WO2015186379A1 - Method for manufacturing phase difference film and method for manufacturing layered polarizing plate - Google Patents
Method for manufacturing phase difference film and method for manufacturing layered polarizing plate Download PDFInfo
- Publication number
- WO2015186379A1 WO2015186379A1 PCT/JP2015/053694 JP2015053694W WO2015186379A1 WO 2015186379 A1 WO2015186379 A1 WO 2015186379A1 JP 2015053694 W JP2015053694 W JP 2015053694W WO 2015186379 A1 WO2015186379 A1 WO 2015186379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- support
- stretching
- retardation
- retardation film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
- B05D7/04—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a method for producing a retardation film. Furthermore, the present invention relates to a method for producing a laminated polarizing plate in which a polarizer and a retardation film are laminated.
- a retardation film is used for the purpose of performing optical compensation such as improving contrast and widening the viewing angle (see, for example, Patent Document 1).
- a polymer having positive intrinsic birefringence As the resin material constituting the positive A plate, negative C plate, and negative B plate, a polymer having positive intrinsic birefringence is generally used. On the other hand, a polymer having negative intrinsic birefringence is generally used as the resin material constituting the negative A plate, positive C plate, and positive B plate. Note that “having positive intrinsic birefringence” means that when the polymer is oriented by stretching or the like, the refractive index in the orientation direction becomes relatively large. “Having negative intrinsic birefringence” refers to a polymer having a relatively low refractive index in the orientation direction when the polymer is oriented by stretching or the like.
- the retardation film used for optical compensation is required to have a uniform film thickness and optical characteristics. Therefore, the solution casting method is widely used for forming the retardation film.
- a resin solution (dope) in which a polymer is dissolved in a solvent is applied onto a support, and then the solvent is removed by heat drying or the like, and a coating film is adhered and laminated on the support. Is formed.
- Patent Document 2 discloses that polyarylate having a predetermined substituent has high birefringence and that a coating film after applying the polymer on a substrate can be used as a negative C plate. .
- Various optical anisotropies can be imparted by stretching or shrinking a coating film (film) formed by the solution casting method in at least one direction.
- a retardation film is produced by stretching a coating film formed by a solution casting method
- the resin solution is applied onto an endless support such as an endless belt or a film forming drum, it is necessary to perform stretching after peeling the coating film from the support.
- the laminated body of the support and the coating film is stretched or contracted to impart optical anisotropy.
- the film thickness of the coating film is small (for example, 30 ⁇ m or less), or when a resin material with low spreadability (brittle) is used, the coating film has low self-supportability and is difficult to handle.
- a method of stretching or shrinking the laminate of the used support and coating film is employed.
- Patent Document 4 When optical anisotropy is imparted by stretching or shrinking a laminate of a support and a coating film used for film formation, as disclosed in Patent Document 3, without peeling the support from the laminate. , A method of using the laminate of the support and the coating film as a laminated phase difference plate as it is, and a method of peeling the support from the stretched laminate and using only the stretched coating film as a retardation film for practical use There is.
- Patent Document 4 a coating film is formed by solution casting using a heat-shrinkable film as a support, the laminate is heated and shrunk, and then the support is peeled off, whereby nx> nz> ny optical. A method of forming a retardation film (Z plate) having anisotropy is disclosed.
- the support used for solution casting is required to have solvent resistance to solvents and heat resistance during heat drying. Moreover, when using the laminated body after extending
- the support when the support is peeled from the stretched laminate and only the stretched coating film is used as the retardation film, the support is a process member not included in the retardation film as the final product.
- the support is not necessarily optically uniform, and is required to be as inexpensive as possible as long as it has solvent resistance and heat resistance that can withstand processing such as film formation and stretching.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PP polypropylene
- PET film is widely used as a support for solution casting because it is highly versatile and has excellent heat resistance and solvent resistance.
- Patent Document 4 discloses an example in which an amorphous polyester (A-PET) film is used as a support for solution casting.
- a general-purpose film such as polyethylene terephthalate (PET) is used as the resin film support.
- PET polyethylene terephthalate
- a coating film with a small film thickness is formed on a support such as a general-purpose PET film, when the laminate of the coating film and the support is stretched, the stretch processability is poor and stretching cannot be performed. It has been found that there are problems such as the appearance of defects and appearance defects such as waves.
- an object of the present invention is to provide a manufacturing method for producing a retardation film having a large birefringence and having a high retardation even when it is thinned.
- the method for producing a retardation film of the present invention includes a step in which a resin solution is applied on a support film (application step), and a laminate in which the resin solution is dried by heating and a coating film is adhered and laminated on the support film. It has the process (drying process) in which a body is formed in this order.
- the support film used in the production method of the present invention has a tensile elastic modulus at 140 ° C. of 200 MPa to 1000 MPa before the coating step.
- the manufacturing method of the present invention is particularly suitable for manufacturing a retardation film having a small film thickness.
- the film thickness after the support body peels ie, the film thickness of retardation film, is 30 micrometers or less.
- drying is performed at a temperature of 100 ° C. or higher in the drying step.
- a temperature of 100 ° C. or higher By drying at a high temperature of 100 ° C. or higher, drying in a short time is possible, and the productivity of the retardation film is increased.
- the support body whose tensile elasticity modulus is in the said range is used, even when it dries at high temperature, the coating film after drying has big thickness direction birefringence. Therefore, a retardation film having a large retardation even with a small film thickness can be obtained.
- the laminate is stretched in at least one direction, and a step (stretching step) in which optical anisotropy is imparted to the coating film is performed.
- a step stretching step in which optical anisotropy is imparted to the coating film is performed.
- the support is preferably peeled from the laminate.
- free end uniaxial stretching is performed in the stretching step.
- the stretched film on the support that is, the retardation film is stretched so as to have an optical anisotropy of nx> ny> nz or nz> nx> ny.
- nx and ny are the refractive indexes in the slow axis direction and the fast axis direction in the plane of the coating film, respectively, and nz is the refractive index in the thickness direction of the coating film.
- the present invention relates to a method for producing a laminated polarizing plate in which a polarizer and a retardation film are laminated.
- a polarizer is laminated on the retardation film produced by the above method.
- the coating film after film formation has a large thickness direction birefringence. . Therefore, even when the film thickness is small, a retardation film having a large retardation can be produced with a high yield.
- the elastic modulus of the support in a heating environment is within a predetermined range, a retardation film having excellent workability during stretching, high uniformity, and reduced appearance defects can be obtained.
- a polymer having excellent transparency, mechanical strength, and thermal stability is preferably used as the resin material constituting the retardation film.
- polymers include cellulose resins such as acetyl cellulose, polyester resins, polycarbonate resins, polyamide resins, polyimide resins, maleimide resins, polyolefin resins, (meth) acrylic resins, cyclic Examples thereof include polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, polysulfone resins, and mixtures or copolymers thereof.
- the polymer may have a positive intrinsic birefringence or a negative intrinsic birefringence.
- nx and ny are the refractive indexes in the slow axis direction and the fast axis direction in the plane of the coating film, respectively, and nz is the refractive index in the thickness direction of the coating film.
- the in-plane birefringence ⁇ n in the in-plane retardation Re
- the thickness direction birefringence ⁇ n out the thickness direction retardation Rth
- the Nz coefficient have the following relationships, respectively.
- a solution (dope) of a resin material constituting a retardation film is applied on a support film (application step).
- the dope applied on the support is dried by heating to form a laminate in which a coating film of a resin material is closely laminated on the support film (drying step). Since molecular orientation of the polymer in the coating film occurs during drying, the coating film after drying can be used as it is as a retardation film.
- the laminated body in which the coating film is formed on the support is stretched in at least one direction, whereby optical anisotropy is imparted to the coating film (stretching step).
- the laminated body after stretching can be used as a retardation film as it is.
- a support body is peeled from the laminated body after extending
- each of the above steps is preferably performed by roll-to-roll.
- roll-to-roll a long support film is used. The application, drying and stretching are performed while the support is transported along the longitudinal direction. Moreover, it is preferable that peeling of the coating film from a support body is also performed by roll-to-roll.
- the manufacturing method of this invention is demonstrated along each process centering on embodiment by the roll-to-roll method.
- the support film In the roll-to-roll method, film formation is performed while the support film is conveyed along the longitudinal direction. Therefore, a wound body (roll) of a long film is used as the support film. Moreover, in the manufacturing method of this invention, after a coating film is formed on a support body by a solution casting method, the laminated body of a support body and a coating film is used for an extending process. Therefore, it is preferable that the support film has flexibility, excellent thermal stability and mechanical strength, and can be stretched. From this viewpoint, a resin film is used as the support film.
- the support film may be simply referred to as “support”.
- the support used in the present invention preferably has a tensile elastic modulus at 140 ° C. of 100 Mpa to 1000 MPa.
- the tensile elastic modulus at 140 ° C. of the support is more preferably from 200 MPa to 900 MPa, further preferably from 300 MPa to 800 MPa.
- the elastic modulus at 140 ° C. of the support is 100 MPa or more, the birefringence in the thickness direction of the resin coating film formed thereon tends to increase, especially when drying is performed at a high temperature of 100 ° C. or more. The trend is remarkable.
- the elastic modulus at 140 ° C. of the support is 1000 MPa or less, the workability during stretching is excellent, and appearance defects such as the generation of waves in the stretching direction are suppressed.
- the elastic modulus When the support is a stretched film, the elastic modulus may have anisotropy due to a difference in stretch ratio between the longitudinal direction (MD) and the width direction (TD).
- MD longitudinal direction
- TD width direction
- the tensile elastic modulus of MD and TD of the support When the tensile elastic modulus of MD and TD of the support is different, the tensile elastic modulus of MD may be in the above range, but preferably the elastic modulus of MD and TD at 140 ° C. are both in the above range.
- the tensile elastic modulus at 140 ° C. of a general-purpose biaxially stretched PET film is about 1200 MPa.
- stretching processability when stretching a laminate of a coating film and a support is poor, and stretching may not be performed. It is easy to cause problems such as poor appearance.
- an amorphous polyester film such as A-PET when heated to 140 ° C., it becomes a rubber state exceeding the glass transition point, and the tensile elastic modulus is reduced to several MPa to several tens of MPa.
- a coating film obtained by heating a resin solution coated on such a low elastic support to a high temperature and drying tends to reduce birefringence in the thickness direction. Therefore, if the elastic modulus at 140 ° C. of the support is excessively small, it tends to be difficult to obtain a retardation film having a small retardation and a large retardation.
- the resin material constituting the support is not particularly limited as long as the tensile elastic modulus at 140 ° C. is in the above range.
- polyester, polyolefin, polycycloolefin, polyamide, polycarbonate, vinyl chloride, vinylidene chloride, imide-based polymer examples include sulfone polymers. Among these, those that do not dissolve in the solvent during solution casting are preferably used.
- a crystalline polyester resin is preferably used as a resin material having the above-described tensile elastic modulus and high solvent resistance.
- the glycol component of the monomer unit constituting the polyester such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and / or a part of the dicarboxylic acid is used as another monomer component.
- a copolyester substituted with is preferably used.
- 1,2-cyclohexanedimethanol or 1,4-cyclohexanedimethanol replaces part of linear glycols such as PET ethylene glycol and PBE 1,4-butanediol.
- polyester substituted with the dicarboxylic acid component examples include PET terephthalic acid and PEN 2,6-naphthalenedicarboxylic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, And dicarboxylic acid-modified polyester substituted with 1,5-naphthalenedicarboxylic acid.
- a polyethylene-terephthalate / isophthalate copolymer in which a part of terephthalic acid in PET is substituted with isophthalic acid is preferably used.
- Polyethylene-terephthalate / isophthalate copolymer can adjust the mechanical and thermal properties such as elastic modulus by changing the ratio of terephthalic acid component to isophthalic acid component, and increase the ratio of isophthalic acid component Thereby, the elasticity modulus in 140 degreeC can be made smaller than PET.
- the polyethylene-terephthalate / isophthalate copolymer can be crystallized by stretching in the same way as PET, it has excellent mechanical strength and high solvent resistance. It is suitable as.
- the thickness of the support is not particularly limited, but is preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more, and even more preferably 40 ⁇ m or more from the viewpoint of providing the support with self-supporting properties and suppressing the generation of waves during stretching. .
- the thickness of the support is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less.
- the support may be colorless and transparent, and may be colored or opaque.
- the surface of the support may be subjected to easy adhesion treatment, mold release treatment, antistatic treatment, antiblocking treatment and the like.
- the embossing (knurling) etc. may be given to the edge part of the width direction of a support body for the objectives, such as blocking prevention.
- the thickness of the support is not particularly limited as long as it has both self-supporting properties and flexibility.
- the thickness of the support is generally about 20 ⁇ m to 200 ⁇ m, preferably 30 ⁇ m to 150 ⁇ m, and more preferably 35 ⁇ m to 100 ⁇ m.
- the width of the support is not particularly limited, but is preferably 300 mm or more, more preferably 500 mm or more, more preferably 700 mm or more, and particularly preferably 1000 mm or more. Increasing the width of the support increases the mass productivity of the retardation film.
- the support is preferably a stretched film stretched in at least one direction.
- the material constituting the support is a crystalline polymer, as described above, the crystallinity of the polymer is enhanced by stretching the film, and the heat resistance and solvent resistance can be improved along with the mechanical strength.
- the support is preferably a biaxially stretched film stretched in both the longitudinal direction (MD) and the width direction (TD).
- MD longitudinal direction
- TD width direction
- a draw ratio is not specifically limited, From the said viewpoint, what was extended
- FIG. 1 is a process conceptual diagram schematically showing an embodiment of a film forming process and a drying process by a roll-to-roll method.
- the wound body 10 of the long support 1 is set on the feeding portion 11 of the film forming apparatus.
- the support 1 unwound from the winding body 10 is continuously conveyed from the feeding section 11 to the downstream side of the film forming apparatus, and passes through the guide rollers 201 to 205, and is then provided on the downstream side.
- the film is transported to 110 and film formation is performed.
- the guide roller may constitute a nip roll pair like the rollers 203 and 204.
- the dope 118 is spread on the support 1, and film formation is performed according to a conventional method.
- a knife roll coater is illustrated.
- the thickness of the coating film is adjusted by bringing the support 1 into contact with the dope 118 in the liquid dam 117 while bringing the support 1 into contact with the backup roll 112 and draining the dope with the knife roll 111.
- the film forming method in the film forming unit 110 is not limited to knife roll coating, and various methods such as kiss roll coating, gravure coating, reverse coating, spray coating, Meyer bar coating, air knife coating, curtain coating, lip coating, and die coating. Is used.
- the dope 118 is a resin material solution for forming a retardation film, and contains a resin material (polymer) and a solvent.
- the dope may contain additives such as a leveling agent, a plasticizer, an ultraviolet absorber, and a deterioration inhibitor as necessary.
- a resin material for forming the retardation film either a polymer having positive intrinsic birefringence or a polymer having negative intrinsic birefringence is used depending on the optical anisotropy of the target retardation film. it can. Further, a plurality of resin materials can be mixed and used according to the optical characteristics of the target retardation film.
- the solid content and viscosity of the dope are appropriately set according to the type and molecular weight of the resin, the thickness of the retardation film, the film forming method, and the like.
- the film forming thickness is set so that, for example, the film thickness after drying is about 1 ⁇ m to 100 ⁇ m according to the optical characteristics (retardation value) required for the retardation film. Since the present invention stretches a laminate of a support and a coating film formed thereon, the coating film alone has a small film thickness, and even if handling is difficult, processing such as stretching is easy It can be done. Therefore, when the film thickness of the coating film is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, further preferably 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, the film thickness is small when the production method of the present invention is applied, In addition, a retardation film having excellent optical characteristics and appearance characteristics can be easily obtained.
- the dope layer applied on the support 1 is transported into the drying furnace 120 together with the support 1, the solvent is removed, and a laminate 2 in which a coating film is formed on the support 1 is obtained.
- the laminated body 2 is conveyed downstream from the drying furnace 120, passed through the guide rollers 211 to 215, and taken up by the take-up unit 21 to obtain the wound body 20 of the laminated body 2 of the support and the coating film.
- the heating temperature (drying temperature) and drying time in the drying process are not particularly limited. From the viewpoint of shortening the drying time and improving the production process, it is preferable that the drying temperature is as high as possible within a range in which appearance defects such as bubbles do not occur.
- the drying temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher.
- the drying temperature is preferably 230 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 180 ° C. or lower.
- the drying temperature When the drying temperature is increased, productivity can be improved by shortening the drying time, but the thickness direction retardation of the coating film after drying tends to decrease.
- the present invention by using a support having an elastic modulus at a high temperature (140 ° C.) of a predetermined value or more, a decrease in retardation is suppressed even when drying is performed at 100 ° C. or more. Therefore, according to the production method of the present invention, a retardation film having a large retardation can be obtained while improving productivity by drying at a high temperature.
- the heating temperature in the drying process is adjusted by an appropriate heating means such as an air circulating fence oven in which hot or cold air circulates, a heater using microwaves or far infrared rays, a roll heated for temperature adjustment, a heat pipe roll, etc. Can be done.
- the temperature in the furnace does not need to be constant throughout the furnace, and may have a temperature profile that increases or decreases in steps. For example, the furnace can be divided into a plurality of zones, and the set temperature can be changed for each zone.
- temperatures near the entrance and exit of the heating furnace A preheating zone or a cooling zone can be provided so that the change is moderate.
- the drying temperature refers to the temperature in the furnace at the highest temperature (that is, the atmospheric temperature in the furnace).
- the maximum temperature is preferably 100 ° C or higher, more preferably 110 ° C or higher, and further preferably 120 ° C or higher.
- the heating time in the above temperature range is preferably 10 seconds or more, more preferably 20 seconds or more, and further preferably 30 seconds or more. The heating time can be adjusted by the length of the transport path of the support in the heating furnace (furnace length) and the transport speed of the support.
- the birefringence in the thickness direction of the coating film after drying can be increased. Therefore, the laminate in which the coating film is closely laminated on the support, or the coating after the support is peeled off from the laminate can be practically used as a retardation film.
- the laminate 2 having a coating film formed on the support 1 is preferably stretched in at least one direction in the stretching step.
- FIG. 2 is a diagram schematically illustrating an embodiment of the stretching process and the peeling process.
- the wound body 20 of the laminate 2 is set on the feeding portion 22 of the stretching apparatus.
- the laminated body 2 unwound from the wound body 20 is continuously conveyed from the feeding section 22 to the heating furnace 139 of the downstream stretching section 130 via the guide rollers 221 and 222. 1 and 2
- the wound body 20 of the laminated body 2 is transferred to the feeding unit 22 of the stretching apparatus.
- the laminate may be subjected to the stretching step as it is without winding the laminate after the film forming and drying steps.
- the laminate 2 is stretched in at least one direction at the stretching portion 130.
- the term “stretched in at least one direction” means that the distance between two points is increased in at least one direction in the plane.
- the stretching unit 130 includes a heating furnace 139, nip rolls 231 and 232 are provided on the upstream side (inlet) of the heating furnace 139, and nip rolls 236 and 237 are provided on the downstream side (outlet).
- the film is stretched in the longitudinal direction without gripping the end of the laminate in the width direction.
- the laminate 2 is stretched in the longitudinal direction by making the peripheral speed of the nip rolls 236 and 237 on the downstream side of the heating furnace 139 larger than the peripheral speed of the nip rolls 231 and 232 on the upstream side. .
- hot air blowing nozzles (floating nozzles) 131 to 137 are arranged in a staggered manner in the heating furnace 139 above and below the transport path of the laminate, and stretching is performed under heating with hot air.
- the film transport method in the heating furnace (stretching furnace) 139 is not limited to the float method, and an appropriate transport method such as a roll transport method or a tenter transport method is employed. Stretching in the width direction (TD) can be performed while the film is conveyed in the longitudinal direction (MD) by tenter conveyance. Further, simultaneous biaxial stretching in the conveying direction and width direction or oblique stretching may be performed in the heating furnace 139. Furthermore, after stretching in the longitudinal direction in the heating furnace 139, sequential biaxial stretching may be performed by stretching in the width direction in another heating furnace (not shown).
- the heating temperature (stretching temperature) in the stretching step is not particularly limited, but is preferably a temperature at which both the support and the coating film formed thereon can be stretched.
- the stretching temperature is preferably (Tg-50) ° C. or higher, more preferably (Tg-40) ° C. or higher, ( Tg-30) ° C. or higher is more preferable. If the stretching temperature is too low, peeling of the coating film from the support may occur, retardation may be non-uniform, and appearance defects such as haze increase may occur. On the other hand, if the stretching temperature is too high, the orientation of the polymer constituting the coating film is lowered, and the desired retardation may not be obtained.
- the stretching temperature is set according to the type of polymer constituting the coating film (retardation film), the thermal characteristics of the support, and the like.
- the stretching temperature is generally about 100 ° C. to 220 ° C., preferably about 120 ° C. to 200 ° C.
- the temperature in the heating furnace 139 does not need to be constant throughout the furnace, and may have a temperature profile that increases or decreases in steps. For example, the furnace can be divided into a plurality of zones, and the set temperature can be changed for each zone.
- the vicinity of the entrance and exit of the heating furnace A preheating zone and a cooling zone, or a heating roll and a cooling roll can also be provided so that the temperature change at 1 is moderate.
- the draw ratio in the drawing step is preferably 1.01 or more, and more preferably 1.03 or more.
- in-plane birefringence ⁇ n in
- the draw ratio is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2 times or less.
- Optical properties such as in-plane retardation Re, thickness direction retardation Rth, and Nz coefficient of the retardation film are appropriately selected according to the use of the retardation film, and the stretching method and stretching ratio in the stretching process are It can be adjusted according to the optical characteristics.
- the refractive index in the stretching direction increases (or decreases), whereas the refractive index in the direction orthogonal to the stretching direction, that is, the width direction and the thickness direction decreases. (Or increase).
- the shrinkage rate in the width direction and the shrinkage rate in the thickness direction are the same, and the decrease rate (or increase rate) in the width direction and the refractive index in the thickness direction are the same.
- the shrinkage rate in the width direction tends to be larger than the shrinkage rate in the thickness direction.
- the reduction rate of the refractive index ny in the width direction during stretching is larger than the reduction rate of the refractive index nz in the thickness direction, and the refractive index anisotropy of ny> nz is eliminated.
- a positive B plate having a refractive index anisotropy of nz> nx> ny is obtained by free end uniaxial stretching.
- the birefringence in the thickness direction of the coating film after drying can be increased. Therefore, a negative B plate and a positive B plate can be obtained by subjecting the laminate in which the coating film is closely laminated on the support to free end uniaxial stretching. Moreover, since it is suppressed that the tension
- the Nz coefficient of the retardation film is preferably larger than 1.03, 1.05 or more Is more preferable, and 1.10 or more is more preferable.
- the Nz coefficient of the retardation film is preferably smaller than ⁇ 0.03, ⁇ 0 .05 or less is more preferable, and -0.10 or less is more preferable.
- the stretching method for obtaining the negative B plate and the positive B plate is not limited to free end uniaxial stretching, and may be fixed end uniaxial stretching (lateral stretching) or sequential or simultaneous biaxial stretching.
- the draw ratio in the drawing step is preferably 1.01 or more, and more preferably 1.03 or more.
- in-plane birefringence ⁇ n in
- the draw ratio is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2 times or less.
- the laminated body 3 after stretching can be used as a retardation film as it is.
- the support 6 after stretching is peeled from the laminated body 3 after stretching, and the coating film 4 after peeling the support is used as a retardation film.
- the support is a process member that is not included in the retardation film that is the final product. Therefore, the support need not be optically uniform, and an inexpensive support can be used.
- the laminated body 3 after stretching may be wound up into a roll once, and can be subjected to a peeling process continuously from the stretching process.
- FIG. 2 the form by which the peeling process is performed in the peeling part 160 continuously after an extending process is illustrated.
- the peeling method of the support 6 after stretching and the coating film (retardation film 4) is not particularly limited, but from the viewpoint of performing uniform peeling, the laminate 3 is sandwiched between nip rolls 261 and 262, and on the downstream side thereof.
- the support 6 and the retardation film 4 are preferably transported along the upper roll 261 and the lower roll 262 and then peeled off.
- the support 6 after peeling is wound up by the winding unit 61 by an appropriate method.
- the retardation film can be further subjected to another process after the stretching process or the peeling process.
- the retardation film 4 after peeling off the support 6 is inspected by the inspection unit 170 and then bonded to another film 9 by the bonding unit 190, and then the retardation film. 4 and the laminated body 5 of the film 9 are wound up by the winding part 51, and the wound body 50 is formed.
- the inspection unit includes an inspection device for inspecting the retardation film.
- the inspection unit 170 includes a phase difference meter 171 and a defect detection unit 172.
- the retardation meter 171 detects the retardation of the retardation film 4 and the orientation angle of the slow axis.
- the retardation can be kept constant by feeding back the measured retardation value to the roll peripheral speed or the like in the stretching section 130. From the viewpoint of accurately measuring the retardation of the retardation film 4, it is preferable that the retardation measurement is performed after the support 6 is peeled off.
- the defect detection unit is configured to detect defects such as foreign matter existing in or on the surface of the retardation film, uneven defects such as dents, and scratches. By detecting the defect after the support 6 is peeled off, the defect of the retardation film 4 can be selectively detected without detecting the defect included only in the support 6, so that the defect detection accuracy is improved.
- the phase difference film 4 is bonded with the other film 9, and the laminated body 5 is formed.
- the film 9 include a protective film (separator) temporarily attached to the retardation film 4 and other optical films (retardation film, polarizer, etc.). It is preferable that lamination
- a laminated polarizing plate including a retardation film can be formed by laminating a polarizer on the retardation film.
- a polarizer may be laminated
- the thickness of the polarizer laminated on the retardation film is not particularly limited, but is generally about 1 ⁇ m to 50 ⁇ m.
- the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and preferably 8 ⁇ m or less.
- the pressure-sensitive adhesive layer for bonding with another optical film, a liquid crystal cell, or the like may be laminated on the surface of the retardation film 4.
- an adhesive layer can be laminated
- the retardation film 4 When the thickness of the retardation film 4 after peeling the support 6 from the laminate 3 is 30 ⁇ m or less, the retardation film 4 itself has a small self-supporting property and an insufficient handling property. By adhering, handling property can be improved.
- FIG. 2 a form in which the film 9 is bonded only to one side of the retardation film 4 is illustrated, but a film, an adhesive layer, or the like may be bonded to both sides of the retardation film 4.
- another film or an adhesive layer may be bonded to the surface of the laminate 3 on the phase difference film 4 side.
- another film, a pressure-sensitive adhesive layer, or the like is bonded onto the retardation film 4, so that it is not necessary to transport the retardation film alone. Therefore, even when the thickness of the retardation film is small, handling properties are improved.
- the support 6 is peeled off, and another film or An adhesive layer may be laminated.
- the retardation film 4 after peeling off the support 6 is subjected to an inspection process or a bonding process as necessary, and then wound up by the winding unit 51 to form a wound body of the retardation film.
- the retardation film 4 may be wound up by a winding unit 51 as a laminated body 5 (for example, a laminated polarizing plate) laminated with another film 9.
- the phase difference film 4 after peeling the support body 6 may be cut into a sheet body as it is, without providing for a winding process.
- FIG. 2 illustrates a mode in which the support 6 is peeled off by the peeling portion 160 without being wound on the wound body after the laminate 3 having the coating film adhered and laminated on the support is stretched.
- the laminate 3 can be once wound on a wound body, and then the peeling step can be performed by an apparatus different from the stretching step.
- the use of the retardation film obtained by the above production method is not particularly limited, it is suitably used for optical compensation of a liquid crystal display device.
- the retardation film is disposed between the liquid crystal cell and the polarizer.
- Optical characteristics such as in-plane retardation Re and thickness direction retardation Rth of the retardation film are appropriately selected according to the driving method of the liquid crystal cell, the retardation value of the cell, and the like.
- IPS in-plane switching
- the black luminance increases when the screen is viewed from an oblique direction with an azimuth angle of 45 ° with respect to the absorption axis direction of the polarizing plate.
- the retardation film By disposing the retardation film between the cell and the polarizer, the black luminance in the oblique direction can be reduced and the contrast can be improved.
- two or more retardation films can be used in combination as disclosed in, for example, the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 2009-139747).
- the retardation film according to the production method of the present invention is used for at least one retardation film.
- the manufacturing method of the present invention is applied to one or both B plates. Can do.
- a positive B plate and a negative B plate can be manufactured by free end uniaxial stretching.
- the liquid crystal display device can be manufactured, for example, by appropriately assembling the retardation film of the present invention, another optical film such as a polarizer, a liquid crystal cell, and an optical member such as a backlight and incorporating a drive circuit.
- another optical film such as a polarizer, a liquid crystal cell, and an optical member such as a backlight and incorporating a drive circuit.
- the liquid crystal cell is preferably bonded through an appropriate adhesive layer such as an adhesive.
- the thickness of the film was calculated from the interference pattern of the reflectance using a film thickness measurement system (MCPD manufactured by Otsuka Electronics). Using a polarization / phase difference measurement system (Axometrics product name “AxoScan”), in a 23 ° C. environment, the front wavelength is measured at a measurement wavelength of 590 nm, and the film is tilted by 40 ° with the slow axis direction as the center of rotation. The retardation in the obtained state was measured, and the birefringence and thickness direction retardation of the film were calculated from these measured values.
- the elastic modulus of the base film was measured according to JIS K7127 under the conditions of a temperature of 140 ° C. and a tensile speed of 10 mm / min using an autograph with a thermostatic bath (manufactured by Shimadzu Corporation).
- the obtained fumaric acid ester resin was dissolved in a toluene / methyl ethyl ketone mixed solution (toluene / methyl ethyl ketone 50 wt% / 50 wt%) to obtain a 20% solution. Furthermore, 5 parts by weight of tributyl trimellitate as a plasticizer was added to 100 parts by weight of the fumaric acid ester resin to prepare a dope.
- Examples A1 to A3 and Comparative Example A2 instead of the biaxially stretched PET film, a biaxially stretched film of polyethylene-terephthalate / isophthalate copolymer was used.
- the elastic modulus of the biaxially stretched film used in each example and comparative example was as shown in Table 1.
- the dope was applied and dried in the same manner as in Comparative Example A1.
- the polymerization solution was allowed to stand to separate the chloroform solution containing the polymer, then washed with acetic acid water, washed with ion-exchanged water, and then poured into methanol to precipitate the polymer.
- the precipitated polymer was washed with pure water and methanol and then dried under reduced pressure to obtain 68.2 g (yield 92%) of a white polymer.
- the obtained polyarylate resin was dissolved in cyclopentanone to prepare a dope having a solid concentration of 20%.
- Examples B1 to B3 and Comparative Examples B1 and B2 Except for using the dope obtained in Synthesis Example B above, the dope was applied and dried in the same manner as in Examples A1 to A3 and Comparative Examples B1 and B2, and the stretchability of the obtained laminate was It was confirmed.
- Table 1 shows the mechanical properties of the support used in each of the above Examples, the optical properties of the coating film after drying at 140 ° C. for 5 minutes, and the stretchability of the laminate.
- ⁇ n is the absolute value of the thickness direction birefringence ⁇ n out .
- Reference Example A Examples A1 to A3, and Comparative Examples A1 and A2 using a fumarate ester resin (polymer having negative birefringence), ⁇ n out is negative, and polyarylate resin (positive birefringence)
- Reference Example B Examples B1 to B3, and Comparative Examples B1 and B2 using a polymer having refraction, ⁇ n out was positive.
- Comparative Example A1 having an elastic modulus at 140 ° C. exceeding 1000 MPa, it was difficult to stretch the support and the coating film integrally. The same was true for Comparative Example B1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Polarising Elements (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
This method for manufacturing a phase difference film has a step for applying a resin solution on a support body film (1), and a step for heat-drying the resin solution and forming a layered body (2) in which the coating is bonded to and layered on the support body film (1). It is preferable that the method for manufacturing the phase difference film additionally have a step for stretching the layered body (2) in at least one direction and imparting the coating with optical anisotropy, the support body being peeled from the layered body after stretching. The support body film used in this manufacturing method has a tensile modulus of elasticity at 140°C of 200-1200 MPa prior to the application step.
Description
本発明は、位相差フィルムの製造方法に関する。さらに、本発明は偏光子と位相差フィルムとが積層された積層偏光板の製造方法に関する。
The present invention relates to a method for producing a retardation film. Furthermore, the present invention relates to a method for producing a laminated polarizing plate in which a polarizer and a retardation film are laminated.
液晶表示装置等のディスプレイには、コントラスト向上や視野角拡大等の光学補償を行う目的で、位相差フィルムが用いられる(例えば特許文献1参照)。位相差フィルムは、面内方向の屈折率(nx,ny)および厚み方向の屈折率(nz)の大小関係により、ポジティブAプレート(nx>ny=nz)、ネガティブAプレート(nz=nx>ny)、ポジティブCプレート(nx=ny<nz)、ネガティブCプレート(nx=ny>nz)等の一軸性フィルムや、ポジティブBプレート(nz>nx>ny)、ネガティブBプレート(nx>ny>nz)、Zプレート(nx>nz>ny)等の二軸性フィルムに分類される。
For a display such as a liquid crystal display device, a retardation film is used for the purpose of performing optical compensation such as improving contrast and widening the viewing angle (see, for example, Patent Document 1). The retardation film has a positive A plate (nx> ny = nz) and a negative A plate (nz = nx> ny) depending on the magnitude relationship between the refractive index (nx, ny) in the in-plane direction and the refractive index (nz) in the thickness direction. ), Positive C plate (nx = ny <nz), negative C plate (nx = ny> nz), positive B plate (nz> nx> ny), negative B plate (nx> ny> nz) ) And Z plates (nx> nz> ny) and the like.
ポジティブAプレート、ネガティブCプレート、ネガティブBプレートを構成する樹脂材料としては、一般に正の固有複屈折を有するポリマーが用いられる。一方、ネガティブAプレート、ポジティブCプレート、ポジティブBプレートを構成する樹脂材料としては、一般に負の固有複屈折を有するポリマーが用いられる。なお、「正の固有複屈折を有する」とは、ポリマーを延伸等により配向させた場合に、その配向方向の屈折率が相対的に大きくなるものを指す。「負の固有複屈折を有する」とは、ポリマーを延伸等により配向させた場合に、その配向方向の屈折率が相対的に小さくなるものを指す。
As the resin material constituting the positive A plate, negative C plate, and negative B plate, a polymer having positive intrinsic birefringence is generally used. On the other hand, a polymer having negative intrinsic birefringence is generally used as the resin material constituting the negative A plate, positive C plate, and positive B plate. Note that “having positive intrinsic birefringence” means that when the polymer is oriented by stretching or the like, the refractive index in the orientation direction becomes relatively large. “Having negative intrinsic birefringence” refers to a polymer having a relatively low refractive index in the orientation direction when the polymer is oriented by stretching or the like.
光学補償に用いられる位相差フィルムには、膜厚や光学特性の均一性が要求される。そのため、位相差フィルムの製膜には、溶液製膜法が広く用いられている。溶液製膜法では、溶媒中にポリマーを溶解させた樹脂溶液(ドープ)を支持体上に塗布した後、加熱乾燥等により溶媒が除去され、支持体上に塗膜が密着積層された積層体が形成される。
The retardation film used for optical compensation is required to have a uniform film thickness and optical characteristics. Therefore, the solution casting method is widely used for forming the retardation film. In the solution casting method, a resin solution (dope) in which a polymer is dissolved in a solvent is applied onto a support, and then the solvent is removed by heat drying or the like, and a coating film is adhered and laminated on the support. Is formed.
溶液製膜法による製膜では、支持体上で樹脂溶液が乾燥される際の体積収縮により応力が生じ、ポリマーの分子鎖が面内方向に配向する傾向がある。そのため、樹脂材料として、複屈折発現性の高いポリマーが用いられる場合は、乾燥時の収縮作用により、支持体上に形成された塗膜が大きな厚み方向複屈折を有する場合がある。この場合は、当該塗膜を、そのままポジティブCプレートやネガティブCプレートとして用いることもできる。例えば、特許文献2では、所定の置換基を有するポリアリレートが高い複屈折発現性を有し、当該ポリマーを基材上に塗布後の塗膜を、ネガティブCプレートとして使用できることが開示されている。
In film formation by the solution film formation method, stress is generated due to volume shrinkage when the resin solution is dried on the support, and the molecular chains of the polymer tend to be oriented in the in-plane direction. Therefore, when a polymer having a high birefringence property is used as the resin material, the coating film formed on the support may have a large thickness direction birefringence due to a shrinking action during drying. In this case, the coating film can be used as a positive C plate or a negative C plate as it is. For example, Patent Document 2 discloses that polyarylate having a predetermined substituent has high birefringence and that a coating film after applying the polymer on a substrate can be used as a negative C plate. .
溶液製膜法により製膜された塗膜(フィルム)を、少なくとも一方向に延伸または収縮することにより、様々な光学的な異方性を付与することもできる。溶液製膜法により形成された塗膜を延伸して位相差フィルムを製造する場合、一般には、支持体と塗膜との積層体から支持体を剥離して、塗膜を単体で延伸する方法が採用される。特に、エンドレスベルトや製膜ドラム等の無端支持体上に樹脂溶液が塗布される場合は、支持体から塗膜を剥離後に延伸を行う必要がある。
Various optical anisotropies can be imparted by stretching or shrinking a coating film (film) formed by the solution casting method in at least one direction. When a retardation film is produced by stretching a coating film formed by a solution casting method, in general, a method of stretching a coating film alone by peeling the support from a laminate of the support and the coating film Is adopted. In particular, when the resin solution is applied onto an endless support such as an endless belt or a film forming drum, it is necessary to perform stretching after peeling the coating film from the support.
一方、溶液製膜の支持体として、樹脂フィルム等からなる有端の支持体が用いられる場合は、支持体と塗膜との積層体を延伸または収縮させて、光学異方性を付与することも行われている。特に、塗膜の膜厚が小さい場合(例えば30μm以下)や、展延性の低い(脆い)樹脂材料が用いられる場合は、塗膜の自己支持性が低くハンドリングが困難であるため、製膜に用いた支持体と塗膜の積層体を延伸または収縮させる方法が採用される。
On the other hand, in the case where an end support made of a resin film or the like is used as the support for solution casting, the laminated body of the support and the coating film is stretched or contracted to impart optical anisotropy. Has also been done. In particular, when the film thickness of the coating film is small (for example, 30 μm or less), or when a resin material with low spreadability (brittle) is used, the coating film has low self-supportability and is difficult to handle. A method of stretching or shrinking the laminate of the used support and coating film is employed.
製膜に用いた支持体と塗膜の積層体を延伸または収縮させることにより光学異方性を付与する場合、特許文献3に開示されているように、積層体から支持体を剥離することなく、支持体と塗膜の積層体をそのまま積層位相差板として実用に供する方法と、延伸後の積層体から支持体を剥離して、延伸後の塗膜のみを位相差フィルムとして実用に供する方法がある。また、特許文献4には、熱収縮フィルムを支持体として溶液製膜により塗膜を形成し、この積層体を加熱収縮させた後、支持体を剥離することにより、nx>nz>nyの光学異方性を有する位相差フィルム(Zプレート)を形成する方法が開示されている。
When optical anisotropy is imparted by stretching or shrinking a laminate of a support and a coating film used for film formation, as disclosed in Patent Document 3, without peeling the support from the laminate. , A method of using the laminate of the support and the coating film as a laminated phase difference plate as it is, and a method of peeling the support from the stretched laminate and using only the stretched coating film as a retardation film for practical use There is. In Patent Document 4, a coating film is formed by solution casting using a heat-shrinkable film as a support, the laminate is heated and shrunk, and then the support is peeled off, whereby nx> nz> ny optical. A method of forming a retardation film (Z plate) having anisotropy is disclosed.
溶液製膜に用いる支持体は、溶媒に対する耐溶剤性や、加熱乾燥時の耐熱性が求められる。また、支持体と塗膜とを剥離することなく、延伸後の積層体をそのまま位相差フィルムとして用いる場合、支持体は光学的に均一であることが求められる。
The support used for solution casting is required to have solvent resistance to solvents and heat resistance during heat drying. Moreover, when using the laminated body after extending | stretching as a retardation film as it is, without peeling a support body and a coating film, it is calculated | required that a support body is optically uniform.
一方、延伸後の積層体から支持体を剥離して、延伸後の塗膜のみを位相差フィルムとして用いる場合、支持体は、最終製品である位相差フィルムには含まれない工程部材である。この場合、支持体は、必ずしも光学的に均一である必要はなく、製膜や延伸等の加工に耐え得る耐溶剤性や耐熱性を有する範囲で、できる限り安価であることが求められる。
On the other hand, when the support is peeled from the stretched laminate and only the stretched coating film is used as the retardation film, the support is a process member not included in the retardation film as the final product. In this case, the support is not necessarily optically uniform, and is required to be as inexpensive as possible as long as it has solvent resistance and heat resistance that can withstand processing such as film formation and stretching.
そのため、溶液製膜により位相差フィルムを形成するための支持体としては、一般に、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)等が用いられる。特に、PETフィルムは汎用性が高く、かつ耐熱性や耐溶剤性に優れるため、溶液製膜の支持体として広く用いられている。また、特許文献4では、非晶質ポリエステル(A‐PET)フィルムを、溶液製膜の支持体として用いた例が開示されている。
Therefore, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP) or the like is generally used as a support for forming a retardation film by solution casting. In particular, PET film is widely used as a support for solution casting because it is highly versatile and has excellent heat resistance and solvent resistance. Patent Document 4 discloses an example in which an amorphous polyester (A-PET) film is used as a support for solution casting.
近年、ディスプレイの高画質化が進むと共に、位相差フィルムに対する要求性能も高くなってきている。同時に、ディスプレイの軽量化や薄型化に対する要求も高まっており、従来よりも膜厚の小さい位相差フィルムが用いられるようになっている。しかし、膜厚の小さいフィルムは、一般に自己支持性に乏しく、フィルムのハンドリングが困難となりやすい。また、負の固有複屈折を有するポリマーを用いたネガティブAプレート、ポジティブCプレート、ポジティブBプレート等も実用化が進んでいる。しかし、負の固有複屈折を有するポリマーは、その分子構造に起因して機械強度が小さく、自己支持性に乏しい場合が多い。
In recent years, with the progress of high-quality displays, the required performance for retardation films has also increased. At the same time, there is an increasing demand for lighter and thinner displays, and retardation films having a smaller film thickness than conventional ones have been used. However, a film with a small film thickness generally has poor self-supporting properties, and the film tends to be difficult to handle. In addition, a negative A plate, a positive C plate, a positive B plate and the like using a polymer having negative intrinsic birefringence have been put into practical use. However, polymers having negative intrinsic birefringence often have low mechanical strength and poor self-supporting properties due to their molecular structure.
自己支持性の低いフィルムを延伸に供すると、フィルムに皺が生じたり、延伸途中で破断を生じる等のハンドリング性に関わる問題が生じやすい。そのため、膜厚の小さいフィルムや、機械強度が小さい樹脂材料からなるフィルムの製造には、上記特許文献3に開示されているように、樹脂フィルム支持体上にドープを塗布して、支持体上に塗膜を形成し、この塗膜と支持体の積層体を一体で延伸した後、支持体を剥離する方法が適している。
When a film with low self-supporting properties is subjected to stretching, problems relating to handling properties such as wrinkling of the film and breakage during stretching are likely to occur. Therefore, for the production of a film having a small film thickness or a resin material having a low mechanical strength, as disclosed in Patent Document 3, a dope is applied on the resin film support, A method in which a coating film is formed on the substrate, the laminate of the coating film and the support is integrally stretched, and then the support is peeled off is suitable.
一般に、樹脂フィルム支持体としては、ポリエチレンテレフタレート(PET)等の汎用フィルムが用いられる。しかしながら、汎用PETフィルム等の支持体上に、膜厚の小さな塗膜を形成した場合は、塗膜と支持体との積層体を延伸する際に、延伸加工性が乏しく、延伸を実施できない場合があったり、ウェーブ等の外観不良を生じる等の問題を生じることが判明した。
Generally, a general-purpose film such as polyethylene terephthalate (PET) is used as the resin film support. However, when a coating film with a small film thickness is formed on a support such as a general-purpose PET film, when the laminate of the coating film and the support is stretched, the stretch processability is poor and stretching cannot be performed. It has been found that there are problems such as the appearance of defects and appearance defects such as waves.
一方、支持体としてA‐PET等の非晶質ポリエステルフィルム等を用いた場合、支持体上に形成される位相差フィルムの複屈折発現性が小さくなる傾向がみられた。そのため、所期のレターデーションを有する位相差フィルムを得るためには、膜厚を大きくせざるを得ず、薄型化の要求特性に逆行するとの課題が存在することが判明した。
On the other hand, when an amorphous polyester film such as A-PET was used as the support, the birefringence expression of the retardation film formed on the support tended to decrease. For this reason, in order to obtain a retardation film having an intended retardation, it has been found that there is a problem that the film thickness has to be increased, and there is a problem of going against the required characteristics of thinning.
上記課題に鑑み、本発明は、複屈折が大きく、薄型化された場合でも高いレターデーションを有する位相差フィルムを、歩留り高く生産するための製造方法の提供を目的とする。
In view of the above problems, an object of the present invention is to provide a manufacturing method for producing a retardation film having a large birefringence and having a high retardation even when it is thinned.
本発明者らが検討の結果、所定の機械特性を有する樹脂フィルム支持体を用いることにより、上記課題が解決されることを見出し、本発明に至った。本発明の位相差フィルムの製造方法は、支持体フィルム上に樹脂溶液が塗布される工程(塗布工程)、および樹脂溶液が加熱により乾燥され、支持体フィルム上に塗膜が密着積層された積層体が形成される工程(乾燥工程)をこの順に有する。本発明の製造方法に用いられる支持体フィルムは、塗布工程前において、140℃における引張弾性率が200Mpa~1000MPaである。
As a result of studies by the present inventors, it has been found that the above-mentioned problems can be solved by using a resin film support having predetermined mechanical characteristics, and the present invention has been achieved. The method for producing a retardation film of the present invention includes a step in which a resin solution is applied on a support film (application step), and a laminate in which the resin solution is dried by heating and a coating film is adhered and laminated on the support film. It has the process (drying process) in which a body is formed in this order. The support film used in the production method of the present invention has a tensile elastic modulus at 140 ° C. of 200 MPa to 1000 MPa before the coating step.
本発明の製造方法は、特に、膜厚が小さい位相差フィルムの製造に適している。本発明の一実施形態において、支持体が剥離された後の塗膜、すなわち位相差フィルムの膜厚は30μm以下である。
The manufacturing method of the present invention is particularly suitable for manufacturing a retardation film having a small film thickness. In one Embodiment of this invention, the film thickness after the support body peels, ie, the film thickness of retardation film, is 30 micrometers or less.
本発明の一実施形態では、乾燥工程において、100℃以上の温度で乾燥が行われる。100℃以上の高温で乾燥が行われることにより、短時間での乾燥が可能となり、位相差フィルムの生産性が高められる。また、本発明では、引張弾性率が上記範囲内である支持体が用いられるため、高温で乾燥が行われた場合でも、乾燥後の塗膜は、大きな厚み方向複屈折を有する。そのため、小さな膜厚でも大きなレターデーションを有する位相差フィルムが得られる。
In one embodiment of the present invention, drying is performed at a temperature of 100 ° C. or higher in the drying step. By drying at a high temperature of 100 ° C. or higher, drying in a short time is possible, and the productivity of the retardation film is increased. Moreover, in this invention, since the support body whose tensile elasticity modulus is in the said range is used, even when it dries at high temperature, the coating film after drying has big thickness direction birefringence. Therefore, a retardation film having a large retardation even with a small film thickness can be obtained.
本発明の製造方法の一形態では、乾燥工程後に、積層体が少なくとも一方向に延伸され、塗膜に光学異方性が付与される工程(延伸工程)が実施される。支持体フィルムと塗膜との積層体を延伸後には、積層体から支持体が剥離されることが好ましい。
In one embodiment of the production method of the present invention, after the drying step, the laminate is stretched in at least one direction, and a step (stretching step) in which optical anisotropy is imparted to the coating film is performed. After stretching the laminate of the support film and the coating film, the support is preferably peeled from the laminate.
一実施形態では、延伸工程において、自由端一軸延伸が行われる。また、一実施形態では、延伸後の支持体上の塗膜、すなわち位相差フィルムが、nx>ny>nz、またはnz>nx>nyの光学異方性を有するように延伸が行われる。なお、nxおよびnyは、それぞれ塗膜の面内の遅相軸方向および進相軸方向の屈折率であり、nzは塗膜の厚み方向の屈折率である。
In one embodiment, free end uniaxial stretching is performed in the stretching step. In one embodiment, the stretched film on the support, that is, the retardation film is stretched so as to have an optical anisotropy of nx> ny> nz or nz> nx> ny. Note that nx and ny are the refractive indexes in the slow axis direction and the fast axis direction in the plane of the coating film, respectively, and nz is the refractive index in the thickness direction of the coating film.
さらに、本発明は、偏光子と位相差フィルムとが積層された積層偏光板の製造方法に関する。本発明の積層偏光板の製造方法では、上記の方法により製造された位相差フィルム上に、偏光子が積層される。なお、上記延伸工程の後であれば、上記剥離工程の前後いずれに、位相差フィルムと偏光子との積層を行ってもよい。
Furthermore, the present invention relates to a method for producing a laminated polarizing plate in which a polarizer and a retardation film are laminated. In the method for producing a laminated polarizing plate of the present invention, a polarizer is laminated on the retardation film produced by the above method. In addition, as long as it is after the said extending | stretching process, you may laminate | stack a retardation film and a polarizer before and after the said peeling process.
本発明によれば、加熱環境下における引張弾性率が所定範囲の支持体フィルム上に、溶液製膜法により塗膜が形成されるため、製膜後の塗膜は大きな厚み方向複屈折を有する。そのため、膜厚が小さい場合でも、大きなレターデーションを有する位相差フィルムを、歩留り高く生産することができる。また、加熱環境下での支持体の弾性率が所定範囲内であるために、延伸時の加工性に優れ、均一性が高く、かつ外観不良が抑制された位相差フィルムが得られる。
According to the present invention, since a coating film is formed by a solution casting method on a support film having a tensile modulus in a predetermined range under a heating environment, the coating film after film formation has a large thickness direction birefringence. . Therefore, even when the film thickness is small, a retardation film having a large retardation can be produced with a high yield. Moreover, since the elastic modulus of the support in a heating environment is within a predetermined range, a retardation film having excellent workability during stretching, high uniformity, and reduced appearance defects can be obtained.
本発明において、位相差フィルムを構成する樹脂材料としては、透明性、機械的強度、熱安定性に優れるポリマーが好ましく用いられる。このようなポリマーの具体例としては、アセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、マレイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂、およびこれらの混合物あるいは共重合体等が挙げられる。
In the present invention, as the resin material constituting the retardation film, a polymer having excellent transparency, mechanical strength, and thermal stability is preferably used. Specific examples of such polymers include cellulose resins such as acetyl cellulose, polyester resins, polycarbonate resins, polyamide resins, polyimide resins, maleimide resins, polyolefin resins, (meth) acrylic resins, cyclic Examples thereof include polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, polysulfone resins, and mixtures or copolymers thereof.
上記ポリマーは、正の固有複屈折を有するものでもよく、負の固有複屈折を有するものでもよい。位相差フィルムの面内の遅相軸方向の屈折率nxよりも厚み方向の屈折率nzの方が小さい位相差フィルム、すなわち、ポジティブAプレート(nx>ny=nz)、ネガティブCプレート(nx=ny>nz)、およびネガティブBプレート(nx>ny>nz)の製造には、正の固有複屈折を有するポリマーが好ましく用いられる。一方、位相差フィルムの面内の進相軸方向の屈折率nyよりも厚み方向の屈折率nzの方が大きい位相差フィルム、すなわち、ネガティブAプレート(nz=nx>ny)、ポジティブCプレート(nx=ny<nz)、およびポジティブBプレート(nz>nx>ny)の製造には、負の固有複屈折を有するポリマーが好ましく用いられる。
The polymer may have a positive intrinsic birefringence or a negative intrinsic birefringence. A retardation film having a refractive index nz smaller in the thickness direction than a refractive index nx in the slow axis direction in the plane of the retardation film, that is, a positive A plate (nx> ny = nz), a negative C plate (nx = ny> nz) and negative B plates (nx> ny> nz) are preferably made of polymers having positive intrinsic birefringence. On the other hand, a retardation film in which the refractive index nz in the thickness direction is larger than the refractive index ny in the fast axis direction in the plane of the retardation film, that is, a negative A plate (nz = nx> ny), a positive C plate ( For the production of nx = ny <nz) and positive B plates (nz> nx> ny), polymers having negative intrinsic birefringence are preferably used.
ここで、nxおよびnyは、それぞれ塗膜の面内の遅相軸方向および進相軸方向の屈折率であり、nzは塗膜の厚み方向の屈折率である。本明細書において、面内複屈折Δnin、面内レターデーションRe、厚み方向複屈折Δnout、厚み方向レターデーションRth、およびNz係数は、それぞれ以下の関係を有する。
Here, nx and ny are the refractive indexes in the slow axis direction and the fast axis direction in the plane of the coating film, respectively, and nz is the refractive index in the thickness direction of the coating film. In this specification, the in-plane birefringence Δn in , the in-plane retardation Re, the thickness direction birefringence Δn out , the thickness direction retardation Rth, and the Nz coefficient have the following relationships, respectively.
Re=Δnin×d=(nx‐ny)×d
Rth=Δnout×d=(np-nz)×d
Nz=(nx-nz)/(nx-ny)
ただし、nxおよびnyのうち、nzとの差が大きい方をnpとする。 Re = Δn in × d = (nx−ny) × d
Rth = Δn out × d = (np−nz) × d
Nz = (nx−nz) / (nx−ny)
However, of nx and ny, the one with the larger difference from nz is defined as np.
Rth=Δnout×d=(np-nz)×d
Nz=(nx-nz)/(nx-ny)
ただし、nxおよびnyのうち、nzとの差が大きい方をnpとする。 Re = Δn in × d = (nx−ny) × d
Rth = Δn out × d = (np−nz) × d
Nz = (nx−nz) / (nx−ny)
However, of nx and ny, the one with the larger difference from nz is defined as np.
本明細書において、ポジティブAプレートにおける「ny=nz」との記載、あるいはネガティブAプレートにおける「nz=nx」の記載は、面内の屈折率(nxまたはny)と厚み方向の屈折率(nz)が必ずしも完全に一致する必要はない。上記のNz係数が0.97~1.03の範囲内であれば、ny=nzのポジティブAプレートとみなすことができ、Nz係数が-0.03~0.03の範囲内であれば、nz=nxのネガティブAプレートとみなすことができる。同様に、ネガティブCプレートおよびポジティブCプレートにおける「nx=ny」との記載は、面内の遅相軸方向の屈折率(nx)と進相軸方向の屈折率(ny)とが必ずしも完全に一致する必要はなく、Nz係数が20以上あるいは-20以下であれば、nx=nyのCプレートとみなすことができる。なお、本明細書において、屈折率やレターデーションの値は、波長590nmにおける値である。
In the present specification, the description of “ny = nz” in the positive A plate or the description of “nz = nx” in the negative A plate refers to the in-plane refractive index (nx or ny) and the refractive index in the thickness direction (nz). ) Does not have to match exactly. If the Nz coefficient is in the range of 0.97 to 1.03, it can be regarded as a positive A plate with ny = nz, and if the Nz coefficient is in the range of −0.03 to 0.03, It can be regarded as a negative A plate of nz = nx. Similarly, in the negative C plate and the positive C plate, the description “nx = ny” means that the in-plane slow axis direction refractive index (nx) and fast axis direction refractive index (ny) are not necessarily completely different. It is not necessary to match, and if the Nz coefficient is 20 or more or −20 or less, it can be regarded as a C plate of nx = ny. In the present specification, the refractive index and retardation are values at a wavelength of 590 nm.
本発明の製造方法では、まず、支持体フィルム上に、位相差フィルムを構成する樹脂材料の溶液(ドープ)が塗布される(塗布工程)。支持体上に塗布されたドープは、加熱により乾燥され、支持体フィルム上に樹脂材料の塗膜が密着積層された積層体が形成される(乾燥工程)。乾燥時に塗膜中のポリマーの分子配向が生じるため、乾燥後の塗膜はそのまま位相差フィルムとして用いることができる。
In the production method of the present invention, first, a solution (dope) of a resin material constituting a retardation film is applied on a support film (application step). The dope applied on the support is dried by heating to form a laminate in which a coating film of a resin material is closely laminated on the support film (drying step). Since molecular orientation of the polymer in the coating film occurs during drying, the coating film after drying can be used as it is as a retardation film.
好ましくは、支持体上に塗膜が形成された積層体が少なくとも一方向に延伸されることにより、塗膜に光学異方性が付与される(延伸工程)。延伸後の積層体は、そのまま位相差フィルムとして用いることができる。また、延伸後の積層体から、支持体が剥離され(剥離工程)、剥離後の塗膜を位相差フィルムとして用いることもできる。
Preferably, the laminated body in which the coating film is formed on the support is stretched in at least one direction, whereby optical anisotropy is imparted to the coating film (stretching step). The laminated body after stretching can be used as a retardation film as it is. Moreover, a support body is peeled from the laminated body after extending | stretching (peeling process), and the coating film after peeling can also be used as a phase difference film.
位相差フィルムの生産性を高める観点から、上記の各工程は、ロール・トゥー・ロールで行われることが好ましい。ロール・トゥー・ロールでは、長尺状の支持体フィルムが用いられる。この支持体を長手方向に沿って搬送させながら、上記の塗布、乾燥および延伸が行われる。また、支持体からの塗膜の剥離も、ロール・トゥー・ロールで行われることが好ましい。以下では、ロール・トゥー・ロール法による実施形態を中心に、本発明の製造方法を各工程に沿って説明する。
From the viewpoint of increasing the productivity of the retardation film, each of the above steps is preferably performed by roll-to-roll. In roll-to-roll, a long support film is used. The application, drying and stretching are performed while the support is transported along the longitudinal direction. Moreover, it is preferable that peeling of the coating film from a support body is also performed by roll-to-roll. Below, the manufacturing method of this invention is demonstrated along each process centering on embodiment by the roll-to-roll method.
[支持体]
ロール・トゥー・ロール法では、支持体フィルムを長手方向に沿って搬送させながら製膜が行われる。そのため、支持体フィルムとして、長尺状フィルムの巻回体(ロール)が用いられる。また、本発明の製造方法では、溶液製膜法により支持体上に塗膜が形成された後、支持体と塗膜との積層体が延伸工程に供される。そのため、支持体フィルムは、可撓性を有し、熱安定性および機械的強度に優れ、かつ延伸可能であることが好ましい。かかる観点から、支持体フィルムとしては、樹脂フィルムが用いられる。以下では、支持体フィルムを単に「支持体」と記載する場合がある。 [Support]
In the roll-to-roll method, film formation is performed while the support film is conveyed along the longitudinal direction. Therefore, a wound body (roll) of a long film is used as the support film. Moreover, in the manufacturing method of this invention, after a coating film is formed on a support body by a solution casting method, the laminated body of a support body and a coating film is used for an extending process. Therefore, it is preferable that the support film has flexibility, excellent thermal stability and mechanical strength, and can be stretched. From this viewpoint, a resin film is used as the support film. Hereinafter, the support film may be simply referred to as “support”.
ロール・トゥー・ロール法では、支持体フィルムを長手方向に沿って搬送させながら製膜が行われる。そのため、支持体フィルムとして、長尺状フィルムの巻回体(ロール)が用いられる。また、本発明の製造方法では、溶液製膜法により支持体上に塗膜が形成された後、支持体と塗膜との積層体が延伸工程に供される。そのため、支持体フィルムは、可撓性を有し、熱安定性および機械的強度に優れ、かつ延伸可能であることが好ましい。かかる観点から、支持体フィルムとしては、樹脂フィルムが用いられる。以下では、支持体フィルムを単に「支持体」と記載する場合がある。 [Support]
In the roll-to-roll method, film formation is performed while the support film is conveyed along the longitudinal direction. Therefore, a wound body (roll) of a long film is used as the support film. Moreover, in the manufacturing method of this invention, after a coating film is formed on a support body by a solution casting method, the laminated body of a support body and a coating film is used for an extending process. Therefore, it is preferable that the support film has flexibility, excellent thermal stability and mechanical strength, and can be stretched. From this viewpoint, a resin film is used as the support film. Hereinafter, the support film may be simply referred to as “support”.
本発明に用いられる支持体は、140℃における引張弾性率が100Mpa~1000MPaであることが好ましい。支持体の140℃における引張弾性率は、200MPa~900MPaがより好ましく、300MPa~800MPaがさらに好ましい。
The support used in the present invention preferably has a tensile elastic modulus at 140 ° C. of 100 Mpa to 1000 MPa. The tensile elastic modulus at 140 ° C. of the support is more preferably from 200 MPa to 900 MPa, further preferably from 300 MPa to 800 MPa.
支持体の140℃における弾性率が100MPa以上であれば、その上に形成される樹脂塗膜の厚み方向複屈折が大きくなる傾向があり、特に100℃以上の高温で乾燥が行われる場合にその傾向が顕著である。一方、支持体の140℃における弾性率が1000MPa以下であれば、延伸時の加工性に優れ、延伸方向のウェーブの発生等の外観不良が抑制される。
If the elastic modulus at 140 ° C. of the support is 100 MPa or more, the birefringence in the thickness direction of the resin coating film formed thereon tends to increase, especially when drying is performed at a high temperature of 100 ° C. or more. The trend is remarkable. On the other hand, when the elastic modulus at 140 ° C. of the support is 1000 MPa or less, the workability during stretching is excellent, and appearance defects such as the generation of waves in the stretching direction are suppressed.
支持体が延伸フィルムである場合、長手方向(MD)と幅方向(TD)の延伸倍率の相違等に起因して、弾性率が異方性を有する場合がある。支持体のMDとTDの引張弾性率が異なる場合、MDの引張弾性率が上記範囲であればよいが、好ましくは、MDおよびTDの140℃における弾性率が、いずれも上記範囲内である。
When the support is a stretched film, the elastic modulus may have anisotropy due to a difference in stretch ratio between the longitudinal direction (MD) and the width direction (TD). When the tensile elastic modulus of MD and TD of the support is different, the tensile elastic modulus of MD may be in the above range, but preferably the elastic modulus of MD and TD at 140 ° C. are both in the above range.
汎用の二軸延伸PETフィルムの140℃における引張弾性率は、1200MPa程度である。このように、高温での弾性率が高いフィルムを支持体として用いた場合、塗膜と支持体との積層体を延伸する際の延伸加工性が乏しく、延伸を実施できない場合があったり、ウェーブ等の外観不良を生じる等の問題を生じ易い。
The tensile elastic modulus at 140 ° C. of a general-purpose biaxially stretched PET film is about 1200 MPa. As described above, when a film having a high elastic modulus at a high temperature is used as a support, stretching processability when stretching a laminate of a coating film and a support is poor, and stretching may not be performed. It is easy to cause problems such as poor appearance.
一方、A‐PET等の非晶質ポリエステルフィルムは、140℃まで加熱されるとガラス転位点を超えてゴム状態となり、引張弾性率が数MPa~数十MPa程度まで低下する。このような低弾性率の支持体上に塗布された樹脂溶液を高温に加熱して乾燥して得られる塗膜は、厚み方向の複屈折が小さくなる傾向がある。そのため、支持体の140℃における弾性率が過度に小さいと、小さな膜厚で大きなレターデーションを有する位相差フィルムを得ることが困難となる傾向がある。
On the other hand, when an amorphous polyester film such as A-PET is heated to 140 ° C., it becomes a rubber state exceeding the glass transition point, and the tensile elastic modulus is reduced to several MPa to several tens of MPa. A coating film obtained by heating a resin solution coated on such a low elastic support to a high temperature and drying tends to reduce birefringence in the thickness direction. Therefore, if the elastic modulus at 140 ° C. of the support is excessively small, it tends to be difficult to obtain a retardation film having a small retardation and a large retardation.
支持体を構成する樹脂材料は、140℃における引張弾性率が上記範囲であれば特に限定されず、例えば、ポリエステル、ポリオレフィン、ポリシクロオレフィン、ポリアミド、ポリカーボネート、塩化ビニル、塩化ビニリデン、イミド系ポリマー、スルホン系ポリマー等が挙げられる。これらの中から、溶液製膜時の溶媒に溶解しないものが好適に用いられる。
The resin material constituting the support is not particularly limited as long as the tensile elastic modulus at 140 ° C. is in the above range. For example, polyester, polyolefin, polycycloolefin, polyamide, polycarbonate, vinyl chloride, vinylidene chloride, imide-based polymer, Examples include sulfone polymers. Among these, those that do not dissolve in the solvent during solution casting are preferably used.
特に、上記の引張弾性率を有し、かつ高い耐溶剤性を有する樹脂材料として、結晶性ポリエステル樹脂が好ましく用いられる。結晶性ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステルを構成するモノマー単位のグリコール成分および/またはジカルボン酸の一部を他のモノマー成分に置換した共重合ポリエステルが好ましく用いられる。グリコール成分を置換したポリエステルとしては、PETのエチレングリコールやPBEの1,4-ブタンジオール等の直鎖状グリコールの一部を、1,2-シクロヘキサンジメタノールや1,4-シクロヘキサンジメタノールに置換したグリコール変性ポリエステル等が挙げられる。また、ジカルボン酸成分を置換したポリエステルとしては、PETのテレフタル酸やPENの2,6-ナフタレンジカルボン酸を、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸等に置換したジカルボン酸変性ポリエステル等が挙げられる。
In particular, a crystalline polyester resin is preferably used as a resin material having the above-described tensile elastic modulus and high solvent resistance. As the crystalline polyester resin, the glycol component of the monomer unit constituting the polyester such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and / or a part of the dicarboxylic acid is used as another monomer component. A copolyester substituted with is preferably used. For polyesters with substituted glycol components, 1,2-cyclohexanedimethanol or 1,4-cyclohexanedimethanol replaces part of linear glycols such as PET ethylene glycol and PBE 1,4-butanediol. Glycol modified polyester and the like. Examples of the polyester substituted with the dicarboxylic acid component include PET terephthalic acid and PEN 2,6-naphthalenedicarboxylic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, And dicarboxylic acid-modified polyester substituted with 1,5-naphthalenedicarboxylic acid.
上記の中でも、PETのテレフタル酸の一部をイソフタル酸で置換した、ポリエチレン-テレフタレート/イソフタレート共重合体が好ましく用いられる。ポリエチレン-テレフタレート/イソフタレート共重合体は、テレフタル酸成分とイソフタル酸成分の比率を変化させることにより、弾性率等の機械特性や熱特性等を調整可能であり、イソフタル酸成分の比率を増加させることで、140℃における弾性率をPETよりも小さくすることができる。また、ポリエチレン-テレフタレート/イソフタレート共重合体は、PETと同様に、延伸により結晶化させることができるため、機械強度に優れるとともに、高い耐溶剤性を有することからも、溶液製膜の支持体として好適である。
Among these, a polyethylene-terephthalate / isophthalate copolymer in which a part of terephthalic acid in PET is substituted with isophthalic acid is preferably used. Polyethylene-terephthalate / isophthalate copolymer can adjust the mechanical and thermal properties such as elastic modulus by changing the ratio of terephthalic acid component to isophthalic acid component, and increase the ratio of isophthalic acid component Thereby, the elasticity modulus in 140 degreeC can be made smaller than PET. In addition, since the polyethylene-terephthalate / isophthalate copolymer can be crystallized by stretching in the same way as PET, it has excellent mechanical strength and high solvent resistance. It is suitable as.
支持体の厚みは特に制限されないが、支持体に自己支持性を持たせることや、延伸時のウェーブの発生を抑制する観点から、30μm以上が好ましく、35μm以上がより好ましく、40μm以上がさらに好ましい。一方、支持体の厚みが過度に大きいと、延伸時の張力が高くなり、位相差フィルムの光学特性が不均一となる場合がある。そのため、支持体の厚みは200μm以下が好ましく、150μm以下がより好ましく、100μm以下がさらに好ましい。
The thickness of the support is not particularly limited, but is preferably 30 μm or more, more preferably 35 μm or more, and even more preferably 40 μm or more from the viewpoint of providing the support with self-supporting properties and suppressing the generation of waves during stretching. . On the other hand, if the thickness of the support is excessively large, the tension during stretching increases, and the optical properties of the retardation film may become nonuniform. Therefore, the thickness of the support is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less.
支持体は無色透明でもよく、有色あるいは不透明のものでもよい。支持体の表面には、易接着処理、離型処理、帯電防止処理、ブロッキング防止処理等が施されていてもよい。また、ブロッキング防止等の目的で、支持体の幅方向の端部には、エンボス加工(ナーリング)等が施されていてもよい。
The support may be colorless and transparent, and may be colored or opaque. The surface of the support may be subjected to easy adhesion treatment, mold release treatment, antistatic treatment, antiblocking treatment and the like. Moreover, the embossing (knurling) etc. may be given to the edge part of the width direction of a support body for the objectives, such as blocking prevention.
支持体は、自己支持性と可撓性とを兼ね備えるものであれば、その厚みは特に限定されない。支持体の厚みは、一般的に20μm~200μm程度であり、30μm~150μmが好ましく、35μm~100μmがより好ましい。支持体の幅は特に制限されないが、300mm以上が好ましく、500mm以上がより好ましく、700mm以上がより好ましく、1000mm以上が特に好ましい。支持体の幅を大きくすることで、位相差フィルムの量産性が高められる。
The thickness of the support is not particularly limited as long as it has both self-supporting properties and flexibility. The thickness of the support is generally about 20 μm to 200 μm, preferably 30 μm to 150 μm, and more preferably 35 μm to 100 μm. The width of the support is not particularly limited, but is preferably 300 mm or more, more preferably 500 mm or more, more preferably 700 mm or more, and particularly preferably 1000 mm or more. Increasing the width of the support increases the mass productivity of the retardation film.
支持体は、少なくとも一方向に延伸された延伸フィルムであることが好ましい。特に、支持体を構成する材料が結晶性ポリマーである場合、前述のように、フィルムが延伸されることによりポリマーの結晶性が高められ、機械強度とともに耐熱性や耐溶剤性等も向上し得る。特に、機械強度や耐熱性、耐溶剤性等を高める観点から、支持体は長手方向(MD)および幅方向(TD)の両方に延伸された二軸延伸フィルムであることが好ましい。延伸倍率は特に限定されないが、上記観点からMD,TDのそれぞれに2倍以上に延伸されたものが好ましく用いられる。
The support is preferably a stretched film stretched in at least one direction. In particular, when the material constituting the support is a crystalline polymer, as described above, the crystallinity of the polymer is enhanced by stretching the film, and the heat resistance and solvent resistance can be improved along with the mechanical strength. . In particular, from the viewpoint of improving mechanical strength, heat resistance, solvent resistance, and the like, the support is preferably a biaxially stretched film stretched in both the longitudinal direction (MD) and the width direction (TD). Although a draw ratio is not specifically limited, From the said viewpoint, what was extended | stretched 2 times or more to each of MD and TD is used preferably.
[製膜工程および乾燥工程]
製膜工程では、上記の支持体を長手方向(MD)に沿って搬送させながら、その上に樹脂溶液(ドープ)が塗布される。その後、加熱により樹脂溶液が乾燥され、支持体上に塗膜が密着積層された長尺状の積層体が形成される。図1は、ロール・トゥー・ロール法による製膜工程および乾燥工程の一形態を模式的に表す工程概念図である。 [Film forming process and drying process]
In the film forming step, the resin solution (dope) is applied on the support while the support is transported along the longitudinal direction (MD). Thereafter, the resin solution is dried by heating to form a long laminate in which the coating film is closely laminated on the support. FIG. 1 is a process conceptual diagram schematically showing an embodiment of a film forming process and a drying process by a roll-to-roll method.
製膜工程では、上記の支持体を長手方向(MD)に沿って搬送させながら、その上に樹脂溶液(ドープ)が塗布される。その後、加熱により樹脂溶液が乾燥され、支持体上に塗膜が密着積層された長尺状の積層体が形成される。図1は、ロール・トゥー・ロール法による製膜工程および乾燥工程の一形態を模式的に表す工程概念図である。 [Film forming process and drying process]
In the film forming step, the resin solution (dope) is applied on the support while the support is transported along the longitudinal direction (MD). Thereafter, the resin solution is dried by heating to form a long laminate in which the coating film is closely laminated on the support. FIG. 1 is a process conceptual diagram schematically showing an embodiment of a film forming process and a drying process by a roll-to-roll method.
まず、製膜装置の繰出し部11に長尺状の支持体1の巻回体10がセットされる。巻回体10から巻き出された支持体1は、繰出し部11から、製膜装置の下流側へと連続的に搬送され、ガイドローラ201~205を経て、下流側に設けられた製膜部110へと搬送され、製膜が行われる。なお、ガイドローラは、ローラ203,204のように、ニップロール対を構成していてもよい。
First, the wound body 10 of the long support 1 is set on the feeding portion 11 of the film forming apparatus. The support 1 unwound from the winding body 10 is continuously conveyed from the feeding section 11 to the downstream side of the film forming apparatus, and passes through the guide rollers 201 to 205, and is then provided on the downstream side. The film is transported to 110 and film formation is performed. The guide roller may constitute a nip roll pair like the rollers 203 and 204.
製膜部110では、支持体1にドープ118が塗り拡げられ、常法にしたがって製膜が行われる。図1では、ナイフロールコータが図示されている。このロールコータでは、支持体1をバックアップロール112と接触させながら、液ダム117内のドープ118と接触させ、ナイフロール111でドープの液切りを行うことによって、塗膜の厚みが調整される。製膜部110における製膜方法は、ナイフロールコートに限定されず、キスロールコート、グラビアコート、リバースコート、スプレーコート、マイヤーバーコート、エアーナイフコート、カーテンコート、リップコート、ダイコート等の各種方法が用いられる。
In the film forming part 110, the dope 118 is spread on the support 1, and film formation is performed according to a conventional method. In FIG. 1, a knife roll coater is illustrated. In this roll coater, the thickness of the coating film is adjusted by bringing the support 1 into contact with the dope 118 in the liquid dam 117 while bringing the support 1 into contact with the backup roll 112 and draining the dope with the knife roll 111. The film forming method in the film forming unit 110 is not limited to knife roll coating, and various methods such as kiss roll coating, gravure coating, reverse coating, spray coating, Meyer bar coating, air knife coating, curtain coating, lip coating, and die coating. Is used.
ドープ118は、位相差フィルムを形成するための樹脂材料の溶液であり、樹脂材料(ポリマー)および溶媒を含有する。ドープには、必要に応じて、レベリング剤、可塑剤、紫外線吸収剤、劣化防止剤等の添加剤が含まれていてもよい。位相差フィルムを形成するための樹脂材料としては、目的とする位相差フィルムの光学異方性に応じて、正の固有複屈折を有するポリマー、および負の固有複屈折を有するポリマーのいずれも使用できる。また、目的とする位相差フィルムの光学特性等に応じて、複数の樹脂材料を混合して用いることもできる。ドープの固形分や粘度等は、樹脂の種類や分子量、位相差フィルムの厚み、製膜方法等に応じて適宜に設定される。
The dope 118 is a resin material solution for forming a retardation film, and contains a resin material (polymer) and a solvent. The dope may contain additives such as a leveling agent, a plasticizer, an ultraviolet absorber, and a deterioration inhibitor as necessary. As the resin material for forming the retardation film, either a polymer having positive intrinsic birefringence or a polymer having negative intrinsic birefringence is used depending on the optical anisotropy of the target retardation film. it can. Further, a plurality of resin materials can be mixed and used according to the optical characteristics of the target retardation film. The solid content and viscosity of the dope are appropriately set according to the type and molecular weight of the resin, the thickness of the retardation film, the film forming method, and the like.
製膜厚みは、位相差フィルムに求められる光学特性(レターデーション値)等に応じて、例えば、乾燥後の膜厚が1μm~100μm程度となるように設定される。本発明は、支持体とその上に製膜された塗膜との積層体を延伸するため、塗膜単体では膜厚が小さく、ハンドリングが困難な場合であっても、延伸等の加工を容易になし得る。そのため、塗膜の膜厚が、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは15μm以下、特に好ましくは10μm以下の場合に、本発明の製造方法を適用すれば、膜厚が小さく、かつ光学特性および外観特性に優れる位相差フィルムを容易に得ることができる。
The film forming thickness is set so that, for example, the film thickness after drying is about 1 μm to 100 μm according to the optical characteristics (retardation value) required for the retardation film. Since the present invention stretches a laminate of a support and a coating film formed thereon, the coating film alone has a small film thickness, and even if handling is difficult, processing such as stretching is easy It can be done. Therefore, when the film thickness of the coating film is preferably 30 μm or less, more preferably 20 μm or less, further preferably 15 μm or less, particularly preferably 10 μm or less, the film thickness is small when the production method of the present invention is applied, In addition, a retardation film having excellent optical characteristics and appearance characteristics can be easily obtained.
[乾燥工程]
支持体1上に塗布されたドープ層は、支持体1とともに乾燥炉120内へ搬送されて、溶媒が除去され、支持体1上に塗膜が密着形成された積層体2が得られる。積層体2は、乾燥炉120から下流側に搬送され、ガイドローラ211~215を経て、巻取り部21で巻き取られ、支持体と塗膜の積層体2の巻回体20が得られる。 [Drying process]
The dope layer applied on thesupport 1 is transported into the drying furnace 120 together with the support 1, the solvent is removed, and a laminate 2 in which a coating film is formed on the support 1 is obtained. The laminated body 2 is conveyed downstream from the drying furnace 120, passed through the guide rollers 211 to 215, and taken up by the take-up unit 21 to obtain the wound body 20 of the laminated body 2 of the support and the coating film.
支持体1上に塗布されたドープ層は、支持体1とともに乾燥炉120内へ搬送されて、溶媒が除去され、支持体1上に塗膜が密着形成された積層体2が得られる。積層体2は、乾燥炉120から下流側に搬送され、ガイドローラ211~215を経て、巻取り部21で巻き取られ、支持体と塗膜の積層体2の巻回体20が得られる。 [Drying process]
The dope layer applied on the
乾燥工程における加熱温度(乾燥温度)や乾燥時間は特に制限されない。乾燥時間を短縮して、生産工程を高める観点から、気泡等の外観不良が生じない範囲において、乾燥温度はできるかぎり高温であることが好ましい。具体的には、乾燥温度は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上がさらに好ましい。一方、乾燥温度が過度に高いと、溶媒の突沸により塗膜に気泡が生じたり、支持体の弾性率が低下するために、搬送張力により基材の寸法変化が生じる場合がある。そのため、乾燥温度は230℃以下が好ましく、200℃以下がより好ましく、180℃以下がさらに好ましい。
The heating temperature (drying temperature) and drying time in the drying process are not particularly limited. From the viewpoint of shortening the drying time and improving the production process, it is preferable that the drying temperature is as high as possible within a range in which appearance defects such as bubbles do not occur. Specifically, the drying temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher. On the other hand, if the drying temperature is excessively high, bubbles may be generated in the coating film due to bumping of the solvent, or the elastic modulus of the support may be reduced, and the dimensional change of the substrate may occur due to the transport tension. Therefore, the drying temperature is preferably 230 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 180 ° C. or lower.
乾燥温度を高くすると、乾燥時間の短縮により生産性を向上できる反面、乾燥後の塗膜の厚み方向レターデーションが小さくなる傾向がある。これに対して、本発明では、高温(140℃)における弾性率が所定値以上の支持体を用いることで、100℃以上で乾燥を行った場合でも、レターデーションの低下が抑制される。そのため、本発明の製造方法によれば、高温で乾燥することにより生産性を高めつつ、レターデーションの大きい位相差フィルムが得られる。
When the drying temperature is increased, productivity can be improved by shortening the drying time, but the thickness direction retardation of the coating film after drying tends to decrease. On the other hand, in the present invention, by using a support having an elastic modulus at a high temperature (140 ° C.) of a predetermined value or more, a decrease in retardation is suppressed even when drying is performed at 100 ° C. or more. Therefore, according to the production method of the present invention, a retardation film having a large retardation can be obtained while improving productivity by drying at a high temperature.
乾燥工程における加熱温度は、熱風又は冷風が循環する空気循環式垣温オーブン、マイクロ波又は遠赤外線を利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロール等の適宜の加熱手段により調整され得る。炉内の温度は、炉内全体で一定である必要はなく、段階的に昇温あるいは降温するような温度プロファイルを有していてもよい。例えば、炉内を複数のゾーンに分割して、各ゾーンごとに設定温度を変えることもできる。また、加熱炉の入口や出口での温度変化による支持体の急激な寸法変化等に起因する、シワ等の外観不良や、搬送不良を抑制する観点から、加熱炉の入口および出口付近での温度変化が緩やかになるように、予備加熱ゾーンや冷却ゾーンを設けることもできる。
The heating temperature in the drying process is adjusted by an appropriate heating means such as an air circulating fence oven in which hot or cold air circulates, a heater using microwaves or far infrared rays, a roll heated for temperature adjustment, a heat pipe roll, etc. Can be done. The temperature in the furnace does not need to be constant throughout the furnace, and may have a temperature profile that increases or decreases in steps. For example, the furnace can be divided into a plurality of zones, and the set temperature can be changed for each zone. In addition, from the viewpoint of suppressing poor appearance such as wrinkles due to temperature changes at the entrance and exit of the heating furnace and poor conveyance due to temperature changes at the entrance and exit of the heating furnace, temperatures near the entrance and exit of the heating furnace A preheating zone or a cooling zone can be provided so that the change is moderate.
なお、乾燥炉内全体の温度が一定ではない場合、乾燥温度とは、最も高温となる部分での炉内温度(すなわち、炉内の雰囲気温度)を指し、本発明においては、この炉内の最高温度が、好ましくは100℃以上、よりが好ましくは110℃以上、さらに好ましくは120℃以上である。乾燥工程において、上記温度範囲での加熱時間は、10秒以上が好ましく、20秒以上がより好ましく、30秒以上がさらに好ましい。加熱時間は、加熱炉中の支持体の搬送経路の長さ(炉長)や、支持体の搬送速度によって調整することができる。
When the temperature in the entire drying furnace is not constant, the drying temperature refers to the temperature in the furnace at the highest temperature (that is, the atmospheric temperature in the furnace). In the present invention, The maximum temperature is preferably 100 ° C or higher, more preferably 110 ° C or higher, and further preferably 120 ° C or higher. In the drying step, the heating time in the above temperature range is preferably 10 seconds or more, more preferably 20 seconds or more, and further preferably 30 seconds or more. The heating time can be adjusted by the length of the transport path of the support in the heating furnace (furnace length) and the transport speed of the support.
上記のように、本発明においては、所定の機械特性を有する支持体が用いられるため、乾燥後の塗膜の厚み方向複屈折を大きくすることができる。そのため、支持体上に当該塗膜が密着積層された積層体、あるいは、積層体から支持体を剥離後の被膜を、位相差フィルムとして実用に供することができる。
As described above, in the present invention, since a support having predetermined mechanical properties is used, the birefringence in the thickness direction of the coating film after drying can be increased. Therefore, the laminate in which the coating film is closely laminated on the support, or the coating after the support is peeled off from the laminate can be practically used as a retardation film.
[延伸工程]
本発明において、支持体1上に塗膜が密着形成された積層体2は、延伸工程で少なくとも一方向に延伸されることが好ましい。図2は、延伸工程および剥離工程の一形態を模式的に表す図である。図2に示す形態では、延伸装置の繰出し部22に積層体2の巻回体20がセットされている。巻回体20から巻き出された積層体2は、繰出し部22からガイドローラ221,222を経て、下流側の延伸部130の加熱炉139へと連続的に搬送される。なお、図1および図2では、製膜装置の巻取り部21で、ドープを乾燥後の積層体2が一旦巻き取られた後、積層体2の巻回体20が延伸装置の繰出し部22にセットされ、巻き出される形態が図示されているが、製膜および乾燥工程の後に積層体を巻き取らずに、積層体がそのまま延伸工程に供されてもよい。 [Stretching process]
In the present invention, thelaminate 2 having a coating film formed on the support 1 is preferably stretched in at least one direction in the stretching step. FIG. 2 is a diagram schematically illustrating an embodiment of the stretching process and the peeling process. In the form shown in FIG. 2, the wound body 20 of the laminate 2 is set on the feeding portion 22 of the stretching apparatus. The laminated body 2 unwound from the wound body 20 is continuously conveyed from the feeding section 22 to the heating furnace 139 of the downstream stretching section 130 via the guide rollers 221 and 222. 1 and 2, after the laminated body 2 after drying the dope is once wound up by the winding unit 21 of the film forming apparatus, the wound body 20 of the laminated body 2 is transferred to the feeding unit 22 of the stretching apparatus. However, the laminate may be subjected to the stretching step as it is without winding the laminate after the film forming and drying steps.
本発明において、支持体1上に塗膜が密着形成された積層体2は、延伸工程で少なくとも一方向に延伸されることが好ましい。図2は、延伸工程および剥離工程の一形態を模式的に表す図である。図2に示す形態では、延伸装置の繰出し部22に積層体2の巻回体20がセットされている。巻回体20から巻き出された積層体2は、繰出し部22からガイドローラ221,222を経て、下流側の延伸部130の加熱炉139へと連続的に搬送される。なお、図1および図2では、製膜装置の巻取り部21で、ドープを乾燥後の積層体2が一旦巻き取られた後、積層体2の巻回体20が延伸装置の繰出し部22にセットされ、巻き出される形態が図示されているが、製膜および乾燥工程の後に積層体を巻き取らずに、積層体がそのまま延伸工程に供されてもよい。 [Stretching process]
In the present invention, the
積層体2は、延伸部130で、少なくとも一方向に延伸される。少なくとも一方向に延伸されるとは、面内の少なくとも一方向において、2点間の距離が大きくなるように加工されることを指す。図2に示す形態では、延伸部130において、フロート法により長手方向(MD)に自由端一軸延伸(縦延伸)を行う例が図示されている。延伸部130は加熱炉139を備え、加熱炉139の上流側(入口)にニップロール231,232が設けられており、下流側(出口)にニップロール236、237が設けられている。
The laminate 2 is stretched in at least one direction at the stretching portion 130. The term “stretched in at least one direction” means that the distance between two points is increased in at least one direction in the plane. In the form shown in FIG. 2, in the extending | stretching part 130, the example which performs free end uniaxial stretching (longitudinal stretching) in the longitudinal direction (MD) by the float method is illustrated. The stretching unit 130 includes a heating furnace 139, nip rolls 231 and 232 are provided on the upstream side (inlet) of the heating furnace 139, and nip rolls 236 and 237 are provided on the downstream side (outlet).
自由端一軸延伸では、積層体の幅方向の端部を把持することなく、長手方向にフィルムが延伸される。図2に示す形態では、加熱炉139の下流側のニップロール236,237の周速度を、上流側のニップロール231,232の周速度よりも大きくすることで、積層体2が長手方向に延伸される。
In free end uniaxial stretching, the film is stretched in the longitudinal direction without gripping the end of the laminate in the width direction. In the form shown in FIG. 2, the laminate 2 is stretched in the longitudinal direction by making the peripheral speed of the nip rolls 236 and 237 on the downstream side of the heating furnace 139 larger than the peripheral speed of the nip rolls 231 and 232 on the upstream side. .
自由端一軸延伸では、長手方向に積層体が延伸されることに伴って、幅方向および厚み方向には収縮作用が生じる。そのため、塗膜を構成するポリマーが、正の固有複屈折を有する場合、長手方向の屈折率(nx)が大きくなり、幅方向の屈折率(ny)および厚み方向の屈折率(nz)は小さくなる。一方、塗膜を構成するポリマーが、負の固有複屈折を有する場合、長手方向の屈折率(ny)が小さくなり、幅方向の屈折率(nx)および厚み方向の屈折率(nz)は大きくなる。
In free end uniaxial stretching, a shrinkage action occurs in the width direction and the thickness direction as the laminate is stretched in the longitudinal direction. Therefore, when the polymer constituting the coating film has positive intrinsic birefringence, the refractive index (nx) in the longitudinal direction is large, the refractive index (ny) in the width direction and the refractive index (nz) in the thickness direction are small. Become. On the other hand, when the polymer constituting the coating film has negative intrinsic birefringence, the refractive index (ny) in the longitudinal direction is small, the refractive index (nx) in the width direction and the refractive index (nz) in the thickness direction are large. Become.
図2に示す形態において、加熱炉139内には、積層体の搬送経路の上下に熱風吹き出しノズル(フローティングノズル)131~137が千鳥状に配置され、熱風による加熱下で延伸が行われる。加熱炉(延伸炉)139内でのフィルムの搬送方法は、フロート法に限定されず、ロール搬送法や、テンター搬送法等の適宜の搬送方法が採用される。テンター搬送によりフィルムを長手方向(MD)に搬送させながら、幅方向(TD)の延伸を行うこともできる。また、加熱炉139内で搬送方向と幅方向の同時二軸延伸や、斜め方向延伸を行ってもよい。さらには、加熱炉139内で長手方向に延伸した後、別の加熱炉(不図示)で幅方向に延伸する等により逐次二軸延伸を行ってもよい。
In the form shown in FIG. 2, hot air blowing nozzles (floating nozzles) 131 to 137 are arranged in a staggered manner in the heating furnace 139 above and below the transport path of the laminate, and stretching is performed under heating with hot air. The film transport method in the heating furnace (stretching furnace) 139 is not limited to the float method, and an appropriate transport method such as a roll transport method or a tenter transport method is employed. Stretching in the width direction (TD) can be performed while the film is conveyed in the longitudinal direction (MD) by tenter conveyance. Further, simultaneous biaxial stretching in the conveying direction and width direction or oblique stretching may be performed in the heating furnace 139. Furthermore, after stretching in the longitudinal direction in the heating furnace 139, sequential biaxial stretching may be performed by stretching in the width direction in another heating furnace (not shown).
延伸工程での加熱温度(延伸温度)は特に限定されないが、支持体とその上に形成された塗膜を共に延伸可能な温度であることが好ましい。具体的には、支持体上に形成された塗膜のガラス転移温度をTgとした場合、延伸温度は、(Tg-50)℃以上が好ましく、(Tg-40)℃以上がより好ましく、(Tg-30)℃以上がさらに好ましい。延伸温度が低すぎると、支持体からの塗膜の剥離が生じたり、レターデーションが不均一となったり、ヘイズ上昇等の外観不良を生じる場合がある。一方、延伸温度が高すぎると、塗膜を構成するポリマーの配向性が低下し、所期のレターデーションを得られない場合がある。
The heating temperature (stretching temperature) in the stretching step is not particularly limited, but is preferably a temperature at which both the support and the coating film formed thereon can be stretched. Specifically, when the glass transition temperature of the coating film formed on the support is Tg, the stretching temperature is preferably (Tg-50) ° C. or higher, more preferably (Tg-40) ° C. or higher, ( Tg-30) ° C. or higher is more preferable. If the stretching temperature is too low, peeling of the coating film from the support may occur, retardation may be non-uniform, and appearance defects such as haze increase may occur. On the other hand, if the stretching temperature is too high, the orientation of the polymer constituting the coating film is lowered, and the desired retardation may not be obtained.
なお、延伸温度は、塗膜(位相差フィルム)を構成するポリマーの種類や、支持体の熱特性等に応じて設定される。延伸温度は、一般には100℃~220℃程度、好ましくは120℃~200℃程度である。加熱炉139内の温度は、炉内全体で一定である必要はなく、段階的に昇温あるいは降温するような温度プロファイルを有していてもよい。例えば、炉内を複数のゾーンに分割して、ゾーンごとに設定温度を変えることもできる。また、加熱炉139の入口や出口での温度変化によって積層体2が急激に寸法変化して、シワを生じたり、搬送不良を生じる等の不具合を抑制する観点から、加熱炉の入口および出口付近での温度変化が緩やかになるように、予備加熱ゾーンや冷却ゾーンを設けたり、加熱ロールや冷却ロールを設けることもできる。
The stretching temperature is set according to the type of polymer constituting the coating film (retardation film), the thermal characteristics of the support, and the like. The stretching temperature is generally about 100 ° C. to 220 ° C., preferably about 120 ° C. to 200 ° C. The temperature in the heating furnace 139 does not need to be constant throughout the furnace, and may have a temperature profile that increases or decreases in steps. For example, the furnace can be divided into a plurality of zones, and the set temperature can be changed for each zone. In addition, from the viewpoint of suppressing problems such as a rapid change in dimensions of the laminate 2 due to temperature changes at the entrance and exit of the heating furnace 139, causing wrinkles and poor conveyance, the vicinity of the entrance and exit of the heating furnace A preheating zone and a cooling zone, or a heating roll and a cooling roll can also be provided so that the temperature change at 1 is moderate.
延伸工程における延伸倍率は、1.01倍以上が好ましく、1.03倍以上がより好ましい。自由端一軸延伸では、延伸倍率が大きいほど、面内複屈折(Δnin)が大きくなる傾向がある。延伸倍率が過度に大きいと、塗膜の破断を生じたり、光学特性が不均一となる場合がある。そのため、延伸倍率は3倍以下が好ましく、2.5倍以下がより好ましく、2倍以下がさらに好ましい。
The draw ratio in the drawing step is preferably 1.01 or more, and more preferably 1.03 or more. In free end uniaxial stretching, in-plane birefringence (Δn in ) tends to increase as the draw ratio increases. When the draw ratio is excessively large, the coating film may be broken or the optical characteristics may be non-uniform. Therefore, the draw ratio is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2 times or less.
位相差フィルムの面内レターデーションRe、厚み方向レターデーションRth、およびNz係数等の光学特性は、位相差フィルムの用途等に応じて適宜に選択され、延伸工程における延伸方法や延伸倍率は、目的とする光学特性に応じて調整することができる。
Optical properties such as in-plane retardation Re, thickness direction retardation Rth, and Nz coefficient of the retardation film are appropriately selected according to the use of the retardation film, and the stretching method and stretching ratio in the stretching process are It can be adjusted according to the optical characteristics.
上述のように、自由端一軸延伸(縦延伸)では、延伸方向の屈折率が増加(または減少)するのに対して、延伸方向と直交する方向、すなわち幅方向および厚み方向の屈折率は減少(または増加)する。一般に、自由端一軸延伸では、幅方向の収縮率と厚み方向の収縮率は同等であり、幅方向の屈折率と厚み方向の屈折率の減少率(または増加率)は同等となる。そのため、位相差フィルムの材料として、正の固有複屈折を有するポリマーを用いる場合、自由端一軸延伸により得られる位相差フィルムは、一般には、nx>ny=nzの屈折率異方性を有するポジティブAプレートである。
As described above, in free-end uniaxial stretching (longitudinal stretching), the refractive index in the stretching direction increases (or decreases), whereas the refractive index in the direction orthogonal to the stretching direction, that is, the width direction and the thickness direction decreases. (Or increase). In general, in the free end uniaxial stretching, the shrinkage rate in the width direction and the shrinkage rate in the thickness direction are the same, and the decrease rate (or increase rate) in the width direction and the refractive index in the thickness direction are the same. Therefore, when a polymer having positive intrinsic birefringence is used as the material for the retardation film, the retardation film obtained by free-end uniaxial stretching is generally a positive having a refractive index anisotropy of nx> ny = nz. A plate.
また、溶液製膜時にポリマーの分子鎖が面内方向に配向することにより、塗膜の厚み方向複屈折が大きい場合、すなわち、塗膜がnx=ny>nzの屈折率異方性を有するネガティブCプレートである場合、この塗膜を支持体から剥離後に、剥離後の塗膜を単独で自由端一軸延伸に供すると、幅方向の収縮率が厚み方向の収縮率よりも大きくなる傾向がある。そのため、延伸時の幅方向の屈折率nyの減少率が、厚み方向の屈折率nzの減少率よりも大きくなり、ny>nzの屈折率異方性が解消されるため、延伸後の位相差フィルムは、nx>ny=nzの屈折率異方性を有するポジティブAプレートとなる。
In addition, when the molecular chain of the polymer is oriented in the in-plane direction at the time of solution casting, when the birefringence in the thickness direction of the coating film is large, that is, the coating film has a negative refractive index anisotropy of nx = ny> nz. In the case of a C plate, when the coating film is peeled off from the support, if the coating film after peeling is subjected to free end uniaxial stretching alone, the shrinkage rate in the width direction tends to be larger than the shrinkage rate in the thickness direction. . Therefore, the reduction rate of the refractive index ny in the width direction during stretching is larger than the reduction rate of the refractive index nz in the thickness direction, and the refractive index anisotropy of ny> nz is eliminated. The film becomes a positive A plate having a refractive index anisotropy of nx> ny = nz.
一方、支持体上に塗膜が密着積層された積層体を自由端一軸延伸に供する場合、積層体の幅方向の収縮率は、支持体の機械特性や熱特性に大きく左右され、塗膜の屈折率異方性による影響は小さい。そのため、支持体上に形成された正の固有複屈折を有するポリマーからなる塗膜がnx=ny>nzの屈折率異方性を有する場合には、ny>nzの屈折率異方性が、延伸の前後で保持され、nx>ny>nzの屈折率異方性を有するネガティブBプレートが得られる。同様の原理により、位相差フィルムの材料として負の固有複屈折を有するポリマーが用いられる場合、自由端一軸延伸により、nz>nx>nyの屈折率異方性を有するポジティブBプレートが得られる。
On the other hand, when a laminate having a coating film closely laminated on a support is subjected to free-end uniaxial stretching, the shrinkage in the width direction of the laminate is greatly influenced by the mechanical properties and thermal characteristics of the support, The effect of refractive index anisotropy is small. Therefore, when a coating film made of a polymer having positive intrinsic birefringence formed on a support has a refractive index anisotropy of nx = ny> nz, a refractive index anisotropy of ny> nz is A negative B plate that is held before and after stretching and has a refractive index anisotropy of nx> ny> nz is obtained. According to the same principle, when a polymer having negative intrinsic birefringence is used as the material of the retardation film, a positive B plate having a refractive index anisotropy of nz> nx> ny is obtained by free end uniaxial stretching.
前述のように、本発明においては、所定の機械特性を有する支持体が用いられるため、乾燥後の塗膜の厚み方向複屈折を大きくすることができる。そのため、支持体上に当該塗膜が密着積層された積層体を自由端一軸延伸に供することにより、ネガティブBプレートやポジティブBプレートが得られる。また、延伸時の張力が過度に大きくなることが抑制されるため、ウェーブ等の外観不良が生じ難く、外観および光学特性の均一性に優れる位相差フィルムが得られる。
As described above, in the present invention, since a support having predetermined mechanical properties is used, the birefringence in the thickness direction of the coating film after drying can be increased. Therefore, a negative B plate and a positive B plate can be obtained by subjecting the laminate in which the coating film is closely laminated on the support to free end uniaxial stretching. Moreover, since it is suppressed that the tension | tensile_strength at the time of extending | stretching becomes too large, external appearance defects, such as a wave, do not produce easily, and the phase difference film excellent in the uniformity of an external appearance and an optical characteristic is obtained.
本発明の方法により、nx>ny>nzの屈折率異方性を有するネガティブBプレートが製造される場合、位相差フィルムのNz係数は、1.03よりも大きいことが好ましく、1.05以上がより好ましく、1.10以上がさらに好ましい。本発明の製造方法により、nz>nx>nyの屈折率異方性を有するポジティブBプレートが製造される場合、位相差フィルムのNz係数は、-0.03よりも小さいことが好ましく、-0.05以下がより好ましく、-0.10以下がさらに好ましい。なお、ネガティブBプレートやポジティブBプレートを得るための延伸方法は自由端一軸延伸に限定されず、固定端一軸延伸(横延伸)や、逐次または同時二軸延伸であってもよい。
When a negative B plate having a refractive index anisotropy of nx> ny> nz is produced by the method of the present invention, the Nz coefficient of the retardation film is preferably larger than 1.03, 1.05 or more Is more preferable, and 1.10 or more is more preferable. When a positive B plate having a refractive index anisotropy of nz> nx> ny is produced by the production method of the present invention, the Nz coefficient of the retardation film is preferably smaller than −0.03, −0 .05 or less is more preferable, and -0.10 or less is more preferable. The stretching method for obtaining the negative B plate and the positive B plate is not limited to free end uniaxial stretching, and may be fixed end uniaxial stretching (lateral stretching) or sequential or simultaneous biaxial stretching.
延伸工程における延伸倍率は、1.01倍以上が好ましく、1.03倍以上がより好ましい。自由端一軸延伸では、延伸倍率が大きいほど、面内複屈折(Δnin)が大きくなる傾向がある。延伸倍率が過度に大きいと、塗膜の破断を生じたり、光学特性が不均一となる場合がある。そのため、延伸倍率は3倍以下が好ましく、2.5倍以下がより好ましく、2倍以下がさらに好ましい。
The draw ratio in the drawing step is preferably 1.01 or more, and more preferably 1.03 or more. In free end uniaxial stretching, in-plane birefringence (Δn in ) tends to increase as the draw ratio increases. When the draw ratio is excessively large, the coating film may be broken or the optical characteristics may be non-uniform. Therefore, the draw ratio is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2 times or less.
[剥離工程]
延伸後の積層体3はそのまま位相差フィルムとして用いることができる。好ましくは、延伸後の積層体3から、延伸後の支持体6が剥離され、支持体を剥離後の塗膜4が位相差フィルムとして用いられる。この場合、支持体は、最終製品である位相差フィルムには含まれない工程部材である。そのため、支持体は光学的に均一である必要はなく、安価な支持体を使用できる。 [Peeling process]
Thelaminated body 3 after stretching can be used as a retardation film as it is. Preferably, the support 6 after stretching is peeled from the laminated body 3 after stretching, and the coating film 4 after peeling the support is used as a retardation film. In this case, the support is a process member that is not included in the retardation film that is the final product. Therefore, the support need not be optically uniform, and an inexpensive support can be used.
延伸後の積層体3はそのまま位相差フィルムとして用いることができる。好ましくは、延伸後の積層体3から、延伸後の支持体6が剥離され、支持体を剥離後の塗膜4が位相差フィルムとして用いられる。この場合、支持体は、最終製品である位相差フィルムには含まれない工程部材である。そのため、支持体は光学的に均一である必要はなく、安価な支持体を使用できる。 [Peeling process]
The
延伸後の積層体3は、一旦ロール状に巻き取ってもよく、延伸工程から連続して剥離工程に供することもできる。図2では、延伸工程後に連続して、剥離部160で剥離工程が行われる形態が図示されている。延伸後の支持体6と塗膜(位相差フィルム4)の剥離方法は特に限定されないが、均一に剥離を行い得る観点からは、積層体3をニップロール261,262で挟持し、その下流側で、支持体6および位相差フィルム4のそれぞれを上部ロール261および下部ロール262に沿うように搬送させて、剥離することが好ましい。剥離後の支持体6は、適宜の方式により巻取り部61で巻き取られる。
The laminated body 3 after stretching may be wound up into a roll once, and can be subjected to a peeling process continuously from the stretching process. In FIG. 2, the form by which the peeling process is performed in the peeling part 160 continuously after an extending process is illustrated. The peeling method of the support 6 after stretching and the coating film (retardation film 4) is not particularly limited, but from the viewpoint of performing uniform peeling, the laminate 3 is sandwiched between nip rolls 261 and 262, and on the downstream side thereof. The support 6 and the retardation film 4 are preferably transported along the upper roll 261 and the lower roll 262 and then peeled off. The support 6 after peeling is wound up by the winding unit 61 by an appropriate method.
[他の工程]
延伸工程後や剥離工程後に、位相差フィルムをさらに他の工程に供することもできる。例えば、図2に示す形態では、支持体6を剥離後の位相差フィルム4が、検査部170で検査された後、貼合部190で他のフィルム9と貼り合わせられた後、位相差フィルム4とフィルム9との積層体5が巻取り部51で巻き取られ、巻回体50が形成される。 [Other processes]
The retardation film can be further subjected to another process after the stretching process or the peeling process. For example, in the form shown in FIG. 2, theretardation film 4 after peeling off the support 6 is inspected by the inspection unit 170 and then bonded to another film 9 by the bonding unit 190, and then the retardation film. 4 and the laminated body 5 of the film 9 are wound up by the winding part 51, and the wound body 50 is formed.
延伸工程後や剥離工程後に、位相差フィルムをさらに他の工程に供することもできる。例えば、図2に示す形態では、支持体6を剥離後の位相差フィルム4が、検査部170で検査された後、貼合部190で他のフィルム9と貼り合わせられた後、位相差フィルム4とフィルム9との積層体5が巻取り部51で巻き取られ、巻回体50が形成される。 [Other processes]
The retardation film can be further subjected to another process after the stretching process or the peeling process. For example, in the form shown in FIG. 2, the
<検査工程>
検査部は、位相差フィルムを検査するための検査装置を備える。図2に示す形態では、検査部170は、位相差計171および欠点検出部172を備える。位相差計171は、位相差フィルム4のレターデーションや遅相軸の配向角度を検出する。測定されたレターデーション値を、延伸部130におけるロール周速等にフィードバックさせることで、レターデーションを一定に保つことができる。位相差フィルム4のレターデーションを正確に測定する観点から、支持体6を剥離後に位相差測定が行われることが好ましい。 <Inspection process>
The inspection unit includes an inspection device for inspecting the retardation film. In the form shown in FIG. 2, theinspection unit 170 includes a phase difference meter 171 and a defect detection unit 172. The retardation meter 171 detects the retardation of the retardation film 4 and the orientation angle of the slow axis. The retardation can be kept constant by feeding back the measured retardation value to the roll peripheral speed or the like in the stretching section 130. From the viewpoint of accurately measuring the retardation of the retardation film 4, it is preferable that the retardation measurement is performed after the support 6 is peeled off.
検査部は、位相差フィルムを検査するための検査装置を備える。図2に示す形態では、検査部170は、位相差計171および欠点検出部172を備える。位相差計171は、位相差フィルム4のレターデーションや遅相軸の配向角度を検出する。測定されたレターデーション値を、延伸部130におけるロール周速等にフィードバックさせることで、レターデーションを一定に保つことができる。位相差フィルム4のレターデーションを正確に測定する観点から、支持体6を剥離後に位相差測定が行われることが好ましい。 <Inspection process>
The inspection unit includes an inspection device for inspecting the retardation film. In the form shown in FIG. 2, the
欠点検出部は、位相差フィルムの内部あるいは表面に存在する異物や、打痕等の凹凸状欠陥、キズ等の欠点を検出可能に構成されている。支持体6を剥離後に欠点検出を行うことで、支持体6のみに含まれる欠点を検出することなく、位相差フィルム4の欠点を選択的に検出可能となるため、欠点検出精度が高められる。
The defect detection unit is configured to detect defects such as foreign matter existing in or on the surface of the retardation film, uneven defects such as dents, and scratches. By detecting the defect after the support 6 is peeled off, the defect of the retardation film 4 can be selectively detected without detecting the defect included only in the support 6, so that the defect detection accuracy is improved.
<貼合工程>
貼合部190では、位相差フィルム4が他のフィルム9と貼り合わせられ、積層体5が形成される。フィルム9としては、例えば、位相差フィルム4に仮着される保護フィルム(セパレータ)や、他の光学フィルム(位相差フィルム、偏光子等)が挙げられる。位相差フィルムと他のフィルムとの積層は、適宜の接着剤を介して行われることが好ましい。 <Bonding process>
In thebonding part 190, the phase difference film 4 is bonded with the other film 9, and the laminated body 5 is formed. Examples of the film 9 include a protective film (separator) temporarily attached to the retardation film 4 and other optical films (retardation film, polarizer, etc.). It is preferable that lamination | stacking with retardation film and another film is performed through a suitable adhesive agent.
貼合部190では、位相差フィルム4が他のフィルム9と貼り合わせられ、積層体5が形成される。フィルム9としては、例えば、位相差フィルム4に仮着される保護フィルム(セパレータ)や、他の光学フィルム(位相差フィルム、偏光子等)が挙げられる。位相差フィルムと他のフィルムとの積層は、適宜の接着剤を介して行われることが好ましい。 <Bonding process>
In the
位相差フィルム上に偏光子を積層することにより、位相差フィルムを備える積層偏光板を形成することができる。なお、位相差フィルム上には偏光子が単体で積層されてもよく、偏光子上に透明保護フィルムや他の位相差フィルムが貼り合せられたものが積層されてもよい。
A laminated polarizing plate including a retardation film can be formed by laminating a polarizer on the retardation film. In addition, a polarizer may be laminated | stacked by itself on a retardation film, and what laminated | stacked the transparent protective film and the other retardation film on the polarizer may be laminated | stacked.
位相差フィルム上に積層される偏光子の厚みは、特に限定されないが、一般に1μm~50μm程度である。特に、薄型の積層偏光板を得る観点から、偏光子の厚みは15μm以下が好ましく、10μm以下がより好ましく、8μm以下が好ましい。偏光子の厚みを小さくすることにより、熱や湿度等の周囲の環境変化に伴う偏光子の寸法変化により生じる応力が、隣接する位相差フィルム等に及ぼす影響を小さくすることができる。そのため、位相差フィルムに積層される偏光子の厚みを小さくすることにより、位相差フィルムの厚みが小さい場合でも、周囲の環境変化による光学特性の変化が小さい積層偏光板が得られる。
The thickness of the polarizer laminated on the retardation film is not particularly limited, but is generally about 1 μm to 50 μm. In particular, from the viewpoint of obtaining a thin laminated polarizing plate, the thickness of the polarizer is preferably 15 μm or less, more preferably 10 μm or less, and preferably 8 μm or less. By reducing the thickness of the polarizer, it is possible to reduce the influence of the stress caused by the dimensional change of the polarizer accompanying changes in the surrounding environment such as heat and humidity on the adjacent retardation film or the like. Therefore, by reducing the thickness of the polarizer laminated on the retardation film, a laminated polarizing plate in which changes in optical characteristics due to changes in the surrounding environment are small even when the thickness of the retardation film is small.
位相差フィルム4の表面には、他の光学フィルムや液晶セル等との貼り合せのための粘着剤層が積層されてもよい。例えば、例えば適宜のセパレータ上に粘着剤層が付設された粘着シートの、粘着剤層側の面と位相差フィルムと貼り合せることにより、位相差フィルム上に粘着剤層を積層することができる。
The pressure-sensitive adhesive layer for bonding with another optical film, a liquid crystal cell, or the like may be laminated on the surface of the retardation film 4. For example, an adhesive layer can be laminated | stacked on a phase difference film, for example by bonding together the surface by the side of an adhesive layer of an adhesive sheet with which the adhesive layer was attached on the appropriate separator, and retardation film.
積層体3から支持体6を剥離後の位相差フィルム4の厚みが30μm以下の場合、位相差フィルム4単体では自己支持性が小さくハンドリング性が十分ではないため、他のフィルムや粘着剤層と貼り合わせることにより、ハンドリング性を高めることができる。なお、図2では、位相差フィルム4の片面にのみフィルム9が貼り合わせられる形態が図示されているが、位相差フィルム4の両面にフィルムや粘着剤層等が貼り合わせられてもよい。
When the thickness of the retardation film 4 after peeling the support 6 from the laminate 3 is 30 μm or less, the retardation film 4 itself has a small self-supporting property and an insufficient handling property. By adhering, handling property can be improved. In FIG. 2, a form in which the film 9 is bonded only to one side of the retardation film 4 is illustrated, but a film, an adhesive layer, or the like may be bonded to both sides of the retardation film 4.
また、剥離部160で積層体3から支持体6が剥離される前に、積層体3の位相差フィルム4側の面に他のフィルムや粘着剤層が貼り合わせられてもよい。支持体6が剥離される前に、位相差フィルム4上に他のフィルムや粘着剤層等が貼り合わせられることにより、位相差フィルムを単体で搬送する必要がなくなる。そのため、位相差フィルムの厚みが小さい場合でも、ハンドリング性が高められる。積層体3の位相差フィルム4側の面に他のフィルムや粘着剤層を積層した後、支持体6を剥離し、支持体剥離後の位相差フィルム4の露出面に、さらに別のフィルムや粘着剤層を積層してもよい。
Further, before the support 6 is peeled from the laminate 3 at the peeling portion 160, another film or an adhesive layer may be bonded to the surface of the laminate 3 on the phase difference film 4 side. Before the support 6 is peeled off, another film, a pressure-sensitive adhesive layer, or the like is bonded onto the retardation film 4, so that it is not necessary to transport the retardation film alone. Therefore, even when the thickness of the retardation film is small, handling properties are improved. After laminating another film or pressure-sensitive adhesive layer on the surface of the laminate 3 on the phase difference film 4 side, the support 6 is peeled off, and another film or An adhesive layer may be laminated.
<巻取り工程>
支持体6を剥離後の位相差フィルム4は、必要に応じて検査工程や貼合工程に供された後、巻取り部51で巻き取られ、位相差フィルムの巻回体が形成される。図2に示すように、位相差フィルム4は、他のフィルム9と積層された積層体5(例えば、積層偏光板)として巻取り部51で巻き取られてもよい。また、支持体6を剥離後の位相差フィルム4は、巻取り工程に供することなく、そのまま枚葉体にカットされてもよい。なお、図2では、支持体上に塗膜が密着積層された積層体3を延伸後、巻回体に巻取ることなく、剥離部160で支持体6を剥離する形態が図示されているが、積層体3を一旦巻回体に巻取った後、延伸工程とは別の装置で剥離工程を行うこともできる。 <Winding process>
Theretardation film 4 after peeling off the support 6 is subjected to an inspection process or a bonding process as necessary, and then wound up by the winding unit 51 to form a wound body of the retardation film. As shown in FIG. 2, the retardation film 4 may be wound up by a winding unit 51 as a laminated body 5 (for example, a laminated polarizing plate) laminated with another film 9. Moreover, the phase difference film 4 after peeling the support body 6 may be cut into a sheet body as it is, without providing for a winding process. FIG. 2 illustrates a mode in which the support 6 is peeled off by the peeling portion 160 without being wound on the wound body after the laminate 3 having the coating film adhered and laminated on the support is stretched. The laminate 3 can be once wound on a wound body, and then the peeling step can be performed by an apparatus different from the stretching step.
支持体6を剥離後の位相差フィルム4は、必要に応じて検査工程や貼合工程に供された後、巻取り部51で巻き取られ、位相差フィルムの巻回体が形成される。図2に示すように、位相差フィルム4は、他のフィルム9と積層された積層体5(例えば、積層偏光板)として巻取り部51で巻き取られてもよい。また、支持体6を剥離後の位相差フィルム4は、巻取り工程に供することなく、そのまま枚葉体にカットされてもよい。なお、図2では、支持体上に塗膜が密着積層された積層体3を延伸後、巻回体に巻取ることなく、剥離部160で支持体6を剥離する形態が図示されているが、積層体3を一旦巻回体に巻取った後、延伸工程とは別の装置で剥離工程を行うこともできる。 <Winding process>
The
[位相差フィルムの用途および光学特性]
上記の製造方法により得られる位相差フィルムの用途は特に限定されないが、液晶表示装置の光学補償に好適に用いられる。位相差フィルムが液晶表示装置の光学補償に用いられる場合、液晶セルと偏光子との間に位相差フィルムが配置される。 [Application and optical properties of retardation film]
Although the use of the retardation film obtained by the above production method is not particularly limited, it is suitably used for optical compensation of a liquid crystal display device. When the retardation film is used for optical compensation of a liquid crystal display device, the retardation film is disposed between the liquid crystal cell and the polarizer.
上記の製造方法により得られる位相差フィルムの用途は特に限定されないが、液晶表示装置の光学補償に好適に用いられる。位相差フィルムが液晶表示装置の光学補償に用いられる場合、液晶セルと偏光子との間に位相差フィルムが配置される。 [Application and optical properties of retardation film]
Although the use of the retardation film obtained by the above production method is not particularly limited, it is suitably used for optical compensation of a liquid crystal display device. When the retardation film is used for optical compensation of a liquid crystal display device, the retardation film is disposed between the liquid crystal cell and the polarizer.
位相差フィルムの面内レターデーションReや厚み方向レターデーションRth等の光学特性は、液晶セルの駆動方式やセルのレターデーション値等に応じて、適宜に選択される。例えば、イン・プレーン・スイッチング(IPS)方式の液晶表示装置では、偏光板の吸収軸方向に対して、方位角45°の斜め方向から画面を視認視した際に黒輝度が大きくなるが、液晶セルと偏光子との間に位相差フィルムを配置することにより、斜め方向の黒輝度を小さくして、コントラストを向上することができる。IPS方式の液晶表示装置の光学補償では、例えば上記特許文献1(特開2009‐139747号公報)に開示されているように、2枚以上の位相差フィルムを組み合わせて用いることもできる。
Optical characteristics such as in-plane retardation Re and thickness direction retardation Rth of the retardation film are appropriately selected according to the driving method of the liquid crystal cell, the retardation value of the cell, and the like. For example, in an in-plane switching (IPS) type liquid crystal display device, the black luminance increases when the screen is viewed from an oblique direction with an azimuth angle of 45 ° with respect to the absorption axis direction of the polarizing plate. By disposing the retardation film between the cell and the polarizer, the black luminance in the oblique direction can be reduced and the contrast can be improved. In the optical compensation of the IPS liquid crystal display device, two or more retardation films can be used in combination as disclosed in, for example, the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 2009-139747).
液晶表示装置の光学補償に、2枚以上の位相差フィルムが用いられる場合、少なくとも1枚の位相差フィルムに、本発明の製造方法による位相差フィルムが用いられる。例えば特開2009‐139747号公報に開示されているように、ポジティブBプレートとネガティブBプレートが用いられる場合、いずれか一方のBプレートあるいは両方のBプレートに、本発明の製造方法を適用することができる。前述のように、本発明の製造方法によれば、自由端一軸延伸によりポジティブBプレートやネガティブBプレートを製造することもできる。
When two or more retardation films are used for optical compensation of a liquid crystal display device, the retardation film according to the production method of the present invention is used for at least one retardation film. For example, as disclosed in Japanese Patent Application Laid-Open No. 2009-139747, when a positive B plate and a negative B plate are used, the manufacturing method of the present invention is applied to one or both B plates. Can do. As described above, according to the manufacturing method of the present invention, a positive B plate and a negative B plate can be manufactured by free end uniaxial stretching.
液晶表示装置は、例えば、本発明の位相差フィルムと、偏光子等の他の光学フィルム、液晶セル、およびバックライド等の光学部材とを適宜に組み立てて駆動回路を組み込むことにより製造できる。位相差フィルムと液晶セルとの貼り合せに際しては、配向軸方向の均一性向上や、製造工程簡略化の観点から、前述のように、位相差フィルムと偏光子等を貼り合せた積層偏光板と液晶セルとを、粘着剤等の適宜の接着層を介して貼り合せることが好ましい。
The liquid crystal display device can be manufactured, for example, by appropriately assembling the retardation film of the present invention, another optical film such as a polarizer, a liquid crystal cell, and an optical member such as a backlight and incorporating a drive circuit. When laminating the retardation film and the liquid crystal cell, from the viewpoint of improving the uniformity in the alignment axis direction and simplifying the production process, as described above, the laminated polarizing plate obtained by laminating the retardation film and the polarizer, etc. The liquid crystal cell is preferably bonded through an appropriate adhesive layer such as an adhesive.
以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[測定方法]
フィルムの厚みは、膜厚測定システム(大塚電子製 MCPD)を用いて、反射率の干渉パターンから、計算により求めた。偏光・位相差測定システム(Axometrics製 製品名「AxoScan」)を用い、23℃の環境下にて、測定波長590nmで正面方向のレターデーション、および遅相軸方向を回転中心としてフィルムを40°傾斜した状態のレターデーションを測定し、これらの測定値から、フィルムの複屈折および厚み方向レターデーションを算出した。
基材フィルムの弾性率は、恒温槽付きのオートグラフ(島津製作所製)を用い、温度140℃、引張速度10mm/分の条件で、JIS K7127に準じて測定した。 [Measuring method]
The thickness of the film was calculated from the interference pattern of the reflectance using a film thickness measurement system (MCPD manufactured by Otsuka Electronics). Using a polarization / phase difference measurement system (Axometrics product name “AxoScan”), in a 23 ° C. environment, the front wavelength is measured at a measurement wavelength of 590 nm, and the film is tilted by 40 ° with the slow axis direction as the center of rotation. The retardation in the obtained state was measured, and the birefringence and thickness direction retardation of the film were calculated from these measured values.
The elastic modulus of the base film was measured according to JIS K7127 under the conditions of a temperature of 140 ° C. and a tensile speed of 10 mm / min using an autograph with a thermostatic bath (manufactured by Shimadzu Corporation).
フィルムの厚みは、膜厚測定システム(大塚電子製 MCPD)を用いて、反射率の干渉パターンから、計算により求めた。偏光・位相差測定システム(Axometrics製 製品名「AxoScan」)を用い、23℃の環境下にて、測定波長590nmで正面方向のレターデーション、および遅相軸方向を回転中心としてフィルムを40°傾斜した状態のレターデーションを測定し、これらの測定値から、フィルムの複屈折および厚み方向レターデーションを算出した。
基材フィルムの弾性率は、恒温槽付きのオートグラフ(島津製作所製)を用い、温度140℃、引張速度10mm/分の条件で、JIS K7127に準じて測定した。 [Measuring method]
The thickness of the film was calculated from the interference pattern of the reflectance using a film thickness measurement system (MCPD manufactured by Otsuka Electronics). Using a polarization / phase difference measurement system (Axometrics product name “AxoScan”), in a 23 ° C. environment, the front wavelength is measured at a measurement wavelength of 590 nm, and the film is tilted by 40 ° with the slow axis direction as the center of rotation. The retardation in the obtained state was measured, and the birefringence and thickness direction retardation of the film were calculated from these measured values.
The elastic modulus of the base film was measured according to JIS K7127 under the conditions of a temperature of 140 ° C. and a tensile speed of 10 mm / min using an autograph with a thermostatic bath (manufactured by Shimadzu Corporation).
[合成例A]フマル酸エステル系樹脂(負の複屈折を有するポリマー)の合成およびドープの調製
攪拌機、冷却管、窒素導入管および温度計を備えたオートクレーブに、ヒドロキシプロピルメチルセルロース(信越化学製、商品名メトローズ60SH-50)48g、蒸留水15601g、フマル酸ジイソプロピル8161g、アクリル酸3-エチル-3-オキセタニルメチル240gおよび重合開始剤であるt-ブチルパーオキシピバレート45gを入れ、窒素バブリングを1時間行った後、200rpmで攪拌しながら49℃で24時間保持することにより、ラジカル懸濁重合を行なった。次いで、室温まで冷却し、生成したポリマー粒子を含む懸濁液を遠心分離した。得られたポリマー粒子を蒸留水で2回及びメタノールで2回洗浄した後、80℃で減圧乾燥した(収率80%)。 [Synthesis Example A] Synthesis of Fumarate Ester Resin (Polymer Having Negative Birefringence) and Dope Preparation Into an autoclave equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe and a thermometer, 48 g of trade name Metrose 60SH-50), 15601 g of distilled water, 8161 g of diisopropyl fumarate, 240 g of 3-ethyl-3-oxetanylmethyl acrylate and 45 g of t-butyl peroxypivalate as a polymerization initiator, and 1 bubbling of nitrogen. After carrying out the time, radical suspension polymerization was carried out by maintaining at 49 ° C. for 24 hours while stirring at 200 rpm. Subsequently, it cooled to room temperature and centrifuged the produced | generated suspension containing the polymer particle. The polymer particles obtained were washed twice with distilled water and twice with methanol, and then dried under reduced pressure at 80 ° C. (yield 80%).
攪拌機、冷却管、窒素導入管および温度計を備えたオートクレーブに、ヒドロキシプロピルメチルセルロース(信越化学製、商品名メトローズ60SH-50)48g、蒸留水15601g、フマル酸ジイソプロピル8161g、アクリル酸3-エチル-3-オキセタニルメチル240gおよび重合開始剤であるt-ブチルパーオキシピバレート45gを入れ、窒素バブリングを1時間行った後、200rpmで攪拌しながら49℃で24時間保持することにより、ラジカル懸濁重合を行なった。次いで、室温まで冷却し、生成したポリマー粒子を含む懸濁液を遠心分離した。得られたポリマー粒子を蒸留水で2回及びメタノールで2回洗浄した後、80℃で減圧乾燥した(収率80%)。 [Synthesis Example A] Synthesis of Fumarate Ester Resin (Polymer Having Negative Birefringence) and Dope Preparation Into an autoclave equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe and a thermometer, 48 g of trade name Metrose 60SH-50), 15601 g of distilled water, 8161 g of diisopropyl fumarate, 240 g of 3-ethyl-3-oxetanylmethyl acrylate and 45 g of t-butyl peroxypivalate as a polymerization initiator, and 1 bubbling of nitrogen. After carrying out the time, radical suspension polymerization was carried out by maintaining at 49 ° C. for 24 hours while stirring at 200 rpm. Subsequently, it cooled to room temperature and centrifuged the produced | generated suspension containing the polymer particle. The polymer particles obtained were washed twice with distilled water and twice with methanol, and then dried under reduced pressure at 80 ° C. (yield 80%).
得られたフマル酸エステル系樹脂を、トルエン・メチルエチルケトン混合溶液(トルエン/メチルエチルケトン50重量%/50重量%)に溶解して20%溶液とした。さらに、フマル酸エステル系樹脂100重量部に対し、可塑剤としてトリブチルトリメリテート5重量部を添加して、ドープを調製した。
The obtained fumaric acid ester resin was dissolved in a toluene / methyl ethyl ketone mixed solution (toluene / methyl ethyl ketone 50 wt% / 50 wt%) to obtain a 20% solution. Furthermore, 5 parts by weight of tributyl trimellitate as a plasticizer was added to 100 parts by weight of the fumaric acid ester resin to prepare a dope.
[参考例A]ガラス板上への塗布
上記のドープを、アプリケータで厚み1mmのガラス板上に塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させた。乾燥後のフィルムをガラス板から剥離して、膜厚およびレターデーションの測定を行った。 [Reference Example A] Application on glass plate The dope was applied on a glass plate having a thickness of 1 mm with an applicator, and the whole glass plate was dried in a hot air oven at 140 ° C for 5 minutes. The dried film was peeled from the glass plate, and the film thickness and retardation were measured.
上記のドープを、アプリケータで厚み1mmのガラス板上に塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させた。乾燥後のフィルムをガラス板から剥離して、膜厚およびレターデーションの測定を行った。 [Reference Example A] Application on glass plate The dope was applied on a glass plate having a thickness of 1 mm with an applicator, and the whole glass plate was dried in a hot air oven at 140 ° C for 5 minutes. The dried film was peeled from the glass plate, and the film thickness and retardation were measured.
[比較例A1]
厚み50μmの二軸延伸PETフィルムを、MDを長辺とするA4サイズに切り出し、その短辺を、ガラス板上に耐熱テープを用いて貼り合せた。ガラス板に貼り合せられたPETフィルム上に、アプリケータを用いて上記のドープを塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させ、PETフィルム上に塗膜が形成された積層体を作製した。この積層体を、長さ20cm、幅10cmの短冊状に切り出した。短冊状試料の短辺をチャック間に固定して、165℃の熱風オーブン内で長さ方向への延伸を試みたが、試料がチャックから外れ、延伸を行うことができなかった。 [Comparative Example A1]
A biaxially stretched PET film having a thickness of 50 μm was cut into an A4 size having MD as a long side, and the short side was bonded onto a glass plate using a heat-resistant tape. The above-mentioned dope is applied onto a PET film bonded to a glass plate using an applicator, and the whole glass plate is dried in a hot air oven at 140 ° C. for 5 minutes to form a laminate in which a coating film is formed on the PET film. Was made. This laminate was cut into a strip shape having a length of 20 cm and a width of 10 cm. Although the short side of the strip-shaped sample was fixed between the chucks and an attempt was made to stretch in the length direction in a hot air oven at 165 ° C., the sample was detached from the chuck and could not be stretched.
厚み50μmの二軸延伸PETフィルムを、MDを長辺とするA4サイズに切り出し、その短辺を、ガラス板上に耐熱テープを用いて貼り合せた。ガラス板に貼り合せられたPETフィルム上に、アプリケータを用いて上記のドープを塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させ、PETフィルム上に塗膜が形成された積層体を作製した。この積層体を、長さ20cm、幅10cmの短冊状に切り出した。短冊状試料の短辺をチャック間に固定して、165℃の熱風オーブン内で長さ方向への延伸を試みたが、試料がチャックから外れ、延伸を行うことができなかった。 [Comparative Example A1]
A biaxially stretched PET film having a thickness of 50 μm was cut into an A4 size having MD as a long side, and the short side was bonded onto a glass plate using a heat-resistant tape. The above-mentioned dope is applied onto a PET film bonded to a glass plate using an applicator, and the whole glass plate is dried in a hot air oven at 140 ° C. for 5 minutes to form a laminate in which a coating film is formed on the PET film. Was made. This laminate was cut into a strip shape having a length of 20 cm and a width of 10 cm. Although the short side of the strip-shaped sample was fixed between the chucks and an attempt was made to stretch in the length direction in a hot air oven at 165 ° C., the sample was detached from the chuck and could not be stretched.
[実施例A1~A3、および比較例A2]
二軸延伸PETフィルムに代えて、ポリエチレン-テレフタレート/イソフタレート共重合体の二軸延伸フィルムを用いた。各実施例および比較例で用いた二軸延伸フィルムの弾性率は表1に示す通りであった。このフィルム上に、比較例A1と同様にしてドープの塗布および乾燥を行った。 [Examples A1 to A3 and Comparative Example A2]
Instead of the biaxially stretched PET film, a biaxially stretched film of polyethylene-terephthalate / isophthalate copolymer was used. The elastic modulus of the biaxially stretched film used in each example and comparative example was as shown in Table 1. On this film, the dope was applied and dried in the same manner as in Comparative Example A1.
二軸延伸PETフィルムに代えて、ポリエチレン-テレフタレート/イソフタレート共重合体の二軸延伸フィルムを用いた。各実施例および比較例で用いた二軸延伸フィルムの弾性率は表1に示す通りであった。このフィルム上に、比較例A1と同様にしてドープの塗布および乾燥を行った。 [Examples A1 to A3 and Comparative Example A2]
Instead of the biaxially stretched PET film, a biaxially stretched film of polyethylene-terephthalate / isophthalate copolymer was used. The elastic modulus of the biaxially stretched film used in each example and comparative example was as shown in Table 1. On this film, the dope was applied and dried in the same manner as in Comparative Example A1.
<延伸および剥離>
上記の積層体を、長さ20cm、幅10cmの短冊状に切り出し、短冊状試料の短辺をチャック間に固定して、165℃の熱風オーブン内で、長さ方向に、1.05倍に自由端一軸延伸を行ったところ、いずれも問題なく延伸することができた。 <Stretching and peeling>
The above laminate is cut into a strip shape having a length of 20 cm and a width of 10 cm, the short side of the strip sample is fixed between chucks, and is 1.05 times in the length direction in a hot air oven at 165 ° C. When free end uniaxial stretching was performed, all of them could be stretched without problems.
上記の積層体を、長さ20cm、幅10cmの短冊状に切り出し、短冊状試料の短辺をチャック間に固定して、165℃の熱風オーブン内で、長さ方向に、1.05倍に自由端一軸延伸を行ったところ、いずれも問題なく延伸することができた。 <Stretching and peeling>
The above laminate is cut into a strip shape having a length of 20 cm and a width of 10 cm, the short side of the strip sample is fixed between chucks, and is 1.05 times in the length direction in a hot air oven at 165 ° C. When free end uniaxial stretching was performed, all of them could be stretched without problems.
[合成例B]ポリアリレート系樹脂(正の複屈折を有するポリマー)の合成
攪拌装置を備えた反応容器中、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン54.0g、ベンジルトリエチルアンモニウムクロライド1.2gを、1M水酸化ナトリウム溶液500mlに溶解させた。この溶液に、テレフタル酸クロライド30.4gとイソフタル酸クロライド10.2gを600mlのクロロホルムに溶解させた溶液を攪拌しながら一度に加え、室温で90分間攪拌した。その後、重合溶液を静置分離してポリマーを含んだクロロホルム溶液を分離し、ついで酢酸水で洗浄し、イオン交換水で洗浄した後、メタノールに投入してポリマーを析出させた。析出したポリマーを、純水およびメタノールで洗浄した後、減圧下で乾燥して、白色のポリマー68.2g(収率92%)を得た。 [Synthesis Example B] Synthesis of polyarylate resin (polymer having positive birefringence) In a reaction vessel equipped with a stirrer, 54.0 g of 2,2-bis (4-hydroxyphenyl) -4-methylpentane, benzyl 1.2 g of triethylammonium chloride was dissolved in 500 ml of 1M sodium hydroxide solution. A solution prepared by dissolving 30.4 g of terephthalic acid chloride and 10.2 g of isophthalic acid chloride in 600 ml of chloroform was added to this solution all at once with stirring, and the mixture was stirred at room temperature for 90 minutes. Thereafter, the polymerization solution was allowed to stand to separate the chloroform solution containing the polymer, then washed with acetic acid water, washed with ion-exchanged water, and then poured into methanol to precipitate the polymer. The precipitated polymer was washed with pure water and methanol and then dried under reduced pressure to obtain 68.2 g (yield 92%) of a white polymer.
攪拌装置を備えた反応容器中、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン54.0g、ベンジルトリエチルアンモニウムクロライド1.2gを、1M水酸化ナトリウム溶液500mlに溶解させた。この溶液に、テレフタル酸クロライド30.4gとイソフタル酸クロライド10.2gを600mlのクロロホルムに溶解させた溶液を攪拌しながら一度に加え、室温で90分間攪拌した。その後、重合溶液を静置分離してポリマーを含んだクロロホルム溶液を分離し、ついで酢酸水で洗浄し、イオン交換水で洗浄した後、メタノールに投入してポリマーを析出させた。析出したポリマーを、純水およびメタノールで洗浄した後、減圧下で乾燥して、白色のポリマー68.2g(収率92%)を得た。 [Synthesis Example B] Synthesis of polyarylate resin (polymer having positive birefringence) In a reaction vessel equipped with a stirrer, 54.0 g of 2,2-bis (4-hydroxyphenyl) -4-methylpentane, benzyl 1.2 g of triethylammonium chloride was dissolved in 500 ml of 1M sodium hydroxide solution. A solution prepared by dissolving 30.4 g of terephthalic acid chloride and 10.2 g of isophthalic acid chloride in 600 ml of chloroform was added to this solution all at once with stirring, and the mixture was stirred at room temperature for 90 minutes. Thereafter, the polymerization solution was allowed to stand to separate the chloroform solution containing the polymer, then washed with acetic acid water, washed with ion-exchanged water, and then poured into methanol to precipitate the polymer. The precipitated polymer was washed with pure water and methanol and then dried under reduced pressure to obtain 68.2 g (yield 92%) of a white polymer.
得られたポリアリレート系樹脂を、シクロペンタノンに溶解して、固形分濃度20%のドープを調製した。
The obtained polyarylate resin was dissolved in cyclopentanone to prepare a dope having a solid concentration of 20%.
[参考例B]ガラス板上への塗布
上記のドープを、アプリケータでガラス板上に塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させ、乾燥後のフィルムをガラス板から剥離して、膜厚およびレターデーションの測定を行った。 [Reference Example B] Application on a glass plate The above dope is applied on a glass plate with an applicator, dried with a hot air oven at 140 ° C for 5 minutes together with the glass plate, and the dried film is peeled off from the glass plate. The film thickness and retardation were measured.
上記のドープを、アプリケータでガラス板上に塗布し、ガラス板ごと140℃の熱風オーブンで5分間乾燥させ、乾燥後のフィルムをガラス板から剥離して、膜厚およびレターデーションの測定を行った。 [Reference Example B] Application on a glass plate The above dope is applied on a glass plate with an applicator, dried with a hot air oven at 140 ° C for 5 minutes together with the glass plate, and the dried film is peeled off from the glass plate. The film thickness and retardation were measured.
[実施例B1~B3および比較例B1,B2]
上記の合成例Bで得られたドープを用いたこと以外は、実施例A1~A3および比較例B1,B2と同様にして、ドープの塗布および乾燥を行い、得られた積層体の延伸加工性を確認した。 [Examples B1 to B3 and Comparative Examples B1 and B2]
Except for using the dope obtained in Synthesis Example B above, the dope was applied and dried in the same manner as in Examples A1 to A3 and Comparative Examples B1 and B2, and the stretchability of the obtained laminate was It was confirmed.
上記の合成例Bで得られたドープを用いたこと以外は、実施例A1~A3および比較例B1,B2と同様にして、ドープの塗布および乾燥を行い、得られた積層体の延伸加工性を確認した。 [Examples B1 to B3 and Comparative Examples B1 and B2]
Except for using the dope obtained in Synthesis Example B above, the dope was applied and dried in the same manner as in Examples A1 to A3 and Comparative Examples B1 and B2, and the stretchability of the obtained laminate was It was confirmed.
[評価結果]
上記各実施例で用いた支持体の機械特性、140℃で5分間乾燥後の塗膜の光学特性、および積層体の延伸加工性を表1に示す。表1において、Δnは、厚み方向複屈折Δnoutの絶対値である。フマル酸エステル系樹脂(負の複屈折を有するポリマー)を用いた参考例A、実施例A1~A3、および比較例A1,A2では、Δnoutは負であり、ポリアリレート系樹脂(正の複屈折を有するポリマー)を用いた参考例B、実施例B1~B3、および比較例B1,B2では、Δnoutは正であった。 [Evaluation results]
Table 1 shows the mechanical properties of the support used in each of the above Examples, the optical properties of the coating film after drying at 140 ° C. for 5 minutes, and the stretchability of the laminate. In Table 1, Δn is the absolute value of the thickness direction birefringence Δn out . In Reference Example A, Examples A1 to A3, and Comparative Examples A1 and A2 using a fumarate ester resin (polymer having negative birefringence), Δn out is negative, and polyarylate resin (positive birefringence) In Reference Example B, Examples B1 to B3, and Comparative Examples B1 and B2 using a polymer having refraction, Δn out was positive.
上記各実施例で用いた支持体の機械特性、140℃で5分間乾燥後の塗膜の光学特性、および積層体の延伸加工性を表1に示す。表1において、Δnは、厚み方向複屈折Δnoutの絶対値である。フマル酸エステル系樹脂(負の複屈折を有するポリマー)を用いた参考例A、実施例A1~A3、および比較例A1,A2では、Δnoutは負であり、ポリアリレート系樹脂(正の複屈折を有するポリマー)を用いた参考例B、実施例B1~B3、および比較例B1,B2では、Δnoutは正であった。 [Evaluation results]
Table 1 shows the mechanical properties of the support used in each of the above Examples, the optical properties of the coating film after drying at 140 ° C. for 5 minutes, and the stretchability of the laminate. In Table 1, Δn is the absolute value of the thickness direction birefringence Δn out . In Reference Example A, Examples A1 to A3, and Comparative Examples A1 and A2 using a fumarate ester resin (polymer having negative birefringence), Δn out is negative, and polyarylate resin (positive birefringence) In Reference Example B, Examples B1 to B3, and Comparative Examples B1 and B2 using a polymer having refraction, Δn out was positive.
表1におけるΔn/Δn0は、各実施例および比較例における塗膜のΔnと、ガラス板上に塗布を行った参考例の塗膜のΔn0の比である。また、表1では、各参考例および実施例における乾燥条件を50℃で30分間に変更した場合の塗膜の厚み方向複屈折の絶対値Δnも併せて示している。
[Delta] n / [Delta] n 0 in Table 1, and [Delta] n of the coating film in each Example and Comparative Example, the ratio of [Delta] n 0 of the coating film of Reference Example was performed coated on a glass plate. Table 1 also shows the absolute value Δn of the birefringence in the thickness direction of the coating film when the drying condition in each reference example and example is changed to 50 ° C. for 30 minutes.
表1における延伸加工性は、延伸ができたものを良好、延伸できなかったものを不良とした。
The stretch workability in Table 1 was determined to be good when stretched and poor when stretched.
負の複屈折を有するポリマーが用いられた参考例A、実施例A1~A3、および比較例A1,A2のいずれにおいても、乾燥を50℃で行った場合のΔnに大きな差はみられなかった。一方、支持体上での乾燥を高温(140℃)で行った場合は、140℃における支持体の弾性率が小さくなるにつれて、Δnが小さくなる傾向がみられ、比較例A2では、Δnが参考例Aの半分程度にまで低下していた。この結果から、小さな膜厚で大きな複屈折を有する位相差フィルムを得るためには、乾燥温度付近での弾性率の高い支持体を用いる必要があることが分かる。
In Reference Example A, Examples A1 to A3, and Comparative Examples A1 and A2 in which a polymer having negative birefringence was used, there was no significant difference in Δn when drying was performed at 50 ° C. . On the other hand, when drying on the support is performed at a high temperature (140 ° C.), Δn tends to decrease as the elastic modulus of the support at 140 ° C. decreases. In Comparative Example A2, Δn is a reference. It was reduced to about half of Example A. From this result, it can be seen that in order to obtain a retardation film having a small film thickness and a large birefringence, it is necessary to use a support having a high elastic modulus near the drying temperature.
一方、140℃における弾性率が1000MPaを超える比較例A1は、支持体と塗膜を一体で延伸することが困難であった。比較例B1も同様であった。
On the other hand, in Comparative Example A1 having an elastic modulus at 140 ° C. exceeding 1000 MPa, it was difficult to stretch the support and the coating film integrally. The same was true for Comparative Example B1.
正の複屈折を有するポリマーが用いられた実施例B1~B3および比較例B2においても、上記の実施例A1~A3および比較例A2と同様に、支持体の140℃における弾性率の低下に伴って、140℃で乾燥後の塗膜のΔnの低下がみられた。これらの結果から、ポリマーの種類に関わらず、所定の弾性率を有する支持体を用いることで、位相差フィルムが高い複屈折を有し、かつ支持体と塗膜を一体で延伸する際の延伸加工性が優れていることが分かる。
In Examples B1 to B3 and Comparative Example B2 in which a polymer having positive birefringence was used, as the elastic modulus of the support at 140 ° C. decreased, as in Examples A1 to A3 and Comparative Example A2 above. In addition, a decrease in Δn of the coating film after drying at 140 ° C. was observed. From these results, regardless of the type of polymer, by using a support having a predetermined elastic modulus, the retardation film has high birefringence and stretching when the support and the coating film are stretched integrally. It can be seen that the processability is excellent.
1,6 支持体
2,3 積層体
4 位相差フィルム
9 フィルム
5 積層体
10 支持体巻回体
20 積層体巻回体
50 位相差フィルム積層体巻回体
11,22 繰出し部
21,51 巻取り部
110 製膜部
120 乾燥炉
130 延伸部
139 加熱炉
160 剥離部
170 検査部
171 位相差計
172 欠点検出部
190 貼合部 DESCRIPTION OF SYMBOLS 1,6 Support body 2,3 Lamination body 4 Phase difference film 9 Film 5 Lamination body 10 Support body winding body 20 Lamination body winding body 50 Retardation film lamination body winding body 11,22 Feeding part 21,51 Winding up Part 110 Film-forming part 120 Drying furnace 130 Stretching part 139 Heating furnace 160 Peeling part 170 Inspection part 171 Phase difference meter 172 Defect detection part 190 Bonding part
2,3 積層体
4 位相差フィルム
9 フィルム
5 積層体
10 支持体巻回体
20 積層体巻回体
50 位相差フィルム積層体巻回体
11,22 繰出し部
21,51 巻取り部
110 製膜部
120 乾燥炉
130 延伸部
139 加熱炉
160 剥離部
170 検査部
171 位相差計
172 欠点検出部
190 貼合部 DESCRIPTION OF
Claims (8)
- 支持体フィルム上に、樹脂溶液が塗布される塗布工程;および
前記樹脂溶液が加熱により乾燥され、前記支持体フィルム上に塗膜が密着積層された積層体が形成される乾燥工程、をこの順に有し、
前記支持体フィルムは、前記塗布工程前において140℃における引張弾性率が200Mpa~1000MPaである、位相差フィルムの製造方法。 A coating step in which a resin solution is applied onto a support film; and a drying step in which the resin solution is dried by heating to form a laminate in which a coating film is closely laminated on the support film. Have
The support film is a method for producing a retardation film, wherein a tensile elastic modulus at 140 ° C. is 200 Mpa to 1000 MPa before the coating step. - 前記乾燥工程後に、前記積層体が少なくとも一方向に延伸され、前記塗膜に光学異方性が付与される延伸工程を更に有する、請求項1に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1, further comprising a stretching step in which the laminated body is stretched in at least one direction after the drying step and optical anisotropy is imparted to the coating film.
- 前記積層体から支持体が剥離される剥離工程を更に有する、請求項2に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 2, further comprising a peeling step in which the support is peeled from the laminate.
- 前記延伸工程において、自由端一軸延伸が行われる、請求項2または3に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 2, wherein free end uniaxial stretching is performed in the stretching step.
- 前記延伸工程において、前記塗膜が、nx>ny>nz、またはnz>nx>nyの光学異方性を有するように延伸が行われる、請求項2~4のいずれか1項に記載の位相差フィルムの製造方法(ただし、nxおよびnyは、それぞれ塗膜の面内の遅相軸方向および進相軸方向の屈折率であり、nzは塗膜の厚み方向の屈折率である)。 The rank according to any one of claims 2 to 4, wherein in the stretching step, the coating is stretched so as to have an optical anisotropy of nx> ny> nz or nz> nx> ny. A method for producing a retardation film (where nx and ny are the refractive indexes in the slow axis direction and the fast axis direction in the plane of the coating film, respectively, and nz is the refractive index in the thickness direction of the coating film).
- 前記乾燥工程において乾燥後の塗膜の膜厚が30μm以下である、請求項1~5のいずれか1項に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to any one of claims 1 to 5, wherein a film thickness of the coating film after drying is 30 μm or less in the drying step.
- 前記乾燥工程において、100℃以上の温度で乾燥が行われる、請求項1~6のいずれか1項に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to any one of claims 1 to 6, wherein the drying is performed at a temperature of 100 ° C or higher in the drying step.
- 偏光子と位相差フィルムとが積層された積層偏光板の製造方法であって、
請求項1~7のいずれか1項に記載の方法により位相差フィルムが製造され、
前記位相差フィルム上に、偏光子を含む光学フィルムが積層されることを特徴とする、積層偏光板の製造方法。 A method for producing a laminated polarizing plate in which a polarizer and a retardation film are laminated,
A retardation film is produced by the method according to any one of claims 1 to 7,
An optical film containing a polarizer is laminated on the retardation film. A method for producing a laminated polarizing plate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167034018A KR102234047B1 (en) | 2014-06-05 | 2015-02-10 | Method for manufacturing phase difference film and method for manufacturing layered polarizing plate |
CN201580027544.XA CN106415340B (en) | 2014-06-05 | 2015-02-10 | Method for producing retardation film and method for producing laminated polarizing plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014117130A JP6376849B2 (en) | 2014-06-05 | 2014-06-05 | Method for producing retardation film and method for producing laminated polarizing plate |
JP2014-117130 | 2014-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186379A1 true WO2015186379A1 (en) | 2015-12-10 |
Family
ID=54766460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053694 WO2015186379A1 (en) | 2014-06-05 | 2015-02-10 | Method for manufacturing phase difference film and method for manufacturing layered polarizing plate |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6376849B2 (en) |
KR (1) | KR102234047B1 (en) |
CN (1) | CN106415340B (en) |
WO (1) | WO2015186379A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109477931B (en) * | 2016-07-01 | 2019-11-05 | 大日本印刷株式会社 | Optical laminate and display device |
WO2019216122A1 (en) * | 2018-05-08 | 2019-11-14 | コニカミノルタ株式会社 | Substrate film for liquid crystal coating, optical film with temporary support containing same, polarizing plate containing same, and producing method thereof |
US20210294013A1 (en) * | 2018-08-17 | 2021-09-23 | Osaka Gas Chemicals Co., Ltd. | Retardation film and method for producing the same |
KR102426168B1 (en) * | 2019-03-12 | 2022-07-27 | 삼성에스디아이 주식회사 | Polarizing plate and optical display apparatus comprising the same |
JP7317549B2 (en) * | 2019-04-02 | 2023-07-31 | 日東電工株式会社 | Polarizing plate and image display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005148545A (en) * | 2003-11-18 | 2005-06-09 | Nitto Denko Corp | Method for manufacturing optical film, optical film, liquid crystal display device, and image display device |
JP2005181451A (en) * | 2003-12-16 | 2005-07-07 | Nitto Denko Corp | Method for manufacturing birefringent film and optical film and image forming apparatus using the same |
JP2007007901A (en) * | 2005-06-28 | 2007-01-18 | Konica Minolta Photo Imaging Inc | Identification card |
JP2011118421A (en) * | 2004-05-18 | 2011-06-16 | Fujifilm Corp | Optical compensation film, polarizing plate and liquid crystal display device |
JP2011225764A (en) * | 2010-04-22 | 2011-11-10 | Sumitomo Chemical Co Ltd | Resin film with adhesive and optical laminate using the same |
JP2011227430A (en) * | 2009-06-19 | 2011-11-10 | Nitto Denko Corp | Method for manufacturing optical film |
JP2012027260A (en) * | 2010-07-23 | 2012-02-09 | Dainippon Printing Co Ltd | Polarizing sheet laminate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004046068A (en) | 2002-01-23 | 2004-02-12 | Nitto Denko Corp | Method for manufacturing birefringent layer, and optical film including the birefringent layer |
JP5064738B2 (en) * | 2005-08-22 | 2012-10-31 | 富士フイルム株式会社 | Transparent polymer film, production method thereof, retardation film using the same, polarizing plate, and liquid crystal display device |
JP5096865B2 (en) | 2007-09-07 | 2012-12-12 | 日東電工株式会社 | Optical film and manufacturing method thereof |
JP4938632B2 (en) | 2007-12-07 | 2012-05-23 | 日東電工株式会社 | Liquid crystal panel and liquid crystal display device |
JP5324316B2 (en) * | 2008-05-27 | 2013-10-23 | 日東電工株式会社 | Adhesive polarizing plate, image display device, and manufacturing method thereof |
-
2014
- 2014-06-05 JP JP2014117130A patent/JP6376849B2/en active Active
-
2015
- 2015-02-10 WO PCT/JP2015/053694 patent/WO2015186379A1/en active Application Filing
- 2015-02-10 CN CN201580027544.XA patent/CN106415340B/en active Active
- 2015-02-10 KR KR1020167034018A patent/KR102234047B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005148545A (en) * | 2003-11-18 | 2005-06-09 | Nitto Denko Corp | Method for manufacturing optical film, optical film, liquid crystal display device, and image display device |
JP2005181451A (en) * | 2003-12-16 | 2005-07-07 | Nitto Denko Corp | Method for manufacturing birefringent film and optical film and image forming apparatus using the same |
JP2011118421A (en) * | 2004-05-18 | 2011-06-16 | Fujifilm Corp | Optical compensation film, polarizing plate and liquid crystal display device |
JP2007007901A (en) * | 2005-06-28 | 2007-01-18 | Konica Minolta Photo Imaging Inc | Identification card |
JP2011227430A (en) * | 2009-06-19 | 2011-11-10 | Nitto Denko Corp | Method for manufacturing optical film |
JP2011225764A (en) * | 2010-04-22 | 2011-11-10 | Sumitomo Chemical Co Ltd | Resin film with adhesive and optical laminate using the same |
JP2012027260A (en) * | 2010-07-23 | 2012-02-09 | Dainippon Printing Co Ltd | Polarizing sheet laminate |
Also Published As
Publication number | Publication date |
---|---|
KR20170016354A (en) | 2017-02-13 |
CN106415340A (en) | 2017-02-15 |
JP2015230415A (en) | 2015-12-21 |
JP6376849B2 (en) | 2018-08-22 |
CN106415340B (en) | 2019-02-19 |
KR102234047B1 (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6418929B2 (en) | Method for producing retardation film and method for producing laminated polarizing plate | |
JP5722255B2 (en) | Manufacturing method of polarizing plate | |
JP6376849B2 (en) | Method for producing retardation film and method for producing laminated polarizing plate | |
JP7355583B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
JP2012014001A (en) | Method for manufacturing polarizer, polarizer, polarizing plate, optical film and image display device | |
JP7355582B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
JP2014146035A (en) | Method for manufacturing polarizer, polarizer, polarizing plate, optical film and image display device | |
KR102518911B1 (en) | Manufacturing method of retardation film, circular polarizing plate and retardation film | |
TWI679118B (en) | Laminated film and method for producing the same | |
TWI816868B (en) | Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer | |
WO2022264593A1 (en) | Phase difference film, production method for same, polarizing plate, and liquid crystal display device | |
JP7348799B2 (en) | Manufacturing method of polarizing plate with retardation layer | |
JP7355584B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
TWI789514B (en) | Polarizing plate, polarizing plate coil, and method for manufacturing polarizing film | |
JP7355587B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
JP7355585B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
JP7355586B2 (en) | Polarizing plate with retardation layer and image display device using the same | |
WO2023218822A1 (en) | Method for producing polarizing film | |
JP7513419B2 (en) | Method for manufacturing retardation film | |
TWI827659B (en) | Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer | |
JP7240365B2 (en) | circular polarizer | |
WO2023218820A1 (en) | Method for producing polarizing film | |
WO2023218821A1 (en) | Method for producing polarizing film | |
TWI793212B (en) | Method for producing polarizing plate sheet with protective film | |
TW202102593A (en) | Polarizing film, polarizing plate, and method for producing said polarizing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803362 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167034018 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803362 Country of ref document: EP Kind code of ref document: A1 |