WO2015182840A1 - Method for preparing monodispersed iron oxide nanoparticles using super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby - Google Patents

Method for preparing monodispersed iron oxide nanoparticles using super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby Download PDF

Info

Publication number
WO2015182840A1
WO2015182840A1 PCT/KR2014/011747 KR2014011747W WO2015182840A1 WO 2015182840 A1 WO2015182840 A1 WO 2015182840A1 KR 2014011747 W KR2014011747 W KR 2014011747W WO 2015182840 A1 WO2015182840 A1 WO 2015182840A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
oxide nanoparticles
pressure homogenizer
high pressure
ultra
Prior art date
Application number
PCT/KR2014/011747
Other languages
French (fr)
Korean (ko)
Inventor
조준희
김현효
Original Assignee
(주)일신오토클레이브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)일신오토클레이브 filed Critical (주)일신오토클레이브
Publication of WO2015182840A1 publication Critical patent/WO2015182840A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides

Definitions

  • iron oxide nanoparticles when the particle size falls below a certain critical size, it becomes a single magnetic domain, where the iron oxide particles have superparamagnetism, and the kinetic energy rather than the attractive force between the particles is increased. Increase to disperse in a suitable solvent to form a stable colloidal state
  • it is not easy to control the size of iron oxide nanoparticles by conventional methods of preparing nanoparticles such as sol-gel method, coprecipitation method, pyrolysis of organometallic precursor, high temperature oxidation / reduction of metal ions and precipitation, oxidation / reduction in reverse micelles.
  • the particle size distribution ranges from a few nm to several hundred nm, so the magnetic properties and structural studies according to the iron oxide size have not been accurate until recently.
  • J. AM. Chem. Soc. 2001, 123, 12798 discloses a method for synthesizing uniform magnetic iron oxide nanoparticles without the size selection process from pyrolysis of iron-oleic acid complexes made from the reaction of pentacarbonyl iron with oleic acid.
  • the production temperature is high and the production time is long, such as iron oxide manufacturing temperature is more than 100 °C, the reaction takes a total of three hours or more in two steps.
  • the method is not suitable for the production of iron oxide nanoparticles because Fe (CO) 5 used as a raw material for producing iron oxide is very toxic, expensive and difficult to store.
  • Korean Patent Publication No. 10-2006-0012346 (2006.02.08.) Discloses a method for synthesizing nanomagnetic particles having a uniform size from pyrolysis of an iron-oleate complex made from a reaction of ferrous chloride and sodium oleate. Started.
  • the manufacturing temperature is high and the process is complex, such as iron oxide manufacturing temperature is more than 300 °C, and to reduce the pressure to 0.3 Torr.
  • An object of the present invention is to solve the above problems, by passing the iron hydroxide solution to the ultra-high pressure homogenizer, does not require the iron oxide nanoparticle separation process, the process is simplified, the process time is shortened and at the same time using an environmentally friendly ultra-high pressure homogenizer It is to provide a method for producing monodisperse iron oxide nanoparticles and monodisperse iron oxide nanoparticles prepared accordingly.
  • Another object of the present invention is to provide a method for producing monodisperse iron oxide nanoparticles using ultra-high pressure homogenizer which can economically produce iron oxide nanoparticles having excellent crystallinity and uniform size, and monodisperse iron oxide nanoparticles prepared accordingly. It is.
  • the present invention relates to a method for producing monodisperse iron oxide nanoparticles and monodisperse iron oxide nanoparticles prepared accordingly.
  • FIG. 1 As an example of the ultrahigh pressure homogenizer in the present invention.
  • the pressure pump may move the fluid to the micro orifice nozzle chamber by applying pressure to the fluid.
  • the monodisperse iron oxide nanoparticles of the present invention are manufactured by the above-described manufacturing method, so the separation process of the monodisperse iron oxide nanoparticles is not necessary, so the process is simplified, the process time is shortened, and the iron oxide nanoparticles of uniform size with excellent crystallinity It is characterized in that it is prepared.
  • the present invention is characterized by the production of monodisperse iron oxide nanoparticles by simplifying the process and shortening the process time by using a radical reaction by an ultrahigh pressure homogenizer without adding an additional oxidant and hydrothermal synthesis.
  • the iron hydroxide solution of step (a) may be prepared by dissolving the iron oxide precursor in distilled water to prepare a precursor aqueous solution, and then adding a precipitant solution.
  • the iron oxide precursor may be any one or two or more selected from the group consisting of, for example, ferrous chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ), and iron acetate (Fe (CH 3 COO) 2 ). Can be used.
  • the concentration of the precursor aqueous solution may determine the size and uniformity of the particles. Therefore, it is preferable that it is 0.01-5 mol, It is preferable that it is 0.1-1 mol more preferably.
  • the precipitant solution is used to prepare Fe (OH) 2 precipitate using Fe 2+ ion solution.
  • any one or two or more selected from the group consisting of ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, tetramethylammonium, and the like can be used, and the price is low, and the pH control is Sodium hydroxide is the easiest to use.
  • the iron hydroxide solution it is preferable to adjust the iron hydroxide solution to basic using the precipitant solution, preferably to adjust the pH to 9 to 13, more preferably to 10 to 12.
  • the pH of the iron hydroxide solution is 9 or less, Fe 2+ may remain in some Fe 2+ state without changing to Fe (OH) 2 , and if the pH exceeds 13, the number of washing increases the pH Is preferably in the above range.
  • the fine orifice nozzle chamber may generate a high energy by applying a high pressure as the diameter is small, but is not limited because the throughput per minute may be reduced, but it is preferable to use, for example, a diameter of 60 to 250 ⁇ m. .
  • the temperature of the fine orifice nozzle chamber is preferably 20 to 80 ° C. in order not to affect the physical properties of the iron hydroxide solution, but is not necessarily limited thereto.
  • the micro-orifice nozzle chamber that generates high energy may act as an autoclave and thus affect nucleation and crystal growth.
  • the method for preparing monodisperse iron oxide nanoparticles according to the present invention passes through an ultra-high pressure homogenizer at room temperature to produce monodisperse iron oxide. Nanoparticles can be synthesized, productivity is expected to increase as the process time is shortened, there is an advantage that the manufacturing equipment is simplified.
  • the radical reaction of water molecules according to the ultrahigh pressure homogenizer of the present invention may be represented by the following Scheme 1, but is not necessarily limited thereto.
  • Preparation of iron oxide nanoparticles by the ultrahigh pressure homogenizer of the present invention can be represented by the following scheme 2, but is not necessarily limited thereto.
  • the monodisperse iron oxide is Fe 2 + and Fe 3 + is present as a mixed oxide of FeO + Fe 2 O 3 . Therefore, Fe 2+ is oxidized to both prevents the oxidation to Fe 3+ exist with the Fe 2+ and Fe 3+ - the pressure of the ultra-high pressure homogenizer to adjust the reducing atmosphere 500 ⁇ 2,000 bar, number of passes 1 to 20 It is preferred to be ash.
  • Step (b) is a step of washing and drying the precipitate of step (a).
  • the washing is preferably to use distilled water, methanol and ethanol, but is not limited to any solution that can be easily removed after washing.
  • the drying is preferably dried for 3 to 10 hours at 50 ⁇ 100 °C to remove the moisture of the sample.
  • the monodisperse iron oxide nanoparticles according to the present invention have a uniform particle size distribution, high crystallinity using an ultrahigh pressure homogenizer, and easily control the size and physical properties of the nanoparticles produced by controlling the pressure and the number of passes of the ultrahigh pressure homogenizer. It is characterized by being adjustable.
  • monodisperse iron oxide nanoparticles of the present invention exhibit a uniform particle size distribution and high crystallinity
  • applications of iron oxide nanoparticles in magnetic sensors, magneto-optical devices, magnetic ink, heavy metal wastewater treatment, MRI contrast agents, drug delivery systems, and thermotherapy It can be usefully used in the field.
  • Figure 1 shows a schematic diagram of the ultra-high pressure homogenizer used in the present invention.
  • Figure 2 shows the interior of the micro orifice nozzle chamber of the ultrahigh pressure homogenizer of the present invention.
  • FIG. 5 is a graph showing the size of the iron oxide particles calculated by the Scherrer equation from powder X-ray diffraction analysis of the iron oxide nanoparticles prepared according to Examples 1 to 9 and Comparative Example 1 according to the present invention.
  • FIG. 7 is a transmission electron micrograph of the iron oxide nanoparticles prepared in Examples 7, 8, 9 and Comparative Example 1 according to the present invention.
  • Example 8 is a transmission electron micrograph of the iron oxide nanoparticles prepared in Example 9 and Comparative Example 2 according to the present invention.
  • FIG. 9 is a graph showing the magnetic properties of the iron oxide nanoparticles prepared in Examples 1, 4, 7, 8, 9 and Comparative Examples 1, 2 according to the present invention.
  • ferrous chloride (Junsei) was added to 100 ml of an aqueous solution to prepare a 0.1 M ferric chloride solution.
  • 100 ml of 0.1 M ferrous chloride solution prepared above was added 0.85 M sodium hydroxide solution prepared by dissolving 1.02 g of sodium hydroxide (Samjeon Pure Chemical Co., Ltd.) in 30 ml distilled water, and mixed at room temperature for 5 minutes to prepare a green ferrous hydroxide suspension. .
  • the ferrous hydroxide suspension was passed once through an ultrahigh pressure homogenizer (ILSIN autoclave, NH-300) at a pressure of 500 bar to obtain a black precipitate.
  • ILSIN autoclave Ultrahigh pressure homogenizer
  • Iron oxide nanoparticles were prepared in the same manner as in Example 1, except that the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer three times in Example 1, and the results of measuring the physical properties by the above method are shown in Tables 1, 4, 5 and 9 is shown.
  • Iron oxide nanoparticles were prepared in the same manner as in Example 1, except that the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer five times in Example 1, and the results of measuring the physical properties by the above method are shown in Tables 1, 4, 5 and 9 is shown.
  • Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,000 bar was applied in Example 1, and the results of measuring the physical properties by the above method are shown in Table 1, FIGS. 4 to 6, and FIG. 9. .
  • Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,500 bar was applied in Example 1 and the ferrous hydroxide suspension was passed through an ultrahigh pressure homogenizer three times. 1, 4, 5, 7 and 9 are shown.
  • the particles produced in the above example was found to be iron oxide (Fe 3 O 4 ), Comparative Example 1 was not mixed with the iron oxide and FeOOH was not passed through the ultra-high pressure homogenizer. From this, it was confirmed that the iron oxide prepared using the ultrahigh pressure homogenizer was synthesized with pure iron oxide having high crystallinity and no impurities.
  • Grid used a 3 mm diameter copper grid coated with carbon.
  • the shape of the iron oxide nanoparticles prepared in Examples 1, 4, 7, 8 and 9 according to the present invention was shown as a spherical shape, the average size of the iron oxide nanoparticles are 24, It confirmed that it was 22, 20, 17, 22 nm.
  • the particles prepared in Comparative Example 1 were found not to be a single phase such as spherical iron oxide and rod-shaped FeOOH, and the size distribution was also observed to be nonuniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)

Abstract

The present invention relates to a method for preparing monodispersed iron oxide nanoparticles using a super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby. More specifically, the present invention relates to a method for preparing monodispersed iron oxide nanoparticles using a super-high pressure homogenizer, the method comprising the steps of: a) mixing an iron oxide precursor, distilled water, and a precipitant solution to prepare an iron hydroxide solution, and then passing the iron hydroxide solution through a super-high pressure homogenizer at a pressure of 500-2,000 bar at room temperature to obtain a precipitate; and b) washing the precipitate obtained in step a), followed by drying, and to monodispersed iron oxide nanoparticles prepared thereby.

Description

초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자Method for producing monodisperse iron oxide nanoparticles using ultra high pressure homogenizer and monodisperse iron oxide nanoparticles prepared accordingly
본 발명은 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자에 관한 것이다. 보다 구체적으로는, 초고압 균질기를 이용한 입자크기가 10 ~ 30 ㎚인 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자에 관한 것이며, 본 발명의 단분산 산화철 나노입자는 자기센서, 자기광학소자, 자성잉크, 중금속 폐수처리, MRI 조영제, 약물 전달시스템 및 온열치료 등의 산화철 나노입자 응용분야에 유용하게 이용할 수 있다.The present invention relates to a method for producing monodisperse iron oxide nanoparticles using an ultrahigh pressure homogenizer, and monodisperse iron oxide nanoparticles prepared accordingly. More specifically, the present invention relates to a method for producing monodisperse iron oxide nanoparticles having a particle size of 10 to 30 nm using an ultrahigh pressure homogenizer, and monodisperse iron oxide nanoparticles prepared according to the present invention. , Magneto-optical device, magnetic ink, heavy metal wastewater treatment, MRI contrast agent, drug delivery system and heat treatment, etc.
입자가 나노미터 크기로 감소하면 덩어리(Bulk) 크기에서 나타나지 않던 새로운 전기적, 광학적 또는 자기적 특성을 보인다. 나노 입자에서는 덩어리와 달리 표면의 비율이 크기 때문이며, 표면비는 입자의 크기에 의존하게 되므로 결국 나노 입자의 크기가 물리, 화학적인 성질을 결정하는데 가장 중요한 요소가 된다.When the particles are reduced to nanometer size, they exhibit new electrical, optical or magnetic properties that did not appear at bulk size. Unlike nanoparticles, nanoparticles have a large proportion of the surface, and the surface ratio depends on the size of the particles. Therefore, the size of the nanoparticles is the most important factor in determining physical and chemical properties.
산화철 나노입자의 경우, 그 입자의 크기가 어떤 임계 크기 이하로 되면 단일 자기구역(Single magnetic domain)화 되는데, 이때 산화철 입자는 초상자성(Superparamagnetism)을 띠게 되고, 입자들 사이의 인력보다는 운동 에너지가 증가하여 적절한 용매 안에서 분산되어 안정한 콜로이드 상태가 된다. 하지만 졸겔법, 공침법, 유기금속 전구체의 열분해, 금속 이온들의 고온 산화·환원 및 역마이셀 내에서의 침전·산화·환원 등 종래의 나노입자의 제조방법으로는 산화철 나노입자의 크기 조절이 쉽지 않으며, 입도 분포도 수 ㎚에서 수백 ㎚까지 너무 넓어 산화철 크기에 따른 자기적 특성 및 구조 연구는 최근까지 정확한 결과가 많지 않다.In the case of iron oxide nanoparticles, when the particle size falls below a certain critical size, it becomes a single magnetic domain, where the iron oxide particles have superparamagnetism, and the kinetic energy rather than the attractive force between the particles is increased. Increase to disperse in a suitable solvent to form a stable colloidal state However, it is not easy to control the size of iron oxide nanoparticles by conventional methods of preparing nanoparticles such as sol-gel method, coprecipitation method, pyrolysis of organometallic precursor, high temperature oxidation / reduction of metal ions and precipitation, oxidation / reduction in reverse micelles. However, the particle size distribution ranges from a few nm to several hundred nm, so the magnetic properties and structural studies according to the iron oxide size have not been accurate until recently.
또한, 유기금속 전구체의 열분해, 금속 이온들의 고온 산화·환원 등의 방법은 고온에서 반응이 일어나고 공정이 복잡하기 때문에 보다 효율적이고 균일한 산화철 나노입자의 합성방법이 필요하다.In addition, methods such as pyrolysis of organometallic precursors and high temperature oxidation and reduction of metal ions require a more efficient and uniform method of synthesizing iron oxide nanoparticles because the reaction takes place at a high temperature and the process is complicated.
먼저 J. AM. Chem. Soc. 2001, 123, 12798에서는 펜타카르보닐 철과 올레인산의 반응으로부터 만들어진 철-올레인산 착화합물의 열분해로부터, 크기 선택 과정 없이, 균일한 자성 철산화물 나노입자들의 합성방법을 개시하였다. 그러나 산화철 제조 온도가 100℃ 이상이고, 반응이 두 단계로 총 3시간 이상 걸리는 등 제조 온도가 높고 제조 시간이 길다는 문제점이 있었다. 또한, 산화철 제조 원료로 사용된 Fe(CO)5는 매우 유독하고 고가이면서 보관이 어렵기 때문에 상기 방법은 산화철 나노입자 제조에 적합하지 않는다.First, J. AM. Chem. Soc. 2001, 123, 12798 discloses a method for synthesizing uniform magnetic iron oxide nanoparticles without the size selection process from pyrolysis of iron-oleic acid complexes made from the reaction of pentacarbonyl iron with oleic acid. However, there is a problem that the production temperature is high and the production time is long, such as iron oxide manufacturing temperature is more than 100 ℃, the reaction takes a total of three hours or more in two steps. In addition, the method is not suitable for the production of iron oxide nanoparticles because Fe (CO) 5 used as a raw material for producing iron oxide is very toxic, expensive and difficult to store.
두 번째로 대한민국 공개특허공보 제10-2006-0012346호(2006.02.08.)에서는 염화제일철과 소듐올레이트의 반응으로부터 만들어진 철-올레이트 착화합물의 열분해로부터, 균일한 크기의 나노자성체 입자의 합성방법을 개시하였다. 그러나 산화철 제조 온도가 300℃ 이상이고, 0.3 Torr로 감압을 해야 하는 등 제조 온도가 높고 공정이 복합한 문제점이 있었다. Secondly, Korean Patent Publication No. 10-2006-0012346 (2006.02.08.) Discloses a method for synthesizing nanomagnetic particles having a uniform size from pyrolysis of an iron-oleate complex made from a reaction of ferrous chloride and sodium oleate. Started. However, there is a problem in that the manufacturing temperature is high and the process is complex, such as iron oxide manufacturing temperature is more than 300 ℃, and to reduce the pressure to 0.3 Torr.
세 번째로 Journal of Alloys and Compouns, 2009, 475, 898에서는 황산제일철 용액에 암모니아수를 첨가하여 만들어진 수산화제일철(Fe(OH)2)에 산화제로 과산화수소를 첨가하여 수열합성으로부터 마그네타이트 나노입자의 합성방법을 개시하였다. 그러나 분산제로 폴리에틸렌글리콜 고분자를 첨가하여 수산화제일철 용액을 제조하고 산화제로 과산화수소를 첨가하여 160℃에서 5 ~ 8시간 수열합성과정을 거치는 등 제조 온도가 높고 장시간의 제조시간을 필요로 하기 때문에 산업적으로 대량생산에 효과적이지 않았다.Third, Journal of Alloys and Compouns, 2009, 475, 898 describes the synthesis of magnetite nanoparticles from hydrothermal synthesis by adding hydrogen peroxide as an oxidant to ferrous hydroxide (Fe (OH) 2 ), which is made by adding ammonia water to ferrous sulfate solution. Started. However, due to the high production temperature and long production time, such as ferrous hydroxide solution by adding polyethyleneglycol polymer as a dispersant and hydrogen peroxide as an oxidizer, it is subjected to hydrothermal synthesis at 160 ° C for 5-8 hours. It was not effective in production.
이에, 본 발명자들은 종래 산화철 나노입자 제조방법의 단점인 고온에서의 복잡한 공정, 장시간의 제조시간, 입자의 넓은 입도 분포, 독성이 있는 계면활성제 및 산화제 사용 등의 문제점을 해결하기 위해 연구하던 중 초고압 균질기를 통한 합성법에 의해 상온에서 간단한 공정으로 결정성이 우수하고 균일한 크기의 산화철 나노입자를 경제적으로 제조할 수 있는 단분산 산화철 나노입자 제조방법을 개발하고, 본 발명을 완성하였다.Therefore, the inventors of the present invention while studying to solve the problems of the complicated process at a high temperature, a long manufacturing time, a wide particle size distribution of the particles, the use of toxic surfactants and oxidants, which is a disadvantage of the conventional iron oxide nanoparticle manufacturing method The synthesis method through a homogenizer has developed a method for producing monodisperse iron oxide nanoparticles which can economically prepare iron oxide nanoparticles having excellent crystallinity and uniform size in a simple process at room temperature, and completed the present invention.
본 발명의 목적은 상기의 문제점을 해결하기 위한 것으로, 수산화철 용액을 초고압 균질기에 통과시킴으로써, 산화철 나노입자 분리 과정이 필요하지 않고, 공정이 단순화되며, 공정시간이 단축됨과 동시에 친환경적인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자를 제공하는 것이다.An object of the present invention is to solve the above problems, by passing the iron hydroxide solution to the ultra-high pressure homogenizer, does not require the iron oxide nanoparticle separation process, the process is simplified, the process time is shortened and at the same time using an environmentally friendly ultra-high pressure homogenizer It is to provide a method for producing monodisperse iron oxide nanoparticles and monodisperse iron oxide nanoparticles prepared accordingly.
본 발명의 다른 목적은, 결정성이 우수하고 균일한 크기의 산화철 나노입자를 경제적으로 제조할 수 있는 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자를 제공하는 것이다. Another object of the present invention is to provide a method for producing monodisperse iron oxide nanoparticles using ultra-high pressure homogenizer which can economically produce iron oxide nanoparticles having excellent crystallinity and uniform size, and monodisperse iron oxide nanoparticles prepared accordingly. It is.
본 발명의 또 다른 목적은, 별도의 산화제, 계면활성제 및 라디칼 제거제 첨가 없이 초고압 균질기의 라디칼 반응을 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자를 제공하는 것이다. It is still another object of the present invention to provide a method for preparing monodisperse iron oxide nanoparticles using a radical reaction of an ultrahigh pressure homogenizer without the addition of a separate oxidizing agent, a surfactant and a radical scavenger, and monodisperse iron oxide nanoparticles prepared accordingly.
본 발명은 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자에 관한 것이다.The present invention relates to a method for producing monodisperse iron oxide nanoparticles and monodisperse iron oxide nanoparticles prepared accordingly.
본 발명에서 초고압 균질기의 일예로 도 1을 참고할 수 있다.Reference may be made to FIG. 1 as an example of the ultrahigh pressure homogenizer in the present invention.
하기 도 1의 초고압 균질기는, 시료 주입구, 유체에 압력을 가하여 주는 압력펌프, 미세 오리피스 노즐 챔버, 열교환기 및 배출구로 이루어 질 수 있다. The ultrahigh pressure homogenizer of FIG. 1 may include a sample inlet, a pressure pump for applying pressure to a fluid, a fine orifice nozzle chamber, a heat exchanger, and an outlet.
상기 압력펌프는 유체에 압력을 가함으로써, 유체를 미세 오리피스 노즐 챔버로 이동시켜 줄 수 있다.The pressure pump may move the fluid to the micro orifice nozzle chamber by applying pressure to the fluid.
하기 도 2는 미세 오리피스 노즐 챔버의 내부의 일부를 도시한 것이다. 본 발명의 일예로, 챔버에 물을 통과시키는 경우, 물 분자가 해리 되면서 생성되는 OH라디칼들과 이들의 결합으로 산화제인 H2O2가 생성되며, 별도의 산화제의 첨가 없이 단분산 산화철 나노입자를 제조할 수 있다. 또한, 상기 열교환기는 챔버로 유체가 통과하는 경우 발생하는 일부 열을 식혀주기 위한 역할을 할 수 있다.Figure 2 below shows a part of the interior of the micro orifice nozzle chamber. In one embodiment of the present invention, when water is passed through the chamber, OH radicals generated by dissociation of water molecules and their combinations produce H 2 O 2 , an oxidizing agent, and monodisperse iron oxide nanoparticles without the addition of an additional oxidizing agent. Can be prepared. In addition, the heat exchanger may serve to cool some heat generated when the fluid passes through the chamber.
이하는 본 발명의 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법에 대해 구체적으로 설명한다.Hereinafter, a method for producing monodisperse iron oxide nanoparticles using the ultrahigh pressure homogenizer of the present invention will be described in detail.
본 발명의 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법은,Method for producing monodisperse iron oxide nanoparticles using an ultrahigh pressure homogenizer of the present invention,
a) 산화철전구체, 증류수 및 침전제 용액을 혼합하여 수산화철 용액을 제조한 후, 상온에서 500 ~ 2,000 bar의 압력으로 초고압 균질기에 통과시켜 침전물을 얻는 단계, 및a) preparing an iron hydroxide solution by mixing the iron oxide precursor, distilled water and a precipitant solution, and then passing the ultra-high pressure homogenizer at a pressure of 500 to 2,000 bar at room temperature to obtain a precipitate, and
b) 상기 a)단계의 침전물을 세척하고 건조시키는 단계,b) washing and drying the precipitate of step a),
를 포함한다. It includes.
본 발명의 단분산 산화철 나노입자는 상기의 제조방법으로 제조됨으로써, 단분산 산화철 나노입자의 분리 과정이 필요하지 않아 공정이 단순화되어 공정시간이 단축됨과 동시에 결정성이 우수한 균일한 크기의 산화철 나노입자를 제조하는 것에 특징이 있다.Since the monodisperse iron oxide nanoparticles of the present invention are manufactured by the above-described manufacturing method, the separation process of the monodisperse iron oxide nanoparticles is not necessary, so the process is simplified, the process time is shortened, and the iron oxide nanoparticles of uniform size with excellent crystallinity It is characterized in that it is prepared.
또한, 본 발명은 별도의 산화제의 첨가 및 수열합성 과정 없이 초고압 균질기에 의한 라디칼 반응을 이용함으로써, 공정이 단순화되고 공정시간이 단축되며, 친환경적으로 단분산 산화철 나노입자를 제조하는 것에 특징이 있다.In addition, the present invention is characterized by the production of monodisperse iron oxide nanoparticles by simplifying the process and shortening the process time by using a radical reaction by an ultrahigh pressure homogenizer without adding an additional oxidant and hydrothermal synthesis.
상기 (a)단계의 수산화철 용액은 산화철 전구체를 증류수에 용해시켜 전구체 수용액을 제조한 후, 침전제 용액을 첨가하여 제조할 수 있다. The iron hydroxide solution of step (a) may be prepared by dissolving the iron oxide precursor in distilled water to prepare a precursor aqueous solution, and then adding a precipitant solution.
상기 산화철 전구체는 제일철염으로 구체적으로 예를 들면, 염화제일철(FeCl2), 황산제일철(FeSO4) 및 아세트산철(Fe(CH3COO)2)등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다.The iron oxide precursor may be any one or two or more selected from the group consisting of, for example, ferrous chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ), and iron acetate (Fe (CH 3 COO) 2 ). Can be used.
상기 전구체 수용액의 농도는 입자의 크기와 균일도를 결정할 수 있다. 그러므로 0.01 ~ 5 몰인 것이 좋으며, 더욱 좋게는 0.1 ~ 1 몰인 것이 바람직하다.The concentration of the precursor aqueous solution may determine the size and uniformity of the particles. Therefore, it is preferable that it is 0.01-5 mol, It is preferable that it is 0.1-1 mol more preferably.
상기 침전제 용액은 Fe2+ 이온 용액을 Fe(OH)2 침전물 제조를 위하여 사용된다. 구체적으로 예를 들면, 암모니아수, 수산화나트륨, 수산화칼륨, 탄산나트륨, 탄산수소나트륨 및 테트라메틸암모늄 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 혼합하여 사용할 수 있으며, 가격이 저렴하고, pH 조절이 가장 용이한 수산화나트륨을 사용하는 것이 좋다.The precipitant solution is used to prepare Fe (OH) 2 precipitate using Fe 2+ ion solution. Specifically, for example, any one or two or more selected from the group consisting of ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, tetramethylammonium, and the like can be used, and the price is low, and the pH control is Sodium hydroxide is the easiest to use.
상기 침전제 용액을 사용하여 수산화철 용액을 염기성으로 조절하는 것이 바람직하며, 바람직하게는 pH 9 ~ 13, 더욱 바람직하게는 10 ~ 12로 조절하여 사용하는 것이 좋다. 상기 수산화철 용액의 pH가 9이하인 경우 Fe2+가 Fe(OH)2로 모두 변화하지 못하고 일부 Fe2+ 상태로 남아 있을 수 있으며, pH가 13을 초과하는 경우 세척횟수가 증가하는 문제가 있으므로 pH가 상기 범위인 것이 바람직하다.It is preferable to adjust the iron hydroxide solution to basic using the precipitant solution, preferably to adjust the pH to 9 to 13, more preferably to 10 to 12. When the pH of the iron hydroxide solution is 9 or less, Fe 2+ may remain in some Fe 2+ state without changing to Fe (OH) 2 , and if the pH exceeds 13, the number of washing increases the pH Is preferably in the above range.
상기 (a)단계에서 수산화철 용액을 시료의 주입구에 투입하면 자동적으로 압력펌프로 흘러들어갈 수 있으며, 상기 압력펌프는 수산화철 용액을 미세 오리피스 노즐 챔버로 이동시켜주는 역할을 할 수 있다.When the iron hydroxide solution is added to the inlet of the sample in step (a), it can automatically flow into the pressure pump, and the pressure pump can serve to move the iron hydroxide solution to the fine orifice nozzle chamber.
상기 미세 오리피스 노즐 챔버는 직경이 작을수록 높은 압력을 가하여 높은 에너지를 발생시킬 수 있지만, 분당 처리량이 감소될 수 있으므로 제한되지는 않으나, 예를 들면 직경이 60 ~ 250 ㎛인 것을 사용하는 것이 바람직하다. 상기 미세 오리피스 노즐 챔버의 온도는 수산화철 용액의 물성에 영향을 주지 않기 위하여 20 ~ 80℃인 것이 바람직하지만, 반드시 이에 제한되지는 않는다. The fine orifice nozzle chamber may generate a high energy by applying a high pressure as the diameter is small, but is not limited because the throughput per minute may be reduced, but it is preferable to use, for example, a diameter of 60 to 250 μm. . The temperature of the fine orifice nozzle chamber is preferably 20 to 80 ° C. in order not to affect the physical properties of the iron hydroxide solution, but is not necessarily limited thereto.
상기 수산화철 용액이 미세 오리피스 노즐 챔버를 통과함으로써, 전단 및 공동 현상으로 높은 에너지가 발생되어 물 분자의 해리로 인한 OH라디칼, H2O2 생성으로 수산화철 용액을 단분산 산화철 나노입자로 제조할 수 있다. 또한, 높은 에너지를 발생시키는 미세오리피스 노즐 챔버는 마치 오토클레이브와 같은 역할 을 수행함으로서 핵생성과 결정성장에 영향을 미칠 수 있다.As the iron hydroxide solution passes through the micro-orifice nozzle chamber, high energy is generated by shear and cavitation to produce OH radicals and H 2 O 2 due to dissociation of water molecules, thereby producing the iron hydroxide solution as monodisperse iron oxide nanoparticles. . In addition, the micro-orifice nozzle chamber that generates high energy may act as an autoclave and thus affect nucleation and crystal growth.
나노입자를 제조하는 대부분의 방법은 고온에서 복잡한 공정 조건으로 반응시키므로 설비에 대한 제반 조건들의 제약이 많지만, 본 발명에 따른 단분산 산화철 나노입자의 제조방법은 상온에서 초고압 균질기에 통과시킴으로써 단분산 산화철 나노입자를 합성할 수 있으며, 공정 시간이 단축됨에 따라 생산성 향상이 기대되며, 제조설비가 단순해지는 이점이 있다.Most of the methods for preparing nanoparticles are restricted by various conditions for the equipment because they react under complex process conditions at a high temperature. However, the method for preparing monodisperse iron oxide nanoparticles according to the present invention passes through an ultra-high pressure homogenizer at room temperature to produce monodisperse iron oxide. Nanoparticles can be synthesized, productivity is expected to increase as the process time is shortened, there is an advantage that the manufacturing equipment is simplified.
본 발명의 초고압 균질기에 따른 물 분자의 라디칼 반응은 하기 반응식 1로 나타낼 수 있으나, 반드시 이에 제한되지는 않는다.The radical reaction of water molecules according to the ultrahigh pressure homogenizer of the present invention may be represented by the following Scheme 1, but is not necessarily limited thereto.
[반응식 1]Scheme 1
H2O → H + OH·H 2 O → H + OH
H + H· → H2 H + H · → H 2
OH·+ OH· → H2O2 OH + OH-> H 2 O 2
상기 반응식 1은, 초고압 균질기에 의하여 물 분자가 해리되면서 생성되는 OH 라디칼들과 이들의 결합으로 산화제인 H2O2가 생성된다. 따라서 별도의 산화제의 첨가 및 수열합성 과정 없이 수산화철 수용액으로부터 단분산 산화철을 얻을 수 있다. In Scheme 1, the OH radicals generated by dissociation of water molecules by an ultrahigh pressure homogenizer and their combinations produce H 2 O 2 as an oxidant. Therefore, monodisperse iron oxide can be obtained from an aqueous iron hydroxide solution without adding an additional oxidizing agent and hydrothermal synthesis process.
본 발명의 초고압 균질기에 의한 산화철 나노입자의 제조는 하기 반응식 2로 나타낼 수 있으며, 반드시 이에 제한되지는 않는다.Preparation of iron oxide nanoparticles by the ultrahigh pressure homogenizer of the present invention can be represented by the following scheme 2, but is not necessarily limited thereto.
[반응식 2] Scheme 2
3Fe(OH)2 + H2O2 → Fe3O4 + 4H2O3Fe (OH) 2 + H 2 O 2 → Fe 3 O 4 + 4H 2 O
상기 단분산 산화철은 FeO + Fe2O3의 혼합 산화물로 Fe2+와 Fe3+가 함께 존재하게 된다. 따라서 Fe2+가 모두 Fe3+로 산화되는 것을 막고 Fe2+와 Fe3+가 함께 존재하도록 산화-환원 분위기를 조절하기 위해서 초고압 균질기의 압력을 500 ~ 2,000 bar, 통과횟수는 1 ~ 20회 인 것이 바람직하다. The monodisperse iron oxide is Fe 2 + and Fe 3 + is present as a mixed oxide of FeO + Fe 2 O 3 . Therefore, Fe 2+ is oxidized to both prevents the oxidation to Fe 3+ exist with the Fe 2+ and Fe 3+ - the pressure of the ultra-high pressure homogenizer to adjust the reducing atmosphere 500 ~ 2,000 bar, number of passes 1 to 20 It is preferred to be ash.
또한, 상기 통과횟수는 열교환기로부터 고압펌프로 이송되는 과정을 여러 번 반복 하여 산화철 나노입자를 제조할 수 있으며, 바람직하게는 재순환이송관에 의해 이송되는 과정을 1 ~ 20 회 반복함으로써, 산화철을 단분산 산화철 나노입자로 제조할 수 있으나, 반드시 이에 제한되는 것은 아니다.In addition, the number of passes may be repeated several times the transfer process from the heat exchanger to the high-pressure pump to produce the iron oxide nanoparticles, preferably by repeating the transfer process by the recirculation transfer pipe 1 to 20 times, iron oxide It may be prepared from monodisperse iron oxide nanoparticles, but is not necessarily limited thereto.
상기 (b)단계는 상기 (a)단계의 침전물을 세척하고 건조시키는 단계이다. 상기 세척은 증류수, 메탄올 및 에탄올 등을 사용하는 것이 바람직하나, 세척 후 용이하게 제거될 수 있는 용액이면 이에 제한되지는 않는다.Step (b) is a step of washing and drying the precipitate of step (a). The washing is preferably to use distilled water, methanol and ethanol, but is not limited to any solution that can be easily removed after washing.
상기 건조는 시료의 수분을 제거하기 위하여 50 ~ 100 ℃에서 3 ~ 10 시간 동안 건조하는 것이 바람직하다.The drying is preferably dried for 3 to 10 hours at 50 ~ 100 ℃ to remove the moisture of the sample.
본 발명의 상기 단분산 산화철 나노입자는 구형의 형상을 가지며, 입자크기가 10 ~ 30 ㎚ 인 초상자성 산화철 나노입자를 제조 할 수 있다. The monodisperse iron oxide nanoparticles of the present invention may have a spherical shape, and may produce superparamagnetic iron oxide nanoparticles having a particle size of 10 to 30 nm.
본 발명에 따른 단분산 산화철 나노입자는 초고압 균질기를 이용하여 입도 분포가 균일하고, 결정성이 높으며, 또한, 초고압 균질기의 압력 및 통과횟수를 조절함으로써 생성되는 나노입자의 크기와 물성 등을 손쉽게 조절할 수 있는 것에 특징이 있다.The monodisperse iron oxide nanoparticles according to the present invention have a uniform particle size distribution, high crystallinity using an ultrahigh pressure homogenizer, and easily control the size and physical properties of the nanoparticles produced by controlling the pressure and the number of passes of the ultrahigh pressure homogenizer. It is characterized by being adjustable.
본 발명은 독성이 있는 계면활성제나 기타 분산제를 사용하지 않기 때문에 산화철 나노입자 분리 공정이 필요하지 않고, 산화제를 첨가하여 고온에서 수열합성 반응을 하는 대신 초고압 균질기에 의한 라디칼 반응을 이용함으로써, 공정이 단순화되고 공정시간이 단축되며, 친환경적으로 산화철 나노입자를 제조할 수 있다.Since the present invention does not use toxic surfactants or other dispersants, no iron oxide nanoparticle separation process is required, and instead of performing hydrothermal synthesis reaction at high temperature by adding an oxidizing agent, a radical reaction by an ultrahigh pressure homogenizer is used. Iron oxide nanoparticles can be produced in a simplified, shorter process time and environmentally friendly.
본 발명의 단분산 산화철 나노입자는 균일한 입도 분포와 높은 결정성을 나타내므로, 자기센서, 자기광학소자, 자성잉크, 중금속 폐수처리, MRI 조영제, 약물 전달시스템 및 온열치료 등의 산화철 나노입자 응용분야에 유용하게 이용할 수 있다.Since monodisperse iron oxide nanoparticles of the present invention exhibit a uniform particle size distribution and high crystallinity, applications of iron oxide nanoparticles in magnetic sensors, magneto-optical devices, magnetic ink, heavy metal wastewater treatment, MRI contrast agents, drug delivery systems, and thermotherapy It can be usefully used in the field.
도 1은 본 발명에서 이용된 초고압 균질기의 모식도를 도시한 것이다.Figure 1 shows a schematic diagram of the ultra-high pressure homogenizer used in the present invention.
도 2는 본 발명의 초고압 균질기의 미세 오리피스 노즐 챔버의 내부를 도시한 것이다.Figure 2 shows the interior of the micro orifice nozzle chamber of the ultrahigh pressure homogenizer of the present invention.
도 3은 본 발명에 따른 산화철 나노입자의 제조과정을 나타낸 흐름도이다.3 is a flowchart illustrating a process of manufacturing iron oxide nanoparticles according to the present invention.
도 4는 본 발명에 따른 실시예 1 내지 9 및 비교예 1에 따라 제조된 산화철 나노입자를 분말 X-선 회절 분석기로 분석한 결과를 나타낸 그래프이다. Figure 4 is a graph showing the results of analyzing the iron oxide nanoparticles prepared according to Examples 1 to 9 and Comparative Example 1 according to the present invention with a powder X-ray diffraction analyzer.
도 5는 본 발명에 따른 실시예 1 내지 9 및 비교예 1에 따라 제조된 산화철 나노입자의 분말 X-선 회절 분석으로부터 Scherrer 식으로 계산된 산화철입자의 크기를 나타낸 그래프이다.5 is a graph showing the size of the iron oxide particles calculated by the Scherrer equation from powder X-ray diffraction analysis of the iron oxide nanoparticles prepared according to Examples 1 to 9 and Comparative Example 1 according to the present invention.
도 6은 본 발명에 따른 실시예 1, 4, 7 및 비교예 1에서 제조된 산화철 나노입자의 투과전자현미경 사진이다.6 is a transmission electron micrograph of the iron oxide nanoparticles prepared in Examples 1, 4, 7 and Comparative Example 1 according to the present invention.
도 7은 본 발명에 따른 실시예 7, 8, 9 및 비교예 1에서 제조된 산화철 나노입자의 투과전자현미경 사진이다.7 is a transmission electron micrograph of the iron oxide nanoparticles prepared in Examples 7, 8, 9 and Comparative Example 1 according to the present invention.
도 8은 본 발명에 따른 실시예 9 및 비교예 2에서 제조된 산화철 나노입자의 투과전자현미경 사진이다.8 is a transmission electron micrograph of the iron oxide nanoparticles prepared in Example 9 and Comparative Example 2 according to the present invention.
도 9는 본 발명에 따른 실시예 1, 4, 7, 8, 9 및 비교예 1, 2에서 제조된 산화철 나노입자의 자기특성을 나타낸 그래프이다.9 is a graph showing the magnetic properties of the iron oxide nanoparticles prepared in Examples 1, 4, 7, 8, 9 and Comparative Examples 1, 2 according to the present invention.
이하는 본 발명을 보다 구체적으로 설명하기 위하여, 일예를 들어 설명하는바, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to one example, but the present invention is not limited to the following examples.
[실시예 1]Example 1
염화제일철(준세이) 2.01 g을 수용액 100 ㎖에 가하여 0.1 M 염화제일철 용액을 제조하였다. 상기 제조한 0.1 M 염화제일철 수용액 100 ㎖에 수산화나트륨(삼전순약) 1.02 g을 30㎖ 증류수에 용해시켜 제조한 0.85 M 수산화나트륨 용액을 첨가하여 상온에서 5분간 혼합하고 녹색의 수산화제일철 현탁액을 제조하였다. 상기 수산화제일철 현탁액을 500 bar의 압력으로 초고압 균질기(일신오토클레이브, NH-300)에 1회 통과시켜 검정색 침전물을 얻었다. 상기 침전물은 증류수와 에탄올을 사용하여 잔류 이온을 세척한 뒤, 80℃에서 6시간 동안 건조시켜 산화철 나노입자를 얻었다. 상기방법으로 물성을 측정한 결과를 표 1, 도 4 내지 6 및 9에 나타내었다.2.01 g of ferrous chloride (Junsei) was added to 100 ml of an aqueous solution to prepare a 0.1 M ferric chloride solution. 100 ml of 0.1 M ferrous chloride solution prepared above was added 0.85 M sodium hydroxide solution prepared by dissolving 1.02 g of sodium hydroxide (Samjeon Pure Chemical Co., Ltd.) in 30 ml distilled water, and mixed at room temperature for 5 minutes to prepare a green ferrous hydroxide suspension. . The ferrous hydroxide suspension was passed once through an ultrahigh pressure homogenizer (ILSIN autoclave, NH-300) at a pressure of 500 bar to obtain a black precipitate. The precipitate was washed with residual ions using distilled water and ethanol, and then dried at 80 ° C. for 6 hours to obtain iron oxide nanoparticles. The results of measuring the physical properties by the above method are shown in Table 1, FIGS. 4 to 6 and 9.
[실시예 2]Example 2
상기 실시예 1에서 수산화제일철 현탁액을 초고압 균질기에 3회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1, except that the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer three times in Example 1, and the results of measuring the physical properties by the above method are shown in Tables 1, 4, 5 and 9 is shown.
[실시예 3]Example 3
상기 실시예 1에서 수산화제일철 현탁액을 초고압 균질기에 5회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1, except that the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer five times in Example 1, and the results of measuring the physical properties by the above method are shown in Tables 1, 4, 5 and 9 is shown.
[실시예 4]Example 4
상기 실시예 1에서 1,000 bar의 압력을 가한 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4 내지 6 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,000 bar was applied in Example 1, and the results of measuring the physical properties by the above method are shown in Table 1, FIGS. 4 to 6, and FIG. 9. .
[실시예 5]Example 5
상기 실시예 1에서 1,000 bar의 압력을 가하고, 수산화제일철 현탁액을 초고압 균질기에 3회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5 및 도 9에 나타내었다.The iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,000 bar was applied in Example 1, and the ferrous hydroxide suspension was passed through an ultra-high pressure homogenizer three times. 1, 4, 5 and 9 are shown.
[실시예 6]Example 6
상기 실시예 1에서 1,000 bar의 압력을 가하고, 수산화제일철 현탁액을 초고압 균질기에 5회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1, except that the pressure of 1,000 bar was added in Example 1 and the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer five times. 1, 4, 5 and 9 are shown.
[실시예 7]Example 7
상기 실시예 1에서 1,500 bar의 압력을 가한 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 4 내지 7 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,500 bar was applied in Example 1, and the results of measuring the physical properties by the above method are shown in Tables 1, 4 to 7, and FIG. 9.
[실시예 8]Example 8
상기 실시예 1에서 1,500 bar의 압력을 가하고, 수산화제일철 현탁액을 초고압 균질기에 3회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5, 7 및 도 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,500 bar was applied in Example 1 and the ferrous hydroxide suspension was passed through an ultrahigh pressure homogenizer three times. 1, 4, 5, 7 and 9 are shown.
[실시예 9]Example 9
상기 실시예 1에서 1,500 bar의 압력을 가하고, 수산화제일철 현탁액을 초고압 균질기에 5회 통과시킨 것을 제외하고 실시예 1과 동일한 방법으로 산화철 나노입자를 제조하였으며, 상기 방법으로 물성을 측정한 결과를 표 1, 도 4, 5 및 도 7 내지 9에 나타내었다.Iron oxide nanoparticles were prepared in the same manner as in Example 1 except that the pressure of 1,500 bar was added in Example 1 and the ferrous hydroxide suspension was passed through the ultra-high pressure homogenizer five times. 1, 4, 5 and 7 to 9 are shown.
[비교예 1]Comparative Example 1
염화제일철(준세이) 2.01 g을 수용액 100 ㎖에 가하여 0.1 M 염화제일철 용액을 제조하였다. 상기 제조한 0.1 M 염화제일철 수용액 100 ㎖에 수산화나트륨(삼전순약) 1.02 g을 30㎖ 증류수에 용해시켜 제조한 0.85 M 수산화나트륨 용액을 첨가하여 상온에서 1시간 동안 균일하게 교반하여 침전물을 얻었다. 상기 침전물은 증류수와 에탄올을 사용하여 잔류 이온을 세척한 뒤, 80℃에서 6시간 동안 건조시켜 산화철 나노입자를 얻었다. 상기방법으로 물성을 측정한 결과를 표 1, 도 4 내지 7 및 도 9에 나타내었다.2.01 g of ferrous chloride (Junsei) was added to 100 ml of an aqueous solution to prepare a 0.1 M ferric chloride solution. 0.85 M sodium hydroxide solution prepared by dissolving 1.02 g of sodium hydroxide (Samjeon Pure Chemical Co., Ltd.) in 30 ml of distilled water was added to 100 ml of the 0.1 M ferric chloride aqueous solution prepared above, and then uniformly stirred at room temperature for 1 hour to obtain a precipitate. The precipitate was washed with residual ions using distilled water and ethanol, and then dried at 80 ° C. for 6 hours to obtain iron oxide nanoparticles. The results of measuring the physical properties by the above method are shown in Table 1, FIGS. 4 to 7 and FIG. 9.
[비교예 2]Comparative Example 2
염화제일철(준세이) 2.01 g을 수용액 100 ㎖에 가하여 0.1 M 염화제일철 용액을 제조하였다. 상기 제조한 0.1 M 염화제일철 수용액 100 ㎖에 수산화나트륨(삼전순약) 1.02 g을 30㎖ 증류수에 용해시켜 제조한 0.85 M 수산화나트륨 용액을 첨가하여 상온에서 250 W의 파워로 1시간 동안 초음파 조사를 실시하여 침전물을 얻었다. 상기 침전물은 증류수와 에탄올을 사용하여 잔류 이온을 세척한 뒤, 80℃에서 6시간 동안 건조시켜 산화철 나노입자를 얻었다. 상기방법으로 물성을 측정한 결과를 표 1, 도 8 및 도 9에 나타내었다.2.01 g of ferrous chloride (Junsei) was added to 100 ml of an aqueous solution to prepare a 0.1 M ferric chloride solution. To 100 ml of the 0.1 M ferric chloride solution prepared above, 0.82 M sodium hydroxide solution prepared by dissolving 1.02 g of sodium hydroxide (Samjeon Pure Chemical Co., Ltd.) in 30 ml distilled water was added and subjected to ultrasonic irradiation for 1 hour at 250 W at room temperature. To obtain a precipitate. The precipitate was washed with residual ions using distilled water and ethanol, and then dried at 80 ° C. for 6 hours to obtain iron oxide nanoparticles. The results of measuring the physical properties by the above method are shown in Table 1, FIG. 8 and FIG. 9.
[비교예 3]Comparative Example 3
염화제일철(준세이) 2.01 g을 수용액 100 ㎖에 가하여 0.1 M 염화제일철 용액을 제조하였다. 상기 제조한 0.1 M 염화제일철 수용액 100 ㎖에 수산화나트륨(삼전순약) 1.02 g을 30㎖ 증류수에 용해시켜 제조한 0.85 M 수산화나트륨 용액을 첨가하여 상온에서 30분 동안 교반한 후 수산화제일철 현탁액을 제조하였다. 상기 수산화제일철 수용액에 1.0 MeV의 전자빔 에너지 3.0 mA의 전류로 300 kGy의 조사선량이 되도록 조사하여 침전물을 얻었다. 상기 침전물은 증류수와 에탄올을 첨가하여 잔류 이온을 세척한 뒤, 60℃에서 6시간 동안 건조시켜 산화철 나노입자를 얻었다. 상기방법으로 물성을 측정한 결과를 표 1에 나타내었다.2.01 g of ferrous chloride (Junsei) was added to 100 ml of an aqueous solution to prepare a 0.1 M ferric chloride solution. To 100 ml of the 0.1 M ferrous chloride solution prepared above was added 0.85 M sodium hydroxide solution prepared by dissolving 1.02 g of sodium hydroxide (Samjeon Pure Chemical Co., Ltd.) in 30 ml distilled water, followed by stirring at room temperature for 30 minutes to prepare a ferric hydroxide suspension. . The ferrous hydroxide aqueous solution was irradiated with an irradiation dose of 300 kGy at a current of 1.0 MeV electron beam energy of 3.0 mA to obtain a precipitate. The precipitate was washed with residual ions by the addition of distilled water and ethanol, and dried at 60 ℃ for 6 hours to obtain iron oxide nanoparticles. Table 1 shows the results of measuring the physical properties by the above method.
[표 1]TABLE 1
Figure PCTKR2014011747-appb-I000001
Figure PCTKR2014011747-appb-I000001
산화철 나노입자의 결정구조 분석Crystal Structure Analysis of Iron Oxide Nanoparticles
본 발명의 제조방법으로 제조된 산화철 나노입자의 결정성을 알아보기 위하여 분말 X-선 회절 분석기(Rigaku, SmartLab)를 이용하여 결정성을 분석하고 그 결과를 도 4에 나타내었다. In order to determine the crystallinity of the iron oxide nanoparticles prepared by the production method of the present invention using a powder X-ray diffraction analyzer (Rigaku, SmartLab) to analyze the crystallinity and the results are shown in FIG.
도 4에 나타난 바와 같이, 상기 실시예에서 제조된 입자는 산화철(Fe3O4)로 나타났지만, 초고압 균질기를 통과 시키지 않은 비교예 1의 경우 산화철과 FeOOH가 혼합된 것으로 나타났다. 이로부터 초고압 균질기를 이용하여 제조된 산화철은 결정성이 높고, 불순물이 없는 순수한 산화철로 합성됨을 확인하였다.As shown in Figure 4, the particles produced in the above example was found to be iron oxide (Fe 3 O 4 ), Comparative Example 1 was not mixed with the iron oxide and FeOOH was not passed through the ultra-high pressure homogenizer. From this, it was confirmed that the iron oxide prepared using the ultrahigh pressure homogenizer was synthesized with pure iron oxide having high crystallinity and no impurities.
또한, 분말 X-선 회절분석 결과로부터 Scherrer 공식을 이용하여 제조된 산화철 나노입자의 평균입자 크기를 구하였다. 평균입자의 크기는 도 5에 나타내었으며, 초고압 균질기의 압력과 통과 횟수에 따라 입자의 크기 조절이 가능한 것을 확인하였다.In addition, from the powder X-ray diffraction analysis, the average particle size of the iron oxide nanoparticles prepared using the Scherrer formula was calculated. The average particle size is shown in Figure 5, it was confirmed that the size of the particles can be adjusted according to the pressure and the number of passes of the ultra-high pressure homogenizer.
도 5에서 실시예 9의 경우 초고압균질기 1,500 bar에서 5회 통과시켰음에도 불구하고 1,500 bar에서 3회 통과시킨 경우보다 입자크기가 큰 것을 확인하였다. 이는 5회 통과부터 결정성장 속도가 가속화 되어 나타나는 현상으로 보인다. 입자크기는 핵생성 시간과 결정성장 시간에 따라 달라진다. 핵생성 시간은 짧을수록, 결정성장 시간은 길수록 입자크기는 감소하게 되며, 따라서 1500 bar 3회 통과 이상부터는 결정 성장이 가속화되기 때문에 다시 입자크기가 증가하는 것으로 나타난다.In FIG. 5, in the case of Example 9, although the particles were passed five times at 1,500 bar, the ultra-high pressure homogenizer, the particle size was confirmed to be larger than that of three passes at 1500 bar. This seems to be the phenomenon of crystal growth speeding up from five passes. Particle size depends on nucleation time and crystal growth time. The shorter the nucleation time and the longer the crystal growth time, the smaller the particle size is. Therefore, the particle size is increased again because the crystal growth is accelerated from more than 1500 bar three passes.
산화철 나노입자의 크기 및 형태 분석Analysis of Size and Morphology of Iron Oxide Nanoparticles
본 발명의 제조방법으로 제조된 산화철 나노입자의 크기 및 형태를 알아보기 위해 투과전자현미경(TEM, FEI, TecnaiG2 F30 S-Twin)으로 분석하고, 그 결과를 도 6, 7 및 8에 나타내었다. In order to determine the size and shape of the iron oxide nanoparticles prepared by the production method of the present invention was analyzed by transmission electron microscope (TEM, FEI, TecnaiG 2 F30 S-Twin), the results are shown in Figures 6, 7 and 8. .
그리드(Grid)는 탄소가 코팅된 지름 3 ㎜ 구리 그리드를 사용하였다.Grid used a 3 mm diameter copper grid coated with carbon.
도 6 및 도 7에 나타난 바와 같이, 본 발명에 따른 실시예 1, 4, 7, 8 및 9에서 제조된 산화철 나노입자의 모양은 구형으로 나타났으며, 산화철 나노입자의 평균 크기는 각각 24, 22, 20, 17, 22 ㎚인 것으로 확인하였다. 하지만, 비교예 1에서 제조된 입자들은 구형의 산화철과 막대 모양의 FeOOH등 단일상이 아닌 것으로 나타났고, 크기 분포 또한 불균일한 것으로 관찰되었다.As shown in Figure 6 and 7, the shape of the iron oxide nanoparticles prepared in Examples 1, 4, 7, 8 and 9 according to the present invention was shown as a spherical shape, the average size of the iron oxide nanoparticles are 24, It confirmed that it was 22, 20, 17, 22 nm. However, the particles prepared in Comparative Example 1 were found not to be a single phase such as spherical iron oxide and rod-shaped FeOOH, and the size distribution was also observed to be nonuniform.
도 8에 나타난 바와 같이, 비교예 2의 초음파 조사를 통해 제조된 산화철 입자 역시 막대 모양의 FeOOH가 함께 나타나는 것으로 확인하였다.As shown in Figure 8, it was confirmed that the iron oxide particles prepared by the ultrasonic irradiation of Comparative Example 2 also appeared with the bar-shaped FeOOH.
도 6, 7 및 8을 참조하면, 본 발명에 따른 실시예에 의해 제조된 산화철은 구형의 형태를 갖으며, 산화철 단일상을 갖는 반면 단순 교반 및 초음파 조사를 통해 제조된 비교예의 산화철들은 막대 모양의 FeOOH가 함께 존재하며, 불균일한 입자 크기 분포를 갖는 것으로 나타났다. 또한, 실시예를 통해 합성된 산화철들은 25 ㎚이하의 입자로 제조된 것을 확인 할 수 있었다.6, 7 and 8, the iron oxide produced according to the embodiment according to the present invention has a spherical shape, the iron oxide of the comparative example prepared by a simple stirring and ultrasonic irradiation while the iron oxide single phase FeOOH are present together and have been shown to have non-uniform particle size distribution. In addition, it was confirmed that the iron oxides synthesized through the examples were made of particles of 25 nm or less.
단분산 산화철 나노입자의 자기적 특성분석Magnetic Characterization of Monodisperse Iron Oxide Nanoparticles
본 발명의 제조방법으로 제조된 산화철 나노입자의 자기적 특성을 알아보기 위하여 상온에서 진동시료자기측정기(Vibrating Sample Magnetometer)로 자기특성을 분석하고, 도 9 및 표 1에 나타내었다.In order to determine the magnetic properties of the iron oxide nanoparticles prepared by the method of the present invention, the magnetic properties were analyzed by a Vibrating Sample Magnetometer at room temperature, and are shown in FIG. 9 and Table 1.
실시예 7과 8은 보자력과 잔류자화값이 0으로 초상자성 특성을 갖는 것을 확인하였다. 또한, 10 KOe에서 측정된 자화값은 덩어리 상태의 시료에 대한 포화자화값인 92 emu/g에 비하면 훨씬 작은 값이다. ㎚크기에서의 이러한 자화값의 감소는 입자의 크기가 작아지면서 발생하는 불완전한 결정학적 구조 및 표면효과로 인한 스핀 기울어짐에 의한 것으로 확인되었다.In Examples 7 and 8, it was confirmed that the coercive force and the residual magnetization value were 0 to have superparamagnetic characteristics. In addition, the magnetization value measured at 10 KOe is much smaller than 92 emu / g, which is the saturation magnetization value for the lumped sample. This reduction in magnetization at nm size was found to be due to spin tilt due to the incomplete crystallographic structure and surface effects that occur as the particle size becomes smaller.
[부호의 설명][Description of the code]
10 : 시료주입구10: sample inlet
11 : 압력펌프11: pressure pump
12 : 압력게이지12: pressure gauge
13 : 열교환기13: heat exchanger
14 : 배출구14 outlet
15 : 재순환이송관15: recycling transfer pipe
20 : 미세 오리피스 노즐 챔버20: fine orifice nozzle chamber
21 : 오리피스21: Orifice

Claims (8)

  1. a) 산화철전구체, 증류수 및 침전제 용액을 혼합하여 수산화철 용액을 제조한 후, 상온에서 500 ~ 2,000 bar의 압력으로 초고압 균질기에 통과시켜 침전물을 얻는 단계, 및a) preparing an iron hydroxide solution by mixing the iron oxide precursor, distilled water and a precipitant solution, and then passing the ultra-high pressure homogenizer at a pressure of 500 to 2,000 bar at room temperature to obtain a precipitate, and
    b) 상기 a)단계의 침전물을 세척하고 건조시키는 단계,b) washing and drying the precipitate of step a),
    를 포함하는 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법. Method for producing monodisperse iron oxide nanoparticles using an ultrahigh pressure homogenizer comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 수산화철 용액은 산화철 전구체를 증류수에 용해시켜 전구체 수용액을 제조한 후 침전제 용액을 첨가하여 수산화철 용액을 제조하는 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.The iron hydroxide solution is a method of producing mono-dispersed iron oxide nanoparticles using an ultrahigh pressure homogenizer which is prepared by dissolving the iron oxide precursor in distilled water to prepare a precursor aqueous solution and then adding a precipitant solution.
  3. 제 2항에 있어서,The method of claim 2,
    상기 산화철 전구체는 염화제일철(FeCl2), 황산제일철(FeSO4) 또는 아세트산철(Fe(CH3COO)2)에서 선택되는 어느 하나인 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.The iron oxide precursor is any one selected from ferric chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ) or iron acetate (Fe (CH 3 COO) 2 ) method for producing mono-dispersed iron oxide nanoparticles using an ultrahigh pressure homogenizer.
  4. 제 2항에 있어서,The method of claim 2,
    상기 침전제 용액은 암모니아수, 수산화나트륨, 수산화칼륨, 탄산나트륨, 탄산수소나트륨 및 테트라메틸암모늄의 군에서 선택되는 어느 하나 또는 둘 이상인 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.The precipitant solution is any one or two or more selected from the group of ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate and tetramethylammonium.
  5. 제 2항에 있어서,The method of claim 2,
    상기 전구체 수용액은 농도가 0.01 ~ 5 몰인 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법. The precursor aqueous solution is a method for producing mono-dispersed iron oxide nanoparticles using an ultrahigh pressure homogenizer having a concentration of 0.01 to 5 mol.
  6. 제 1항에 있어서,The method of claim 1,
    상기 초고압 균질기에 포함된 미세 오리피스 노즐 챔버는 직경이 60 ~ 250 ㎛인 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.The micro-orifice nozzle chamber included in the ultra-high pressure homogenizer is a method for producing mono-dispersed iron oxide nanoparticles using an ultra-high pressure homogenizer having a diameter of 60 ~ 250 ㎛.
  7. 제 6항에 있어서,The method of claim 6,
    상기 미세 오리피스 노즐 챔버 온도는 20 ~ 80℃인 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.The fine orifice nozzle chamber temperature is 20 ~ 80 ℃ method of producing monodisperse iron oxide nanoparticles using an ultrahigh pressure homogenizer.
  8. 제 1항에 있어서,The method of claim 1,
    상기 a)단계에서 얻은 침전물을 상기 초고압 균질기에 1 ~ 20 회 반복 통과 시키는 것인 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법.Method for producing mono-dispersed iron oxide nanoparticles using an ultra-high pressure homogenizer that is passed through the precipitate obtained in step a) to the ultra-high pressure homogenizer 1 to 20 times.
PCT/KR2014/011747 2014-05-30 2014-12-03 Method for preparing monodispersed iron oxide nanoparticles using super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby WO2015182840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0065847 2014-05-30
KR1020140065847A KR101480169B1 (en) 2014-05-30 2014-05-30 The Method for Preparation of Monodisperse Iron Oxide Nanoparticles Using High Pressure Homogenizer and Monodisperse Iron Oxide Nanoparticels Thereof

Publications (1)

Publication Number Publication Date
WO2015182840A1 true WO2015182840A1 (en) 2015-12-03

Family

ID=52588197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011747 WO2015182840A1 (en) 2014-05-30 2014-12-03 Method for preparing monodispersed iron oxide nanoparticles using super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby

Country Status (2)

Country Link
KR (1) KR101480169B1 (en)
WO (1) WO2015182840A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125344A (en) * 2019-06-25 2020-12-25 北京化工大学 Preparation method of monodisperse nano iron oxide dispersoid
CN113860383A (en) * 2021-11-01 2021-12-31 南通大学 Preparation method of ferroferric oxide nanoparticles
CN114965602A (en) * 2022-05-13 2022-08-30 四川智立方博导科技有限责任公司 Two-dimensional ferrite oxygen hydrogen nano-net based material, preparation method and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882731B1 (en) 2017-05-08 2018-07-30 한국지역난방공사 Apparatus for reducing iron oxide inside of heat transporting pipe and
KR102006215B1 (en) * 2018-01-31 2019-08-01 충남대학교산학협력단 Method of manufacturing iron oxide nanoparticles using a high-pressure homogenizer
KR102138137B1 (en) 2018-10-23 2020-07-27 한국기초과학지원연구원 Method for manufacturing magnetite nanoparticles of spindle structure
KR102503870B1 (en) 2021-01-08 2023-02-24 한밭대학교 산학협력단 Iron oxide nanoclusters for hyperthermia and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122215A (en) * 1998-10-14 2000-04-28 Konica Corp Preparation of organic silver salt dispersion and heat developable photosensitive material using the same
KR20040048093A (en) * 2002-12-02 2004-06-07 주식회사 포스코 A method of preparing monodispersed metal oxide nanoparticles and nanoparticles prepared therefrom
KR20040078853A (en) * 2003-03-05 2004-09-13 학교법인 포항공과대학교 Method for preparing colloid solution containing iron oxide nanoparticles
JP2007538380A (en) * 2003-07-10 2007-12-27 ミクロモート パルティケルテヒノロギー ゲーエムベーハー Magnetic nanoparticles with improved magnetic properties
KR20130137839A (en) * 2012-06-08 2013-12-18 (주) 시온텍 Manufacturing method of graphene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122215A (en) * 1998-10-14 2000-04-28 Konica Corp Preparation of organic silver salt dispersion and heat developable photosensitive material using the same
KR20040048093A (en) * 2002-12-02 2004-06-07 주식회사 포스코 A method of preparing monodispersed metal oxide nanoparticles and nanoparticles prepared therefrom
KR20040078853A (en) * 2003-03-05 2004-09-13 학교법인 포항공과대학교 Method for preparing colloid solution containing iron oxide nanoparticles
JP2007538380A (en) * 2003-07-10 2007-12-27 ミクロモート パルティケルテヒノロギー ゲーエムベーハー Magnetic nanoparticles with improved magnetic properties
KR20130137839A (en) * 2012-06-08 2013-12-18 (주) 시온텍 Manufacturing method of graphene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125344A (en) * 2019-06-25 2020-12-25 北京化工大学 Preparation method of monodisperse nano iron oxide dispersoid
CN112125344B (en) * 2019-06-25 2022-12-09 北京化工大学 Preparation method of monodisperse nano iron oxide dispersoid
CN113860383A (en) * 2021-11-01 2021-12-31 南通大学 Preparation method of ferroferric oxide nanoparticles
CN114965602A (en) * 2022-05-13 2022-08-30 四川智立方博导科技有限责任公司 Two-dimensional ferrite oxygen hydrogen nano-net based material, preparation method and application

Also Published As

Publication number Publication date
KR101480169B1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2015182840A1 (en) Method for preparing monodispersed iron oxide nanoparticles using super-high pressure homogenizer and monodispersed iron oxide nanoparticles prepared thereby
Esmaeili et al. Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis
Herman et al. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T 2 contrast enhancement in magnetic resonance imaging
Yue et al. A facile synthesis of anisotropic SmCo5 nanochips with high magnetic performance
KR20030082394A (en) Synthesis of Magnetite Nanoparticles and the Process of Forming Fe-Based Nanomaterials
Iyengar et al. Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy
Zou et al. Facile synthesis of highly water-dispersible and monodispersed Fe 3 O 4 hollow microspheres and their application in water treatment
Peng et al. Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall graphene oxide nanocomposites
Tang et al. Synthesis of sub-100 nm biocompatible superparamagnetic Fe 3 O 4 colloidal nanocrystal clusters as contrast agents for magnetic resonance imaging
Wang et al. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method
Pan et al. Robust synthesis of highly charged superparamagnetic Fe 3 O 4 colloidal nanocrystal clusters for magnetically responsive photonic crystals
Gil et al. Synthesis and characterization of cobalt ferrite CoxFe3-xO4 nanoparticles by Raman spectroscopy and X-ray diffraction
Song et al. Influence of reaction solvent on crystallinity and magnetic properties of MnFe 2 O 4 nanoparticles synthesized by thermal decomposition
Islam et al. Synthesis of Cobalt Ferrite Nanoparticles Using Micro-emulsion Method: Structure, Morphology, and Magnetic Properties
Tago et al. Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles
Qi et al. Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway
JP2007284715A (en) Method for producing nickel nanoparticle, and nickel nanoparticle
KR101127864B1 (en) The method for preparation of monodisperse iron oxide nanoparticles using electron beam irradiation and monodisperse iron oxide nanoparticles thereof
RU2426188C1 (en) Nanocomposite dispersed magnetic material and method of producing said material
Farahmandjou et al. Chemical synthesis of the Co
Setyawan et al. A facile method to prepare high‐purity magnetite nanoparticles by electrooxidation of iron in water using a pulsed direct current
Shen et al. Synthesis and characterization of MnZn ferrite nanoparticles for biomedical applications
CN111110870B (en) Water-soluble biocompatible gadolinium-doped magnetic iron oxide nanocluster and preparation method and application thereof
Nunes et al. Novel synthesis and physical properties of CoFe2O4@ CoFe2 core@ shell nanostructures
Yazdani et al. Synthesise of CoFe2O4-polyaniline nanocomposite and evaluation of its magnetic properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893098

Country of ref document: EP

Kind code of ref document: A1