WO2015185768A1 - Gas generator suitable for cogeneration systems, especially stirling cogeneration systems - Google Patents

Gas generator suitable for cogeneration systems, especially stirling cogeneration systems Download PDF

Info

Publication number
WO2015185768A1
WO2015185768A1 PCT/ES2014/070472 ES2014070472W WO2015185768A1 WO 2015185768 A1 WO2015185768 A1 WO 2015185768A1 ES 2014070472 W ES2014070472 W ES 2014070472W WO 2015185768 A1 WO2015185768 A1 WO 2015185768A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generator
main body
discharge duct
generator according
duct
Prior art date
Application number
PCT/ES2014/070472
Other languages
Spanish (es)
French (fr)
Inventor
Aranzazu Ruth FERNANDEZ ACARREGUI
Luis Diaz Lecumberri
Jose Angel Albarran Navarro
Jose Ignacio Fernandez De Mendiola Quintana
Original Assignee
Ikerlan, S.Coop
Tifell Electro Solar S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikerlan, S.Coop, Tifell Electro Solar S.A. filed Critical Ikerlan, S.Coop
Priority to EP14739860.6A priority Critical patent/EP3153774B1/en
Priority to PCT/ES2014/070472 priority patent/WO2015185768A1/en
Publication of WO2015185768A1 publication Critical patent/WO2015185768A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/04Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for guiding the flow of flue gases, e.g. baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/30Combustion apparatus using only lump fuel characterised by the form of combustion chamber
    • F23B1/38Combustion apparatus using only lump fuel characterised by the form of combustion chamber for combustion of peat, sawdust, or pulverulent fuel on a grate or other fuel support

Definitions

  • the present invention relates to a gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems.
  • thermo-chemical process a fuel, such as biomass, is transformed into flue gases.
  • a fuel such as biomass
  • flue gases can be used in cogeneration systems to produce electricity and / or thermal energy.
  • the particles of the flue gases are deposited in the ducts, fins of the exchanger, or other devices connected to the gas generator, obtaining them and decreasing their efficiency so it is necessary that the cogeneration system includes cleaning devices that eliminate said particles frequently.
  • the gas generator is a fixed bed, where the fuel is fed into the generator from the top and the air from the bottom, the gasification system also comprising a particle separator that extends in a manner of jacket around the gas generator, and that initially filters the combustion gases obtained in the generator and which will then be cleaned in the cyclone connected to the generator.
  • the object of the invention is to provide a gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems as described below.
  • the gas generator of the invention comprises a main body that delimits a combustion chamber, a fuel inlet to said combustion chamber, a secondary body that surrounds the main body delimiting a secondary chamber, and an outlet duct of the gases of combustion.
  • the gas generator of the invention comprises a discharge duct that communicates the combustion chamber with the secondary chamber, said discharge duct being arranged tangentially to the main body. Through the discharge duct, the combustion gases are propelled into the secondary chamber forming helical paths generating a cyclone effect that cleans the combustion gases of particles.
  • a gas generator is obtained with an integrated particle cleaning system that takes advantage of the acceleration and addressing effect of the combustion gases with the particles so that said particles are separated from the combustion gases by the effect of forces generated centrifuges.
  • the gas generator obtained in addition to being compact, ensures that the flue gases that leave the gas generator leave clean particles at the maximum possible temperature, so that it can be used for Stirling cogeneration systems where gases must reach very hot to stirling.
  • the outgoing combustion gases of the gas generator are taken to another device to be cleaned, whereby said gases are cooled during the cleaning process and could not be used for Stirling cogeneration applications.
  • the integrated cleaning system is also static, that is, it does not include movable elements, so that the components do not suffer mechanical wear, reducing the noise generated in conventional systems.
  • Figure 1 shows a sectional view of a gas generator of an embodiment according to the invention.
  • Figure 2 is a sectional view according to a horizontal plane of the gas generator shown in Figure 1.
  • Figure 3 shows a perspective view of a main body of the gas generator shown in Figure 1.
  • the gas generator 1 comprises a main body 2 that delimits a combustion chamber 3, a fuel inlet 6 to said combustion chamber 3, an inlet of an oxidizing fluid of the fuel 7 and an outlet duct 9 of the combustion gases .
  • thermo-chemical processes are known in the state of the art, in addition to not being the object of the invention as such, so that its description is not considered necessary.
  • the fuel comprises pellets.
  • the oxidizing fluid of the fuel can be air, oxygen, steam, or mixtures of said fluids.
  • the oxidizing fluid is air.
  • the gas generator 1 comprises feeding means 13 that include a conveyor 14 that conducts the pellets to the fuel inlet 6, said fuel inlet 6 being in the embodiment shown in Figure 1 a conduit that communicates the conveyor 14 with the combustion chamber 3.
  • the gas generator 1 shown in Figure 1 further comprises a burner vessel 15 where the feeding means 13 deposit the pellets through the fuel inlet conduit 6, said burner vessel 15 being disposed in the lower part of the gas generator 1.
  • the air inlet 7 is carried out at the bottom of the gas generator 1, through a corresponding conduit communicated with the burner vessel 15.
  • the burner vessel 15 comprises holes 16 through which the air passes , necessary to burn the fuel included in the burner vessel 15.
  • the gas generator 1 comprises a drawer 23 where the ashes originated during the thermo-chemical process are collected. It also comprises an ignitor 25 adapted to trigger the combustion of the pellets in the burner vessel 15.
  • the main body 2 has a substantially cylindrical geometry, closed at an upper end 19 and open at a lower end 24 for communication with the burner vessel 15.
  • the main body 2 comprises a lid 20 that closes the upper end 19.
  • the cover 20 and the main body 2 may be made of a single piece.
  • the gas generator 1 comprises a secondary body 4 surrounding the main body 2 delimiting a secondary chamber 5.
  • the secondary body 4 has a substantially cylindrical geometry and is arranged substantially concentric to the main body 2.
  • the combustion chamber 3 is communicated with the secondary chamber 5 through a discharge duct 8, said discharge duct 8 being arranged tangentially communicated with the combustion chamber 3.
  • the discharge duct 8 is arranged communicated with the combustion chamber 3 above the fuel inlet 6. In addition, the discharge duct 8 extends laterally from the upper end 19 of the main body 2.
  • the discharge conduit 8 is housed in the secondary chamber 5, following a curved path.
  • the trajectory of the discharge conduit 8 is helical.
  • the drive duct 8 has a geometry such that the outlet section 18 of said drive duct 8, disposed at one end of the drive duct 8, is arranged substantially orthogonal to the main body 2. Furthermore, the outlet section 18 has a surface area smaller than the surface of the inlet section 21 of the discharge duct 8, disposed at the opposite end of the discharge duct 8. Both sections 18 and 21 are substantially rectangular in the embodiment shown in Figures 1 and 3, but may have other geometric shapes, such as square or circular.
  • the combustion gases enter tangentially into the secondary chamber 5 by means of the discharge duct 8, following a helical path attached to the inner surface of the secondary body 4.
  • the narrowing of the discharge duct 8 towards the outlet causes the acceleration with which the combustion gases from the discharge duct 8 exit is greater and therefore the efficiency of the particle cleaning system too.
  • the location of the discharge duct 8 at the end 19 of the main body 2 makes it possible to maximize the helical path that the combustion gases follow before leaving the gas generator 1 so that their cleaning is more efficient.
  • the outlet duct 9 comprises a nozzle 10, which is arranged concentrically to the main body 2, and which communicates the secondary chamber 5 with the outlet duct 9 through which the clean gases exit.
  • the outlet duct 9 is traversed laterally by the discharge duct 8.
  • the outlet duct 9 comprises an opening 11 in the nozzle 10, which is traversed by the discharge duct 8, the first body 2 and the coupling being arranged drive duct 8 to each other.
  • the opening 11 is arranged at a longitudinal distance H from a free end 26 of the nozzle 10.
  • the upper end 19 of the main body 2 is disposed inside the nozzle 10.
  • the nozzle 10 ensures that dirty gases with combustion particles do not flow directly from the discharge duct 8 to the outlet duct 9. Thanks to the nozzle 10, the dirty gases follow a helical path in the second chamber 5, depositing the particles in said second chamber 5.
  • the part of the nozzle 10 of length H is the one that prevents dirty gases with combustion particles from leaving directly from the discharge duct 8 to the outlet duct 9.
  • the nozzle 10 has a substantially cylindrical geometry and is arranged substantially concentric to the main body 3, generating the substantially annular gap 12 between the inner surface of the nozzle 10 and the outer surface of the main body 2.
  • the combustion gases after leaving the discharge duct 8 tend to be very close, almost stuck, to the inner wall of the secondary body 4. Once they reach the end of the nozzle 10, the free end 26 of the nozzle 10 forces the flue gases to abruptly change the direction of their trajectory.
  • the nozzle 10 is designed so that the length H of the section from the free end 26 to the opening 1 1 is such that the effect of the temperature increase during the circulation of the clean gases through the gap 12 compensates for the load losses caused during the abrupt change of direction caused by the nozzle 10.
  • the outlet duct 9 is directly communicated only with the secondary chamber 5, the combustion chamber 3 communicating with the secondary chamber 5 only through the discharge duct 8.
  • the gas generator 1 comprises an insulator 17 that externally surrounds the secondary body 4 and the outlet duct 9 to prevent heat transmissions to the outside.

Abstract

The invention relates to a gas generator (1) suitable for cogeneration systems, especially Stirling cogeneration systems, comprising a main body (2) defining a combustion chamber (3), a fuel inlet (6) into said combustion chamber (3), a secondary body (4) surrounding the main body (2) and thereby defining a secondary chamber (5), and an outflow duct (9) for the combustion gases. The gas generator (1) comprises a driving duct (8) connecting the combustion chamber (3) to the secondary chamber (5), said driving duct (8) being tangentially connected to the combustion chamber (3).

Description

DESCRIPCIÓN  DESCRIPTION
"Generador de gases adaptado para sistemas de cogeneración, en particular para sistemas de cogeneración Stirling" "Gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems"
SECTOR DE LA TÉCNICA SECTOR OF THE TECHNIQUE
La presente invención se relaciona con un generador de gases adaptado para sistemas de cogeneración, en particular para sistemas de cogeneración Stirling. The present invention relates to a gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems.
ESTADO ANTERIOR DE LA TÉCNICA Son conocidos los generadores de gases en donde a través de un proceso termo-químico, un combustible, como por ejemplo biomasa, es transformado en gases de combustión. Como consecuencia de este proceso termo-químico se generan una gran cantidad de partículas que, si no son filtradas, salen del generador de gases junto con los gases de combustión. Los gases de combustión pueden ser aprovechados en sistemas de cogeneración para producir electricidad y/o energía térmica. Las partículas de los gases de combustión se van depositando en los conductos, aletas del intercambiador, u otros aparatos conectados al generador de gases, obturándolos y disminuyendo su eficiencia por lo que es necesario que el sistema de cogeneración incluya dispositivos de limpieza que eliminen dichas partículas frecuentemente. PREVIOUS STATE OF THE TECHNIQUE Gas generators are known in which, through a thermo-chemical process, a fuel, such as biomass, is transformed into flue gases. As a consequence of this thermo-chemical process, a large number of particles are generated that, if not filtered, leave the gas generator together with the combustion gases. Flue gases can be used in cogeneration systems to produce electricity and / or thermal energy. The particles of the flue gases are deposited in the ducts, fins of the exchanger, or other devices connected to the gas generator, obtaining them and decreasing their efficiency so it is necessary that the cogeneration system includes cleaning devices that eliminate said particles frequently.
En el estado de la técnica son conocidos dispositivos de limpieza mecánicos que comprenden unas espirales que se desplazan verticalmente por los conductos a través de los cuales circula el gases de combustión, arrastrando las partículas sólidas adheridas a las paredes tal y como se divulga en DE19828767A1 y KR2013071530A. Los dispositivos de limpieza mecánicos se disponen en una zona a la cual llegan los gases de combustión a una temperatura inferior, de modo que las tensiones termo-mecánicas que tienen que soportar son menores. Por otro lado, son conocidos en el estado de la técnica sistemas de cogeneración tales como los descritos en WO2013122291 A1 y WO2009020442A1 , que comprenden un ciclón conectado al generador de gases o a la caldera, en donde los gases de combustión generado son limpiados de las partículas de combustión generadas durante el proceso termo-químico. Esto es debido al efecto que se produce en el ciclón que hace que se separen las partículas de combustión de los gases de combustión, depositándolas en la parte inferior cónica del ciclón. In the state of the art, mechanical cleaning devices are known which comprise spirals that move vertically through the conduits through which the flue gases circulate, dragging the solid particles adhered to the walls as disclosed in DE19828767A1 and KR2013071530A. The mechanical cleaning devices are arranged in an area where the combustion gases reach a lower temperature, so that the thermo-mechanical stresses they have to withstand are lower. On the other hand, cogeneration systems such as those described in WO2013122291 A1 and WO2009020442A1 are known in the state of the art, comprising a cyclone connected to the gas generator or to the boiler, where the generated combustion gases are cleaned of the particles of combustion generated during the thermo-chemical process. This is due to the effect that occurs in the cyclone that causes the combustion particles to separate from the flue gases, depositing them in the conical bottom of the cyclone.
En la solicitud WO2009020442A1 , el generador de gases es de lecho fijo, en donde el combustible es alimentado en el generador desde la parte superior y el aire desde la parte inferior, comprendiendo además el sistema de gasificación un separador de partículas que se extiende a modo de camisa alrededor del generador de gases, y que filtra inicialmente los gases de combustión obtenidos en el generador y que posteriormente serán limpiados en el ciclón conectado al generador. In the application WO2009020442A1, the gas generator is a fixed bed, where the fuel is fed into the generator from the top and the air from the bottom, the gasification system also comprising a particle separator that extends in a manner of jacket around the gas generator, and that initially filters the combustion gases obtained in the generator and which will then be cleaned in the cyclone connected to the generator.
EXPOSICIÓN DE LA INVENCIÓN EXHIBITION OF THE INVENTION
El objeto de la invención es el de proporcionar un generador de gases adaptado para sistemas de cogeneración, en particular para sistemas de cogeneración Stirling tal y como se describe a continuación. The object of the invention is to provide a gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems as described below.
El generador de gases de la invención comprende un cuerpo principal que delimita una cámara de combustión, una entrada de combustible a dicha cámara de combustión, un cuerpo secundario que rodea al cuerpo principal delimitando una cámara secundaria, y un conducto de salida de los gases de combustión. The gas generator of the invention comprises a main body that delimits a combustion chamber, a fuel inlet to said combustion chamber, a secondary body that surrounds the main body delimiting a secondary chamber, and an outlet duct of the gases of combustion.
El generador de gases de la invención comprende un conducto de impulsión que comunica la cámara de combustión con la cámara secundaria, disponiéndose dicho conducto de impulsión comunicado tangencialmente al cuerpo principal. A través del conducto de impulsión, los gases de combustión salen impulsados hacia la cámara secundaria formando trayectorias helicoidales generando un efecto ciclón que limpia los gases de combustión de partículas. De este modo, se obtiene un generador de gases con un sistema de limpieza de partículas integrado que aprovecha el efecto de aceleración y direccionamiento de los gases de combustión con las partículas para que dichas partículas se separen de los gases de combustión por efecto de las fuerzas centrífugas generadas. The gas generator of the invention comprises a discharge duct that communicates the combustion chamber with the secondary chamber, said discharge duct being arranged tangentially to the main body. Through the discharge duct, the combustion gases are propelled into the secondary chamber forming helical paths generating a cyclone effect that cleans the combustion gases of particles. In this way, a gas generator is obtained with an integrated particle cleaning system that takes advantage of the acceleration and addressing effect of the combustion gases with the particles so that said particles are separated from the combustion gases by the effect of forces generated centrifuges.
El generador de gases obtenido, además de ser compacto, consigue que los gases de combustión que salen del generador de gases salgan limpios de partículas a la máxima temperatura posible, de modo que puede utilizarse para sistemas de cogeneracion Stirling en donde los gases deben llegar muy calientes al Stirling. En los sistemas de limpieza conocidos, los gases de combustión salientes del generador de gases son conducidos a otro dispositivo para proceder a su limpieza con lo que dichos gases se enfrían durante el proceso de limpieza y no podrían ser utilizados para las aplicaciones de cogeneracion Stirling. The gas generator obtained, in addition to being compact, ensures that the flue gases that leave the gas generator leave clean particles at the maximum possible temperature, so that it can be used for Stirling cogeneration systems where gases must reach very hot to stirling. In known cleaning systems, the outgoing combustion gases of the gas generator are taken to another device to be cleaned, whereby said gases are cooled during the cleaning process and could not be used for Stirling cogeneration applications.
El sistema de limpieza integrado es además estático, es decir, no incluye elementos desplazables entre sí, por lo que los componentes del mismo no sufren desgastes mecánicos, reduciéndose además el ruido generado en los sistemas convencionales. Estas y otras ventajas y características de la invención se harán evidentes a la vista de las figuras y de la descripción detallada de la invención. The integrated cleaning system is also static, that is, it does not include movable elements, so that the components do not suffer mechanical wear, reducing the noise generated in conventional systems. These and other advantages and features of the invention will become apparent in view of the figures and the detailed description of the invention.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
La figura 1 muestra una vista seccionada de un generador de gases de una realización según la invención. Figure 1 shows a sectional view of a gas generator of an embodiment according to the invention.
La figura 2 es una vista seccionada según un plano horizontal del generador de gases mostrado en la figura 1. Figure 2 is a sectional view according to a horizontal plane of the gas generator shown in Figure 1.
La figura 3 muestra una vista en perspectiva de un cuerpo principal del generador de gases mostrado en la figura 1. EXPOSICIÓN DETALLADA DE LA INVENCIÓN Figure 3 shows a perspective view of a main body of the gas generator shown in Figure 1. DETAILED EXHIBITION OF THE INVENTION
En la figura 1 , se muestra una realización de un generador de gases 1 según la invención. El generador de gases 1 comprende un cuerpo principal 2 que delimita una cámara de combustión 3, una entrada de combustible 6 a dicha cámara de combustión 3, una entrada de un fluido oxidante del combustible 7 y un conducto de salida 9 de los gases de combustión. In Fig. 1, an embodiment of a gas generator 1 according to the invention is shown. The gas generator 1 comprises a main body 2 that delimits a combustion chamber 3, a fuel inlet 6 to said combustion chamber 3, an inlet of an oxidizing fluid of the fuel 7 and an outlet duct 9 of the combustion gases .
En el generador de gases 1 el combustible es transformado en gases de combustión a través de un proceso termo-químico. Este tipo de procesos termo-químicos son conocidos en el estado de la técnica, además de no ser objeto de la invención como tales, por lo que no se considera necesaria su descripción. In the gas generator 1 the fuel is transformed into combustion gases through a thermo-chemical process. This type of thermochemical processes are known in the state of the art, in addition to not being the object of the invention as such, so that its description is not considered necessary.
Como combustible se puede utilizar carbón, madera, pellets, residuos domésticos, utilizándose preferentemente biomasa. En la realización que se describirá a continuación el combustible comprende pellets. As fuel, coal, wood, pellets, household waste can be used, preferably using biomass. In the embodiment described below, the fuel comprises pellets.
El fluido oxidante del combustible puede ser aire, oxígeno, vapor, o mezclas de dichos fluidos. En la realización mostrada en las figuras, el fluido oxidante es aire. The oxidizing fluid of the fuel can be air, oxygen, steam, or mixtures of said fluids. In the embodiment shown in the figures, the oxidizing fluid is air.
El generador de gases 1 comprende unos medios de alimentación 13 que incluyen un transportador 14 que conduce los pellets hasta la entrada de combustible 6, siendo dicha entrada de combustible 6 en la realización mostrada en la figura 1 un conducto que comunica el transportador 14 con la cámara de combustión 3. The gas generator 1 comprises feeding means 13 that include a conveyor 14 that conducts the pellets to the fuel inlet 6, said fuel inlet 6 being in the embodiment shown in Figure 1 a conduit that communicates the conveyor 14 with the combustion chamber 3.
El generador de gases 1 mostrado en la figura 1 , comprende además un vaso quemador 15 en donde los medios de alimentación 13 depositan los pellets a través del conducto de entrada de combustible 6, disponiéndose dicho vaso quemador 15 en la parte inferior del generador de gases 1. La entrada del aire 7 se lleva a cabo en la parte inferior del generador de gases 1 , a través de un conducto correspondiente comunicado con el vaso quemador 15. El vaso quemador 15 comprende unos orificios 16 a través de los cuales pasa el aire, necesario para quemar el combustible comprendido en el vaso quemador 15. Por debajo del vaso quemador 15, el generador de gases 1 comprende un cajón 23 en donde se recogen las cenizas originadas durante el proceso termo-químico. Además comprende un ignitor 25 adaptado para desencadenar la combustión de los pellets en el vaso quemador 15. The gas generator 1 shown in Figure 1, further comprises a burner vessel 15 where the feeding means 13 deposit the pellets through the fuel inlet conduit 6, said burner vessel 15 being disposed in the lower part of the gas generator 1. The air inlet 7 is carried out at the bottom of the gas generator 1, through a corresponding conduit communicated with the burner vessel 15. The burner vessel 15 comprises holes 16 through which the air passes , necessary to burn the fuel included in the burner vessel 15. Below the burner vessel 15, the gas generator 1 comprises a drawer 23 where the ashes originated during the thermo-chemical process are collected. It also comprises an ignitor 25 adapted to trigger the combustion of the pellets in the burner vessel 15.
En la realización mostrada en las figuras, el cuerpo principal 2 tiene una geometría sustancialmente cilindrica, cerrada en un extremo superior 19 y abierta en un extremo inferior 24 para su comunicación con el vaso quemador 15. El cuerpo principal 2 comprende una tapa 20 que cierra el extremo superior 19. En otras realizaciones no representadas en las figuras, la tapa 20 y el cuerpo principal 2 pueden estar hechos de una única pieza. In the embodiment shown in the figures, the main body 2 has a substantially cylindrical geometry, closed at an upper end 19 and open at a lower end 24 for communication with the burner vessel 15. The main body 2 comprises a lid 20 that closes the upper end 19. In other embodiments not shown in the figures, the cover 20 and the main body 2 may be made of a single piece.
El generador de gases 1 comprende un cuerpo secundario 4 que rodea al cuerpo principal 2 delimitando una cámara secundaria 5. El cuerpo secundario 4 tiene una geometría sustancialmente cilindrica y se dispone sustancialmente concéntrico al cuerpo principal 2. La cámara de combustión 3 está comunicada con la cámara secundaria 5 a través de un conducto de impulsión 8, disponiéndose dicho conducto de impulsión 8 comunicado tangencialmente con la cámara de combustión 3. The gas generator 1 comprises a secondary body 4 surrounding the main body 2 delimiting a secondary chamber 5. The secondary body 4 has a substantially cylindrical geometry and is arranged substantially concentric to the main body 2. The combustion chamber 3 is communicated with the secondary chamber 5 through a discharge duct 8, said discharge duct 8 being arranged tangentially communicated with the combustion chamber 3.
El conducto de impulsión 8 se dispone comunicado con la cámara de combustión 3 por encima de la entrada de combustible 6. Además, el conducto de impulsión 8 se extiende lateralmente desde el extremo superior 19 del cuerpo principal 2. The discharge duct 8 is arranged communicated with the combustion chamber 3 above the fuel inlet 6. In addition, the discharge duct 8 extends laterally from the upper end 19 of the main body 2.
El conducto de impulsión 8 se aloja en la cámara secundaria 5, siguiendo una trayectoria curva. En la realización mostrada en las figuras, la trayectoria del conducto de impulsión 8 es helicoidal. El conducto de impulsión 8 tiene una geometría tal que la sección de salida 18 de dicho conducto de impulsión 8, dispuesta en un extremo del conducto de impulsión 8, se dispone sustancialmente ortogonal al cuerpo principal 2. Además, la sección de salida 18 tiene una superficie menor que la superficie de la sección de entrada 21 del conducto de impulsión 8, dispuesta en el extremo opuesto del conducto de impulsión 8. Ambas secciones 18 y 21 son sustancialmente rectangulares en la realización mostrada en las figuras 1 y 3, pero pueden tener otras formas geométricas, como por ejemplo cuadradas o circulares. The discharge conduit 8 is housed in the secondary chamber 5, following a curved path. In the embodiment shown in the figures, the trajectory of the discharge conduit 8 is helical. The drive duct 8 has a geometry such that the outlet section 18 of said drive duct 8, disposed at one end of the drive duct 8, is arranged substantially orthogonal to the main body 2. Furthermore, the outlet section 18 has a surface area smaller than the surface of the inlet section 21 of the discharge duct 8, disposed at the opposite end of the discharge duct 8. Both sections 18 and 21 are substantially rectangular in the embodiment shown in Figures 1 and 3, but may have other geometric shapes, such as square or circular.
La geometría y disposición del conducto de impulsión 8 con respecto al cuerpo principal 2, hacen que los gases de combustión salgan impulsados del conducto de impulsión 8, formando trayectorias helicoidales. Los gases de combustión entran tangencialmente en la cámara secundaria 5 por medio del conducto de impulsión 8, siguiendo una trayectoria helicoidal pegada a la superficie interior del cuerpo secundario 4. De este modo, las partículas presentes en los gases de combustión son separadas de los gases de combustión, siendo recogidas en la parte inferior del generador de gases 1. El estrechamiento del conducto de impulsión 8 hacia la salida hace que la aceleración con la que salen los gases de combustión del conducto de impulsión 8 sea mayor y por tanto, la eficiencia del sistema de limpieza de partículas también. Además, la ubicación del conducto de impulsión 8 en el extremo 19 del cuerpo principal 2 permite maximizar la trayectoria helicoidal que siguen los gases de combustión antes de salir del generador de gases 1 para que de este modo la limpieza de los mismos sea más eficiente. The geometry and arrangement of the discharge duct 8 with respect to the main body 2, they cause combustion gases to be driven out of the discharge duct 8, forming helical paths. The combustion gases enter tangentially into the secondary chamber 5 by means of the discharge duct 8, following a helical path attached to the inner surface of the secondary body 4. Thus, the particles present in the combustion gases are separated from the gases of combustion, being collected in the lower part of the gas generator 1. The narrowing of the discharge duct 8 towards the outlet causes the acceleration with which the combustion gases from the discharge duct 8 exit is greater and therefore the efficiency of the particle cleaning system too. In addition, the location of the discharge duct 8 at the end 19 of the main body 2 makes it possible to maximize the helical path that the combustion gases follow before leaving the gas generator 1 so that their cleaning is more efficient.
Por otra parte, el conducto de salida 9 comprende una boquilla 10, que se dispone concéntrica al cuerpo principal 2, y que comunica la cámara secundaria 5 con el conducto de salida 9 a través del cual salen los gases limpios. El conducto de salida 9 es atravesado lateralmente por el conducto de impulsión 8. Así pues, el conducto de salida 9 comprende una abertura 11 en la boquilla 10, que es atravesada por el conducto de impulsión 8, disponiéndose acoplados el primer cuerpo 2 y el conducto de impulsión 8 entre sí. La abertura 11 se dispone a una distancia longitudinal H de un extremo libre 26 de la boquilla 10. On the other hand, the outlet duct 9 comprises a nozzle 10, which is arranged concentrically to the main body 2, and which communicates the secondary chamber 5 with the outlet duct 9 through which the clean gases exit. The outlet duct 9 is traversed laterally by the discharge duct 8. Thus, the outlet duct 9 comprises an opening 11 in the nozzle 10, which is traversed by the discharge duct 8, the first body 2 and the coupling being arranged drive duct 8 to each other. The opening 11 is arranged at a longitudinal distance H from a free end 26 of the nozzle 10.
El extremo superior 19 del cuerpo principal 2 se dispone alojado en el interior de la boquilla 10. La boquilla 10 asegura que los gases sucios con partículas de combustión no salgan directamente desde el conducto de impulsión 8 hacia el conducto de salida 9. Gracias a la boquilla 10, los gases sucios siguen una trayectoria helicoidal en la segunda cámara 5, depositando las partículas en dicha segunda cámara 5. En particular, la parte de la boquilla 10 de longitud H es la que evita que los gases sucios con partículas de combustión salgan directamente desde el conducto de impulsión 8 hacia el conducto de salida 9. The upper end 19 of the main body 2 is disposed inside the nozzle 10. The nozzle 10 ensures that dirty gases with combustion particles do not flow directly from the discharge duct 8 to the outlet duct 9. Thanks to the nozzle 10, the dirty gases follow a helical path in the second chamber 5, depositing the particles in said second chamber 5. In particular, the part of the nozzle 10 of length H is the one that prevents dirty gases with combustion particles from leaving directly from the discharge duct 8 to the outlet duct 9.
Los gases de combustión limpiados durante su trayectoria helicoidal, salen limpios de la cámara secundaria 5 a través de un hueco 12 existente entre la boquilla 10 y el cuerpo principal 2. La boquilla 10 tiene una geometría sustancialmente cilindrica y se dispone sustancialmente concéntrica al cuerpo principal 3, generando el hueco 12 sustancialmente anular entre la superficie interior de la boquilla 10 y la superficie exterior del cuerpo principal 2. Los gases de combustión tras salir del conducto de impulsión 8 tienden a ir muy próximos, casi pegados, a la pared interior del cuerpo secundario 4. Una vez que llegan al final de la boquilla 10, el extremo libre 26 de la boquilla 10 obliga a los gases de combustión a cambiar bruscamente la dirección de su trayectoria. Cuando los gases de combustión limpios salen por el hueco 12 entran en contacto con el exterior del cuerpo principal 3, sujeto a mayor temperatura que el cuerpo secundario 4, de modo que la pérdida de temperatura de los gases de combustión limpios desde que se generan hasta que salen a través del conducto de salida 9 se minimiza. La boquilla 10 está diseñada de modo que la longitud H del tramo desde el extremo libre 26 a la abertura 1 1 sea tal que el efecto del aumento de temperatura durante la circulación de los gases limpios a través del hueco 12 compense las pérdidas de carga ocasionadas durante el cambio brusco de dirección ocasionado por la boquilla 10. The flue gases cleaned during their helical path, leave the secondary chamber 5 clean through a gap 12 between the nozzle 10 and the main body 2. The nozzle 10 has a substantially cylindrical geometry and is arranged substantially concentric to the main body 3, generating the substantially annular gap 12 between the inner surface of the nozzle 10 and the outer surface of the main body 2. The combustion gases after leaving the discharge duct 8 tend to be very close, almost stuck, to the inner wall of the secondary body 4. Once they reach the end of the nozzle 10, the free end 26 of the nozzle 10 forces the flue gases to abruptly change the direction of their trajectory. When the clean combustion gases exit through the gap 12 they come into contact with the outside of the main body 3, subject to a higher temperature than the secondary body 4, so that the loss of temperature of the clean combustion gases from when they are generated up to Exiting through outlet duct 9 is minimized. The nozzle 10 is designed so that the length H of the section from the free end 26 to the opening 1 1 is such that the effect of the temperature increase during the circulation of the clean gases through the gap 12 compensates for the load losses caused during the abrupt change of direction caused by the nozzle 10.
El conducto de salida 9 está comunicado directamente únicamente con la cámara secundaria 5, comunicándose la cámara de combustión 3 con la cámara secundaria 5 únicamente a través del conducto de impulsión 8. The outlet duct 9 is directly communicated only with the secondary chamber 5, the combustion chamber 3 communicating with the secondary chamber 5 only through the discharge duct 8.
Por último, el generador de gases 1 comprende un aislante 17 que rodea exteriormente el cuerpo secundario 4 y al conducto de salida 9 para evitar transmisiones de calor al exterior. Finally, the gas generator 1 comprises an insulator 17 that externally surrounds the secondary body 4 and the outlet duct 9 to prevent heat transmissions to the outside.

Claims

REIVINDICACIONES
Generador de gases adaptado para sistemas de cogeneración, en particular para sistemas de cogeneración Stirling, que comprende un cuerpo principal (2) que delimita una cámara de combustión (3), una entrada de combustible (6) a dicha cámara de combustión (3), un cuerpo secundario (4) que rodea al cuerpo principal (2) delimitando una cámara secundaria (5), y un conducto de salida (9) de los gases de combustión, caracterizado porque comprende un conducto de impulsión (8) que comunica la cámara de combustión (3) con la cámara secundaria (5), disponiéndose dicho conducto de impulsión (8) comunicado tangencialmente con la cámara de combustión (3). Gas generator adapted for cogeneration systems, in particular for Stirling cogeneration systems, comprising a main body (2) that delimits a combustion chamber (3), a fuel inlet (6) to said combustion chamber (3) , a secondary body (4) surrounding the main body (2) delimiting a secondary chamber (5), and an outlet duct (9) of the flue gases, characterized in that it comprises a discharge duct (8) that communicates the combustion chamber (3) with the secondary chamber (5), said discharge duct (8) being arranged tangentially communicated with the combustion chamber (3).
Generador de gases según la reivindicación anterior, en donde el conducto de impulsión (8) se aloja en la cámara secundaria (5) siguiendo una trayectoria curva. Gas generator according to the preceding claim, wherein the discharge duct (8) is housed in the secondary chamber (5) following a curved path.
Generador de gases según las reivindicaciones 1 o 2, en donde el conducto de impulsión (8) tiene una geometría tal que la sección de salida (18) de dicho conducto de impulsión (8) se dispone sustancialmente ortogonal al cuerpo principal (2). Gas generator according to claims 1 or 2, wherein the discharge duct (8) has a geometry such that the outlet section (18) of said discharge duct (8) is arranged substantially orthogonal to the main body (2).
Generador de gases según la reivindicación anterior, en donde la sección de entrada (21) del conducto de impulsión (8) tiene una superficie mayor que la sección de salida (18). Gas generator according to the preceding claim, wherein the inlet section (21) of the discharge duct (8) has a larger surface area than the outlet section (18).
Generador de gases según cualquiera de las reivindicaciones anteriores, en donde el conducto de impulsión (8) se extiende lateralmente desde un extremo superior (19) del cuerpo principal (2). Gas generator according to any one of the preceding claims, wherein the discharge duct (8) extends laterally from an upper end (19) of the main body (2).
Generador de gases según cualquiera de las reivindicaciones anteriores, en donde el cuerpo principal (2) tiene una geometría sustancialmente cilindrica y cerrada en el extremo superior (19), comunicándose la cámara de combustión (3) con la cámara secundaria (5) únicamente a través del conducto de impulsión (8). Gas generator according to any of the preceding claims, wherein the main body (2) has a substantially cylindrical geometry and closed at the upper end (19), the combustion chamber (3) communicating with the secondary chamber (5) only at through the discharge duct (8).
Generador de gases según cualquiera de las reivindicaciones anteriores, en donde el conducto de impulsión (8) se dispone comunicado con la cámara de combustión (3) por encima de la entrada de combustible (6). Gas generator according to any of the preceding claims, wherein the discharge duct (8) is arranged communicated with the combustion chamber (3) above the fuel inlet (6).
Generador de gases según cualquiera de las reivindicaciones anteriores, en donde el conducto de salida (9) del gases de combustión comprende una boquilla (10) que rodea el cuerpo principal (2) de modo que los gases de combustión salen impulsados hacia la cámara secundaria (5) a través del conducto de impulsión (8) formando trayectorias helicoidales que limpian los gases de combustión de partículas, saliendo los gases de combustión limpios a través de un hueco (12) entre la boquilla (10) del conducto de salida (9) y el cuerpo principal (2). Gas generator according to any of the preceding claims, wherein the outlet duct (9) of the combustion gases comprises a nozzle (10) that surrounds the main body (2) so that the combustion gases are propelled into the secondary chamber (5) through the discharge duct (8) forming helical paths that clean the combustion gases from particles, leaving the clean combustion gases through a gap (12) between the nozzle (10) of the outlet duct (9) ) and the main body (2).
Generador de gases según la reivindicación anterior, en donde el conducto de impulsión (8) atraviesa lateralmente la boquilla (10) del conducto de salida (9). Gas generator according to the preceding claim, wherein the discharge duct (8) laterally crosses the nozzle (10) of the outlet duct (9).
Generador de gases según las reivindicaciones 8 o 9, en donde la boquilla (10) tiene una geometría sustancialmente cilindrica y se dispone sustancialmente concéntrica al cuerpo principal (2). Gas generator according to claims 8 or 9, wherein the nozzle (10) has a substantially cylindrical geometry and is arranged substantially concentric to the main body (2).
Generador de gases según cualquiera de las reivindicaciones anteriores, en donde el cuerpo secundario (4) tiene una geometría sustancialmente cilindrica y se dispone sustancialmente concéntrico al cuerpo principal (2). Gas generator according to any of the preceding claims, wherein the secondary body (4) has a substantially cylindrical geometry and is arranged substantially concentric to the main body (2).
12. Generador de gases según cualquiera de las reivindicaciones anteriores, que comprende un aislante (17) que rodea exteriormente el cuerpo secundario (4) y al conducto de salida de gases (9). 12. Gas generator according to any of the preceding claims, comprising an insulator (17) that externally surrounds the secondary body (4) and the gas outlet duct (9).
13. Sistema de cogeneracion de tipo Stirling caracterizado porque comprende un generador de gases (1) según cualquiera de las reivindicaciones anteriores. 13. Stirling type cogeneration system characterized in that it comprises a gas generator (1) according to any of the preceding claims.
PCT/ES2014/070472 2014-06-06 2014-06-06 Gas generator suitable for cogeneration systems, especially stirling cogeneration systems WO2015185768A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14739860.6A EP3153774B1 (en) 2014-06-06 2014-06-06 Gas generator suitable for cogeneration systems, especially stirling cogeneration systems
PCT/ES2014/070472 WO2015185768A1 (en) 2014-06-06 2014-06-06 Gas generator suitable for cogeneration systems, especially stirling cogeneration systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2014/070472 WO2015185768A1 (en) 2014-06-06 2014-06-06 Gas generator suitable for cogeneration systems, especially stirling cogeneration systems

Publications (1)

Publication Number Publication Date
WO2015185768A1 true WO2015185768A1 (en) 2015-12-10

Family

ID=51210497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070472 WO2015185768A1 (en) 2014-06-06 2014-06-06 Gas generator suitable for cogeneration systems, especially stirling cogeneration systems

Country Status (2)

Country Link
EP (1) EP3153774B1 (en)
WO (1) WO2015185768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953218A (en) * 2016-06-27 2016-09-21 安陆市凯达环保设备有限公司 Bio-particle anti-coking combustion machine
ITUA20163609A1 (en) * 2016-05-19 2017-11-19 Kira Tech S R L "MICRO-COGENERATOR".

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL237091B1 (en) 2018-09-27 2021-03-08 Wilczynski Wieslaw Przed Produkcyjno Handlowe I Uslugowe Globe Stirling engine head heating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828767A1 (en) 1997-06-27 1999-01-28 Robert Bloos Solid fuel water heater for burning, e.g. wood shavings, chippings and shredded wood
FR2919711A1 (en) * 2007-08-02 2009-02-06 E U R L Jean Marie Thevenon Sa Vertical heat exchanger for e.g. shredded wood boiler, has insert arranged between external wall of tank and vertical separation cylinder, dip with two zones separated by cylinder, and inlet and outlet for allowing renewal of coolant
WO2009020442A1 (en) 2007-08-03 2009-02-12 Detes Maden Enerji Ve Cevre Teknoloji Sistemleri Limited Sirketi Solid fuel gasification and gas cleaning system
US20090078176A1 (en) * 2006-01-11 2009-03-26 Eckhart Weber Wood-Pellet Cogeneration Unit With Stirling Engine in Condensing Technology
US20100132596A1 (en) * 2006-10-27 2010-06-03 Sylvian Longatte Boiler burner for solid fuels of the biomass or tyre type and boiler comprising such burner
KR20130071530A (en) 2011-12-21 2013-07-01 대한민국(관리부서 : 산림청 국립산림과학원장) Device for cleaning smoke tube of wood pellet boiler
WO2013122291A1 (en) 2012-02-13 2013-08-22 (주)귀뚜라미 Pellet boiler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828767A1 (en) 1997-06-27 1999-01-28 Robert Bloos Solid fuel water heater for burning, e.g. wood shavings, chippings and shredded wood
US20090078176A1 (en) * 2006-01-11 2009-03-26 Eckhart Weber Wood-Pellet Cogeneration Unit With Stirling Engine in Condensing Technology
US20100132596A1 (en) * 2006-10-27 2010-06-03 Sylvian Longatte Boiler burner for solid fuels of the biomass or tyre type and boiler comprising such burner
FR2919711A1 (en) * 2007-08-02 2009-02-06 E U R L Jean Marie Thevenon Sa Vertical heat exchanger for e.g. shredded wood boiler, has insert arranged between external wall of tank and vertical separation cylinder, dip with two zones separated by cylinder, and inlet and outlet for allowing renewal of coolant
WO2009020442A1 (en) 2007-08-03 2009-02-12 Detes Maden Enerji Ve Cevre Teknoloji Sistemleri Limited Sirketi Solid fuel gasification and gas cleaning system
KR20130071530A (en) 2011-12-21 2013-07-01 대한민국(관리부서 : 산림청 국립산림과학원장) Device for cleaning smoke tube of wood pellet boiler
WO2013122291A1 (en) 2012-02-13 2013-08-22 (주)귀뚜라미 Pellet boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163609A1 (en) * 2016-05-19 2017-11-19 Kira Tech S R L "MICRO-COGENERATOR".
CN105953218A (en) * 2016-06-27 2016-09-21 安陆市凯达环保设备有限公司 Bio-particle anti-coking combustion machine

Also Published As

Publication number Publication date
EP3153774A1 (en) 2017-04-12
EP3153774B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
ES2398688T3 (en) Gas pulse blower
WO2015185768A1 (en) Gas generator suitable for cogeneration systems, especially stirling cogeneration systems
KR200448540Y1 (en) A wood pellet stove
JP5754788B1 (en) Oil making apparatus and dry distillation gasification oil incineration system provided with the same
ES2674250T3 (en) Device for generating hot air by combustion of biomass
JP6681752B2 (en) Boiler equipment
BR112013015184B1 (en) indirectly heated gas turbine system and vehicle with gas turbine system
ES2429872T3 (en) Continuous steam generator with atmospheric combustion in circulating fluidized bed
ES2361386T3 (en) FUEL INSTALLATION WITH A CLEANING INSTALLATION.
ES2640929B1 (en) THERMAL ENERGY GENERATION SYSTEM
CN210425519U (en) Novel crude oil heating furnace
ES2542635T3 (en) Heating device
CN107270531B (en) Environment-friendly boiler and heating equipment
CN105240839A (en) Biomass fuel combustion device
US1812513A (en) Vertical fire tube boiler
CN204962721U (en) Biomass fuel combustion device
CN105698179B (en) A kind of garbage burning device convenient for being handled exhaust gas
ES2960198T3 (en) Water tube boiler with concentric coils for heat exchange with ash removal system
KR101532880B1 (en) Heat recovering burner of multi cooling and burning structure
KR101458871B1 (en) Downward Wood Burning Boiler Improved Heat ExchangeAbility and Wood Burning Generator by Using Thereof
KR100632128B1 (en) An associated boiler
ES1230379U (en) TUBULAR BOILER WITH BUILT-IN OVEN (Machine-translation by Google Translate, not legally binding)
JP3179076U (en) Dust collection cyclone upper unit and dust collection cyclone
KR20170143153A (en) Eco-burner for energy saving
US259520A (en) Base-burning boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14739860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014739860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014739860

Country of ref document: EP