit 23.
  • the pixel array 10 includes M ⁇ N pixels 11 1,1 , 11 1,2 ,..., 11 1, N , 11 2,1,. 11 2,2, ⁇ , 11 2, N, ⁇ , 11 M, 1, 11 M, 2, ⁇ , 11 M, has a N, imaging unit for capturing an image (image pickup device) Function as.
  • M ⁇ N pixels 11 1,1 to 11 M, N are arranged in a matrix (lattice) of M rows and N columns on a two-dimensional plane.
  • n-th column (n 1,2, ⁇ , N ) M pixels 11 1 arranged in the column direction (vertical direction) of, n to 11 M, the n, the column direction An extending VSL (Vertical Signal Line) 42 n is connected.
  • the pixels 11 m and n perform photoelectric conversion of light (incident light) incident thereon. Furthermore, the pixel 11 m, n is the voltage corresponding to the charges obtained by photoelectric conversion (electrical signal), from the pixel driver 21, under the control of via the pixel control line 41 m, the current source 43 n is connected Is output on the VSL 42 n .
  • the pixels 11 m, n can perform photoelectric conversion of light of a predetermined color that enters through a color filter (not shown) such as a Bayer array.
  • the control unit 20 controls the pixel driving unit 21, the column parallel AD conversion unit 22 (the auto zero control unit 32, the reference signal output unit 33, and the like) and other necessary blocks according to a predetermined logic or the like.
  • Pixel driver 21 under the control of the control unit 20, via the pixel control line 41 m, to the pixels 11 m, 1 not connected to the pixel control line 41 m 11 m, and controls the N (drive).
  • the column parallel AD converter 22 is connected to each of the pixels 11 m, 1 to 11 m, N arranged in a row via the VSLs 42 1 to 42 N , and therefore the pixels 11 m, n are output on the VSL 42 n.
  • An electrical signal (voltage) (hereinafter also referred to as a VSL signal) is supplied to the column parallel AD conversion unit 22.
  • the column parallel AD conversion unit 22 performs parallel AD conversion of VSL signals supplied from the pixels 11 m, 1 to 11 m, N arranged in a row via the VSLs 42 1 to 42 N in parallel.
  • the digital data obtained as a result of AD conversion is supplied to the output unit 23 as pixel values (pixel data) of the pixels 11 m, 1 to 11 m, N.
  • the column parallel AD conversion unit 22 performs AD conversion of all the electric signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel, and also the N pixels 11 m, 1. Furthermore, AD conversion of electrical signals of one or more pixels of less than N out of 11 m and N can be performed in parallel.
  • the column parallel AD conversion unit 22 performs AD conversion of all VSL signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel. To do.
  • the column parallel AD conversion unit 22 performs N ADC (Analog to Digital Converter) 31 in order to perform AD conversion of all the VSL signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel. 1 to 31 N.
  • N ADC Analog to Digital Converter
  • the column parallel AD conversion unit 22 includes an auto zero control unit 32, a reference signal output unit 33, and a clock output unit 34.
  • Auto-zero control unit 32 includes the ADC 31 n, the auto-zero pulse is a signal for controlling the autozero process described later comparator 61 n, via the auto-zero control line 32A, is supplied (output) to the ADC 31 1 through 31 N .
  • the reference signal output unit 33 is composed of, for example, a DAC (Digital to Analog Converter), and the level (voltage) changes from a predetermined initial value to a predetermined final value with a constant slope like a ramp signal.
  • a reference signal having a period is supplied (output) to the ADCs 31 1 to 31 N via the reference signal line 33A.
  • the clock output unit 34 supplies (outputs) a clock having a predetermined frequency to the ADCs 31 1 to 31 N via the clock line 34A.
  • the ADC 31 n is connected to the VSL 41 n , and therefore, the ADC 31 n is supplied with a VSL signal (electric signal) output from the pixel 11 m, n on the VSL 41 n .
  • the ADC 31 n performs AD conversion of the VSL signal output from the pixels 11 m and n using the reference signal from the reference signal output unit 33 and the clock from the clock output unit 34, and further performs CDS (Correlated Double Sampling). ) To obtain digital data as pixel values.
  • the ADC 31 n compares the VSL signal of the pixel 11 m, n with the reference signal from the reference signal output unit 33 until the level of the VSL signal of the pixel 11 m, n matches the level of the reference signal. By counting the time required for the change in the level of the reference signal (until the magnitude relationship between the VSL signal and the reference signal is reversed), AD conversion of the VSL signal of the pixels 11 m and n is performed.
  • the time required to change the level of the reference signal until the level of the VSL signal of the pixel 11 m, n matches the level of the reference signal is counted by counting the clock from the clock output unit 34. Is called.
  • the N ADCs 31 1 to 31 N receive the VSL signals of the N pixels 11 m, 1 to 11 m, N in the first to Mth rows of the pixel array 10, for example, the first row. Are sequentially supplied, and AD conversion and CDS of the VSL signal are performed in units of rows.
  • the output unit 23 selects the column n from which the pixel value is read, and reads the AD conversion (and CDS) result of the pixel 11 m, n obtained by the ADC 31 n as the pixel value from the ADC 31 n of the column n. And output to the outside (in this embodiment, the memory 3 (FIG. 1)).
  • the ADC 31 n performs CDS in addition to AD conversion.
  • the ADC 31 n performs only AD conversion, and CDS can be performed by the output unit 23.
  • FIG. 3 is a circuit diagram showing a configuration example of the pixels 11m, n in FIG.
  • the pixel 11 m, n includes a PD 51 and four NMOS (negative channel MOS) FETs (Field Effect Transistors) 52, 54, 55, and 56.
  • NMOS negative channel MOS
  • FETs Field Effect Transistors
  • the drain of the FET 52, the source of the FET 54, and the gate of the FET 55 are connected, and an FD (Floating Diffusion) (capacitance) for converting charges into voltage is connected to the connection point. ) 53 is formed.
  • FD Floating Diffusion
  • the PD 51 is an example of a photoelectric conversion element that performs photoelectric conversion, and performs photoelectric conversion by receiving incident light and charging a charge corresponding to the incident light.
  • the anode of the PD 51 is connected (grounded) to the ground, and the cathode of the PD 51 is connected to the source of the FET 52.
  • the FET 52 is an FET for transferring the charge charged in the PD 51 from the PD 51 to the FD 53, and is also referred to as a transfer Tr 52 hereinafter.
  • the source of the transfer Tr 52 is connected to the cathode of the PD 51, and the drain of the transfer Tr 52 is connected to the source of the FET 54 via the FD 53.
  • the gate of the transfer Tr52 is connected to the pixel control line 41 m, the gate of the transfer Tr52 via the pixel control line 41 m, the transfer pulse TRG is supplied.
  • the pixel driving unit 21 (FIG. 2), via a pixel control line 41 m, the pixel 11 m, n and for driving (control), the control signal to be supplied to the pixel control line 41 m, the transfer pulse
  • TRG the transfer pulse
  • RST reset pulse
  • SEL selection pulse
  • the FD 53 is a region that converts charges into voltage like a capacitor formed at the connection point of the drain of the transfer Tr 52, the source of the FET 54, and the gate of the FET 55.
  • the FET 54 is an FET for resetting the charge (voltage (potential)) charged in the FD 53, and is also referred to as a reset Tr 54 hereinafter.
  • the drain of the reset Tr54 is connected to the power supply Vdd.
  • the gate of the reset Tr54 is connected to the pixel control line 41 m, the gate of the reset Tr54, via a pixel control line 41 m, the reset pulse RST is supplied.
  • the FET 55 is an FET for buffering the voltage of the FD 53, and is hereinafter also referred to as an amplifying Tr 55.
  • the gate of the amplification Tr55 is connected to the FD 53, and the drain of the amplification Tr55 is connected to the power supply Vdd.
  • the source of the amplifying Tr 55 is connected to the drain of the FET 56.
  • the FET 56 is an FET for selecting an output of an electric signal (VSL signal) to the VSL 42 n , and is hereinafter also referred to as a selection Tr 56.
  • the source of the selection Tr 56 is connected to the VSL 42 n .
  • the gate of the selection Tr56 is connected to the pixel control line 41 m, the gate of the selection Tr56, via a pixel control line 41 m, a selection pulse SEL is supplied.
  • the source of the amplifying Tr 55 is connected to the current source 43 n via the selection Tr 56 and the VSL 42 n , so that the SF (Source follower) (circuit) is configured by the amplifying Tr 55 and the current source 43 n . Therefore, the FD 53 is connected to the VSL 42 n via the SF.
  • SF Source follower
  • pixels 11 m and n can be configured without the selection Tr 56.
  • a configuration of a shared pixel in which the FD 53 or the selection Tr 56 is shared by the plurality of PDs 51 and the transfer Tr 52 can be employed.
  • the PD 51 receives light incident thereon and performs photoelectric conversion, thereby starting charge charging according to the amount of received incident light.
  • the selection pulse SEL is at the H level and the selection Tr 56 is in the ON state.
  • the pixel drive unit 21 (FIG. 2) temporarily transfers the transfer pulse TRG (from the L (Low) level). Set to H (High) level.
  • the transfer Tr 52 When the transfer Tr 52 is turned on, the charge charged in the PD 51 is transferred to the FD 53 via the transfer Tr 52 and charged.
  • the pixel driving unit 21 temporarily sets the reset pulse RST to the H level before temporarily setting the transfer pulse TRG to the H level, whereby the reset Tr 54 is temporarily turned on.
  • the FD 53 When the reset Tr 54 is turned on, the FD 53 is connected to the power supply Vdd via the reset Tr 54, and the charge in the FD 53 is swept out to the power supply Vdd via the reset Tr 54 and reset.
  • the pixel driving unit 21 After the charge of the FD 53 is reset, the pixel driving unit 21 temporarily sets the transfer pulse TRG to the H level as described above, and thereby the transfer Tr 52 is temporarily turned on.
  • the transfer Tr 52 When the transfer Tr 52 is turned on, the charge charged in the PD 51 is transferred to the FD 53 after reset via the transfer Tr 52 and charged.
  • a voltage (potential) corresponding to the electric charge charged in the FD 53 is output on the VSL 42 n as the VSL signal via the amplification Tr 55 and the selection Tr 56.
  • VSL42 n in the connected ADC 31 n (Fig. 2), the reset level is VSL signal immediately after the pixel 11 m, reset n has been performed is AD converted.
  • the signal level (the reset level, the pixel value, and the VSL signal (the voltage corresponding to the charge charged in the PD 51 and transferred to the FD 53) after the transfer Tr 52 is temporarily turned on) Are converted to AD.
  • FIG. 4 is a block diagram illustrating a configuration example of the ADC 31 n of FIG.
  • the ADC 31 n includes a comparator 61 n and a counter 62 n , and performs reference signal comparison AD conversion and CDS.
  • the comparator 61 n has two input terminals, an inverting input terminal ( ⁇ ) and a non-inverting input terminal (+).
  • the non-inverting input terminal (+) which is the other input terminal of the two input terminals of the comparator 61 n is connected to the reference signal from the reference signal output unit 33 and the VSL signals of the pixels 11 m and n .
  • the other, for example, a VSL signal is supplied.
  • the comparator 61 n compares the reference signal supplied to the inverting input terminal with the VSL signal supplied to the non-inverting input terminal, and outputs the comparison result.
  • the comparator 61 n is one of the H and L levels when the reference signal supplied to the inverting input terminal is larger than the VSL signal supplied to the non-inverting input terminal, for example, the L level. Is output.
  • the comparator 61 n sets the H level, which is the other of the H and L levels, when the VSL signal supplied to the non-inverting input terminal is larger than the voltage of the reference signal supplied to the inverting input terminal. Output.
  • an auto zero pulse is supplied from the auto zero control unit 32 to the comparator 61 n via the auto zero control line 32A.
  • the comparator 61 n performs auto zero processing according to the auto zero pulse from the auto zero control unit 32.
  • the comparator 61 n 2 two input signals being given currently to the comparator 61 n, i.e., a signal that is currently supplied to the inverting input terminal of the comparator 61 n, to the non-inverting input terminal
  • the comparator 61 n is set so that a comparison result indicating that the currently supplied signal matches is obtained.
  • the counter 62 n is supplied with the output of the comparator 61 n and the clock from the clock output unit 34.
  • the counter 62 n starts counting the clock from the clock output unit 34 at the timing when the reference signal (level) supplied from the reference signal output unit 33 to the comparator 61 n starts to change, and the comparator 61 n For example, when the level of the reference signal supplied to the inverting input terminal of the comparator 61 n is equal to the level of the VSL signal supplied to the non-inverting input terminal (reference signal). When the magnitude relationship between the VSL signal and the VSL signal is reversed), the clock count from the clock output unit 34 is terminated.
  • the counter 62 n outputs the clock count value as the AD conversion result of the VSL signal supplied to the non-inverting input terminal of the comparator 61 n .
  • the reference signal output unit 33 outputs, for example, a signal having a slope (slope-shaped waveform) in which the voltage decreases at a constant rate from a predetermined initial value to a predetermined final value as the reference signal. .
  • the counter 62 n counts the time from the start of the slope until the reference signal changes to a voltage matching the VSL signal supplied to the non-inverting input terminal of the comparator 61 n , and is obtained by the count.
  • count value is an AD conversion result of the VSL signal supplied to the non-inverting input terminal of the comparator 61 n.
  • the ADC 31 n obtains the reset level as a VSL signal supplied from the pixel 11 m, n to the non-inverting input terminal of the comparator 61 n and the AD conversion result of the signal level. Then, the ADC 31 n performs CDS for obtaining a difference between the AD conversion result (signal level AD value) of the signal level and the AD conversion result (reset level AD value) of the reset level, and the difference obtained by the CDS is calculated as a pixel. Output as 11 m, n pixel values.
  • the CDS is performed by actually executing a calculation for obtaining a difference between the signal level AD value and the reset level AD value, and for example, by controlling the clock count in the counter 62 n. be able to.
  • the clock is counted while the count value is decremented by one, and for the signal level, the count value is set with the clock count value for the reset level as an initial value.
  • the AD conversion of the reset level and the signal level is performed, and the signal level (the AD conversion result) and the reset level ( CDS can be performed to obtain the difference from the AD conversion result.
  • a ramp signal having a slope that decreases at a constant rate is employed as the reference signal.
  • the reference signal has a slope that increases at a constant rate.
  • a ramp signal or the like can be employed.
  • Figure 5 is a block diagram showing a configuration example of the comparator 61 n of FIG.
  • the comparator 61 n includes capacitor circuits 71 and 72, a differential amplifier 73, and an output amplifier 74.
  • Capacitor circuits 71 and 72 are capacitors used for auto-zero processing.
  • One end of the capacitor as the capacitor circuit 71 is connected to the gate of FET81 of the differential amplifier 73, the other end, an inverting input terminal IN1 of the comparator 61 n - is connected to ().
  • One end of the capacitor as the capacitor circuit 72 is connected to the gate of FET82 of the differential amplifier 73, the other end is connected to the non-inverting input terminal IN2 of the comparator 61 n (+).
  • the capacitor circuits 71 and 72 have the same voltage as the signal supplied to the gate of the FET 81 via the capacitor circuit 71 and the signal supplied to the gate of the FET 82 via the capacitor circuit 72. As such, charge is charged.
  • the capacitor circuit 71 offsets the signal (reference signal) supplied from the inverting input terminal IN1 by a voltage corresponding to the charge charged during the auto-zero process, and supplies it to the gate of the FET 81.
  • the capacitor circuit 72 offsets the signal (VSL signal) supplied from the non-inverting input terminal IN2 by a voltage corresponding to the charge charged during the auto-zero process and supplies the signal to the gate of the FET 82.
  • a reference signal is supplied to the differential amplifier 73 via the inverting input terminal IN1 and the capacitor circuit 71, and a VSL signal is supplied via the non-inverting input terminal IN2 and the capacitor circuit 72. .
  • the differential amplifier 73 outputs a comparison result signal representing a comparison result obtained by comparing the reference signal, which is the two signals supplied thereto, and the VSL signal to the output amplifier 74 as a differential output. That is, the differential amplifier 73 outputs a signal corresponding to the difference between the reference signal and the VSL signal as a differential output.
  • the output amplifier 74 functions as a buffer that buffers the differential output in order to output the differential output (comparison result signal) output from the differential amplifier 73 to a circuit at the subsequent stage at an appropriate level.
  • the output amplifier 74 amplifies the differential output (comparison result signal) output from the differential amplifier 73 with a predetermined gain, and outputs a signal obtained as a result of the amplification as an amplifier output.
  • the amplifier output of the output amplifier 74 is supplied to the counter 62 n (FIG. 4) as a final output signal of the comparator 61 n representing the comparison result obtained by comparing the reference signal and the VSL signal.
  • the counter 62 n counts the clock from the clock output unit 34 and ends the clock counting according to the output of the comparator 61 n . Then, the counter 62 n outputs the count value of the clock as the AD conversion result of the VSL signal supplied to the comparator 61 n (the differential amplifier 73).
  • the differential amplifier 73 includes FETs 81, 82, 83, and 84, switches 85 and 86, and a current source 89.
  • FET 81 and FET 82 are NMOS (Negative Channel Channel MOS) FETs, and their sources are connected to each other. Further, the connection point between the sources of the FET 81 and the FET 82 is connected to the other end of the current source 89 whose one end is grounded.
  • the FET 81 and FET 82 constitute a so-called differential pair.
  • the gate of the FET 81 is connected to the inverting input terminal IN1 of the comparator 61 n (differential amplifier 73) through the capacitor circuit 71, and the gate of the FET 82 is connected to the comparator 61 n (differential amplifier 73 through the capacitor circuit 72). ) Is connected to the non-inverting input terminal IN2.
  • the comparator 61 n has a differential pair composed of the FET 81 and the FET 82 in the input stage.
  • FET 83 and FET 84 are PMOS (Positive Channel MOS) FETs, and their gates are connected to each other.
  • the sources of the FET 83 and the FET 84 are connected to the power source Vdd, and the connection point between the gates of the FET 83 and the FET 84 is connected to the drain of the FET 83. Therefore, the FET 83 and the FET 84 constitute a current mirror.
  • the drain of the FET 83 is connected to the drain of the FET 81, and the drain of the FET 84 is connected to the drain of the FET 82.
  • connection point between the drains of the FET 82 and the FET 84 is connected to the output terminal OUTd of the differential amplifier 73.
  • the switch 85 and the switch 86 are switches composed of, for example, FETs, and are turned on or off according to the auto zero pulse supplied from the auto zero control unit 32.
  • the switch 85 is turned on or off so as to connect or disconnect between the gate and drain of the FET 81 according to the auto-zero pulse.
  • the switch 86 is turned on or off to connect or disconnect the gate and drain of the FET 82 in response to the auto-zero pulse.
  • the output amplifier 74 includes FETs 91 and 92, a switch 93, and a capacitor 94.
  • the FET 91 is a PMOS FET, and its gate is connected to the output terminal OUTd of the differential amplifier 73.
  • the source of the FET 91 is connected to the power supply Vdd, and the drain is connected to the drain of the FET 92.
  • FET 92 is an NMOS FET and functions as a current source.
  • the gate of the FET 92 is connected to one end of the capacitor 94, and the source is grounded.
  • the switch 93 is a switch composed of, for example, an FET or the like, and is turned on or off according to the auto zero pulse supplied from the auto zero control unit 32.
  • the switch 93 is turned on or off so as to connect or disconnect between the gate and the drain of the FET 92 according to the auto-zero pulse.
  • One end of the capacitor 94 is connected to the gate of the FET 92, and the other end is grounded.
  • connection point between the drain of the FET 91 and the drain of the FET 92 is connected to the output terminal OUT1 of the output amplifier 74, and the voltage at the connection point between the drain of the FET 91 and the drain of the FET 92 is output from the output terminal OUT1 to the amplifier output. Is output as
  • the current i 1 corresponding to the gate voltage of the FET 81 flows through the FET 81 (from the drain to the source) of the differential amplifier 73, and the FET 82 (from the drain to the source) A current i 2 corresponding to the gate voltage of the FET 82 flows.
  • the voltage applied to the gate of the FET 81 from the inverting input terminal IN1 through the capacitor circuit 71 (the gate voltage of the FET 81) is applied to the gate of the FET 82 from the non-inverting input terminal IN2 through the capacitor circuit 72 (of the FET 82). If it is greater than the gate voltage), the current i 1 flowing through the FET 81 is larger than the current i 2 flowing through the FET 82.
  • the drain-source voltage increases.
  • the differential output of the output terminal OUTd which is the connection point between the FETs 82 and 84, becomes H level.
  • the drain-source voltage is decreased in an attempt to decrease i 2 .
  • the differential output of the output terminal OUTd which is the connection point between the FETs 82 and 84, becomes L level.
  • the differential output of the output terminal OUTd is supplied to the gate of the FET 91 of the output amplifier 74.
  • the FET 92 functions as a current source, and when the differential output supplied to the gate of the FET 91 is at the H level, the FET 91 is turned off.
  • the drain of the FET 91 is at L level, and therefore the amplifier output at the output terminal OUT1 is at L level.
  • VSL signal supplied to the non-inverting input terminal IN2 is than the reference signal supplied to the inverting input terminal IN1, when the voltage is high, the amplifier output of the output terminal OUT1 (output of the comparator 61 n) is Become H level.
  • the switches 85, 86, and 93 are turned on or off according to the auto-zero pulse.
  • the auto zero pulse is, for example, a pulse that temporarily changes from the L level to the H level, and the switches 85 and 86 are turned off when the auto zero pulse is at the L level, and are turned on when the auto zero pulse is at the H level. become.
  • the auto-zero pulse becomes H level
  • the voltage applied to the gate of the FET 81 from the inverting input terminal IN1 through the capacitor circuit 71 (the gate voltage of the FET 81), and the voltage from the non-inverting input terminal IN2 through the capacitor circuit 72.
  • the capacitor circuits 71 and 72 are charged with electric charges so that the voltage applied to the gate of the FET 82 (the gate voltage of the FET 82) matches.
  • the comparator 61 n (the differential amplifier 73) has two input signals given to the comparator 61 n when the auto zero pulse is at the H level (when the auto zero pulse falls), that is, a reference signal being supplied to the inverting input terminal IN1 of the comparator 61 n, the non-inverting input VSL signal supplied to the terminal IN2 and the comparison result indicating that a match is set so as to obtain.
  • the setting of the comparator 61 n as described above is performed in the auto zero process.
  • differential amplifier 73 thus, the comparator 61 n, when the auto-zero process, a voltage which has been applied to the inverting input terminal IN1 of the comparator 61 n, voltage and which has been applied to the non-inverting input terminal IN2 Can be determined based on the fact that they match each other as a reference between the voltage applied to the inverting input terminal IN1 and the voltage applied to the non-inverting input terminal IN2.
  • the switch 93 is turned off when the auto zero pulse is at the L level and turned on when the auto zero pulse is at the H level.
  • the capacitor 94 When the switch 93 is turned on, the capacitor 94 is charged to a voltage equal to the drain voltage of the FET 92. After that, when the switch 93 is turned off, the voltage of the capacitor 94 is applied to the gate of the FET 92, and the FET 92 functions as a current source for supplying the same current as that flowing when the switch 93 is turned on.
  • FIG. 6 is a diagram for explaining the operation of the image sensor 2 (FIG. 2).
  • the horizontal axis represents time
  • the vertical axis represents voltage
  • the VSL signal indicates the voltage applied to the gate of the FET 81 of the comparator 61 n (FIG. 5) (not the voltage itself on the VSL 42 n ). rather than voltage itself on 34A,) it shows a voltage applied to the gate of FET82 comparator 61 n.
  • FIG. 6 the VSL signal indicates the voltage applied to the gate of the FET 81 of the comparator 61 n (FIG. 5) (not the voltage itself on the VSL 42 n ). rather than voltage itself on 34A,) it shows a voltage applied to the gate of FET82 comparator 61 n. The same applies to the drawings described later.
  • the reset pulse RST is temporarily set to the H level, whereby the pixels 11m and n are reset.
  • the FD 53 is connected to the power source Vdd via the reset Tr 54, and the charge in the FD 53 is reset, so that the pixel 11 m, n is output.
  • the voltage of the VSL signal on the VSL 42 n output from the FD 53 via the amplification Tr 55 and the selection Tr 56 rises, and at time t 1 , the voltage corresponding to the power supply Vdd Become.
  • the drop in the VSL signal that occurs after the pixels 11m , n are reset may be referred to as reset feedthrough.
  • the auto zero control unit 32 After the pixel 11 m, n is reset (or during reset), the auto zero control unit 32 changes the auto zero pulse from the L level to the H level, thereby starting the auto zero processing of the comparator 61 n (FIG. 4). .
  • the comparator 61 n (differential amplifier 73) is set so that the magnitude relationship with the reference signal can be determined (compared).
  • the auto zero process is completed after the pixels 11 m, n are reset.
  • the magnitude relationship between the VSL signal and the reference signal is determined based on the fact that the reference signal and the voltage lowered by the reset feedthrough from the VSL signal during reset of the pixels 11 m and n match. as can be, the comparator 61 n is set.
  • the reference signal (waveform thereof) is arranged at a position based on the voltage that is lowered by the reset feedthrough from the VSL signal during resetting of the pixels 11m , n .
  • Reference signal output unit 33 (FIG. 4) at time t 6 after the auto zero processing is completed (end), the reference signal is increased by a predetermined voltage.
  • a reference signal to be raised by a predetermined voltage, hereinafter also referred to as start offset.
  • the reference signal output unit 33 reduces the voltage of the reference signal at a constant rate for AD conversion of the VSL signal, but the voltage of the reference signal decreases at a constant rate.
  • the portion of the reference signal is also called a slope.
  • Reference signal output unit 33 at time t 6 a reference signal, and the direction of the slope (direction in which the voltage of the reference signal will change) in the reverse direction to perform the starting offset to be offset by a predetermined voltage.
  • the reference signal output section 33 a certain period from time t 7 to the time t 9, the voltage of the reference signal, (gradually lowered) gradually reduced at a constant rate.
  • the reference signal in the period from the time t 7 to the time t 9 forms a slope.
  • the reset level (pixel 11 m, n reset immediately after the VSL signal (pixel 11 m of the VSL signal, n is reset, by the reset feedthrough the VSL signal)) after the voltage drop has occurred is the slope for AD conversion, below, the duration of the slope (the period from time t 7 to the time t 9), also referred to as P (Preset) phase.
  • the slope of the P phase is also referred to as the P phase slope.
  • the comparator 61 n is set so that the VSL signal and the reference signal at the time of auto-zero processing coincide with each other by the auto-zero processing after resetting the pixels 11 m, n , and thus the auto-zero processing is completed.
  • the comparator 61 n outputs a comparison result indicating that the reference signal is larger than the VSL signal at the P-phase start time t 7 .
  • the differential output of the differential amplifier 73 becomes H level, and the amplifier output of the output amplifier 74 becomes L level.
  • the counter 62 n of the ADC 31 n starts clock counting from the start time t 7 of the P-phase slope.
  • the reference signal (voltage) is gradually reduced, in FIG. 6, the magnitude of the at time t 8 the P phase, the VSL signal as the reference signal and the reset level is matched, the reference signal and VSL signal The relationship is reversed from the beginning of phase P.
  • the comparison result output from the comparator 61 n is reversed from the start of the P phase, and the comparator 61 n starts outputting the comparison result indicating that the VSL signal as the reset level is larger than the reference signal. To do.
  • the differential output of the differential amplifier 73 becomes L level, and the amplifier output of the output amplifier 74 becomes H level.
  • the counter 62 n of the ADC 31 n (FIG. 4) counts the clock. Then, the count value of the counter 62 n at that time becomes the AD conversion result (reset level AD value) of the reset level.
  • the transfer pulse TRG is changed from the L level to the H level from time t 10 to t 11 , and as a result, in the pixel 11 m, n (FIG. 3), photoelectric conversion is performed.
  • the charge charged in the PD 51 is transferred to the FD 53 via the transfer Tr 52 and charged.
  • the transfer pulse TRG changes from the H level to the L level, the PD51 FD 53
  • the VSL signal becomes a signal level (voltage) corresponding to the charge charged in the FD 53.
  • the reference signal output unit 33 raises the reference signal to the same voltage as at the start of the P phase, for example.
  • the differential output of the differential amplifier 73 becomes H level
  • the amplifier output of the output amplifier 74 becomes L level.
  • Reference signal output unit 33 (FIG. 4) is a reference signal, after raising the beginning and the same voltage of the P phase, from a period of time (time t 7 from the time t 12 to time t 14 to time t 9 The reference signal voltage is decreased (decreased) at the same rate of change as in the case of the P phase.
  • D phase slope Slope of the reference signal during a period from the time t 12 to time t 14, in the signal level (pixel 11 m of the VSL signal, n (FIG. 3), immediately after the charge from PD51 to FD53 transfer occurred the VSL signal) and the slope for AD conversion, below, the duration of the slope (during a period from the time t 12 to time t 14), also referred to as D (Data) phase.
  • D phase slope The slope of D phase is also referred to as D phase slope.
  • the comparator 61 n is the starting time t 12 in the D phase, the reference signal, and outputs the comparison result indicating the larger than VSL signal.
  • the differential output of the differential amplifier 73 becomes H level, and the amplifier output of the output amplifier 74 becomes L level.
  • Counter 62 n of ADC 31 n (Fig. 4) is, for example, from the start time t 12 the D-phase slope starts counting the clock.
  • the reference signal (voltage) is gradually reduced, the magnitude of 6, at time t 13 in the D phase, the VSL signal as the reference signal and the signal level matches the reference signal and VSL signal The relationship is reversed from the beginning of phase D.
  • the comparison result of the comparator 61 n outputs, reversed from the start of the D-phase, comparator 61 n is, VSL signal as a signal level, starting the comparison indicating than the reference signal is greater result output To do.
  • the differential output of the differential amplifier 73 becomes L level, and the amplifier output of the output amplifier 74 becomes H level.
  • the counter 62 n of the ADC 31 n ends the clock counting. Then, the count value of the counter 62 n at that time becomes a signal level AD conversion result (signal level AD value).
  • the image sensor 2 obtains the difference between the reset level AD value and the signal level AD value. And the difference obtained as a result of the CDS is output as a pixel value.
  • 7 and 8 are diagrams illustrating noise included in the reference signal.
  • FIG. 7 is a block diagram showing a configuration example of the column parallel AD conversion unit 22 in FIG.
  • FIG. 7 shows the column parallel AD conversion unit 22 of FIG. 2 in a simplified manner.
  • the auto zero control unit 32, the auto zero control line 32A, the clock output unit 34, and the clock line 34A are not shown, and the ADC 31 n , the reference signal output unit 33, and the reference signal line 33A It is shown in the figure.
  • the column parallel AD conversion unit 22 performs a plurality of AD conversions of VSL signals obtained from a plurality of pixels such as N pixels 11 m, 1 to 11 m, N, etc., for example, in one horizontal line.
  • the reference signals output from the reference signal output unit 33 are shared among the N ADCs 31 1 to 31 N.
  • the N ADCs 31 1 to 31 N commonly use the reference signal supplied from the reference signal output unit 33 via the reference signal line 33A and use the N pixels 11m, 1 to AD conversion of the VSL signal supplied from 11 m, N via the VSL 42 1 to 42 N is performed.
  • FIG. 8 is a block diagram illustrating a configuration example of the column parallel AD conversion unit 22 that schematically represents noise related to the column parallel AD conversion unit 22.
  • FIG. 8 portions corresponding to those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
  • RN_REF represents noise (hereinafter also referred to as reference signal noise) included in the reference signal supplied from the reference signal output unit 33 to the ADCs 31 1 to 31 N
  • RN_SIG (n) represents the nth column. It represents noise (hereinafter also referred to as pixel noise) included in the VSL signal supplied from the pixels 11 m, n to the ADC 31 n .
  • the ADC 31 n the reference signal including reference signal noise RN_REF, the VSL signal containing pixel noise RN_SIG (n) are supplied. Then, the ADC 31 n performs AD conversion of the VSL signal using the reference signal.
  • the level of the reference signal noise RN_REF is made smaller by about one digit than the level of the pixel noise RN_SIG (n).
  • the reference signal is generated by the DAC constituting the reference signal output unit 33 built in the image sensor 2 constituted by one chip
  • the reference signal noise RN_REF included in the reference signal is the heat of the output of the DAC. Noise becomes dominant.
  • the reference signal noise RN_REF may include disturbance noise as described above in addition to random noise that is dominated by the thermal noise of the DAC output. Therefore, a design with great care is required.
  • the pixel noise RN_SIG (n) has been remarkably improved to about several e ⁇ , and the level allowed for the reference signal noise RN_REF has become severe.
  • FIG. 9 is a block diagram illustrating a first configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF.
  • the column parallel AD conversion unit 22 of FIG. 9 is common to the case of FIG. 8 in that it includes an ADC 31 n , a reference signal output unit 33, and a reference signal line 33A.
  • the column parallel AD conversion unit 22 of FIG. 9 is different from the case of FIG. 8 in that an amplification unit 101 and an attenuation unit 102 are newly provided.
  • the amplification unit 101 is built in the reference signal output unit 33, and a reference signal (before the reference signal noise RN_REF is superimposed) is supplied to the amplification unit 101.
  • the attenuating unit 102 attenuates the amplified reference signal supplied from the amplifying unit 101 via the reference signal line 33A with an attenuation factor of 1 / K times the inverse of the amplification factor K, and the amplified reference signal after the attenuation.
  • a certain attenuation reference signal is output on the reference signal line 33A.
  • the attenuation unit 102 is provided immediately before the reference signal line 33A branches to the N ADCs 31 1 to 31 N , and the attenuation reference signal output by the attenuation unit 102 onto the reference signal line 33A. Is commonly supplied to N ADCs 31 1 to 31 N.
  • the attenuation unit 102 is shared by N ADCs 31 1 to 31 N.
  • the damping unit 102 is a position on the reference signal line 33A that can be shared by the N ADC 31 1 through 31 N, the VSL signal in the N ADC 31 1 through 31 N It can be said that the amplified reference signal has been attenuated to the attenuated reference signal at a position immediately before being performed.
  • a reference signal is generated in the reference signal output unit 33, and the amplification unit 101 amplifies the reference signal with an amplification factor K, and the amplified reference obtained as a result The signal is output on the reference signal line 33A.
  • the amplified reference signal output from the amplification unit 101 onto the reference signal line 33A is supplied to the attenuation unit 102.
  • the attenuating unit 102 attenuates the amplified reference signal supplied thereto with an attenuation factor 1 / K, and outputs the attenuated reference signal obtained as a result on the reference signal line 33A.
  • the attenuation reference signal output from the attenuation unit 102 onto the reference signal line 33A is supplied in common to the N ADCs 31 1 to 31 N and is used for AD conversion of the VSL signal.
  • the ADC 31 n compares the VSL signal output from the pixel 11 m, n with the attenuated reference signal supplied from the attenuating unit 102, and attenuates the reference signal until the VSL signal and the attenuated reference signal match.
  • the AD conversion of the VSL signal is performed by counting the time required for the change.
  • FIG. 10 is a block diagram illustrating a second configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF.
  • FIG. 10 portions corresponding to those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the column parallel AD conversion unit 22 is shown in a simplified manner as in FIG.
  • the column parallel AD conversion unit 22 of FIG. 10 is common to the case of FIG. 9 in that it includes an ADC 31 n , a reference signal output unit 33, a reference signal line 33A, and an amplification unit 101.
  • the column parallel AD conversion unit 22 of FIG. 10 is different from the case of FIG. 9 in that N attenuation units 111 1 to 111 N are provided instead of the attenuation unit 102.
  • one attenuating unit 102 is provided so that the one attenuating unit 102 is shared by N ADCs 31 1 to 31 N.
  • N attenuating units 102 are provided.
  • Units 111 1 to 111 N are provided in such a manner that each attenuation unit 111 n is independently assigned to each ADC 31 n .
  • the attenuating unit 111 n attenuates the amplified reference signal supplied thereto with an attenuation factor of 1 / K times that is the inverse of the amplification factor K, and converts the attenuated reference signal, which is the amplified reference signal after the attenuation, to the ADC 31 n. To supply.
  • the attenuation unit 111 n is provided immediately before the ADC 31 n . Therefore, in FIG. 10, the attenuating unit 111 n attenuates the amplified reference signal to the attenuated reference signal at a position on the reference signal line 33A immediately before the ADC 31 n compares with the VSL signal. it can.
  • a reference signal is generated in the reference signal output unit 33, and the amplification unit 101 amplifies the reference signal with an amplification factor K, and the amplified reference obtained as a result The signal is output on the reference signal line 33A.
  • the amplified reference signal output from the amplifying unit 101 onto the reference signal line 33A is supplied to the attenuating units 111 1 to 111 N.
  • the attenuating unit 111 n attenuates the amplified reference signal supplied thereto with the attenuation rate 1 / K, and supplies the attenuated reference signal obtained as a result to the ADC 31 n .
  • the VSL signal output from the pixel 11 m, n is compared with the attenuation reference signal supplied from the attenuation unit 111 n , and the attenuation reference signal until the VSL signal and the attenuation reference signal match is compared.
  • the AD conversion of the VSL signal is performed by counting the time required for the change.
  • FIG. 11 is a flowchart for explaining an example of the operation of the column parallel AD conversion unit 22 in FIGS. 9 and 10.
  • step S11 the reference signal output unit 33 generates a reference signal and supplies the reference signal to the amplification unit 101.
  • step S12 the amplification unit 101 amplifies the reference signal generated by the reference signal output unit 33 with an amplification factor K, and outputs the amplified reference signal obtained as a result on the reference signal line 33A.
  • the amplified reference signal output from the amplifying unit 101 onto the reference signal line 33A is supplied to the attenuating unit 102 or the N attenuating units 111 1 to 111 N.
  • step S13 the attenuating unit 102 or the attenuating units 111 1 to 111 N attenuates the amplified reference signal supplied thereto with the attenuation rate 1 / K, and the resultant attenuated reference signal is converted to the ADC 31 1 to 31. N.
  • step S14 the ADC 31 n, to the pixel 11 m, and VSL signal outputted from the n, compares the attenuation reference signal supplied from the damping unit 102 or 111 n, and damping reference signal and VSL signal matches
  • the AD conversion of the VSL signal is performed by counting the time required for the change of the attenuation reference signal.
  • the column parallel AD conversion unit 22 in FIGS. 9 and 10 outputs an amplified reference signal obtained by amplifying the reference signal with the amplification factor K, and the amplified reference signal is supplied with an attenuation factor 1 which is the reciprocal of the amplification factor K. Since the signal is attenuated by / K and an attenuated reference signal is output, the reference signal noise RN_REF included in the (amplified) reference signal can be efficiently reduced.
  • the amplified reference signal is represented by S_AMP
  • the attenuated reference signal is represented by S_ATT
  • the amplified reference signal S_AMP is the K signal of the reference signal S_REF
  • the reference signal noise included in the attenuated reference signal S_ATT can be reduced to about 1 / K of the original reference signal noise RN_REF.
  • the rate at which the reference signal noise included in the attenuated reference signal such as about 1 / K is reduced from the original reference signal noise is referred to as a noise attenuation rate.
  • the attenuated reference signal is obtained by multiplying the amplified reference signal by K times the reference signal by 1 / K times, the dynamic range of the original reference signal is maintained as it is as the dynamic range of the attenuated reference signal.
  • AD conversion of the VSL signal can be performed with the same dynamic range as when AD conversion is performed using the reference signal.
  • the dynamic range of the attenuated reference signal is maintained as it is, while the reference signal noise included in the attenuated reference signal is the original reference signal noise RN_REF.
  • S / N SignalSignto Noise Ratio
  • the reference signal noise RN_REF may depend on the dynamic range of the amplified reference signal depending on the circuit configuration of the reference signal output unit 33 (DAC) that generates the reference signal. In such a case, depending on the circuit configuration, Noise attenuation rate is different.
  • K representing the amplification factor K of the amplification unit 101 and the attenuation factors 1 / K of the attenuation units 102 and 111 n is also referred to as an amplification attenuation parameter K.
  • a process of obtaining an amplified reference signal obtained by amplifying a reference signal and attenuating the amplified reference signal to an attenuated reference signal is also referred to as an amplification attenuation process.
  • the amplification attenuation process As described above, the reference signal noise included in the attenuation reference signal is reduced. Therefore, it can be said that the amplification attenuation process has a noise reduction function.
  • FIG. 12 is a circuit diagram illustrating a configuration example of the attenuation unit 111 n of FIG.
  • the attenuation unit 111 n can be realized by, for example, a switched capacitor circuit having a capacitor.
  • the attenuating unit 111 n When the attenuating unit 111 n is realized by a switched capacitor circuit having a capacitor, a switched capacitor circuit serving as the attenuating unit 111 n can be newly provided.
  • the attenuation unit 102 in FIG. 9 can also be configured in the same manner as the attenuation unit 111 n .
  • the capacitor circuit 71 used for the auto-zero process can be configured to function also as the attenuating unit 111 n .
  • FIG. 12 shows a configuration example of the capacitor circuit 71 that also functions as the attenuation unit 111 n .
  • the capacitor circuit 71 includes K unit capacitors C 1,1 to C 1, K and K-1 switches 131 1 to 131 K-1 .
  • unit capacitor C 1, 1 C 1, K is a capacitor used for the auto-zero process of (hereinafter also referred to as auto-zero process capacitor), a capacitor connected to an inverting input terminal IN1 of the comparator 61 n into K
  • the unit capacitor C 1, k has a capacity of 1 / K of the auto zero processing capacitor.
  • each of the K unit capacitors C 1,1 to C 1, K is connected to the differential amplifier 73 (the gate of the FET 81).
  • the switch 131 k is switched so as to connect the other end of the k-th unit capacitor C1 , k to GND (ground) or the inverting input terminal IN1.
  • Switching of the switch 131 k is performed, for example, under the control of the image sensor 2 by the control unit 6 ( Figure 1).
  • the switches 131 1 to 131 K-1 connect the other ends of the unit capacitors C 1, k to C 1, K-1 to GND, Alternatively, they are switched so as to be connected to the inverting input terminal IN1.
  • the attenuation rate is (i + 1) / K. .
  • the amplification reference signal is supplied to the inverting input terminal IN1.
  • the reference signals are i + 1 to (K-1) th Ki-1 unit capacitors C1 , i + 1 to C1 , K-1 and 1st to ith ith unit capacitors C1,1 .
  • the total of 1 to C 1, i and the Kth unit capacitor C 1, K is divided by i + 1 unit capacitors to attenuate (i + 1) / K times. .
  • the attenuation rate of how many times the amplified reference signal is increased is variably set to an arbitrary value by switching the switches 131 1 to 131 K ⁇ 1. can do.
  • the capacitor circuit 71 also functions as a damping unit 111 n, as the attenuation unit 111 n, it is not necessary to provide a separate new circuits, to suppress an increase in circuit scale, realizing the damping unit 111 n can do.
  • the capacitor is divided into K unit capacitors C 2,1 to C 2, K.
  • the capacitor constituting the capacitor circuit 72 is not necessary to divide the capacitor connected to the non-inverting input terminal IN2 of the comparator 61 n to the K units capacitor C 2,1 is not in the C 2, K.
  • FIG. 13 is a circuit diagram illustrating a first configuration example of the reference signal output unit 33 including the amplification unit 101.
  • the reference signal output unit 33 includes a current source 141 and a resistor 142.
  • the current source 141 is configured by a current mirror circuit, for example, and allows a predetermined current to flow through the resistor 142.
  • the current flowing through the mirror source can be switched by switching the number of transistors (such as FETs) constituting the mirror destination through which the current according to the current flowing through the mirror source flows.
  • the mirror ratio which is the ratio of the current flowing through the mirror tip, can be changed, whereby the current source 141 can change the current flowing through the resistor 142.
  • the resistor 142 functions as a DAC. That is, a current flowing through the current source 141 flows through the resistor 142, and a current (flow) generated in the resistor 142 due to the current flowing through the resistor 142 is obtained as a result of DA conversion of the current flowing through the current source 141. Output as a signal.
  • the current source 141 or the resistor 142 can function as the amplification unit 101.
  • the current flowing through the resistor 142 is adjusted to, for example, K times that when the (original) reference signal is obtained. It also functions as an amplifying unit 101 that amplifies K times.
  • the resistor 142 also functions as the amplifying unit 101 that amplifies the reference signal by K times.
  • any of a method of adjusting the current of the current source 141 and a method of adjusting the resistance value of the resistor 142 to a large value can be employed.
  • the resistance value of the resistor 142 is adjusted to be large, thermal noise increases in the voltage generated by the resistor 142, and a switch for switching the resistance value is required.
  • the current source 141 can be configured by a switched capacitor circuit (current source that operates for a discrete time) or the like in addition to a current mirror circuit.
  • a switched capacitor circuit current source that operates for a discrete time
  • the current flowing through the resistor 142 is changed by adjusting the capacitance of the capacitor that configures the switched capacitor circuit and the frequency for switching the connection to the capacitor. be able to.
  • the resistance value of the resistor 142 when the resistance value of the resistor 142 is increased, thermal noise increases in the reference signal as a voltage generated in the resistor 142. From the viewpoint of reducing the reference signal noise, generally, the resistance value of the resistor 142 is reduced. Need to be small.
  • the column-parallel AD converting unit 22 the attenuation section 102 or 111 n, amplified reference signal is attenuated by the attenuation factor 1 / K, since the reference signal noise is reduced, in that the damping unit 102 or 111 n
  • the resistance value of the resistor 142 can be designed to a somewhat large resistance value. By designing the resistance value of the resistor 142 to be a large resistance value, the current of the current source 141 can be suppressed to a small current, and as a result, the power consumption of the reference signal output unit 33 can be reduced.
  • FIG. 14 is a circuit diagram illustrating a second configuration example of the reference signal output unit 33 including the amplification unit 101.
  • the reference signal output unit 33 is common to the case of FIG. 13 in that it has a current source 141.
  • the reference signal output unit 33 is different from the case of FIG. 13 in that an operational amplifier 151 and a capacitor 152 are provided instead of the resistor 142.
  • the inverting input terminal (-) of the operational amplifier 151 is connected to the current source 141 and one end of the capacitor 152, and the non-inverting input terminal (+1) is grounded (connected to GND).
  • the output terminal of the operational amplifier 151 is connected to the other end of the capacitor 152.
  • the operational amplifier 151 and the capacitor 152 constitute an integrator and function as a DAC.
  • the integrator composed of the operational amplifier 151 and the capacitor 152 the current flowing through the current source 141 is integrated, and a voltage proportional to the integral value of the current is obtained as a result of DA conversion of the current flowing through the current source 141.
  • a signal is output from the output terminal of the operational amplifier 151.
  • the integrator configured by the current source 141 or the operational amplifier 151 and the capacitor 152 can function as the amplification unit 101.
  • the current source 141 adjusts the current flowing through the current source 141 to, for example, K times that for obtaining the reference signal, so that the current source 141 increases the reference signal by K times. It also functions as the amplification unit 101 that amplifies the signal.
  • the integrator serves as the amplification unit 101 that amplifies the reference signal by K times. Also works.
  • any of a method of adjusting the current of the current source 141 and a method of adjusting the capacitance of the capacitor 152 can be employed.
  • a switch for switching the capacity is required.
  • the operational amplifier 151 since the operational amplifier 151 is used, the power consumption can be reduced. However, the operational amplifier 151 potentially has a large internal thermal noise, and therefore the reference signal noise becomes large.
  • the amplified reference signal is attenuated by the attenuation factor 1 / K and the reference signal noise is reduced in the attenuation unit 102 or 111 n , so that low power consumption can be achieved.
  • the operational amplifier 151 it is possible to improve that the reference signal noise becomes large.
  • FIG. 15 is a waveform diagram showing examples of a reference signal, an amplified reference signal, and an attenuated reference signal.
  • FIG. 15A is a waveform diagram illustrating an example of an original reference signal (original reference signal) generated by the reference signal output unit 33 and an amplified reference signal obtained by amplifying the reference signal by the amplification unit 101 K times. is there.
  • the dynamic range of the (reference) reference signal is expressed as Dorg and the dynamic range of the amplified reference signal is expressed as Damp
  • FIG. 15B is a waveform diagram showing an example of an attenuated reference signal obtained by attenuating the amplified reference signal by 1 / K times by the attenuating unit 102 or 111 n .
  • the dynamic range of the attenuated reference signal is expressed as Datt
  • the dynamic range Datt of the attenuated reference signal is 1 / K times the dynamic range Damp of the amplified reference signal
  • the dynamic range Datt of the attenuated reference signal matches the dynamic range Dorg of the original reference signal.
  • the attenuated reference signal is a signal obtained by attenuating the amplified reference signal by 1 / K times
  • the reference signal noise contained in the attenuated reference signal is approximately 1 / K times the reference signal noise contained in the amplified reference signal. Reduced.
  • the column parallel AD conversion unit 22 is a so-called single slope type AD conversion device. Therefore, the reference signal has a slope which is a ramp signal that decreases with a constant slope.
  • This technology is a single slope AD conversion that performs AD conversion by counting the time required for the level of the reference signal to change until the level of the electrical signal subject to AD conversion matches the level of the reference signal.
  • the AD conversion device that performs AD conversion based on the potential difference between the electric signal to be converted and the reference signal, and other AD conversion by comparing the electric signal with the reference signal using the reference signal
  • the present invention can be applied to an AD converter having an arbitrary configuration.
  • the present technology can be applied to, for example, pipeline-type, ⁇ -type, flash-type AD converters in addition to single-slope AD converters.
  • FIG. 16 is a diagram showing an example of the relationship between the ISO sensitivity set in the digital camera (FIG. 1) and the amplification attenuation parameter K.
  • the dynamic range is the same as the original reference signal, and the reference signal noise is reduced.
  • a reduced attenuated reference signal can be obtained.
  • the reference signal is amplified K times according to the amplification attenuation parameter K in the amplification unit 101 of the reference signal output unit 33.
  • the power consumption of the reference signal output unit 33 (which constitutes the DAC) may increase.
  • the reference signal output unit 33 is configured using a transistor such as an FET, and the FET needs to operate in a saturation region.
  • a transistor such as an FET
  • the dynamic range of the original reference signal is somewhat large, it may be difficult to ensure the operation of the FET in the saturation region when the reference signal is amplified to a K-fold amplified reference signal. is there.
  • the amplification attenuation parameter K representing the amplification factor K for amplifying the reference signal and the attenuation factor 1 / K for attenuating the amplification reference signal is the ISO sensitivity set for the digital camera, and thus the image sensor. 2 can be set according to the analog gain.
  • the setting of the amplification attenuation parameter K according to the ISO sensitivity is performed by the control unit 6 (FIG. 1), for example.
  • FIG. 16A shows a first setting method for setting the amplification attenuation parameter K in accordance with the ISO sensitivity set in the digital camera.
  • the horizontal axis represents the ISO sensitivity (or analog gain), and the vertical axis represents the amplification attenuation parameter K. Furthermore, Gmin represents the minimum value of ISO sensitivity, and Gmax represents the maximum value of ISO sensitivity.
  • the amplification attenuation parameter K is set to 1, and the ISO sensitivity is increased from the predetermined threshold TH to the maximum.
  • the amplification attenuation parameter K is set to a predetermined value P greater than 1.
  • the amplification attenuation parameter K is 1
  • the amplification attenuation process is substantially invalid because the amplification reference signal obtained by amplifying the reference signal by 1 is attenuated by 1/1. Become.
  • the amplification attenuation process is substantially effective when the amplification attenuation parameter K is larger than 1.
  • the ISO sensitivity is a value in the range from the minimum value Gmin to the predetermined threshold TH, and is so-called low ISO sensitivity (low analog gain), the slope of the slope of the reference signal becomes large, and the reference signal output unit 33 The current that flows to generate the reference signal becomes large.
  • the noise reduction function will be turned off, but amplification An increase in power consumption of the reference signal output unit 33 due to the attenuation process can be prevented, and an operation in the saturation region of the FET constituting the reference signal output unit 33 can be ensured.
  • the ISO sensitivity is a value in the range from the predetermined threshold TH to the maximum value Gmax, so-called high ISO sensitivity (high analog gain), the slope of the slope of the reference signal becomes small, and the reference signal output unit In 33, the current passed to generate the reference signal is reduced.
  • the amplification attenuation parameter K is set to a value P greater than 1 and the amplification attenuation processing is enabled to turn on the noise reduction function and to achieve high ISO sensitivity. While reducing the reference signal noise which becomes a problem at the time of sensitivity, while suppressing the increase in the power consumption of the reference signal output part 33 by performing an amplification attenuation process, in the saturation area
  • the current that is passed to generate the reference signal in the reference signal output unit 33 is small, even if the amplification attenuation process is performed according to the amplification attenuation parameter K set to a value P greater than 1.
  • the power consumption of the reference signal output unit 33 does not increase so much by the amplification and attenuation process.
  • the slope of the slope of the reference signal is small and the dynamic range is also small, even when the amplification attenuation process is performed according to the amplification attenuation parameter K set to a value P greater than 1, The operation of the FET constituting the reference signal output unit 33 in the saturation region can be ensured.
  • FIG. 16B shows a second setting method for setting the amplification attenuation parameter K according to the ISO sensitivity set in the digital camera.
  • the amplification attenuation parameter K is set to 1.
  • the ISO sensitivity is a value in a range from the predetermined threshold TH1 to the predetermined threshold TH2 (> TH1)
  • the amplification attenuation parameter K is set to a predetermined value P1 greater than 1
  • the ISO sensitivity is When the value is in the range from the predetermined threshold value TH2 to the maximum value Gmax, the amplification attenuation parameter K is set to a predetermined value P2 that is larger than the predetermined value P1.
  • the amplification attenuation parameter K is set to a value P1 or P2 greater than 1, and the result The amplification attenuation process is enabled and the noise reduction function is turned on.
  • the amplification attenuation parameter K is set to a value P1 greater than 1, and the ISO sensitivity is When the value is in the range from the predetermined threshold value TH2 to the maximum value Gmax, the amplification attenuation parameter K is set to a value P2 larger than the value P1.
  • the reference signal noise is reduced to about 1 / P1 times in the amplification attenuation process.
  • the reference signal noise is further reduced by about 1 / P2 ( ⁇ 1 / P1) times in the amplification attenuation process.
  • the amplification attenuation process is performed according to the ISO sensitivity set at the time of photographing with the digital camera, thereby suppressing an increase in power consumption of the reference signal output unit 33 due to the amplification attenuation process,
  • the reference signal noise can be reduced while ensuring the operation of the FET constituting the reference signal output unit 33 in the saturation region.
  • the amplification attenuation parameter (the noise reduction function) is disabled or enabled by setting the amplification attenuation parameter K to 1 or a value larger than 1, but the amplification attenuation When invalidating the processing, it is possible not to actually perform the amplification attenuation processing.
  • one or two threshold values are adopted as the ISO sensitivity threshold value, but the number of ISO sensitivity threshold values may be three or more. The same applies to the number of amplification attenuation parameters K.
  • the amplification attenuation parameter K is set discretely according to the ISO sensitivity, but the amplification attenuation parameter K can be set to a continuous value according to the ISO sensitivity. It is.
  • FIG. 17 is a flowchart for explaining an example of processing for setting the amplification attenuation parameter K according to the ISO sensitivity in accordance with the second setting method.
  • step S21 the control unit 6 (FIG. 1) determines whether or not an operation for changing the ISO sensitivity of the digital camera has been performed by the user or the like.
  • step S21 If it is determined in step S21 that the operation for changing the ISO sensitivity has not been performed, the process proceeds to step S22, the control unit 6 maintains the current amplification attenuation parameter K as it is, and the process proceeds to step S21. Return to.
  • step S21 If it is determined in step S21 that an operation for changing the ISO sensitivity has been performed, the process proceeds to step S23, and the control unit 6 determines that the changed ISO sensitivity is smaller (or less) than the threshold value TH1. Determine if it exists.
  • step S23 If it is determined in step S23 that the ISO sensitivity is smaller than the threshold value TH1, the process proceeds to step S24, and the control unit 6 sets the amplification attenuation parameter K to 1, thereby performing the amplification attenuation process. After invalidating, the process returns to step S21.
  • step S23 If it is determined in step S23 that the ISO sensitivity is not lower than the threshold value TH1, the process proceeds to step S25, and the control unit 6 determines that the changed ISO sensitivity is equal to or higher than the threshold value TH1 (or higher). It is determined whether it is present and smaller (or less) than the threshold value TH2.
  • step S25 If it is determined in step S25 that the ISO sensitivity is greater than or equal to the threshold TH1 and less than the threshold TH2, the process proceeds to step S26, and the control unit 6 sets the amplification attenuation parameter K to a value P1 greater than 1. After setting, the process returns to step S21.
  • step S25 when it is determined that the ISO sensitivity is equal to or higher than the threshold TH1 and is not lower than the threshold TH2, that is, when the changed ISO sensitivity is equal to or higher than the threshold TH2 (or higher), the process is as follows. Proceeding to step S27, the control unit 6 sets the amplification attenuation parameter K to a value P2 larger than the value P1, and the process returns to step S21.
  • a series of processing performed by the control unit 6 can be performed by hardware or can be performed by software.
  • a program constituting the software is installed in a computer such as a microcomputer.
  • FIG. 18 shows a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
  • the program can be recorded in advance in a hard disk 205 or ROM 203 as a recording medium built in the computer.
  • the program can be stored (recorded) in the removable recording medium 211.
  • a removable recording medium 211 can be provided as so-called package software.
  • examples of the removable recording medium 211 include a flexible disk, a CD-ROM (Compact Disc Read Only Memory), a MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a magnetic disc, and a semiconductor memory.
  • the program can be installed on the computer from the removable recording medium 211 as described above, or downloaded to the computer via a communication network or a broadcast network, and installed on the built-in hard disk 205. That is, the program is transferred from a download site to a computer wirelessly via a digital satellite broadcasting artificial satellite, or wired to a computer via a network such as a LAN (Local Area Network) or the Internet. be able to.
  • a network such as a LAN (Local Area Network) or the Internet.
  • the computer incorporates a CPU (Central Processing Unit) 202, and an input / output interface 210 is connected to the CPU 202 via the bus 201.
  • a CPU Central Processing Unit
  • the CPU 202 executes a program stored in a ROM (Read Only Memory) 203 according to the command. .
  • the CPU 202 loads a program stored in the hard disk 205 into a RAM (Random Access Memory) 204 and executes it.
  • the CPU 202 performs processing according to the flowchart described above or processing performed by the configuration of the block diagram described above. Then, the CPU 202 outputs the processing result as necessary, for example, via the input / output interface 210, from the output unit 206, or from the communication unit 208, and further recorded in the hard disk 205.
  • the input unit 207 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 206 includes an LCD (Liquid Crystal Display), a speaker, and the like.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing).
  • program may be processed by one computer (processor), or may be distributedly processed by a plurality of computers.
  • the present technology can be applied to any electronic device equipped with a function of capturing an image, such as a mobile terminal such as a smartphone having a function of capturing an image by mounting an image sensor in addition to a digital camera.
  • the analog gain of the image sensor 2 may be changed for each color according to the white balance, but as such, according to the analog gain for each color changed according to the white balance.
  • the amplification attenuation parameter K can be set.
  • the attenuation factor of the attenuation section 102 or 111 n has been decided to adopt the inverse 1 / K of the amplification factor K of the amplifier 101
  • the attenuation factor of the attenuation section 102 or 111 n is A value different from the reciprocal 1 / K of the amplification factor K of the amplification unit 101 can be adopted.
  • the dynamic range of the attenuation reference signal used for AD conversion will not match the dynamic range of the original reference signal. , You need to be careful about that.
  • this technique can take the following structures.
  • a pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal A reference signal output unit that outputs a reference signal whose level changes;
  • An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K; Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
  • An image sensor including: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
  • AD Analog to Digital
  • the image sensor according to ⁇ 1> wherein the attenuation unit attenuates the amplified reference signal immediately before being compared with the electrical signal in the AD conversion unit.
  • the attenuation unit is a capacitor circuit having a capacitor, The image sensor according to ⁇ 1> or ⁇ 2>, wherein the capacitor circuit attenuates the amplified reference signal by dividing the amplified signal with a capacitor.
  • the capacitor circuit is: Having a plurality of capacitors and a switch for switching the connection of the plurality of capacitors; The image sensor according to ⁇ 3>, wherein the attenuation rate 1 / K for attenuating the amplified reference signal is changed by switching connection of a capacitor with the switch.
  • ⁇ 5> The image sensor according to ⁇ 3> or ⁇ 4>, wherein the capacitor is a capacitor used for auto-zero processing.
  • ⁇ 6> The image sensor according to any one of ⁇ 1> to ⁇ 5>, wherein an amplification attenuation process for attenuating the amplified reference signal obtained by amplifying the reference signal is performed according to an ISO sensitivity at the time of shooting.
  • the ISO sensitivity is a high ISO sensitivity equal to or higher than a predetermined threshold
  • the amplification attenuation process is enabled, and when the ISO sensitivity is a low ISO sensitivity not higher than the predetermined threshold, the amplification attenuation process is disabled ⁇ 6
  • ⁇ 8> The image sensor according to ⁇ 6> or ⁇ 7>, wherein an amplification attenuation parameter K representing the amplification factor K and the attenuation factor 1 / K of the amplification attenuation process is set according to the ISO sensitivity.
  • ⁇ 9> By setting the amplification attenuation parameter to a value greater than 1, the amplification attenuation processing is enabled, The image sensor according to ⁇ 8>, wherein the amplification attenuation parameter is disabled by setting the amplification attenuation parameter to 1.
  • the reference signal output unit is A current source through which current flows and a resistor through which the current flows; A voltage generated by the current flowing through the resistor is output as the reference signal; The image sensor according to any one of ⁇ 1> to ⁇ 9>, wherein the current source functions as the amplifying unit by adjusting the current.
  • the reference signal output unit is A current source for supplying current, an operational amplifier and a capacitor for integrating the current, The voltage obtained by integrating the current is output as the reference signal, The image sensor according to any one of ⁇ 1> to ⁇ 9>, wherein the current source functions as the amplifying unit by adjusting the current.
  • a pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal An image sensor including a reference signal output unit that outputs a reference signal whose level changes, An amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K is output, The amplified reference signal is attenuated by an attenuation factor of 1 / K, and an attenuated reference signal is output.
  • a driving method including a step of performing AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel and the attenuated reference signal.
  • AD Analog to Digital
  • An optical system that collects the light;
  • An image sensor that receives light and captures an image, The image sensor is A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
  • a reference signal output unit that outputs a reference signal whose level changes;
  • An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K; Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
  • An electronic device comprising: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
  • AD Analog to Digital
  • a reference signal output unit that outputs a reference signal whose level changes;
  • An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K; Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
  • An AD converter comprising: an electric signal; and a comparator that compares the attenuated reference signal.

Abstract

 The present technique pertains to an image sensor, an electronic apparatus, an AD conversion device, and a drive method that make it possible to reduce noise. An amplification unit outputs an amplified reference signal in which a reference signal varying in level is amplified at a K-fold amplification rate greater than or equal to x1. An attenuation unit attenuates the amplified reference signal at a 1/K-fold attenuation rate, and outputs an attenuated reference signal. An AD conversion unit compares the attenuated reference signal and an electric signal outputted from a pixel, thereby converting the electric signal from analog to digital (performing AD conversion). The present technique can be applied to cases in which, e.g., the electric signal outputted from a pixel is AD-converted.

Description

イメージセンサ、電子機器、AD変換装置、及び、駆動方法Image sensor, electronic device, AD converter, and driving method
 本技術は、イメージセンサ、電子機器、AD変換装置、及び、駆動方法に関し、特に、例えば、ノイズを低減することができるようにするイメージセンサ、電子機器、AD変換装置、及び、駆動方法に関する。 The present technology relates to an image sensor, an electronic device, an AD converter, and a driving method, and more particularly, to an image sensor, an electronic device, an AD converter, and a driving method that can reduce noise, for example.
 近年、ディジタルビデオカメラやディジタルスチルカメラ等のディジタルカメラでは、画像を撮像する固体撮像装置として、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが用いられる。 Recently, in digital cameras such as digital video cameras and digital still cameras, for example, CMOS (Complementary Metal Oxide Semiconductor) image sensors are used as solid-state imaging devices for capturing images.
 CMOSイメージセンサのアナログフロントエンドでは、画素から得られる電気信号と比較する参照信号を、複数のADC(Analog to Digital Converter)で共有し、1水平ラインの画素等の複数の画素から得られる電気信号のAD変換を並列で行う並列AD変換が行われる(例えば、特許文献1を参照)。 In the analog front end of the CMOS image sensor, a reference signal to be compared with an electrical signal obtained from a pixel is shared by a plurality of ADCs (Analog-to-Digital Converter), and an electrical signal obtained from a plurality of pixels such as pixels on one horizontal line. Parallel AD conversion is performed in which the AD conversion is performed in parallel (see, for example, Patent Document 1).
特許第4,470,700号明細書Patent No. 4,470,700
 列並列AD変換では、例えば、1水平ラインの画素から得られる電気信号のAD変換を行う複数のADCにおいて、参照信号が共有される。そのため、参照信号に含まれるノイズ(ランダムノイズ)が、画素から得られる電気信号に含まれるノイズ(ランダムノイズ)に対して、十分小さくないと、CMOSイメージセンサから得られる画像において、水平ライン方向に相関がある横筋状のノイズが目視することができる程度に現れ、画質が劣化する。 In column parallel AD conversion, for example, a reference signal is shared by a plurality of ADCs that perform AD conversion of electrical signals obtained from pixels of one horizontal line. Therefore, if the noise (random noise) included in the reference signal is not sufficiently small compared to the noise (random noise) included in the electrical signal obtained from the pixel, in the image obtained from the CMOS image sensor in the horizontal line direction. Correlated horizontal stripe noise appears to such an extent that it can be visually observed, and the image quality deteriorates.
 かかる画質の劣化を防止するためには、参照信号のノイズ(参照信号に含まれるノイズ)を、画素から得られる電気信号のノイズ(電気信号に含まれるノイズ)よりも1桁程度小さくする必要がある。 In order to prevent such deterioration in image quality, it is necessary to reduce the noise of the reference signal (noise included in the reference signal) by an order of magnitude less than the noise of the electric signal obtained from the pixel (noise included in the electric signal). is there.
 しかしながら、近年、画素から得られる電気信号のノイズは、数e-程度に著しく改善されており(eは、電気素量を表す)、参照信号に許されるノイズに要求される仕様は厳しくなっている。 However, in recent years, the noise of the electrical signal obtained from the pixel has been remarkably improved to a few e (e represents the elementary electric quantity), and the specifications required for the noise allowed for the reference signal have become stricter. Yes.
 本技術は、このような状況に鑑みてなされたものであり、参照信号のノイズを低減することができるようにするものである。 The present technology has been made in view of such a situation, and makes it possible to reduce noise of a reference signal.
 本技術のイメージセンサは、光電変換を行う光電変換素子を有し、電気信号を出力する画素と、レベルが変化する参照信号を出力する参照信号出力部と、前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部とを含むイメージセンサである。 An image sensor according to an embodiment of the present technology includes a photoelectric conversion element that performs photoelectric conversion, a pixel that outputs an electrical signal, a reference signal output unit that outputs a reference signal whose level changes, and the reference signal that is one or more times higher An amplification unit that outputs an amplified reference signal amplified at an amplification factor of K, an attenuation unit that attenuates the amplified reference signal at an attenuation factor of 1 / K and outputs an attenuation reference signal, and is output from the pixel And an AD converter that performs AD (Analog-to-Digital) conversion of the electrical signal by comparing the electrical signal with the attenuated reference signal.
 本技術のイメージセンサの駆動方法は、光電変換を行う光電変換素子を有し、電気信号を出力する画素と、レベルが変化する参照信号を出力する参照信号出力部とを含むイメージセンサが、前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力し、前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力し、前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うステップを含む駆動方法である。 An image sensor driving method according to an embodiment of the present technology includes a photoelectric conversion element that performs photoelectric conversion, the image sensor including a pixel that outputs an electrical signal and a reference signal output unit that outputs a reference signal whose level changes. An amplified reference signal obtained by amplifying the reference signal with an amplification factor of 1 or more times K is output, the amplified reference signal is attenuated by an attenuation factor of 1 / K, and an attenuated reference signal is output from the pixel. The driving method includes a step of performing AD (Analog-to-Digital) conversion of the electrical signal by comparing the output electrical signal with the attenuated reference signal.
 本技術の電子機器は、光を集光する光学系と、光を受光し、画像を撮像するイメージセンサとを含み、前記イメージセンサは、光電変換を行う光電変換素子を有し、電気信号を出力する画素と、レベルが変化する参照信号を出力する参照信号出力部と、前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部とを含む電子機器である。 An electronic apparatus according to an embodiment of the present technology includes an optical system that collects light and an image sensor that receives light and picks up an image. The image sensor includes a photoelectric conversion element that performs photoelectric conversion, and outputs an electrical signal. A reference signal output unit that outputs a reference signal whose level changes, an amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more, and the amplification reference The signal is attenuated by an attenuation factor of 1 / K times, and an attenuation unit that outputs an attenuation reference signal is compared with the electric signal output from the pixel and the attenuation reference signal. And an AD converter that performs AD (Analog-to-Digital) conversion.
 本技術のAD変換装置は、レベルが変化する参照信号を出力する参照信号出力部と、前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、電気信号と、前記減衰参照信号とを比較するコンパレータとを含むAD変換装置である。 An AD conversion apparatus of the present technology, a reference signal output unit that outputs a reference signal whose level changes, an amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times, and The AD conversion apparatus includes an attenuator that attenuates the amplified reference signal at an attenuation factor of 1 / K and outputs an attenuated reference signal, an electric signal, and a comparator that compares the attenuated reference signal.
 本技術においては、前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号が出力され、前記増幅参照信号が、1/K倍の減衰率で減衰されて、減衰参照信号が出力される。そして、前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD変換が行われる。 In the present technology, an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more is output, and the amplified reference signal is attenuated by an attenuation factor of 1 / K, so that an attenuated reference signal is obtained. Is output. Then, AD conversion of the electrical signal is performed by comparing the electrical signal with the attenuated reference signal.
 なお、イメージセンサやAD変換装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。 Note that the image sensor and the AD conversion device may be independent devices or may be internal blocks constituting one device.
 本技術によれば、参照信号のノイズを低減することができる。 According to the present technology, the noise of the reference signal can be reduced.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用したディジタルカメラの一実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one Embodiment of the digital camera to which this technique is applied. イメージセンサ2の構成例を示すブロック図である。2 is a block diagram illustrating a configuration example of an image sensor 2. FIG. 画素11m,nの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the pixel 11m, n . ADC31の構成例を示すブロック図である。It is a block diagram showing a configuration example of ADC 31 n. コンパレータ61の構成例を示すブロック図である。It is a block diagram showing a configuration example of the comparator 61 n. VSL信号と参照信号との例を示す波形図である。It is a wave form diagram which shows the example of a VSL signal and a reference signal. 参照信号に含まれるノイズを説明する図である。It is a figure explaining the noise contained in a reference signal. 参照信号に含まれるノイズを説明する図である。It is a figure explaining the noise contained in a reference signal. 参照信号ノイズRN_REFを低減する列並列AD変換部22の第1の構成例を示すブロック図である。It is a block diagram which shows the 1st structural example of the column parallel AD conversion part 22 which reduces reference signal noise RN_REF. 参照信号ノイズRN_REFを低減する列並列AD変換部22の第2の構成例を示すブロック図である。It is a block diagram which shows the 2nd structural example of the column parallel AD conversion part 22 which reduces reference signal noise RN_REF. 列並列AD変換部22の動作の例を説明するフローチャートである。6 is a flowchart for explaining an example of the operation of the column parallel AD conversion unit 22. 減衰部111の構成例を示す回路図である。It is a circuit diagram showing a configuration example of the attenuation section 111 n. 参照信号出力部33の第1の構成例を示す回路図である。3 is a circuit diagram illustrating a first configuration example of a reference signal output unit 33. FIG. 参照信号出力部33の第2の構成例を示す回路図である。6 is a circuit diagram illustrating a second configuration example of a reference signal output unit 33. FIG. 参照信号、増幅参照信号、及び、減衰参照信号の例を示す波形図である。It is a wave form diagram which shows the example of a reference signal, an amplification reference signal, and an attenuation | damping reference signal. ディジタルカメラに設定されたISO感度と、増幅減衰パラメータKとの関係の例を示す図である。It is a figure which shows the example of the relationship between the ISO sensitivity set to the digital camera, and the amplification attenuation parameter K. ISO感度に応じて、増幅減衰パラメータKを設定する処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process which sets the amplification attenuation parameter K according to ISO sensitivity. コンピュータの一実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one embodiment of a computer.
 <本技術を適用したディジタルカメラの一実施の形態> <An embodiment of a digital camera to which the present technology is applied>
 図1は、本技術を適用したディジタルカメラの一実施の形態の構成例を示すブロック図である。 FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a digital camera to which the present technology is applied.
 なお、ディジタルカメラは、静止画、及び、動画のいずれも撮像することができる。 Note that the digital camera can capture both still images and moving images.
 図1において、ディジタルカメラは、光学系1、イメージセンサ2、メモリ3、信号処理部4、出力部5、及び、制御部6を有する。 1, the digital camera includes an optical system 1, an image sensor 2, a memory 3, a signal processing unit 4, an output unit 5, and a control unit 6.
 光学系1は、例えば、図示せぬズームレンズや、フォーカスレンズ、絞り等を有し、外部からの光を、イメージセンサ2に入射させる。 The optical system 1 has, for example, a zoom lens, a focus lens, a diaphragm, and the like (not shown), and makes light from the outside enter the image sensor 2.
 イメージセンサ2は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサであり、光学系1からの入射光を受光し、光電変換を行って、光学系1からの入射光に対応する画像データを出力する。 The image sensor 2 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor that receives incident light from the optical system 1, performs photoelectric conversion, and outputs image data corresponding to the incident light from the optical system 1. To do.
 メモリ3は、イメージセンサ2が出力する画像データを一時記憶する。 The memory 3 temporarily stores image data output from the image sensor 2.
 信号処理部4は、メモリ3に記憶された画像データを用いた信号処理としての、例えば、ノイズの除去や、ホワイトバランスの調整等の処理を行い、出力部5に供給する。 The signal processing unit 4 performs processing such as noise removal and white balance adjustment as signal processing using the image data stored in the memory 3 and supplies the processed signal to the output unit 5.
 出力部5は、信号処理部4からの画像データを出力する。 The output unit 5 outputs the image data from the signal processing unit 4.
 すなわち、出力部5は、例えば、液晶等で構成されるディスプレイ(図示せず)を有し、信号処理部4からの画像データに対応する画像を、いわゆるスルー画として表示する。 That is, the output unit 5 has a display (not shown) made of, for example, liquid crystal, and displays an image corresponding to the image data from the signal processing unit 4 as a so-called through image.
 また、出力部5は、例えば、半導体メモリや、磁気ディスク、光ディスク等の記録媒体を駆動するドライバ(図示せず)を有し、信号処理部4からの画像データを記録媒体に記録する。 The output unit 5 includes a driver (not shown) that drives a recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and records the image data from the signal processing unit 4 on the recording medium.
 制御部6は、ユーザの操作等に従い、ディジタルカメラを構成する各ブロックを制御する。 The control unit 6 controls each block constituting the digital camera in accordance with a user operation or the like.
 以上のように構成されるディジタルカメラでは、イメージセンサ2が、光学系1からの入射光を受光し、その入射光に応じて、画像データを出力する。 In the digital camera configured as described above, the image sensor 2 receives incident light from the optical system 1 and outputs image data according to the incident light.
 イメージセンサ2が出力する画像データは、メモリ3に供給されて記憶される。メモリ3に記憶された画像データについては、信号処理部4による信号処理が施され、その結果得られる画像データは、出力部5に供給されて出力される。 The image data output from the image sensor 2 is supplied to and stored in the memory 3. The image data stored in the memory 3 is subjected to signal processing by the signal processing unit 4, and the resulting image data is supplied to the output unit 5 and output.
 <イメージセンサ2の構成例> <Example configuration of image sensor 2>
 図2は、図1のイメージセンサ2の構成例を示すブロック図である。 FIG. 2 is a block diagram showing a configuration example of the image sensor 2 of FIG.
 図2において、イメージセンサ2は、画素アレイ10、制御部20、画素駆動部21、列並列AD変換部22、及び、出力部23を有する。 2, the image sensor 2 includes a pixel array 10, a control unit 20, a pixel driving unit 21, a column parallel AD conversion unit 22, and an output unit 23.
 画素アレイ10は、光電変換を行うM×N個(M及びNは、1以上の整数)の画素111,1,111,2,・・・,111,N,112,1,112,2,・・・,112,N,・・・,11M,1,11M,2,・・・,11M,Nを有し、画像を撮像する撮像部(撮像素子)として機能する。 The pixel array 10 includes M × N pixels 11 1,1 , 11 1,2 ,..., 11 1, N , 11 2,1,. 11 2,2, ···, 11 2, N, ···, 11 M, 1, 11 M, 2, ···, 11 M, has a N, imaging unit for capturing an image (image pickup device) Function as.
 M×N個の画素111,1ないし11M,Nは、2次元平面上に、M行N列の行列(格子)状に配置されている。 M × N pixels 11 1,1 to 11 M, N are arranged in a matrix (lattice) of M rows and N columns on a two-dimensional plane.
 画素アレイ10の、(上から)m行目(m=1,2,・・・,M)の行方向(横方向)に並ぶN個の画素11m,1ないし11m,Nには、行方向に延びる画素制御線41が接続されている。 N pixels 11 m, 1 to 11 m, N arranged in the row direction (lateral direction) of the m-th row (m = 1, 2,..., M) (from the top) of the pixel array 10 include: pixel control line 41 m extending in the row direction are connected.
 また、(左から)n列目(n=1,2,・・・,N)の列方向(縦方向)に並ぶM個の画素111,nないし11M,nには、列方向に延びるVSL(Vertical Signal Line)42が接続されている。 Further, (left) n-th column (n = 1,2, ···, N ) M pixels 11 1 arranged in the column direction (vertical direction) of, n to 11 M, the n, the column direction An extending VSL (Vertical Signal Line) 42 n is connected.
 画素11m,nは、そこに入射する光(入射光)の光電変換を行う。さらに、画素11m,nは、光電変換によって得られる電荷に対応する電圧(電気信号)を、画素駆動部21からの、画素制御線41を介しての制御に従い、電流源43が接続されたVSL42上に出力する。 The pixels 11 m and n perform photoelectric conversion of light (incident light) incident thereon. Furthermore, the pixel 11 m, n is the voltage corresponding to the charges obtained by photoelectric conversion (electrical signal), from the pixel driver 21, under the control of via the pixel control line 41 m, the current source 43 n is connected Is output on the VSL 42 n .
 なお、画素11m,nは、例えば、ベイヤ配列等の色フィルタ(図示せず)を介して入射する所定の色の光の光電変換を行うことができる。 Note that the pixels 11 m, n can perform photoelectric conversion of light of a predetermined color that enters through a color filter (not shown) such as a Bayer array.
 制御部20は、画素駆動部21や、列並列AD変換部22(を構成するオートゼロ制御部32や、参照信号出力部33等)、その他の必要なブロックを、所定のロジック等に従って制御する。 The control unit 20 controls the pixel driving unit 21, the column parallel AD conversion unit 22 (the auto zero control unit 32, the reference signal output unit 33, and the like) and other necessary blocks according to a predetermined logic or the like.
 画素駆動部21は、制御部20の制御に従い、画素制御線41を介して、その画素制御線41に接続されている画素11m,1ないし11m,Nを制御(駆動)する。 Pixel driver 21, under the control of the control unit 20, via the pixel control line 41 m, to the pixels 11 m, 1 not connected to the pixel control line 41 m 11 m, and controls the N (drive).
 列並列AD変換部22は、一行に並ぶ画素11m,1ないし11m,Nそれぞれと、VSL42ないし42を介して接続されており、したがって、画素11m,nがVSL42上に出力する電気信号(電圧)(以下、VSL信号ともいう)は、列並列AD変換部22に供給される。 The column parallel AD converter 22 is connected to each of the pixels 11 m, 1 to 11 m, N arranged in a row via the VSLs 42 1 to 42 N , and therefore the pixels 11 m, n are output on the VSL 42 n. An electrical signal (voltage) (hereinafter also referred to as a VSL signal) is supplied to the column parallel AD conversion unit 22.
 列並列AD変換部22は、一行に並ぶ画素11m,1ないし11m,Nそれぞれから、VSL42ないし42を介して供給されるVSL信号のAD変換を、並列で行う列並列AD変換装置であり、AD変換の結果得られるディジタルデータを、画素11m,1ないし11m,Nの画素値(画素データ)として、出力部23に供給する。 The column parallel AD conversion unit 22 performs parallel AD conversion of VSL signals supplied from the pixels 11 m, 1 to 11 m, N arranged in a row via the VSLs 42 1 to 42 N in parallel. The digital data obtained as a result of AD conversion is supplied to the output unit 23 as pixel values (pixel data) of the pixels 11 m, 1 to 11 m, N.
 ここで、列並列AD変換部22は、一行に並ぶN個の画素11m,1ないし11m,Nすべての電気信号のAD変換を、並列で行う他、そのN個の画素11m,1ないし11m,Nのうちの、N個未満の1個以上の画素の電気信号のAD変換を、並列で行うことができる。 Here, the column parallel AD conversion unit 22 performs AD conversion of all the electric signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel, and also the N pixels 11 m, 1. Furthermore, AD conversion of electrical signals of one or more pixels of less than N out of 11 m and N can be performed in parallel.
 但し、以下では、説明を簡単にするため、列並列AD変換部22は、一行に並ぶN個の画素11m,1ないし11m,NすべてのVSL信号のAD変換を、並列で行うこととする。 However, in the following, in order to simplify the description, the column parallel AD conversion unit 22 performs AD conversion of all VSL signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel. To do.
 列並列AD変換部22は、一行に並ぶN個の画素11m,1ないし11m,NすべてのVSL信号のAD変換を、並列で行うために、N個のADC(Analog to Digital Converter)31ないし31を有する。 The column parallel AD conversion unit 22 performs N ADC (Analog to Digital Converter) 31 in order to perform AD conversion of all the VSL signals of N pixels 11 m, 1 to 11 m, N arranged in a row in parallel. 1 to 31 N.
 さらに、列並列AD変換部22は、オートゼロ制御部32、参照信号出力部33、及び、クロック出力部34を有する。 Further, the column parallel AD conversion unit 22 includes an auto zero control unit 32, a reference signal output unit 33, and a clock output unit 34.
 オートゼロ制御部32は、ADC31が有する、後述するコンパレータ61のオートゼロ処理を制御するための信号であるオートゼロパルスを、オートゼロ制御線32Aを介して、ADC31ないし31に供給(出力)する。 Auto-zero control unit 32 includes the ADC 31 n, the auto-zero pulse is a signal for controlling the autozero process described later comparator 61 n, via the auto-zero control line 32A, is supplied (output) to the ADC 31 1 through 31 N .
 参照信号出力部33は、例えば、DAC(Digital to Analog Converter)で構成され、ランプ(ramp)信号のような一定の傾きで、所定の初期値から所定の最終値までレベル(電圧)が変化する期間を有する参照信号を、参照信号線33Aを介して、ADC31ないし31に供給(出力)する。 The reference signal output unit 33 is composed of, for example, a DAC (Digital to Analog Converter), and the level (voltage) changes from a predetermined initial value to a predetermined final value with a constant slope like a ramp signal. A reference signal having a period is supplied (output) to the ADCs 31 1 to 31 N via the reference signal line 33A.
 クロック出力部34は、所定の周波数のクロックを、クロック線34Aを介して、ADC31ないし31に供給(出力)する。 The clock output unit 34 supplies (outputs) a clock having a predetermined frequency to the ADCs 31 1 to 31 N via the clock line 34A.
 ADC31は、VSL41に接続されており、したがって、ADC31には、画素11m,nがVSL41上に出力するVSL信号(電気信号)が供給される。 The ADC 31 n is connected to the VSL 41 n , and therefore, the ADC 31 n is supplied with a VSL signal (electric signal) output from the pixel 11 m, n on the VSL 41 n .
 ADC31は、画素11m,nが出力するVSL信号のAD変換を、参照信号出力部33からの参照信号、及び、クロック出力部34からのクロックを用いて行い、さらに、CDS(Correlated Double Sampling)を行って、画素値としてのディジタルデータを求める。 The ADC 31 n performs AD conversion of the VSL signal output from the pixels 11 m and n using the reference signal from the reference signal output unit 33 and the clock from the clock output unit 34, and further performs CDS (Correlated Double Sampling). ) To obtain digital data as pixel values.
 ここで、ADC31は、画素11m,nのVSL信号と、参照信号出力部33からの参照信号とを比較し、画素11m,nのVSL信号と参照信号とのレベルが一致するまでの(VSL信号と参照信号との大小関係が逆転するまでの)、参照信号のレベルの変化に要する時間をカウントすることにより、画素11m,nのVSL信号のAD変換を行う。 Here, the ADC 31 n compares the VSL signal of the pixel 11 m, n with the reference signal from the reference signal output unit 33 until the level of the VSL signal of the pixel 11 m, n matches the level of the reference signal. By counting the time required for the change in the level of the reference signal (until the magnitude relationship between the VSL signal and the reference signal is reversed), AD conversion of the VSL signal of the pixels 11 m and n is performed.
 ADC31において、画素11m,nのVSL信号と参照信号とのレベルが一致するまでの、参照信号のレベルの変化に要する時間のカウントは、クロック出力部34からのクロックをカウントすることにより行われる。 In the ADC 31 n , the time required to change the level of the reference signal until the level of the VSL signal of the pixel 11 m, n matches the level of the reference signal is counted by counting the clock from the clock output unit 34. Is called.
 また、N個のADC31ないし31には、画素アレイ10の第1行ないし第M行の各行のN個の画素11m,1ないし11m,NのVSL信号が、例えば、第1行から順次供給され、そのVSL信号のAD変換、及び、CDSが、行単位で行われる。 In addition, the N ADCs 31 1 to 31 N receive the VSL signals of the N pixels 11 m, 1 to 11 m, N in the first to Mth rows of the pixel array 10, for example, the first row. Are sequentially supplied, and AD conversion and CDS of the VSL signal are performed in units of rows.
 出力部23は、画素値を読み出す列nを選択し、その列nのADC31から、そのADC31で求められた画素11m,nのAD変換(及びCDS)の結果を、画素値として読み出し、外部(本実施の形態では、メモリ3(図1))に出力する。 The output unit 23 selects the column n from which the pixel value is read, and reads the AD conversion (and CDS) result of the pixel 11 m, n obtained by the ADC 31 n as the pixel value from the ADC 31 n of the column n. And output to the outside (in this embodiment, the memory 3 (FIG. 1)).
 なお、ここでは、ADC31において、AD変換の他、CDSを行うこととしたが、ADC31では、AD変換のみを行い、CDSは、出力部23で行うことが可能である。 Here, the ADC 31 n performs CDS in addition to AD conversion. However, the ADC 31 n performs only AD conversion, and CDS can be performed by the output unit 23.
 また、以下では、CDSについては、適宜、説明を省略する。 In the following, explanation of CDS will be omitted as appropriate.
 <画素11m,nの構成例> <Configuration Example of Pixel 11m, n >
 図3は、図2の画素11m,nの構成例を示す回路図である。 FIG. 3 is a circuit diagram showing a configuration example of the pixels 11m, n in FIG.
 図3において、画素11m,nは、PD51、並びに、4個のNMOS(negative channel MOS)のFET(Field Effect Transistor)52,54,55、及び、56を有する。 In FIG. 3, the pixel 11 m, n includes a PD 51 and four NMOS (negative channel MOS) FETs (Field Effect Transistors) 52, 54, 55, and 56.
 また、画素11m,nにおいては、FET52のドレイン、FET54のソース、及び、FET55のゲートが接続されており、その接続点には、電荷を電圧に変換するためのFD(Floating Diffusion)(容量)53が形成されている。 Further, in the pixel 11m , n , the drain of the FET 52, the source of the FET 54, and the gate of the FET 55 are connected, and an FD (Floating Diffusion) (capacitance) for converting charges into voltage is connected to the connection point. ) 53 is formed.
 PD51は、光電変換を行う光電変換素子の一例であり、入射光を受光して、その入射光に対応する電荷をチャージすることにより、光電変換を行う。 The PD 51 is an example of a photoelectric conversion element that performs photoelectric conversion, and performs photoelectric conversion by receiving incident light and charging a charge corresponding to the incident light.
 PD51のアノードはグランド(ground)に接続され(接地され)、PD51のカソードは、FET52のソースに接続されている。 The anode of the PD 51 is connected (grounded) to the ground, and the cathode of the PD 51 is connected to the source of the FET 52.
 FET52は、PD51にチャージされた電荷を、PD51からFD53に転送するためのFETであり、以下、転送Tr52ともいう。 The FET 52 is an FET for transferring the charge charged in the PD 51 from the PD 51 to the FD 53, and is also referred to as a transfer Tr 52 hereinafter.
 転送Tr52のソースは、PD51のカソードに接続され、転送Tr52のドレインは、FD53を介して、FET54のソースに接続されている。 The source of the transfer Tr 52 is connected to the cathode of the PD 51, and the drain of the transfer Tr 52 is connected to the source of the FET 54 via the FD 53.
 また、転送Tr52のゲートは、画素制御線41に接続されており、転送Tr52のゲートには、画素制御線41を介して、転送パルスTRGが供給される。 The gate of the transfer Tr52 is connected to the pixel control line 41 m, the gate of the transfer Tr52 via the pixel control line 41 m, the transfer pulse TRG is supplied.
 ここで、画素駆動部21(図2)が、画素制御線41を介して、画素11m,nを駆動(制御)するために、画素制御線41に流す制御信号には、転送パルスTRGの他、後述するリセットパルスRST、及び、選択パルスSELがある。 Here, the pixel driving unit 21 (FIG. 2), via a pixel control line 41 m, the pixel 11 m, n and for driving (control), the control signal to be supplied to the pixel control line 41 m, the transfer pulse In addition to TRG, there are a reset pulse RST and a selection pulse SEL which will be described later.
 FD53は、転送Tr52のドレイン、FET54のソース、及び、FET55のゲートの接続点に形成された、コンデンサの如く電荷を電圧に変換する領域である。 The FD 53 is a region that converts charges into voltage like a capacitor formed at the connection point of the drain of the transfer Tr 52, the source of the FET 54, and the gate of the FET 55.
 FET54は、FD53にチャージされた電荷(電圧(電位))をリセットするためのFETであり、以下、リセットTr54ともいう。 The FET 54 is an FET for resetting the charge (voltage (potential)) charged in the FD 53, and is also referred to as a reset Tr 54 hereinafter.
 リセットTr54のドレインは、電源Vddに接続されている。 The drain of the reset Tr54 is connected to the power supply Vdd.
 また、リセットTr54のゲートは、画素制御線41に接続されており、リセットTr54のゲートには、画素制御線41を介して、リセットパルスRSTが供給される。 The gate of the reset Tr54 is connected to the pixel control line 41 m, the gate of the reset Tr54, via a pixel control line 41 m, the reset pulse RST is supplied.
 FET55は、FD53の電圧をバッファするためのFETであり、以下、増幅Tr55ともいう。 The FET 55 is an FET for buffering the voltage of the FD 53, and is hereinafter also referred to as an amplifying Tr 55.
 増幅Tr55のゲートは、FD53に接続され、増幅Tr55のドレインは、電源Vddに接続されている。また、増幅Tr55のソースは、FET56のドレインに接続されている。 The gate of the amplification Tr55 is connected to the FD 53, and the drain of the amplification Tr55 is connected to the power supply Vdd. The source of the amplifying Tr 55 is connected to the drain of the FET 56.
 FET56は、VSL42への電気信号(VSL信号)の出力を選択するためのFETであり、以下、選択Tr56ともいう。 The FET 56 is an FET for selecting an output of an electric signal (VSL signal) to the VSL 42 n , and is hereinafter also referred to as a selection Tr 56.
 選択Tr56のソースは、VSL42に接続されている。 The source of the selection Tr 56 is connected to the VSL 42 n .
 また、選択Tr56のゲートは、画素制御線41に接続されており、選択Tr56のゲートには、画素制御線41を介して、選択パルスSELが供給される。 The gate of the selection Tr56 is connected to the pixel control line 41 m, the gate of the selection Tr56, via a pixel control line 41 m, a selection pulse SEL is supplied.
 ここで、増幅Tr55のソースが、選択Tr56、及び、VSL42を介して電流源43に接続されることで、増幅Tr55及び電流源43によって、SF(Source Follower)(の回路)が構成されており、したがって、FD53は、SFを介して、VSL42に接続されている。 Here, the source of the amplifying Tr 55 is connected to the current source 43 n via the selection Tr 56 and the VSL 42 n , so that the SF (Source Follower) (circuit) is configured by the amplifying Tr 55 and the current source 43 n . Therefore, the FD 53 is connected to the VSL 42 n via the SF.
 なお、画素11m,nは、選択Tr56なしで構成することができる。 Note that the pixels 11 m and n can be configured without the selection Tr 56.
 また、画素11m,nの構成としては、FD53ないし選択Tr56を、複数のPD51及び転送Tr52で共有する共有画素の構成を採用することができる。 Further, as the configuration of the pixels 11 m, n, a configuration of a shared pixel in which the FD 53 or the selection Tr 56 is shared by the plurality of PDs 51 and the transfer Tr 52 can be employed.
 以上のように構成される画素11m,nでは、PD51は、そこに入射する光を受光し、光電変換を行うことにより、受光した入射光の光量に応じた電荷のチャージを開始する。なお、ここでは、説明を簡単にするために、選択パルスSELはHレベルになっており、選択Tr56はオン状態であることとする。 In the pixel 11m , n configured as described above, the PD 51 receives light incident thereon and performs photoelectric conversion, thereby starting charge charging according to the amount of received incident light. Here, in order to simplify the description, it is assumed that the selection pulse SEL is at the H level and the selection Tr 56 is in the ON state.
 PD51での電荷のチャージが開始されてから、所定の時間(露光時間)が経過すると、画素駆動部21(図2)は、転送パルスTRGを、一時的に、(L(Low)レベルから)H(High)レベルにする。 When a predetermined time (exposure time) has elapsed since the start of charge charging in the PD 51, the pixel drive unit 21 (FIG. 2) temporarily transfers the transfer pulse TRG (from the L (Low) level). Set to H (High) level.
 転送パルスTRGが一時的にHレベルになることにより、転送Tr52は、一時的に、オン状態になる。 When the transfer pulse TRG temporarily becomes H level, the transfer Tr 52 is temporarily turned on.
 転送Tr52がオン状態になると、PD51にチャージされた電荷は、転送Tr52を介して、FD53に転送されてチャージされる。 When the transfer Tr 52 is turned on, the charge charged in the PD 51 is transferred to the FD 53 via the transfer Tr 52 and charged.
 画素駆動部21は、転送パルスTRGを一時的にHレベルにする前に、リセットパルスRSTを、一時的に、Hレベルにし、これにより、リセットTr54を、一時的に、オン状態にする。 The pixel driving unit 21 temporarily sets the reset pulse RST to the H level before temporarily setting the transfer pulse TRG to the H level, whereby the reset Tr 54 is temporarily turned on.
 リセットTr54がオン状態になることにより、FD53は、リセットTr54を介して、電源Vddに接続され、FD53にある電荷は、リセットTr54を介して、電源Vddに掃き出されてリセットされる。 When the reset Tr 54 is turned on, the FD 53 is connected to the power supply Vdd via the reset Tr 54, and the charge in the FD 53 is swept out to the power supply Vdd via the reset Tr 54 and reset.
 ここで、以上のように、FD53が、電源Vddに接続され、FD53にある電荷がリセットされることが、画素11m,nのリセットである。 Here, as described above, when the FD 53 is connected to the power supply Vdd and the charge in the FD 53 is reset, the pixels 11 m and n are reset.
 FD53の電荷のリセット後、画素駆動部21は、上述のように、転送パルスTRGを、一時的に、Hレベルにし、これにより、転送Tr52は、一時的に、オン状態になる。 After the charge of the FD 53 is reset, the pixel driving unit 21 temporarily sets the transfer pulse TRG to the H level as described above, and thereby the transfer Tr 52 is temporarily turned on.
 転送Tr52がオン状態になることにより、PD51にチャージされた電荷は、転送Tr52を介して、リセット後のFD53に転送されてチャージされる。 When the transfer Tr 52 is turned on, the charge charged in the PD 51 is transferred to the FD 53 after reset via the transfer Tr 52 and charged.
 FD53にチャージされた電荷に対応する電圧(電位)は、増幅Tr55及び選択Tr56を介して、VSL信号として、VSL42上に出力される。 A voltage (potential) corresponding to the electric charge charged in the FD 53 is output on the VSL 42 n as the VSL signal via the amplification Tr 55 and the selection Tr 56.
 VSL42に接続されているADC31(図2)では、画素11m,nのリセットが行われた直後のVSL信号であるリセットレベルがAD変換される。 In VSL42 n in the connected ADC 31 n (Fig. 2), the reset level is VSL signal immediately after the pixel 11 m, reset n has been performed is AD converted.
 さらに、ADC31では、転送Tr52が一時的にオン状態になった後のVSL信号(PD51にチャージされ、FD53に転送された電荷に対応する電圧)である信号レベル(リセットレベルと、画素値となるレベルとを含む)がAD変換される。 Further, in the ADC 31 n , the signal level (the reset level, the pixel value, and the VSL signal (the voltage corresponding to the charge charged in the PD 51 and transferred to the FD 53) after the transfer Tr 52 is temporarily turned on) Are converted to AD.
 そして、ADC31では、リセットレベルのAD変換結果(以下、リセットレベルAD値ともいう)と、信号レベルのAD変換結果(以下、信号レベルAD値ともいう)との差分を、画素値として求めるCDSが行われる。 In the ADC 31 n , the CDS for obtaining the difference between the AD conversion result of the reset level (hereinafter also referred to as reset level AD value) and the AD conversion result of the signal level (hereinafter also referred to as signal level AD value) as a pixel value. Is done.
 <ADC31の第1の構成例> <First Configuration Example of ADC 31 n>
 図4は、図2のADC31の構成例を示すブロック図である。 FIG. 4 is a block diagram illustrating a configuration example of the ADC 31 n of FIG.
 ADC31は、コンパレータ61、及び、カウンタ62を有し、参照信号比較型のAD変換、及び、CDSを行う。 The ADC 31 n includes a comparator 61 n and a counter 62 n , and performs reference signal comparison AD conversion and CDS.
 コンパレータ61は、反転入力端子(-)、及び、非反転入力端子(+)の2つの入力端子を有する。 The comparator 61 n has two input terminals, an inverting input terminal (−) and a non-inverting input terminal (+).
 コンパレータ61の2つの入力端子のうちの一方の入力端子である反転入力端子(-)には、参照信号出力部33からの参照信号、及び、画素11m,nのVSL信号(リセットレベル、信号レベル)のうちの一方である、例えば、参照信号が供給される。コンパレータ61の2つの入力端子のうちの他方の入力端子である非反転入力端子(+)には、参照信号出力部33からの参照信号、及び、画素11m,nのVSL信号のうちの他方である、例えば、VSL信号が供給される。 One of the input terminals inverting input terminal of the two input terminals of the comparator 61 n (-), the reference signal from the reference signal output unit 33, and the pixel 11 m, n VSL signal (reset level, For example, a reference signal is supplied. The non-inverting input terminal (+) which is the other input terminal of the two input terminals of the comparator 61 n is connected to the reference signal from the reference signal output unit 33 and the VSL signals of the pixels 11 m and n . The other, for example, a VSL signal is supplied.
 コンパレータ61は、反転入力端子に供給される参照信号と、非反転入力端子に供給されるVSL信号とを比較し、その比較結果を出力する。 The comparator 61 n compares the reference signal supplied to the inverting input terminal with the VSL signal supplied to the non-inverting input terminal, and outputs the comparison result.
 すなわち、コンパレータ61は、反転入力端子に供給される参照信号が、非反転入力端子に供給されるVSL信号よりも大である場合、H及びLレベルのうちの一方である、例えば、Lレベルを出力する。 That is, the comparator 61 n is one of the H and L levels when the reference signal supplied to the inverting input terminal is larger than the VSL signal supplied to the non-inverting input terminal, for example, the L level. Is output.
 また、コンパレータ61は、非反転入力端子に供給されるVSL信号が、反転入力端子に供給される参照信号の電圧よりも大である場合、H及びLレベルのうちの他方であるHレベルを出力する。 Further, the comparator 61 n sets the H level, which is the other of the H and L levels, when the VSL signal supplied to the non-inverting input terminal is larger than the voltage of the reference signal supplied to the inverting input terminal. Output.
 なお、コンパレータ61には、オートゼロ制御部32から、オートゼロ制御線32Aを介して、オートゼロパルスが供給される。コンパレータ61では、オートゼロ制御部32からのオートゼロパルスに従って、オートゼロ処理が行われる。 Note that an auto zero pulse is supplied from the auto zero control unit 32 to the comparator 61 n via the auto zero control line 32A. The comparator 61 n performs auto zero processing according to the auto zero pulse from the auto zero control unit 32.
 ここで、オートゼロ処理では、コンパレータ61において、そのコンパレータ61に現に与えられている2つの入力信号、すなわち、コンパレータ61の反転入力端子に現に供給されている信号と、非反転入力端子に現に供給されている信号とが一致している旨の比較結果が得られるように、コンパレータ61が設定される。 Here, in the auto zero process, the comparator 61 n, 2 two input signals being given currently to the comparator 61 n, i.e., a signal that is currently supplied to the inverting input terminal of the comparator 61 n, to the non-inverting input terminal The comparator 61 n is set so that a comparison result indicating that the currently supplied signal matches is obtained.
 カウンタ62には、コンパレータ61の出力と、クロック出力部34からのクロックとが供給される。 The counter 62 n is supplied with the output of the comparator 61 n and the clock from the clock output unit 34.
 カウンタ62は、例えば、参照信号出力部33からコンパレータ61に供給される参照信号(のレベル)が変化を開始するタイミングで、クロック出力部34からのクロックのカウントを開始し、コンパレータ61の出力が、例えば、LレベルからHレベルになると、すなわち、コンパレータ61の反転入力端子に供給される参照信号と、非反転入力端子に供給されるVSL信号とのレベルが等しくなると(参照信号とVSL信号との大小関係が逆転すると)、クロック出力部34からのクロックのカウントを終了する。 For example, the counter 62 n starts counting the clock from the clock output unit 34 at the timing when the reference signal (level) supplied from the reference signal output unit 33 to the comparator 61 n starts to change, and the comparator 61 n For example, when the level of the reference signal supplied to the inverting input terminal of the comparator 61 n is equal to the level of the VSL signal supplied to the non-inverting input terminal (reference signal). When the magnitude relationship between the VSL signal and the VSL signal is reversed), the clock count from the clock output unit 34 is terminated.
 そして、カウンタ62は、クロックのカウント値を、コンパレータ61の非反転入力端子に供給されるVSL信号のAD変換結果として出力する。 Then, the counter 62 n outputs the clock count value as the AD conversion result of the VSL signal supplied to the non-inverting input terminal of the comparator 61 n .
 ここで、参照信号出力部33は、参照信号として、例えば、所定の初期値から所定の最終値まで、一定の割合で電圧が小さくなっていくスロープ(スロープ状の波形)を有する信号を出力する。 Here, the reference signal output unit 33 outputs, for example, a signal having a slope (slope-shaped waveform) in which the voltage decreases at a constant rate from a predetermined initial value to a predetermined final value as the reference signal. .
 この場合、カウンタ62では、スロープの開始から、参照信号が、コンパレータ61の非反転入力端子に供給されるVSL信号に一致する電圧に変化するまでの時間がカウントされ、そのカウントにより得られるカウント値が、コンパレータ61の非反転入力端子に供給されるVSL信号のAD変換結果とされる。 In this case, the counter 62 n counts the time from the start of the slope until the reference signal changes to a voltage matching the VSL signal supplied to the non-inverting input terminal of the comparator 61 n , and is obtained by the count. count value is an AD conversion result of the VSL signal supplied to the non-inverting input terminal of the comparator 61 n.
 ADC31は、画素11m,nからコンパレータ61の非反転入力端子に供給されるVSL信号としてのリセットレベル、及び、信号レベルのAD変換結果を得る。そして、ADC31は、信号レベルのAD変換結果(信号レベルAD値)と、リセットレベルのAD変換結果(リセットレベルAD値)との差分を求めるCDSを行い、そのCDSにより得られる差分を、画素11m,nの画素値として出力する。 The ADC 31 n obtains the reset level as a VSL signal supplied from the pixel 11 m, n to the non-inverting input terminal of the comparator 61 n and the AD conversion result of the signal level. Then, the ADC 31 n performs CDS for obtaining a difference between the AD conversion result (signal level AD value) of the signal level and the AD conversion result (reset level AD value) of the reset level, and the difference obtained by the CDS is calculated as a pixel. Output as 11 m, n pixel values.
 なお、ADC31において、CDSは、信号レベルAD値とリセットレベルAD値との差分を求める演算を実際に実行することにより行う他、例えば、カウンタ62でのクロックのカウントを制御することにより行うことができる。 Note that in the ADC 31 n , the CDS is performed by actually executing a calculation for obtaining a difference between the signal level AD value and the reset level AD value, and for example, by controlling the clock count in the counter 62 n. be able to.
 すなわち、カウンタ62において、リセットレベルについては、例えば、カウント値を、1ずつデクリメントしながら、クロックをカウントし、信号レベルについては、リセットレベルについてのクロックのカウント値を初期値として、カウント値を、リセットレベルの場合とは逆に、1ずつインクリメントしながら、クロックをカウントすることにより、リセットレベル、及び、信号レベルのAD変換を行いつつ、信号レベル(のAD変換結果)とリセットレベル(のAD変換結果)との差分を求めるCDSを行うことができる。 That is, in the counter 62 n , for example, for the reset level, the clock is counted while the count value is decremented by one, and for the signal level, the count value is set with the clock count value for the reset level as an initial value. Contrary to the case of the reset level, by counting the clock while incrementing by one, the AD conversion of the reset level and the signal level is performed, and the signal level (the AD conversion result) and the reset level ( CDS can be performed to obtain the difference from the AD conversion result.
 また、本実施の形態では、参照信号として、一定の割合で小さくなっていくスロープを有するランプ信号を採用するが、参照信号としては、その他、例えば、一定の割合で大きくなっていくスロープを有するランプ信号等を採用することができる。 In this embodiment, a ramp signal having a slope that decreases at a constant rate is employed as the reference signal. However, for example, the reference signal has a slope that increases at a constant rate. A ramp signal or the like can be employed.
 <コンパレータ61の構成例> <Configuration example of the comparator 61 n>
 図5は、図4のコンパレータ61の構成例を示すブロック図である。 Figure 5 is a block diagram showing a configuration example of the comparator 61 n of FIG.
 コンパレータ61は、キャパシタ回路71及び72、差動アンプ73、並びに、出力アンプ74を有する。 The comparator 61 n includes capacitor circuits 71 and 72, a differential amplifier 73, and an output amplifier 74.
 キャパシタ回路71及び72は、オートゼロ処理に用いられるコンデンサである。 Capacitor circuits 71 and 72 are capacitors used for auto-zero processing.
 キャパシタ回路71としてのコンデンサの一端は、差動アンプ73のFET81のゲートに接続され、他端は、コンパレータ61の反転入力端子IN1(-)に接続されている。 One end of the capacitor as the capacitor circuit 71 is connected to the gate of FET81 of the differential amplifier 73, the other end, an inverting input terminal IN1 of the comparator 61 n - is connected to ().
 キャパシタ回路72としてのコンデンサの一端は、差動アンプ73のFET82のゲートに接続され、他端は、コンパレータ61の非反転入力端子IN2(+)に接続されている。 One end of the capacitor as the capacitor circuit 72 is connected to the gate of FET82 of the differential amplifier 73, the other end is connected to the non-inverting input terminal IN2 of the comparator 61 n (+).
 キャパシタ回路71及び72は、オートゼロ処理において、キャパシタ回路71を介して、FET81のゲートに供給される信号と、キャパシタ回路72を介して、FET82のゲートに供給される信号とが同一の電圧になるように、電荷をチャージする。 In the auto-zero processing, the capacitor circuits 71 and 72 have the same voltage as the signal supplied to the gate of the FET 81 via the capacitor circuit 71 and the signal supplied to the gate of the FET 82 via the capacitor circuit 72. As such, charge is charged.
 そして、キャパシタ回路71は、反転入力端子IN1から供給される信号(参照信号)を、オートゼロ処理時にチャージした電荷に対応する電圧だけオフセットして、FET81のゲートに供給する。キャパシタ回路72も同様に、非反転入力端子IN2から供給される信号(VSL信号)を、オートゼロ処理時にチャージした電荷に対応する電圧だけオフセットして、FET82のゲートに供給する。 The capacitor circuit 71 offsets the signal (reference signal) supplied from the inverting input terminal IN1 by a voltage corresponding to the charge charged during the auto-zero process, and supplies it to the gate of the FET 81. Similarly, the capacitor circuit 72 offsets the signal (VSL signal) supplied from the non-inverting input terminal IN2 by a voltage corresponding to the charge charged during the auto-zero process and supplies the signal to the gate of the FET 82.
 差動アンプ73には、反転入力端子IN1、及び、キャパシタ回路71を介して、参照信号が供給されるとともに、非反転入力端子IN2、及び、キャパシタ回路72を介して、VSL信号が供給される。 A reference signal is supplied to the differential amplifier 73 via the inverting input terminal IN1 and the capacitor circuit 71, and a VSL signal is supplied via the non-inverting input terminal IN2 and the capacitor circuit 72. .
 差動アンプ73は、そこに供給される2つの信号である参照信号とVSL信号とを比較した比較結果を表す比較結果信号を、差動出力として、出力アンプ74に出力する。すなわち、差動アンプ73は、参照信号とVSL信号との差に対応する信号を、差動出力として出力する。 The differential amplifier 73 outputs a comparison result signal representing a comparison result obtained by comparing the reference signal, which is the two signals supplied thereto, and the VSL signal to the output amplifier 74 as a differential output. That is, the differential amplifier 73 outputs a signal corresponding to the difference between the reference signal and the VSL signal as a differential output.
 出力アンプ74は、差動アンプ73が出力する差動出力(比較結果信号)を、後段の回路に適切なレベルで出力するために、その差動出力をバッファリングするバッファとして機能する。 The output amplifier 74 functions as a buffer that buffers the differential output in order to output the differential output (comparison result signal) output from the differential amplifier 73 to a circuit at the subsequent stage at an appropriate level.
 すなわち、出力アンプ74は、差動アンプ73が出力する差動出力(比較結果信号)を所定のゲインで増幅し、その増幅の結果得られる信号を、アンプ出力として出力する。 That is, the output amplifier 74 amplifies the differential output (comparison result signal) output from the differential amplifier 73 with a predetermined gain, and outputs a signal obtained as a result of the amplification as an amplifier output.
 出力アンプ74のアンプ出力は、参照信号とVSL信号とを比較した比較結果を表す、コンパレータ61の最終的な出力信号として、カウンタ62(図4)に供給される。 The amplifier output of the output amplifier 74 is supplied to the counter 62 n (FIG. 4) as a final output signal of the comparator 61 n representing the comparison result obtained by comparing the reference signal and the VSL signal.
 カウンタ62は、上述したように、クロック出力部34からのクロックをカウントし、コンパレータ61の出力に応じて、クロックのカウントを終了する。そして、カウンタ62は、クロックのカウント値を、コンパレータ61(の差動アンプ73)に供給されるVSL信号のAD変換結果として出力する。 As described above, the counter 62 n counts the clock from the clock output unit 34 and ends the clock counting according to the output of the comparator 61 n . Then, the counter 62 n outputs the count value of the clock as the AD conversion result of the VSL signal supplied to the comparator 61 n (the differential amplifier 73).
 ここで、図5において、差動アンプ73は、FET81,82,83、及び、84,スイッチ85及び86、並びに、電流源89を有する。 Here, in FIG. 5, the differential amplifier 73 includes FETs 81, 82, 83, and 84, switches 85 and 86, and a current source 89.
 FET81、及び、FET82は、NMOS(Negative Channel MOS)のFETであり、それぞれのソースどうしが接続されている。さらに、FET81及びFET82のソースどうしの接続点は、一端が接地されている電流源89の他端に接続されている。FET81及びFET82は、いわゆる差動対を構成している。 FET 81 and FET 82 are NMOS (Negative Channel Channel MOS) FETs, and their sources are connected to each other. Further, the connection point between the sources of the FET 81 and the FET 82 is connected to the other end of the current source 89 whose one end is grounded. The FET 81 and FET 82 constitute a so-called differential pair.
 FET81のゲートは、キャパシタ回路71を介して、コンパレータ61(差動アンプ73)の反転入力端子IN1に接続され、FET82のゲートは、キャパシタ回路72を介して、コンパレータ61(差動アンプ73)の非反転入力端子IN2に接続されている。 The gate of the FET 81 is connected to the inverting input terminal IN1 of the comparator 61 n (differential amplifier 73) through the capacitor circuit 71, and the gate of the FET 82 is connected to the comparator 61 n (differential amplifier 73 through the capacitor circuit 72). ) Is connected to the non-inverting input terminal IN2.
 コンパレータ61は、以上のように、FET81、及び、FET82で構成される差動対を入力段に有する。 As described above, the comparator 61 n has a differential pair composed of the FET 81 and the FET 82 in the input stage.
 FET83及びFET84は、PMOS(Positive Channel MOS)のFETであり、それぞれのゲートどうしが接続されている。 FET 83 and FET 84 are PMOS (Positive Channel MOS) FETs, and their gates are connected to each other.
 また、FET83及びFET84のソースは、電源Vddに接続され、FET83及びFET84のゲートどうしの接続点は、FET83のドレインに接続されており、したがって、FET83及びFET84は、カレントミラーを構成している。 Further, the sources of the FET 83 and the FET 84 are connected to the power source Vdd, and the connection point between the gates of the FET 83 and the FET 84 is connected to the drain of the FET 83. Therefore, the FET 83 and the FET 84 constitute a current mirror.
 カレントミラーを構成するFET83及びFET84のうちの、FET83のドレインは、FET81のドレインに接続され、FET84のドレインは、FET82のドレインに接続されている。 Of the FET 83 and FET 84 constituting the current mirror, the drain of the FET 83 is connected to the drain of the FET 81, and the drain of the FET 84 is connected to the drain of the FET 82.
 そして、FET82及びFET84のドレインどうしの接続点は、差動アンプ73の出力端子OUTdに接続されている。 The connection point between the drains of the FET 82 and the FET 84 is connected to the output terminal OUTd of the differential amplifier 73.
 スイッチ85及びスイッチ86は、例えば、FET等で構成されるスイッチであり、オートゼロ制御部32から供給されるオートゼロパルスに応じて、オン又はオフする。 The switch 85 and the switch 86 are switches composed of, for example, FETs, and are turned on or off according to the auto zero pulse supplied from the auto zero control unit 32.
 すなわち、スイッチ85は、オートゼロパルスに応じて、FET81のゲートとドレインとの間を接続又は切断するようにオン又はオフする。スイッチ86は、オートゼロパルスに応じて、FET82のゲートとドレインとの間を接続又は切断するようにオン又はオフする。 That is, the switch 85 is turned on or off so as to connect or disconnect between the gate and drain of the FET 81 according to the auto-zero pulse. The switch 86 is turned on or off to connect or disconnect the gate and drain of the FET 82 in response to the auto-zero pulse.
 図5において、出力アンプ74は、FET91,92、スイッチ93、及び、コンデンサ94を有する。 5, the output amplifier 74 includes FETs 91 and 92, a switch 93, and a capacitor 94.
 FET91は、PMOSのFETであり、そのゲートは、差動アンプ73の出力端子OUTdに接続されている。FET91のソースは、電源Vddに接続され、ドレインは、FET92のドレインに接続されている。 The FET 91 is a PMOS FET, and its gate is connected to the output terminal OUTd of the differential amplifier 73. The source of the FET 91 is connected to the power supply Vdd, and the drain is connected to the drain of the FET 92.
 FET92は、NMOSのFETであり、電流源として機能する。FET92のゲートは、コンデンサ94の一端に接続され、ソースは、接地されている。 FET 92 is an NMOS FET and functions as a current source. The gate of the FET 92 is connected to one end of the capacitor 94, and the source is grounded.
 スイッチ93は、例えば、FET等で構成されるスイッチであり、オートゼロ制御部32から供給されるオートゼロパルスに応じて、オン又はオフする。 The switch 93 is a switch composed of, for example, an FET or the like, and is turned on or off according to the auto zero pulse supplied from the auto zero control unit 32.
 すなわち、スイッチ93は、オートゼロパルスに応じて、FET92のゲートとドレインとの間を接続又は切断するようにオン又はオフする。 That is, the switch 93 is turned on or off so as to connect or disconnect between the gate and the drain of the FET 92 according to the auto-zero pulse.
 コンデンサ94の一端は、FET92のゲートに接続され、他端は接地されている。 One end of the capacitor 94 is connected to the gate of the FET 92, and the other end is grounded.
 なお、FET91のドレインとFET92のドレインとの接続点は、出力アンプ74の出力端子OUT1に接続されており、FET91のドレインとFET92のドレインとの接続点の電圧が、出力端子OUT1から、アンプ出力として出力される。 The connection point between the drain of the FET 91 and the drain of the FET 92 is connected to the output terminal OUT1 of the output amplifier 74, and the voltage at the connection point between the drain of the FET 91 and the drain of the FET 92 is output from the output terminal OUT1 to the amplifier output. Is output as
 以上のように構成されるコンパレータ61では、差動アンプ73のFET81(のドレインからソース)には、FET81のゲート電圧に対応する電流i1が流れ、FET82(のドレインからソース)には、FET82のゲート電圧に対応する電流i2が流れる。 In the comparator 61 n configured as described above, the current i 1 corresponding to the gate voltage of the FET 81 flows through the FET 81 (from the drain to the source) of the differential amplifier 73, and the FET 82 (from the drain to the source) A current i 2 corresponding to the gate voltage of the FET 82 flows.
 また、カレントミラーを構成するFET83及びFET84(のソースからドレイン)には、FET81に流れる電流i1と同一の電流が流れる。 Further, the same current as the current i 1 flowing in the FET 81 flows in the FET 83 and the FET 84 (from the source to the drain) constituting the current mirror.
 反転入力端子IN1からキャパシタ回路71を介してFET81のゲートに印加される電圧(FET81のゲート電圧)が、非反転入力端子IN2からキャパシタ回路72を介してFET82のゲートに印加される電圧(FET82のゲート電圧)よりも大である場合には、FET81に流れる電流i1が、FET82に流れる電流i2よりも大になる。 The voltage applied to the gate of the FET 81 from the inverting input terminal IN1 through the capacitor circuit 71 (the gate voltage of the FET 81) is applied to the gate of the FET 82 from the non-inverting input terminal IN2 through the capacitor circuit 72 (of the FET 82). If it is greater than the gate voltage), the current i 1 flowing through the FET 81 is larger than the current i 2 flowing through the FET 82.
 この場合、FET84には、FET81に流れる電流i1と同一の電流が流れるが、FET84と接続しているFET82に流れる電流i2は、電流i1よりも小さい電流であるため、FET82では、電流i2を増大させようとして、ドレインソース間電圧が大になる。 In this case, the same current as the current i 1 flowing through the FET 81 flows through the FET 84, but the current i 2 flowing through the FET 82 connected to the FET 84 is smaller than the current i 1. In order to increase i 2 , the drain-source voltage increases.
 その結果、FET82と84との接続点である出力端子OUTdの差動出力は、Hレベルになる。 As a result, the differential output of the output terminal OUTd, which is the connection point between the FETs 82 and 84, becomes H level.
 一方、FET82のゲート電圧が、FET81のゲート電圧よりも大である場合には、FET82に流れる電流i2が、FET81に流れる電流i1よりも大になる。 On the other hand, when the gate voltage of the FET 82 is larger than the gate voltage of the FET 81, the current i 2 flowing through the FET 82 becomes larger than the current i 1 flowing through the FET 81.
 この場合、FET84には、FET81に流れる電流i1と同一の電流が流れるが、FET84と接続しているFET82に流れる電流i2は、電流i1よりも大きい電流であるため、FET82では、電流i2を減少させようとして、ドレインソース間電圧が小になる。 In this case, the same current as the current i 1 flowing through the FET 81 flows through the FET 84, but the current i 2 flowing through the FET 82 connected to the FET 84 is larger than the current i 1. The drain-source voltage is decreased in an attempt to decrease i 2 .
 その結果、FET82と84との接続点である出力端子OUTdの差動出力は、Lレベルになる。 As a result, the differential output of the output terminal OUTd, which is the connection point between the FETs 82 and 84, becomes L level.
 出力端子OUTdの差動出力は、出力アンプ74のFET91のゲートに供給される。 The differential output of the output terminal OUTd is supplied to the gate of the FET 91 of the output amplifier 74.
 出力アンプ74では、FET92は、電流源として機能し、FET91のゲートに供給される差動出力がHレベルである場合には、FET91はオフになる。 In the output amplifier 74, the FET 92 functions as a current source, and when the differential output supplied to the gate of the FET 91 is at the H level, the FET 91 is turned off.
 FET91がオフである場合、FET91のドレインは、Lレベルとなり、したがって、出力端子OUT1のアンプ出力は、Lレベルになる。 When the FET 91 is off, the drain of the FET 91 is at L level, and therefore the amplifier output at the output terminal OUT1 is at L level.
 一方、FET91のゲートに供給される差動出力がLレベルである場合には、FET91はオンになる。 On the other hand, when the differential output supplied to the gate of the FET 91 is at the L level, the FET 91 is turned on.
 FET91がオンである場合、FET91のドレインは、Hレベルとなり、したがって、出力端子OUT1のアンプ出力は、Hレベルになる。 When FET 91 is on, the drain of FET 91 is at H level, and therefore the amplifier output at output terminal OUT1 is at H level.
 以上から、反転入力端子IN1に供給される参照信号が、非反転入力端子IN2に供給されるVSL信号よりも、電圧が高い場合には、出力端子OUT1のアンプ出力、すなわち、コンパレータ61の出力は、Lレベルになる。 From the above, the reference signal supplied to the inverting input terminal IN1, than VSL signal supplied to the non-inverting input terminal IN2, when the voltage is high, the amplifier output of the output terminal OUT1, i.e., the comparator 61 n output Becomes L level.
 一方、非反転入力端子IN2に供給されるVSL信号が、反転入力端子IN1に供給される参照信号よりも、電圧が高い場合には、出力端子OUT1のアンプ出力(コンパレータ61の出力)は、Hレベルになる。 On the other hand, VSL signal supplied to the non-inverting input terminal IN2 is than the reference signal supplied to the inverting input terminal IN1, when the voltage is high, the amplifier output of the output terminal OUT1 (output of the comparator 61 n) is Become H level.
 ここで、スイッチ85,86、及び、93は、オートゼロパルスに応じて、オン又はオフになる。 Here, the switches 85, 86, and 93 are turned on or off according to the auto-zero pulse.
 オートゼロパルスは、例えば、一時的に、LレベルからHレベルになるパルスであり、スイッチ85及び86は、オートゼロパルスがLレベルのときにオフ状態になり、オートゼロパルスがHレベルのときにオン状態になる。 The auto zero pulse is, for example, a pulse that temporarily changes from the L level to the H level, and the switches 85 and 86 are turned off when the auto zero pulse is at the L level, and are turned on when the auto zero pulse is at the H level. become.
 スイッチ85及び86がオン状態になると、FET81のゲートとドレインとが接続されるとともに、FET82のゲートとドレインとが接続され、FET81及び82のゲート電圧は、同一になる。 When the switches 85 and 86 are turned on, the gate and drain of the FET 81 are connected, the gate and drain of the FET 82 are connected, and the gate voltages of the FETs 81 and 82 are the same.
 したがって、オートゼロパルスがHレベルになったとき、反転入力端子IN1からキャパシタ回路71を介してFET81のゲートに印加される電圧(FET81のゲート電圧)と、非反転入力端子IN2からキャパシタ回路72を介してFET82のゲートに印加される電圧(FET82のゲート電圧)とが一致するように、キャパシタ回路71及び72には、電荷がチャージされる。 Therefore, when the auto-zero pulse becomes H level, the voltage applied to the gate of the FET 81 from the inverting input terminal IN1 through the capacitor circuit 71 (the gate voltage of the FET 81), and the voltage from the non-inverting input terminal IN2 through the capacitor circuit 72. Thus, the capacitor circuits 71 and 72 are charged with electric charges so that the voltage applied to the gate of the FET 82 (the gate voltage of the FET 82) matches.
 そして、オートゼロパルスがLレベルになると、FET81のゲートとドレインとの接続が切断されるとともに、FET82のゲートとドレインとの接続が切断される。そして、キャパシタ回路71及び72では、オートゼロパルスがHレベルになっていたときにチャージされた電荷が維持される。 When the auto zero pulse becomes L level, the connection between the gate and drain of the FET 81 is disconnected and the connection between the gate and drain of the FET 82 is disconnected. In the capacitor circuits 71 and 72, the electric charge charged when the auto-zero pulse is at the H level is maintained.
 その結果、コンパレータ61(の差動アンプ73)は、オートゼロパルスがHレベルになっていたときに(オートゼロパルスが立ち下がるときに)コンパレータ61に与えられていた2つの入力信号、すなわち、コンパレータ61の反転入力端子IN1に供給されている参照信号と、非反転入力端子IN2に供給されているVSL信号とが一致している旨の比較結果が得られるように設定される。 As a result, the comparator 61 n (the differential amplifier 73) has two input signals given to the comparator 61 n when the auto zero pulse is at the H level (when the auto zero pulse falls), that is, a reference signal being supplied to the inverting input terminal IN1 of the comparator 61 n, the non-inverting input VSL signal supplied to the terminal IN2 and the comparison result indicating that a match is set so as to obtain.
 以上のようなコンパレータ61の設定が行われるのが、オートゼロ処理である。 The setting of the comparator 61 n as described above is performed in the auto zero process.
 オートゼロ処理によれば、差動アンプ73、ひいては、コンパレータ61において、オートゼロ処理時に、コンパレータ61の反転入力端子IN1に与えられていた電圧と、非反転入力端子IN2に与えられていた電圧とが一致しているということを基準として、反転入力端子IN1に与えられる電圧と、非反転入力端子IN2に与えられる電圧との大小関係を判定することができる。 According to the auto zero process, differential amplifier 73, thus, the comparator 61 n, when the auto-zero process, a voltage which has been applied to the inverting input terminal IN1 of the comparator 61 n, voltage and which has been applied to the non-inverting input terminal IN2 Can be determined based on the fact that they match each other as a reference between the voltage applied to the inverting input terminal IN1 and the voltage applied to the non-inverting input terminal IN2.
 なお、出力アンプ74において、スイッチ93は、スイッチ85及び86と同様に、オートゼロパルスがLレベルのときにオフ状態になり、オートゼロパルスがHレベルのときにオン状態になる。 In the output amplifier 74, as in the switches 85 and 86, the switch 93 is turned off when the auto zero pulse is at the L level and turned on when the auto zero pulse is at the H level.
 スイッチ93がオン状態になると、コンデンサ94が、FET92のドレイン電圧と等しい電圧にチャージされる。その後、スイッチ93がオフ状態になると、コンデンサ94の電圧が、FET92のゲートに印加され、FET92は、スイッチ93がオン状態のときに流れていた電流と同一の電流を流す電流源として機能する。 When the switch 93 is turned on, the capacitor 94 is charged to a voltage equal to the drain voltage of the FET 92. After that, when the switch 93 is turned off, the voltage of the capacitor 94 is applied to the gate of the FET 92, and the FET 92 functions as a current source for supplying the same current as that flowing when the switch 93 is turned on.
 <イメージセンサ2の動作> <Operation of image sensor 2>
 図6は、イメージセンサ2(図2)の動作を説明する図である。 FIG. 6 is a diagram for explaining the operation of the image sensor 2 (FIG. 2).
 なお、図6において、横軸は時間を表し、縦軸は電圧を表す。 In FIG. 6, the horizontal axis represents time, and the vertical axis represents voltage.
 図6は、イメージセンサ2において、画素11m,nから、VSL42を介して、ADC31のコンパレータ61の非反転入力端子IN2(+)に供給される電気信号であるVSL信号(の電圧)と、参照信号出力部32から、参照信号線33Aを介して、ADC31のコンパレータ61の反転入力端子IN1(-)に供給される参照信号(の電圧)との例を示す波形図である。 6, the image sensor 2, the pixel 11 m, from n, VSL42 through n, ADC 31 n of the comparator 61 the non-inverting input terminal IN2 (+) VSL signal is an electrical signal supplied to the (a voltage of the n ) And a reference signal (voltage) supplied from the reference signal output unit 32 to the inverting input terminal IN1 (−) of the comparator 61 n of the ADC 31 n via the reference signal line 33A. is there.
 なお、図6では、VSL信号、及び、参照信号とともに、転送Tr52(図3)(のゲート)に与えられる転送パルスTRG、リセットTr54に与えられるリセットパルスRST、オートゼロ制御部32からコンパレータ61(図5)のスイッチ85,86、及び、93に与えられるオートゼロパルス、差動アンプ73(図5)の出力端子OUTdの差動出力、並びに、出力アンプ74の出力端子OUT1のアンプ出力をも、図示してある。 In FIG. 6, together with the VSL signal and the reference signal, the transfer pulse TRG given to the transfer Tr 52 (FIG. 3) (the gate thereof), the reset pulse RST given to the reset Tr 54, the auto zero control unit 32 to the comparator 61 n ( The auto zero pulse given to the switches 85, 86 and 93 in FIG. 5), the differential output of the output terminal OUTd of the differential amplifier 73 (FIG. 5), and the amplifier output of the output terminal OUT1 of the output amplifier 74 are It is shown.
 また、図6において、VSL信号は、(VSL42上の電圧そのものではなく、)コンパレータ61(図5)のFET81のゲートに印加される電圧を示しており、参照信号は、(参照信号線34A上の電圧そのものではなく、)コンパレータ61のFET82のゲートに印加される電圧を示している。後述する図においても、同様である。 In FIG. 6, the VSL signal indicates the voltage applied to the gate of the FET 81 of the comparator 61 n (FIG. 5) (not the voltage itself on the VSL 42 n ). rather than voltage itself on 34A,) it shows a voltage applied to the gate of FET82 comparator 61 n. The same applies to the drawings described later.
 イメージセンサ2では、リセットパルスRSTが一時的にHレベルにされ、これにより、画素11m,nがリセットされる。 In the image sensor 2, the reset pulse RST is temporarily set to the H level, whereby the pixels 11m and n are reset.
 画素11m,nのリセットでは、図3で説明したように、FD53が、リセットTr54を介して、電源Vddに接続され、FD53にある電荷がリセットされるため、画素11m,nが出力するVSL信号、すなわち、画素11m,nにおいて、FD53から、増幅Tr55及び選択Tr56を介して出力されるVSL42上のVSL信号の電圧は上昇し、時刻t1において、電源Vddに対応する電圧となる。 In resetting the pixel 11 m, n , as described with reference to FIG. 3, the FD 53 is connected to the power source Vdd via the reset Tr 54, and the charge in the FD 53 is reset, so that the pixel 11 m, n is output. In the pixel 11 m, n , the voltage of the VSL signal on the VSL 42 n output from the FD 53 via the amplification Tr 55 and the selection Tr 56 rises, and at time t 1 , the voltage corresponding to the power supply Vdd Become.
 VSL信号は、FD53が電源Vddに接続されている間、電源Vddに対応する電圧を維持し、その後、時刻t2において、リセットパルスRSTがLレベルになると、画素11m,n内での多少の電荷の移動によって、FD53に、僅かな電荷が入り込み、その結果、VSL信号は、僅かに降下する。 VSL signal while the FD53 is connected to the power supply Vdd, and maintains a voltage corresponding to the power supply Vdd, then, at time t 2, the reset pulse RST becomes L level, the pixel 11 m, some within n As a result of the movement of the electric charge, a slight charge enters the FD 53, and as a result, the VSL signal drops slightly.
 図6では、リセットパルスRSTがLレベルになった時刻t2から、その後の時刻t3にかけて、画素11m,n内で生じる電荷の移動によって、VSL信号が、僅かに降下している。 In FIG. 6, from time t 2 when the reset pulse RST becomes L level to subsequent time t 3 , the VSL signal slightly decreases due to the movement of charges generated in the pixels 11 m and n .
 以上のように、画素11m,nのリセット後に生じるVSL信号の降下は、リセットフィードスルーと呼ばれることがある。 As described above, the drop in the VSL signal that occurs after the pixels 11m , n are reset may be referred to as reset feedthrough.
 画素11m,nのリセット後(又は、リセット中)に、オートゼロ制御部32において、オートゼロパルスがLレベルからHレベルにされ、これにより、コンパレータ61(図4)のオートゼロ処理が開始される。 After the pixel 11 m, n is reset (or during reset), the auto zero control unit 32 changes the auto zero pulse from the L level to the H level, thereby starting the auto zero processing of the comparator 61 n (FIG. 4). .
 図6では、リセットフィードスルーが生じた後の時刻t4に、オートゼロパルスがHレベルからLレベルにされ、コンパレータ61のオードゼロ処理が開始されている。そして、その後、時刻t5において、オートゼロパルスがHレベルからLレベルにされることにより、コンパレータ61のオートゼロ処理が終了(完了)している。 6, at time t 4 after the reset feedthrough occurs, the auto-zero pulse is from H level to L level, Odozero processing of the comparator 61 n is started. Thereafter, at time t 5, by auto-zero pulse is from H level to L level, the auto zero processing of the comparator 61 n is finished (completed).
 かかるオートゼロ処理によれば、オートゼロパルスの立ち下がりエッジのタイミングである時刻t5に、コンパレータ61に与えられているVSL信号と参照信号とが一致しているということを基準として、VSL信号と参照信号との大小関係を判定(比較)することができるように、コンパレータ61(差動アンプ73)が設定される。 According to such auto-zero processing, on the basis that the VSL signal applied to the comparator 61 n matches the reference signal at time t 5 which is the timing of the falling edge of the auto-zero pulse, The comparator 61 n (differential amplifier 73) is set so that the magnitude relationship with the reference signal can be determined (compared).
 図6では、オートゼロ処理は、画素11m,nのリセット後に完了している。 In FIG. 6, the auto zero process is completed after the pixels 11 m, n are reset.
 この場合、画素11m,nのリセット中のVSL信号から、リセットフィードスルーだけ下降した電圧と参照信号とが一致しているということを基準として、VSL信号と参照信号との大小関係を判定することができるように、コンパレータ61が設定される。 In this case, the magnitude relationship between the VSL signal and the reference signal is determined based on the fact that the reference signal and the voltage lowered by the reset feedthrough from the VSL signal during reset of the pixels 11 m and n match. as can be, the comparator 61 n is set.
 その結果、参照信号(の波形)は、画素11m,nのリセット中のVSL信号から、リセットフィードスルーだけ下降した電圧を、いわば基準とする位置に配置されることになる。 As a result, the reference signal (waveform thereof) is arranged at a position based on the voltage that is lowered by the reset feedthrough from the VSL signal during resetting of the pixels 11m , n .
 参照信号出力部33(図4)は、オートゼロ処理が完了(終了)した後の時刻t6に、参照信号を、所定の電圧だけ上昇させる。 Reference signal output unit 33 (FIG. 4) at time t 6 after the auto zero processing is completed (end), the reference signal is increased by a predetermined voltage.
 ここで、オートゼロ処理が終了した後の時刻t6に、参照信号を、所定の電圧だけ上昇させることを、以下、開始オフセットともいう。 Here, the time t 6 after the auto zero process has finished, a reference signal, to be raised by a predetermined voltage, hereinafter also referred to as start offset.
 また、参照信号出力部33は、VSL信号のAD変換のために、参照信号の電圧を、一定の割合で小さくしていくが、この、参照信号の電圧が、一定の割合で小さくなっていく参照信号の部分を、スロープともいう。 Further, the reference signal output unit 33 reduces the voltage of the reference signal at a constant rate for AD conversion of the VSL signal, but the voltage of the reference signal decreases at a constant rate. The portion of the reference signal is also called a slope.
 参照信号出力部33は、時刻t6において、参照信号を、スロープの方向(参照信号の電圧が変化していく方向)とは逆方向に、所定の電圧だけオフセットさせる開始オフセットを行う。 Reference signal output unit 33 at time t 6, a reference signal, and the direction of the slope (direction in which the voltage of the reference signal will change) in the reverse direction to perform the starting offset to be offset by a predetermined voltage.
 その後、参照信号出力部33は、時刻t7から時刻t9までの一定期間、参照信号の電圧を、一定の割合で小さくしていく(下降させていく)。 Then, the reference signal output section 33, a certain period from time t 7 to the time t 9, the voltage of the reference signal, (gradually lowered) gradually reduced at a constant rate.
 したがって、時刻t7から時刻t9までの期間の参照信号は、スロープを形成している。 Therefore, the reference signal in the period from the time t 7 to the time t 9 forms a slope.
 時刻t7から時刻t9までの期間の参照信号のスロープは、VSL信号のうちのリセットレベル(画素11m,nのリセット直後のVSL信号(画素11m,nがリセットされ、リセットフィードスルーによる電圧の降下が生じた後のVSL信号))をAD変換するためのスロープであり、以下、このスロープの期間(時刻t7から時刻t9までの期間)を、P(Preset)相ともいう。また、P相のスロープを、P相スロープともいう。 Slope of the reference signal in the period from the time t 7 to the time t 9, the reset level (pixel 11 m, n reset immediately after the VSL signal (pixel 11 m of the VSL signal, n is reset, by the reset feedthrough the VSL signal)) after the voltage drop has occurred is the slope for AD conversion, below, the duration of the slope (the period from time t 7 to the time t 9), also referred to as P (Preset) phase. The slope of the P phase is also referred to as the P phase slope.
 ここで、コンパレータ61は、画素11m,nのリセット後のオートゼロ処理によって、そのオートゼロ処理時のVSL信号と参照信号と(の電圧)が一致するように設定されるので、オートゼロ処理が終了した後の時刻t6に、参照信号が、所定の電圧だけ上昇される開始オフセットによれば、参照信号は、VSL信号(リセットレベル)より電圧が大になる。したがって、コンパレータ61は、P相の開始時刻t7では、参照信号が、VSL信号より大である旨の比較結果を出力する。 Here, the comparator 61 n is set so that the VSL signal and the reference signal at the time of auto-zero processing coincide with each other by the auto-zero processing after resetting the pixels 11 m, n , and thus the auto-zero processing is completed. At time t 6 after the reference signal is, according to the starting offset is increased by a predetermined voltage, the reference signal voltage is greater than VSL signal (reset level). Therefore, the comparator 61 n outputs a comparison result indicating that the reference signal is larger than the VSL signal at the P-phase start time t 7 .
 すなわち、差動アンプ73の差動出力はHレベルになり、出力アンプ74のアンプ出力はLレベルになる。 That is, the differential output of the differential amplifier 73 becomes H level, and the amplifier output of the output amplifier 74 becomes L level.
 ADC31(図4)のカウンタ62は、例えば、P相スロープの開始時刻t7から、クロックのカウントを開始する。 For example, the counter 62 n of the ADC 31 n (FIG. 4) starts clock counting from the start time t 7 of the P-phase slope.
 P相において、参照信号(の電圧)は小さくなっていき、図6では、P相の時刻t8において、参照信号とリセットレベルとしてのVSL信号とが一致し、参照信号とVSL信号との大小関係が、P相の開始時から逆転する。 In the P phase, the reference signal (voltage) is gradually reduced, in FIG. 6, the magnitude of the at time t 8 the P phase, the VSL signal as the reference signal and the reset level is matched, the reference signal and VSL signal The relationship is reversed from the beginning of phase P.
 その結果、コンパレータ61が出力する比較結果は、P相の開始時から逆転し、コンパレータ61は、リセットレベルとしてのVSL信号が、参照信号よりも大である旨の比較結果の出力を開始する。 As a result, the comparison result output from the comparator 61 n is reversed from the start of the P phase, and the comparator 61 n starts outputting the comparison result indicating that the VSL signal as the reset level is larger than the reference signal. To do.
 すなわち、差動アンプ73の差動出力はLレベルになり、出力アンプ74のアンプ出力はHレベルになる。 That is, the differential output of the differential amplifier 73 becomes L level, and the amplifier output of the output amplifier 74 becomes H level.
 コンパレータ61が出力する比較結果が逆転すると、すなわち、コンパレータ61の出力である、出力アンプ74のアンプ出力がHレベルになると、ADC31(図4)のカウンタ62は、クロックのカウントを終了し、そのときのカウンタ62のカウント値が、リセットレベルのAD変換結果(リセットレベルAD値)となる。 When the comparison result output by the comparator 61 n is reversed, that is, when the amplifier output of the output amplifier 74 that is the output of the comparator 61 n becomes H level, the counter 62 n of the ADC 31 n (FIG. 4) counts the clock. Then, the count value of the counter 62 n at that time becomes the AD conversion result (reset level AD value) of the reset level.
 P相の終了後、イメージセンサ2では、時刻t10からt11までの間、転送パルスTRGがLレベルからHレベルにされ、その結果、画素11m,n(図3)において、光電変換によってPD51にチャージされた電荷が、転送Tr52を介して、FD53に転送されてチャージされる。 After the end of the P phase, in the image sensor 2, the transfer pulse TRG is changed from the L level to the H level from time t 10 to t 11 , and as a result, in the pixel 11 m, n (FIG. 3), photoelectric conversion is performed. The charge charged in the PD 51 is transferred to the FD 53 via the transfer Tr 52 and charged.
 PD51からFD53に電荷がチャージされることにより、そのFD53にチャージされた電荷に対応するVSL信号の電圧は下降し、時刻t11において、転送パルスTRGがHレベルからLレベルになると、PD51からFD53への電荷の転送が終了して、VSL信号は、FD53にチャージされた電荷に対応する信号レベル(電圧)となる。 By charge from the PD51 to the FD 53 is charged, the voltage of the VSL signal corresponding to the electric charges charged in the FD 53 is lowered at time t 11, the transfer pulse TRG changes from the H level to the L level, the PD51 FD 53 When the transfer of the charge to the FD 53 ends, the VSL signal becomes a signal level (voltage) corresponding to the charge charged in the FD 53.
 また、P相の終了後、参照信号出力部33(図4)は、参照信号を、例えば、P相の開始時と同一の電圧に上昇させる。 Also, after the end of the P phase, the reference signal output unit 33 (FIG. 4) raises the reference signal to the same voltage as at the start of the P phase, for example.
 以上のように、VSL信号が、FD53にチャージされた電荷に対応する電圧となることや、参照信号がP相の開始時と同一の電圧に上昇することにより、参照信号とVSL信号との大小関係は、再び逆転する。 As described above, when the VSL signal becomes a voltage corresponding to the charge charged in the FD 53, or when the reference signal rises to the same voltage as that at the start of the P phase, the magnitude of the reference signal and the VSL signal is increased. The relationship is reversed again.
 その結果、差動アンプ73の差動出力はHレベルになり、出力アンプ74のアンプ出力はLレベルになる。 As a result, the differential output of the differential amplifier 73 becomes H level, and the amplifier output of the output amplifier 74 becomes L level.
 参照信号出力部33(図4)は、参照信号を、P相の開始時と同一の電圧に上昇させた後、時刻t12から時刻t14までの一定期間(時刻t7から時刻t9までの一定期間と一致している必要はない)、参照信号の電圧を、P相の場合と同一の変化の割合で小さくしていく(下降させていく)。 Reference signal output unit 33 (FIG. 4) is a reference signal, after raising the beginning and the same voltage of the P phase, from a period of time (time t 7 from the time t 12 to time t 14 to time t 9 The reference signal voltage is decreased (decreased) at the same rate of change as in the case of the P phase.
 したがって、時刻t12から時刻t14までの期間の参照信号は、時刻t7から時刻t9までの期間の参照信号と同様に、スロープを形成している。 Therefore, the reference signal during a period from the time t 12 to time t 14, as well as the reference signal in the period from the time t 7 to the time t 9, to form a slope.
 時刻t12から時刻t14までの期間の参照信号のスロープは、VSL信号のうちの信号レベル(画素11m,n(図3)において、PD51からFD53への電荷の転送が行われた直後のVSL信号)をAD変換するためのスロープであり、以下、このスロープの期間(時刻t12から時刻t14までの期間)を、D(Data)相ともいう。また、D相のスロープを、D相スロープともいう。 Slope of the reference signal during a period from the time t 12 to time t 14, in the signal level (pixel 11 m of the VSL signal, n (FIG. 3), immediately after the charge from PD51 to FD53 transfer occurred the VSL signal) and the slope for AD conversion, below, the duration of the slope (during a period from the time t 12 to time t 14), also referred to as D (Data) phase. The slope of D phase is also referred to as D phase slope.
 ここで、D相の開始時刻t12では、P相の開始時刻t7の場合と同様に、参照信号は、VSL信号の(電圧)より大になる。したがって、コンパレータ61は、D相の開始時刻t12では、参照信号が、VSL信号より大である旨の比較結果を出力する。 Here, in the starting time t 12 in the D phase, as in the case of starting time t 7 in the P phase, the reference signal will greater than (voltage) of the VSL signal. Accordingly, the comparator 61 n is the starting time t 12 in the D phase, the reference signal, and outputs the comparison result indicating the larger than VSL signal.
 すなわち、差動アンプ73の差動出力はHレベルになり、出力アンプ74のアンプ出力はLレベルになる。 That is, the differential output of the differential amplifier 73 becomes H level, and the amplifier output of the output amplifier 74 becomes L level.
 ADC31(図4)のカウンタ62は、例えば、D相スロープの開始時刻t12から、クロックのカウントを開始する。 Counter 62 n of ADC 31 n (Fig. 4) is, for example, from the start time t 12 the D-phase slope starts counting the clock.
 D相において、参照信号(の電圧)は小さくなっていき、図6では、D相の時刻t13において、参照信号と信号レベルとしてのVSL信号とが一致し、参照信号とVSL信号との大小関係が、D相の開始時から逆転する。 In the D phase, the reference signal (voltage) is gradually reduced, the magnitude of 6, at time t 13 in the D phase, the VSL signal as the reference signal and the signal level matches the reference signal and VSL signal The relationship is reversed from the beginning of phase D.
 その結果、コンパレータ61が出力する比較結果も、D相の開始時から逆転し、コンパレータ61は、信号レベルとしてのVSL信号が、参照信号よりも大である旨の比較結果の出力を開始する。 As a result, the comparison result of the comparator 61 n outputs, reversed from the start of the D-phase, comparator 61 n is, VSL signal as a signal level, starting the comparison indicating than the reference signal is greater result output To do.
 すなわち、差動アンプ73の差動出力はLレベルになり、出力アンプ74のアンプ出力はHレベルになる。 That is, the differential output of the differential amplifier 73 becomes L level, and the amplifier output of the output amplifier 74 becomes H level.
 コンパレータ61が出力する比較結果が逆転し、Hレベルとなると、ADC31(図4)のカウンタ62は、クロックのカウントを終了する。そして、そのときのカウンタ62のカウント値が、信号レベルのAD変換結果(信号レベルAD値)となる。 When the comparison result output from the comparator 61 n is reversed and becomes H level, the counter 62 n of the ADC 31 n (FIG. 4) ends the clock counting. Then, the count value of the counter 62 n at that time becomes a signal level AD conversion result (signal level AD value).
 以上のようにして、P相でリセットレベルAD値が求められるとともに、D相で信号レベルAD値が求められると、イメージセンサ2では、リセットレベルAD値と信号レベルAD値との差分を求めるCDSが行われ、そのCDSの結果得られる差分が、画素値として出力される。 As described above, when the reset level AD value is obtained in the P phase and the signal level AD value is obtained in the D phase, the image sensor 2 obtains the difference between the reset level AD value and the signal level AD value. And the difference obtained as a result of the CDS is output as a pixel value.
 <参照信号に含まれるノイズ> <Noise included in reference signal>
 図7及び図8は、参照信号に含まれるノイズを説明する図である。 7 and 8 are diagrams illustrating noise included in the reference signal.
 図7は、図2の列並列AD変換部22の構成例を示すブロック図である。 FIG. 7 is a block diagram showing a configuration example of the column parallel AD conversion unit 22 in FIG.
 なお、図中、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。 In the figure, portions corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
 図7では、図2の列並列AD変換部22を簡略化して図示してある。 7 shows the column parallel AD conversion unit 22 of FIG. 2 in a simplified manner.
 すなわち、図7では、オートゼロ制御部32、オートゼロ制御線32A、クロック出力部34、及び、クロック線34Aの図示が省略されており、ADC31、参照信号出力部33、及び、参照信号線33Aが図示されている。 That is, in FIG. 7, the auto zero control unit 32, the auto zero control line 32A, the clock output unit 34, and the clock line 34A are not shown, and the ADC 31 n , the reference signal output unit 33, and the reference signal line 33A It is shown in the figure.
 列並列AD変換部22では、図7に示すように、例えば、1水平ラインのN個の画素11m,1ないし11m,N等の複数の画素から得られるVSL信号のAD変換を行う複数であるN個のADC31ないし31において、参照信号出力部33が出力する参照信号が共有される。 As shown in FIG. 7, the column parallel AD conversion unit 22 performs a plurality of AD conversions of VSL signals obtained from a plurality of pixels such as N pixels 11 m, 1 to 11 m, N, etc., for example, in one horizontal line. The reference signals output from the reference signal output unit 33 are shared among the N ADCs 31 1 to 31 N.
 すなわち、N個のADC31ないし31では、参照信号出力部33から参照信号線33Aを介して供給される参照信号を共通して用いて、1水平ラインのN個の画素11m,1ないし11m,NからVSL42ないし42を介して供給されるVSL信号のAD変換が、それぞれ行われる。 In other words, the N ADCs 31 1 to 31 N commonly use the reference signal supplied from the reference signal output unit 33 via the reference signal line 33A and use the N pixels 11m, 1 to AD conversion of the VSL signal supplied from 11 m, N via the VSL 42 1 to 42 N is performed.
 そのため、参照信号に含まれるノイズ(ランダムノイズ)が、画素11m,nから得られるVSL信号に含まれるノイズ(ランダムノイズ)に対して、十分小さくない場合には、イメージセンサ2から得られる画像において、水平ライン方向に相関がある横筋状のノイズが目視することができる程度に現れ、画質が劣化する。 Therefore, when the noise (random noise) included in the reference signal is not sufficiently smaller than the noise (random noise) included in the VSL signal obtained from the pixels 11 m, n , an image obtained from the image sensor 2 is obtained. In FIG. 2, horizontal streak-like noise correlated in the horizontal line direction appears to the extent that it can be visually observed, and the image quality deteriorates.
 図8は、列並列AD変換部22に関係するノイズを模式的に表した列並列AD変換部22の構成例を示すブロック図である。 FIG. 8 is a block diagram illustrating a configuration example of the column parallel AD conversion unit 22 that schematically represents noise related to the column parallel AD conversion unit 22.
 なお、図8において、図7と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。 In FIG. 8, portions corresponding to those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
 また、図8でも、図7の同様に、列並列AD変換部22を簡略化して図示してある。 Also in FIG. 8, the column parallel AD conversion unit 22 is shown in a simplified manner as in FIG.
 図8において、RN_REFは、参照信号出力部33からADC31ないし31に供給される参照信号に含まれるノイズ(以下、参照信号ノイズともいう)を表し、RN_SIG(n)は、n列目の画素11m,nからADC31に供給されるVSL信号に含まれるノイズ(以下、画素ノイズともいう)を表す。 In FIG. 8, RN_REF represents noise (hereinafter also referred to as reference signal noise) included in the reference signal supplied from the reference signal output unit 33 to the ADCs 31 1 to 31 N , and RN_SIG (n) represents the nth column. It represents noise (hereinafter also referred to as pixel noise) included in the VSL signal supplied from the pixels 11 m, n to the ADC 31 n .
 なお、あるn列目の画素ノイズRN_SIG(n)と他のn'列目の画素ノイズRN_SIG(n')との間に、相関はない。 Note that there is no correlation between the pixel noise RN_SIG (n) in a certain n-th column and the pixel noise RN_SIG (n ′) in another n′-th column.
 図8に示すように、ADC31には、参照信号ノイズRN_REFを含む参照信号と、画素ノイズRN_SIG(n)を含むVSL信号とが供給される。そして、ADC31では、参照信号を用いて、VSL信号のAD変換が行われる。 As shown in FIG. 8, the ADC 31 n, the reference signal including reference signal noise RN_REF, the VSL signal containing pixel noise RN_SIG (n) are supplied. Then, the ADC 31 n performs AD conversion of the VSL signal using the reference signal.
 イメージセンサ2から得られる画像に生じる、上述したような横筋状のノイズを目立たなくするには、一般に、参照信号ノイズRN_REFのレベルを、画素ノイズRN_SIG(n)のレベルよりも1桁程度小さくする必要がある。 In order to make the above-described horizontal streak noise generated in the image obtained from the image sensor 2 inconspicuous, generally, the level of the reference signal noise RN_REF is made smaller by about one digit than the level of the pixel noise RN_SIG (n). There is a need.
 参照信号は、例えば、1チップで構成されるイメージセンサ2が内蔵する参照信号出力部33を構成するDACで生成されるため、参照信号に含まれる参照信号ノイズRN_REFについては、DACの出力の熱雑音が支配的になる。 For example, since the reference signal is generated by the DAC constituting the reference signal output unit 33 built in the image sensor 2 constituted by one chip, the reference signal noise RN_REF included in the reference signal is the heat of the output of the DAC. Noise becomes dominant.
 したがって、参照信号ノイズRN_REFを低減する方法としては、DACの出力の熱雑音を低減する方法がある。しかしながら、DACの出力の熱雑音を低減する場合には、DACの消費電流が増加する傾向がある。 Therefore, as a method of reducing the reference signal noise RN_REF, there is a method of reducing the thermal noise of the DAC output. However, when the thermal noise of the DAC output is reduced, the current consumption of the DAC tends to increase.
 また、列並列AD変換部22では、参照信号出力部33からADC31までの配線経路である参照信号線33A上で、外乱ノイズ(カップリングノイズ等)が、参照信号に重畳する可能性がある。したがって、参照信号ノイズRN_REFには、DACの出力の熱雑音が支配的なランダムノイズの他、上述のような外乱ノイズが含まれることがあるが、列並列AD変換部22については、かかる外乱ノイズに、十分に注意した設計が求められている。 Further, in the column-parallel AD converting unit 22, on the reference signal line 33A is a wiring path from the reference signal output section 33 to the ADC 31 n, disturbance noise (coupling noise, etc.), which may be superimposed on the reference signal . Therefore, the reference signal noise RN_REF may include disturbance noise as described above in addition to random noise that is dominated by the thermal noise of the DAC output. Therefore, a design with great care is required.
 さらに、近年、画素ノイズRN_SIG(n)は、数e-程度に著しく改善されており、参照信号ノイズRN_REFに許されるレベルは厳しくなっている。 Further, in recent years, the pixel noise RN_SIG (n) has been remarkably improved to about several e , and the level allowed for the reference signal noise RN_REF has become severe.
 <参照信号ノイズRN_REFを低減する列並列AD変換部22の第1の構成例> <First configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF>
 図9は、参照信号ノイズRN_REFを低減する列並列AD変換部22の第1の構成例を示すブロック図である。 FIG. 9 is a block diagram illustrating a first configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF.
 なお、図9において、図8と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。 In FIG. 9, parts corresponding to those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
 また、図9でも、図7の同様に、列並列AD変換部22を簡略化して図示してある。 Also in FIG. 9, the column parallel AD conversion unit 22 is shown in a simplified manner as in FIG.
 図9の列並列AD変換部22は、ADC31、参照信号出力部33、及び、参照信号線33Aを有する点で、図8の場合と共通する。 The column parallel AD conversion unit 22 of FIG. 9 is common to the case of FIG. 8 in that it includes an ADC 31 n , a reference signal output unit 33, and a reference signal line 33A.
 但し、図9の列並列AD変換部22は、増幅部101、及び、減衰部102が新たに設けられている点で、図8の場合と相違する。 However, the column parallel AD conversion unit 22 of FIG. 9 is different from the case of FIG. 8 in that an amplification unit 101 and an attenuation unit 102 are newly provided.
 図9において、増幅部101は、参照信号出力部33に内蔵されており、増幅部101には、(参照信号ノイズRN_REFが重畳される前の)参照信号が供給される。 9, the amplification unit 101 is built in the reference signal output unit 33, and a reference signal (before the reference signal noise RN_REF is superimposed) is supplied to the amplification unit 101.
 増幅部101は、そこに供給される参照信号をK(>=1)倍の増幅率で増幅し、その増幅後の参照信号である増幅参照信号を、参照信号線33A上に出力する。 The amplifying unit 101 amplifies the reference signal supplied thereto at an amplification factor of K (> = 1) times, and outputs an amplified reference signal that is a reference signal after the amplification on the reference signal line 33A.
 減衰部102は、増幅部101から参照信号線33Aを介して供給される増幅参照信号を、増幅率Kの逆数である1/K倍の減衰率で減衰し、その減衰後の増幅参照信号である減衰参照信号を、参照信号線33A上に出力する。 The attenuating unit 102 attenuates the amplified reference signal supplied from the amplifying unit 101 via the reference signal line 33A with an attenuation factor of 1 / K times the inverse of the amplification factor K, and the amplified reference signal after the attenuation. A certain attenuation reference signal is output on the reference signal line 33A.
 ここで、図9では、減衰部102は、参照信号線33AがN個のADC31ないし31に分岐する直前に設けられており、減衰部102が参照信号線33A上に出力する減衰参照信号は、N個のADC31ないし31に共通に供給される。 Here, in FIG. 9, the attenuation unit 102 is provided immediately before the reference signal line 33A branches to the N ADCs 31 1 to 31 N , and the attenuation reference signal output by the attenuation unit 102 onto the reference signal line 33A. Is commonly supplied to N ADCs 31 1 to 31 N.
 したがって、図9では、減衰部102は、N個のADC31ないし31で共有されている。 Therefore, in FIG. 9, the attenuation unit 102 is shared by N ADCs 31 1 to 31 N.
 以上から、図9では、減衰部102は、N個のADC31ないし31で共有することができる参照信号線33A上の位置であって、N個のADC31ないし31においてVSL信号と比較される直前の位置で、増幅参照信号を、減衰参照信号に減衰している、ということができる。 Comparative From the above, in FIG. 9, the damping unit 102 is a position on the reference signal line 33A that can be shared by the N ADC 31 1 through 31 N, the VSL signal in the N ADC 31 1 through 31 N It can be said that the amplified reference signal has been attenuated to the attenuated reference signal at a position immediately before being performed.
 以上のように構成される列並列AD変換部22では、参照信号出力部33において、参照信号が生成され、増幅部101が、その参照信号を増幅率Kで増幅し、その結果得られる増幅参照信号を、参照信号線33A上に出力する。 In the column parallel AD conversion unit 22 configured as described above, a reference signal is generated in the reference signal output unit 33, and the amplification unit 101 amplifies the reference signal with an amplification factor K, and the amplified reference obtained as a result The signal is output on the reference signal line 33A.
 増幅部101が参照信号線33A上に出力した増幅参照信号は、減衰部102に供給される。 The amplified reference signal output from the amplification unit 101 onto the reference signal line 33A is supplied to the attenuation unit 102.
 減衰部102は、そこに供給される増幅参照信号を減衰率1/Kで減衰し、その結果得られる減衰参照信号を、参照信号線33A上に出力する。 The attenuating unit 102 attenuates the amplified reference signal supplied thereto with an attenuation factor 1 / K, and outputs the attenuated reference signal obtained as a result on the reference signal line 33A.
 減衰部102が参照信号線33A上に出力した減衰参照信号は、N個のADC31ないし31に共通に供給され、VSL信号のAD変換に用いられる。 The attenuation reference signal output from the attenuation unit 102 onto the reference signal line 33A is supplied in common to the N ADCs 31 1 to 31 N and is used for AD conversion of the VSL signal.
 すなわち、ADC31では、画素11m,nから出力されるVSL信号と、減衰部102から供給される減衰参照信号とが比較され、VSL信号と減衰参照信号とが一致するまでの、減衰参照信号の変化に要する時間をカウントすることにより、VSL信号のAD変換が行われる。 In other words, the ADC 31 n compares the VSL signal output from the pixel 11 m, n with the attenuated reference signal supplied from the attenuating unit 102, and attenuates the reference signal until the VSL signal and the attenuated reference signal match. The AD conversion of the VSL signal is performed by counting the time required for the change.
 <参照信号ノイズRN_REFを低減する列並列AD変換部22の第2の構成例> <Second configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF>
 図10は、参照信号ノイズRN_REFを低減する列並列AD変換部22の第2の構成例を示すブロック図である。 FIG. 10 is a block diagram illustrating a second configuration example of the column parallel AD conversion unit 22 that reduces the reference signal noise RN_REF.
 なお、図10において、図9と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。 In FIG. 10, portions corresponding to those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 また、図10でも、図7の同様に、列並列AD変換部22を簡略化して図示してある。 Also in FIG. 10, the column parallel AD conversion unit 22 is shown in a simplified manner as in FIG.
 図10の列並列AD変換部22は、ADC31、参照信号出力部33、参照信号線33A、及び、増幅部101を有する点で、図9の場合と共通する。 The column parallel AD conversion unit 22 of FIG. 10 is common to the case of FIG. 9 in that it includes an ADC 31 n , a reference signal output unit 33, a reference signal line 33A, and an amplification unit 101.
 但し、図10の列並列AD変換部22は、減衰部102に代えて、N個の減衰部111ないし111が設けられている点で、図9の場合と相違する。 However, the column parallel AD conversion unit 22 of FIG. 10 is different from the case of FIG. 9 in that N attenuation units 111 1 to 111 N are provided instead of the attenuation unit 102.
 すなわち、図9では、1個の減衰部102が、その1個の減衰部102を、N個のADC31ないし31で共有する形で設けられているが、図10では、N個の減衰部111ないし111が、各減衰部111を、各ADC31に独立に割り当てる形で設けられている。 That is, in FIG. 9, one attenuating unit 102 is provided so that the one attenuating unit 102 is shared by N ADCs 31 1 to 31 N. In FIG. 10, N attenuating units 102 are provided. Units 111 1 to 111 N are provided in such a manner that each attenuation unit 111 n is independently assigned to each ADC 31 n .
 減衰部111には、増幅部101が参照信号線33A上に出力する増幅参照信号が供給される。 The attenuation section 111 n, amplified reference signal amplifying unit 101 outputs on the reference signal line 33A is supplied.
 減衰部111は、そこに供給される増幅参照信号を、増幅率Kの逆数である1/K倍の減衰率で減衰し、その減衰後の増幅参照信号である減衰参照信号を、ADC31に供給する。 The attenuating unit 111 n attenuates the amplified reference signal supplied thereto with an attenuation factor of 1 / K times that is the inverse of the amplification factor K, and converts the attenuated reference signal, which is the amplified reference signal after the attenuation, to the ADC 31 n. To supply.
 ここで、図10では、減衰部111は、ADC31の直前に設けられている。したがって、図10では、減衰部111は、参照信号線33A上の、ADC31においてVSL信号と比較される直前の位置で、増幅参照信号を、減衰参照信号に減衰している、ということができる。 Here, in FIG. 10, the attenuation unit 111 n is provided immediately before the ADC 31 n . Therefore, in FIG. 10, the attenuating unit 111 n attenuates the amplified reference signal to the attenuated reference signal at a position on the reference signal line 33A immediately before the ADC 31 n compares with the VSL signal. it can.
 以上のように構成される列並列AD変換部22では、参照信号出力部33において、参照信号が生成され、増幅部101が、その参照信号を増幅率Kで増幅し、その結果得られる増幅参照信号を、参照信号線33A上に出力する。 In the column parallel AD conversion unit 22 configured as described above, a reference signal is generated in the reference signal output unit 33, and the amplification unit 101 amplifies the reference signal with an amplification factor K, and the amplified reference obtained as a result The signal is output on the reference signal line 33A.
 増幅部101が参照信号線33A上に出力した増幅参照信号は、減衰部111ないし111に供給される。 The amplified reference signal output from the amplifying unit 101 onto the reference signal line 33A is supplied to the attenuating units 111 1 to 111 N.
 減衰部111は、そこに供給される増幅参照信号を減衰率1/Kで減衰し、その結果得られる減衰参照信号を、ADC31に供給する。 The attenuating unit 111 n attenuates the amplified reference signal supplied thereto with the attenuation rate 1 / K, and supplies the attenuated reference signal obtained as a result to the ADC 31 n .
 ADC31では、画素11m,nから出力されるVSL信号と、減衰部111から供給される減衰参照信号とが比較され、VSL信号と減衰参照信号とが一致するまでの、減衰参照信号の変化に要する時間をカウントすることにより、VSL信号のAD変換が行われる。 In the ADC 31 n , the VSL signal output from the pixel 11 m, n is compared with the attenuation reference signal supplied from the attenuation unit 111 n , and the attenuation reference signal until the VSL signal and the attenuation reference signal match is compared. The AD conversion of the VSL signal is performed by counting the time required for the change.
 <参照信号ノイズRN_REFを低減する列並列AD変換部22の動作> <Operation of column parallel AD conversion unit 22 to reduce reference signal noise RN_REF>
 図11は、図9及び図10の列並列AD変換部22の動作の例を説明するフローチャートである。 FIG. 11 is a flowchart for explaining an example of the operation of the column parallel AD conversion unit 22 in FIGS. 9 and 10.
 ステップS11において、参照信号出力部33が、参照信号を生成し、増幅部101に供給する。 In step S11, the reference signal output unit 33 generates a reference signal and supplies the reference signal to the amplification unit 101.
 ステップS12において、増幅部101が、参照信号出力部33で生成された参照信号を増幅率Kで増幅し、その結果得られる増幅参照信号を、参照信号線33A上に出力する。 In step S12, the amplification unit 101 amplifies the reference signal generated by the reference signal output unit 33 with an amplification factor K, and outputs the amplified reference signal obtained as a result on the reference signal line 33A.
 増幅部101が参照信号線33A上に出力した増幅参照信号は、減衰部102、又は、N個の減衰部111ないし111に供給される。 The amplified reference signal output from the amplifying unit 101 onto the reference signal line 33A is supplied to the attenuating unit 102 or the N attenuating units 111 1 to 111 N.
 ステップS13において、減衰部102、又は、減衰部111ないし111は、そこに供給される増幅参照信号を減衰率1/Kで減衰し、その結果得られる減衰参照信号を、ADC31ないし31に供給する。 In step S13, the attenuating unit 102 or the attenuating units 111 1 to 111 N attenuates the amplified reference signal supplied thereto with the attenuation rate 1 / K, and the resultant attenuated reference signal is converted to the ADC 31 1 to 31. N.
 ステップS14において、ADC31では、画素11m,nから出力されるVSL信号と、減衰部102又は111から供給される減衰参照信号とを比較し、VSL信号と減衰参照信号とが一致するまでの、減衰参照信号の変化に要する時間をカウントすることにより、VSL信号のAD変換を行う。 In step S14, the ADC 31 n, to the pixel 11 m, and VSL signal outputted from the n, compares the attenuation reference signal supplied from the damping unit 102 or 111 n, and damping reference signal and VSL signal matches The AD conversion of the VSL signal is performed by counting the time required for the change of the attenuation reference signal.
 以上のように、図9及び図10の列並列AD変換部22では、参照信号を増幅率Kで増幅した増幅参照信号を出力し、その増幅参照信号を、増幅率Kの逆数の減衰率1/Kで減衰し、減衰参照信号を出力するので、(増幅)参照信号に含まれる参照信号ノイズRN_REFを、効率的に低減することができる。 As described above, the column parallel AD conversion unit 22 in FIGS. 9 and 10 outputs an amplified reference signal obtained by amplifying the reference signal with the amplification factor K, and the amplified reference signal is supplied with an attenuation factor 1 which is the reciprocal of the amplification factor K. Since the signal is attenuated by / K and an attenuated reference signal is output, the reference signal noise RN_REF included in the (amplified) reference signal can be efficiently reduced.
 すなわち、参照信号ノイズRN_REFを含まない参照信号をS_REFと、増幅参照信号をS_AMPと、減衰参照信号をS_ATTと、それぞれ表すこととすると、増幅参照信号S_AMPは、参照信号S_REFのK信と、参照信号ノイズRN_REFとを含むので、式S_AMP=K×S_REF+RN_REFで表すことができる。 That is, if the reference signal that does not include the reference signal noise RN_REF is represented by S_REF, the amplified reference signal is represented by S_AMP, and the attenuated reference signal is represented by S_ATT, the amplified reference signal S_AMP is the K signal of the reference signal S_REF, and the reference Since it includes the signal noise RN_REF, it can be expressed by the equation S_AMP = K × S_REF + RN_REF.
 減衰参照信号S_ATTは、増幅参照信号S_AMPの1/K信であるので、式S_ATT=1/K×S_AMP=S_REF+1/K×RN_REFで表される。 Since the attenuation reference signal S_ATT is a 1 / K signal of the amplified reference signal S_AMP, it is expressed by the expression S_ATT = 1 / K × S_AMP = S_REF + 1 / K × RN_REF.
 したがって、減衰参照信号S_ATTに含まれる参照信号ノイズについては、元の参照信号ノイズRN_REFの約1/Kに低減することができる。 Therefore, the reference signal noise included in the attenuated reference signal S_ATT can be reduced to about 1 / K of the original reference signal noise RN_REF.
 ここで、この約1/Kのような、減衰参照信号に含まれる参照信号ノイズが、元の参照信号ノイズから低減される割合を、ノイズ減衰率ということとする。 Here, the rate at which the reference signal noise included in the attenuated reference signal such as about 1 / K is reduced from the original reference signal noise is referred to as a noise attenuation rate.
 減衰参照信号は、参照信号をK倍した増幅参照信号を1/K倍して得られるので、減衰参照信号のダイナミックレンジとしては、元の参照信号のダイナミックレンジがそのまま維持される。 Since the attenuated reference signal is obtained by multiplying the amplified reference signal by K times the reference signal by 1 / K times, the dynamic range of the original reference signal is maintained as it is as the dynamic range of the attenuated reference signal.
 したがって、ADC31では、減衰参照信号を用いてAD変換を行う場合でも、参照信号を用いてAD変換を行う場合と同一のダイナミックレンジで、VSL信号のAD変換を行うことができる。 Therefore, in the ADC 31 n , even when AD conversion is performed using the attenuated reference signal, AD conversion of the VSL signal can be performed with the same dynamic range as when AD conversion is performed using the reference signal.
 さらに、上述のように、減衰参照信号のダイナミックレンジとしては、元の参照信号のダイナミックレンジがそのまま維持されるのに対して、減衰参照信号に含まれる参照信号ノイズは、元の参照信号ノイズRN_REFの約1/Kに低減されるので、減衰参照信号については、S/N(Signal to Noise Ratio)を大きく改善することができる。 Furthermore, as described above, the dynamic range of the attenuated reference signal is maintained as it is, while the reference signal noise included in the attenuated reference signal is the original reference signal noise RN_REF. S / N (SignalSignto Noise Ratio) can be greatly improved for the attenuated reference signal.
 なお、参照信号を生成する参照信号出力部33(のDAC)の回路構成によっては、参照信号ノイズRN_REFが、増幅参照信号のダイナミックレンジに依存する場合があり、かかる場合には、回路構成によって、ノイズ減衰率は異なる。 Note that the reference signal noise RN_REF may depend on the dynamic range of the amplified reference signal depending on the circuit configuration of the reference signal output unit 33 (DAC) that generates the reference signal. In such a case, depending on the circuit configuration, Noise attenuation rate is different.
 ここで、以下、増幅部101の増幅率K、及び、減衰部102と111の減衰率1/Kを表すKを、増幅減衰パラメータKともいう。 Here, hereinafter, K representing the amplification factor K of the amplification unit 101 and the attenuation factors 1 / K of the attenuation units 102 and 111 n is also referred to as an amplification attenuation parameter K.
 また、参照信号を増幅した増幅参照信号を得て、その増幅参照信号を減衰参照信号に減衰する処理を、増幅減衰処理ともいう。 Also, a process of obtaining an amplified reference signal obtained by amplifying a reference signal and attenuating the amplified reference signal to an attenuated reference signal is also referred to as an amplification attenuation process.
 増幅減衰処理によれば、上述のように、減衰参照信号に含まれる参照信号ノイズが低減されるので、増幅減衰処理には、ノイズ低減機能があるということができる。 According to the amplification attenuation process, as described above, the reference signal noise included in the attenuation reference signal is reduced. Therefore, it can be said that the amplification attenuation process has a noise reduction function.
 <減衰部111の構成例> <Configuration example of the attenuation section 111 n>
 図12は、図10の減衰部111の構成例を示す回路図である。 FIG. 12 is a circuit diagram illustrating a configuration example of the attenuation unit 111 n of FIG.
 減衰部111は、例えば、コンデンサを有するスイッチドキャパシタ回路で実現することができる。 The attenuation unit 111 n can be realized by, for example, a switched capacitor circuit having a capacitor.
 減衰部111を、コンデンサを有するスイッチドキャパシタ回路で実現する場合、その減衰部111となるスイッチドキャパシタ回路を新たに設けることができる。 When the attenuating unit 111 n is realized by a switched capacitor circuit having a capacitor, a switched capacitor circuit serving as the attenuating unit 111 n can be newly provided.
 なお、図9の減衰部102も、減衰部111と同様に構成することができる。 Note that the attenuation unit 102 in FIG. 9 can also be configured in the same manner as the attenuation unit 111 n .
 また、図10の減衰部111については、オートゼロ処理に用いられるキャパシタ回路71を、減衰部111としても機能するように構成することができる。 Further, for the attenuating unit 111 n of FIG. 10, the capacitor circuit 71 used for the auto-zero process can be configured to function also as the attenuating unit 111 n .
 図12は、減衰部111としても機能するキャパシタ回路71の構成例を示している。 FIG. 12 shows a configuration example of the capacitor circuit 71 that also functions as the attenuation unit 111 n .
 図12では、キャパシタ回路71は、K個のユニットコンデンサC1,1ないしC1,Kと、K-1個のスイッチ131ないし131K-1とで構成される。 In FIG. 12, the capacitor circuit 71 includes K unit capacitors C 1,1 to C 1, K and K-1 switches 131 1 to 131 K-1 .
 ユニットコンデンサC1,1ないしC1,Kは、オートゼロ処理に用いられるコンデンサ(以下、オートゼロ処理用コンデンサともいう)のうちの、コンパレータ61の反転入力端子IN1に接続されるコンデンサをK個に分割したコンデンサで、ユニットコンデンサC1,kは、オートゼロ処理用コンデンサの1/Kの容量を有する。 It is no unit capacitor C 1, 1 C 1, K is a capacitor used for the auto-zero process of (hereinafter also referred to as auto-zero process capacitor), a capacitor connected to an inverting input terminal IN1 of the comparator 61 n into K In the divided capacitor, the unit capacitor C 1, k has a capacity of 1 / K of the auto zero processing capacitor.
 K個のユニットコンデンサC1,1ないしC1,Kの一端は、いずれも、差動アンプ73(のFET81のゲート)に接続されている。 One end of each of the K unit capacitors C 1,1 to C 1, K is connected to the differential amplifier 73 (the gate of the FET 81).
 また、K個のユニットコンデンサC1,1ないしC1,Kのうちの、1ないしK-1個目のユニットコンデンサC1,1ないしC1,K-1の他端は、スイッチ131ないし131K-1に、それぞれ接続され、K個目のユニットコンデンサC1,Kの他端は、反転入力端子IN1に接続されている。 Further, to the K units capacitor C 1, 1 not of the C 1, K, 1 to K-1 th unit capacitor C 1, 1 to the other end of the C 1, K-1 is to switch 131 1 to 131 K-1, are connected, the other end of the K-th unit capacitor C 1, K is connected to the inverting input terminal IN1.
 スイッチ131は、k個目のユニットコンデンサC1,kの他端をGND(グランド)、又は、反転入力端子IN1に接続するように切り替えられる。 The switch 131 k is switched so as to connect the other end of the k-th unit capacitor C1 , k to GND (ground) or the inverting input terminal IN1.
 スイッチ131の切り替えは、例えば、制御部6(図1)によるイメージセンサ2の制御に従って行われる。 Switching of the switch 131 k is performed, for example, under the control of the image sensor 2 by the control unit 6 (Figure 1).
 以上のように構成されるキャパシタ回路71では、オートゼロ処理が行われるときに、スイッチ131ないし131K-1が、ユニットコンデンサC1,kないしC1,K-1の他端を、GND、又は、反転入力端子IN1に接続するように、それぞれ切り替えられる。 In the capacitor circuit 71 configured as described above, when auto-zero processing is performed, the switches 131 1 to 131 K-1 connect the other ends of the unit capacitors C 1, k to C 1, K-1 to GND, Alternatively, they are switched so as to be connected to the inverting input terminal IN1.
 K-1個のスイッチ131ないし131K-1のうちの0個以上のi個のスイッチが、反転入力端子IN1側に切り替えられた場合、減衰率は、(i+1)/Kとなる。 When 0 or more i switches among the K-1 switches 131 1 to 131 K−1 are switched to the inverting input terminal IN1, the attenuation rate is (i + 1) / K. .
 すなわち、例えば、1ないしi個目のi個のスイッチ131ないし131が、反転入力端子IN1側に切り替えられた場合、反転入力端子IN1には、増幅参照信号が供給されるが、その増幅参照信号は、i+1ないしK-1個目のK-i-1個のユニットコンデンサC1,i+1ないしC1,K-1と、1ないしi個目のi個のユニットコンデンサC1,1ないしC1,i、及び、K個目のユニットコンデンサC1,Kの合計でi+1個のユニットコンデンサとで分圧されることにより、(i+1)/K倍に減衰される。 That is, for example, when the 1st to i-th i switches 131 1 to 131 i are switched to the inverting input terminal IN1, the amplification reference signal is supplied to the inverting input terminal IN1. The reference signals are i + 1 to (K-1) th Ki-1 unit capacitors C1 , i + 1 to C1 , K-1 and 1st to ith ith unit capacitors C1,1 . The total of 1 to C 1, i and the Kth unit capacitor C 1, K is divided by i + 1 unit capacitors to attenuate (i + 1) / K times. .
 図12では、スイッチ131ないし131K-1のいずれも、GND側に切り替えられており、反転入力端子IN1側に切り替えられているスイッチ131の数iは、0個であるので、増幅参照信号は、減衰部111としても機能するキャパシタ回路71において、1/K倍に減衰される。 In FIG. 12, since all of the switches 131 1 to 131 K-1 are switched to the GND side and the number i of the switches 131 k switched to the inverting input terminal IN1 side is 0, the amplification reference The signal is attenuated by 1 / K times in the capacitor circuit 71 that also functions as the attenuating unit 111 n .
 以上のように、減衰部111としても機能するキャパシタ回路71では、スイッチ131ないし131K-1の切り替えによって、増幅参照信号を何倍にするかの減衰率を任意の値に可変に設定することができる。 As described above, in the capacitor circuit 71 that also functions as the attenuating unit 111 n , the attenuation rate of how many times the amplified reference signal is increased is variably set to an arbitrary value by switching the switches 131 1 to 131 K−1. can do.
 また、減衰部111としても機能するキャパシタ回路71によれば、減衰部111nとして、別個に新たな回路を設ける必要がないので、回路規模の増大を抑制して、減衰部111を実現することができる。 Further, according to the capacitor circuit 71 also functions as a damping unit 111 n, as the attenuation unit 111 n, it is not necessary to provide a separate new circuits, to suppress an increase in circuit scale, realizing the damping unit 111 n can do.
 なお、図12では、キャパシタ回路71とのバランスから、キャパシタ回路72を構成するコンデンサについても、キャパシタ回路71と同様に、オートゼロ処理用コンデンサのうちの、コンパレータ61の非反転入力端子IN2に接続されるコンデンサを、K個のユニットコンデンサC2,1ないしC2,Kに分割して表してある。 In FIG. 12, the connection from the balance between the capacitor circuit 71, the capacitor constituting the capacitor circuit 72, like the capacitor circuit 71, of the capacitor auto-zero process, a non-inverting input terminal IN2 of the comparator 61 n The capacitor is divided into K unit capacitors C 2,1 to C 2, K.
 但し、キャパシタ回路72を構成するコンデンサについては、コンパレータ61の非反転入力端子IN2に接続されるコンデンサをK個のユニットコンデンサC2,1ないしC2,Kに分割する必要はない。 However, the capacitor constituting the capacitor circuit 72 is not necessary to divide the capacitor connected to the non-inverting input terminal IN2 of the comparator 61 n to the K units capacitor C 2,1 is not in the C 2, K.
 <増幅部101を有する参照信号出力部33の第1の構成例> <First Configuration Example of Reference Signal Output Unit 33 Having Amplification Unit 101>
 図13は、増幅部101を有する参照信号出力部33の第1の構成例を示す回路図である。 FIG. 13 is a circuit diagram illustrating a first configuration example of the reference signal output unit 33 including the amplification unit 101.
 図13において、参照信号出力部33は、電流源141と抵抗142とから構成される。 In FIG. 13, the reference signal output unit 33 includes a current source 141 and a resistor 142.
 電流源141は、例えば、カレントミラー回路で構成され、所定の電流を抵抗142に流す。 The current source 141 is configured by a current mirror circuit, for example, and allows a predetermined current to flow through the resistor 142.
 ここで、電流源141を構成するカレントミラー回路については、ミラー元に流れる電流に応じた電流が流れるミラー先を構成するトランジスタ(FET等)の数をスイッチングにより切り替えることで、ミラー元に流れる電流とミラー先に流れる電流との比であるミラー比を変更することができ、これにより、電流源141は、抵抗142に流れる電流を変更することができる。 Here, with respect to the current mirror circuit constituting the current source 141, the current flowing through the mirror source can be switched by switching the number of transistors (such as FETs) constituting the mirror destination through which the current according to the current flowing through the mirror source flows. The mirror ratio, which is the ratio of the current flowing through the mirror tip, can be changed, whereby the current source 141 can change the current flowing through the resistor 142.
 抵抗142は、DACとして機能する。すなわち、抵抗142には、電流源141が流す電流が流れ、抵抗142に電流が流れることで、その抵抗142に生じる電圧(降下)が、電流源141が流す電流をDA変換した結果得られる参照信号として出力される。 The resistor 142 functions as a DAC. That is, a current flowing through the current source 141 flows through the resistor 142, and a current (flow) generated in the resistor 142 due to the current flowing through the resistor 142 is obtained as a result of DA conversion of the current flowing through the current source 141. Output as a signal.
 以上のように構成される参照信号出力部33では、電流源141、又は、抵抗142を、増幅部101として機能させることができる。 In the reference signal output unit 33 configured as described above, the current source 141 or the resistor 142 can function as the amplification unit 101.
 すなわち、電流源141において、ミラー比を変更することで、抵抗142に流す電流を、例えば、(本来の)参照信号を得る場合のK倍に調整することにより、電流源141は、参照信号をK倍に増幅する増幅部101としても機能する。 That is, in the current source 141, by changing the mirror ratio, the current flowing through the resistor 142 is adjusted to, for example, K times that when the (original) reference signal is obtained. It also functions as an amplifying unit 101 that amplifies K times.
 また、抵抗142の抵抗値を、例えば、参照信号を得る場合のK倍に調整することにより、抵抗142は、参照信号をK倍に増幅する増幅部101としても機能する。 Further, by adjusting the resistance value of the resistor 142 to, for example, K times when obtaining the reference signal, the resistor 142 also functions as the amplifying unit 101 that amplifies the reference signal by K times.
 なお、増幅部101の実装方法としては、電流源141の電流を調整する方法、及び、抵抗142の抵抗値を大に調整する方法のいずれをも採用することができる。但し、抵抗142の抵抗値を大に調整する場合には、抵抗142で生じる電圧に、熱雑音が増えることや、抵抗値を切り替えるためのスイッチが必要となる。 Note that, as a mounting method of the amplifying unit 101, any of a method of adjusting the current of the current source 141 and a method of adjusting the resistance value of the resistor 142 to a large value can be employed. However, when the resistance value of the resistor 142 is adjusted to be large, thermal noise increases in the voltage generated by the resistor 142, and a switch for switching the resistance value is required.
 また、電流源141は、カレントミラー回路で構成する他、スイッチドキャパシタ回路(離散時間動作する電流源)等で構成することができる。電流源141をスイッチドキャパシタ回路で構成する場合には、そのスイッチドキャパシタ回路を構成するコンデンサの容量や、コンデンサへの接続をスイッチングする周波数を調整することで、抵抗142に流れる電流を変更することができる。 Further, the current source 141 can be configured by a switched capacitor circuit (current source that operates for a discrete time) or the like in addition to a current mirror circuit. When the current source 141 is configured by a switched capacitor circuit, the current flowing through the resistor 142 is changed by adjusting the capacitance of the capacitor that configures the switched capacitor circuit and the frequency for switching the connection to the capacitor. be able to.
 ここで、抵抗142の抵抗値を大にする場合には、抵抗142で生じる電圧としての参照信号に、熱雑音が増えるため、参照信号ノイズを低減する観点から、一般には、抵抗142の抵抗値を小にする必要がある。 Here, when the resistance value of the resistor 142 is increased, thermal noise increases in the reference signal as a voltage generated in the resistor 142. From the viewpoint of reducing the reference signal noise, generally, the resistance value of the resistor 142 is reduced. Need to be small.
 抵抗142の抵抗値を小にする場合、電流源141の電流を大にする必要があるが、この場合、参照信号出力部33の消費電力が大になる。 When the resistance value of the resistor 142 is reduced, it is necessary to increase the current of the current source 141. In this case, the power consumption of the reference signal output unit 33 is increased.
 しかしながら、列並列AD変換部22では、減衰部102又は111において、増幅参照信号が、減衰率1/Kで減衰され、参照信号ノイズが低減されるので、その、減衰部102又は111での参照信号ノイズの低減を考慮して、抵抗142の抵抗値は、ある程度大きな抵抗値に設計することができる。抵抗142の抵抗値を大きな抵抗値に設計することにより、電流源141の電流を小さい電流に抑えることができ、結果として、参照信号出力部33の消費電力を削減することができる。 However, the column-parallel AD converting unit 22, the attenuation section 102 or 111 n, amplified reference signal is attenuated by the attenuation factor 1 / K, since the reference signal noise is reduced, in that the damping unit 102 or 111 n In consideration of the reduction of the reference signal noise, the resistance value of the resistor 142 can be designed to a somewhat large resistance value. By designing the resistance value of the resistor 142 to be a large resistance value, the current of the current source 141 can be suppressed to a small current, and as a result, the power consumption of the reference signal output unit 33 can be reduced.
 <増幅部101を有する参照信号出力部33の第2の構成例> <Second configuration example of the reference signal output unit 33 including the amplification unit 101>
 図14は、増幅部101を有する参照信号出力部33の第2の構成例を示す回路図である。 FIG. 14 is a circuit diagram illustrating a second configuration example of the reference signal output unit 33 including the amplification unit 101.
 なお、図中、図13の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。 In the figure, portions corresponding to those in FIG. 13 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図14において、参照信号出力部33は、電流源141を有する点で、図13の場合と共通する。 14, the reference signal output unit 33 is common to the case of FIG. 13 in that it has a current source 141.
 但し、図14では、参照信号出力部33は、抵抗142に代えて、オペアンプ151とコンデンサ152とが設けられている点で、図13の場合と相違する。 However, in FIG. 14, the reference signal output unit 33 is different from the case of FIG. 13 in that an operational amplifier 151 and a capacitor 152 are provided instead of the resistor 142.
 オペアンプ151の反転入力端子(-)は、電流源141とコンデンサ152の一端とに接続されており、非反転入力端子(+1)は接地されている(GNDに接続されている)。また、オペアンプ151の出力端子は、コンデンサ152の他端に接続されている。 The inverting input terminal (-) of the operational amplifier 151 is connected to the current source 141 and one end of the capacitor 152, and the non-inverting input terminal (+1) is grounded (connected to GND). The output terminal of the operational amplifier 151 is connected to the other end of the capacitor 152.
 したがって、オペアンプ151及びコンデンサ152は、積分器を構成しており、DACとして機能する。 Therefore, the operational amplifier 151 and the capacitor 152 constitute an integrator and function as a DAC.
 すなわち、オペアンプ151及びコンデンサ152で構成される積分器では、電流源141が流す電流が積分され、その電流の積分値に比例する電圧が、電流源141が流す電流をDA変換した結果得られる参照信号として、オペアンプ151の出力端子から出力される。 That is, in the integrator composed of the operational amplifier 151 and the capacitor 152, the current flowing through the current source 141 is integrated, and a voltage proportional to the integral value of the current is obtained as a result of DA conversion of the current flowing through the current source 141. A signal is output from the output terminal of the operational amplifier 151.
 以上のように構成される参照信号出力部33では、電流源141、又は、オペアンプ151とコンデンサ152とで構成される積分器を、増幅部101として機能させることができる。 In the reference signal output unit 33 configured as described above, the integrator configured by the current source 141 or the operational amplifier 151 and the capacitor 152 can function as the amplification unit 101.
 すなわち、図13で説明したように、電流源141において、その電流源141が流す電流を、例えば、参照信号を得る場合のK倍に調整することにより、電流源141は、参照信号をK倍に増幅する増幅部101としても機能する。 That is, as described with reference to FIG. 13, in the current source 141, the current source 141 adjusts the current flowing through the current source 141 to, for example, K times that for obtaining the reference signal, so that the current source 141 increases the reference signal by K times. It also functions as the amplification unit 101 that amplifies the signal.
 また、積分器を構成するコンデンサ152の容量(キャパシタンス)を、例えば、参照信号を得る場合の1/K倍に調整することにより、積分器は、参照信号をK倍に増幅する増幅部101としても機能する。 Further, by adjusting the capacitance (capacitance) of the capacitor 152 constituting the integrator to, for example, 1 / K times that for obtaining the reference signal, the integrator serves as the amplification unit 101 that amplifies the reference signal by K times. Also works.
 なお、増幅部101の実装方法としては、電流源141の電流を調整する方法、及び、コンデンサ152の容量を調整する方法のいずれをも採用することができる。但し、コンデンサ152の容量を調整する場合には、その容量を切り替えるためのスイッチが必要となる。 Note that, as a mounting method of the amplifying unit 101, any of a method of adjusting the current of the current source 141 and a method of adjusting the capacitance of the capacitor 152 can be employed. However, when adjusting the capacity of the capacitor 152, a switch for switching the capacity is required.
 ここで、図14の参照信号出力部33では、オペアンプ151を用いていることから、低消費電力化を図ることができる。但し、オペアンプ151は、潜在的に内部熱雑音が大きく、そのため、参照信号ノイズが大になる。 Here, in the reference signal output unit 33 of FIG. 14, since the operational amplifier 151 is used, the power consumption can be reduced. However, the operational amplifier 151 potentially has a large internal thermal noise, and therefore the reference signal noise becomes large.
 しかしながら、列並列AD変換部22では、減衰部102又は111において、増幅参照信号が、減衰率1/Kで減衰され、参照信号ノイズが低減されるので、低消費電力化を図ることができるオペアンプ151を用いることにより、参照信号ノイズが大になることを改善することができる。 However, in the column parallel AD conversion unit 22, the amplified reference signal is attenuated by the attenuation factor 1 / K and the reference signal noise is reduced in the attenuation unit 102 or 111 n , so that low power consumption can be achieved. By using the operational amplifier 151, it is possible to improve that the reference signal noise becomes large.
 <参照信号、増幅参照信号、及び、減衰参照信号> <Reference signal, amplified reference signal, and attenuated reference signal>
 図15は、参照信号、増幅参照信号、及び、減衰参照信号の例を示す波形図である。 FIG. 15 is a waveform diagram showing examples of a reference signal, an amplified reference signal, and an attenuated reference signal.
 図15のAは、参照信号出力部33が生成する元の参照信号(本来の参照信号)と、その参照信号を増幅部101でK倍に増幅した増幅参照信号との例を示す波形図である。 FIG. 15A is a waveform diagram illustrating an example of an original reference signal (original reference signal) generated by the reference signal output unit 33 and an amplified reference signal obtained by amplifying the reference signal by the amplification unit 101 K times. is there.
 (元の)参照信号のダイナミックレンジをDorgと表すとともに、増幅参照信号のダイナミックレンジをDampと表すこととすると、増幅参照信号のダイナミックレンジDampは、元の参照信号のダイナミックレンジDorgのK倍になっており、式Damp=K×Dorgで表される。 If the dynamic range of the (reference) reference signal is expressed as Dorg and the dynamic range of the amplified reference signal is expressed as Damp, the dynamic range Damp of the amplified reference signal is K times the dynamic range Dorg of the original reference signal. It is expressed by the formula Damp = K × Dorg.
 図15のBは、増幅参照信号を減衰部102又は111で1/K倍に減衰した減衰参照信号の例を示す波形図である。 FIG. 15B is a waveform diagram showing an example of an attenuated reference signal obtained by attenuating the amplified reference signal by 1 / K times by the attenuating unit 102 or 111 n .
 減衰参照信号のダイナミックレンジをDattと表すこととすると、減衰参照信号のダイナミックレンジDattは、増幅参照信号のダイナミックレンジDampの1/K倍になっており、式Datt=1/K×Damp=1/K×K×Dorgで表される。 If the dynamic range of the attenuated reference signal is expressed as Datt, the dynamic range Datt of the attenuated reference signal is 1 / K times the dynamic range Damp of the amplified reference signal, and the formula Datt = 1 / K × Damp = 1 It is expressed as / K × K × Dorg.
 したがって、減衰参照信号のダイナミックレンジDattは、元の参照信号のダイナミックレンジDorgに一致する。 Therefore, the dynamic range Datt of the attenuated reference signal matches the dynamic range Dorg of the original reference signal.
 また、減衰参照信号は、増幅参照信号を1/K倍に減衰した信号であるから、減衰参照信号に含まれる参照信号ノイズは、増幅参照信号に含まれる参照信号ノイズの約1/K倍に低減される。 Since the attenuated reference signal is a signal obtained by attenuating the amplified reference signal by 1 / K times, the reference signal noise contained in the attenuated reference signal is approximately 1 / K times the reference signal noise contained in the amplified reference signal. Reduced.
 なお、本実施の形態では、列並列AD変換部22が、いわゆるシングルスロープ型のAD変換装置であることを前提としており、そのため、参照信号は、一定の傾きで減少するランプ信号であるスロープを有するが、本技術は、AD変換の対象の電気信号と参照信号とのレベルが一致するまでの、参照信号のレベルの変化に要する時間をカウントすることによりAD変換を行うシングルスロープ型のAD変換装置の他、AD変換の対象の電気信号と参照信号との電位差によってAD変換を行うAD変換装置、その他の、参照信号を用いて、電気信号と参照信号とを比較することによりAD変換を行う任意の構成のAD変換装置に適用することができる。 In the present embodiment, it is assumed that the column parallel AD conversion unit 22 is a so-called single slope type AD conversion device. Therefore, the reference signal has a slope which is a ramp signal that decreases with a constant slope. This technology, however, is a single slope AD conversion that performs AD conversion by counting the time required for the level of the reference signal to change until the level of the electrical signal subject to AD conversion matches the level of the reference signal. In addition to the device, the AD conversion device that performs AD conversion based on the potential difference between the electric signal to be converted and the reference signal, and other AD conversion by comparing the electric signal with the reference signal using the reference signal The present invention can be applied to an AD converter having an arbitrary configuration.
 すなわち、本技術は、シングルスロープ型のAD変換装置の他、例えば、パイプライン型や、ΔΣ型、フラッシュ型等のAD変換装置に適用することができる。 That is, the present technology can be applied to, for example, pipeline-type, ΔΣ-type, flash-type AD converters in addition to single-slope AD converters.
 <ISO感度に応じた増幅減衰パラメータKの設定> <Setting of amplification attenuation parameter K according to ISO sensitivity>
 図16は、ディジタルカメラ(図1)に設定されたISO感度と、増幅減衰パラメータKとの関係の例を示す図である。 FIG. 16 is a diagram showing an example of the relationship between the ISO sensitivity set in the digital camera (FIG. 1) and the amplification attenuation parameter K.
 上述したように、参照信号を増幅した増幅参照信号を得て、その増幅参照信号を減衰参照信号に減衰する増幅減衰処理によれば、元の参照信号とダイナミックレンジが同一で、参照信号ノイズを低減した減衰参照信号を得ることができる。 As described above, according to the amplification attenuation process in which the amplified reference signal obtained by amplifying the reference signal is obtained and the amplified reference signal is attenuated to the attenuated reference signal, the dynamic range is the same as the original reference signal, and the reference signal noise is reduced. A reduced attenuated reference signal can be obtained.
 ところで、増幅減衰処理では、参照信号出力部33の増幅部101において、参照信号が、増幅減衰パラメータKに従ってK倍に増幅される。 Incidentally, in the amplification attenuation process, the reference signal is amplified K times according to the amplification attenuation parameter K in the amplification unit 101 of the reference signal output unit 33.
 そのため、増幅減衰処理を行う場合には、参照信号出力部33(を構成するDAC)の消費電力が増加する可能性がある。 Therefore, when the amplification attenuation process is performed, the power consumption of the reference signal output unit 33 (which constitutes the DAC) may increase.
 また、実際の実装では、参照信号出力部33は、FET等のトランジスタを用いて構成され、FETは、飽和領域で動作させる必要がある。しかしながら、元の参照信号のダイナミックレンジが、ある程度大きい場合には、その参照信号をK倍の増幅参照信号に増幅したときに、飽和領域でのFETの動作を確保することが困難になることがある。 In actual implementation, the reference signal output unit 33 is configured using a transistor such as an FET, and the FET needs to operate in a saturation region. However, if the dynamic range of the original reference signal is somewhat large, it may be difficult to ensure the operation of the FET in the saturation region when the reference signal is amplified to a K-fold amplified reference signal. is there.
 そこで、増幅減衰処理において、参照信号を増幅する増幅率Kと、増幅参照信号を減衰する減衰率1/Kとを表す増幅減衰パラメータKは、ディジタルカメラに設定されたISO感度、ひいては、イメージセンサ2のアナログゲインに応じて設定することができる。 Thus, in the amplification attenuation process, the amplification attenuation parameter K representing the amplification factor K for amplifying the reference signal and the attenuation factor 1 / K for attenuating the amplification reference signal is the ISO sensitivity set for the digital camera, and thus the image sensor. 2 can be set according to the analog gain.
 ここで、ISO感度に応じた増幅減衰パラメータKの設定は、例えば、制御部6(図1)において行われる。 Here, the setting of the amplification attenuation parameter K according to the ISO sensitivity is performed by the control unit 6 (FIG. 1), for example.
 図16のAは、ディジタルカメラに設定されたISO感度に応じて、増幅減衰パラメータKを設定する第1の設定方法を示している。 FIG. 16A shows a first setting method for setting the amplification attenuation parameter K in accordance with the ISO sensitivity set in the digital camera.
 図16のAにおいて(図16のBでも同様)、横軸は、ISO感度(又はアナログゲイン)を表し、縦軸は、増幅減衰パラメータKを表す。さらに、Gminは、ISO感度の最小値を表し、Gmaxは、ISO感度の最大値を表す。 16A (the same applies to B of FIG. 16), the horizontal axis represents the ISO sensitivity (or analog gain), and the vertical axis represents the amplification attenuation parameter K. Furthermore, Gmin represents the minimum value of ISO sensitivity, and Gmax represents the maximum value of ISO sensitivity.
 図16のAでは、ISO感度が、最小値Gminから所定の閾値THまでの範囲の値である場合には、増幅減衰パラメータKは、1に設定され、ISO感度が、所定の閾値THから最大値Gmaxまでの範囲の値である場合には、増幅減衰パラメータKは、1より大の所定値Pに設定される。 In A of FIG. 16, when the ISO sensitivity is a value in the range from the minimum value Gmin to the predetermined threshold TH, the amplification attenuation parameter K is set to 1, and the ISO sensitivity is increased from the predetermined threshold TH to the maximum. When the value is in the range up to the value Gmax, the amplification attenuation parameter K is set to a predetermined value P greater than 1.
 ここで、増幅減衰パラメータKが1である場合、増幅減衰処理では、参照信号を1倍に増幅した増幅参照信号が1/1倍に減衰されるので、増幅減衰処理は、実質的に無効になる。 Here, when the amplification attenuation parameter K is 1, the amplification attenuation process is substantially invalid because the amplification reference signal obtained by amplifying the reference signal by 1 is attenuated by 1/1. Become.
 すなわち、増幅減衰処理が、実質的に有効であるのは、増幅減衰パラメータKが1より大である場合である。 That is, the amplification attenuation process is substantially effective when the amplification attenuation parameter K is larger than 1.
 ISO感度が、最小値Gminから所定の閾値THまでの範囲の値であり、いわゆる低ISO感度(低アナログゲイン)である場合、参照信号のスロープの傾きが大になり、参照信号出力部33において参照信号を生成するために流す電流が大になる。 When the ISO sensitivity is a value in the range from the minimum value Gmin to the predetermined threshold TH, and is so-called low ISO sensitivity (low analog gain), the slope of the slope of the reference signal becomes large, and the reference signal output unit 33 The current that flows to generate the reference signal becomes large.
 そこで、ISO感度が、低ISO感度である場合には、増幅減衰パラメータKを1に設定し、ノイズ低減機能がある増幅減衰処理を無効にすることで、ノイズ低減機能はオフになるが、増幅減衰処理を行うことによる参照信号出力部33の消費電力の増加を防止するとともに、参照信号出力部33を構成するFETの飽和領域での動作を確保することができる。 So, if the ISO sensitivity is low ISO sensitivity, set the amplification attenuation parameter K to 1 and disable the amplification attenuation processing with noise reduction function, the noise reduction function will be turned off, but amplification An increase in power consumption of the reference signal output unit 33 due to the attenuation process can be prevented, and an operation in the saturation region of the FET constituting the reference signal output unit 33 can be ensured.
 一方、ISO感度が、所定の閾値THから最大値Gmaxまでの範囲の値であり、いわゆる高ISO感度(高アナログゲイン)である場合、参照信号のスロープの傾きが小になり、参照信号出力部33において参照信号を生成するために流す電流が小になる。 On the other hand, when the ISO sensitivity is a value in the range from the predetermined threshold TH to the maximum value Gmax, so-called high ISO sensitivity (high analog gain), the slope of the slope of the reference signal becomes small, and the reference signal output unit In 33, the current passed to generate the reference signal is reduced.
 そこで、ISO感度が、高ISO感度である場合には、増幅減衰パラメータKを1より大の値Pに設定し、増幅減衰処理を有効にすることで、ノイズ低減機能をオンにして、高ISO感度時に問題となる参照信号ノイズを低減する一方で、増幅減衰処理を行うことによる参照信号出力部33の消費電力の増加を抑制するとともに、参照信号出力部33を構成するFETの飽和領域での動作を確保することができる。 Therefore, when the ISO sensitivity is high ISO sensitivity, the amplification attenuation parameter K is set to a value P greater than 1 and the amplification attenuation processing is enabled to turn on the noise reduction function and to achieve high ISO sensitivity. While reducing the reference signal noise which becomes a problem at the time of sensitivity, while suppressing the increase in the power consumption of the reference signal output part 33 by performing an amplification attenuation process, in the saturation area | region of FET which comprises the reference signal output part 33 Operation can be ensured.
 すなわち、高ISO感度時においては、参照信号出力部33において参照信号を生成するために流す電流が小さいので、1より大の値Pに設定された増幅減衰パラメータKに従って増幅減衰処理を行っても、その増幅減衰処理によって、参照信号出力部33の消費電力は、それほど大きくならない。さらに、高ISO感度時においては、参照信号のスロープの傾きが小さく、ダイナミックレンジも小さいので、1より大の値Pに設定された増幅減衰パラメータKに従って増幅減衰処理を行う場合であっても、参照信号出力部33を構成するFETの飽和領域での動作を確保することができる。 That is, at the time of high ISO sensitivity, since the current that is passed to generate the reference signal in the reference signal output unit 33 is small, even if the amplification attenuation process is performed according to the amplification attenuation parameter K set to a value P greater than 1. The power consumption of the reference signal output unit 33 does not increase so much by the amplification and attenuation process. Furthermore, at the time of high ISO sensitivity, since the slope of the slope of the reference signal is small and the dynamic range is also small, even when the amplification attenuation process is performed according to the amplification attenuation parameter K set to a value P greater than 1, The operation of the FET constituting the reference signal output unit 33 in the saturation region can be ensured.
 そして、高ISO感度時においては、参照信号ノイズに起因して生じる画像の横縞が目立つ傾向があるが、1より大の値Pに設定された増幅減衰パラメータKに従って増幅減衰処理を行うことによって、参照信号ノイズを低減し、画像に横縞が生じることを抑制することができる。すなわち、例えば、暗所での撮影時には、ISO感度が高ISO感度に設定されるが、そのような暗所で撮影される画像の画質を改善することができる。 And at the time of high ISO sensitivity, there is a tendency for horizontal stripes in the image caused by the reference signal noise to stand out, but by performing amplification attenuation processing according to the amplification attenuation parameter K set to a value P greater than 1, It is possible to reduce reference signal noise and suppress horizontal stripes in the image. That is, for example, when shooting in a dark place, the ISO sensitivity is set to a high ISO sensitivity, but the image quality of an image shot in such a dark place can be improved.
 図16のBは、ディジタルカメラに設定されたISO感度に応じて、増幅減衰パラメータKを設定する第2の設定方法を示している。 FIG. 16B shows a second setting method for setting the amplification attenuation parameter K according to the ISO sensitivity set in the digital camera.
 図16のBでは、ISO感度が、最小値Gminから所定の閾値TH1までの範囲の値である場合には、増幅減衰パラメータKは、1に設定される。そして、ISO感度が、所定の閾値TH1から所定の閾値TH2(>TH1)までの範囲の値である場合には、増幅減衰パラメータKは、1より大の所定値P1に設定され、ISO感度が、所定の閾値TH2から最大値Gmaxまでの範囲の値である場合には、増幅減衰パラメータKは、所定値P1より大の所定値P2に設定される。 In FIG. 16B, when the ISO sensitivity is a value in the range from the minimum value Gmin to the predetermined threshold TH1, the amplification attenuation parameter K is set to 1. When the ISO sensitivity is a value in a range from the predetermined threshold TH1 to the predetermined threshold TH2 (> TH1), the amplification attenuation parameter K is set to a predetermined value P1 greater than 1, and the ISO sensitivity is When the value is in the range from the predetermined threshold value TH2 to the maximum value Gmax, the amplification attenuation parameter K is set to a predetermined value P2 that is larger than the predetermined value P1.
 したがって、図16のBでは、ISO感度が、最小値Gminから所定の閾値TH1までの範囲の値であり、低ISO感度である場合には、増幅減衰パラメータKが1に設定され、その結果、増幅減衰処理は、実質的に無効になり、ノイズ低減機能はオフになる。 Therefore, in FIG. 16B, when the ISO sensitivity is a value in the range from the minimum value Gmin to the predetermined threshold TH1, and when the ISO sensitivity is low, the amplification attenuation parameter K is set to 1, and as a result, The amplification and attenuation process is substantially disabled, and the noise reduction function is turned off.
 一方、ISO感度が、所定の閾値TH1から最大値Gmaxまでの範囲の値であり、高ISO感度である場合には、増幅減衰パラメータKが1より大の値P1又はP2に設定され、その結果、増幅減衰処理は有効になり、ノイズ低減機能はオンになる。 On the other hand, if the ISO sensitivity is a value in the range from the predetermined threshold TH1 to the maximum value Gmax, and the ISO sensitivity is high, the amplification attenuation parameter K is set to a value P1 or P2 greater than 1, and the result The amplification attenuation process is enabled and the noise reduction function is turned on.
 なお、図16のBでは、ISO感度が、所定の閾値TH1から所定の閾値TH2までの範囲の値である場合には、増幅減衰パラメータKが1より大の値P1に設定され、ISO感度が、所定の閾値TH2から最大値Gmaxまでの範囲の値である場合には、増幅減衰パラメータKが値P1より大の値P2に設定される。 In FIG. 16B, when the ISO sensitivity is a value in the range from the predetermined threshold TH1 to the predetermined threshold TH2, the amplification attenuation parameter K is set to a value P1 greater than 1, and the ISO sensitivity is When the value is in the range from the predetermined threshold value TH2 to the maximum value Gmax, the amplification attenuation parameter K is set to a value P2 larger than the value P1.
 増幅減衰パラメータKが値P1に設定された場合、増幅減衰処理では、参照信号ノイズは、約1/P1倍に低減される。また、増幅減衰パラメータKが値P2に設定された場合、増幅減衰処理では、参照信号ノイズは、約1/P2(<1/P1)倍に、より低減される。 When the amplification attenuation parameter K is set to the value P1, the reference signal noise is reduced to about 1 / P1 times in the amplification attenuation process. When the amplification attenuation parameter K is set to the value P2, the reference signal noise is further reduced by about 1 / P2 (<1 / P1) times in the amplification attenuation process.
 以上のように、ディジタルカメラの撮影時に設定されているISO感度に応じて、増幅減衰処理を行うことで、増幅減衰処理を行うことによる参照信号出力部33の消費電力の増加を抑制するとともに、参照信号出力部33を構成するFETの飽和領域での動作を確保しつつ、参照信号ノイズを低減することができる。 As described above, the amplification attenuation process is performed according to the ISO sensitivity set at the time of photographing with the digital camera, thereby suppressing an increase in power consumption of the reference signal output unit 33 due to the amplification attenuation process, The reference signal noise can be reduced while ensuring the operation of the FET constituting the reference signal output unit 33 in the saturation region.
 なお、図16では、増幅減衰パラメータKを1、又は、1より大の値に設定することにより、増幅減衰処理(によるノイズ低減機能)を無効、又は、有効とすることとしたが、増幅減衰処理を無効とする場合には、増幅減衰処理を、実際に行わないこととすることが可能である。 In FIG. 16, the amplification attenuation parameter (the noise reduction function) is disabled or enabled by setting the amplification attenuation parameter K to 1 or a value larger than 1, but the amplification attenuation When invalidating the processing, it is possible not to actually perform the amplification attenuation processing.
 また、図16では、ISO感度の閾値として、1又は2個の閾値を採用したが、ISO感度の閾値の数は、3個以上であっても良い。増幅減衰パラメータKの数についても同様である。 In FIG. 16, one or two threshold values are adopted as the ISO sensitivity threshold value, but the number of ISO sensitivity threshold values may be three or more. The same applies to the number of amplification attenuation parameters K.
 さらに、図16では、ISO感度に応じて、増幅減衰パラメータKを、いわば離散的に設定することとしたが、増幅減衰パラメータKは、ISO感度に応じて連続的な値に設定することが可能である。 Further, in FIG. 16, the amplification attenuation parameter K is set discretely according to the ISO sensitivity, but the amplification attenuation parameter K can be set to a continuous value according to the ISO sensitivity. It is.
 図17は、第2の設定方法に従い、ISO感度に応じて、増幅減衰パラメータKを設定する処理の例を説明するフローチャートである。 FIG. 17 is a flowchart for explaining an example of processing for setting the amplification attenuation parameter K according to the ISO sensitivity in accordance with the second setting method.
 ステップS21において、制御部6(図1)は、ディジタルカメラのISO感度を変更する操作が、ユーザ等によって行われたかどうかを判定する。 In step S21, the control unit 6 (FIG. 1) determines whether or not an operation for changing the ISO sensitivity of the digital camera has been performed by the user or the like.
 ステップS21において、ISO感度を変更する操作が行われていないと判定された場合、処理は、ステップS22に進み、制御部6は、現在の増幅減衰パラメータKをそのまま維持し、処理は、ステップS21に戻る。 If it is determined in step S21 that the operation for changing the ISO sensitivity has not been performed, the process proceeds to step S22, the control unit 6 maintains the current amplification attenuation parameter K as it is, and the process proceeds to step S21. Return to.
 また、ステップS21において、ISO感度を変更する操作が行われたと判定された場合、処理は、ステップS23に進み、制御部6は、変更後のISO感度が、閾値TH1より小(又は以下)であるかどうかを判定する。 If it is determined in step S21 that an operation for changing the ISO sensitivity has been performed, the process proceeds to step S23, and the control unit 6 determines that the changed ISO sensitivity is smaller (or less) than the threshold value TH1. Determine if it exists.
 ステップS23において、ISO感度が、閾値TH1より小であると判定された場合、処理は、ステップS24に進み、制御部6は、増幅減衰パラメータKを1に設定し、これにより、増幅減衰処理を無効にして、処理は、ステップS21に戻る。 If it is determined in step S23 that the ISO sensitivity is smaller than the threshold value TH1, the process proceeds to step S24, and the control unit 6 sets the amplification attenuation parameter K to 1, thereby performing the amplification attenuation process. After invalidating, the process returns to step S21.
 また、ステップS23において、ISO感度が、閾値TH1より小でないと判定された場合、処理は、ステップS25に進み、制御部6は、変更後のISO感度が、閾値TH1以上(又はより大)であり、かつ、閾値TH2より小(又は以下)であるかどうかを判定する。 If it is determined in step S23 that the ISO sensitivity is not lower than the threshold value TH1, the process proceeds to step S25, and the control unit 6 determines that the changed ISO sensitivity is equal to or higher than the threshold value TH1 (or higher). It is determined whether it is present and smaller (or less) than the threshold value TH2.
 ステップS25において、ISO感度が、閾値TH1以上で、閾値TH2より小であると判定された場合、処理は、ステップS26に進み、制御部6は、増幅減衰パラメータKを1より大の値P1に設定して、処理は、ステップS21に戻る。 If it is determined in step S25 that the ISO sensitivity is greater than or equal to the threshold TH1 and less than the threshold TH2, the process proceeds to step S26, and the control unit 6 sets the amplification attenuation parameter K to a value P1 greater than 1. After setting, the process returns to step S21.
 また、ステップS25において、ISO感度が、閾値TH1以上で、閾値TH2より小でないと判定された場合、すなわち、変更後のISO感度が、閾値TH2以上(又はより大)である場合、処理は、ステップS27に進み、制御部6は、増幅減衰パラメータKを値P1より大の値P2に設定して、処理は、ステップS21に戻る。 In step S25, when it is determined that the ISO sensitivity is equal to or higher than the threshold TH1 and is not lower than the threshold TH2, that is, when the changed ISO sensitivity is equal to or higher than the threshold TH2 (or higher), the process is as follows. Proceeding to step S27, the control unit 6 sets the amplification attenuation parameter K to a value P2 larger than the value P1, and the process returns to step S21.
 <制御部6の処理を行うコンピュータの説明> <Description of computer that performs processing of control unit 6>
 次に、制御部6が行う一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、マイクロコンピュータ等のコンピュータ等にインストールされる。 Next, a series of processing performed by the control unit 6 can be performed by hardware or can be performed by software. When a series of processing is performed by software, a program constituting the software is installed in a computer such as a microcomputer.
 そこで、図18は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示している。 Therefore, FIG. 18 shows a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク205やROM203に予め記録しておくことができる。 The program can be recorded in advance in a hard disk 205 or ROM 203 as a recording medium built in the computer.
 あるいはまた、プログラムは、リムーバブル記録媒体211に格納(記録)しておくことができる。このようなリムーバブル記録媒体211は、いわゆるパッケージソフトウエアとして提供することができる。ここで、リムーバブル記録媒体211としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。 Alternatively, the program can be stored (recorded) in the removable recording medium 211. Such a removable recording medium 211 can be provided as so-called package software. Here, examples of the removable recording medium 211 include a flexible disk, a CD-ROM (Compact Disc Read Only Memory), a MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a magnetic disc, and a semiconductor memory.
 なお、プログラムは、上述したようなリムーバブル記録媒体211からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク205にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。 The program can be installed on the computer from the removable recording medium 211 as described above, or downloaded to the computer via a communication network or a broadcast network, and installed on the built-in hard disk 205. That is, the program is transferred from a download site to a computer wirelessly via a digital satellite broadcasting artificial satellite, or wired to a computer via a network such as a LAN (Local Area Network) or the Internet. be able to.
 コンピュータは、CPU(Central Processing Unit)202を内蔵しており、CPU202には、バス201を介して、入出力インタフェース210が接続されている。 The computer incorporates a CPU (Central Processing Unit) 202, and an input / output interface 210 is connected to the CPU 202 via the bus 201.
 CPU202は、入出力インタフェース210を介して、ユーザによって、入力部207が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)203に格納されているプログラムを実行する。あるいは、CPU202は、ハードディスク205に格納されたプログラムを、RAM(Random Access Memory)204にロードして実行する。 When a command is input by the user operating the input unit 207 via the input / output interface 210, the CPU 202 executes a program stored in a ROM (Read Only Memory) 203 according to the command. . Alternatively, the CPU 202 loads a program stored in the hard disk 205 into a RAM (Random Access Memory) 204 and executes it.
 これにより、CPU202は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU202は、その処理結果を、必要に応じて、例えば、入出力インタフェース210を介して、出力部206から出力、あるいは、通信部208から送信、さらには、ハードディスク205に記録等させる。 Thereby, the CPU 202 performs processing according to the flowchart described above or processing performed by the configuration of the block diagram described above. Then, the CPU 202 outputs the processing result as necessary, for example, via the input / output interface 210, from the output unit 206, or from the communication unit 208, and further recorded in the hard disk 205.
 なお、入力部207は、キーボードや、マウス、マイク等で構成される。また、出力部206は、LCD(Liquid Crystal Display)やスピーカ等で構成される。 Note that the input unit 207 includes a keyboard, a mouse, a microphone, and the like. The output unit 206 includes an LCD (Liquid Crystal Display), a speaker, and the like.
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。 Here, in the present specification, the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing).
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。 Further, the program may be processed by one computer (processor), or may be distributedly processed by a plurality of computers.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 すなわち、本技術は、ディジタルカメラの他、イメージセンサを搭載して画像を撮影する機能を有するスマートフォン等の携帯端末その他の、画像を撮影する機能が搭載されるあらゆる電子機器に適用可能である。 That is, the present technology can be applied to any electronic device equipped with a function of capturing an image, such as a mobile terminal such as a smartphone having a function of capturing an image by mounting an image sensor in addition to a digital camera.
 また、ディジタルカメラでは、ホワイトバランスに応じて、イメージセンサ2のアナログゲインを、色ごとに変更する場合があるが、そのように、ホワイトバランスに応じて変更される色ごとのアナログゲインに応じて、増幅減衰パラメータKを設定することができる。 Further, in the digital camera, the analog gain of the image sensor 2 may be changed for each color according to the white balance, but as such, according to the analog gain for each color changed according to the white balance. The amplification attenuation parameter K can be set.
 さらに、本実施の形態では、減衰部102又は111の減衰率として、増幅部101の増幅率Kの逆数1/Kを採用することとしたが、減衰部102又は111の減衰率としては、増幅部101の増幅率Kの逆数1/Kとは異なる値を採用することができる。但し、減衰率として、増幅率Kの逆数1/Kとは異なる値を採用する場合には、AD変換に用いられる減衰参照信号のダイナミックレンジが、元の参照信号のダイナミックレンジに一致しなくなるので、その点に注意する必要がある。 Furthermore, in this embodiment, as the attenuation factor of the attenuation section 102 or 111 n, has been decided to adopt the inverse 1 / K of the amplification factor K of the amplifier 101, as the attenuation factor of the attenuation section 102 or 111 n is A value different from the reciprocal 1 / K of the amplification factor K of the amplification unit 101 can be adopted. However, if a value different from the inverse 1 / K of the amplification factor K is used as the attenuation factor, the dynamic range of the attenuation reference signal used for AD conversion will not match the dynamic range of the original reference signal. , You need to be careful about that.
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は、以下の構成をとることができる。 In addition, this technique can take the following structures.
 <1>
 光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
 レベルが変化する参照信号を出力する参照信号出力部と、
 前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
 前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
 前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部と
 を含むイメージセンサ。
 <2>
 前記減衰部は、前記AD変換部において前記電気信号と比較される直前の前記増幅参照信号を減衰する
 <1>に記載のイメージセンサ。
 <3>
 前記減衰部は、コンデンサを有するキャパシタ回路であり、
 前記キャパシタ回路は、前記増幅参照信号を、コンデンサで分圧することにより減衰する
 <1>又は<2>に記載のイメージセンサ。
 <4>
 前記キャパシタ回路は、
  複数のコンデンサと、前記複数のコンデンサの接続を切り替えるスイッチとを有し、
  前記スイッチでコンデンサの接続を切り替えることで、前記増幅参照信号を減衰する減衰率1/Kを変更する
 <3>に記載のイメージセンサ。
 <5>
 前記コンデンサは、オートゼロ処理に用いられるコンデンサである
 <3>又は<4>に記載のイメージセンサ。
 <6>
 撮影時のISO感度に応じて、前記参照信号を増幅した前記増幅参照信号を減衰する増幅減衰処理を行う
 <1>ないし<5>のいずれかに記載のイメージセンサ。
 <7>
 前記ISO感度が所定の閾値以上の高ISO感度である場合、前記増幅減衰処理を有効にし、前記ISO感度が所定の閾値以上でない低ISO感度である場合、前記増幅減衰処理を無効にする
 <6>に記載のイメージセンサ。
 <8>
 前記ISO感度に応じて、前記増幅減衰処理の増幅率K及び減衰率1/Kを表す増幅減衰パラメータKを設定する
 <6>又は<7>に記載のイメージセンサ。
 <9>
 前記増幅減衰パラメータを1より大の値に設定することにより、前記増幅減衰処理を有効にし、
 前記増幅減衰パラメータを1に設定することにより、前記増幅減衰処理を無効にする
 <8>に記載のイメージセンサ。
 <10>
 前記参照信号出力部は、
  電流を流す電流源と、前記電流が流れる抵抗とを有し、
  前記電流が抵抗を流れることにより生じる電圧を、前記参照信号として出力し、
 前記電流源は、前記電流を調整することにより、前記増幅部として機能する
 <1>ないし<9>のいずれかに記載のイメージセンサ。
 <11>
 前記参照信号出力部は、
  電流を流す電流源と、前記電流を積分するオペアンプ及びコンデンサとを有し、
  前記電流を積分することにより得られる電圧を、前記参照信号として出力し、
 前記電流源は、前記電流を調整することにより、前記増幅部として機能する
 <1>ないし<9>のいずれかに記載のイメージセンサ。
 <12>
 光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
 レベルが変化する参照信号を出力する参照信号出力部と
 を含むイメージセンサが、
 前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力し、
 前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力し、
 前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行う
 ステップを含む駆動方法。
 <13>
 光を集光する光学系と、
 光を受光し、画像を撮像するイメージセンサと
 を含み、
 前記イメージセンサは、
 光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
 レベルが変化する参照信号を出力する参照信号出力部と、
 前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
 前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
 前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部と
 を含む
 電子機器。
 <14>
 レベルが変化する参照信号を出力する参照信号出力部と、
 前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
 前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
 電気信号と、前記減衰参照信号とを比較するコンパレータと
 を含むAD変換装置。
<1>
A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
A reference signal output unit that outputs a reference signal whose level changes;
An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
An image sensor including: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
<2>
The image sensor according to <1>, wherein the attenuation unit attenuates the amplified reference signal immediately before being compared with the electrical signal in the AD conversion unit.
<3>
The attenuation unit is a capacitor circuit having a capacitor,
The image sensor according to <1> or <2>, wherein the capacitor circuit attenuates the amplified reference signal by dividing the amplified signal with a capacitor.
<4>
The capacitor circuit is:
Having a plurality of capacitors and a switch for switching the connection of the plurality of capacitors;
The image sensor according to <3>, wherein the attenuation rate 1 / K for attenuating the amplified reference signal is changed by switching connection of a capacitor with the switch.
<5>
The image sensor according to <3> or <4>, wherein the capacitor is a capacitor used for auto-zero processing.
<6>
The image sensor according to any one of <1> to <5>, wherein an amplification attenuation process for attenuating the amplified reference signal obtained by amplifying the reference signal is performed according to an ISO sensitivity at the time of shooting.
<7>
When the ISO sensitivity is a high ISO sensitivity equal to or higher than a predetermined threshold, the amplification attenuation process is enabled, and when the ISO sensitivity is a low ISO sensitivity not higher than the predetermined threshold, the amplification attenuation process is disabled <6 The image sensor described in>.
<8>
The image sensor according to <6> or <7>, wherein an amplification attenuation parameter K representing the amplification factor K and the attenuation factor 1 / K of the amplification attenuation process is set according to the ISO sensitivity.
<9>
By setting the amplification attenuation parameter to a value greater than 1, the amplification attenuation processing is enabled,
The image sensor according to <8>, wherein the amplification attenuation parameter is disabled by setting the amplification attenuation parameter to 1.
<10>
The reference signal output unit is
A current source through which current flows and a resistor through which the current flows;
A voltage generated by the current flowing through the resistor is output as the reference signal;
The image sensor according to any one of <1> to <9>, wherein the current source functions as the amplifying unit by adjusting the current.
<11>
The reference signal output unit is
A current source for supplying current, an operational amplifier and a capacitor for integrating the current,
The voltage obtained by integrating the current is output as the reference signal,
The image sensor according to any one of <1> to <9>, wherein the current source functions as the amplifying unit by adjusting the current.
<12>
A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
An image sensor including a reference signal output unit that outputs a reference signal whose level changes,
An amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K is output,
The amplified reference signal is attenuated by an attenuation factor of 1 / K, and an attenuated reference signal is output.
A driving method including a step of performing AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel and the attenuated reference signal.
<13>
An optical system that collects the light;
An image sensor that receives light and captures an image,
The image sensor is
A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
A reference signal output unit that outputs a reference signal whose level changes;
An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
An electronic device comprising: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
<14>
A reference signal output unit that outputs a reference signal whose level changes;
An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
An AD converter comprising: an electric signal; and a comparator that compares the attenuated reference signal.
 1 光学系, 2 イメージセンサ, 3 メモリ, 4 信号処理部, 5 出力部, 6 制御部, 10 画素アレイ, 111,1ないし11M,N 画素, 20 制御部, 21 画素駆動部, 22 列並列AD変換部, 31ないし31 ADC, 32 オートゼロ制御部, 32A オートゼロ制御線, 33 参照信号出力部, 33A 参照信号線, 34 クロック出力部, 34A クロック線, 41ないし41 画素制御線, 42ないし42 VSL, 43ないし43 電流源, 51 PD, 52 転送Tr, 53 FD, 54 リセットTr, 55 増幅Tr, 56 選択Tr, 61ないし61 コンパレータ, 62ないし62 カウンタ, 63ないし63 コンパレータ, 64ないし64 カウンタ, 71,72 キャパシタ回路, 73 差動アンプ, 74 出力アンプ, 81ないし84 FET, 85,86 スイッチ, 89 電流源, 91,92 FET, 93 スイッチ, 94 コンデンサ, 101 増幅部, 102,111ないし111 減衰部, 131ないし131K-1 スイッチ, 141 電流源, 142 抵抗, 151 オペアンプ, 152 コンデンサ, 201 バス, 202 CPU, 203 ROM, 204 RAM, 205 ハードディスク, 206 出力部, 207 入力部, 208 通信部, 209 ドライブ, 210 入出力インタフェース, 211 リムーバブル記録媒体 DESCRIPTION OF SYMBOLS 1 Optical system, 2 Image sensor, 3 Memory, 4 Signal processing part, 5 Output part, 6 Control part, 10 Pixel array, 11 1 , 1 thru | or 11 M, N pixel, 20 Control part, 21 Pixel drive part, 22 columns Parallel AD conversion unit, 31 1 to 31 N ADC, 32 auto zero control unit, 32A auto zero control line, 33 reference signal output unit, 33A reference signal line, 34 clock output unit, 34A clock line, 41 1 to 41 M pixel control line , 42 1 to 42 N VSL, 43 1 to 43 N current source, 51 PD, 52 transfer Tr, 53 FD, 54 reset Tr, 55 amplifying Tr, 56 selection Tr, 61 1 to 61 N comparator, 62 1 to 62 N Counter, 63 1 to 63 N comparator, 64 1 to 64 N counter, 71, 72 capacitor circuit, 73 differential amplifier, 74 output amplifier, 81 to 84 FET, 85, 86 switch, 89 current source, 91, 92 FET, 93 switch, 94 capacitor, 101 amplifying unit, 102, 111 1 to 111 N attenuating unit, 131 1 to 131 K-1 Switch, 141 current source, 142 resistor, 151 operational amplifier, 152 capacitor, 201 bus, 202 CPU, 203 ROM, 204 RAM, 205 hard disk, 206 output unit, 207 input unit, 208 communication unit, 209 drive, 210 I / O interface, 211 Removable recording media

Claims (14)

  1.  光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
     レベルが変化する参照信号を出力する参照信号出力部と、
     前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
     前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
     前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部と
     を含むイメージセンサ。
    A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
    A reference signal output unit that outputs a reference signal whose level changes;
    An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
    Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
    An image sensor including: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
  2.  前記減衰部は、前記AD変換部において前記電気信号と比較される直前の前記増幅参照信号を減衰する
     請求項1に記載のイメージセンサ。
    The image sensor according to claim 1, wherein the attenuation unit attenuates the amplified reference signal immediately before being compared with the electrical signal in the AD conversion unit.
  3.  前記減衰部は、コンデンサを有するキャパシタ回路であり、
     前記キャパシタ回路は、前記増幅参照信号を、コンデンサで分圧することにより減衰する
     請求項2に記載のイメージセンサ。
    The attenuation unit is a capacitor circuit having a capacitor,
    The image sensor according to claim 2, wherein the capacitor circuit attenuates the amplified reference signal by dividing the amplified signal with a capacitor.
  4.  前記キャパシタ回路は、
      複数のコンデンサと、前記複数のコンデンサの接続を切り替えるスイッチとを有し、
      前記スイッチでコンデンサの接続を切り替えることで、前記増幅参照信号を減衰する減衰率1/Kを変更する
     請求項3に記載のイメージセンサ。
    The capacitor circuit is:
    Having a plurality of capacitors and a switch for switching the connection of the plurality of capacitors;
    The image sensor according to claim 3, wherein an attenuation factor 1 / K for attenuating the amplified reference signal is changed by switching connection of a capacitor with the switch.
  5.  前記コンデンサは、オートゼロ処理に用いられるコンデンサである
     請求項3に記載のイメージセンサ。
    The image sensor according to claim 3, wherein the capacitor is a capacitor used for auto-zero processing.
  6.  撮影時のISO感度に応じて、前記参照信号を増幅した前記増幅参照信号を減衰する増幅減衰処理を行う
     請求項3に記載のイメージセンサ。
    The image sensor according to claim 3, wherein an amplification attenuation process for attenuating the amplified reference signal obtained by amplifying the reference signal is performed according to an ISO sensitivity at the time of shooting.
  7.  前記ISO感度が所定の閾値以上の高ISO感度である場合、前記増幅減衰処理を有効にし、前記ISO感度が所定の閾値以上でない低ISO感度である場合、前記増幅減衰処理を無効にする
     請求項6に記載のイメージセンサ。
    The amplification attenuation process is enabled when the ISO sensitivity is a high ISO sensitivity equal to or higher than a predetermined threshold, and the amplification attenuation process is disabled when the ISO sensitivity is a low ISO sensitivity not higher than a predetermined threshold. 6. The image sensor according to 6.
  8.  前記ISO感度に応じて、前記増幅減衰処理の増幅率K及び減衰率1/Kを表す増幅減衰パラメータKを設定する
     請求項6に記載のイメージセンサ。
    The image sensor according to claim 6, wherein an amplification attenuation parameter K representing an amplification factor K and an attenuation factor 1 / K of the amplification attenuation process is set according to the ISO sensitivity.
  9.  前記増幅減衰パラメータを1より大の値に設定することにより、前記増幅減衰処理を有効にし、
     前記増幅減衰パラメータを1に設定することにより、前記増幅減衰処理を無効にする
     請求項8に記載のイメージセンサ。
    By setting the amplification attenuation parameter to a value greater than 1, the amplification attenuation processing is enabled,
    The image sensor according to claim 8, wherein the amplification attenuation process is invalidated by setting the amplification attenuation parameter to 1. 9.
  10.  前記参照信号出力部は、
      電流を流す電流源と、前記電流が流れる抵抗とを有し、
      前記電流が抵抗を流れることにより生じる電圧を、前記参照信号として出力し、
     前記電流源は、前記電流を調整することにより、前記増幅部として機能する
     請求項3に記載のイメージセンサ。
    The reference signal output unit is
    A current source through which current flows and a resistor through which the current flows;
    A voltage generated by the current flowing through the resistor is output as the reference signal;
    The image sensor according to claim 3, wherein the current source functions as the amplifying unit by adjusting the current.
  11.  前記参照信号出力部は、
      電流を流す電流源と、前記電流を積分するオペアンプ及びコンデンサとを有し、
      前記電流を積分することにより得られる電圧を、前記参照信号として出力し、
     前記電流源は、前記電流を調整することにより、前記増幅部として機能する
     請求項3に記載のイメージセンサ。
    The reference signal output unit is
    A current source for supplying current, an operational amplifier and a capacitor for integrating the current,
    The voltage obtained by integrating the current is output as the reference signal,
    The image sensor according to claim 3, wherein the current source functions as the amplifying unit by adjusting the current.
  12.  光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
     レベルが変化する参照信号を出力する参照信号出力部と
     を含むイメージセンサが、
     前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力し、
     前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力し、
     前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行う
     ステップを含む駆動方法。
    A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
    An image sensor including a reference signal output unit that outputs a reference signal whose level changes,
    An amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K is output,
    The amplified reference signal is attenuated by an attenuation factor of 1 / K, and an attenuated reference signal is output.
    A driving method including a step of performing AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel and the attenuated reference signal.
  13.  光を集光する光学系と、
     光を受光し、画像を撮像するイメージセンサと
     を含み、
     前記イメージセンサは、
     光電変換を行う光電変換素子を有し、電気信号を出力する画素と、
     レベルが変化する参照信号を出力する参照信号出力部と、
     前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
     前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
     前記画素から出力される前記電気信号と、前記減衰参照信号とを比較することにより、前記電気信号のAD(Analog to Digital)変換を行うAD変換部と
     を含む
     電子機器。
    An optical system that collects the light;
    An image sensor that receives light and captures an image,
    The image sensor is
    A pixel having a photoelectric conversion element for performing photoelectric conversion and outputting an electrical signal;
    A reference signal output unit that outputs a reference signal whose level changes;
    An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
    Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
    An electronic device comprising: an AD conversion unit that performs AD (Analog to Digital) conversion of the electrical signal by comparing the electrical signal output from the pixel with the attenuated reference signal.
  14.  レベルが変化する参照信号を出力する参照信号出力部と、
     前記参照信号を、1倍以上のK倍の増幅率で増幅した増幅参照信号を出力する増幅部と、
     前記増幅参照信号を、1/K倍の減衰率で減衰し、減衰参照信号を出力する減衰部と、
     電気信号と、前記減衰参照信号とを比較するコンパレータと
     を含むAD変換装置。
    A reference signal output unit that outputs a reference signal whose level changes;
    An amplification unit that outputs an amplified reference signal obtained by amplifying the reference signal at an amplification factor of 1 or more times K;
    Attenuating the amplified reference signal with an attenuation factor of 1 / K, and outputting an attenuated reference signal;
    An AD converter comprising: an electric signal; and a comparator that compares the attenuated reference signal.
PCT/JP2015/064675 2014-06-04 2015-05-22 Image sensor, electronic apparatus, ad conversion device, and drive method WO2015186533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115770A JP2015231096A (en) 2014-06-04 2014-06-04 Image sensor, electronic apparatus, ad conversion device and driving method
JP2014-115770 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186533A1 true WO2015186533A1 (en) 2015-12-10

Family

ID=54766608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064675 WO2015186533A1 (en) 2014-06-04 2015-05-22 Image sensor, electronic apparatus, ad conversion device, and drive method

Country Status (2)

Country Link
JP (1) JP2015231096A (en)
WO (1) WO2015186533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291414A (en) * 2017-02-21 2019-09-27 索尼半导体解决方案公司 Distance-measuring device and distance measurement method
US10840936B2 (en) 2016-07-28 2020-11-17 Sony Semiconductor Solutions Corporation Sensor, driving method, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020004A (en) 2018-06-14 2021-02-23 소니 세미컨덕터 솔루션즈 가부시키가이샤 Signal processing circuit, solid-state imaging device, and control method of signal processing circuit
JPWO2022030207A1 (en) * 2020-08-06 2022-02-10

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040855A (en) * 2009-08-07 2011-02-24 Sony Corp Solid-state imaging apparatus, method of driving the same, and imaging apparatus
JP2012010055A (en) * 2010-06-24 2012-01-12 Sony Corp Object imaging device
JP2012114578A (en) * 2010-11-22 2012-06-14 Toshiba Corp Solid-state image sensor
WO2012144234A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Voltage generating circuit, analog-digital converter circuit, solid-state image pickup device, and image pickup apparatus
WO2013080412A1 (en) * 2011-11-30 2013-06-06 パナソニック株式会社 Solid-state imaging device and camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040855A (en) * 2009-08-07 2011-02-24 Sony Corp Solid-state imaging apparatus, method of driving the same, and imaging apparatus
JP2012010055A (en) * 2010-06-24 2012-01-12 Sony Corp Object imaging device
JP2012114578A (en) * 2010-11-22 2012-06-14 Toshiba Corp Solid-state image sensor
WO2012144234A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Voltage generating circuit, analog-digital converter circuit, solid-state image pickup device, and image pickup apparatus
WO2013080412A1 (en) * 2011-11-30 2013-06-06 パナソニック株式会社 Solid-state imaging device and camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840936B2 (en) 2016-07-28 2020-11-17 Sony Semiconductor Solutions Corporation Sensor, driving method, and electronic device
CN110291414A (en) * 2017-02-21 2019-09-27 索尼半导体解决方案公司 Distance-measuring device and distance measurement method
CN110291414B (en) * 2017-02-21 2023-11-28 索尼半导体解决方案公司 Distance measuring device and distance measuring method

Also Published As

Publication number Publication date
JP2015231096A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
US10523889B2 (en) Image sensor, electronic apparatus, comparator, and drive method
US9041583B2 (en) Comparator, solid-state imaging device, electronic apparatus, and driving method
US9451193B2 (en) Electronic apparatus, control method, and image sensor
JP5620693B2 (en) Solid-state imaging device, driving method thereof, and camera
US11095278B2 (en) Comparator, solid-state imaging device, electronic apparatus, and driving method
US9029752B2 (en) Solid state imaging apparatus including reference signal generator with a slope converting circuit
JP6825578B2 (en) Image sensors, electronic devices, control devices, control methods, and programs
US9954026B2 (en) Imaging apparatus and imaging system
JP2009177797A (en) Solid-state imaging device and method of driving the same
JP2009177749A (en) Solid-state imaging apparatus
JP6631887B2 (en) Solid-state imaging device and camera
KR20170114602A (en) Cds circuit for decreasing settling time and image sensor including the same
CN109496426B (en) Sensor, driving method, and electronic device
US20130063637A1 (en) Solid-state image pickup device and camera system
WO2016114153A1 (en) Solid-state image capturing device, drive method, and electronic instrument
JP6635027B2 (en) Image sensor, gain control method, program, and electronic device
WO2015186533A1 (en) Image sensor, electronic apparatus, ad conversion device, and drive method
JP2016092662A (en) Processing unit, processing method, image sensor and electronic apparatus
US10038863B2 (en) Image sensing device
JP6746579B2 (en) Imaging device and electronic device
CN110418084B (en) Comparison device and CMOS image sensor including the same
US10009561B2 (en) Driving method of imaging apparatus, imaging apparatus, and imaging system
JP6060500B2 (en) Image sensor
JP2011087125A (en) Solid-state imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802855

Country of ref document: EP

Kind code of ref document: A1