WO2015184901A1 - 拥塞或过载的控制方法,系统,装置和基站 - Google Patents

拥塞或过载的控制方法,系统,装置和基站 Download PDF

Info

Publication number
WO2015184901A1
WO2015184901A1 PCT/CN2015/074799 CN2015074799W WO2015184901A1 WO 2015184901 A1 WO2015184901 A1 WO 2015184901A1 CN 2015074799 W CN2015074799 W CN 2015074799W WO 2015184901 A1 WO2015184901 A1 WO 2015184901A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
overload
gcs
enb
user plane
Prior art date
Application number
PCT/CN2015/074799
Other languages
English (en)
French (fr)
Inventor
许辉
吕永
刘红军
马子江
卢忱
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15803062.7A priority Critical patent/EP3200503A4/en
Priority to US15/514,135 priority patent/US10334480B2/en
Publication of WO2015184901A1 publication Critical patent/WO2015184901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/10Push-to-Talk [PTT] or Push-On-Call services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • H04W76/45Connection management for selective distribution or broadcast for Push-to-Talk [PTT] or Push-to-Talk over cellular [PoC] services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]

Definitions

  • This paper deals with congestion/overload control techniques, and more particularly relates to a congestion/overload control method, system, device and base station.
  • the trunking communication system is a dedicated wireless communication system developed for industrial users' command and dispatching needs for specific industry applications. A large number of wireless users share a small number of wireless channels in the system, and the command and dispatch is the main application. It is a multi-purpose and high-performance system. Wireless communication system.
  • the trunking communication system has a wide application market in the fields of government departments, public safety, emergency telecommunications, electric power, civil aviation, petrochemicals and military.
  • the trunked communication system has undergone a similar development process as cellular mobile communication systems.
  • the first generation of cluster systems is an analog trunking communication system that mainly supports voice communication.
  • the first analog trunking communication system that entered China was the Actionet system of Nokia. It used MPT-1327 signaling and was applied in the 450MHz frequency band. Since then, Japan's F.A.S.T and the US Motorola's Smartnet have entered China, and have long occupied more than 80% of the market share of China's cluster market.
  • the second-generation cluster system is a narrow-band digital trunking communication system. It started in the 1990s and began to be deployed in China around 2004. It is the most widely used cluster communication system in China.
  • the digital trunking communication system supports voice and low-speed data (up to 28.8 kbps) communication.
  • the representative system is the Terrestrial Trunked Radio (TETRA) system defined by the European Telecommunications Standards Institute (ETSI), and the integration of Motorola in the United States.
  • Integrated Digital Enhanced Networks (iDEN) system ZTE Corporation based on CDMA1X developed Open Trunking Architecture (GoTa) system, Huawei Technologies Co., Ltd. based on GSM developed GT800 system.
  • TETRA Transrestrial Trunked Radio
  • the distinguishing feature of a cluster system from a public system is that the cluster system needs to have efficient command and dispatch characteristics and requires high reliability and security.
  • Call control establish, maintain, and release service bearers between the calling user and the called user according to the service request of the user;
  • Authentication authentication Supports authentication and authentication.
  • the authentication function includes: network-side terminal authentication, and network-side authentication of the terminal and terminal to the network side;
  • the weakening of the fault When the link between the network side and the internal network element of the base station or the network side fails, the base station can provide limited cluster services for the user terminals under the coverage.
  • Network interconnection and intercommunication function It can communicate with Public Switched Telephone Network (PSTN), public mobile communication system (GSM/CDMA, TD-LTE, etc.), IP telephony, and other types of trunking communication systems.
  • PSTN Public Switched Telephone Network
  • GSM/CDMA public mobile communication system
  • TD-LTE TD-LTE
  • IP telephony IP telephony
  • Cluster communication in 3GPP LTE is called group communication service capability GCSE
  • Figure 1 shows the system architecture of LTE GCSE.
  • the 3rd Generation Partnership Project (3GPP) proposes Multimedia Broadcast Multicast Service (MBMS), which is a data source to multiple
  • MBMS Multimedia Broadcast Multicast Service
  • the technology for transmitting data by the target mobile terminal realizes sharing of resources of the network (including the core network and the access network), and improves utilization of network resources (especially air interface resources).
  • the MBMS service defined by 3GPP can not only realize plain text low-rate message class multicast and broadcast, but also realize high-speed multimedia service broadcast and multicast, and provide a variety of rich video, audio and multimedia services, which undoubtedly conforms to the future.
  • the trend of mobile data development provides a better business prospect for the development of 3G.
  • the MBMS service is characterized by a large amount of data for the service, a long duration of reception by the mobile terminal, and a constant average data rate.
  • the above features determine that the scheduling and control signaling configuration of the MBMS service is semi-static, that is, the scheduling information and control signaling information of the MBMS service are "long-term" unchanged, and the information passes through the MBMS control channel (MCCH, MBMS).
  • the Control Channel is sent periodically, collectively as MCCH information.
  • the evolved MBMS (eMBMS) system may have multiple MCCHs, and each MCCH corresponds to a different MBSFN (Multimedia Broadcast Single Frequency Network) area, in which only the control information of the MBMS service corresponding to the MBSFN area is carried.
  • Figure 2 shows the architecture of MBMS in LTE.
  • the industry is currently discussing the possibility of implementing cluster communication using MBMS technology.
  • cluster communication using MBMS technology.
  • the multicast mode is to receive the cluster service through the MBMS bearer. In this case, the UE needs to have the MBMS receiving capability.
  • GCS Group Communication Service
  • AS Application Server
  • MCE Multicell/Multicast Coordination Entity
  • the congestion/overload request, the MCE that receives the request sends a request to all the eNBs in the MBSFN area, and the eNB that detects the congestion/overload is reported to the GCS AS through the MCE; since all the eNBs in the MBSFN area are congested/overloaded, the MBSFN area All the eNBs report the same information to the MCE, which obviously wastes the M2 interface resources and reduces the working efficiency.
  • the technical problem to be solved by the present invention is to provide a congestion/overload control method and system for solving the problem of network congestion or overload affecting cluster services.
  • a congestion/overload control method including:
  • the selected eNB detects a user plane data congestion/overload event
  • the selected eNB When the trigger condition is met, the selected eNB sends indication information of congestion/overload to the group communication service application server GCS AS;
  • the GCS AS determines, according to the indication information reported by the selected eNB, a congestion/overload start or end in the MBMS service area of the multimedia broadcast multicast service, and selects a manner of sending the cluster service data.
  • the step of selecting a base station eNB for detecting congestion/overload of user plane data includes:
  • the multi-cell/multicast cooperative entity MCE maps the server area identifier SAI to be detected to multiple cells, and selects one or more of the plurality of cells as the monitoring cell, and the monitored cell
  • the eNB of the eNB acts as an eNB for detecting user plane data congestion/overload; or
  • Operation and maintenance O&M selects one or more eNBs as eNBs for detecting user plane data congestion/overload in the MBSFN area of the multimedia broadcast single frequency network to be detected; or
  • the GCS AS selects one or more eNBs as eNBs for detecting user plane data congestion/overload.
  • the indication information of the congestion/overload includes at least one of the following information:
  • Congestion/overload identification cell identity and/or SAI, temporary mobility group identity TMGI, congestion/overload start identifier;
  • the congestion/overload identifier is used to indicate network congestion or overload
  • the cell identifier is used to indicate a cell affected by congestion/overload
  • the SAI indicates an MBMS service area affected by congestion/overload
  • the TMGI is used to indicate congestion.
  • the congestion/overload start flag is used to indicate that congestion/overload is the beginning or the end.
  • the step of the selected eNB sending the congestion/overload indication information to the GCS AS includes:
  • the selected eNB reports all the congestion/overloaded TMGI to the MCE, and the MCE identifies the QGI/Assignment Retention Priority ARP and the TMGI according to the QoS level, and selects the TMGI of the specific service in which congestion/overload occurs. Reported to the GCS AS; or,
  • the GCS AS requests the SAI and the TMGI to report the status, and the MCE sends a request message to the selected eNB, and the eNB that receives the request message reports the TMGI in the SAI to the GCS AS by using the MCE. status.
  • the user plane data congestion/overload event includes:
  • the user plane data congestion/overload transitions from the start state to the end state, or the user plane data congestion/overload transitions from the end state to the start state.
  • the triggering condition includes any one of the following conditions:
  • the user plane data congestion/overload event, the GCS AS request transmission, the GCS AS request transmission, and the user plane data congestion/overload event are detected, and the periodic report is detected.
  • a congestion/overload control method including:
  • a base station eNB selected to detect congestion/overload detects a user plane data congestion/overload event
  • the selected eNB When the trigger condition is met, the selected eNB sends indication information of congestion/overload to the GCS AS.
  • the indication information of the congestion/overload includes at least one of the following information:
  • Congestion/overload identification cell identity and/or SAI, temporary mobility group identity TMGI, congestion/overload start identifier;
  • the congestion/overload identifier is used to indicate network congestion or overload
  • the cell identifier is used to indicate a cell affected by congestion/overload
  • the SAI indicates an MBMS service area affected by congestion/overload
  • the TMGI is used to indicate congestion.
  • the congestion/overload start flag is used to indicate that congestion/overload is the beginning or the end.
  • the step of the selected eNB sending the congestion/overload indication information to the GCS AS includes:
  • the selected eNB reports all the congestion/overloaded TMGI to the multi-cell/multicast cooperative entity MCE; or
  • the selected eNB reports the status of the TMGI in the SAI to the GCS AS by using the SAI and the TMGI in the request message sent by the GCS AS.
  • the user plane data congestion/overload event includes:
  • the user plane data congestion/overload transitions from the start state to the end state, or the user plane data congestion/overload transitions from the end state to the start state.
  • the triggering condition includes any one of the following conditions:
  • the user plane data congestion/overload event, the GCS AS request transmission, the GCS AS request transmission, and the user plane data congestion/overload event are detected, and the periodic report is detected.
  • a congestion/overload control system includes a selection module, a detection module, a transmission module, and a processing module, wherein:
  • the selection module is set in the network device and configured to: select for detecting user plane data Congested/overloaded base station eNB, and notifies the selected eNB;
  • the detecting module is disposed in the eNB, and configured to: detect a user plane data congestion/overload event when the eNB is selected;
  • the sending module is configured in the eNB, and configured to: when the trigger condition is met, send indication information of congestion/overload to the GCSAS;
  • the processing module is configured to be configured to: in the GCS AS, determine, according to the indication information reported by the selected eNB, a congestion/overload start or end in the MBMS service area, and select a manner of sending the cluster service data.
  • the network device comprises any one of the following devices:
  • the selection module is configured to select an eNB for detecting congestion/overload as follows:
  • the selection module When the selection module is set in the MCE, the selection module maps the server area identifier SAI that needs to be detected to multiple cells, and selects one or more of the multiple cells as the monitoring cell, and the monitoring is performed.
  • the eNB to which the cell belongs is used as an eNB for detecting congestion/overload;
  • the selection module selects one or more eNBs as eNBs for detecting congestion/overload in the MBSFN area of the multimedia broadcast single frequency network that needs to be detected;
  • the selection module When the selection module is set in the GCS AS, the selection module selects one or more eNBs as eNBs for detecting congestion/overload.
  • the indication information of the congestion/overload includes at least one of the following information:
  • Congestion/overload identification cell identity and/or SAI, temporary mobility group identity TMGI, congestion/overload start identifier;
  • the congestion/overload identifier is used to indicate network congestion or overload
  • the cell identifier is used to indicate a cell affected by congestion/overload
  • the SAI indicates an MBMS service area affected by congestion/overload
  • the TMGI is used to indicate congestion.
  • the congestion/overload start flag is used to indicate that congestion/overload is the beginning or the end.
  • the sending module is configured to send congestion/overload to the GCS AS as follows. Instructions:
  • the sending module reports all the TMGIs that are congested/overloaded to the MCE, and the MCE reports the TMGI of the specific service in which the congestion/overload occurs to the GCS AS according to the correspondence between the QCI/ARP and the TMGI; or
  • the GCS AS requests the SAI and the TMGI to report the status, and sends a request message to the eNB by using the MCE, and the sending module reports the status of the TMGI in the SAI to the GCS AS by using the MCE.
  • the user plane data congestion/overload event includes:
  • User plane data congestion/overload transitions from the start state to the end state; or, user plane data congestion/overload transitions from the end state to the start state.
  • the triggering condition includes any one of the following conditions:
  • the user plane data congestion/overload event, the GCS AS request transmission, the GCS AS request transmission, and the user plane data congestion/overload event are detected, and the periodic report is detected.
  • a congestion/overload control device is disposed in the base station, including a detection module and a transmission module, wherein:
  • the detecting module is configured to: detect a user plane data congestion/overload event when the base station is selected to detect congestion/overload;
  • the sending module is configured to: when the trigger condition is met, send indication information of congestion/overload to the GCS AS.
  • the indication information of the congestion/overload includes at least one of the following information:
  • Congestion/overload identification cell identity and/or SAI, temporary mobility group identity TMGI, congestion/overload start identifier;
  • the congestion/overload identifier is used to indicate network congestion or overload
  • the cell identifier is used to indicate a cell affected by congestion/overload
  • the SAI indicates an MBMS service area affected by congestion/overload
  • the TMGI is used to indicate congestion.
  • the congestion/overload start flag is used to indicate that congestion/overload is the beginning or the end.
  • the sending module is configured to send the indication of congestion/overload to the GCS AS as follows:
  • the sending module reports, by the MCE, the status of the TMGI in the SAI to the GCS AS according to the SAI and the TMGI in the request message sent by the GCS AS.
  • the user plane data congestion/overload event includes:
  • the user plane data congestion/overload transitions from the start state to the end state, or the user plane data congestion/overload transitions from the end state to the start state.
  • the triggering condition includes any one of the following conditions:
  • the user plane data congestion/overload event, the GCS AS request transmission, the GCS AS request transmission, and the user plane data congestion/overload event are detected, and the periodic report is detected.
  • the invention also provides a base station comprising the above described control device.
  • the technical solution of the present invention can be used to determine the congestion/overload of the MBMS service area according to the indication information of some base stations when the MBMS user plane data is congested or overloaded, improve the efficiency, reduce the impact of network congestion or overload on the cluster service, and improve the impact.
  • User business experience can be used to determine the congestion/overload of the MBMS service area according to the indication information of some base stations when the MBMS user plane data is congested or overloaded, improve the efficiency, reduce the impact of network congestion or overload on the cluster service, and improve the impact.
  • 1 is a schematic diagram of a trunking communication system architecture
  • FIG. 2 is a schematic diagram of an MBMS communication architecture
  • FIG. 3 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a system for cluster communication congestion control according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station for cluster communication congestion control according to an embodiment of the present invention.
  • the MBMS in the embodiment of the present invention refers to an evolved MBMS, that is, an eMBMS, and the AS refers to a GCS AS.
  • the control method for implementing congestion/overload of a trunking communication in the embodiment of the present invention includes:
  • the selected eNB detects a user plane data congestion/overload event
  • the selected eNB When the trigger condition is met, the selected eNB sends indication information of congestion/overload to the GCS AS;
  • the GCS AS determines, according to the indication information reported by the selected eNB, whether congestion/overload starts or ends in the MBMS service area, and selects a manner for sending cluster service data.
  • the trigger condition includes any one of the following:
  • the user plane data congestion/overload event is detected, the GCS AS requests the transmission, the GCS AS requests the transmission, and the user plane data congestion/overload event is detected, and the periodic report is triggered (ie, the report is triggered every once in a while).
  • Step 101 Select an eNB for detecting user plane data congestion/overload and notify the eNB.
  • the selection is any of the following: MCE selection, GCS AS selection, O&M (Operation and Maintenance) selection.
  • the congestion/overload refers to congestion/overload of the user plane data service of the MBMS.
  • the congestion/overload criterion needs to be formulated and notified to the target eNB in advance.
  • the criterion may be carried in the indication message.
  • MBMS user plane data congestion/overload occurs in the MBSFN area, considering that all eNBs participating in the MBSFN transmission in the MBSFN area have the same resource configuration, all eNBs are congested/overloaded. If the M2 interface reports the congestion/overload indication, the reported content is the same. Therefore, all the eNBs do not need to report the congestion/overload indication. If an eNB reports congestion/overload in an MBSFN area, it can determine that the MBSFN area/MBMS service area is congested. According to the partial congestion/overload information, all congestion/overload information can be inferred, which improves the detection efficiency and reduces the network signaling load.
  • the eNB for detecting congestion/overload is one or several.
  • the MCE or O&M selects an eNB for detecting congestion/overload, one eNB is generally selected in one MBSFN area.
  • the notification can be implemented by O&M or signaling.
  • the GCS AS selects an eNB for detecting congestion/overload, it is considered that the selected eNB is not congested/overloaded, but the target MBMS service area may still be congested/overloaded, for example, the target MBMS service area has multiple MBSFN areas, and the MBSFN where the eNB is located There is no congestion/overload in the area, and congestion/overload occurs in other MBSFN areas, but the GCS AS does not know the MBSFN area configuration. In order to avoid this as much as possible, the GCS AS can select multiple eNBs to detect congestion/overload; of course, only one eNB can be selected to detect congestion/overload.
  • the eNB for detecting the congestion/overload is an eNB in a specific MBMS service area, and generally has multiple eNBs in the MBMS service area. In this case, any one of the eNBs may be selected to detect congestion/overload.
  • the target MBMS service area is generally also specified; the target MBMS service area is an area that needs to detect congestion/overload; and the SAI (Service Area) is used when the target MBMS service area is specified. Identifier, server area identifier); if no MBMS service area is specified, considering that a single eNB may belong to multiple MBMS service areas, the selected eNB detects the congestion/overload status of all MBMS service areas in which it is located.
  • the eNB selected for detecting congestion/overload may also indicate by the cell identity that the eNB is located by the cell identity.
  • MBMS bearer MBSFN bearer
  • multicast bearer multicast bearer
  • point-to-multipoint PTM bearer point-to-multipoint PTM bearer
  • the MBMS bearer includes a core network bearer (ie, EPC (Evolved Packet Core network, The evolved packet core network (bearer) and the air interface bearer; the RAN (base station eNB and/or MCE) configures the MBMS air interface resource, and sends the MBMS configuration information and the cluster data in the air interface.
  • EPC Evolved Packet Core network
  • the RAN base station eNB and/or MCE
  • the data plane service in which the congestion/overload occurs may be a normal MBMS service or a GCS service, and the normal MBMS service and the GCS service may be distinguished by different QCI (Quality of Service Class Identifier) parameters.
  • QCI Quality of Service Class Identifier
  • Step 102 The eNB for detecting congestion/overload detects congestion/overload (ie, congestion/overload is a start state).
  • the congestion refers to that the user plane data load reaches a certain preset threshold, and the overload refers to that the network node cannot continue to process the additional user plane data load.
  • the user plane data in the embodiment of the present invention refers to the physical multicast channel PMCH. MBMS business data.
  • the eNB for detecting congestion/overload determines the MBMS user plane data congestion/overload according to a preset rule, that is, the congestion/overload determination condition is defined in advance, and the eNB for detecting congestion/overload determines that the judgment is satisfied. When conditions are met, it is determined that congestion/overload is detected.
  • the foregoing congestion/overload determination condition that is, the set determination rule, may be carried in the indication message sent to the eNB in addition to being set in advance.
  • Step 103 The eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS.
  • the eNB for detecting congestion/overload is configured by an eNodeB (eNB) ⁇ MCE ⁇ MME (Mobility Management Entity) ⁇ MBMS GW (MBMS-GateWay, MBMS Gateway) ⁇ BM-SC (Broadcast Multicast-Service Centre, Broadcast Multicast Service Center) ⁇ GCS AS sends congestion/overload indication information to the GCS AS.
  • eNodeB eNodeB
  • MME Mobility Management Entity
  • MBMS GW MBMS-GateWay, MBMS Gateway
  • BM-SC Broadcast Multicast-Service Centre, Broadcast Multicast Service Center
  • the eNB for detecting the congestion/overload first sends the indication information to the MCE through the M2 interface, and the indication information may be implemented by using the related M2 interface signaling, adding a new indication field, or adopting a new M2 interface signaling;
  • the relevant interface signaling may be used and a new indication field may be added, or a new proprietary interface signaling may be implemented.
  • the congestion/overload indication information includes at least one of the following: a congestion/overload identifier, a cell identifier (ECI or ECGI), and/or a SAI, an MBMS service identifier (TMGI (Temporary Mobile Group Identity)), congestion/ Overload start indicator.
  • the congestion/overload indicator is used to indicate network congestion or overload
  • the cell identifier is used to indicate the congestion/overload affected cell
  • the SAI indicates the congestion/overload affected MBMS service area
  • the TMGI is used to indicate the congestion/overload affected cluster service.
  • the congestion/overload start flag is used to indicate that the congestion/overload is the beginning (ie, presence) or the end, such as starting with 1 or true, ending with 0 or false.
  • Congestion/overload start/end that is, congestion/overload start is equivalent to current congestion/overload
  • congestion/overload termination is equivalent to no congestion/overload currently occurring or the beginning of congestion/overload
  • the node congestion refers to that the MBMS user plane data load in the network reaches a certain preset threshold
  • the node overload refers to that the network node cannot continue to process additional MBMS user plane data load.
  • the content of the MBMS service congestion/overload information is as follows: suppose the congestion is indicated by C, and the overload is indicated by O. For example:
  • TMGI1, TMGI2, and TMGI3 in the cell ECI1 are congested; TMGI5 and TMGI6 in ECI2 are overloaded; TMGI10 congestion in ECI3 is over.
  • the congestion/overload indication information may be modified during the sending process.
  • the cell identifier ECI is changed to the MBMS service area identifier SAI. If the ECI in the indication information received by the MCE is changed to SAI, the GCS AS receives the The indication information obtained determines the MBMS service area where congestion/overload occurs.
  • the congestion indication C may not be transmitted any more; or although the congestion indication C is transmitted, the UE may ignore the indication.
  • congestion is determined according to QoS information of the service, such as QCI or ARP (Allocation and Retention Priority).
  • QCI QCI or ARP (Allocation and Retention Priority).
  • ARP Allocation and Retention Priority
  • the eNB reports all the congestion/overloaded service identifier TMGI to the MCE, and according to the TMGI of the specific service (the MCE is based on the correspondence between the QCI/ARP and the TMGI), the MCE selects the TMGI of the specific service in which congestion/overload occurs, and reports it to the GCS AS;
  • the GCS AS requests the SAI and TMGI to report the status, and sends a request message to the eNB through the path GCS AS ⁇ BM-SC ⁇ MBMS GW ⁇ MME ⁇ MCE ⁇ eNB.
  • the eNB passes the eNB ⁇ MCE ⁇ MME ⁇ MBMS GW ⁇ BM-SC.
  • ⁇ GCS AS reports the status of TMGI in a specific SAI to the GCS AS.
  • the GCS AS request information only includes the SAI information, the eNB reports all the TMGI states in the SAI.
  • the triggering manner of the sending congestion/overload indication information is any one of the following: an event triggering, an AS request triggering, and the foregoing two are combined and periodically reported.
  • the event triggering report means that when the network node generates a congestion/overload start/end event, the eNB for detecting congestion/overload is reported to the GCS AS; and the AS request triggering refers to the GCS AS detecting the congestion/
  • the overloaded eNB sends a request message, and the eNB that receives the request reports the node status information to the GCS AS.
  • the combination of the two means that the GCSAS sends a request message to the eNB for detecting congestion/overload, or when used to detect congestion/overload.
  • the eNB reports the congestion/overload event to the GCS AS.
  • the periodic reporting refers to the configuration reporting period. In each period, the eNB reports the status of the node to the GCS AS, and the reporting period can be preceded. Specified or specified when the GCS AS sends a request.
  • the user plane data congestion/overload start/end event includes: user plane data congestion/overload transitions from a start state to an end state; or user plane data congestion/overload transitions from an end state to a start state. That is, in the case that the trigger condition is that the user plane data congestion/overload event is detected, if the congestion/overload (equivalent to the end state) is not originally converted to the start state (equivalent to detecting congestion/overload), The eNB for detecting congestion/overload needs to report; if there is congestion/overload (equivalent to the start state) to no congestion/overload (equivalent to the end state), the eNB for detecting congestion/overload needs Reporting; and this means that the eNB for detecting congestion/overload detects a transition between a congestion state and an overload state (converting from congestion to overload, or from overload to congestion) for detecting Congested/overloaded eNBs also need to be reported; because the transition from congestion to overload is equivalent to the transition of congestion from the start state
  • the eNB for detecting congestion/overload does not need to report again. In this way, the GCS AS can always accurately grasp the congestion/overload status of the MBMS.
  • step 104 the GCS AS takes action to reduce the impact of congestion/overload.
  • the UE establishes a unicast bearer and sends the cluster service through the unicast bearer.
  • the GCS AS queues the cluster service for overload and then sends the packet, or the GCS AS uses the high-priority cluster service to preempt the resources of the related cluster service. .
  • Step 105 The eNB for detecting congestion/overload detects congestion/overload termination.
  • the congestion/overload termination refers to that the network returns to normal, such as the user plane data load does not meet the preset congestion/overload judgment condition.
  • Step 106 The eNB for detecting congestion/overload sends recovery indication information to the GCS AS.
  • the eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS through an eNodeB (eNB) ⁇ MCE ⁇ MME ⁇ MBMS GW ⁇ BM-SC ⁇ GCS AS.
  • eNB eNodeB
  • the congestion/overload indication information includes at least one of the following: a congestion/overload identifier, a cell identity (ECI or ECGI), and/or a SAI, an MBMS Service Identity (TMGI), and a congestion/overload end identifier.
  • the sending triggering mode is any one of the following: an event triggering, an AS requesting triggering, and the foregoing two are combined and periodically reported.
  • Step 107 The GCS AS selects a manner of sending the cluster service to the UE.
  • the GCS AS determines the affected target UE by using the foregoing restoration indication information, and selects an appropriate manner to send the cluster service to the target UE. For example, the cluster service is continuously sent through the restored MBMS bearer.
  • the embodiment of the invention also discloses a computer program, comprising program instructions, which when executed by a computer, enable the computer to execute any of the above control methods.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • a method for selecting an eNB to detect congestion/overload in an MCE, and implementing a method for implementing congestion control of the cluster communication is as shown in FIG. 4, including:
  • step 201 the GCS AS sends congestion/overload detection request information to the MCE.
  • the GCS AS transmits detection request information through GCS AS ⁇ BM-SC ⁇ MBMS GW ⁇ MME ⁇ MCE.
  • the request information includes at least: an MBMS SAI.
  • Step 202 The MCE that receives the request information selects a target eNB (ie, an eNB for detecting congestion/overload) and notifies the eNB.
  • a target eNB ie, an eNB for detecting congestion/overload
  • the MCE receives the request information, maps the SAI that needs to be detected in the request information to multiple cells, and selects one or more of the multiple cells as the monitoring cell, and notifies the eNB to which the selected cell belongs as the Detecting the congestion/overloaded eNB; the notification may use the relevant M2 interface signaling, such as adding a new request field in the M2Session start request/M2session update to notify the selected eNB, or using a new dedicated M2 interface signaling to notify the selected eNB eNB.
  • each MCE selects a cell in the SAI, and notifies the eNB to which the selected cell belongs as the detection for congestion/overload. eNB.
  • Step 203 The eNB for detecting congestion/overload detects congestion/overload.
  • the eNB for detecting congestion/overload detects MBMS user plane data congestion/overload.
  • Step 204 The eNB for detecting congestion/overload determines whether congestion/overload is detected, and if yes, proceeds to step 205, otherwise proceeds to step 203.
  • the eNB for detecting congestion/overload determines the MBMS user plane data congestion/overload according to a preset rule, that is, a congestion/overload determination condition is defined in advance, and the eNB detects congestion/overload conditions. When the eNB that is loaded determines that the judgment condition is satisfied, it is determined that congestion/overload has occurred.
  • Step 205 The eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS.
  • the eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS through an eNodeB (eNB) ⁇ MCE ⁇ MME ⁇ MBMS GW ⁇ BM-SC ⁇ GCS AS.
  • eNB eNodeB
  • the congestion/overload indication information includes at least one of the following: a congestion/overload identifier, a cell identity (ECI or ECGI), and/or a SAI, an MBMS Service Identity (TMGI), and a congestion/overload end identifier.
  • the sending triggering mode is any one of the following: an event triggering, an AS requesting triggering, and the foregoing two are combined and periodically reported.
  • step 206 the GCS AS takes action to reduce the effects of congestion/overload.
  • the GCS AS first determines the affected target UE and the cluster service, and takes different actions for the congestion and overload information. For example, when the congestion occurs, the GCS AS uses the unicast bearer to send the cluster service; when overloaded, the GCS AS queues the cluster service for overload. End resending, or use high-priority cluster services to preempt resources of related cluster services.
  • Step 207 The eNB for detecting congestion/overload determines whether congestion/overload termination is detected, and if yes, proceeds to step 208, otherwise proceeds to step 203.
  • Step 208 The eNB for detecting congestion/overload sends recovery indication information to the GCS AS.
  • the sending triggering mode is any one of the following: an event triggering, an AS requesting triggering, and the foregoing two are combined and periodically reported.
  • Step 209 The GCS AS selects a manner of sending the cluster service to the target UE.
  • FIG. 5 A method for selecting an eNB to detect congestion/overload in an O&M manner to implement congestion control of a cluster communication is shown in FIG. 5, and includes:
  • step 301 the GCS AS sends a detection congestion/overload detection request message.
  • the request information includes at least: an MBMS service area identifier SAI; and further includes a congestion/overload determination condition in the request.
  • step 302 the O&M selects an eNB for detecting congestion/overload and notifies the eNB.
  • the O&M generally refers to a network management system, and the O&M selects one or more eNBs for detecting congestion/overload in an MBSFN area to be detected, and notifies the selected eNB; the notification includes congestion/overload detection request information and MBMS. SAI;
  • the eNB for detecting congestion/overload has saved the congestion/overload judgment condition or the O&M indicates the judgment condition to the selected eNB.
  • Step 303 The eNB for detecting congestion/overload detects congestion/overload.
  • the congestion/overload refers to congestion/overload of MBMS user plane data, specifically, congestion/overload occurs on the PMCH.
  • Step 304 The eNB for detecting congestion/overload determines whether congestion/overload is detected. If yes, go to step 305, otherwise go to step 303.
  • the eNB for detecting congestion/overload determines whether congestion/overload occurs according to the saved congestion/overload determination condition, and if so, notifies the GCS AS, otherwise continues the detection.
  • Step 305 The eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS.
  • the eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS through an eNodeB (eNB) ⁇ MCE ⁇ MME ⁇ MBMS GW ⁇ BM-SC ⁇ GCS AS.
  • eNB eNodeB
  • the congestion/overload indication information includes at least one of the following: a congestion/overload identifier, a cell identity (ECI or ECGI), and/or a SAI, an MBMS Service Identity (TMGI), and a congestion/overload end identifier.
  • the sending triggering mode is any one of the following: an event triggering, an AS requesting triggering, and the foregoing two are combined and periodically reported.
  • step 306 the GCS AS takes action to reduce the effects of congestion/overload.
  • the GCS AS first determines the affected target UE and the cluster service, and takes different actions for the congestion and overload information. For example, when the congestion occurs, the GCS AS uses the unicast bearer to send the cluster service; when overloaded, the GCS AS queues the cluster service and waits for the overload to end. Resend, or use high-priority cluster services to preempt resources of related cluster services.
  • Step 307 the eNB for detecting congestion/overload determines whether congestion/overload termination is detected, such as If yes, go to step 308, otherwise go to step 303.
  • Step 308 the eNB for detecting congestion/overload sends recovery indication information to the GCS AS.
  • the sending triggering mode is any one of the following: an event triggering, a GCS AS requesting triggering, and the foregoing two are combined and periodically reported.
  • Step 309 the GCS AS selects a manner of sending the cluster service to the target UE.
  • a method for detecting congestion/overloading of an eNodeB for a GCS AS, and implementing a method for implementing congestion control of a cluster communication, as shown in FIG. 6, includes:
  • step 401 the GCS AS sends detection request information to the eNB.
  • the GCS AS Before selecting an eNB for detecting congestion/overload, the GCS AS knows the cell information of the MBMS service, that is, the GCS AS needs to use the MBMS bearer to transmit the cell information of the GCS service, and the GCS AS selects the target cell according to the selected cell.
  • the identity can determine the desired target eNB.
  • the GCS AS only knows the MBMS service area information.
  • the GCS AS selects an eNB in the service area to detect congestion/overload. If the eNB used to detect congestion/overload detects congestion/overload, it indicates that the MBMS service area is congested/overloaded. . It is possible that the eNB selected by the GCS AS does not detect congestion/overload, but the target MBMS service area is congested/overloaded. In order to minimize the above situation, multiple eNBs may be selected in the target MBMS service area to detect congestion/overload.
  • the GCS AS transmits detection request information through GCS AS ⁇ BM-SC ⁇ MBMS GW ⁇ MME ⁇ MCE.
  • the request information includes at least one of the following: an MBMS SAI, an ECI/ECGI/eNB ID.
  • step 402 the eNB receiving the request detects congestion/overload.
  • the eNB receiving the request detects MBMS user plane data congestion/overload.
  • Step 403 The eNB for detecting congestion/overload determines whether congestion/overload is detected. If yes, go to step 404, otherwise go to step 402.
  • the eNB for detecting congestion/overload determines MBMS user plane data congestion/overload according to a preset rule, that is, a congestion/overload determination condition is defined in advance for detecting congestion/overload. When the eNB determines that the judgment condition is satisfied, it determines that congestion/overload has occurred.
  • Step 404 The eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS.
  • the eNB for detecting congestion/overload sends congestion/overload indication information to the GCS AS through an eNodeB (eNB) ⁇ MCE ⁇ MME ⁇ MBMS GW ⁇ BM-SC ⁇ GCS AS.
  • eNB eNodeB
  • the congestion/overload indication information includes at least one of the following: a congestion/overload identifier, a cell identity (ECI or ECGI), and/or a SAI, an MBMS Service Identity (TMGI), and a congestion/overload end identifier.
  • the sending triggering mode is any one of the following: an event triggering, a GCS AS requesting triggering, and the foregoing two are combined and periodically reported.
  • step 405 the GCS AS takes action to reduce the effects of congestion/overload.
  • the GCS AS first determines the affected target UE and the cluster service, and takes different actions for the congestion and overload information. For example, when the congestion occurs, the GCS AS uses the unicast bearer to send the cluster service; when overloaded, the GCS AS queues the cluster service and waits for the overload to end. Resend, or use high-priority cluster services to preempt resources of related cluster services.
  • Step 406 The eNB for detecting congestion/overload determines whether congestion/overload termination is detected, and if yes, proceeds to step 407, otherwise to step 402.
  • Step 407 The eNB for detecting congestion/overload sends the restoration indication information to the GCS AS.
  • the sending triggering mode is any one of the following: an event triggering, an AS requesting triggering, and the foregoing two are combined and periodically reported.
  • Step 408 The GCS AS selects a manner of sending the cluster service to the target UE.
  • the embodiment of the invention further discloses a computer program, comprising program instructions, which when executed by a computer, enable the computer to execute any of the control methods of the first to third embodiments.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • the embodiment of the invention further provides a method for controlling congestion/overload of a cluster communication on a base station side, including:
  • a base station eNB selected to detect congestion/overload detects a user plane data congestion/overload event
  • the selected eNB When the trigger condition is met, the selected eNB sends congestion/overload indication information to the GCSAS through the multi-cell/multicast cooperative entity MCE.
  • the step of the selected eNB sending the congestion/overload indication information to the GCS AS includes:
  • the selected eNB reports all congestion/overloaded TMGI to the multi-cell/multicast cooperative entity MCE;
  • the selected eNB reports the status of the corresponding TMGI in the corresponding SAI to the GCS AS through the MCE according to the SAI and the TMGI in the request message sent by the GCS AS.
  • the embodiment of the invention further provides a cluster communication congestion/overload control system, comprising:
  • a selection module configured in a specific network device, configured to select a base station eNB for detecting user plane data congestion/overload, and notifying the selected eNB;
  • a detecting module configured in the eNB, configured to detect a user plane data congestion/overload event when the eNB is selected;
  • a sending module configured to send, by the eNB, indication information about congestion/overload to the GCS AS when the trigger condition is met;
  • the processing module is configured to be configured to determine, according to the indication information reported by the selected eNB, a congestion/overload start or end in the MBMS service area, and correspondingly select a manner of sending the cluster service data.
  • the specific network device includes any one of the following:
  • the selecting a base station eNB for detecting congestion/overload refers to:
  • the selecting module maps the server area identifier SAI to be detected to multiple cells, and selects one or more of the plurality of cells as the monitoring cell, and selects the eNB to which the selected cell belongs. For detecting congestion/overload;
  • the selecting a base station eNB for detecting congestion/overload refers to:
  • the selecting module selects one or more eNBs for detecting congestion/overload in the MBSFN area of the multimedia broadcast single frequency network that needs to be detected;
  • the selecting a base station eNB for detecting congestion/overload refers to:
  • the selection module selects one or more eNBs for detecting congestion/overload.
  • the indication information of the congestion/overload includes at least one of the following:
  • Congestion/overload identification cell identity and/or SAI, temporary mobility group identity TMGI, congestion/overload start identifier;
  • the congestion/overload identifier is used to indicate network congestion or overload
  • the cell identifier is used to indicate a cell affected by congestion/overload
  • the SAI indicates an MBMS service area affected by congestion/overload
  • the TMGI is used to indicate a cluster service affected by congestion/overload.
  • the congestion/overload start flag is used to indicate that congestion/overload is the beginning or the end.
  • the sending the indication of congestion/overload to the GCS AS refers to:
  • the sending module reports all the congestion/overload TMGI to the MCE, and the MCE reports the TMGI of the specific service that is congested/overloaded to the GCS AS according to the corresponding relationship between the QCI/ARP and the TMGI;
  • the GCS AS requests the SAI and the TMGI to report the status, and sends a request message to the eNB through the MCE.
  • the sending module reports the status of the corresponding TMGI in the corresponding SAI to the GCSAS through the MCE.
  • the user plane data congestion/overload event includes user plane data congestion/overload transitioning from a start state to an end state; or user plane data congestion/overload transitioning from an end state to a start state.
  • the triggering condition includes any one of the following:
  • the user plane data congestion/overload event, the GCS AS request transmission, the GCS AS request transmission, and the user plane data congestion/overload event are detected, and the periodic report is detected.
  • FIG. 7 An embodiment of the control system is shown in Figure 7, and includes:
  • the group communication service application server GCS AS 81 is configured to select an eNB for detecting congestion/overload and send congestion/overload request information to the selected eNB, receive congestion/overload and recovery indication information, process according to the indication information, and select How to send cluster services.
  • the O&M 82 is operated and maintained for selecting the eNB 84 for congestion/overload detection and notifying the eNB.
  • the multi-cell/multicast cooperative entity MCE 83 is configured to receive the request information sent by the GCS AS 81 and the congestion/overload indication information sent by the eNB 84, and is also used to select the eNB 84 and notify the eNB 84.
  • the base station eNB 84 is configured to detect a congestion/overload state, receive indication information of the GCS AS 81, the O&M 82, and the MCE 83, and send congestion/overload indication information to the GCS AS 81 through the MCE 83.
  • the embodiment of the present invention further provides a congestion/overload control device, which is disposed in the base station eNB, and includes:
  • a detecting module configured to detect a user plane data congestion/overload event when the base station is selected to detect congestion/overload
  • a sending module configured to send a congestion/overload indication message to the GCS AS when the trigger condition is met.
  • FIG. 8 An embodiment of the control device is shown in FIG. 8, and includes:
  • the receiving module 841 is configured to receive congestion/overload request information and indication information.
  • the sending module 842 is configured to send indication information of congestion/overload.
  • the detecting module 843 is configured to detect a congestion/overload event.
  • the sending the indication of congestion/overload to the GCS AS refers to:
  • the sending module according to the request message sent by the GCS AS needs to report the status of the SAI and
  • the TMGI reports the status of the corresponding TMGI in the corresponding SAI to the GCS AS through the MCE.
  • control device Further implementation details of the control device can be found in the foregoing.
  • the embodiment of the invention further provides a base station, comprising the above control device.
  • the technical solution of the present invention can be used to determine the congestion/overload of the MBMS service area according to the indication information of some base stations when the MBMS user plane data is congested or overloaded, improve the efficiency, reduce the impact of network congestion or overload on the cluster service, and improve the impact.
  • User business experience. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种拥塞/过载的控制方法,系统,装置和基站。方法包括:选择用于检测用户面数据拥塞/过载的基站eNB,并通知选中的eNB;被选中的eNB检测用户面数据拥塞/过载事件;触发条件满足时,被选中的eNB向组通信业务应用服务器GCS AS发送拥塞/过载的指示信息;GCS AS根据所述被选中的eNB上报的所述指示信息确定多媒体广播多播业务MBMS业务区域中发生拥塞/过载开始或结束,并相应选择发送集群业务数据的方式。本发明技术方案可以解决网络拥塞或过载对集群业务的影响问题。

Description

拥塞或过载的控制方法,系统,装置和基站 技术领域
本文涉及拥塞/过载的控制技术,尤其涉及一种拥塞/过载的控制方法,系统,装置和基站。
背景技术
集群通信系统是为了满足行业用户指挥调度需求而开发的、面向特定行业应用的专用无线通信系统,系统中大量无线用户共享少量无线信道,以指挥调度为主体应用,是一种多用途、高效能的无线通信系统。集群通信系统在政府部门、公共安全、应急通信、电力、民航、石油化工和军队等领域有着广泛的应用市场。
集群通信系统经历了与蜂窝移动通信系统类似的发展历程。第一代集群系统是模拟集群通信系统,主要支持语音通信。最早进入我国的模拟集群通信系统是Nokia公司的Actionet系统,它采用MPT-1327信令,应用在450MHz频段上。此后,日本的F.A.S.T和美国Motorola公司的Smartnet进入我国,并长期占领我国集群市场80%以上的市场份额。
第二代集群系统是窄带数字集群通信系统,兴起于20世纪90年代,2004年左右开始在我国部署,是当前国内应用最广泛的集群通信系统。数字集群通信系统支持语音和低速数据(最高28.8kbps)通信,代表系统是欧洲电信标准组织(European Telecommunications Standards Institute,ETSI)定义的陆上集群无线电(Terrestrial Trunked Radio,TETRA)系统、美国Motorola的综合数字增强型网络(Integrated Digital Enhanced Networks,iDEN)系统,中兴通讯股份有限公司基于CDMA1X开发的开放式集群结构(Global Open Trunking Architecture,GoTa)系统、华为技术有限公司基于GSM开发的GT800系统。从国内来看,最近两三年,TETRA(Terrestrial Trunked Radio,陆上集群无线电)网络的增长最快,在全国已建的数字集群通信网中,TETRA网的数量约占2/3强。
集群系统区别于公众系统的特性在于,集群系统需要具备高效的指挥调度特性,并且要求网络具有高可靠性和安全性。
呼叫控制:根据用户的业务请求,在主叫用户和被叫用户之间建立、维持和释放业务承载;
鉴权认证:支持鉴权和认证,鉴权功能包括:网络侧对终端鉴权,以及网络侧对终端和终端对网络侧的双向鉴权;
故障弱化:当网络侧与基站或网络侧内部网元之间的链路发生故障时,基站能够为其覆盖范围下的用户终端提供受限的集群服务。
网络互联互通功能:能够与公共电话系统(Public Switched Telephone Network,PSTN)、公众移动通信系统(GSM/CDMA、TD-LTE等)、IP电话、其他制式的集群通信系统等互通。在3GPP LTE中集群通信称为组通信服务能力GCSE,图1给出了LTE GCSE的系统架构。
为了有效地利用移动网络资源,第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)提出了多媒体广播多播业务(MBMS,Multimedia Broadcast Multicast Service),该业务是一种从一个数据源向多个目标移动终端传送数据的技术,实现了网络(包括核心网和接入网)资源的共享,提高了网络资源(尤其是空中接口资源)的利用率。3GPP定义的MBMS业务不仅能够实现纯文本低速率的消息类组播和广播,而且还能够实现高速多媒体业务的广播和组播,提供多种丰富的视频、音频和多媒体业务,这无疑顺应了未来移动数据发展的趋势,为3G的发展提供了更好的业务前景。
MBMS业务的特点是业务的数据量大,移动终端接收时持续时间长,平均数据率恒定。上述特点决定了MBMS业务的调度与控制信令配置都是半静态的,即MBMS业务的调度信息与控制信令信息都是“长期”保持不变的,这些信息通过MBMS控制信道(MCCH,MBMS Control Channel)周期性地发送,统称为MCCH信息。演进型MBMS(eMBMS)系统可能存在多个MCCH,每个MCCH对应于不同的MBSFN(Multimedia Broadcast Single Frequency Network,多媒体广播单频网)区域,其中仅承载对应MBSFN区域发送的MBMS业务的控制信息。图2给出了LTE中MBMS的架构示意图。
目前业界正在讨论采用MBMS技术实现集群通信的可能性。针对特定的集群UE,可以通过以下两种方式的任意一种接收所需的集群业务:多播,单播。其中多播方式即通过MBMS承载接收集群业务,此时需要UE具备MBMS接收能力。
在对相关技术的研究和实践过程中发现相关技术存在以下问题:GCS(组通信业务)AS(Application Server,应用服务器)向MCE(Multicell/Multicast Coordination Entity,多小区/多播协作实体)发送检测拥塞/过载请求,收到请求的MCE向MBSFN区域中的所有eNB发送请求,检测到拥塞/过载的eNB通过MCE上报到GCS AS;由于MBSFN区域中的所有eNB都发生拥塞/过载,所以MBSFN区域中所有的eNB上报相同信息到MCE,显然这样既浪费了M2接口资源也降低了工作效率。
发明内容
本发明要解决的技术问题是提供一种拥塞/过载的控制方法和系统,用以解决网络拥塞或过载对集群业务的影响问题。
为了解决上述问题,采用如下技术方案:
一种拥塞/过载的控制方法,包括:
选择用于检测用户面数据拥塞/过载的基站eNB,并通知被选中的eNB;
所述被选中的eNB检测用户面数据拥塞/过载事件;
触发条件满足时,所述被选中的eNB向组通信业务应用服务器GCS AS发送拥塞/过载的指示信息;
所述GCS AS根据所述被选中的eNB上报的所述指示信息确定多媒体广播多播业务MBMS业务区域中发生拥塞/过载开始或结束,并选择发送集群业务数据的方式。
可选地,所述选择用于检测用户面数据拥塞/过载的基站eNB的步骤包括:
多小区/多播协作实体MCE将需要检测的服务器区域标识SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并将该监测小区所 属的eNB作为用于检测用户面数据拥塞/过载的eNB;或者,
操作和维护O&M在需要检测的多媒体广播单频网MBSFN区域选择一个或多个eNB作为用于检测用户面数据拥塞/过载的eNB;或者,
所述GCS AS选择一个或多个eNB作为用于检测用户面数据拥塞/过载的eNB。
可选地,所述拥塞/过载的指示信息包括以下信息中的至少一种:
拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
可选地,所述被选中的eNB向GCS AS发送拥塞/过载的指示信息的步骤包括:
所述被选中的eNB上报所有发生拥塞/过载的TMGI到MCE,所述MCE根据服务质量等级标识QCI/分配保留优先级ARP与所述TMGI的对应关系,选择发生拥塞/过载的特定业务的TMGI上报到所述GCS AS;或者,
所述GCS AS请求需要上报状态的SAI和所述TMGI,所述MCE发送请求消息到被选中的eNB,收到请求消息的eNB通过所述MCE向所述GCS AS上报所述SAI中所述TMGI的状态。
可选地,所述用户面数据拥塞/过载事件包括:
用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
可选地,所述触发条件包括以下条件中的任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
一种拥塞/过载的控制方法,包括:
被选择用于检测拥塞/过载的基站eNB检测用户面数据拥塞/过载事件;
触发条件满足时,所述被选中的eNB向GCS AS发送拥塞/过载的指示信息。
可选地,所述拥塞/过载的指示信息包括以下信息中的至少一种:
拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
可选地,所述被选中的eNB向GCS AS发送拥塞/过载的指示信息的步骤包括:
所述被选中的eNB上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;或者,
所述被选中的eNB根据GCS AS发送的请求消息中需要上报状态的SAI和TMGI通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
可选地,所述用户面数据拥塞/过载事件包括:
用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
可选地,所述触发条件包括以下条件中的任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
一种拥塞/过载的控制系统,包括选择模块、检测模块、发送模块和处理模块,其中:
所述选择模块,设置于网络设备中,设置成:选择用于检测用户面数据 拥塞/过载的基站eNB,并通知被选中的eNB;
所述检测模块,设置于eNB中,设置成:当该eNB被选中时检测用户面数据拥塞/过载事件;
所述发送模块,设置于该eNB中,设置成:当触发条件满足时,向GCSAS发送拥塞/过载的指示信息;
所述处理模块,设置于GCS AS中,设置成:根据所述被选中的eNB上报的所述指示信息确定MBMS业务区域中发生拥塞/过载开始或结束,并相应选择发送集群业务数据的方式。
可选地,所述网络设备包括以下设备中的任一种:
多小区/多播协作实体MCE、操作和维护O&M、GCS AS;
所述选择模块设置成按照如下方式选择用于检测拥塞/过载的eNB:
当所述选择模块设置于所述MCE中时,所述选择模块将需要检测的服务器区域标识SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并将该监测小区所属的eNB作为用于检测拥塞/过载的eNB;
当所述选择模块设置于所述O&M中时,所述选择模块在需要检测的多媒体广播单频网MBSFN区域选择一个或多个eNB作为用于检测拥塞/过载的eNB;
当所述选择模块设置于所述GCS AS中时,所述选择模块选择一个或多个eNB作为用于检测拥塞/过载的eNB。
可选地,所述拥塞/过载的指示信息包括以下信息中的至少一种:
拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
可选地,所述发送模块设置成按照如下方式向GCS AS发送拥塞/过载的 指示信息:
所述发送模块上报所有发生拥塞/过载的TMGI到MCE,所述MCE根据QCI/ARP与TMGI的对应关系,选择发生拥塞/过载的特定业务的TMGI上报到所述GCS AS;或者,
所述GCS AS请求需要上报状态的SAI和TMGI,通过所述MCE发送请求消息到所述eNB,所述发送模块通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
可选地,所述用户面数据拥塞/过载事件包括:
用户面数据拥塞/过载从开始状态转换为结束状态;或者,用户面数据拥塞/过载从结束状态转换为开始状态。
可选地,所述触发条件包括以下条件中的任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
一种拥塞/过载的控制装置,设置于基站中,包括检测模块和发送模块,其中:
所述检测模块设置成:当所述基站被选择用于检测拥塞/过载时,检测用户面数据拥塞/过载事件;
所述发送模块设置成:当触发条件满足时,向GCS AS发送拥塞/过载的指示信息。
可选地,所述拥塞/过载的指示信息包括以下信息中的至少一种:
拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
可选地,所述发送模块设置成按照如下方式向GCS AS发送拥塞/过载的指示信息:
所述发送模块上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;或者,
所述发送模块根据所述GCS AS发送的请求消息中需要上报状态的SAI和TMGI通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
可选地,所述用户面数据拥塞/过载事件包括:
用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
可选地,所述触发条件包括以下条件中的任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
本发明还提供了一种基站,包括上述的控制装置。
通过本发明技术方案,能够实现当发生MBMS用户面数据拥塞或过载时,根据部分基站的指示信息确定MBMS业务区域的拥塞/过载,提高了效率,减少网络拥塞或过载对集群业务的影响,提高用户业务体验。
附图概述
图1为集群通信系统架构示意图;
图2为MBMS通信架构示意图;
图3为本发明实施例的方法的流程图;
图4为本发明实施例一的流程图;
图5为本发明实施例二的流程图;
图6为本发明实施例三的流程图;
图7为本发明实施例的集群通信拥塞控制的系统的结构示意图;
图8为本发明实施例的集群通信拥塞控制的基站的结构示意图。
本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如无具体说明,本发明实施例的MBMS是指演进的MBMS即eMBMS,AS是指GCS AS。
本发明实施例的实现集群通信拥塞/过载的控制方法包括:
选择用于检测用户面数据拥塞/过载的基站eNB并通知选中的eNB;
被选中的eNB检测用户面数据拥塞/过载事件;
触发条件满足时,被选中的eNB向GCS AS发送拥塞/过载的指示信息;
所述GCS AS根据被选中的eNB上报的所述指示信息确定MBMS业务区域中发生拥塞/过载开始或结束,并相应选择发送集群业务数据的方式。
所述触发条件包括以下任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报(即:每隔一段时间就触发一次上报)。
具体过程如图3所示,包括如下步骤:
步骤101,选择用于检测用户面数据拥塞/过载的eNB并通知eNB。
所述选择为以下任意一种:MCE选择,GCS AS选择,O&M(Operation and Maintenance,操作和维护)选择。所述拥塞/过载是指MBMS的用户面数据业务发生拥塞/过载,所述拥塞/过载的判断准则需要事先制定并通知目标eNB,可选地,可以在指示消息中携带该判断准则。
正常情况下,如果MBSFN区域中发生MBMS用户面数据拥塞/过载,考虑到MBSFN区域中参与MBSFN传输的所有eNB都有相同的资源配置,则所有eNB都发生拥塞/过载,此时如果所有eNB在M2接口上报拥塞/过载指示,则上报的内容完全相同,所以没必要所有eNB都上报拥塞/过载指示,一个MBSFN区域有一个eNB上报拥塞/过载即可确定MBSFN区域/MBMS业务区域发生拥塞,即根据部分拥塞/过载信息可推测出全部拥塞/过载信息,提高了检测效率,同时降低了网络信令负载。
所述用于检测拥塞/过载的eNB为一个或几个,当MCE或O&M选择用于检测拥塞/过载的eNB时,一般在一个MBSFN区域可选择一个eNB。所述通知可以通过O&M或信令方式实现。
当GCS AS选择用于检测拥塞/过载的eNB时,考虑到选中的eNB没有拥塞/过载,但是目标MBMS业务区域仍可能拥塞/过载,如目标MBMS业务区域有多个MBSFN区域,eNB所在的MBSFN区域没有拥塞/过载,其他MBSFN区域发生拥塞/过载,但是GCS AS不知道MBSFN区域配置。为了尽量避免上述情况发生,GCS AS可以选择多个eNB用来检测拥塞/过载;当然,也可以只选择一个eNB用来检测拥塞/过载。
所述用于检测拥塞/过载的eNB为特定MBMS业务区域中的eNB,一般在MBMS业务区域中有多个eNB,此时可以选择任意一个eNB用来检测拥塞/过载。
需要指出的是:在选择用于检测拥塞/过载的eNB的同时,一般也指定目标MBMS业务区域;目标MBMS业务区域为需要检测拥塞/过载的区域;指定目标MBMS业务区域时采用SAI(Service Area Identifier,服务器区域标识);如果没有指定MBMS业务区域,考虑到单个eNB可能属于多个MBMS业务区域,则选中的eNB检测所在的全部MBMS业务区域的拥塞/过载状态。选择用于检测拥塞/过载的eNB也可以通过小区标识指示,即通过小区标识确定所在的eNB。
本发明实施例中,以下描述表示同一概念:MBMS承载,MBSFN承载,多播承载,点到多点PTM承载。
所述MBMS承载包括核心网承载(即:EPC(Evolved Packet Core network, 演进的分组核心网)承载)和空口承载;RAN(基站eNB和/或MCE)配置MBMS空口资源,并在空口发送MBMS配置信息和集群数据。
需要指出的是:发生拥塞/过载的数据面业务可以是普通MBMS业务或GCS业务,普通MBMS业务和GCS业务可通过不同的QCI(Quality of Service Class Identifier,服务质量等级标识)参数区别,对于普通MBMS业务,相应的MBMS承载不需要预建立。
步骤102,所述用于检测拥塞/过载的eNB检测到拥塞/过载(即拥塞/过载是开始状态)。
所述拥塞是指用户面数据负载达到一定预设门限,所述过载是指网络节点无法继续处理额外的用户面数据负载,本发明实施例中的用户面数据是指物理多播信道PMCH上的MBMS业务数据。
所述用于检测拥塞/过载的eNB根据事先设定的规则判断MBMS用户面数据拥塞/过载,即事先定义了拥塞/过载的判断条件,所述用于检测拥塞/过载的eNB判断满足该判断条件时则确定检测到拥塞/过载。
可选地,上述拥塞/过载的判断条件,也就是设定的判断规则,除了可以事先设定,也可以在发送给eNB的指示消息中同时携带。
步骤103,所述用于检测拥塞/过载的eNB向GCS AS发送拥塞/过载指示信息。
所述用于检测拥塞/过载的eNB通过eNodeB(eNB)→MCE→MME(Mobility Management Entity,移动管理实体)→MBMS GW(MBMS-GateWay,MBMS网关)→BM-SC(Broadcast Multicast-Service Centre,广播多播服务中心)→GCS AS向GCS AS发送拥塞/过载指示信息。
所述用于检测拥塞/过载的eNB首先通过M2接口向MCE发送指示信息,所述指示信息可以采用相关M2接口信令,并增加新的指示字段实现,或者采用新的M2接口信令;
同样的,在M3接口,Sm接口,SGmb接口,MB2-c接口中发送上述拥塞/过载指示信息时,可以采用相关接口信令并增加新的指示字段,或者采用新的专有接口信令实现。
所述拥塞/过载指示信息包括以下至少一种:拥塞/过载标识,小区标识(ECI或ECGI)和/或SAI,MBMS业务标识(TMGI(Temporary Mobile Group Identity,临时移动组标识)),拥塞/过载开始标识。
其中:拥塞/过载标识用于指示网络拥塞或者过载,小区标识用于指示拥塞/过载影响的小区,SAI指示拥塞/过载影响的MBMS业务区域;TMGI用于指示拥塞/过载影响的集群业务。
拥塞/过载开始标识用于指示拥塞/过载是开始(即存在)或者结束,比如开始用1或true指示,结束用0或false指示。
拥塞/过载开始/结束,也就是:拥塞/过载开始等效于当前出现拥塞/过载,拥塞/过载结束等效于当前没有出现拥塞/过载或已开始的拥塞/过载结束。
所述节点拥塞是指网络中的MBMS用户面数据负载达到一定预设门限,所述节点过载是指网络节点无法继续处理额外的MBMS用户面数据负载。
上报MBMS业务拥塞/过载信息的内容为:假设拥塞用C指示,过载用O指示,举例:
{ECI1:TMGI 1,TMGI2,TMGI3;C,true}
{ECI2:TMGI5,TMGI6;O,false}
{ECI3:TMGI10;C,false}
说明:上例中小区ECI1中的TMGI1,TMGI2,TMGI3发生拥塞;ECI2中的TMGI5,TMGI6过载结束;ECI3中的TMGI10拥塞结束。
所述拥塞/过载指示信息在发送过程中可能进行修改,一般是将小区标识ECI改为MBMS业务区域标识SAI,如在MCE将收到的指示信息中的ECI改为SAI,则GCS AS根据收到的指示信息确定发生拥塞/过载的MBMS业务区域。
当过载指示O为1(True)的情况下,可以不再发送拥塞指示C;或者虽然发送了拥塞指示C,UE可以忽略该指示。
考虑到只有特定的集群业务(如PTT(Push To Talk,按讲))可能发生拥塞/过载,根据业务的QoS信息,如QCI或ARP(Allocation and Retention Priority,分配保留优先级),确定发生拥塞/过载的业务是特定的集群业务, 由于eNB不知道业务的QoS信息,在eNB有两种上报拥塞/过载方法:
1)eNB上报所有发生拥塞/过载的业务标识TMGI到MCE,根据特定业务的TMGI(MCE根据QCI/ARP与TMGI的对应关系),MCE选择发生拥塞/过载的特定业务的TMGI上报到GCS AS;
2)GCS AS请求需要上报状态的SAI和TMGI,通过路径GCS AS→BM-SC→MBMS GW→MME→MCE→eNB发送请求消息到eNB,eNB通过eNB→MCE→MME→MBMS GW→BM-SC→GCS AS,上报特定SAI中TMGI的状态到GCS AS。可选地,如果GCS AS请求信息只包括SAI信息,则eNB上报SAI中所有的TMGI状态。
所述发送拥塞/过载指示信息的触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。其中,事件触发上报是指当网络节点发生拥塞/过载开始/结束事件时,所述用于检测拥塞/过载的eNB上报到GCS AS;AS请求触发是指GCS AS向所述用于检测拥塞/过载的eNB发送请求消息,收到请求的eNB上报节点状态信息到GCS AS;两者结合是指,GCSAS向所述用于检测拥塞/过载的eNB发送请求消息,或当用于检测拥塞/过载的eNB检测到拥塞/过载事件时上报到GCS AS;周期性上报是指配置上报周期,在每个周期,所述用于检测拥塞/过载的eNB上报节点状态到GCS AS,其中上报周期可以事先指定或者GCS AS发送请求时指定。
所述的用户面数据拥塞/过载开始/结束事件,包括:用户面数据拥塞/过载从开始状态转换为结束状态;或者用户面数据拥塞/过载从结束状态转换为开始状态。即:在触发条件为检测到所述用户面数据拥塞/过载事件的情况下,如果原先并没有拥塞/过载(等效于结束状态)转换为开始状态(等效于检测到拥塞/过载),所述用于检测拥塞/过载的eNB需要上报;如果原先存在拥塞/过载(等效于开始状态)到不拥塞/过载(等效于结束状态),所述用于检测拥塞/过载的eNB需要上报;而且这样意味着,所述用于检测拥塞/过载的eNB检测到拥塞状态和过载状态之间发生了转换时(从拥塞转换为过载,或从过载转换为拥塞),所述用于检测拥塞/过载的eNB也需要上报;因为从拥塞转换为过载相当于拥塞从开始状态转换为结束状态,过载从结束状态转换为开始状态;从过载转换为拥塞相当于过载从开始状态转换为结束状态,拥 塞从结束状态转换为开始状态,都属于上述用户面数据拥塞/过载开始/结束事件。
简单地说:假设C=拥塞指示,用{0,1}标识;O=过载指示,用{0,1}标识,只要C和/或O的标识发送了变化,所述用于检测拥塞/过载的eNB都需要上报。
总之,在触发条件为检测到所述用户面数据拥塞/过载事件的情况下,如果拥塞/过载的开始或者结束的状态不改变,则所述用于检测拥塞/过载的eNB不需要再上报,这样GCS AS总能准确地掌握MBMS的拥塞/过载状态。
步骤104,GCS AS采取减少拥塞/过载影响的行动。
所述GCS AS首先根据上述拥塞/过载指示信息确定受到影响的目标UE和集群业务TMGI,然后所述GCS AS根据拥塞/过载指示信息和本地策略确定采取的行动,如当发生拥塞时,为目标UE建立单播承载,并通过单播承载发送集群业务,当发生过载时,所述GCS AS将集群业务排队等待过载结束再发送,或者GCS AS利用高优先级的集群业务抢占相关集群业务的资源。
步骤105,所述用于检测拥塞/过载的eNB检测到拥塞/过载结束。
所述拥塞/过载结束是指网络恢复正常,如用户面数据负载不满足预设拥塞/过载的判断条件。
步骤106,所述用于检测拥塞/过载的eNB向GCS AS发送恢复指示信息。
所述用于检测拥塞/过载的eNB通过eNodeB(eNB)→MCE→MME→MBMS GW→BM-SC→GCS AS向GCS AS发送拥塞/过载指示信息。
所述拥塞/过载指示信息包括以下至少一种:拥塞/过载标识,小区标识(ECI或ECGI)和/或SAI,MBMS业务标识(TMGI),拥塞/过载结束标识。
所述发送触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。
步骤107,GCS AS选择向UE发送集群业务的方式。
所述GCS AS通过上述恢复指示信息确定受到影响的目标UE,并选择合适的方式向目标UE发送集群业务。如继续通过恢复的MBMS承载发送集群业务。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的控制方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
下面通过具体集群业务流程的实施例来说明本发明的方案。
实施例一
针对MCE选择eNB检测拥塞/过载的场景,实现集群通信拥塞控制的方法如图4所示,包括:
步骤201,GCS AS向MCE发送拥塞/过载检测请求信息。
所述GCS AS通过GCS AS→BM-SC→MBMS GW→MME→MCE发送检测请求信息。所述请求信息至少包括:MBMS SAI。
步骤202,收到请求信息的MCE选择目标eNB(即用于检测拥塞/过载的eNB)并通知eNB。
所述MCE接收到请求信息,将请求信息中的需要检测的SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并通知选中小区所属的eNB作为所述用于检测拥塞/过载的eNB;所述通知可以采用相关M2接口信令,如M2Session start request/M2session update中增加新的请求字段通知所选择的eNB,或者采用新的专用M2接口信令通知所选择的eNB。
如果有多个MCE收到请求信息,如GCS AS指定的SAI对应多个MCE,则每个MCE分别选择一个SAI中的小区,并通知选中小区所属的eNB作为所述用于检测拥塞/过载的eNB。
步骤203,所述用于检测拥塞/过载的eNB检测拥塞/过载。
所述用于检测拥塞/过载的eNB检测MBMS用户面数据拥塞/过载。
步骤204,所述用于检测拥塞/过载的eNB判断是否检测到拥塞/过载,如果是则转向步骤205,否则转向步骤203。
所述用于检测拥塞/过载的eNB根据事先设定的规则判断MBMS用户面数据拥塞/过载,即事先定义了拥塞/过载的判断条件,所述用于检测拥塞/过 载的eNB判断满足该判断条件时则确定发生了拥塞/过载。
步骤205,所述用于检测拥塞/过载的eNB向GCS AS发送拥塞/过载指示信息。
所述用于检测拥塞/过载的eNB通过eNodeB(eNB)→MCE→MME→MBMS GW→BM-SC→GCS AS向GCS AS发送拥塞/过载指示信息。
所述拥塞/过载指示信息包括以下至少一种:拥塞/过载标识,小区标识(ECI或ECGI)和/或SAI,MBMS业务标识(TMGI),拥塞/过载结束标识。
所述发送触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。
步骤206,GCS AS采取行动以减少拥塞/过载的影响。
所述GCS AS首先确定受到影响的目标UE和集群业务,针对拥塞和过载信息采取不同的行动,如拥塞时,GCS AS采用单播承载发送集群业务;过载时,GCS AS将集群业务排队等待过载结束再发送,或者用高优先级的集群业务抢占相关集群业务的资源。
步骤207,所述用于检测拥塞/过载的eNB判断是否检测到拥塞/过载结束,如果是,转向步骤208,否则转向步骤203。
步骤208,所述用于检测拥塞/过载的eNB向GCS AS发送恢复指示信息。
所述发送触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。
步骤209,GCS AS选择向目标UE发送集群业务的方式。
实施例二
针对O&M选择eNB检测拥塞/过载的场景,实现集群通信拥塞控制的方法如图5所示,包括:
步骤301,GCS AS发送检测拥塞/过载检测请求信息。
所述请求信息至少包括:MBMS业务区域标识SAI;进一步在所述请求中可包括拥塞/过载的判断条件。
步骤302,O&M选择用于检测拥塞/过载的eNB并通知eNB.
所述O&M一般指网管系统,所述O&M在需要检测的MBSFN区域选择一个或多个用于检测拥塞/过载的eNB,并通知所选择的eNB;所述通知包括拥塞/过载检测请求信息和MBMS SAI;
需要指出的是:所述用于检测拥塞/过载的eNB已保存拥塞/过载的判断条件或O&M向所选择的eNB指示判断条件。
步骤303,所述用于检测拥塞/过载的eNB检测拥塞/过载。
所述拥塞/过载是指MBMS用户面数据拥塞/过载,具体是指PMCH上发生拥塞/过载。
步骤304,所述用于检测拥塞/过载的eNB判断是否检测到拥塞/过载,如果是,转向步骤305,否则转向步骤303。
所述用于检测拥塞/过载的eNB根据已保存的拥塞/过载判断条件确定是否发生拥塞/过载,如果发生则通知GCS AS,否则继续检测。
步骤305,所述用于检测拥塞/过载的eNB向GCS AS发送拥塞/过载指示信息。
所述用于检测拥塞/过载的eNB通过eNodeB(eNB)→MCE→MME→MBMS GW→BM-SC→GCS AS向GCS AS发送拥塞/过载指示信息。
所述拥塞/过载指示信息包括以下至少一种:拥塞/过载标识,小区标识(ECI或ECGI)和/或SAI,MBMS业务标识(TMGI),拥塞/过载结束标识。
所述发送触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。
步骤306,GCS AS采取行动以减少拥塞/过载的影响。
所述GCS AS首先确定受到影响目标UE和集群业务,针对拥塞和过载信息采取不同的行动,如拥塞时,GCS AS采用单播承载发送集群业务;过载时,GCS AS将集群业务排队等待过载结束再发送,或者用高优先级的集群业务抢占相关集群业务的资源。
步骤307,用于检测拥塞/过载的eNB判断是否检测到拥塞/过载结束,如 果是,转向步骤308,否则转向步骤303。
步骤308,所述用于检测拥塞/过载的eNB向GCS AS发送恢复指示信息。
所述发送触发方式为以下任意一种:事件触发,GCS AS请求触发,上述两者结合,周期性上报。
步骤309,GCS AS选择向目标UE发送集群业务的方式。
实施例三
针对GCS AS指定检测拥塞/过载的eNodeB的场景,实现集群通信拥塞控制的方法如图6所示,包括:
步骤401,GCS AS向eNB发送检测请求信息。
一般在选择用于检测拥塞/过载的eNB之前,所述GCS AS已知MBMS业务的小区信息,即GCS AS需要采用MBMS承载发送GCS业务的小区信息,则GCS AS选择目标小区,根据选中的小区标识可以确定所需的目标eNB。
GCS AS只知道MBMS业务区域信息,GCS AS选择业务区域中的某个eNB用来检测拥塞/过载,如果该用于检测拥塞/过载的eNB检测到拥塞/过载,则说明MBMS业务区域拥塞/过载。有可能GCS AS选择的eNB没检测到拥塞/过载,但目标MBMS业务区域发生了拥塞/过载,为了尽量减少上述情况发生,可以在目标MBMS业务区域选择多个eNB用来检测拥塞/过载。
所述GCS AS通过GCS AS→BM-SC→MBMS GW→MME→MCE发送检测请求信息。所述请求信息包括以下至少一种:MBMS SAI,ECI/ECGI/eNB ID。
步骤402,收到请求的eNB检测拥塞/过载。
所述收到请求的eNB检测MBMS用户面数据拥塞/过载。
步骤403,用于检测拥塞/过载的eNB判断是否检测到拥塞/过载,如果是转向步骤404,否则转向步骤402。
所述用于检测拥塞/过载的eNB根据事先设定的规则判断MBMS用户面数据拥塞/过载,即事先定义了拥塞/过载的判断条件,用于检测拥塞/过载的 eNB判断满足该判断条件时则确定发生了拥塞/过载。
步骤404,所述用于检测拥塞/过载的eNB向GCS AS发送拥塞/过载指示信息。
所述用于检测拥塞/过载的eNB通过eNodeB(eNB)→MCE→MME→MBMS GW→BM-SC→GCS AS向GCS AS发送拥塞/过载指示信息。
所述拥塞/过载指示信息包括以下至少一种:拥塞/过载标识,小区标识(ECI或ECGI)和/或SAI,MBMS业务标识(TMGI),拥塞/过载结束标识。
所述发送触发方式为以下任意一种:事件触发,GCS AS请求触发,上述两者结合,周期性上报。
步骤405,GCS AS采取行动以减少拥塞/过载的影响。
所述GCS AS首先确定受到影响目标UE和集群业务,针对拥塞和过载信息采取不同的行动,如拥塞时,GCS AS采用单播承载发送集群业务;过载时,GCS AS将集群业务排队等待过载结束再发送,或者用高优先级的集群业务抢占相关集群业务的资源。
步骤406,用于检测拥塞/过载的eNB判断是否检测到拥塞/过载结束,如果是,转向步骤407,否则转向步骤402。
步骤407,用于检测拥塞/过载的eNB向GCS AS发送恢复指示信息。
所述发送触发方式为以下任意一种:事件触发,AS请求触发,上述两者结合,周期性上报。
步骤408,GCS AS选择向目标UE发送集群业务的方式。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述实施例一到三中任意的控制方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
本发明实施例还提供了基站侧的集群通信拥塞/过载的控制方法,包括:
被选择用于检测拥塞/过载的基站eNB检测用户面数据拥塞/过载事件;
触发条件满足时,被选中的eNB通过多小区/多播协作实体MCE向GCSAS发送拥塞/过载的指示信息。
所述被选中的eNB向GCS AS发送拥塞/过载的指示信息的步骤包括:
被选中的eNB上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;
或者
被选中的eNB根据GCS AS发送的请求消息中需要上报状态的SAI和TMGI通过MCE上报相应SAI中相应TMGI的状态到GCS AS。
其它实现细节同前文。
本发明实施例还提供了一种集群通信拥塞/过载的控制系统,包括:
选择模块,设置于特定网络设备中,用于选择用于检测用户面数据拥塞/过载的基站eNB,并通知选中的eNB;
检测模块,设置于eNB中,用于当eNB被选中时检测用户面数据拥塞/过载事件;
发送模块,设置于eNB中,用于当触发条件满足时,向GCS AS发送拥塞/过载的指示信息;
处理模块,设置于GCS AS中,用于根据所述被选中的eNB上报的所述指示信息确定MBMS业务区域中发生拥塞/过载开始或结束,并相应选择发送集群业务数据的方式。
可选地,所述特定网络设备包括以下任一种:
多小区/多播协作实体MCE、操作和维护O&M、GCS AS;
当所述选择模块设置于所述MCE中时,所述选择用于检测拥塞/过载的基站eNB是指:
所述选择模块将需要检测的服务器区域标识SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并将选中小区所属的eNB选择用 于检测拥塞/过载;
当所述选择模块设置于所述O&M中时,所述选择用于检测拥塞/过载的基站eNB是指:
所述选择模块在需要检测的多媒体广播单频网MBSFN区域选择一个或多个eNB用于检测拥塞/过载;
当所述选择模块设置于所述GCS AS中时,所述选择用于检测拥塞/过载的基站eNB是指:
所述选择模块选择一个或多个eNB用于检测拥塞/过载。
可选地,所述拥塞/过载的指示信息包括以下至少一种:
拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
其中,所述拥塞/过载标识用于指示网络拥塞或者过载,小区标识用于指示拥塞/过载影响的小区,SAI指示拥塞/过载影响的MBMS业务区域;TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
可选地,所述向GCS AS发送拥塞/过载的指示信息是指:
所述发送模块上报所有发生拥塞/过载的TMGI到MCE,MCE根据QCI/ARP与TMGI的对应关系,选择发生拥塞/过载的特定业务的TMGI上报到GCS AS;
或者
所述GCS AS请求需要上报状态的SAI和TMGI,通过MCE发送请求消息到eNB,所述发送模块通过MCE上报相应SAI中相应TMGI的状态到GCSAS。
可选地,所述用户面数据拥塞/过载事件包括用户面数据拥塞/过载从开始状态转换为结束状态;或者用户面数据拥塞/过载从结束状态转换为开始状态。
可选地,所述触发条件包括以下任意一种:
检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
该控制系统的一个实施例如图7所示,包括:
组通信业务应用服务器GCS AS 81,用于选择用于检测拥塞/过载的eNB和向所选择的eNB发送拥塞/过载请求信息,接收拥塞/过载及恢复指示信息,根据指示信息进行处理,并选择发送集群业务的方式。
操作和维护O&M 82,用于选择eNB 84进行拥塞/过载检测并通知eNB。
多小区/多播协作实体MCE 83,用于接收GCS AS 81发送的请求信息和eNB 84发送的拥塞/过载指示信息,还用于选择eNB 84并通知eNB 84。
基站eNB 84,用于检测拥塞/过载状态,接收GCS AS 81,O&M 82和MCE83的指示信息,通过MCE 83向GCS AS 81发送拥塞/过载指示信息。
为了实现上述方法,本发明实施例还提供了一种拥塞/过载的控制装置,设置于基站eNB中,包括:
检测模块,用于当所述基站被选择用于检测拥塞/过载时,检测用户面数据拥塞/过载事件;
发送模块,用于当触发条件满足时,向GCS AS发送拥塞/过载的指示信息。
该控制装置的一个实施例如图8所示,包括:
接收模块841,用于接收拥塞/过载请求信息和指示信息。
发送模块842,用于发送拥塞/过载的指示信息。
检测模块843,用于检测拥塞/过载事件。
可选地,所述向GCS AS发送拥塞/过载的指示信息是指:
所述发送模块上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;
或者
所述发送模块根据GCS AS发送的请求消息中需要上报状态的SAI和 TMGI通过MCE上报相应SAI中相应TMGI的状态到GCS AS。
该控制装置的其它实现细节可参考前文。
本发明实施例还提供了一种基站,包括上述的控制装置。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。
工业实用性
通过本发明技术方案,能够实现当发生MBMS用户面数据拥塞或过载时,根据部分基站的指示信息确定MBMS业务区域的拥塞/过载,提高了效率,减少网络拥塞或过载对集群业务的影响,提高用户业务体验。因此本发明具有很强的工业实用性。

Claims (23)

  1. 一种拥塞/过载的控制方法,包括:
    选择用于检测用户面数据拥塞/过载的基站eNB,并通知被选中的eNB;
    所述被选中的eNB检测用户面数据拥塞/过载事件;
    触发条件满足时,所述被选中的eNB向组通信业务应用服务器GCS AS发送拥塞/过载的指示信息;
    所述GCS AS根据所述被选中的eNB上报的所述指示信息确定多媒体广播多播业务MBMS业务区域中发生拥塞/过载开始或结束,并选择发送集群业务数据的方式。
  2. 如权利要求1所述的拥塞/过载的控制方法,其中,所述选择用于检测用户面数据拥塞/过载的基站eNB的步骤包括:
    多小区/多播协作实体MCE将需要检测的服务器区域标识SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并将该监测小区所属的eNB作为用于检测用户面数据拥塞/过载的eNB;或者,
    操作和维护O&M在需要检测的多媒体广播单频网MBSFN区域选择一个或多个eNB作为用于检测用户面数据拥塞/过载的eNB;或者,
    所述GCS AS选择一个或多个eNB作为用于检测用户面数据拥塞/过载的eNB。
  3. 如权利要求1所述的拥塞/过载的控制方法,其中,所述拥塞/过载的指示信息包括以下信息中的至少一种:
    拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
    其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
  4. 如权利要求1所述的拥塞/过载的控制方法,其中,所述被选中的eNB 向GCS AS发送拥塞/过载的指示信息的步骤包括:
    所述被选中的eNB上报所有发生拥塞/过载的TMGI到MCE,所述MCE根据服务质量等级标识QCI/分配保留优先级ARP与所述TMGI的对应关系,选择发生拥塞/过载的特定业务的TMGI上报到所述GCS AS;或者,
    所述GCS AS请求需要上报状态的SAI和所述TMGI,所述MCE发送请求消息到被选中的eNB,收到请求消息的eNB通过所述MCE向所述GCS AS上报所述SAI中所述TMGI的状态。
  5. 如权利要求1所述的拥塞/过载的控制方法,其中,所述用户面数据拥塞/过载事件包括:
    用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
  6. 如权利要求1所述的拥塞/过载的控制方法,其中,所述触发条件包括以下条件中的任意一种:
    检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
  7. 一种拥塞/过载的控制方法,包括:
    被选择用于检测拥塞/过载的基站eNB检测用户面数据拥塞/过载事件;
    触发条件满足时,所述被选中的eNB向GCS AS发送拥塞/过载的指示信息。
  8. 如权利要求7所述的拥塞/过载的控制方法,其中,所述拥塞/过载的指示信息包括以下信息中的至少一种:
    拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
    其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
  9. 如权利要求7所述的拥塞/过载的控制方法,其中,所述被选中的eNB向GCS AS发送拥塞/过载的指示信息的步骤包括:
    所述被选中的eNB上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;或者,
    所述被选中的eNB根据GCS AS发送的请求消息中需要上报状态的SAI和TMGI通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
  10. 如权利要求7所述的拥塞/过载的控制方法,其中,所述用户面数据拥塞/过载事件包括:
    用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
  11. 如权利要求7所述的拥塞/过载的控制方法,其中,所述触发条件包括以下条件中的任意一种:
    检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
  12. 一种拥塞/过载的控制系统,包括选择模块、检测模块、发送模块和处理模块,其中:
    所述选择模块,设置于网络设备中,设置成:选择用于检测用户面数据拥塞/过载的基站eNB,并通知被选中的eNB;
    所述检测模块,设置于eNB中,设置成:当该eNB被选中时检测用户面数据拥塞/过载事件;
    所述发送模块,设置于该eNB中,设置成:当触发条件满足时,向GCS AS发送拥塞/过载的指示信息;
    所述处理模块,设置于GCS AS中,设置成:根据所述被选中的eNB上报的所述指示信息确定MBMS业务区域中发生拥塞/过载开始或结束,并相应选择发送集群业务数据的方式。
  13. 如权利要求12所述的拥塞/过载的控制系统,其中,所述网络设备包括以下设备中的任一种:
    多小区/多播协作实体MCE、操作和维护O&M、GCS AS;
    所述选择模块设置成按照如下方式选择用于检测拥塞/过载的eNB:
    当所述选择模块设置于所述MCE中时,所述选择模块将需要检测的服务器区域标识SAI映射到多个小区,并在多个小区中选择一个或多个作为监测小区,并将该监测小区所属的eNB作为用于检测拥塞/过载的eNB;
    当所述选择模块设置于所述O&M中时,所述选择模块在需要检测的多媒体广播单频网MBSFN区域选择一个或多个eNB作为用于检测拥塞/过载的eNB;
    当所述选择模块设置于所述GCS AS中时,所述选择模块选择一个或多个eNB作为用于检测拥塞/过载的eNB。
  14. 如权利要求12所述的拥塞/过载的控制系统,其中,所述拥塞/过载的指示信息包括以下信息中的至少一种:
    拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
    其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
  15. 如权利要求12所述的拥塞/过载的控制系统,其中,所述发送模块设置成按照如下方式向GCS AS发送拥塞/过载的指示信息:
    所述发送模块上报所有发生拥塞/过载的TMGI到MCE,所述MCE根据QCI/ARP与TMGI的对应关系,选择发生拥塞/过载的特定业务的TMGI上报到所述GCS AS;或者,
    所述GCS AS请求需要上报状态的SAI和TMGI,通过所述MCE发送请求消息到所述eNB,所述发送模块通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
  16. 如权利要求12所述的拥塞/过载的控制系统,其中,所述用户面数据拥塞/过载事件包括:
    用户面数据拥塞/过载从开始状态转换为结束状态;或者,用户面数据拥塞/过载从结束状态转换为开始状态。
  17. 如权利要求12所述的拥塞/过载的控制系统,其中,所述触发条件包括以下条件中的任意一种:
    检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
  18. 一种拥塞/过载的控制装置,设置于基站中,包括检测模块和发送模块,其中:
    所述检测模块设置成:当所述基站被选择用于检测拥塞/过载时,检测用户面数据拥塞/过载事件;
    所述发送模块设置成:当触发条件满足时,向GCS AS发送拥塞/过载的指示信息。
  19. 如权利要求18所述的拥塞/过载的控制装置,其中,所述拥塞/过载的指示信息包括以下信息中的至少一种:
    拥塞/过载标识,小区标识和/或SAI,临时移动组标识TMGI,拥塞/过载开始标识;
    其中,所述拥塞/过载标识用于指示网络拥塞或者过载,所述小区标识用于指示拥塞/过载影响的小区,所述SAI指示拥塞/过载影响的MBMS业务区域;所述TMGI用于指示拥塞/过载影响的集群业务;所述拥塞/过载开始标识用于指示拥塞/过载是开始或者结束。
  20. 如权利要求18所述的拥塞/过载的控制装置,其中,所述发送模块设置成按照如下方式向GCS AS发送拥塞/过载的指示信息:
    所述发送模块上报所有发生拥塞/过载的TMGI到多小区/多播协作实体MCE;或者,
    所述发送模块根据所述GCS AS发送的请求消息中需要上报状态的SAI和TMGI通过所述MCE上报所述SAI中所述TMGI的状态到所述GCS AS。
  21. 如权利要求18所述的拥塞/过载的控制装置,其中,所述用户面数据拥塞/过载事件包括:
    用户面数据拥塞/过载从开始状态转换为结束状态,或者用户面数据拥塞/过载从结束状态转换为开始状态。
  22. 如权利要求18所述的拥塞/过载的控制装置,其中,所述触发条件包括以下条件中的任意一种:
    检测到所述用户面数据拥塞/过载事件、GCS AS请求发送、GCS AS请求发送并且检测到所述用户面数据拥塞/过载事件、周期性上报。
  23. 一种基站,包括如权利要求18~22中任一项所述的控制装置。
PCT/CN2015/074799 2014-09-24 2015-03-20 拥塞或过载的控制方法,系统,装置和基站 WO2015184901A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15803062.7A EP3200503A4 (en) 2014-09-24 2015-03-20 Congestion/overload control method, system and device, and base station
US15/514,135 US10334480B2 (en) 2014-09-24 2015-03-20 Method, system, device for controlling congestion or overload and evolved node B (eNB)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410493801.6A CN104301931A (zh) 2014-09-24 2014-09-24 拥塞/过载的控制方法,系统,装置和基站
CN201410493801.6 2014-09-24

Publications (1)

Publication Number Publication Date
WO2015184901A1 true WO2015184901A1 (zh) 2015-12-10

Family

ID=52321450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074799 WO2015184901A1 (zh) 2014-09-24 2015-03-20 拥塞或过载的控制方法,系统,装置和基站

Country Status (4)

Country Link
US (1) US10334480B2 (zh)
EP (1) EP3200503A4 (zh)
CN (1) CN104301931A (zh)
WO (1) WO2015184901A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323723A (zh) 2014-07-31 2016-02-10 中兴通讯股份有限公司 基于mbms承载的集群通信中查询节点状态的方法及系统
CN105323722B (zh) * 2014-07-31 2020-05-26 中兴通讯股份有限公司 基于mbms承载的集群通信中拥塞状态上报方法及系统
CN104301931A (zh) 2014-09-24 2015-01-21 中兴通讯股份有限公司 拥塞/过载的控制方法,系统,装置和基站
CN106162565B (zh) * 2015-04-09 2021-06-01 北京三星通信技术研究有限公司 传输组通信业务数据的方法、系统及装置
WO2016178526A1 (ko) * 2015-05-07 2016-11-10 엘지전자 주식회사 Mme가 mce와 연결된 기지국 정보를 수신하는 방법 및 장치
CN107040996B (zh) * 2016-02-04 2023-11-21 中兴通讯股份有限公司 车联网业务标识的处理方法及装置
US11076322B2 (en) * 2016-09-12 2021-07-27 Sk Telecom Co., Ltd. Internet of things network device and method for excluding a base station based on a received pushdata message
US11812300B2 (en) * 2021-07-08 2023-11-07 Cisco Technology, Inc. Traffic engineering in 5G and LTE CUPS architecture
WO2024093163A1 (en) * 2023-04-25 2024-05-10 Lenovo (Beijing) Limited Network devices and methods for communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499760A (zh) * 2002-11-05 2004-05-26 ��������ͨ�ż����о����޹�˾ 多媒体广播与组播业务在Iu接口的信令承载连接方法
CN1518243A (zh) * 2003-01-10 2004-08-04 �ձ�������ʽ���� 移动通信系统、无线电终端、网络控制器及操作控制方法
CN102905314A (zh) * 2011-07-29 2013-01-30 中兴通讯股份有限公司 过载控制停止方法、装置及系统
CN104301931A (zh) * 2014-09-24 2015-01-21 中兴通讯股份有限公司 拥塞/过载的控制方法,系统,装置和基站

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281090A1 (en) * 2011-01-07 2013-10-24 Mitsubishi Electric Corporation Communication system
CN102291688B (zh) * 2011-09-23 2014-03-19 电信科学技术研究院 一种基于mbms业务的切换方法和设备
EP2787786B1 (en) * 2011-10-10 2018-07-18 Samsung Electronics Co., Ltd Method and device for a random access of a secondary cell in a mobile communication system using Carrier Aggregation
CN102572713B (zh) * 2012-01-30 2014-08-20 电信科学技术研究院 一种mbms接收和能力传输方法及其装置
US9723523B2 (en) * 2012-08-03 2017-08-01 Blackberry Limited Maintaining MBMS continuity
WO2014126421A1 (ko) * 2013-02-14 2014-08-21 엘지전자 주식회사 무선 통신 시스템에서 mbms 정보 보고 방법 및 이를 지원하는 장치
US10219245B2 (en) * 2013-07-01 2019-02-26 Nec Corporation Method for providing multicast/broadcast service continuity for mobile terminals
WO2015060608A1 (en) * 2013-10-23 2015-04-30 Lg Electronics Inc. Method of selectively trnsmitting mbms service level information in wireless communication system and apparatus therefor
WO2015065053A1 (en) * 2013-10-31 2015-05-07 Lg Electronics Inc. Method of receiving mbms service in wireless communication system and apparatus thereof
CN104955065A (zh) * 2014-03-31 2015-09-30 北京三星通信技术研究有限公司 进行用户统计的方法、暂停数据传输的方法和装置
CN105472663B (zh) * 2014-07-04 2020-12-25 北京三星通信技术研究有限公司 无线资源管理的方法和装置
WO2016053066A1 (ko) * 2014-10-03 2016-04-07 엘지전자(주) 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499760A (zh) * 2002-11-05 2004-05-26 ��������ͨ�ż����о����޹�˾ 多媒体广播与组播业务在Iu接口的信令承载连接方法
CN1518243A (zh) * 2003-01-10 2004-08-04 �ձ�������ʽ���� 移动通信系统、无线电终端、网络控制器及操作控制方法
CN102905314A (zh) * 2011-07-29 2013-01-30 中兴通讯股份有限公司 过载控制停止方法、装置及系统
CN104301931A (zh) * 2014-09-24 2015-01-21 中兴通讯股份有限公司 拥塞/过载的控制方法,系统,装置和基站

Also Published As

Publication number Publication date
CN104301931A (zh) 2015-01-21
US10334480B2 (en) 2019-06-25
EP3200503A4 (en) 2017-10-18
EP3200503A1 (en) 2017-08-02
US20170295519A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US10687179B2 (en) Service continuity for group communication over LTE eMBMS
WO2015184901A1 (zh) 拥塞或过载的控制方法,系统,装置和基站
WO2016045325A1 (zh) 指示信息的确定、处理以及请求消息的处理方法、装置及计算机存储介质
EP3198958B1 (en) Managing communication resources
EP3165035B1 (en) Methods and corresponding apparatuses for radio resources management
EP3051846B1 (en) Cluster communication method and user equipment
CN105376718B (zh) Lte集群通信的方法、用户设备及第一网元设备
WO2016015465A1 (zh) 基于mbms承载的集群通信中拥塞状态上报方法及系统、存储介质
WO2015117376A1 (zh) 建立lte集群通信承载的方法、用户设备及第一网元设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15514135

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015803062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803062

Country of ref document: EP