WO2015186262A1 - Spark ignition timing control device for internal combustion engine - Google Patents

Spark ignition timing control device for internal combustion engine Download PDF

Info

Publication number
WO2015186262A1
WO2015186262A1 PCT/JP2014/065161 JP2014065161W WO2015186262A1 WO 2015186262 A1 WO2015186262 A1 WO 2015186262A1 JP 2014065161 W JP2014065161 W JP 2014065161W WO 2015186262 A1 WO2015186262 A1 WO 2015186262A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition timing
exhaust
combustion engine
internal combustion
intake air
Prior art date
Application number
PCT/JP2014/065161
Other languages
French (fr)
Japanese (ja)
Inventor
松田 健
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/065161 priority Critical patent/WO2015186262A1/en
Publication of WO2015186262A1 publication Critical patent/WO2015186262A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to ignition timing control in a spark ignition type internal combustion engine.
  • Exhaust gas recirculation control for recirculating a part of exhaust gas to the intake air of the internal combustion engine is known as a temperature control technique for the combustion chamber of the internal combustion engine.
  • concentration of the exhaust gas in the intake air changes due to the exhaust gas recirculation control, the optimal ignition timing for the air-fuel mixture in the combustion chamber also changes.
  • JPS63-289266A issued by the Japan Patent Office in 1988 detects the oxygen concentration of the intake air of the internal combustion engine with an oxygen sensor, and determines the ignition timing based on the detected oxygen concentration. Propose to control.
  • the oxygen concentration downstream of the throttle is detected by an oxygen sensor, and the ignition timing of the spark plug facing the combustion chamber is controlled to a timing suitable for the oxygen concentration.
  • a supercharger such as a turbocharger or a supercharger.
  • the supercharger includes a compressor, and the intake air in the intake passage is supplied to the combustion chamber of the internal combustion engine while being compressed by the compressor.
  • the temperature of the combustion chamber can be controlled by performing the exhaust gas recirculation control.
  • the exhaust gas recirculation passage is connected to the intake passage upstream of the turbocharger or supercharger compressor.
  • the oxygen sensor arranged upstream of the compressor detects the oxygen concentration immediately downstream of the connection portion of the exhaust pipe flow passage to the intake passage. It will be.
  • the fresh air sucked in by the intake passage and the exhaust gas flowing in from the exhaust pipe flow passage are not immediately mixed, so there is a possibility that a considerable deviation has occurred in the exhaust concentration of the gas at the point where the oxygen sensor detects the oxygen concentration. is there. Therefore, it cannot be said that the accuracy of the actual EGR rate obtained from the detection value of the oxygen sensor is sufficient.
  • an object of the present invention is to enable accurate detection of the EGR rate even when the internal combustion engine is in a transient state.
  • an embodiment of the present invention includes a supercharging compressor that pressurizes intake air in an intake passage, and an exhaust gas recirculation device that recirculates part of exhaust gas to a supply passage upstream of the compressor.
  • the present invention is applied to a spark ignition timing control device for an internal combustion engine.
  • the spark ignition timing control device includes an exhaust concentration sensor provided downstream of the compressor in the intake passage, and a controller that controls the spark ignition timing based on the exhaust concentration detected by the exhaust concentration sensor.
  • FIG. 1 is a schematic configuration diagram of a spark ignition timing control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between oxygen concentration and oxygen sensor output.
  • FIG. 3 is a diagram showing the relationship between the EGR rate and the oxygen concentration.
  • FIG. 4 is a flowchart showing an ignition timing control routine executed by the controller according to the embodiment of the present invention.
  • a spark ignition type multi-cylinder internal combustion engine 1 for a vehicle is rotated by injecting fuel into intake air sucked from an intake passage 2 and igniting and burning a mixture of intake air and fuel with a spark plug. To do.
  • the combustion gas is discharged through the exhaust passage 3.
  • An exhaust gas recirculation (EGR) passage 4 for connecting a part of the exhaust gas to the intake air is connected to the intake passage 2.
  • the EGR passage 4 is provided with an exhaust cooler 5 for cooling the exhaust and an EGR valve 6 for adjusting the exhaust flow rate.
  • the intake air mixed with a part of the exhaust is pressurized by the compressor 8 of the turbocharger 7 and cooled by the intercooler 9 provided in the intake passage 2.
  • the intake passage 2 is provided with an intake bypass passage 10 and an intake bypass valve 11 that bypass the compressor 8.
  • the intake air in the intake passage 2 cooled by the intercooler 9 is supplied to the combustion chambers 14 of the internal combustion engine 1 via the intake manifold 13 after the flow rate is adjusted by the throttle 12.
  • the combustion gas discharged from the combustion chamber 14 is collected into the exhaust passage 16 via the exhaust manifold 15.
  • An exhaust turbine 17 of the turbocharger 7 is provided in the exhaust passage 3. After the exhaust turbine 17 is driven to rotate, the exhaust gas is purified by oxidizing or reducing the exhaust catalyst 18 and then released into the atmosphere.
  • the exhaust turbine 17 is coupled to the compressor 8 with a common rotating shaft, and the compressor 8 operates according to the rotation of the exhaust turbine 17.
  • the exhaust passage 3 is provided with an exhaust bypass passage 19 that bypasses the exhaust turbine 17 and an exhaust bypass valve 20. Both the intake bypass valve 11 and the exhaust bypass valve 20 have a role of preventing the turbocharger 7 from surging.
  • the ignition timing control by the spark plug is performed by the spark ignition timing control device.
  • the spark ignition timing control device includes a controller 21.
  • the controller 21 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 21 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • an oxygen sensor 22 for detecting the oxygen concentration in the intake air is connected to the controller 21 as an exhaust concentration sensor through a signal circuit.
  • the oxygen sensor 22 is provided in the middle of the intake manifold 13 located on the downstream side of the compressor 8 in the intake passage 2.
  • a rotation speed sensor for detecting the rotation speed of the internal combustion engine 1
  • an accelerator pedal depression amount sensor for detecting the depression amount of the accelerator pedal of the vehicle, for example.
  • FIG. The ignition timing control routine executed by the controller 21 will be described with reference to FIG. This routine is repeatedly executed at regular time intervals of, for example, 10 milliseconds during operation of the internal combustion engine 1.
  • step S1 the controller 21 determines basic ignition timing based on the rotational speed and load of the internal combustion engine 1. This determination is made in advance with reference to a map that is predetermined according to the rotational speed and load of the internal combustion engine 1 and stored in the ROM.
  • step S2 the controller 21 reads the output value of the oxygen sensor 22.
  • the output of the oxygen sensor 22 is output as a current value Ip milliampere (mA).
  • step S3 the controller 21 calculates the FIG.
  • the current value Ip is converted into the oxygen concentration O 2 (%) with reference to the map having the contents shown in FIG.
  • FIG. The EGR rate K (%) is calculated from the oxygen concentration O 2 (%) with reference to the map shown in FIG.
  • the higher the oxygen concentration O 2 (%) the lower the exhaust concentration in the intake air.
  • the higher the oxygen concentration O 2 (%) the lower the EGR rate K (%).
  • step S4 the controller 21 corrects the basic ignition timing based on the EGR rate K and determines the final ignition timing. Specifically, correction is performed to advance the ignition timing as the EGR rate K increases. This is to promote ignition of the air-fuel mixture containing a large amount of exhaust gas, which is an inert gas.
  • the controller 21 ends the routine.
  • the above control is performed in combination with the control of the EGR rate K by adjusting the opening degree of the EGR valve 6.
  • an oxygen sensor 22 for obtaining the actual EGR rate K is provided in the middle of the intake manifold 13. This brings about the following preferable effect in controlling the ignition timing.
  • the ignition timing immediately changes to the corrected timing.
  • the period until the EGR rate of the air-fuel mixture in the combustion chamber 14 actually changes is changed to the air-fuel mixture at an ignition timing that does not correspond to the actual intake air EGR rate. Will be ignited.
  • Such a deviation in the ignition timing causes misfire and knocking.
  • the oxygen sensor 22 detects the oxygen concentration of the intake air immediately after the exhaust gas flows into the intake passage 2 from the EGR passage 4. Will do. It takes time for the exhaust gas flowing into the intake passage 2 to mix with fresh air, and during this time, the distribution of the exhaust gas in the cross section of the intake passage 2 tends to be biased. Therefore, the accuracy of the oxygen concentration detected by the oxygen sensor 22 tends to vary. Such variations reduce the detection accuracy of the EGR rate K.
  • this spark ignition timing control device is provided with the oxygen sensor 22 in the middle of the intake manifold 13, it is possible to solve the above-mentioned problems and perform highly accurate ignition timing control. That is, the detected oxygen concentration O 2 (%) of the intake air is very close to the oxygen concentration of the intake air actually supplied to the combustion chamber 14. That is, the accuracy of detecting the oxygen concentration is improved. Further, since the time lag between the change in the EGR rate K obtained from the oxygen concentration O 2 (%) and the change in the actual EGR rate of the intake air in the combustion chamber 14 is small, the change in the EGR rate of the intake air in the combustion chamber 14 The ignition timing can be corrected with high accuracy.
  • the time lag between the change in the EGR rate K based on the output signal of the oxygen sensor 22 in the transient state and the actual EGR rate of the intake air in the combustion chamber 14 can be kept small.
  • the oxygen sensor 22 provided in the middle of the intake manifold 13 downstream of the compressor 8 detects the oxygen concentration in a state where the intake air and the exhaust gas are sufficiently mixed, the EGR rate based on the oxygen concentration O 2 (%) is detected. The calculation accuracy of K (%) can be increased.
  • the oxygen sensor 22 is used as the exhaust gas concentration sensor, but the exhaust gas concentration in the intake air is detected by a carbon dioxide sensor that detects the concentration of carbon dioxide (CO 2 ), which is the main component of the combustion gas.
  • CO 2 carbon dioxide
  • the spark ignition timing control device since the spark ignition timing control device according to the present invention has the exhaust gas concentration sensor provided downstream of the compressor, it can detect the change in the EGR rate of the intake air in the combustion chamber with high accuracy and high response. Therefore, an effect of improving the control accuracy of the ignition timing in the transient state of the vehicle internal combustion engine in which the operating conditions widely vary can be expected.

Abstract

An internal combustion engine is provided with a supercharging compressor that pressurizes intake air in an intake air passage, and an exhaust refluxing device that refluxes part of exhaust into a supply passage upstream of the compressor. An exhaust concentration sensor is disposed downstream of the compressor in the intake air passage, and a controller controls spark ignition timing on the basis of a detected exhaust concentration. By disposing the exhaust concentration sensor downstream of the compressor, it is possible to detect the exhaust concentration with the intake air and the exhaust sufficiently mixed together. Therefore, exhaust concentration detection accuracy is increased. Further, because the exhaust concentration is detected at a position close to the combustion chamber of the internal combustion engine, a time lag between a change in the exhaust concentration detected and a change in the actual exhaust concentration in the intake air in the combustion chamber is reduced, whereby the spark ignition timing can be controlled with high accuracy in accordance with the actual exhaust concentration in the intake air in the combustion chamber.

Description

内燃機関の火花点火タイミング制御装置Spark ignition timing control device for internal combustion engine
 この発明は、火花着火式の内燃機関における点火タイミングの制御に関する。 The present invention relates to ignition timing control in a spark ignition type internal combustion engine.
 内燃機関の燃焼室の温度制御技術として、内燃機関の吸気に排気の一部を還流する排気還流制御が知られている。排気還流制御によって、吸気中の排気の濃度が変化すると、燃焼室内の混合気への最適な点火タイミングも異なってくる。 Exhaust gas recirculation control for recirculating a part of exhaust gas to the intake air of the internal combustion engine is known as a temperature control technique for the combustion chamber of the internal combustion engine. When the concentration of the exhaust gas in the intake air changes due to the exhaust gas recirculation control, the optimal ignition timing for the air-fuel mixture in the combustion chamber also changes.
 点火タイミングを常に最適に維持するために、日本国特許庁が1988年に発行したJPS63-289266Aは、内燃機関の吸入空気の酸素濃度を酸素センサで検出し、検出した酸素濃度に基づき点火タイミングを制御することを提案している。この従来技術においてはスロットルの下流の酸素濃度を酸素センサで検出し、燃焼室に臨むスパークプラグの点火タイミングを酸素濃度に適したタイミングへと制御している。 In order to keep the ignition timing optimal at all times, JPS63-289266A issued by the Japan Patent Office in 1988 detects the oxygen concentration of the intake air of the internal combustion engine with an oxygen sensor, and determines the ignition timing based on the detected oxygen concentration. Propose to control. In this prior art, the oxygen concentration downstream of the throttle is detected by an oxygen sensor, and the ignition timing of the spark plug facing the combustion chamber is controlled to a timing suitable for the oxygen concentration.
 一方、内燃機関の出力性能や燃費の向上のために、ターボチャージャやスーパーチャージャなどの過給器を用いて吸気を過給することが知られている。過給器はコンプレッサを備えており、吸気通路の吸気はコンプレッサで圧縮された状態で内燃機関の燃焼室に供給される。こうした過給式内燃機関においても、排気還流制御を行なうことで燃焼室の温度制御を行うことができる。その場合に、排気還流通路はターボチャージャやスーパーチャージャのコンプレッサの上流の吸気通路に接続される。 On the other hand, in order to improve the output performance and fuel consumption of an internal combustion engine, it is known to supercharge intake air using a supercharger such as a turbocharger or a supercharger. The supercharger includes a compressor, and the intake air in the intake passage is supplied to the combustion chamber of the internal combustion engine while being compressed by the compressor. Even in such a supercharged internal combustion engine, the temperature of the combustion chamber can be controlled by performing the exhaust gas recirculation control. In that case, the exhaust gas recirculation passage is connected to the intake passage upstream of the turbocharger or supercharger compressor.
 しかしながら、コンプレッサの上流の吸気通路に排気還流通路を接続し、コンプレッサの上流の酸素濃度に基づく点火タイミングの制御を行なう場合には、次の問題が生じる。 However, when the exhaust gas recirculation passage is connected to the intake passage upstream of the compressor and the ignition timing is controlled based on the oxygen concentration upstream of the compressor, the following problem occurs.
 すなわち、加給圧の制御と排気還流制御とは応答性が異なるため、目標排気還流(EGR)率に基づき設定された目標タイミングへと点火タイミングを制御すると、過渡時において実EGR率の目標EGR率への追随遅れのために、ノックや失火が生じる可能性がある。このため、目標EGR率に制限を設ける必要があり、結果として最適な排気還流制御を行なうことが難しくなる。これは燃費を向上させる上で問題点となる。 That is, since the control of the boost pressure and the exhaust gas recirculation control are different in responsiveness, if the ignition timing is controlled to the target timing set based on the target exhaust gas recirculation (EGR) rate, the target EGR rate of the actual EGR rate during the transient Due to delays in following, knocks and misfires may occur. Therefore, it is necessary to limit the target EGR rate, and as a result, it becomes difficult to perform optimal exhaust gas recirculation control. This becomes a problem in improving fuel consumption.
 また、上記の従来技術において、コンプレッサの上流に配置された酸素センサは吸気通路への排気管流通路の接続部の直下流で酸素濃度を検出する。ことになる。一般に吸気通路が吸入する新気と排気管流通路から流入する排気とは直ちに混合しないため、酸素センサが酸素濃度を検出する地点のガスの排気濃度にはかなりの偏りが生じている可能性がある。そのため、酸素センサの検出値から求められる実EGR率の精度も十分とは言えない。 In the above prior art, the oxygen sensor arranged upstream of the compressor detects the oxygen concentration immediately downstream of the connection portion of the exhaust pipe flow passage to the intake passage. It will be. In general, the fresh air sucked in by the intake passage and the exhaust gas flowing in from the exhaust pipe flow passage are not immediately mixed, so there is a possibility that a considerable deviation has occurred in the exhaust concentration of the gas at the point where the oxygen sensor detects the oxygen concentration. is there. Therefore, it cannot be said that the accuracy of the actual EGR rate obtained from the detection value of the oxygen sensor is sufficient.
 この発明の目的は、したがって、内燃機関が過渡状態にある場合でも、EGR率を正確に検出できるようにすることである。 Therefore, an object of the present invention is to enable accurate detection of the EGR rate even when the internal combustion engine is in a transient state.
 以上の目的を達成するために、この発明の実施形態は、吸気通路の吸入空気を加圧する過給用のコンプレッサと、コンプレッサの上流の供給通路に排気の一部を還流する排気還流装置とを備える内燃機関、の火花点火タイミング制御装置に適用される。火花点火タイミング制御装置は、吸気通路のコンプレッサ下流に設けた排気濃度センサと、排気濃度センサの検出する排気濃度に基づき火花点火タイミングを制御するコントローラと、を備えている。 In order to achieve the above object, an embodiment of the present invention includes a supercharging compressor that pressurizes intake air in an intake passage, and an exhaust gas recirculation device that recirculates part of exhaust gas to a supply passage upstream of the compressor. The present invention is applied to a spark ignition timing control device for an internal combustion engine. The spark ignition timing control device includes an exhaust concentration sensor provided downstream of the compressor in the intake passage, and a controller that controls the spark ignition timing based on the exhaust concentration detected by the exhaust concentration sensor.
FIG.1はこの発明の実施形態による火花点火タイミング制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a spark ignition timing control device according to an embodiment of the present invention. FIG.2は酸素濃度と酸素センサ出力との関係を示すダイアグラムである。FIG. 2 is a diagram showing the relationship between oxygen concentration and oxygen sensor output. FIG.3はEGR率と酸素濃度の関係を示すダイアグラムである。FIG. 3 is a diagram showing the relationship between the EGR rate and the oxygen concentration. FIG.4はこの発明の実施形態によるコントローラが実行する点火タイミング制御ルーチンを示すフローチャートである。FIG. 4 is a flowchart showing an ignition timing control routine executed by the controller according to the embodiment of the present invention.
 図面のFIG.1を参照すると、車両用の火花点火式の多気筒内燃エンジン1は吸気通路2から吸い込んだ吸気に燃料を噴射し、吸気と燃料との混合気にスパークプラグで点火して燃焼させることで回転する。燃焼ガスは排気通路3を介して排出される。 Fig. Of the drawing. Referring to FIG. 1, a spark ignition type multi-cylinder internal combustion engine 1 for a vehicle is rotated by injecting fuel into intake air sucked from an intake passage 2 and igniting and burning a mixture of intake air and fuel with a spark plug. To do. The combustion gas is discharged through the exhaust passage 3.
 吸気通路2には排気の一部を吸気に還流する排気還流(EGR)通路4が接続される。EGR通路4には排気を冷却する排気クーラ5と排気流量を調整するEGR弁6が設けられる。 An exhaust gas recirculation (EGR) passage 4 for connecting a part of the exhaust gas to the intake air is connected to the intake passage 2. The EGR passage 4 is provided with an exhaust cooler 5 for cooling the exhaust and an EGR valve 6 for adjusting the exhaust flow rate.
 排気の一部を混入した吸気はターボチャージャ7のコンプレッサ8により加圧され、吸気通路2に設けたインタークーラ9により冷却される。吸気通路2にはコンプレッサ8を迂回する吸気バイパス通路10と吸気バイパス弁11が設けられる。インタークーラ9に冷却された吸気通路2の吸気はスロットル12で流量を調整した後、吸気マニホールド13を介して内燃機関1の各燃焼室14に供給される。 The intake air mixed with a part of the exhaust is pressurized by the compressor 8 of the turbocharger 7 and cooled by the intercooler 9 provided in the intake passage 2. The intake passage 2 is provided with an intake bypass passage 10 and an intake bypass valve 11 that bypass the compressor 8. The intake air in the intake passage 2 cooled by the intercooler 9 is supplied to the combustion chambers 14 of the internal combustion engine 1 via the intake manifold 13 after the flow rate is adjusted by the throttle 12.
 一方、燃焼室14から排出される燃焼ガスは排気マニホールド15を介して排気通路16へと集められる。排気通路3にはターボチャージャ7の排気タービン17が設けられる。排気は排気タービン17を回転駆動した後、排気触媒18で有害成分を酸化あるいは還元により浄化して大気中に放出される。排気タービン17は共通の回転軸でコンプレッサ8に結合し、コンプレッサ8は排気タービン17の回転に応じて作動する。 On the other hand, the combustion gas discharged from the combustion chamber 14 is collected into the exhaust passage 16 via the exhaust manifold 15. An exhaust turbine 17 of the turbocharger 7 is provided in the exhaust passage 3. After the exhaust turbine 17 is driven to rotate, the exhaust gas is purified by oxidizing or reducing the exhaust catalyst 18 and then released into the atmosphere. The exhaust turbine 17 is coupled to the compressor 8 with a common rotating shaft, and the compressor 8 operates according to the rotation of the exhaust turbine 17.
 排気通路3には、排気タービン17を迂回する排気バイバス通路19と排気バイパス弁20が設けられる。吸気バイパス弁11と排気バイパス弁20はいずれもターボチャージャ7のサージングを防止する役割をもつ。 The exhaust passage 3 is provided with an exhaust bypass passage 19 that bypasses the exhaust turbine 17 and an exhaust bypass valve 20. Both the intake bypass valve 11 and the exhaust bypass valve 20 have a role of preventing the turbocharger 7 from surging.
 以上のように構成された内燃機関1において、スパークプラグによる点火タイミングの制御は火花点火タイミング制御装置によって行なわれる。火花点火タイミング制御装置はコントローラ21を備える。 In the internal combustion engine 1 configured as described above, the ignition timing control by the spark plug is performed by the spark ignition timing control device. The spark ignition timing control device includes a controller 21.
 コントローラ21は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/O インタフェース)を備えたマイクロコンピュータで構成される。コントローラ21を複数のマイクロコンピュータで構成することも可能である。 The controller 21 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 21 with a plurality of microcomputers.
 点火タイミングの制御のために、コントローラ21には排気濃度センサとして吸気中の酸素濃度を検出する酸素センサ22が信号回路で接続される。酸素センサ22は吸気通路2のコンプレッサ8の下流側に位置する吸気マニホールド13の途中に設けられる。 In order to control the ignition timing, an oxygen sensor 22 for detecting the oxygen concentration in the intake air is connected to the controller 21 as an exhaust concentration sensor through a signal circuit. The oxygen sensor 22 is provided in the middle of the intake manifold 13 located on the downstream side of the compressor 8 in the intake passage 2.
 コントローラ21にはまた、内燃機関1の回転速度を検出する回転速度センサ、内燃機関1の負荷として例えば車両のアクセルペダルの踏み込み量を検出するアクセルペダル踏み込み量センサなどが信号回路を介して接続される。内燃機関1の点火タイミング制御において、これらのセンサは公知であるので、図示を省略する。 Also connected to the controller 21 via a signal circuit are a rotation speed sensor for detecting the rotation speed of the internal combustion engine 1 and an accelerator pedal depression amount sensor for detecting the depression amount of the accelerator pedal of the vehicle, for example. The In the ignition timing control of the internal combustion engine 1, these sensors are well known and are not shown.
 FIG.4を参照して、コントローラ21が実行する点火タイミング制御ルーチンを説明する。このルーチンは内燃機関1の運転中に例えば10ミリ秒の一定時間間隔で繰り返し実行される。 FIG. The ignition timing control routine executed by the controller 21 will be described with reference to FIG. This routine is repeatedly executed at regular time intervals of, for example, 10 milliseconds during operation of the internal combustion engine 1.
 ステップS1で、コントローラ21は内燃機関1の回転速度及び負荷に基づき基本点火タイミングを決定する。この決定は、内燃機関1の回転速度及び負荷に応じて予め定められ、ROMに格納されたマップを参照して行なわれる。 In step S1, the controller 21 determines basic ignition timing based on the rotational speed and load of the internal combustion engine 1. This determination is made in advance with reference to a map that is predetermined according to the rotational speed and load of the internal combustion engine 1 and stored in the ROM.
 ステップS2で、コントローラ21は酸素センサ22の出力値を読み込む。酸素センサ22の出力は電流値Ipミリアンペア(mA)として出力される。 In step S2, the controller 21 reads the output value of the oxygen sensor 22. The output of the oxygen sensor 22 is output as a current value Ip milliampere (mA).
 ステップS3で、コントローラ21は酸素濃度から、予めROMに格納されたFIG.2に示す内容のマップを参照して、電流値Ipを酸素濃度O(%)に換算する。次に、予めROMに格納されたFIG.3に示す内容のマップを参照して、酸素濃度O(%)からEGR率K(%)を算出する。ここで、酸素濃度O(%)が高いほど、吸気中の排気濃度は低くなる。言い換えれば、酸素濃度O(%)が高いほど、EGR率K(%)は低い。 In step S3, the controller 21 calculates the FIG. The current value Ip is converted into the oxygen concentration O 2 (%) with reference to the map having the contents shown in FIG. Next, FIG. The EGR rate K (%) is calculated from the oxygen concentration O 2 (%) with reference to the map shown in FIG. Here, the higher the oxygen concentration O 2 (%), the lower the exhaust concentration in the intake air. In other words, the higher the oxygen concentration O 2 (%), the lower the EGR rate K (%).
 ステッS4で、コントローラ21はEGR率Kに基づき、基本点火タイミングを補正して、最終点火タイミングを決定する。具体的には、EGR率Kが高いほど点火タイミングを進角させる補正を行う。これは不活性ガスである排気を多く含む混合気への点火を促進するためである。ステップS4の処理の後、コントローラ21はルーチンを終了する。 In step S4, the controller 21 corrects the basic ignition timing based on the EGR rate K and determines the final ignition timing. Specifically, correction is performed to advance the ignition timing as the EGR rate K increases. This is to promote ignition of the air-fuel mixture containing a large amount of exhaust gas, which is an inert gas. After the process of step S4, the controller 21 ends the routine.
 以上の制御は、EGR弁6の開度調整によるEGR率Kの制御と組み合わせて行なわれる。この火花点火タイミング制御装置は実EGR率Kを求めるための酸素センサ22を吸気マニホールド13の途中に設けている。これは点火タイミングの制御において次の好ましい効果をもたらす。 The above control is performed in combination with the control of the EGR rate K by adjusting the opening degree of the EGR valve 6. In this spark ignition timing control device, an oxygen sensor 22 for obtaining the actual EGR rate K is provided in the middle of the intake manifold 13. This brings about the following preferable effect in controlling the ignition timing.
 まず、EGR量の制御においては、EGR弁6の開度を変化させてから、燃焼室14に供給される吸気の排気濃度が変化するまでには時間がかかる。一方、スパークプラグによる点火はコントローラ21からのパルス信号に同期して行なわれるため応答性が極めて高い。したがって、例えば吸気通路2のEGR通路4の接続部とコンプレッサ8との間に酸素センサ22を設けた場合には、酸素センサ22の出力信号に基づき算出されたEGR率Kの吸気が実際に燃焼室14に吸い込まれるまでに時間的遅れが生じる。 First, in the control of the EGR amount, it takes time until the exhaust gas concentration of the intake air supplied to the combustion chamber 14 changes after the opening degree of the EGR valve 6 is changed. On the other hand, since the ignition by the spark plug is performed in synchronization with the pulse signal from the controller 21, the responsiveness is extremely high. Therefore, for example, when the oxygen sensor 22 is provided between the connection portion of the EGR passage 4 of the intake passage 2 and the compressor 8, the intake air of the EGR rate K calculated based on the output signal of the oxygen sensor 22 is actually burned. There is a time delay before it is sucked into the chamber 14.
 一方、酸素センサ22の出力信号に基づき基本点火タイミングを進角補正すると、点火タイミングは補正されたタイミングへと直ちに変化する。その結果、内燃機関1が過渡状態にある場合には、燃焼室14内の混合気のEGR率が実際に変化するまでの期間は、実際の吸気のEGR率に対応しない点火タイミングで混合気への点火が行なわれることになる。こうした点火タイミングのずれは、失火やノッキングの原因となる。 On the other hand, when the basic ignition timing is corrected to advance based on the output signal of the oxygen sensor 22, the ignition timing immediately changes to the corrected timing. As a result, when the internal combustion engine 1 is in a transient state, the period until the EGR rate of the air-fuel mixture in the combustion chamber 14 actually changes is changed to the air-fuel mixture at an ignition timing that does not correspond to the actual intake air EGR rate. Will be ignited. Such a deviation in the ignition timing causes misfire and knocking.
 また、吸気通路2のEGR通路4の接続部とコンプレッサ8との間に酸素センサ22を配置すると、酸素センサ22はEGR通路4から吸気通路2へ排気が流入した直後に吸気の酸素濃度を検出することになる。吸気通路2内に流入した排気が新気と混合するには時間がかかり、その間は吸気通路2の横断面内の排気の分布に偏りが生じやすい。したがって、酸素センサ22が検出する酸素濃度の精度にばらつきが生じやすい。こうしたばらつきはEGR率Kの検出精度を低下させる。 Further, when the oxygen sensor 22 is disposed between the connection portion of the EGR passage 4 of the intake passage 2 and the compressor 8, the oxygen sensor 22 detects the oxygen concentration of the intake air immediately after the exhaust gas flows into the intake passage 2 from the EGR passage 4. Will do. It takes time for the exhaust gas flowing into the intake passage 2 to mix with fresh air, and during this time, the distribution of the exhaust gas in the cross section of the intake passage 2 tends to be biased. Therefore, the accuracy of the oxygen concentration detected by the oxygen sensor 22 tends to vary. Such variations reduce the detection accuracy of the EGR rate K.
 以上の状況から、内燃機関1の点火タイミングの制御は十分な安全率を見込んで行なう必要がある。しかし、その結果として、十分な量のEGRを行うことが難しくなったり、点火タイミングの制御精度が低下したりすることは免れない。 From the above situation, it is necessary to control the ignition timing of the internal combustion engine 1 with a sufficient safety factor. However, as a result, it is inevitable that it becomes difficult to perform a sufficient amount of EGR or that the ignition timing control accuracy is lowered.
 この火花点火タイミング制御装置は酸素センサ22を吸気マニホールド13の途中に設けているので、上記の問題を解決して、精度の高い点火タイミング制御を行うことができる。すなわち、検出される吸気の酸素濃度O(%)は燃焼室14に実際に供給される吸気の酸素濃度にきわめて近い値となる。つまり、酸素濃度の検出精度が向上する。また、酸素濃度O(%)から求められるEGR率Kの変化と、燃焼室14内の吸気の実際のEGR率の変化とのタイムラグが小さいため、燃焼室14内の吸気のEGR率の変化に精度良く対応した点火タイミングの補正を行うことができる。 Since this spark ignition timing control device is provided with the oxygen sensor 22 in the middle of the intake manifold 13, it is possible to solve the above-mentioned problems and perform highly accurate ignition timing control. That is, the detected oxygen concentration O 2 (%) of the intake air is very close to the oxygen concentration of the intake air actually supplied to the combustion chamber 14. That is, the accuracy of detecting the oxygen concentration is improved. Further, since the time lag between the change in the EGR rate K obtained from the oxygen concentration O 2 (%) and the change in the actual EGR rate of the intake air in the combustion chamber 14 is small, the change in the EGR rate of the intake air in the combustion chamber 14 The ignition timing can be corrected with high accuracy.
 以上のように、この火花点火タイミング制御装置によれば、過渡状態における酸素センサ22の出力信号に基づくEGR率Kの変化と燃焼室14内の吸気の実際のEGR率とのタイムラグを小さく抑えられる。また、コンプレッサ8の下流の吸気マニホールド13の途中に設けられた酸素センサ22は吸気と排気とが十分に混合した状態で、酸素濃度を検出するので、酸素濃度O(%)に基づくEGR率K(%)の算出精度を高めることができる。 As described above, according to this spark ignition timing control device, the time lag between the change in the EGR rate K based on the output signal of the oxygen sensor 22 in the transient state and the actual EGR rate of the intake air in the combustion chamber 14 can be kept small. . Further, since the oxygen sensor 22 provided in the middle of the intake manifold 13 downstream of the compressor 8 detects the oxygen concentration in a state where the intake air and the exhaust gas are sufficiently mixed, the EGR rate based on the oxygen concentration O 2 (%) is detected. The calculation accuracy of K (%) can be increased.
 以上、この発明を特定の実施形態を通じて説明してきたが、この発明は上記の実施形態に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。 As mentioned above, although this invention has been described through specific embodiments, this invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.
 例えば、上記の実施形態では、排気濃度センサとして酸素センサ22を用いているが、吸気中の排気濃度の検出は燃焼ガスの主成分である二酸化炭素(CO)の濃度を検出する二酸化炭素センサを酸素センサ22に代えて排気濃度センサとして用いることも可能である。 For example, in the above embodiment, the oxygen sensor 22 is used as the exhaust gas concentration sensor, but the exhaust gas concentration in the intake air is detected by a carbon dioxide sensor that detects the concentration of carbon dioxide (CO 2 ), which is the main component of the combustion gas. Can be used as an exhaust concentration sensor instead of the oxygen sensor 22.
 以上のように、この発明による火花点火タイミング制御装置は、排気濃度センサをコンプレッサ下流に設けたので、燃焼室の吸気のEGR率の変化を高精度かつ高応答に検出することができる。したがって、運転条件が幅広く変化する車両用内燃機関の過渡状態の点火タイミングの制御精度を向上させる効果を期待できる。 As described above, since the spark ignition timing control device according to the present invention has the exhaust gas concentration sensor provided downstream of the compressor, it can detect the change in the EGR rate of the intake air in the combustion chamber with high accuracy and high response. Therefore, an effect of improving the control accuracy of the ignition timing in the transient state of the vehicle internal combustion engine in which the operating conditions widely vary can be expected.

Claims (6)

  1.  吸気通路の吸入空気を加圧する過給用のコンプレッサと、コンプレッサの上流の供給通路に排気の一部を還流する排気還流装置とを備える内燃機関、の火花点火タイミング制御装置において、
     吸気通路のコンプレッサ下流に設けた排気濃度センサと;
     排気濃度センサの検出する排気濃度に基づき火花点火タイミングを制御するようプログラムされたプログラマブルコントローラと、を備えたことを特徴とする内燃機関の火花点火タイミング制御装置。
    In a spark ignition timing control device for an internal combustion engine, comprising: a supercharging compressor that pressurizes intake air in an intake passage; and an exhaust gas recirculation device that recirculates part of exhaust gas to a supply passage upstream of the compressor.
    An exhaust concentration sensor provided downstream of the compressor in the intake passage;
    A spark ignition timing control device for an internal combustion engine, comprising: a programmable controller programmed to control spark ignition timing based on an exhaust concentration detected by an exhaust concentration sensor.
  2.  排気濃度センサはスロットルの下流に設けられる、ことを特徴とする請求項1の内燃機関の火花点火タイミング制御装置。 2. The spark ignition timing control device for an internal combustion engine according to claim 1, wherein the exhaust concentration sensor is provided downstream of the throttle.
  3.  排気濃度センサは吸気マニホールドに設けられる、ことを特徴とする請求項2の内燃機関の火花点火タイミング制御装置。 The spark ignition timing control device for an internal combustion engine according to claim 2, wherein the exhaust concentration sensor is provided in the intake manifold.
  4.  排気濃度センサは吸気中の酸素濃度を検出する酸素センサで構成される、ことを特徴とする請求項1から3のいずれかの内燃機関の火花点火タイミング制御装置。 The spark ignition timing control device for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust concentration sensor comprises an oxygen sensor that detects an oxygen concentration in the intake air.
  5.  排気濃度センサは吸気中の二酸化炭素濃度を検出する二酸化炭素センサで構成される、ことを特徴とする請求項1から3のいずれかの内燃機関の火花点火タイミング制御装置。 The spark ignition timing control device for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust gas concentration sensor is a carbon dioxide sensor that detects a carbon dioxide concentration in the intake air.
  6.  コントローラは、内燃機関の回転速度と負荷に基づき基本点火タイミングを設定し、排気濃度に基づき基本点火タイミングを補正することで、最終点火タイミングを決定するよう、さらにプログラムされる、請求項1から5のいずれかの内燃機関の火花点火タイミング制御装置。 The controller is further programmed to determine a final ignition timing by setting a basic ignition timing based on the rotational speed and load of the internal combustion engine and correcting the basic ignition timing based on exhaust concentration. A spark ignition timing control device for an internal combustion engine.
PCT/JP2014/065161 2014-06-06 2014-06-06 Spark ignition timing control device for internal combustion engine WO2015186262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065161 WO2015186262A1 (en) 2014-06-06 2014-06-06 Spark ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065161 WO2015186262A1 (en) 2014-06-06 2014-06-06 Spark ignition timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2015186262A1 true WO2015186262A1 (en) 2015-12-10

Family

ID=54766354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065161 WO2015186262A1 (en) 2014-06-06 2014-06-06 Spark ignition timing control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2015186262A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195362A (en) * 1987-02-06 1988-08-12 Toyota Motor Corp Control device for internal combustion engine
JP2560777B2 (en) * 1988-03-28 1996-12-04 三菱自動車工業株式会社 Exhaust gas recirculation device
JPH112153A (en) * 1997-04-16 1999-01-06 Toyota Motor Corp Heater control device for intake oxygen sensor
JP2003506619A (en) * 1999-08-05 2003-02-18 ダイムラークライスラー アーゲー Method for regulating a supercharged internal combustion engine with exhaust gas recirculation
JP2004156572A (en) * 2002-11-08 2004-06-03 Hino Motors Ltd Exhaust gas recirculation device of diesel engine
JP2006037767A (en) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2011132948A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
JP2011132949A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device for exhaust emission control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195362A (en) * 1987-02-06 1988-08-12 Toyota Motor Corp Control device for internal combustion engine
JP2560777B2 (en) * 1988-03-28 1996-12-04 三菱自動車工業株式会社 Exhaust gas recirculation device
JPH112153A (en) * 1997-04-16 1999-01-06 Toyota Motor Corp Heater control device for intake oxygen sensor
JP2003506619A (en) * 1999-08-05 2003-02-18 ダイムラークライスラー アーゲー Method for regulating a supercharged internal combustion engine with exhaust gas recirculation
JP2004156572A (en) * 2002-11-08 2004-06-03 Hino Motors Ltd Exhaust gas recirculation device of diesel engine
JP2006037767A (en) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2011132948A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
JP2011132949A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device for exhaust emission control

Similar Documents

Publication Publication Date Title
JP6217398B2 (en) Fuel injection control device for diesel engine
US9464585B2 (en) Exhaust gas recirculation control system of engine
JP5447696B2 (en) Control device for an internal combustion engine with a supercharger
JP4192759B2 (en) Injection quantity control device for diesel engine
WO2014156208A1 (en) Control device for internal combustion engine
JP5387914B2 (en) In-cylinder inflow EGR gas flow rate estimation device for internal combustion engine
JP6860313B2 (en) Engine control method and engine
US8381700B2 (en) Systems and methods for exhaust gas recirculation control in homogeneous charge compression ignition engine systems
JP5531987B2 (en) Control device for an internal combustion engine with a supercharger
JP2008069660A (en) Control device of internal combustion engine
US10233854B1 (en) Engine control systems and methods for regulating emissions during scavenging
WO2015181973A1 (en) Internal combustion engine and method for controlling internal combustion engine
WO2015186262A1 (en) Spark ignition timing control device for internal combustion engine
JP6054766B2 (en) Control device for internal combustion engine
JP5695878B2 (en) Combustion control apparatus and method for internal combustion engine
EP2642103B1 (en) Exhaust-gas recirculation system and method for exhaust-gas recirculation
JP6283959B2 (en) Engine control device
JP2018031340A (en) Fuel property determination device and combustion control device for engine
JP5260770B2 (en) Engine control device
JP2008208803A (en) Multi-cylinder engine with exhaust gas temperature control device and its operation control method
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP6327477B2 (en) Engine control device
JP6398279B2 (en) Control device for an internal combustion engine with a supercharger
JP6473390B2 (en) engine
JP5467928B2 (en) Ignition timing correction control method for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP