WO2015185393A1 - Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor - Google Patents

Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor Download PDF

Info

Publication number
WO2015185393A1
WO2015185393A1 PCT/EP2015/061622 EP2015061622W WO2015185393A1 WO 2015185393 A1 WO2015185393 A1 WO 2015185393A1 EP 2015061622 W EP2015061622 W EP 2015061622W WO 2015185393 A1 WO2015185393 A1 WO 2015185393A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
laccase
laccases
detergent
water
Prior art date
Application number
PCT/EP2015/061622
Other languages
English (en)
French (fr)
Inventor
Nina Mussmann
Timothy O'connell
Thomas Weber
Mareile Job
Hendrik Hellmuth
Michael STROTZ
Inken PRÜSER
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to US15/313,386 priority Critical patent/US20170267947A1/en
Priority to KR1020177000027A priority patent/KR20170016428A/ko
Priority to EP15724676.0A priority patent/EP3152289A1/de
Publication of WO2015185393A1 publication Critical patent/WO2015185393A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38654Preparations containing enzymes, e.g. protease or amylase containing oxidase or reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to the use of certain laccases as color transfer-inhibiting active ingredients in the washing of textiles as well as detergents containing these laccases.
  • Laccases (EC 1.10.3.2) are copper-containing, "blue" enzymes that are found in many plants, fungi and microorganisms, and laccases are oxidoreductases.
  • the catalytically active center contains four copper ions, which can be distinguished by their spectroscopic properties.
  • blue type 1 copper is involved in substrate oxidation
  • a type 2 and two type 3 copper ions form a trinuclear cluster that binds oxygen and reduces it to water.
  • Laccases are also referred to as p-diphenol oxidases.
  • laccases oxidize many other substrates such as methoxy-substituted phenols and diamines. With respect to their substrates, laccases are surprisingly unspecific.
  • laccases Because of their broad substrate specificity and their ability to oxidize phenolic compounds, laccases have aroused great interest in industrial applications. Promising areas for the use of laccases include, for example, the delignification and gluing of wood fiber boards, the dyeing of fabrics and the detoxification of dye waste water in the textile industry, as well as the use in biosensors.
  • laccases can also oxidize substrates that would otherwise be unable to oxidize.
  • the mediators are typically "small molecule compounds" which are oxidized by laccases. The oxidized mediator then oxidizes the actual substrate.
  • the first laccase was found as early as 1883 in the Japanese lacquer tree (Rhus vernicifera). Laccases are found in many plants such as peach, tomato, mango and potato; Laccases are also known from some insects.
  • laccases are derived from fungi, such as the species Agaricus, Aspergillus, Cerrena, Curvularia, Fusarium, Lentinius, Monocillium, Myceliophtora, Neurospora, Penicillium, Phanerochaete, Phlebia, Pleurotus, Podospora, Schizophyllum, Sporotrichum, Stagospora and Trametes.
  • This Farbin horrintulsver Sung washed, ie cleaner, textiles can be based on the one hand on the fact that dye components are removed by the washing process from the textile ("fading"), on the other hand, from other colored fabrics detached dyes on the textile reflected (“discoloration").
  • the discoloration aspect may also play a role in undyed laundry items when washed together with colored laundry items.
  • detergents especially if they are provided as so-called color or colored laundry detergents for colored textiles, contain active ingredients which prevent the detachment of dyes from the textile or At least the deposition of detached, located in the wash liquor to avoid dyes on textiles.
  • liquid detergents or cleaners for example, from an aesthetic point of view, should be clear and transparent or at least translucent and should also be sold in transparent / translucent packaging.
  • the present invention is therefore based on the object to provide a suitable color transfer inhibitor, which avoids the disadvantages known from the prior art or at least reduced, and is useful in both solid and aqueous detergent formulations.
  • a first subject of the present invention is therefore a detergent containing at least one laccase as a color transfer inhibitor.
  • Laccases from fungi, plants and in particular bacteria which have a low redox potential are preferred according to the invention, the standard redox potential of laccases being defined as the potential of the T1 copper center, as described in Mot AC, Silaghi-Dumitrescu R., Laccases : complex architectures for one-electron oxidations., Biochemistry (Moses). 2012 Dec; 77 (12): 1395-407.
  • the redox potential should be less than about 460 mV in order to be classified as low according to the invention.
  • a common method for determining the redox potential is described in the publication by Xu et al. 1996: "Biochimica. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate speeificity and stability" and Biophysica Acta 1292, 303-31 1.
  • laccases which are the consensus sequence are particularly preferred.
  • HCHx (3) Hx (4) M where x stands for "any amino acid” and the number following the x in brackets indicates the number of arbitrary amino acids.
  • Very particularly preferred laccases according to the invention are those which comprise an amino acid sequence which corresponds to the amino acid sequence shown in SEQ ID NO. 1 or SEQ ID NO. 2 at least 70% and more preferably at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90% of the total amino acid sequence. , 90.5%, 91%, 91, 5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96 , 5%, 97%, 97.5%, 98%, 98.5% and 99% is identical.
  • SEQ ID NO. 1 is the sequence of a B. licheniformis laccase comprising 513 amino acids.
  • SEQ ID NO. Figure 2 is the sequence of a Streptomyces sviceus laccase comprising 325 amino acids.
  • sequence comparison is based on the BLAST algorithm established and commonly used in the prior art (see, for example, Altschul, SF, Gish, W., Miller, W., Myers, EW & Lipman, DJ. (1990) "Basic local alignment search tool.” Biol. 215: 403-410, and Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J.
  • Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs "; Nucleic Acids Res., 25, pp.3389-3402) and in principle occurs by assigning similar sequences of nucleotides or amino acids in the nucleic acid or amino acid sequences to one another. A tabular assignment of the respective positions is referred to as alignment.
  • Another algorithm available in the prior art is the FASTA algorithm. Sequence comparisons (alignments), in particular multiple sequence comparisons, are created with computer programs.
  • Such a comparison also allows a statement about the similarity of the compared sequences to each other. It is usually given in percent identity, that is, the proportion of identical nucleotides or amino acid residues at the same or in an alignment corresponding positions.
  • the broader concept of homology involves conserved amino acid substitutions in the consideration of amino acid sequences, that is, amino acids with similar chemical activity, as these usually perform similar chemical activities within the protein. Therefore, the similarity of the sequences compared may also be stated as percent homology or percent similarity.
  • Identity and / or homology information can be made about whole polypeptides or genes or only over individual regions. Homologous or identical regions of different nucleic acid or amino acid sequences are therefore defined by matches in the sequences. Such areas often have identical functions.
  • nucleic acid or amino acid sequence can be small and comprise only a few nucleotides or amino acids. Often, such small regions exert essential functions for the overall activity of the protein. It may therefore be useful to relate sequence matches only to individual, possibly small areas. Unless otherwise indicated, identity or homology information in the present application, however, refers to the total length of the particular nucleic acid or amino acid sequence indicated.
  • laccases which can be used in the detergent according to the invention are obtainable from plants, fungi and preferably from bacteria, in particular from Bacilli and Actinomycetes.
  • the natural production quantities of the laccases are often very low. It may therefore be useful to increase production by expressing laccase genes in foreign production hosts.
  • vectors which contain a nucleic acid which codes for a laccase which can be used according to the invention are used for this purpose.
  • These may be DNA or RNA molecules. They can be present as a single strand, as a single strand that is complementary to this single strand, or as a double strand. Especially in the case of DNA molecules, the sequences of both complementary strands must be taken into account in all three possible reading frames. Furthermore, it should be noted that different codons, so base triplets, can code for the same amino acids, so that a particular amino acid sequence can be encoded by several different nucleic acids. The person skilled in the art is able to determine these nucleic acid sequences beyond doubt since, despite the degeneracy of the genetic code, individual codons can be assigned defined amino acids.
  • nucleic acids coding for this amino acid sequence on the basis of an amino acid sequence.
  • one or more codons may be replaced by synonymous codons.
  • This aspect relates in particular to the heterologous expression of the enzymes which can be used according to the invention.
  • every organism for example a host cell of a production strain, has a certain codon usage. Codon usage is understood to mean the translation of the genetic code into amino acids by the particular organism. Bottlenecks in protein biosynthesis can occur if the codons lying on the nucleic acid in the organism face a comparatively small number of loaded tRNA molecules.
  • a person skilled in the art can use well-known methods such as chemical synthesis or the polymerase chain reaction (PCR) in combination with molecular biological and / or proteinchemical standard methods, using known DNA and / or amino acid sequences, the corresponding nucleic acids to complete genes manufacture.
  • PCR polymerase chain reaction
  • Such methods are for example from Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3rd Edition Cold Spring Laboratory Press.
  • vectors are understood as consisting of nucleic acids which, as a characteristic nucleic acid region, are one for a method according to the invention contain insertable laccase encoding nucleic acid. They are able to establish them as a stable genetic element in a species or cell line over several generations or cell divisions.
  • Vectors, especially when used in bacteria, are special plasmids, ie circular genetic elements.
  • a nucleic acid encoding a laccase which can be used according to the invention is cloned into a vector.
  • the vectors include, for example, those whose origin are bacterial plasmids, viruses or bac teriophages, or predominantly synthetic vectors or plasmids with elements of various origins. With the other genetic elements present in each case, vectors are able to establish themselves as stable units in the relevant host cells over several generations. They may be extrachromosomal as separate units or integrated into a chromosome or chromosomal DNA.
  • Expression vectors comprise nucleic acid sequences which enable them to replicate in the host cells containing them, preferably microorganisms, particularly preferably bacteria, and to express a contained nucleic acid there.
  • expression is influenced by the promoter (s) that regulate transcription.
  • the expression may be effected by the natural promoter originally located in front of the nucleic acid to be expressed, but also by a promoter of the host cell provided on the expression vector or also by a modified or completely different promoter of another organism or another host cell.
  • at least one promoter for the expression of a nucleic acid which can be used for a laccase which can be used according to the invention is made available and used for its expression.
  • expression vectors can be regulatable, for example by changing the culturing conditions or when a specific cell density of the host cells contained therein is reached or by addition of specific substances, in particular activators of gene expression.
  • An example of such a substance is the galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside (IPTG), which is used as an activator of the bacterial lactose operon (lac operon).
  • IPTG galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside
  • lac operon lac operon
  • a nucleic acid encoding a laccase which can be used according to the invention or a vector containing such a nucleic acid is transformed into a microorganism which then serves as the host cell.
  • individual components, ie nucleic acid fragments or fragments of a nucleic acid coding for a laccase which can be used according to the invention can be introduced into a host cell in such a way that the resulting host cell contains such a nucleic acid or such a vector. This procedure is particularly suitable when the host cell already contains one or more constituents of such a nucleic acid or such a vector and the other constituents are then supplemented accordingly.
  • Methods of transforming cells are well established in the art and skilled in the art well known.
  • all cells ie prokaryotic or eukaryotic cells
  • host cells are suitable as host cells.
  • preferred host cells are characterized by good microbiological and biotechnological handling. This concerns, for example, easy culturing, high growth rates, low demands on fermentation media and good production and secretion rates for foreign proteins.
  • Preferred host cells according to the invention secrete the (transgenially) expressed protein into the medium surrounding the host cells.
  • the laccases can be modified by the cells producing them after their production, for example by attachment of sugar molecules, formylations, aminations, etc. Such post-translational modifications can functionally affect the laccases.
  • genetic regulatory elements which are provided, for example, on the vector but which can also be present in these cells from the outset.
  • chemical compounds that serve as activators by changing the culture conditions or when reaching a specific cell density, these can be excited for expression.
  • IPTG IPTG as described above.
  • Preferred host cells are prokaryotic or bacterial cells. Bacteria are characterized by short generation times and low demands on cultivation conditions. As a result, inexpensive cultivation methods or production methods can be established. In addition, the expert has a wealth of experience in bacteria in fermentation technology. For a specific production, gram-negative or gram-positive bacteria may be suitable for a wide variety of reasons to be determined experimentally in individual cases, such as nutrient sources, product formation rate, time requirement, etc.
  • Gram-negative bacteria such as Escherichia coli
  • Gram-negative bacteria can also be designed such that they eject the expressed proteins not only into the periplasmic space but into the medium surrounding the bacterium.
  • gram-positive bacteria such as Bacilli or Actinomycetes or other representatives of Actinomycetales have no outer membrane, so that secreted proteins are released immediately into the medium surrounding the bacteria, usually the nutrient medium, from which the expressed proteins can be purified. You can take off the medium directly isolated or further processed.
  • Gram-positive bacteria are related or identical to most of the organisms of origin for technically important enzymes and usually form even comparable enzymes, so they have a similar codon use and their protein synthesizer is naturally aligned accordingly.
  • the said host cells may be altered with respect to their requirements of the culture conditions, have different or additional selection markers or express other or additional proteins.
  • it may also be those host cells which express several proteins or enzymes transgene.
  • the present invention is applicable in principle to all microorganisms, in particular to all fermentable microorganisms and leads to the fact that can be produced by the use of such microorganisms according to the invention usable laccases.
  • Particularly preferred host cells for obtaining the laccases which can be used according to the invention are bacteria, in particular those selected from the genera Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebacterium, Arthrobacter, Streptomyces, Stenotrophomonas and Pseudomonas, and in particular Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor and Stenotrophomonas maltophili
  • the host cell may also be a eukaryotic cell, which is characterized in that it has a cell nucleus.
  • eukaryotic cells are capable of post-translationally modifying the protein formed. Examples thereof are fungi such as Actinomycetes or yeasts such as Saccharomyces or Kluyveromyces. This may be particularly advantageous, for example, if the proteins are to undergo specific modifications in the context of their synthesis that enable such systems. Modifications that eukaryotic systems perform, especially in connection with protein synthesis, include, for example, the binding of low molecular weight compounds such as membrane anchors or oligosaccharides.
  • Such oligosaccharide modifications may be desirable, for example, for lowering the allergenicity of an expressed protein. Coexpression with the enzymes naturally formed by such cells, such as cellulases or lipases, may also be advantageous. Furthermore, for example, thermophilic fungal expression systems may be particularly suitable for the expression of temperature-resistant proteins or variants.
  • the said host cells are cultivated and fermented in the usual way, for example in discontinuous or continuous systems. In the first case, a suitable nutrient medium is inoculated with the host cells and the product is harvested from the medium after an experimentally determined period of time. Continuous fermentations are characterized by achieving a flow equilibrium, in which over a relatively long period of time cells partly die out but also regrow and at the same time the protein formed can be removed from the medium.
  • Fermentation processes are known per se from the prior art and represent the actual large-scale production step, usually followed by a suitable purification method of the product produced, for example a laccase which can be used according to the invention.
  • Fermentation processes which are characterized in that the fermentation is carried out via a feed strategy, come in particular into consideration.
  • the media components consumed by the ongoing cultivation are fed.
  • considerable increases can be achieved both in the cell density and in the cell mass or dry matter and / or in particular in the activity of the laccase of interest.
  • the fermentation can also be designed so that undesired metabolic products are filtered out or neutralized by the addition of buffer or suitable counterions.
  • the produced laccase can be harvested from the fermentation medium.
  • Such a fermentation process is resistant to isolation of the laccase from the host cell, i. however, requires the provision of suitable host cells or one or more suitable secretion markers or mechanisms and / or transport systems for the host cells to secrete the laccase into the fermentation medium.
  • the isolation of the laccase from the host cell i. a purification of the same from the cell mass, carried out, for example, using conventional methods of enzyme chemistry such as salt precipitation, ultrafiltration, ion exchange chromatography and hydrophobic interaction chromatography.
  • the purification can be monitored by SDS-polyacrylamide gel electrophoreses.
  • the enzyme activity of the purified enzyme at various temperatures and pHs can be determined; similarly, the molecular weight and the isoelectric point can be determined.
  • laccases which have a low redox potential are suitable as DTI in detergents. Laccases with medium or high redox potential do not show the desired DTI effect in detergents and, in addition, frequently darken and intensify stains, which is of course undesirable.
  • concentration of the laccases in the detergent according to the invention is preferably adjusted so that the laccase concentration in the wash liquor is in the range of 0.01 to 10 U / ml, in particular in the range of 0, 1 to 5 U / ml.
  • the detergent according to the invention is preferably used in the temperature range from 5 ° C to 95 ° C, preferably 20 ° C to 60 ° C and particularly preferably 30 ° C to 40 ° C.
  • the detergent of the invention may contain additional mediators to oxidize the dyes in solution at a higher efficiency.
  • Mediators suitable according to the invention are, for example, tempo (2,2,6,6-tetramethyl-1-piperidinyloxy), HBT (1-hydroxybenzotriazole), ABTS (2,2-azinobis-3-ethylbenzothiazole-6-sulphonate), NHA (N- Hydroxy-acetanilide), 2,5-xylidine, ethanol, copper, 4-methylcatechol, N-hydroxyphthalimide, gallic acid, tannic acid, quercetin, syringic acid, guaacol, dimethoxybenzyl alcohol, phenol, violuric acid (isonitrosobarbituric acid), phenol red, bromophenol blue, cellulose , p-cumaric acid, rooibos, o-cresol, dichloroindophenol, hydroxybenzotriazole, cycloheximi
  • Another object of the invention is the use of laccases to avoid or at least reduce the transfer of textile dyes of dyed textiles on undyed or differently colored textiles in their common laundry in particular surfactant-containing aqueous solutions.
  • Particularly preferred laccases are the laccases described for the first subject of the invention.
  • the color transfer-inhibiting laccases make a two-fold contribution to color constancy, that is, they reduce both discoloration and fading, although the effect of preventing staining, especially when washing white textiles, is most pronounced.
  • Another object of the invention is therefore the use of said laccases to avoid the change in the color impression of textiles in their washing in particular surfactant-containing aqueous solutions.
  • the change in the color impression is not the difference between dirty and clean textile to understand, but the difference between each clean textile before and after the washing process.
  • Another object of the invention is a process for washing dyed textiles in surfactant-containing aqueous solutions, which is characterized in that one uses a surfactant-containing aqueous solution containing at least one color transfer-inhibiting laccase.
  • the process is realized in its simplest form by bringing textiles requiring cleaning into contact with the aqueous liquor, it being possible to use a conventional washing machine or to carry out the washing by hand. In such a process, it is possible to wash together with the dyed textile also white or undyed textiles, wherein the coloring of the white or undyed textile is not completely but largely avoided. It is inventively preferred to carry out the process under intensive aeration of the wash liquor, as is the case when using a conventional household washing program.
  • a detergent may contain conventional ingredients compatible with this ingredient.
  • it may, for example, additionally contain a further color transfer inhibitor, then preferably in amounts of 0.1 wt .-% to 2 wt .-%, in particular 0.2 wt .-% to 1 wt .-%, containing in one preferred embodiment is selected from the polymers of vinylpyrrolidone, vinylimidazole, vinylpyridine-N-oxide or the copolymers thereof.
  • polyvinylpyrrolidones having molecular weights of from 15,000 g / mol to 50,000 g / mol and also polyvinylpyrrolidones having higher molecular weights of, for example, up to more than 1,000,000 g / mol, in particular from 1,500,000 g / mol to 4,000,000 g / mol, N-vinylimidazole / N-vinylpyrrolidone copolymers, polyvinyloxazolidones, copolymers based on vinyl monomers and carboxamides, polyesters containing pyrrolidone groups and polyamides, grafted polyamidoamines and polyethyleneimines, polyamine-N-oxide polymers and polyvinyl alcohols.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which gives off hydrogen peroxide in water.
  • a mediator compound for the peroxidase for example an acetosy ringone, a phenol derivative or a phenotiazine or phenoxazine, is preferred in this case, whereby also above-mentioned polymeric Farbübertragungsinhibitorwirkstoffe can be used.
  • Polyvinylpyrrolidone preferably has an average molecular weight in the range from 10,000 g / mol to 60,000 g / mol, in particular in the range from 25,000 g / mol to 50,000 g / mol.
  • the copolymers preference is given to those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5: 1 to 1: 1 with an average molar mass in the range from 5,000 g / mol to 50,000 g / mol, in particular 10,000 g / mol to 20,000 g / mol , in preferred embodiments, however, the detergents are free of such additional color transfer inhibitors.
  • Detergents which may be in the form of homogeneous solutions or suspensions, especially in powdered solids, in densified particle form, in granular form, may in principle contain, in addition to the laccases used according to the invention, all known ingredients conventionally used in such compositions.
  • the agents according to the invention may in particular be builder substances, surface-active surfactants, bleaching agents based on organic and / or inorganic compounds Peroxygen compounds, bleach activators, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, grayness inhibitors, foam regulators and dyes and fragrances included.
  • compositions preferably comprise one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups. Also suitable are ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides, which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety, and alkylphenols having from 5 to 12 carbon atoms in the alkyl radical ,
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C12-C14 alcohols with 3 EO or 4 EO, Cg-Cn alcohols with 7 EO, cis-Cis alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C12-C18 alcohols. Alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of Ci2-Ci4-alcohol with 3 EO and Ci2-Ci8-alcohol with 7 EO.
  • the stated degrees of ethoxylation represent statistical averages, which for a particular product may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used.
  • examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • agents for use in mechanical processes usually extremely low-foam compounds are used. These include preferably Ci2-Ci8-alkylpolyethylenglykol-polypropylene glycol ethers each with at 8 mol ethylene oxide and propylene oxide in the molecule.
  • nonionic surfactants also include alkyl glycosides of the general formula RO (G) x are used, in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is a glycose unit with 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1, 2 to 1, 4.
  • R i -CO-N- [Z] in which R is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R 3 -CO-N- [Z] in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms
  • R 5 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, preference being given to C 1 -C 4 -alkyl or phenyl radicals
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is at least is substituted two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • Another class of preferred nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides.
  • alkoxylated preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • Other suitable surfactants are so-called gemini surfactants.
  • gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis- and trimer alcohol tris sulfates and ether sulfates
  • End-capped dimeric and trimeric mixed ethers are notable in particular for their bi- and multifunctional nature, in which the end-capped surfactants have good wetting properties there Low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and also disulfonates, such as are obtained, for example, from C 12 -C 18 -monoolefins having terminal or internal double bonds by sulfonation gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by ⁇ -sulfonation of the methyl esters of fatty acids of plant and / or animal origin with 8 to 20 C -Atomen in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are prepared, into consideration.
  • ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt .-%, can be present.
  • ⁇ -sulfofatty acid alkyl esters which have an alkyl chain with not more than 4 C atoms in the ester group, for example methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of ⁇ -sulfofatty acids (MES), but also their saponified salts, are used with particular advantage.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol to be obtained.
  • alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 12-18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half esters of secondary alcohols this chain length is preferred. Also preferred are alk (en) ylsulfates of said chain length which contain a synthetic, straight-chain alkyl radical which is prepared on a petrochemical basis and has an analogous decomposition behavior to the adequate compounds based on oleochemical raw materials.
  • Ci2-Ci6-Alkylsul- fate and Ci2-Ci5-alkyl sulfates and Cw-Cis-alkyl sulfates are particularly preferred.
  • 2,3-alkyl sulphates which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7 -C 20 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 20 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 -C 18 -fatty alcohols with 1 to 4 EO.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cs to Ci8 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides).
  • sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are particularly soaps into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Surfactants are present in detergents in proportions of normally from 1% by weight to 50% by weight, in particular from 5% by weight to 30% by weight.
  • a detergent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, especially glycinediacetic acid, methylglycinediacetic acid, nitrilotriacetic acid, iminodisuccinates such as ethylenediamine-N, N'-disuccinic acid and hydroxyiminodisuccinates, ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), lysintetra (methylenephosphonic acid) and 1-hydroxyethane-1, 1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and also polymeric (poly) carboxylic acids, in particular polycarboxy
  • the relative average molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5,000 g / mol and 200,000 g / mol, that of the copolymers between 2,000 g / mol and 200,000 g / mol, preferably 50,000 g / mol to 120,000 g / mol, in each case based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative average molecular weight of 50,000 to 100,000.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of the acid is at least 50% by weight.
  • vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene
  • terpolymers which contain two unsaturated acids and / or salts thereof as monomers and vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate as the third monomer.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C3-Cs-carboxylic acid and preferably from a C3-C4-monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C4-Cs-dicarboxylic acid, with maleic acid being particularly preferred.
  • the third monomeric unit is formed in this case of vinyl alcohol and / or preferably an esterified vinyl alcohol.
  • Preferred polymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, and maleic acid or Maleinate and 5 wt .-% to 40 wt .-%, preferably 10 wt .-% to 30 wt .-% of vinyl alcohol and / or vinyl acetate.
  • Very particular preference is given to polymers in which the weight ratio of (Meth) acrylic acid or (meth) acrylate to maleic acid or maleate between 1: 1 and 4: 1, preferably between 2: 1 and 3: 1 and in particular 2: 1 and 2.5: 1. Both the amounts and the weight ratios are based on the acids.
  • the second acidic monomer or its salt may also be a derivative of an allylsulfonic acid substituted in the 2-position with an alkyl radical, preferably with a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives is.
  • Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, from 10% by weight to 30% by weight.
  • % preferably 15 wt .-% to 25 wt .-% methallyl sulfonic acid or Methallylsulfonat and as the third monomer 15 wt .-% to 40 wt .-%, preferably 20 wt .-% to 40 wt .-% of a carbohydrate
  • This carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, mono-, di- or oligosaccharides being preferred. Particularly preferred is sucrose.
  • the use of the third monomer presumably incorporates predetermined breaking points into the polymer which are responsible for the good biodegradability of the polymer.
  • terpolymers generally have a relative average molecular weight between 1,000 g / mol and 200,000 g / mol, preferably between 200 g / mol and 50,000 g / mol.
  • Further preferred copolymers are those which contain acrolein and acrylic acid / acrylic acid salts or vinyl acetate as monomers.
  • the organic builders can, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 weight percent aqueous solutions are used. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular hydrous, agents.
  • Suitable water-soluble inorganic builder materials are, in particular, polyphosphates, preferably sodium triphosphate.
  • water-insoluble inorganic builder materials are in particular crystalline or amorphous, water-dispersible alkali metal aluminosilicates, in amounts not exceeding 25 wt .-%, preferably from 3 wt .-% to 20 wt .-% and in particular in amounts of 5 wt .-% to 15 wt. -% used.
  • preference is given to the detergent-grade crystalline sodium aluminosilicate in particular zeolite A, zeolite P and zeolite MAP and optionally zeolite X.
  • Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 ⁇ m, and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m.
  • Their calcium binding inhibitor is usually in the range of 100 to 200 mg CaO per gram.
  • further water-soluble inorganic builder materials may be included.
  • polyphosphates such as sodium triphosphate, these include in particular the water-soluble crystalline and / or amorphous alkali metal silicate builders.
  • Such water-soluble inorganic builder materials are preferably present in the compositions in amounts of from 1% to 20% by weight, in particular from 5% to 15% by weight.
  • the alkali metal silicates useful as builder materials preferably have a molar ratio of alkali oxide to SiO 2 below 0.95, in particular from 1: 1, 1 to 1: 12, and may be amorphous or crystalline.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of from 1: 2 to 1: 2.8.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates are preferably crystalline phyllosilicates of the general formula Na.sub.2SixO.sub.2.sup.x + H.sub.2O.sub.2, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 is up to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3. In particular, both .beta.
  • .delta.-sodium disilicates Na.sub.2Si.sub.20.sub.y H.sub.2O
  • amorphous alkali silicates practically anhydrous crystalline alkali metal silicates of the above general formula in which x is a number from 1, 9 to 2, 1, can be used in the compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda.
  • Sodium silicates with a modulus in the range of 1.9 to 3.5 are used in another embodiment.
  • a granular compound of alkali silicate and alkali carbonate is used, as it is commercially available, for example, under the name Nabion® 15.
  • Suitable bleaching agents are those based on chlorine, in particular alkali hypochlorite, dichloroisocyanuric acid, trichloroisocyanuric acid and salts thereof, but in particular also those based on persuurs.
  • Suitable peroxygen compounds are, in particular, organic peracids or persaltic salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid, monoperoxyphthalic acid, and diperdodecanedioic acid and their salts, such as magnesium monoperoxyphthalate, hydrogen peroxide and inorganic salts releasing hydrogen peroxide under the conditions of use, such as perborate, percarbonate and / or persilicate, and Hydrogen peroxide inclusion compounds such as H 2 O 2 urea adducts.
  • Hydrogen peroxide can also be produced by means of an enzymatic system, ie an oxidase and its substrate.
  • solid peroxygen compounds ie an oxidase and its substrate.
  • solid peroxygen compounds can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • alkali metal percarbonate, alkali metal perborate monohydrate or hydrogen peroxide in the form of aqueous solutions which contain from 3% by weight to 10% by weight of hydrogen peroxide.
  • a detergent contains peroxygen compounds, they are present in amounts of preferably up to 25% by weight, more preferably from 1% to 20% and most preferably from 7% to 20% by weight.
  • peroxycarboxylic acid-yielding compound in particular compounds which give under perhydrolysis conditions optionally substituted perbenzoic acid and / or aliphatic peroxycarboxylic acids having 1 to 12 C-atoms, in particular 2 to 4 C-atoms, alone or in mixtures, are used.
  • Suitable bleach activators which carry O- and / or N-acyl groups, in particular of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexa-hydro-1,3,5-triazine (DADHT ), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates or carboxylates or the sulfonic or carboxylic acids of these, in particular nonanoyl or isononanoyl or lauroylbenzenesulfonate (NOBS or iso-NOBS or LOBS) or decanoyloxybenzoate (DOBA) their formal carbonic acid ester derivatives such as 4- (2-decanoyloxyethoxycarbonyloxy)
  • bleach-activating compounds such as nitriles, from which perimide acids form under perhydrolysis conditions may be present.
  • nitriles include in particular aminoacetonitrile derivatives with quaternized nitrogen atom according to the formula
  • R 3 in the R represents -H, -CH 3 , a C2-24-alkyl or alkenyl radical, a substituted Ci-24-alkyl or C2-24-alkenyl radical having at least one substituent from the group -Cl, -Br , -OH, -NH2, -CN and -N (+) -CH2-CN, an alkyl or alkenylaryl radical having a Ci-24-alkyl group, or for a substituted alkyl or alkenylaryl radical having at least one, preferably two, optionally substituted Ci-24-alkyl group (s) and optionally further substituents on the aromatic ring, R 2 and R 3 are independently selected from -CH 2-CN, -CH 3, -CH 2 -CH 3, -CH 2 -CH 2 -CH 3, -CH ( CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 ,
  • transition metal complexes are preferably selected from the cobalt, iron, copper, titanium, vanadium, manganese and ruthenium complexes.
  • Suitable ligands in such transition metal complexes are both inorganic and organic compounds, which in addition to carboxylates in particular compounds having primary, secondary and / or tertiary amine and / or alcohol functions, such as pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole , triazole, 2,2 '-bispyridylamine, tris (2-pyridylmethyl) amine, 1, 4,7-triazacyclononane, 1, 4,7-trimethyl-1, 4,7-triazacyclononane, 1, 5,9-trimethyl -1, 5,9-triazacyclododecane, (bis ((1-methylimidazol-2-yl) methyl)) - (2-pyridyl
  • the inorganic neutral ligands include in particular ammonia and water. If not all coordination sites of the transition metal central atom are occupied by neutral ligands, the complex contains further, preferably anionic and among these in particular mono- or bidentate ligands. These include in particular the halides such as fluoride, chloride, bromide and iodide, and the (NO 2) - group, that is, a nitro ligand or a nitritol ligand.
  • the (NO 2) - group may also be attached to a transition metal be chelate-bound or it may have two transition metal atoms asymmetrically or r
  • the transition metal complexes may carry further, generally simpler ligands, in particular mono- or polyvalent anion ligands.
  • ligands for example, nitrate, actetate, trifluoroacetate, formate, carbonate, citrate, oxalate, perchlorate and complex anions such as hexafluorophosphate are possible.
  • the anion ligands should provide charge balance between the transition metal central atom and the ligand system.
  • the presence of oxo ligands, peroxo ligands and imino ligands is also possible.
  • such ligands can also act bridging, so that polynuclear complexes arise.
  • both metal atoms in the complex need not be the same.
  • the use of binuclear complexes in which the two transition metal central atoms have different oxidation states is also possible. If anion ligands are missing or the presence of anionic Otherwise, in order to charge balance in the complex, anionic counterions which neutralize the cationic transition metal complex are present in the transition metal complex compounds to be used according to the invention.
  • anionic counterions include in particular nitrate, hydroxide, hexafluorophosphate, sulfate, chlorate, perchlorate, the halides such as chloride or the anions of carboxylic acids such as formate, acetate, oxalate, benzoate or citrate.
  • transition metal complex compounds are , 4,7-trimethyl-1, 4,7-triazacyclononane) -di-hexafluorophosphate, [N, N'-bis [(2-hydroxy-5-vinylphenyl) -methylene] -1, 2-diaminocyclohexane] -manganese (III) chloride, [N, N'-bis [(2-hydroxy-5-nitrophenyl) methylene] -1,2-diamino-cyclohexane] manganese (III) acetate, [N, N'- Bis [(2-hydroxyphenyl) methylene] -1,2-phenylenediamine] manganese (III) acetate, [N, N'-bis [(2-hydroxyphenyl) methylene] -1,2-diaminocyclohexane] - manganese (III) chloride, [N, N'-bis [(2-hydroxyphenyl) methylene] -1, 2-dia
  • Enzymes which can be used in the compositions in addition to the laccases mentioned are those from the class of amylases, proteases, lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases and peroxidases, and also mixtures thereof.
  • the use of one or more other laccases or multi-copper oxidases in addition to the said laccases is possible according to the invention.
  • enzymatic agents obtained from fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight.
  • the agent of the invention contains protease, it preferably has a proteolytic activity in the range of about 100 PE / g to about 10,000 PE / g, in particular 300 PE / g to 8000 PE / g. If several enzymes are to be used in the agent according to the invention, this can be carried out by incorporation of the two or more separate or in a known manner separately prepared enzymes or by two or more enzymes formulated together in a granule.
  • usable organic solvents in addition to water include alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C Atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof, and binding classes of derivable ethers.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • compositions of the invention system and environmentally friendly acids especially citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or Adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali hydroxides.
  • pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions used.
  • Detergents may contain, for example, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners, although they are preferably free of optical brighteners for use as color washing agents.
  • optical brighteners for use as color washing agents.
  • salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or similarly constructed compounds which are substituted for the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls. Mixtures of the aforementioned optical brightener can be used.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of cis-C24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and their mixtures. see with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and their mixtures with silanated silica or Bisfettklarealkylendiamiden. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • compositions in tablet form which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all components - optionally one layer at a time - in a mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses, pressed with compressive forces in the range of about 50 to 100 kN, preferably at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm.
  • the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device of the washing machine, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions in the form of conventional solvent-containing solutions are usually prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • the detergents described herein in particular the described low-water to anhydrous liquid detergents, can be filled into a water-soluble casing and thus be part of a water-soluble packaging.
  • the content of water be less than 10% by weight, based on the total detergent, and that anionic surfactants, if present, be in the form of their ammonium salts.
  • low-water detergents can be prepared which are directly suitable for use in water-soluble wraps.
  • a water-soluble packaging contains, in addition to the detergent, a water-soluble coating.
  • the water-soluble coating is preferably formed by a water-soluble film material.
  • Such water soluble packages can be made by either vertical form fill seal (VFFS) or thermoforming techniques.
  • VFFS vertical form fill seal
  • the thermoforming process generally includes forming a first layer of water-soluble sheet material to form protrusions for receiving a composition therein, filling the composition into the protrusions, covering the composition-filled protrusions with a second layer of water-soluble sheet material, and sealing the first and second layers at least around the bulges.
  • the water-soluble coating is preferably formed from a water-soluble film material selected from the group consisting of polymers or polymer blends.
  • the wrapper may be formed of one or two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and the further layers, if present, may be the same or different.
  • the water-soluble package comprising the detergent and the water-soluble wrapper may have one or more chambers.
  • the liquid detergent may be contained in one or more chambers, if any, of the water-soluble coating.
  • the amount of liquid detergent preferably corresponds to the full or half dose needed for a wash. It is preferred that the water-soluble casing contain polyvinyl alcohol or a polyvinyl alcohol copolymer.
  • Suitable water-soluble films for producing the water-soluble coating are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose molecular weight is in the range of 10,000 to 1,000,000 g / mol, preferably 20,000 to 500,000 g / mol, more preferably 30,000 to 100,000 g / mol, and especially from 40,000 to 80,000 g / mol.
  • a film material suitable for producing the water-soluble coating may contain polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyether polylactic acid, and / or mixtures of the above polymers.
  • Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers.
  • Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
  • polyvinyl alcohol copolymers comprise, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
  • Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylic esters or mixtures thereof.
  • Suitable water-soluble films for use in the casings of the water-soluble packaging according to the invention are films sold by the company MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films named Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the water-soluble packages may have a substantially dimensionally stable spherical and crescent-shaped configuration with a circular, elliptical, square or rectangular basic shape.
  • the water soluble package may include one or more chambers for storing one or more agents. If the water-soluble packaging has two or more chambers, at least one chamber contains a liquid detergent. The other chambers may each contain a solid or a liquid detergent. Examples:
  • Example 1 Use of two bacterial laccases as DTI
  • Two bacterial laccases with SEQ ID NOs: 1 and 2 were tested for their suitability as DTI as follows.
  • the protein region of importance for the redox potential is indicated below, with conserved amino acids being marked by bold type.
  • amino acid M (methionine) marked by boldface is of importance for the low redox potential.
  • a staining scale rating which is based on ISO 105-A04, was carried out.
  • two white fabrics (A: 6 * 16 cm standard cotton fabric wfk, B: 6 * 16 cm standard polyamide fabric) were used in batches of 100 ml each with a color donor (Direct Red 83: 1, Hohenstein) whose concentration was 0, 3 g / tissue flap was, using a commercially available, liquid and dye transfer inhibitor-free detergent composition (dosage 5.21 g / l) and adding (approach 2) 100 U laccase 1 (SEQ ID NO: 1) or (approach 3 ) 100 U laccase 2 (SEQ ID NO: 2) in a Linitest Plus device from Atlas according to the Hohenstein method (analogous to ISO 105 C06) for 30 minutes at 50 ° C, incubated at 40 rpm / min and then with Rinsed water (16 ° DH) and dried hanging at room temperature.
  • SSR staining scale rating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung bestimmter Laccasen als farbübertragungsinhibierende Wirkstoffe beim Waschen von Textilien sowie Waschmittel, welche diese Laccasen enthalten.

Description

Patentanmeldung
Waschmittel, enthaltend mindestens eine Laccase als Farbübertragungsinhibitor
Die vorliegende Erfindung betrifft die Verwendung bestimmter Laccasen als farbübertragungsinhi- bierende Wirkstoffe beim Waschen von Textilien sowie Waschmittel, welche diese Laccasen enthalten.
Laccasen (EC 1.10.3.2) sind kupferhaltige,„blaue" Enzyme, die in vielen Pflanzen, Pilzen und Mikroorganismen vorkommen. Laccasen zählen zu den Oxidoreduktasen. Das katalytisch aktive Zentrum enthält vier Kupferionen, die nach ihren spektroskopischen Eigenschaften unterschieden werden können. Das„blaue" Typ 1 -Kupfer ist an der Substratoxidation beteiligt, ein Typ 2- und zwei Typ 3-Kupferionen formen einen trinuklearen Cluster, der Sauerstoff bindet und zu Wasser reduziert. Laccasen werden auch als p-Diphenol-Oxidasen bezeichnet. Zusätzlich zu Diphenolen oxidieren Laccasen viele andere Substrate wie methoxysubstituierte Phenole und Diamine. In Bezug auf ihre Substrate sind Laccasen erstaunlich unspezifisch. Wegen ihrer breiten Substratspezifität und ihrer Fähigkeit, phenolische Verbindungen zu oxidieren, haben Laccasen großes Interesse bei industriellen Anwendungen geweckt. Viel versprechende Gebiete zur Anwendung von Laccasen schließen zum Beispiel die Delignifizierung und das Kleben von Faserplatten der Holzindustrie, das Färben von Stoffen und das Entgiften von Färbeabwässern in der Textilindustrie, sowie die Verwendung in Biosensoren ein.
Mit der Hilfe von Mediatoren, d. h. zwischengeschalteten Molekülen, können Laccasen auch Substrate oxidieren, die sie sonst nicht in der Lage wären zu oxidieren. Die Mediatoren sind typischerweise "Small Molecule Compounds", die durch Laccasen oxidiert werden. Der oxidierte Mediator oxidiert dann wiederum das tatsächliche Substrat. Die erste Laccase wurde bereits 1883 im japanischen Lackbaum (Rhus vernicifera) gefunden. Laccasen finden sich in vielen Pflanzen wie Pfirsich, Tomate, Mango und Kartoffel; Laccasen sind auch aus einigen Insekten bekannt. Die am häufigsten eingesetzten Laccasen stammen jedoch aus Pilzen, beispielsweise aus den Arten Agaricus, Aspergillus, Cerrena, Curvularia, Fusarium, Lentinius, Monocillium, Myceliophtora, Neurospora, Penicillium, Phanerochaete, Phlebia, Pleurotus, Podospora, Schizophyllum, Sporotrichum, Stago- nospora und Trametes.
In der Natur besteht die Funktion der Laccasen unter anderem in der Mitwirkung an der Dekom- postierung von Lignozellulose, der Biosynthese von Zellwänden, dem Braunwerden von Früchten und Gemüsen, sowie der Vorbeugung gegen mikrobische Angriffe auf Pflanzen. Waschmittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensi- den und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Enzyme umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche verhindern sollen, dass gefärbte Textilien nach der Wäsche einen veränderten Farbeindruck hervorrufen (Farbübertragungsinhibitoren, DTI = Dye transfer Inhibitors). Diese Farbeindrucksveränderung gewaschener, d.h. sauberer, Textilien kann zum einen darauf beruhen, dass Farbstoffanteile durch den Waschprozeß vom Textil entfernt werden („Verblassen"), zum anderen können sich von andersfarbigen Textilien abgelöste Farbstoffe auf dem Textil niederschlagen („Verfärben"). Der Verfärbungsaspekt kann auch bei ungefärbten Wäschestücken eine Rolle spielen, wenn diese zusammen mit farbigen Wäschestücken gewaschen werden. Um diese unerwünschten Nebeneffekte des Entfernens von Schmutz von Textilien durch Behandeln mit üblicherweise tensidhaltigen wässrigen Systemen zu vermeiden, enthalten Waschmittel, insbesondere wenn sie als sogenannte Color- oder Buntwaschmittel zum Waschen farbiger Textilien vorgesehen sind, Wirkstoffe, die das Ablösen von Farbstoffen vom Textil verhindern oder zumindest das Ablagern von abgelösten, in der Waschflotte befindlichen Farbstoffen auf Textilien vermeiden sollen.
Viele der üblicherweise zum Einsatz kommenden Polymere haben allerdings eine derart hohe Affinität zu Farbstoffen, dass sie diese nachteiligerweise verstärkt von der gefärbten Faser ziehen, so dass es zu verstärkten Farbverlusten kommt.
Aus Gründen des nachhaltigen Wirtschaftens ist es außerdem wünschenswert, einen farbübertra- gungsinhibierenden Effekt nicht durch (stöchiometrisches) Binden der Farbstoffe zu erreichen, sondern auf einem Weg, der den Einsatz geringerer Wirkstoff mengen erlaubt.
Zudem ist bekannt, daß Farbübertragungsinhibitoren in flüssigen Waschmittelformulierungen häufig Probleme bereiten, insbesondere weil optische Aufheller und DTIs in einer wässrigen Waschmittelmatrix mit herkömmlicher Zusammensetzung nicht kompatibel sind. So führt das gleichzeitige Einarbeiten eines optischen Aufhellers und eines polymeren Farbübertragungsinhibitors in eine flüssige Waschmittelmatrix sofort zu einer starken Trübung und anschließender Phasenseparation.
Dies ist insbesondere von Nachteil, wenn die flüssigen Wasch- oder Reinigungsmittel, beispielsweise aus ästhetischer Sicht, klar und transparent bzw. zumindest transluzent sein sollen und auch in transparenten/transluzenten Verpackungen vertrieben werden sollen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen geeigneten Farbübertra- gungsinhibitor bereitzustellen, der die aus dem Stand der Technik bekannten Nachteile vermeidet oder zumindest verringert, und sowohl in festen, als auch in wässrigen Waschmittelformulierungen einsetzbar ist.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Bereitstellung bestimmter Laccasen mit niedrigem Redoxpotential als Farbübertragungsinhibitoren in Waschmitteln.
Ein erster Gegenstand der vorliegenden Erfindung ist daher ein Waschmittel, das mindestens eine Laccase als Farbübertragungsinhibitor enthält.
Erfindungsgemäß bevorzugt sind Laccasen aus Pilzen, Pflanzen und insbesondere Bakterien, die ein geringes Redox-Potential aufweisen, wobei das Standard Redox-Potential von Laccasen als Potential des T1 Kupfer-Zentrums definiert wird, wie in Mot AC, Silaghi-Dumitrescu R., Laccases: complex architectures for one-electron oxidations., Biochemistry (Mose). 2012 Dec;77(12): 1395- 407, beschrieben. Das Redox-Potential soll kleiner ca. 460 mV sein, um erfindungsgemäß als gering eingestuft zu werden. Eine gängige Methode um das Redox-Potential zu bestimmen ist in der Veröffentlichung von Xu et al 1996: "A study of a series of recombinant fungal laccases and biliru- bin oxidase that exhibit significant differences in redox potential, Substrate speeificity and stability", Biochimica et Biophysica Acta 1292, 303-31 1 , beschrieben.
Besonders bevorzugt sind erfindungsgemäß Laccasen, die die Konsensussequenz
HCHx(3)Hx(4)M aufweisen, wobei x für "beliebige Aminosäure" steht und die dem x nachfolgende Zahl in Klammern die Anzahl der beliebigen Aminosäuren angibt.
Ganz besonders bevorzugte erfindungsgemäße Laccasen sind solche, die eine Aminosäuresequenz umfassen, die zu der in SEQ ID NO. 1 oder SEQ ID NO. 2 angegebenen Aminosäuresequenz über deren Gesamtlänge zu mindestens 70% und zunehmend bevorzugt zu mindestens 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91 %, 91 ,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5% und 99% identisch ist.
SEQ ID NO. 1 ist die Sequenz einer Laccase aus B. licheniformis, die 513 Aminosäuren umfasst.
SEQ ID NO. 2 ist die Sequenz einer Laccase aus Streptomyces sviceus, die 325 Aminosäuren umfasst.
Die Bestimmung der Identität von Nukleinsäure- oder Aminosäuresequenzen erfolgt durch einen Sequenzvergleich. Dieser Sequenzvergleich basiert auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. beispielsweise Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, DJ. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403- 410, und Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new genera- tion of protein database search programs"; Nucleic Acids Res., 25, S.3389-3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nukleotiden oder Aminosäuren in den Nukleinsäure- oder Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. beispielsweise Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31 , 3497-3500), T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205-217) oder Programme, die auf diesen Programmen beziehungsweise Algorithmen basieren. In der vorliegenden Patentanmeldung wurden alle Sequenzvergleiche (A- lignments) mit dem Computer-Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Fa- raday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standardparametern erstellt, dessen AlignX-Modul für die Sequenzvergleiche auf ClustalW basiert.
Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird üblicherweise in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben oder in einem Alignment einander entsprechenden Positionen angegeben. Der weiter gefasste Begriff der Homologie bezieht bei Aminosäuresequenzen konservierte Aminosäure-Austausche in die Betrachtung mit ein, also Aminosäuren mit ähnlicher chemischer Aktivität, da diese innerhalb des Proteins meist ähnliche chemische Aktivitäten ausüben. Daher kann die Ähnlichkeit der verglichenen Sequenzen auch Prozent Homologie oder Prozent Ähnlichkeit angegeben sein. Identitäts- und/oder Homologieangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Homologe oder identische Bereiche von verschiedenen Nukleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Solche Bereiche weisen oftmals identische Funktionen auf. Sie können klein sein und nur wenige Nukleotide oder Aminosäuren umfassen. Oftmals üben solche kleinen Bereiche für die Gesamtaktivität des Proteins essentielle Funktionen aus. Es kann daher sinnvoll sein, Sequenzübereinstimmungen nur auf einzelne, gegebenenfalls kleine Bereiche zu beziehen. Soweit nicht anders angegeben beziehen sich Identitäts- oder Homologieangaben in der vorliegenden Anmeldung aber auf die Gesamtlänge der jeweils angegebenen Nukleinsäure- oder Aminosäuresäuresequenz.
Die in dem erfindungsgemäßen Waschmittel einsetzbaren Laccasen sind aus Pflanzen, Pilzen und vorzugsweise aus Bakterien erhältlich, insbesondere aus Bacilli und Actinomyceten. Die natürlichen Produktionsmengen der Laccasen sind oft sehr niedrig. Es kann daher sinnvoll sein, die Produktion zu erhöhen, indem man Laccasegene in fremden Produktionswirten expri- miert.
Zu diesem Zweck verwendet man in der Regel Vektoren, die eine Nukleinsäure enthalten, die für eine erfindungsgemäß einsetzbare Laccase kodiert.
Hierbei kann es sich um DNA- oder RNA-Moleküle handeln. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Insbesondere bei DNA-Molekülen sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, dass verschiedene Codons, also Basentriplets, für die gleichen Aminosäuren codieren können, so dass eine bestimmte Aminosäuresequenz von mehreren unterschiedlichen Nukleinsäuren codiert werden kann. Der Fachmann ist in der Lage, diese Nukleinsäuresequenzen zweifelsfrei zu bestimmen, da trotz der Degeneriert- heit des genetischen Codes einzelnen Codons definierte Aminosäuren zuzuordnen sind. Daher kann der Fachmann ausgehend von einer Aminosäuresequenz für diese Aminosäuresequenz codierende Nukleinsäuren problemlos ermitteln. Weiterhin können bei Nukleinsäuren ein oder mehrere Codons durch synonyme Codons ersetzt sein. Dieser Aspekt bezieht sich insbesondere auf die heterologe Expression der erfindungsgemäß einsetzbaren Enzyme. So besitzt jeder Organismus, beispielsweise eine Wirtszelle eines Produktionsstammes, eine bestimmte Codon-Verwen- dung. Unter Codon-Verwendung wird die Übersetzung des genetischen Codes in Aminosäuren durch den jeweiligen Organismus verstanden. Es kann zu Engpässen in der Proteinbiosynthese kommen, wenn die auf der Nukleinsäure liegenden Codons in dem Organismus einer vergleichsweise geringen Zahl von beladenen tRNA-Molekülen gegenüberstehen. Obwohl für die gleiche Aminosäure codierend führt das dazu, dass in dem Organismus ein Codon weniger effizient trans- latiert wird als ein synonymes Codon, das für dieselbe Aminosäure codiert. Auf Grund des Vorliegens einer höheren Anzahl von tRNA-Molekülen für das synonyme Codon kann dieses in dem Organismus effizienter translatiert werden.
Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press, bekannt.
Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich eine für eine erfindungsgemäß einsetzbare Laccase kodierende Nukleinsäure enthalten. Sie vermögen diese in einer Spezies o- der einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkuläre genetische Elemente. Im Rahmen der vorliegenden Erfindung wird eine für eine erfindungsgemäß einsetzbare Laccase kodierende Nukleinsäure in einen Vektor kloniert. Zu den Vektoren zählen beispielsweise solche, deren Ursprung bakterielle Plasmide, Viren oder Bac- teriophagen sind, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Sie können extrachromosomal als eigene Einheiten vorliegen oder in ein Chromosom oder chromosomale DNA integrieren.
Expressionsvektoren umfassen Nukleinsäuresequenzen, die sie dazu befähigen, in den sie enthaltenden Wirtszellen, vorzugsweise Mikroorganismen, besonders bevorzugt Bakterien, zu replizieren und dort eine enthaltene Nukleinsäure zur Expression zu bringen. Die Expression wird insbesondere von dem oder den Promotoren beeinflusst, welche die Transkription regulieren. Prinzipiell kann die Expression durch den natürlichen, ursprünglich vor der zu exprimierenden Nukleinsäure lokalisierten Promotor erfolgen, aber auch durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle oder auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus oder einer anderen Wirtszelle. Im vorliegenden Fall wird zumindest ein Promotor für die Expression einer für eine erfindungsgemäß einsetzbare Laccase kodierende Nukleinsäure zur Verfügung gestellt und für deren Expression genutzt. Expressionsvektoren können ferner regulierbar sein, beispielsweise durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte der sie enthaltenen Wirtszellen oder durch Zugabe von bestimmten Substanzen, insbesondere Aktivatoren der Genexpression. Ein Beispiel für eine solche Substanz ist das Galactose-Derivat Isopropyl-ß-D-thiogalactopyranosid (IPTG), welches als Aktivator des bakteriellen Lactose-Operons (lac-Operons) verwendet wird. Im Gegensatz zu Expressionsvektoren wird die enthaltene Nukleinsäure in Klonierungsvektoren nicht exprimiert.
Bevorzugt wird eine für eine erfindungsgemäß einsetzbare Laccase kodierende Nukleinsäure oder ein eine solche Nukleinsäure enthaltender Vektor in einen Mikroorganismus transformiert, der dann als Wirtszelle dient. Alternativ können auch einzelne Komponenten, d.h. Nukleinsäure-Teile o- der -Fragmente einer für eine erfindungsgemäß einsetzbare Laccase kodierenden Nukleinsäure derart in eine Wirtszelle eingebracht werden, dass die dann resultierende Wirtszelle eine solche Nukleinsäure oder einen solchen Vektor enthält. Dieses Vorgehen eignet sich besonders dann, wenn die Wirtszelle bereits einen oder mehrere Bestandteile einer solchen Nukleinsäure oder eines solchen Vektors enthält und die weiteren Bestandteile dann entsprechend ergänzt werden. Verfahren zur Transformation von Zellen sind im Stand der Technik etabliert und dem Fachmann hinlänglich bekannt. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische o- der eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit der Nukleinsäure oder dem Vektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Ferner zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Bevorzugte erfindungsgemäße Wirtszellen sezernieren das (transgen) exprimierte Protein in das die Wirtszellen umgebende Medium. Ferner können die Laccasen von den sie produzierenden Zellen nach deren Herstellung modifiziert werden, beispielsweise durch Anknüpfung von Zuckermolekülen, Formylierungen, Aminierungen, usw. Solche posttranslationale Modifikationen können die Laccasen funktionell beeinflussen.
Für die Herstellung erfindungsgemäß einsetzbarer Laccasen besonders geeignet sind solche Wirtszellen, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Vektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine wirtschaftliche Produktion der erfindungsgemäß einsetzbaren Proteine. Ein Beispiel für eine solche Verbindung ist IPTG wie vorstehend beschrieben.
Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich durch kurze Generationszeiten und geringe Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Kultivierungsverfahren oder Herstellungsverfahren etabliert werden. Zudem verfügt der Fachmann bei Bakterien in der Fermentationstechnik über einen reichhaltigen Erfahrungsschatz. Für eine spezielle Produktion können aus verschiedensten, im Einzelfall experimentell zu ermittelnden Gründen wie Nährstoffquellen, Produktbildungsrate, Zeitbedarf usw., gramnegative oder grampositive Bakterien geeignet sein.
Bei gramnegativen Bakterien wie beispielsweise Escherichia coli wird eine Vielzahl von Proteinen in den periplasmatischen Raum sezerniert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Ferner können auch gramnegative Bakterien so ausgestaltet werden, dass sie die exprimierten Proteine nicht nur in den periplasmatischen Raum, sondern in das das Bakterium umgebende Medium ausschleusen. Grampositive Bakterien wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales besitzen demgegenüber keine äußere Membran, so dass sezernierte Proteine sogleich in das die Bakterien umgebende Medium, in der Regel das Nährmedium, abgegeben werden, aus welchem sich die exprimierten Proteine aufreinigen lassen. Sie können aus dem Medium direkt isoliert oder weiter prozessiert werden. Zudem sind grampositive Bakterien mit den meisten Herkunftsorganismen für technisch wichtige Enzyme verwandt oder identisch und bilden meist selbst vergleichbare Enzyme, so dass sie über eine ähnliche Codon-Verwendung verfügen und ihr Protein-Syntheseapparat naturgemäß entsprechend ausgerichtet ist.
Die genannten Wirtszellen können hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder noch andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere auch um solche Wirtszellen handeln, die mehrere Proteine oder Enzyme transgen exprimieren.
Die vorliegende Erfindung ist prinzipiell auf alle Mikroorganismen, insbesondere auf alle fermentierbaren Mikroorganismen anwendbar und führt dazu, dass sich durch den Einsatz solcher Mikroorganismen erfindungsgemäß einsetzbare Laccasen herstellen lassen.
Besonders bevorzugte Wirtszellen zur Gewinnung der erfindungsgemäß einsetzbaren Laccasen sind Bakterien, insbesondere solche, die ausgewählt sind unter den Gattungen Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas und insbesondere unter Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas maltophilia.
Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Im Gegensatz zu prokaryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Zu den Modifikationen, die eukaryontische Systeme besonders im Zusammenhang mit der Proteinsynthese durchführen, gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccharide. Derartige Oligosaccharid-Modifikationen können beispielsweise zur Senkung der Al- lergenizität eines exprimierten Proteins wünschenswert sein. Auch eine Coexpression mit den natürlicherweise von derartigen Zellen gebildeten Enzymen, wie beispielsweise Cellulasen oder Lipa- sen, kann vorteilhaft sein. Ferner können sich beispielsweise thermophile pilzliche Expressionssysteme besonders zur Expression temperaturbeständiger Proteine oder Varianten eignen. Die genannten Wirtszellen werden in üblicher Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig aus dem Medium das gebildete Protein entnommen werden kann.
Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise einer erfindungsgemäß einsetzbaren Laccase.
Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen insbesondere in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte als auch in der Zellmasse beziehungsweise Trockenmasse und/oder insbesondere in der Aktivität der interessierenden Laccase erreicht werden. Ferner kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
Die hergestellte Laccase kann aus dem Fermentationsmedium geerntet werden. Ein solches Fermentationsverfahren ist gegenüber einer Isolation der Laccase aus der Wirtszelle, d.h. einer Produktaufbereitung aus der Zellmasse (Trockenmasse) bevorzugt, erfordert jedoch die Zurverfügungstellung von geeigneten Wirtszellen oder von einem oder mehreren geeigneten Sekretionsmarkern oder -mechanismen und/oder Transportsystemen, damit die Wirtszellen die Laccase in das Fermentationsmedium sezernieren. Ohne Sekretion kann alternativ die Isolation der Laccase aus der Wirtszelle, d.h. eine Aufreinigung derselben aus der Zellmasse, erfolgen, beispielsweise unter Einsatz konventioneller Verfahren der Enzymchemie wie Salzfällung, Ultrafiltration, lonenaustausch- chromatographie und hydrophober Interaktionschromatographie. Die Aufreinigung kann durch SDS-Polyacrylamidgelelektrophoresen überwacht werden. Die Enzymaktivität des gereinigten Enzyms bei verschiedenen Temperaturen und pH-Werten kann bestimmt werden; in ähnlicher Weise können das Molekulargewicht und der isoelektrische Punkt bestimmt werden.
Überraschenderweise wurde gefunden, daß nur Laccasen, die ein geringes Redox-Potential aufweisen, als DTI in Waschmittel geeignet sind. Laccasen mit mittlerem oder hohem Redox-Potential zeigen in Waschmitteln nicht den gewünschten DTI-Effekt und führen zudem häufig zur Verdunklung und damit Intensivierung von Flecken, was natürlich unerwünscht ist. Die Konzentration der Laccasen im erfindungsgemäßen Waschmittel wird bevorzugtermaßen so eingestellt, daß die Laccase-Konzentration in der Waschflotte im Bereich von 0,01 bis 10 U/ml, insbesondere im Bereich von 0, 1 bis 5 U/ml liegt.
Das erfindungsgemäße Waschmittel ist vorzugsweise im Temperaturbereich von 5°C bis 95°C, bevorzugt 20°C bis 60°C und besonders bevorzugt 30°C bis 40°C einsetzbar.
Das erfindungsgemäße Waschmittel kann zusätzliche Mediatoren enthalten, um die Farbstoffe in Lösung mit höherer Effizienz zu oxidieren. Erfindungsgemäß geeignete Mediatoren sind beispielsweise Tempo (2,2,6,6-Tetramethyl-1-Piperidinyloxy), HBT (1-Hydroxybenzotriazol), ABTS (2,2 - Azinobis-3-Ethylbenzthiazol-6-Sulphonat), NHA (N-Hydroxy-Acetanilid), 2,5-Xylidin, Ethanol, Kupfer, 4-Methylcatechol, N-Hydroxyphthalimid, Gallussäure, Gerbsäure, Quercetin, Syringasäure, Gu- aiacol, Dimethoxybenzyl alcohol, Phenol, Violursäure (Isonitrosobarbitursäure), Phenolrot, Bromphenolblau, Cellulose, p-Kumarinsäure, Rooibos, o-Kresol, Dichloroindophenol, Hydroxyben- zotriazol, Cycloheximid oder Vanillin.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Laccasen zur Vermeidung oder zumindest Verringerung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen. Besonders bevorzugte Laccasen sind die für den ersten Erfindungsgegenstand beschriebenen Laccasen.
Besonders ausgeprägt ist die Verhinderung des Anfärbens von weißen oder auch andersfarbigen Textilien durch aus Textilien herausgewaschene Farbstoffe. Die farbübertragungsinhibierenden Laccasen leisten hierbei einen zweifachen Beitrag zur Farbkonstanz, das heißt sie vermindern sowohl das Verfärben wie auch die Verblassung, wenn auch der Effekt der Verhinderung des Anfärbens, insbesondere beim Waschen weißer Textilien, am ausgeprägtesten ist. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung der genannten Laccasen zur Vermeidung der Veränderung des Farbeindrucks von Textilien bei deren Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
Unter der Veränderung des Farbeindrucks ist dabei nicht der Unterschied zwischen verschmutztem und sauberem Textil zu verstehen, sondern der Unterschied zwischen jeweils sauberem Textil vor und nach dem Waschvorgang.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Waschen von gefärbten Textilien in tensidhaltigen wäßrigen Lösungen, welches dadurch gekennzeichnet ist, dass man eine tensidhal- tige wässrige Lösung einsetzt, die mindestens eine farbübertragungsinhibierende Laccase enthält. Das Verfahren wird in seiner einfachsten Form dadurch realisiert, dass man reinigungsbedürftige Textilien mit der wässrigen Flotte in Kontakt bringt, wobei man eine übliche Waschmaschine einsetzen oder die Wäsche mit der Hand durchführen kann. In einem solchen Verfahren ist es möglich, zusammen mit dem gefärbten Textil auch weiße beziehungsweise ungefärbte Textilien zu waschen, wobei die Anfärbung des weißen beziehungsweise ungefärbten Textils nicht vollständig aber doch größtenteils vermieden wird. Es ist erfindungsgemäß bevorzugt, das Verfahren unter intensiver Belüftung der Waschflotte durchzuführen, wie dies bei Verwendung eines üblichen Haushaltsmaschinen-Waschprogramms der Fall ist.
Ein Waschmittel kann neben den genannten farbübertragungsinhibierenden Laccasen, übliche mit diesem Bestandteil verträgliche Inhaltsstoffe enthalten. So kann es beispielsweise zusätzlich noch einen weiteren Farbübertragungsinhibitor, diesen dann vorzugsweise in Mengen von 0,1 Gew.-% bis 2 Gew.-%, insbesondere 0,2 Gew.-% bis 1 Gew.-%, enthalten, der in einer bevorzugten Ausgestaltung ausgewählt wird aus den Polymeren aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N- Oxid oder den Copolymeren aus diesen. Brauchbar sind sowohl Polyvinylpyrrolidone mit Molgewichten von 15 000 g/mol bis 50 000 g/mol wie auch Polyvinylpyrrolidone mit höheren Molgewichten von beispielsweise bis zu über 1 000 000 g/mol, insbesondere von 1 500 000 g/mol bis 4 000 000 g/mol, N-Vinylimidazol/N-Vinylpyrrolidon-Copolymere, Polyvinyloxazolidone, Copoly- mere auf Basis von Vinylmonomeren und Carbonsäureamiden, pyrrolidongruppenhaltige Polyester und Polyamide, gepfropfte Polyamidoamine und Polyethylenimine, Polyamin-N-Oxid-Polymere und Polyvinylalkohole. Eingesetzt werden können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-Iiefernde Substanz. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosy- ringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich obengenannte polymere Farbübertragungsinhibitorwirkstoffe eingesetzt werden können. Polyvinylpyrrolidon weist vorzugsweise eine durchschnittliche Molmasse im Bereich von 10 000 g/mol bis 60 000 g/mol, insbesondere im Bereich von 25 000 g/mol bis 50 000 g/mol auf. Unter den Copolymeren sind solche aus Vinylpyrrolidon und Vinylimidazol im Molverhältnis 5:1 bis 1 :1 mit einer durchschnittlichen Molmasse im Bereich von 5 000 g/mol bis 50 000 g/mol, insbesondere 10 000 g/mol bis 20 000 g/mol bevorzugt. In bevorzugten Ausführungsformen sind die Waschmittel allerdings frei von derartigen zusätzlichen Farbübertragungsinhibitoren.
Waschmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, in granulärer Form, als homogene Lösungen oder Suspensionen vorliegen können, können außer den erfindungsgemäß eingesetzten Laccasen im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Mittel können insbesondere Buildersub- stanzen, oberflächenaktive Tenside, Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, Bleichaktivatoren, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Färb- und Duftstoffe enthalten.
Die Mittel enthalten vorzugsweise ein Tensid oder mehrere Tenside, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicina- len Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Al- kylrest brauchbar.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12- Ci4-Alkohole mit 3 EO oder 4 EO, Cg-Cn-Alkohole mit 7 EO, Cis-Cis-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-Ci8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2-Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 7 EO. Die angegebenen Ethoxylie- rungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Mitteln für den Einsatz in maschinellen Verfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise Ci2-Ci8-Alkylpolyethylenglykol-polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel Ci2-Ci8-Alkylpolyethyl- englykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxideinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykolmischether. Besonders bevorzugt sind auch die hydroxylgruppenhaltigen alkoxylierten Alkohole, sogenannte Hydroxymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2- Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4. Ebenfalls geeignet sind Polyhydro- xyfettsäureamide der Formel
R2
I (III)
Ri-CO-N-[Z] in der R CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
R4-0-R5
I (IV)
R3-CO-N-[Z] in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ci-C4-Alkyl- oder Phe- nylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Ami- nierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Ten- side, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosi- den, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxy- lierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N- Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäure- alkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten„Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im Allgemeinen durch eine ungewöhnlich geringe kritische Micell- konzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig„dimere", sondern auch entsprechend„trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenver- schlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat- Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-Ci3-Alkylbenzolsulfo- nate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfo- naten, wie man sie beispielsweise aus Ci2-Ci8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-Cis-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkernoder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkyl- kette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der a-Sul- fofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt. Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci2-Ci8-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cio-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Al- kylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci2-Ci6-Alkylsul- fate und Ci2-Ci5-Alkylsulfate sowie Cw-Cis-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsul- fate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside. Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C2i-Alkohole, wie 2-Methyl- verzweigte C9-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-Ci8-Fettalkohole mit 1 bis 4 EO. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernstein- säure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Cs- bis Ci8-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol- Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Ko- kos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden. Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Tenside sind in Waschmitteln in Mengenanteilen von normalerweise 1 Gew.-% bis 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, enthalten.
Ein Waschmittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Builder- substanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Glycindiessigsäure, Methylglycindies- sigsäure, Nitrilotriessigsäure, Iminodisuccinate wie Ethylendiamin-N,N'-dibernsteinsäure und Hyd- roxyiminodisuccinate, Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphon- säure), Lysintetra(methylenphosphonsäure) und 1-Hydroxyethan-1 , 1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere durch Oxi- dation von Polysacchariden zugängliche Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative mittlere Molekülmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 5 000 g/mol und 200 000 g/mol, die der Copolymeren zwischen 2 000 g/mol und 200 000 g/mol, vorzugsweise 50 000 g/mol bis 120 000 g/mol, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative mittlere Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copoly- mere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethy- len, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/ oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-Cs-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-Cs-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von Ci-C4-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Polymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure bzw. Acrylat, und Maleinsäure bzw. Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vi- nylacetat. Ganz besonders bevorzugt sind dabei Polymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleinat zwischen 1 : 1 und 4: 1 , vorzugsweise zwischen 2: 1 und 3: 1 und insbesondere 2: 1 und 2,5: 1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem Ci-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsul- fonsäure bzw. Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind . Diese Terpolymere weisen im Allgemeinen eine relative mittlere Molekülmasse zwischen 1 000 g/mol und 200 000 g/mol, vorzugsweise zwischen 200 g/mol und 50 000 g/mol auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Ac- rylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstan- zen können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Polyphosphate, vorzugsweise Natriumtriphosphat, in Betracht. Als wasserunlösliche anorganische Buildermaterialien werden insbesondere kristalline oder amorphe, wasserdispergierbare Alkalialumosilikate, in Mengen nicht über 25 Gew.-%, vorzugsweise von 3 Gew.-% bis 20 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 15 Gew.-% eingesetzt. Unter diesen sind die kristallinen Natriumalumosili- kate in Waschmittelqualität, insbesondere Zeolith A, Zeolith P sowie Zeolith MAP und gegebenenfalls Zeolith X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μιη auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μιη. Ihr Calciumbindevermogen liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm. Zusätzlich oder alternativ zum genannten wasserunlöslichen Alumosilikat und Alkalicarbonat können weitere wasserlösliche anorganische Buildermaterialien enthalten sein. Zu diesen gehören neben den Polyphosphaten wie Natriumtriphosphat insbesondere die wasserlöslichen kristallinen und/oder amorphen Alkalisilikat-Builder. Derartige wasserlösliche anorganische Buildermaterialien sind in den Mitteln vorzugsweise in Mengen von 1 Gew.-% bis 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-% enthalten. Die als Buildermaterialien brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu S1O2 unter 0,95, insbesondere von 1 : 1 ,1 bis 1 :12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na20:Si02 von 1 :2 bis 1 :2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2Six02x+i y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si20s y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2, 1 bedeutet, können in den Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5 werden in einer weiteren Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung solcher Mittel setzt man ein granuläres Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist.
Als Bleichmittel kommen solche auf Chlorbasis, wie insbesondere Alkalihypochlorit, Dichloriso- cyanursäure, Trichlorisocyanursäure und deren Salze, insbesondere aber auch solche auf Persau- erstoffbasis in Frage. Als geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure, Monoperoxyphthalsäure, und Diperdodecandisäure sowie deren Salze wie Mag- nesiummonoperoxyphthalat, Wasserstoffperoxid und unter den Einsatzbbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, und Wasserstoffperoxid-Einschlußverbindungen, wie H202-Harnstoffaddukte, in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Mono- hydrat oder Wasserstoffperoxid in Form wäßriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Falls ein Waschmittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 25 Gew.-%, insbesondere von 1 Gew.-% bis 20 Gew.-% und besonders bevorzugt von 7 Gew.-% bis 20 Gew.-% vorhanden. Als bleichaktivierende, unter Perhydrolysebedingungen Peroxocarbonsäure-Iiefernde Verbindung können insbesondere Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder aliphatische Peroxocarbonsäuren mit 1 bis 12 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, allein oder in Mischungen, eingesetzt werden. Geeignet Bleichaktivatoren, die O- und/oder N-Acylgruppen insbesondere der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alky- lendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexa- hydro-1 ,3,5-triazin (DADHT), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate oder -carboxylate beziehungsweise die Sulfon- oder Carbonsäuren von diesen, insbesondere Nonanoyl- oder Isononanoyl- oder Lauroyloxybenzolsulfonat (NOBS beziehungsweise iso-NOBS beziehungsweise LOBS) oder Decanoyloxybenzoat (DOBA), deren formale Kohlensäureesterderivate wie 4-(2-Decanoyloxyethoxycarbonyloxy)-benzolsulfonat (DECOBS), acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran sowie acetyliertes Sorbitol und Mannitol und deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose, acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam.
Zusätzlich zu den Verbindungen, die unter Perhydrolysebedingungen Peroxocarbonsäuren bilden, können weitere bleichaktivierende Verbindungen, wie beispielsweise Nitrile, aus denen sich unter Perhydrolysebedingungen Perimidsäuren bilden, vorhanden sein. Dazu gehören insbesondere Aminoacetonitrilderivate mit quaterniertem Stickstoffatom gemäß der Formel
R1
I
R2-N(+)-(CR4R5)-CN X(-)
I
R3 in der R für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten Ci-24-Alkyl- oder C2- 24-Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN und -N(+)-CH2-CN, einen Alkyl- oder Alkenylarylrest mit einer Ci-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit mindestens einer, vorzugsweise zwei, gegebenenfalls substituierten Ci-24-Alkylgruppe(n) und gegebenenfalls weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2- CH3, -CH2-CH2-CH3, -CH(CH3)-CH3,-CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2- OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-0)nH mit n = 1 , 2, 3, 4, 5 oder 6, R4 und R5 unabhängig voneinander eine voranstehend für R , R2 oder R3 angegebene Bedeutung haben, wo- bei mindestens 2 der genannten Reste, insbesondere R2 und R3, auch unter Einschluß des Stickstoffatoms und gegebenenfalls weiterer Heteroatome ringschließend miteinander verknüpft sein können und dann vorzugsweise einen Morpholino-Ring ausbilden, und X ein ladungsausgleichen- des Anion, vorzugsweise ausgewählt aus Benzolsulfonat, Toluolsulfonat, Cumolsulfonat, den C9-15- Alkylbenzolsulfonaten, den Ci-20-Alkylsulfaten, den C8-22-Carbonsäuremethylestersulfonaten, Sulfat, Hydrogensulfat und deren Gemischen, ist, können eingesetzt werden. Auch sauerstoffübertragende Sulfonimine und/oder Acylhydrazone können eingesetzt werden.
Auch die Anwesenheit von bleichkatalysierenden Übergangsmetallkomplexen ist möglich. Diese werden vorzugsweise unter den Cobalt-, Eisen-, Kupfer-, Titan-, Vanadium-, Mangan- und Rutheniumkomplexen ausgewählt. Als Liganden in derartigen Übergangsmetallkomplexen kommen sowohl anorganische als auch organische Verbindungen in Frage, zu denen neben Carboxylaten insbesondere Verbindungen mit primären, sekundären und/oder tertiären Amin- und/oder Alkohol-Funktionen, wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, Imidazol, Pyrazol, Triazol, 2,2'-Bispyridylamin, Tris-(2-pyridylmethyl)amin, 1 ,4,7-Triazacyclononan, 1 ,4,7-Trimethyl-1 ,4,7-triazacyclononan, 1 ,5,9- Trimethyl-1 ,5,9-triazacyclododecan, (Bis-((1-methylimidazol-2-yl)-methyl))-(2-pyridylmethyl)-amin, N,N'-(Bis-(1-methylimidazol-2-yl)-methyl)-ethylendiamin, N-Bis-(2-benzimidazolylmethyl)-amino- ethanol, 2,6-Bis-(bis-(2-benzimidazolylmethyl)aminomethyl)-4-methylphenol, N,N,N',N '-Tetrakis-(2- benzimidazolylmethyl)-2-hydroxy-1 ,3-diaminopropan, 2,6-Bis-(bis-(2-pyridylmethyl)aminomethyl)-4- methylphenol, 1 ,3-Bis-(bis-(2-benzimidazolylmethyl)aminomethyl)-benzol, Sorbitol, Mannitol, Eryth- ritol, Adonitol, Inositol, Lactose, und gegebenenfalls substituierte Salene, Porphine und Porphyrine gehören. Zu den anorganischen Neutralliganden gehören insbesondere Ammoniak und Wasser. Falls nicht sämtliche Koordinationsstellen des Übergangsmetallzentralatoms durch Neutralliganden besetzt sind, enthält der Komplex weitere, vorzugsweise anionische und unter diesen insbesondere ein- oder zweizähnige Liganden. Zu diesen gehören insbesondere die Halogenide wie Fluorid, Chlorid, Bromid und lodid, und die (N02)~-Gruppe, das heißt ein Nitro-Ligand oder ein Nitrito-Lig- and. Die (N02)~-Gruppe kann an ein Übergangsmetall auch chelatbildend gebunden sein oder sie kann zwei Übergangsmetallatome asymmetrisch oder r| -0-verbrücken. Außer den genannten Liganden können die Übergangsmetallkomplexe noch weitere, in der Regel einfacher aufgebaute Liganden, insbesondere ein- oder mehrwertige Anionliganden, tragen. In Frage kommen beispielsweise Nitrat, Actetat, Trifluoracetat, Formiat, Carbonat, Citrat, Oxalat, Perchlorat sowie komplexe Anio- nen wie Hexafluorophosphat. Die Anionliganden sollen für den Ladungsausgleich zwischen Übergangsmetall-Zentralatom und dem Ligandensystem sorgen. Auch die Anwesenheit von Oxo-Ligan- den, Peroxo-Liganden und Imino-Liganden ist möglich. Insbesondere derartige Liganden können auch verbrückend wirken, so daß mehrkernige Komplexe entstehen. Im Falle verbrückter, zweikerniger Komplexe müssen nicht beide Metallatome im Komplex gleich sein. Auch der Einsatz zweikerniger Komplexe, in denen die beiden Übergangsmetallzentralatome unterschiedliche Oxidati- onszahlen aufweisen, ist möglich. Falls Anionliganden fehlen oder die Anwesenheit von Anionlig- anden nicht zum Ladungsausgleich im Komplex führt, sind in den gemäß der Erfindung zu verwendenden Übergangsmetallkomplex-Verbindungen anionische Gegenionen anwesend, die den kationischen Übergangsmetall-Komplex neutralisieren. Zu diesen anionischen Gegenionen gehören insbesondere Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Chlorat, Perchlorat, die Halogenide wie Chlorid oder die Anionen von Carbonsäuren wie Formiat, Acetat, Oxalat, Benzoat oder Citrat. Beispiele für einsetzbare Übergangsmetallkomplex-Verbindungen sind
Figure imgf000022_0001
,4,7-trimethyl- 1 ,4,7-triazacyclononan)-di-hexafluorophosphat, [N,N'-Bis[(2-hydroxy-5-vinylphenyl)-methylen]-1 ,2- diaminocyclohexan]-mangan-(lll)-chlorid, [N,N'-Bis[(2-hydroxy-5-nitrophenyl)-methylen]-1 ,2-diami- nocyclohexan]-mangan-(lll)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2-phenylendiamin]- mangan-(lll)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2-diaminocyclohexan]-mangan-(lll)- chlorid, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2-diaminoethan]-mangan-(lll)-chlorid, [N,N'-Bis[(2- hydroxy-5-sulfonatophenyl)-methylen]-1 ,2-diaminoethan]-mangan-(lll)-chlorid, Mangan-oxalato- komplexe, Nitropentammin-cobalt(lll)-chlorid, Nitritopentammin-cobalt(lll)-chlorid, Hexamminco- balt(lll)-chlorid, Chloropentammin-cobalt(lll)-chlorid sowie der Peroxo-Komplex [(NH3)sCo-0-0-
Als in den Mitteln zusätzlich zu den genannten Laccasen verwendbare Enzyme kommen solche aus der Klasse der Amylasen, Proteasen, Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cel- lulasen, Oxidasen und Peroxidasen, sowie deren Gemische in Frage. Auch der Einsatz einer oder mehrerer weiterer Laccasen bzw. Multi-Kupfer-Oxidasen zusätzlich zu den genannten Laccasen ist erfindungsgemäß möglich. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subti- lis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.- %, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten. Falls das erfindungsgemäße Mittel Protease enthält, weist es vorzugsweise eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Falls mehrere Enzyme in dem erfindungsgemäßen Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
Zu den in den Waschmitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, neben Wasser verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Ver- bindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.- % bis 20 Gew.-%, vorhanden.
Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykol- säure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1 ,2 Gew.-% bis 17 Gew.-%, enthalten.
Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methyl- cellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxyp- ropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Waschmittel können als optische Aufheller beispielsweise Derivate der Diaminostilbendisulfon- säure beziehungsweise deren Alkalimetallsalze enthalten, obgleich sie für den Einsatz als Color- waschmittel vorzugsweise frei von optischen Aufhellern sind. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4- Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Cis-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemi- sehe mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung von Mitteln mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionschritt aufweisendes Verfahren bevorzugt.
Zur Herstellung von Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Preßkräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpreßt. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpreßt wird. Dies wird vorzugsweise bei Preßkräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung der Waschmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
Flüssige beziehungsweise pastöse Mittel in Form von übliche Lösungsmittel enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt. Die hierin beschriebenen Waschmittel, insbesondere die beschriebenen wasserarmen bis wasserfreien flüssigen Waschmittel, können in eine wasserlösliche Umhüllung gefüllt werden und somit Bestandteil einer wasserlöslichen Verpackung sein. Ist das Waschmittel in einer wasserlöslichen Umhüllung verpackt, ist es bevorzugt, dass der Gehalt an Wasser weniger als 10 Gew.-%, bezogen auf das gesamte Waschmittel, beträgt und dass anionischen Tenside, falls vorhanden, in Form ihrer Ammoniumsalze vorliegen.
Die Neutralisation mit Aminen führt, anders als bei Basen wie NaOH oder KOH, nicht zu Bildung von Wasser. Somit können wasserarme Waschmittel hergestellt werden, die direkt für die Verwendung in wasserlöslichen Umhüllungen geeignet sind.
Eine wasserlösliche Verpackung enthält neben dem Waschmittel eine wasserlösliche Umhüllung. Die wasserlösliche Umhüllung wird vorzugsweise durch ein wasserlösliches Folienmaterial gebildet.
Solche wasserlöslichen Verpackungen können entweder durch Verfahren des vertikalen Formfüll- versiegelns (VFFS) oder Warmformverfahren hergestellt werden.
Das Warmformverfahren schließt im Allgemeinen das Formen einer ersten Lage aus einem wasserlöslichen Folienmaterial zum Bilden von Ausbuchtungen zum Aufnehmen einer Zusammensetzung darin, Einfüllen der Zusammensetzung in die Ausbuchtungen, Bedecken der mit der Zusammensetzung gefüllten Ausbuchtungen mit einer zweiten Lage aus einem wasserlöslichen Folienmaterial und Versiegeln der ersten und zweiten Lagen miteinander zumindest um die Ausbuchtungen herum ein.
Die wasserlösliche Umhüllung wird vorzugsweise aus einem wasserlöslichen Folienmaterial ausgewählt aus der Gruppe, bestehend aus Polymeren oder Polymergemischen gebildet. Die Umhüllung kann aus einer oder aus zwei oder mehr Lagen aus dem wasserlöslichen Folienmaterial gebildet werden. Das wasserlösliche Folienmaterial der ersten Lage und der weiteren Lagen, falls vorhanden, kann gleich oder unterschiedlich sein.
Die wasserlösliche Verpackung, umfassend das Waschmittel und die wasserlösliche Umhüllung, kann eine oder mehr Kammern aufweisen. Das flüssige Waschmittel kann in einer oder mehreren Kammern, falls vorhanden, der wasserlöslichen Umhüllung enthalten sein. Die Menge an flüssigem Waschmittel entspricht vorzugsweise der vollen oder halben Dosis, die für einen Waschgang benötigt wird. Es ist bevorzugt, dass die wasserlösliche Umhüllung Polyvinylalkohol oder ein Polyvinylalkoholco- polymer enthält.
Geeignete wasserlösliche Folien zur Herstellung der wasserlöslichen Umhüllung basieren bevorzugt auf einem Polyvinylalkohol oder einem Polyvinylalkoholcopolymer, dessen Molekulargewicht im Bereich von 10.000 bis 1 .000.000 g / mol, vorzugsweise von 20.000 bis 500.000 g / mol, besonders bevorzugt von 30.000 bis 100.000 g / mol und insbesondere von 40.000 bis 80.000 g / mol liegt.
Ein zur Herstellung der wasserlöslichen Umhüllung geeignetes Folienmaterial kann zusätzlich Polymere, ausgewählt aus der Gruppe umfassend Acrylsäure-haltige Polymere, Polyacrylamide, O- xazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether Polymilchsäure, und/oder Mischungen der vorstehenden Polymere, zugesetzt sein.
Bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol Dicarbonsäuren als weitere Monomere. Geeignete Dicarbonsäure sind Itaconsäure, Malonsäure, Bernsteinsäure und Mischungen daraus, wobei Itaconsäure bevorzugt ist.
Ebenso bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol eine ethylenisch un- gesättige Carbonsäure, deren Salz oder deren Ester. Besonders bevorzugt enthalten solche Polyvinylalkoholcopolymere neben Vinylalkohol Acrylsäure, Methacrylsäure, Acrylsäureester, Methac- rylsäureester oder Mischungen daraus.
Geeignete wasserlösliche Folien zum Einsatz in den Umhüllungen der wasserlöslichen Verpackungen gemäß der Erfindung sind Folien, die von der Firma MonoSol LLC beispielsweise unter der Bezeichnung M8630, C8400 oder M8900 vertrieben werden. Andere geeignete Folien umfassen Folien mit der Bezeichnung Solublon® PT, Solublon® GA, Solublon® KC oder Solublon® KL von der Aicello Chemical Europe GmbH oder die Folien VF-HP von Kuraray.
Die wasserlöslichen Verpackungen können eine im Wesentlichen formstabile kugelförmige und kis- senförmige Ausgestaltung mit einer kreisförmigen, elliptischen, quadratischen oder rechteckigen Grundform aufweisen.
Die wasserlösliche Verpackung kann eine oder mehrere Kammern zur Bevorratung eines oder mehrerer Mittel aufweisen. Weist die wasserlösliche Verpackung zwei oder mehr Kammern auf, enthält mindestens eine Kammer ein flüssiges Waschmittel. Die weiteren Kammern können jeweils ein festes oder ein flüssiges Waschmittel enthalten. Beispiele:
Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch darauf einzuschränken: Beispiel 1 : Verwendung zweier bakterieller Laccasen als DTI
Zwei bakterielle Laccasen mit den SEQ ID NOs: 1 und 2 wurden auf Ihre Eignung als DTI wie folgt getestet. Für beide Laccasen ist im Folgenden der für das Redox-Potential bedeutsame Proteinbereich angegeben, wobei konservierte Aminosäuren durch Fettdruck markiert sind. Vor allem die durch Fettdruck markierte Aminosäure M (Methionin) ist für das geringe Redox-Potential von Bedeutung.
1 ) SEQ ID NO: 1 :
485 GRYVWHCHILEHEDYDMMRP...
2) SEQ ID NO: 2
278 GAWMYHCHVQSHSDMGMVGL... DTI-Test Setup :
Zur Bestimmung der farbübertragungsinhibierenden Eigenschaften der einzelnen Waschmittel wurde ein Staining Scale Rating (SSR), welches an die ISO 105-A04 angelehnt ist, durchgeführt. Dazu wurden in Ansätzen mit einem Volumen von je 100ml zwei weiße Gewebe (A: 6 * 16 cm Standardbaumwollgewebe wfk; B: 6 * 16 cm Standardpolyamidgewebe) mit einem Farbgeber (Di- rect Red 83:1 , Hohenstein), dessen Konzentration 0,3 g/Gewebeläppchen betrug, unter Verwendung einer handelsüblichen, flüssigen und farbübertragungsinhibitorfreien Waschmittel-zusammen- setzung (Dosage 5,21 g/l) und Zugabe von (Ansatz 2) 100 U Laccase 1 (SEQ ID NO: 1 ) beziehungsweise (Ansatz 3) 100 U Laccase 2 (SEQ ID NO: 2) in einem Linitest-Plus-Gerät der Firma Atlas nach der Hohenstein Methode (analog zu ISO 105 C06) 30 Minuten bei 50°C gewaschen, mit 40 rpm/min inkubiert und anschließend mit Wasser (16°DH) gespült und bei Raumtemperatur hängend getrocknet. Anschließend wurde der Grad der Verfärbung der beiden Gewebe spektralphoto- metrisch bestimmt. Außerdem wurde zum Vergleich dieselbe farbübertragungsinhibitorfreie Waschmittelzusammensetzung (Ansatz 1 ) ohne Zusatz von Laccase auf die gleiche Weise getestet. Als Vergleich wurden zudem zwei weitere Ansätze mit jeweils 100 U einer Laccase mit hohem Redoxpotential in demselben Verfahren getestet (Ansatz 4: Ecostone LCL 45 von der Firma AB Enzymes; Ansatz 5: BioDet-BBS der Firma Biozyme). Der Grad der Verfärbung wurde dann in Werten von 1 (starkes Verfärben) bis 5 (keine Verfärbung) angegeben.
Figure imgf000028_0001
Man erkennt deutlich, dass beide Laccasen auf Baumwolle eine signifikante Verbesserung des Farbübertrags von Direct Red 83: 1 zeigen. (Eine Signifikanz ist als eine Änderung von minimal 0,5 Einheiten definiert).

Claims

Patentansprüche
1. Waschmittel, enthaltend mindestens eine Laccase als Farbübertragungsinhibitor.
2. Waschmittel nach Anspruch 1 , dadurch gekennzeichnet, daß die mindestens eine Laccase ein Redox-Potential aufweist, das unter 460 mV liegt, wobei das Standard Redox-Potential der Laccase als Potential des T1 Kupfer-Zentrums definiert ist.
3. Waschmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die mindestens eine Laccase ausgewählt ist unter Laccasen, die die Konsensussequenz HCHx(3)Hx(4)M aufweisen, wobei x für "beliebige Aminosäure" steht und die dem x nachfolgende Zahl in Klammern die Anzahl der beliebigen Aminosäuren angibt.
4. Waschmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die mindestens eine Laccase ausgewählt ist unter Laccasen, die eine Aminosäuresequenz umfassen, die zu der in SEQ ID NO. 1 oder SEQ ID NO. 2 angegebenen Aminosäuresequenz über deren Gesamtlänge zu mindestens 70% und zunehmend bevorzugt zu mindestens 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91 %, 91 ,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5% und 99% identisch ist.
5. Waschmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der mindestens einen Laccase so eingestellt ist, dass die Laccase-Konzentra- tion in der Waschflotte im Bereich von 0,01 bis 10 U/ml, insbesondere im Bereich von 0,1 bis 5 U/ml liegt.
6. Waschmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es vorzugsweise im Temperaturbereich von 5°C bis 95°C, bevorzugt 20°C bis 60°C und besonders bevorzugt 30°C bis 40°C einsetzbar ist.
7. Waschmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzliche Mediatoren enthält, die ausgewählt sind unter 2,2,6,6-Tetramethyl-1-Piperidinyloxy, 1 -Hydroxybenzotriazol, 2,2'-Azinobis-3-Ethylbenzthiazol-6-Sulphonat, N-Hydroxy-Acetanilid, 2,5-Xylidin, Ethanol, Kupfer, 4-Methylcatechol, N-Hydroxyphthalimid, Gallussäure, Gerbsäure, Quercetin, Syringasäure, Guaiacol, Dimethoxybenzyl alcohol, Phenol, Violursäure, Phenolrot, Bromphenolblau, Cellulose, p-Kumarinsäure, Rooibos, o-Kresol, Dichloroindophenol, Hydroxy- benzotriazol, Cycloheximid oder Vanillin.
8. Verwendung von Laccasen gemäß der Charakterisierung in einem der Ansprüche 2 bis 5 zur Vermeidung oder zumindest Verringerung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wässrigen Lösungen.
9. Verfahren zum Waschen von gefärbten Textilien in tensidhaltigen wässrigen Lösungen,
dadurch gekennzeichnet, dass man eine tensidhaltige wässrige Lösung einsetzt, die mindestens eine farbübertragungsinhibierende Laccase gemäß der Charakterisierung in einem der Ansprüche 2 bis 5 enthält.
PCT/EP2015/061622 2014-06-05 2015-05-27 Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor WO2015185393A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/313,386 US20170267947A1 (en) 2014-06-05 2015-05-27 Detergent containing at least one laccase as a dye-transfer inhibitor
KR1020177000027A KR20170016428A (ko) 2014-06-05 2015-05-27 이염 억제제로서 적어도 1종의 락카제를 함유하는 세제
EP15724676.0A EP3152289A1 (de) 2014-06-05 2015-05-27 Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210791.1A DE102014210791A1 (de) 2014-06-05 2014-06-05 Waschmittel, enthaltend mindestens eine Laccase als Farbübertragungsinhibitor
DE102014210791.1 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015185393A1 true WO2015185393A1 (de) 2015-12-10

Family

ID=53267370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/061622 WO2015185393A1 (de) 2014-06-05 2015-05-27 Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor

Country Status (5)

Country Link
US (1) US20170267947A1 (de)
EP (1) EP3152289A1 (de)
KR (1) KR20170016428A (de)
DE (1) DE102014210791A1 (de)
WO (1) WO2015185393A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035038A1 (en) 2017-08-18 2019-02-21 The Procter & Gamble Company CLEANING AGENT
WO2019035037A1 (en) 2017-08-18 2019-02-21 The Procter & Gamble Company CLEANING KIT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010079A1 (en) * 1994-09-27 1996-04-04 Novo Nordisk A/S Enhancers such as acetosyringone
CA2254932A1 (en) * 1996-05-13 1997-11-20 Alfred Busch Detergent composition comprising a laccase enzyme and a dye transfer inhibiting polymer
WO1999013038A1 (en) * 1997-09-08 1999-03-18 Unilever N.V. Method for enhancing the activity of an enzyme
WO2009127702A2 (en) * 2008-04-17 2009-10-22 Novozymes A/S Laccase variants
WO2013038062A1 (en) * 2011-09-15 2013-03-21 Metgen Oy Enzyme variants with improved properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010079A1 (en) * 1994-09-27 1996-04-04 Novo Nordisk A/S Enhancers such as acetosyringone
CA2254932A1 (en) * 1996-05-13 1997-11-20 Alfred Busch Detergent composition comprising a laccase enzyme and a dye transfer inhibiting polymer
WO1999013038A1 (en) * 1997-09-08 1999-03-18 Unilever N.V. Method for enhancing the activity of an enzyme
WO2009127702A2 (en) * 2008-04-17 2009-10-22 Novozymes A/S Laccase variants
WO2013038062A1 (en) * 2011-09-15 2013-03-21 Metgen Oy Enzyme variants with improved properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUMAR S V SURESH ET AL: "Combined sequence and structure analysis of the fungal laccase family", BIOTECHNOLOGY AND BIOENGINEERING, WILEY & SONS, HOBOKEN, NJ, US, vol. 83, no. 4, 20 August 2003 (2003-08-20), pages 386 - 394, XP002359258, ISSN: 0006-3592, DOI: 10.1002/BIT.10681 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035038A1 (en) 2017-08-18 2019-02-21 The Procter & Gamble Company CLEANING AGENT
WO2019035037A1 (en) 2017-08-18 2019-02-21 The Procter & Gamble Company CLEANING KIT
US20210071117A9 (en) * 2017-08-18 2021-03-11 The Procter & Gamble Company Cleaning agent

Also Published As

Publication number Publication date
US20170267947A1 (en) 2017-09-21
DE102014210791A1 (de) 2015-12-17
EP3152289A1 (de) 2017-04-12
KR20170016428A (ko) 2017-02-13

Similar Documents

Publication Publication Date Title
DE102007033104A1 (de) Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia
DE102014221889B4 (de) Waschmittel mit Mannosylerythritollipid, Verstärkung der Reinigungsleistung von Waschmitteln durch Mannosylerythritollipid, und Waschverfahren unter Einsatz von Mannosylerythritollipid
EP3143115B2 (de) Wasch- und reinigungsmittel mit erhöhter bleichleistung
WO2008110469A1 (de) Farbschützendes waschmittel
EP1084217B1 (de) Amylase und acetonitril-derivate enthaltende wasch- und reinigungsmittel
WO2015185393A1 (de) Waschmittel, enthaltend mindestens eine laccase als farbübertragungsinhibitor
WO2016055320A1 (de) Verfahren zum waschen von textilien in einer waschmaschine mit aktivierungseinrichtung
DE102014218507A1 (de) Spinnenseidenproteine als Enzymstabilisatoren
EP3303572B1 (de) Waschmittel mit verbesserter waschleistung, enthaltend mindestens eine laccase
WO2018210591A1 (de) Farbschützende waschmittel
WO2020002187A1 (de) Laccasehaltiges waschmittel mit verbesserter reinigungsleistung
DE102015210369A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210370A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210367A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210368A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102012219403A1 (de) Farbschützende Waschmittel
WO1999063037A1 (de) Amylase und percarbonsäure enthaltende wasch- und reinigungsmittel
EP2961820B1 (de) Farbschützende waschmittel
EP3204480A1 (de) Verfahren zum waschen von textilien in einer waschmaschine mit aktivierungseinrichtung
EP4353806A1 (de) Tensidmischungen
DE102014218503A1 (de) Proteinhaltiges Waschmittel
EP3009498A2 (de) Farbschützende waschmittel
EP3331856A1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
DE102014220662A1 (de) Farbschützende Waschmittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15724676

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015724676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015724676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15313386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000027

Country of ref document: KR

Kind code of ref document: A