WO2015182766A1 - Adhesive composition, support body and method for producing same, and glass laminate - Google Patents

Adhesive composition, support body and method for producing same, and glass laminate Download PDF

Info

Publication number
WO2015182766A1
WO2015182766A1 PCT/JP2015/065644 JP2015065644W WO2015182766A1 WO 2015182766 A1 WO2015182766 A1 WO 2015182766A1 JP 2015065644 W JP2015065644 W JP 2015065644W WO 2015182766 A1 WO2015182766 A1 WO 2015182766A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone compound
support
resin layer
glass substrate
bonded
Prior art date
Application number
PCT/JP2015/065644
Other languages
French (fr)
Japanese (ja)
Inventor
隆俊 八百板
大輔 内田
庚薫 閔
祥孝 松山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015182766A1 publication Critical patent/WO2015182766A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an adhesive composition, a support, a method for producing the same, and a glass laminate.
  • a glass laminate is prepared by laminating a glass substrate and a reinforcing plate, and after forming an electronic device member such as a display device on the glass substrate, the glass substrate and A method of separating the reinforcing plate has been proposed (see, for example, Patent Document 1).
  • the temperature at which the electronic device members are formed becomes even higher, and the time of exposure to the high temperatures may take a long time. is there. As a result, high heat resistance is required for the glass laminate.
  • the glass laminate described in Patent Document 1 can withstand processing conditions of 300 ° C. for 1 hour in the atmosphere, but decomposition may occur within a short time in high-temperature heat treatment (450 ° C.).
  • the present invention has been made in view of the above points, and is a pressure-sensitive adhesive composition for a resin layer in which decomposition is suppressed even after high-temperature heat treatment, a support including the resin layer, a method for producing the support, and glass It aims at providing a laminated body.
  • the pressure-sensitive adhesive composition of the present invention is A linear silicone compound (a) having an alkenyl group bonded to a silicon atom; A silicone compound (b) having at least three hydrogen atoms bonded to silicon atoms per molecule; A cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom; It is characterized by including.
  • the support of the present invention comprises It has a support base material and a resin layer provided on the support base material, and is a support for laminating a glass substrate on the resin layer,
  • the resin layer is A linear silicone compound (a) having an alkenyl group bonded to a silicon atom;
  • the method for producing the support of the present invention comprises: Preparing a support substrate; A linear silicone compound (a) having an alkenyl group bonded to a silicon atom, a silicone compound (b) having at least three hydrogen atoms bonded to a silicon atom per molecule, and a ring having an alkenyl group bonded to a silicon atom Preparing a pressure-sensitive adhesive composition comprising a silicone compound (c1); Applying the pressure-sensitive adhesive composition on the support substrate and curing to form a resin layer; It is characterized by including.
  • the glass laminated body of this invention contains a support body and the glass substrate which contact
  • an adhesive composition for a resin layer in which decomposition is suppressed even after high-temperature heat treatment a support containing the resin layer, a method for producing the support, and a glass laminate.
  • the pressure-sensitive adhesive composition of the present invention that is, the curable silicone resin composition
  • the support the method for producing the support
  • the glass laminate including the support of the present invention the display panel with the support
  • the display device panel will be described in detail based on a preferred embodiment shown in the drawings.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a display device-equipped panel according to the present invention.
  • a panel 10 for a display device with a support shown in FIG. 1 includes a support 20 according to the present invention, and includes a support base 12, a resin layer 14, a glass substrate 16, and a component 18 of the display device panel. Are stacked in this order.
  • the thickness of each layer is not limited by FIG.
  • the support base material 12 and the resin layer 14 comprise the support body 20 of this invention
  • the support body 20 and the glass substrate 16 comprise the glass laminated body 30, and the structural member of the glass substrate 16 and the panel for display apparatuses. 18 constitutes a display device panel 40 (without the support 20).
  • each layer which comprises the support body 20, the glass laminated body 30, the display apparatus panel 40, and the display apparatus panel 10 with a support body of this invention is demonstrated.
  • the support substrate 12 used in the present invention is not particularly limited as long as it supports the glass substrate 16 through the resin layer 14 and reinforces the strength of the glass substrate 16. Although it does not restrict
  • the composition thereof is, for example, a silicate glass (such as soda lime glass) containing an alkali metal oxide, or an alkali-free silicate glass (alkali metal oxide).
  • a silicate glass such as soda lime glass
  • an alkali-free silicate glass alkali metal oxide
  • Glass of various compositions, such as borosilicate glass substantially free of Of these, alkali-free silicate glass is preferred because of its low thermal shrinkage.
  • substantially not containing means that inclusion of impurities from the material is not excluded.
  • the difference in coefficient of linear expansion between the glass substrate 16 and the glass used for the support base 12 is preferably 150 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 100 ⁇ 10 ⁇ 7 / ° C. or less, and 50 ⁇ 10 ⁇ 7 / ° C.
  • the glass of the glass substrate 16 and the glass of the support base 12 may be the same material. In this case, the difference between the linear expansion coefficients of both glasses is zero.
  • the type is not particularly limited.
  • polyethylene terephthalate resin, polycarbonate resin, polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyethersulfone resin examples thereof include polyether ketone resins, polyether ether ketone resins, polyethylene naphthalate resins, polyacrylic resins, various liquid crystal polymer resins, and silicone resins.
  • the type thereof is not particularly limited, and examples thereof include stainless steel and copper.
  • the heat resistance of the support substrate 12 is not particularly limited, but when the glass substrate 16 is laminated on the support substrate 12 and a TFT array of a display device member is formed, the heat resistance is preferably high.
  • the heat resistance is defined as a 5% weight loss by heating when the support base 12 is heated in the presence of air.
  • the 5% heating weight loss temperature refers to a temperature at which a weight loss of more than 5% has occurred in the heating process, based on the weight of the support substrate 12 before heating.
  • the heating weight loss temperature is preferably 300 ° C. or more, and more preferably 350 ° C. or more. In this case, any of the above-mentioned glasses is applicable in terms of heat resistance.
  • Examples of preferable plastics from the viewpoint of heat resistance include polyimide resins, fluororesins, polyamide resins, polyaramid resins, polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, polyethylene naphthalate resins, and various liquid crystal polymer resins. Is done.
  • the thickness of the support substrate 12 is not particularly limited, but is preferably 0.3 to 1.1 mm, and more preferably 0.4 to 0.8 mm. More preferably, the thickness is 0.5 to 0.7 mm. When the thickness of the support base 12 is 0.3 mm or more, the strength to reinforce the glass substrate 16 tends to be insufficient, and breakage hardly occurs.
  • the thickness of the glass substrate 16 is not particularly limited, but is preferably 0.05 to 0.4 mm, and more preferably 0.05 to 0.2 mm. More preferably, the thickness is 0.5 to 0.1 mm. When the thickness of the glass substrate 16 is 0.05 mm or more, the strength of the glass tends to be insufficient, and breakage hardly occurs. It is assumed that the thickness of the glass substrate 16 is thinner than the thickness of the support base 12.
  • the surface of the support substrate 12 composed of the various materials described above may be a polished surface that has been subjected to a polishing process, or a non-etched surface that is not subjected to the polishing process (fabric surface). It may be. From the viewpoint of productivity and cost, a non-etched surface (fabric surface) is preferable.
  • the support base 12 has a first main surface and a second main surface, and the shape is not limited, but a rectangle is preferable.
  • the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut).
  • the first main surface 12A of the support substrate 12 is a surface on which the resin layer 14 is formed, and the second main surface 12B is the opposite surface.
  • the size of the support substrate 12 is not limited, but for example, in the case of a rectangle, it may be 100 to 2000 mm ⁇ 100 to 2000 mm, and preferably 500 to 1000 mm ⁇ 500 to 1000 mm.
  • the resin layer 14 in the present invention is fixed on the first main surface 12A of the support base 12 described above, and the glass laminate 30 in which the glass substrate 16 is laminated has a first main surface and a second main surface.
  • the glass substrate 16 is in close contact with the first main surface.
  • the first main surface 16A of the glass substrate 16 is a surface in contact with the resin layer 14, and the second main surface 16B is the opposite surface.
  • “Fixed” in this specification refers to a bond between the resin layer 14 and the support base 12, and “adhesion” in this specification refers to a bond between the glass substrate 16 and the resin layer 14.
  • the bond (so-called fixing) between the resin layer 14 and the support base 12 means a stronger bonding force than the bond (so-called close contact) between the glass substrate 16 and the resin layer 14.
  • the resin layer 14 and the glass substrate 16 are bonded by a very weak force. For example, forces represented by intermolecular forces and van der Waals forces. More specific description will be given below.
  • the peel strength between the first main surface 16A of the glass substrate 16 and the resin layer 14 needs to be lower than the peel strength between the first main surface 12A of the support base 12 and the resin layer 14.
  • the glass substrate 16 and the support base 12 are separated, the glass substrate 16 is peeled off at the interface between the first main surface 16A of the glass substrate 16 and the resin layer 14, and the first main surface 12A of the support base 12 and the resin are separated. It must be difficult to peel off at the interface with the layer 14. For this reason, the resin layer 14 is in close contact with the first main surface 16A of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the resin layer 14 is bonded to the first main surface 16 ⁇ / b> A of the glass substrate 16 with a certain bonding force to prevent the glass substrate 16 from being displaced.
  • the resin layer 14 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16.
  • the easily peelable property of the resin layer 14 is called peelability.
  • the bonding force between the first main surface 12A of the support base 12 and the resin layer 14 is a bonding force that is less likely to peel than the bonding force between the first main surface 16A of the glass substrate 16 and the resin layer 14.
  • An agent composition (hereinafter, the adhesive composition is also referred to as a curable silicone resin composition) is cured on the first main surface 12A of the support base 12 to form a resin layer 14 made of a cured silicone resin, and then It is preferable that the glass substrate 16 is laminated and adhered to the resin layer 14 made of a cured silicone resin. Even if the cured silicone resin in the present invention is in close contact with the glass substrate 16, the peel strength is low.
  • the curable silicone resin composition to be a cured silicone resin is cured on the surface of the support substrate 12, it adheres by interaction with the surface of the support substrate during the curing reaction, and the cured silicone resin after curing and the support substrate
  • the peel strength from the surface is considered to be high. Therefore, even if the glass substrate 16 and the support base 12 are made of the same material, a difference can be provided in the resin layer and the peel strength between them.
  • the formation of the resin layer 14 having a difference between the peel strength with respect to the first main surface 16A of the glass substrate 16 and the peel strength with respect to the first main surface 12A of the support base 12 is not limited to the above method.
  • the glass substrate 16 and the support base material 12 are laminated simultaneously with a cured silicone resin film interposed. Can do.
  • a curable silicone resin composition is used for the support base material 12.
  • a glass substrate 16 is laminated on the curable silicone resin composition, and the curable silicone resin composition is cured between the glass substrate 16 and the support base 12.
  • the resin layer 14 can be formed. Even when the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the resin layer 14 by performing a process for increasing the adhesion of the surface of the support base 12. For example, it is possible to increase the bonding strength with the resin layer 14 by performing a treatment for increasing the concentration of silanol groups on the surface of the support substrate 12 made of a glass material.
  • An addition reaction type curable silicone resin composition (that is, a pressure-sensitive adhesive composition) includes a linear silicone compound having an alkenyl group bonded to a silicon atom, a silicone compound having a hydrogen atom bonded to a silicon atom, and a silicon atom.
  • a curable pressure-sensitive adhesive composition comprising an alkenyl group bonded to a linear silicone compound having an alkenyl group bonded to a silicon atom, and a hydrogen atom bonded to a silicon atom.
  • a curable composition comprising a linear silicone compound having a cyclic silicone compound having an alkenyl group bonded to a silicon atom, and an additive such as a catalyst, and cured by heating to form a cured silicone resin.
  • the resin layer 14 in the present invention generally includes at least 3 linear silicone compounds (a), which are linear silicone compounds having an alkenyl group bonded to a silicon atom, and at least 3 hydrogen atoms bonded to a silicon atom per molecule.
  • An addition reaction type curable silicone resin composition containing a linear silicone compound (b) having a linear silicone compound and a cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom; It is a layer of a cured silicone resin.
  • the curable silicone resin composition may contain a cyclic silicone compound (c2) having a hydrogen atom bonded to a silicon atom.
  • the cured product of the addition reaction type curable silicone resin composition in the present invention has optimized the molar ratio of Si—H groups to vinyl groups in the composition, unreacted hydrogen atoms (silicon atoms after curing) The residual amount of hydrogen atoms bonded to is small. For this reason, the change in peel strength with time is small, and the heat resistance is excellent.
  • the pressure-sensitive adhesive composition used for forming the resin layer 14, that is, the curable silicone resin composition will be described in detail below.
  • the linear silicone compound (a) contained in the curable silicone resin composition in the present invention is preferably a linear silicone compound having at least two alkenyl groups per molecule.
  • the alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, a hexynyl group, and the like. Groups are preferred.
  • the alkenyl group concentration is preferably 0.1 to 20.4 mmol / g, and more preferably 0.5 to 11.6 mmol / g.
  • monofunctional units at both ends of the linear silicone compound (a) are referred to as M units, and difunctional units other than both ends are referred to as D units, and a line having n D units.
  • the structure of the silicone compound (a) is represented by M (D) n M.
  • M (D) n M when expressing the average composition of each unit, it may be represented by M 2 (D) n .
  • the alkenyl group is present in the M unit or D unit, and may be present in both the M unit and D unit. From the viewpoint of curing speed, it is preferably present at least in M units, and preferably present in both two M units.
  • the linear silicone compound (a) having an alkenyl group only in the M unit has a lower heat resistance because the higher the molecular weight, the lower the alkenyl group concentration per molecule and the lower the crosslinking density of the cured silicone resin. It is preferable to have an alkenyl group in part of the D unit as well as the M unit.
  • the number of alkenyl groups per molecule of the linear silicone compound (a) is preferably 2 to 120, more preferably 2 to 100, from the viewpoint of heat resistance of the cured product.
  • a linear organopolysiloxane having an average composition represented by the following formula (1) is preferable.
  • M 1 is an M unit having neither an alkenyl group nor a hydrogen atom bonded to a silicon atom
  • M 2 is an M unit having an alkenyl group bonded to a silicon atom
  • D 1 is a hydrogen bonded to an alkenyl group and a silicon atom.
  • D unit having no atom, and D 2 represents a D unit having an alkenyl group bonded to a silicon atom
  • a is a number from 0 to 2
  • b is a number from 0 to 2
  • a + b 2
  • c is 0
  • d is a number of 0 or more
  • c + d n (where b + d is 2 or more).
  • a is a number of 0 or more and less than 1
  • b is a number of 1 or more and 2 or less
  • c is a number of 1 or more
  • d is a number of 1 or more. It is.
  • the M 2 unit may have two or three alkenyl groups bonded to a silicon atom, but preferably has one.
  • the D 2 unit may have two alkenyl groups bonded to a silicon atom, but preferably has one.
  • the alkenyl group is preferably a vinyl group.
  • the M 1 unit, D 1 unit, preferred M 2 unit, and preferred D 2 unit are preferably those represented by the following formulae.
  • R 1 to R 5 each independently represents an alkyl group having 4 or less carbon atoms, a fluoroalkyl group, or a phenyl group, as described above.
  • R 1 to R 5 are preferably all methyl groups.
  • the above formula (1) represents the composition of the linear silicone compound (a) for each unit, and represents an average composition.
  • the linear silicone compound (a) may be a mixture with another linear silicone compound having an alkenyl group bonded to a silicon atom, but usually only the linear silicone compound (a) is used.
  • the linear silicone compound having an alkenyl group bonded to a silicon atom may be a mixture of two or more linear silicone compounds having an alkenyl group bonded to a silicon atom.
  • the sequence of D 1 and D 2 may be a random copolymer chain structure. It may be a block copolymer chain structure.
  • the linear silicone compound (a) described in International Publication No. 2007/018028 can be used.
  • the number average molecular weight (Mn) of the linear silicone compound (a) is preferably 500 to 3,000,000, more preferably 1,000 to 2,000,000, and further preferably 1500 to 500,000. By setting Mn within this range, volatilization during heat curing is suppressed, and workability is improved without becoming too viscous.
  • the viscosity of the linear silicone compound (a) at 25 ° C. is preferably 100 to 1000 mPas, more preferably 300 to 700 mPas.
  • the linear silicone compound (b) contained in the curable silicone resin composition in the present invention is preferably a linear silicone compound (b) having at least 3 hydrogen atoms per molecule.
  • the concentration of hydrogen atoms bonded to silicon atoms (Si—H groups) is preferably 0.90 to 43.5 mmol / g, more preferably 3.0 to 16.7 mmol / g. .
  • a hydrogen atom bonded to a silicon atom is preferably present in at least one of the two M units.
  • a more preferable linear silicone compound (b) has a hydrogen atom bonded to a silicon atom in each of two M units, and a part of the D units of n D units also bonded to a silicon atom. It is a linear silicone compound in which hydrogen atoms are present.
  • the linear silicone compound (b) can also be used in combination with other linear silicone compounds having a hydrogen atom bonded to a silicon atom.
  • linear silicone compound having a hydrogen atom bonded to a silicon atom for example, there is no hydrogen atom bonded to a silicon atom in the M unit, and a hydrogen atom bonded to a silicon atom is only part of the D unit.
  • Examples include existing linear silicone compounds.
  • Examples of the linear silicone compound (b) or a mixture of the linear silicone compound (b) and another linear silicone compound having a hydrogen atom bonded to a silicon atom are represented by the following formula (2).
  • a linear silicone compound having a hydrogen atom bonded to a silicon atom having an average composition is preferably mentioned.
  • M 1 is an M unit in which neither a hydrogen atom bonded to a silicon atom nor an alkenyl group exists (the same as the M 1 unit in the above formula (1))
  • M 3 is an M unit in which a hydrogen atom bonded to a silicon atom is present.
  • is a number of 0 or more and less than 1, ⁇ is a number of 1 or more and 2 or less, ⁇ is a number of 1 or more, and ⁇ is a number of 1 or more.
  • the M 3 unit may have two or three hydrogen atoms bonded to a silicon atom, but preferably has one.
  • the D 3 unit may have two hydrogen atoms bonded to a silicon atom, but preferably has one.
  • the M 1 unit, D 1 unit, preferred M 3 unit, and preferred D 3 unit are preferably those represented by the following formulae.
  • R 1 to R 5 each independently represents an alkyl group having 4 or less carbon atoms, a fluoroalkyl group, or a phenyl group.
  • R 1 to R 5 are preferably all methyl groups.
  • ⁇ / ⁇ which is the abundance ratio between D 1 and D 3
  • the abundance ratio ( ⁇ / ⁇ ) is preferably 0.2 to 30, and particularly preferably 0.5 to 20. If this abundance ratio is too small, the residual amount of unreacted hydrogen atoms (hydrogen atoms bonded to silicon atoms) in the cured silicone resin will increase, and the change in peel strength of the cured silicone resin with respect to the glass substrate over time May increase, and heat resistance may be reduced. On the other hand, if the abundance ratio is too large, the crosslink density of the cured silicone resin decreases, which may cause a decrease in heat resistance.
  • ⁇ / ⁇ representing the abundance ratio of M 3 units to D 3 units is preferably 15 ⁇ ( ⁇ / ⁇ ) ⁇ 1000 ⁇ 1500. More preferably, 15 ⁇ ( ⁇ / ⁇ ) ⁇ 1000 ⁇ 1000, and particularly preferably 15 ⁇ ( ⁇ / ⁇ ) ⁇ 1000 ⁇ 500.
  • ( ⁇ / ⁇ ) ⁇ 1000 is less than 15, the molecular weight increases, or the steric hindrance of the functional group increases and the reactivity decreases, so that the change in the peel strength of the cured silicone resin with respect to the glass substrate with time is changed. May grow.
  • ( ⁇ / ⁇ ) ⁇ 1000 is larger than 1500, the crosslink density becomes small, so that a cured silicone resin having sufficient physical properties such as strength may not be obtained.
  • the above formula (2) represents the composition of the linear silicone compound (b) for each unit, and represents an average composition.
  • a more preferable linear silicone compound (b) is a compound in which ⁇ is a number of 0 or more and less than 1, ⁇ is a number of 1 or more and 2 or less, ⁇ is a number of 1 or more, and ⁇ is a number of 1 or more.
  • (beta) + (epsilon) is 3 or more because the linear silicone compound (b) has 3 or more hydrogen atoms couple
  • the number of hydrogen atoms bonded to silicon atoms per molecule of the linear silicone compound (b) is 2, high heat resistance cannot be achieved by crosslinking. Therefore, the number of hydrogen atoms bonded to silicon atoms per molecule of the linear silicone compound (b) is preferably 3 to 120 in terms of heat resistance of the cured product, and more preferably 3 to 100. preferable.
  • Examples of the linear silicone compound having a hydrogen atom bonded to a silicon atom other than the linear silicone compound (b) include silicon in which ⁇ is 2, ⁇ is 0, ⁇ is an integer of 0 or more, and ⁇ is an integer of 1 or more.
  • the sequence of the D 1 and D 3 may be a block copolymer chain structure may be a random copolymer chain structure.
  • a copolymer chain is formed by ring-opening polymerization of a cyclic siloxane, so that it is considered that the ring-opened cyclic siloxane block has a random copolymerized structure.
  • the linear silicone compound having a hydrogen atom bonded to a silicon atom not only the linear silicone compound whose individual molecule is the linear silicone compound (b), but also the linear silicone compound (b) and silicon. It may be a mixture of other linear silicone compounds having a hydrogen atom bonded to an atom (the average composition of which is represented by the formula (2)). In that case, it is preferable that 20 mol% or more of the linear silicone compound (b) is included in the total number of moles of the other linear silicone compound having a hydrogen atom bonded to the silicon atom used.
  • the content of the linear silicone compound (b) is preferably 50 mol% or more, more preferably 80 mol% or more. preferable.
  • the number average molecular weight (Mn) of the linear silicone compound (b) is preferably 300 to 5,000,000, more preferably 400 to 1,000,000, and further preferably 500 to 500,000.
  • the number average molecular weight (Mn) of the linear silicone compound (b) is smaller than the number average molecular weight (Mn) of the linear silicone compound (a).
  • the viscosity of the linear silicone compound (b) at 25 ° C. is preferably 10 to 100 mPas, more preferably 20 to 50 mPas.
  • the cyclic silicone compound (c) contained in the curable silicone resin composition in the present invention is preferably a cyclic silicone compound (c1) having at least two alkenyl groups bonded to a silicon atom per molecule, and further bonded to a silicon atom. It is also preferable to include a cyclic silicone compound (c2) having a hydrogen atom.
  • the curable silicone resin composition to be the cured silicone resin layer further contains a cyclic silicone compound (c) in addition to the linear silicone compound (a) and the linear silicone compound (b) described above.
  • a cyclic silicone compound (c) in addition to the linear silicone compound (a) and the linear silicone compound (b) described above.
  • the linear silicone compound (a) and the linear silicone compound (b) are linear, when subjected to high-temperature heat treatment, the Si—O bond is broken in a bent state, and this Si A new Si—O bond is formed with other O atoms in the same molecule (hereinafter referred to as “replacement of Si—O bond”), and as a result, a cyclic low-molecular polysiloxane is formed. It may be volatilized.
  • the linear silicone compound (a) and the linear silicone compound (b) can further exchange Si—O bonds in one molecule by containing the cyclic silicone compound (c).
  • the cyclic silicone compound (c) is an organopolysiloxane in which a plurality of D units are bonded cyclically, and an alkenyl group bonded to a silicon atom or a hydrogen atom bonded to a silicon atom exists in the D unit.
  • the alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, a hexynyl group, and the like. Groups are preferred.
  • the number of silicon atoms constituting the ring is preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6 from the viewpoints of ease of synthesis and heat resistance of the cured product. Individual is particularly preferred.
  • the concentration of the alkenyl group or the concentration of the hydrogen atom bonded to the silicon atom in the cyclic silicone compound (c) is preferably 0.5 to 44 mmol / g, because of the ease of synthesis, and is preferably 1.0 to 17 mol / g. Is more preferable.
  • cyclic silicone compound (c) which is the cyclic silicone compound (c), and the cyclic silicone compound (c2) will be described in more detail.
  • the number of alkenyl groups per molecule of the cyclic silicone compound (c1) is preferably 2 to 20 and more preferably 3 to 20 from the viewpoint of heat resistance of the cured product.
  • the number of hydrogen atoms bonded to the silicon group per molecule of the cyclic silicone compound (c2) is preferably 2 to 20, more preferably 3 to 20, in view of the heat resistance of the cured product.
  • Cyclic silicone compound (c1) A preferred embodiment of the cyclic silicone compound (c1) is, for example, a cyclic silicone compound represented by the following formula (c1-1).
  • Vi represents a vinyl group
  • R 11 to R 13 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • h represents 2 to 6 I represents an integer of 0 to 4
  • h + i represents an integer of 3 to 10.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 11 to R 13 in the formula (c1-1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a secondary butyl group, and an isobutyl group. , T-butyl group and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms represented by R 11 to R 13 in the formula (c1-1) include a phenyl group, an ethylphenyl group, a tolyl group, a cumenyl group, a xylyl group, a pseudocumenyl group, a mesityl group, Examples thereof include t-butylphenyl group, benzyl group, phenethyl group and the like.
  • the group represented by R 11 to R 13 in formula (c1-1) is preferably a methyl group, an ethyl group, or a phenyl group, more preferably a methyl group, from the viewpoints of heat resistance, industrial availability, and the like. .
  • h is preferably an integer of 3 to 6 and more preferably 3 or 4 from the viewpoint of the hardness of the cured product.
  • I in the formula (c1-1) is preferably 0 or 1, more preferably 0, from the viewpoint of ease of synthesis.
  • cyclic silicone compound (c1) represented by the formula (c1-1) include 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane, 2,4,6,8-tetra Methyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetraethyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetraphenyl -2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6-trimethyl-8-phenyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4-dimethyl-6,8 -Diphenyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetramethyl-2-phenyl-4,6,8-trivinylcyclotetrasiloxane, 2,4,6,8-t
  • Cyclic silicone compound (c2) is, for example, a cyclic silicone compound represented by the following formula (c2-1).
  • R 11 to R 13 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • j represents an integer of 3 to 6
  • k is Represents an integer of 0 to 4
  • j + k represents an integer of 3 to 10.
  • R 11 ⁇ R 13 in the formula (c2-1) has the same meaning as R 11 ⁇ R 13 in the formula (c1-1), and preferred ranges are also the same.
  • J in formula (c2-1) is preferably 4 or 5, more preferably 4, from the viewpoint of the hardness of the cured product.
  • K in the formula (c2-1) is preferably 0 or 1, more preferably 0 from the viewpoint of ease of synthesis.
  • cyclic silicone compound (c2) represented by the formula (c2-1) include 2,4,6-trimethylcyclotrisiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane, 2,4 , 6,8-tetraethylcyclotetrasiloxane, 2,4,6,8-tetraphenylcyclotetrasiloxane, 2,4,6-trimethyl-8-phenylcyclotetrasiloxane, etc., and these can be used alone. Or two or more of them may be used in combination.
  • the content ratio of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c) is not particularly limited. From the viewpoint of heat resistance at 450 ° C., the number of moles of alkenyl groups (C1 m ) in the cyclic silicone compound (c1) represented by the following formula (3) in the curable silicone resin composition and the cyclic silicone compound (c2) ratio of the moles of alkenyl groups (C2 m) in (mol%) is preferably 20 or more.
  • a m is the number of moles of alkenyl groups in the linear silicone compound (a)
  • B m is the number of moles of hydrogen atoms bonded to silicon atoms in the linear silicone compound (b)
  • C1 m cyclic silicone compound moles and C2 m of alkenyl groups in c1) represents the number of moles of hydrogen atoms bonded to silicon atoms of the cyclic silicone compound (c2) in.
  • the alkenyl group in the linear silicone compound (a) and the cyclic silicone compound (c1) is preferably 20 mol% or more.
  • the ratio (mol%) represented by the above formula (3) is preferably 20 to 100, more preferably 24 to 95, and 24 to 93 from the viewpoint of crack resistance. Further preferred.
  • the cyclic silicone compound (c) with respect to a total of 100 mass% of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). ) Is preferably 0.1 to 60% by mass, more preferably 0.5 to 38% by mass, and particularly preferably less than 30% by mass. That is, if the content of the cyclic silicone compound (c) is too large, the cured silicone resin layer becomes too hard and there is a possibility that cracks may occur even with a thin film thickness. If the content of (c) is within the above range, the cured silicone resin layer does not become too hard, and the maximum film thickness that can be formed without causing cracks can be increased, that is, the crack resistance is improved. it can.
  • the cyclic silicone compound (c) in which the concentration of alkenyl groups or the concentration of hydrogen atoms bonded to silicon atoms in the cyclic silicone compound (c) is 0.5 to 44 mmol / g.
  • the content of is preferably 0.1 to 60% by mass with respect to 100% by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c).
  • the cyclic silicone compound (c) consists only of the cyclic silicone compound (c1).
  • the content of the linear silicone compound (a) is 5 to 5% with respect to a total of 100% by mass of the linear organopolysiloxane (a), the linear silicone compound (b), and the cyclic organopolysiloxane (c). 95% by mass is preferable, and 10 to 90% by mass is more preferable.
  • the content of the linear silicone compound (b) is 3 to 75% by mass with respect to 100% by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). % Is preferable, and 8 to 65% by mass is more preferable.
  • the amounts of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c) were bonded to all silicon atoms relative to all alkenyl groups. It is preferable to adjust the molar ratio of hydrogen atoms (hydrogen atom / alkenyl group) to 0.7 to 1.05, and more preferable to adjust to 0.8 to 1.0. If the molar ratio exceeds 1.05, the peel strength of the cured silicone resin after standing for a long time tends to increase, and the peelability may not be sufficient. On the other hand, when the molar ratio is less than 0.7, the crosslinking density of the cured silicone resin is lowered, which may cause a problem in chemical resistance.
  • Various additives may be contained in the curable silicone resin composition in the present invention as long as the effects of the present invention are not impaired as necessary.
  • a catalyst addition reaction catalyst
  • the catalyst include metal catalysts, and it is preferable to use a platinum group metal catalyst.
  • the platinum group metal-based catalyst include platinum-based, palladium-based, and rhodium-based catalysts, and it is particularly preferable to use as a platinum-based catalyst from the viewpoint of economy and reactivity.
  • a known catalyst can be used as the platinum-based catalyst.
  • the catalyst has a mass ratio to the total mass of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c), preferably 2 to 400 ppm, more preferably 5 to 300 ppm, and more preferably 8 to 200 ppm. Is more preferable.
  • the curable silicone resin composition of the present invention is used together with a catalyst and an activity inhibitor (a compound also called a reaction inhibitor, a retarder, etc.) having an action of suppressing the catalyst activity for the purpose of adjusting the catalyst activity. It is preferable to do.
  • an activity inhibitor a compound also called a reaction inhibitor, a retarder, etc.
  • an activity inhibitor for example, 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 2-ethynylisopropanol
  • Acetylenic alcohols such as 2-ethynylbutan-2-ol, 3,5-dimethyl-1-hexyn-3-ol; trimethyl (3,5-dimethyl-1-hexyne-3-oxy) silane, methylvinyl Silylated acetylenic alcohols such as bis (3-methyl-1-butyne-3-oxy) silane and ((1,1-dimethyl-2-propynyl) oxy) trimethylsilane; diallyl malate, dimethyl malate, diethyl Unsaturated carboxylic acid esters such as fumarate, diallyl fumarate, bis (methoxyisopropyl) malate; 2-iso Til-1-buten-3-yn
  • the content of the reaction inhibitor in the composition is not particularly limited, but is 100 parts by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). It is preferably in the range of 0.00001 to 5 parts by mass.
  • an inorganic filler such as various silicas, calcium carbonates, iron oxides and the like may be contained within a range not impairing the effects of the present invention.
  • organic solvents such as hexane, heptane, octane, toluene and xylene, and dispersion media such as water are components that do not constitute a cured silicone resin, but include improved workability for application of the curable silicone resin composition. For the purpose, it can be blended and used in the curable silicone resin composition of the present invention.
  • ⁇ Formation of resin layer> it is preferable to cure the curable silicone resin composition on the first main surface 12A of the support substrate 12 to form the resin layer 14 made of a cured silicone resin.
  • a curable silicone resin composition is applied to one side of a supporting substrate to form a layer of the curable silicone resin composition, and then the curable silicone resin composition is cured to form a cured silicone resin layer.
  • the curable silicone resin composition is a fluid composition
  • the layer of the curable silicone resin composition is applied as it is, and the curable silicone resin composition has a low fluidity or a non-fluid composition.
  • an organic solvent is blended and applied.
  • an emulsion or dispersion of a curable silicone resin composition can also be used.
  • the coating film containing a volatile component such as an organic solvent is then evaporated to remove the volatile component to form a curable silicone resin composition layer. Curing of the curable silicone resin composition can be performed continuously with evaporation removal of volatile components.
  • Curing of the curable silicone resin composition is not limited to the above method.
  • a curable silicone resin composition can be cured on some peelable surface to produce a cured silicone resin film, and this film can be laminated to a support substrate to produce a support.
  • the curable silicone resin composition does not contain a volatile component, it can be cured by being sandwiched between the glass substrate 16 and the support base 12 as described above.
  • the application method is not particularly limited, and a conventionally known method can be mentioned.
  • known methods include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to the kind of composition.
  • a volatile component is not blended in the curable silicone resin composition
  • a die coating method, a spin coating method, or a screen printing method is preferable.
  • the composition is cured after removing the volatile component by heating or the like before curing.
  • the conditions for curing the curable silicone resin composition vary depending on the type of organopolysiloxane used and the optimum conditions are appropriately selected.
  • the heating temperature is preferably 50 to 300 ° C.
  • the treatment time is preferably 5 to 300 minutes.
  • the resin layer has low silicone migration, when the glass substrate is peeled off, the components in the resin layer are difficult to migrate to the glass substrate.
  • the reaction temperature and reaction time described above are preferable because substantially no unreacted organosilicone component remains in the resin layer. If the reaction time is too long or the reaction temperature is too high, the organosilicone component and the cured silicone resin are simultaneously oxidized and decomposed to produce a low molecular weight organosilicone component, resulting in high silicone migration. There is a possibility. It is also preferable to allow the curing reaction to proceed as much as possible so that no unreacted organosilicone component remains in the resin layer, in order to improve the peelability after the heat treatment.
  • a surface modification treatment may be performed on the support substrate surface.
  • a chemical method that improves the fixing force chemically such as a silane coupling agent; a physical method that increases surface active groups such as a flame (flame) treatment; a surface method such as a sandblast treatment
  • a mechanical treatment method for increasing the catch by increasing the roughness examples thereof include a mechanical treatment method for increasing the catch by increasing the roughness.
  • the thickness of the resin layer 14 made of the cured silicone resin is not particularly limited, and an optimum thickness is appropriately selected depending on the type of the glass substrate 16 and the like, but is preferably 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m. Is more preferable, and 1.0 to 20 ⁇ m is more preferable.
  • the resin layer 14 may be composed of two or more layers.
  • “the thickness of the resin layer” means the total thickness of all the layers.
  • the kind of resin which forms each layer may differ.
  • the surface tension of the peelable surface of the resin layer 14 is preferably 30 mN / m or less, more preferably 25 mN / m or less, and even more preferably 22 mN / m or less. Although there is no limitation in particular about a minimum, 15 mN / m or more is preferred. With such surface tension, it can be more easily peeled off from the surface of the glass substrate 16, and at the same time, adhesion to the surface of the glass substrate 16 is sufficient.
  • the resin layer 14 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or a material having no glass transition point. If it is such a glass transition point, it can have moderate elasticity while maintaining non-adhesiveness, and can be more easily peeled off from the surface of the glass substrate 16, and at the same time, can be adhered to the surface of the glass substrate 16. It will be enough.
  • the thermal decomposition starting temperature of the resin layer 14 made of a cured silicone resin is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and particularly preferably 430 ° C. to 450 ° C. in the laminated state of the glass substrate. If it is in the said range, decomposition
  • the cured silicone resin in the present invention has an elastic modulus that satisfies this required performance.
  • the support 20 of the present invention includes the support base 12 and the resin layer 14 described above. Since the surface of the resin layer 14 exhibits good peeling performance, it can be peeled without destroying the laminated glass substrate 16 thereon. Therefore, it can be suitably used as a support for supporting the glass substrate. Moreover, as another use, the support body of the glass substrate for organic EL lighting, etc. are mentioned.
  • the glass substrate 16 is a glass substrate for producing a display device panel by forming a constituent member 18 of the display device panel, which will be described later, on the glass substrate 16.
  • the manufacturing method of the glass substrate 16 used by this invention is not specifically limited, It can manufacture by a conventionally well-known method. For example, it can be obtained by melting a conventionally known glass raw material into a molten glass and then forming it into a plate shape by a float method, a fusion method, a slot down draw method, a redraw method, a pulling method or the like. Commercial products can also be used.
  • the thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the glass substrate 16 are not particularly limited.
  • conventional glass for display devices such as LCDs and OLEDs. It may be the same as the substrate.
  • the thickness of the glass substrate 16 is not particularly limited, but is preferably less than 0.7 mm, more preferably 0.5 mm or less, and even more preferably 0.4 mm or less. Moreover, 0.05 mm or more is preferable, 0.07 mm or more is more preferable, and 0.1 mm or more is further more preferable.
  • the glass substrate 16 has a first main surface 16A and a second main surface 16B, and the shape thereof is not limited, but is preferably rectangular.
  • the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (that is, a shape obtained by corner cutting).
  • the size of the glass substrate 16 is not limited, for example, in the case of a rectangle, it may be 100 to 2000 mm ⁇ 100 to 2000 mm, and preferably 500 to 1000 mm ⁇ 500 to 1000 mm.
  • the glass laminate 30 can easily peel the glass substrate 16 and the support 20.
  • the thermal contraction rate of the glass substrate 16 is preferably small.
  • the linear expansion coefficient which is an index of the thermal shrinkage rate, is preferably 150 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 100 ⁇ 10 ⁇ 7 / ° C. or less, and further preferably 45 ⁇ 10 ⁇ 7 / ° C. or less. .
  • the linear expansion coefficient means a value defined in JIS R3102 (1995).
  • the glass substrate 16 is made of, for example, alkali metal oxide-containing silicate glass or non-alkali silicate glass.
  • non-alkali silicate glass such as borosilicate glass containing no alkali metal oxide is preferable because of its low thermal shrinkage.
  • the surface of the glass substrate 16 described above may be a polished surface that has been subjected to polishing treatment, or may be a non-etched surface (fabric surface) that has not been subjected to polishing treatment. That is, a material that satisfies flatness may be selected as appropriate in accordance with the required accuracy of the display panel to be manufactured.
  • the glass laminate 30 in the present invention is composed of the above-mentioned support base 12, resin layer 14, and glass substrate 16.
  • the resin layer 14 has a peelable surface, and is a glass substrate 16 or a display device panel 40 (in the case of a display device panel, a glass substrate on which a constituent member 18 of the display device panel is formed. 16) can be easily peeled off.
  • the peel strength between the surface of the resin layer 14 and the surface of the glass substrate 16 is preferably 8.5 N / 25 mm or less, more preferably 7.8 N / 25 mm or less, and further preferably 4.5 N / 25 mm or less.
  • the glass substrate should just have the adhesive force of the grade which does not raise
  • the peel strength between the resin layer surface and the glass substrate surface is represented by the following measurement method.
  • the center part of the protruding glass substrate 25 ⁇ 25 mm is pushed vertically using a digital force gauge, Measure peel strength.
  • the peel strength between the surface of the resin layer 14 and the surface of the supporting substrate 12 is preferably 9.8 N / 25 mm or more, more preferably 14.7 N / 25 mm or more, and further preferably 19.6 N / 25 mm or more.
  • peeling between the supporting substrate and the resin layer hardly occurs when the glass substrate or the like is peeled from the resin layer, and the glass substrate or the like and the supporting body from the glass laminate (that is, the supporting substrate and the resin layer). Can be easily separated.
  • this peel strength can be easily achieved by curing the curable silicone resin composition on the support substrate.
  • the peel strength between the surface of the resin layer 14 and the surface of the support base 12 is preferably 29.4 N / 25 mm or less.
  • the peel strength between the surface of the resin layer 14 and the surface of the support base 12 is preferably 10 N / 25 mm or more higher than the peel strength between the surface of the resin layer 14 and the surface of the glass substrate 16, and 15 N / 25 mm. More preferably, it is higher.
  • the method for producing the glass laminate 30 is preferably a method (lamination method) in which the glass substrate 16 is laminated on the surface of the resin layer 14 of the support 20.
  • the method for manufacturing the glass laminate 30 is not limited to this lamination method.
  • the laminating method the first main surface 16A of the glass substrate and the peelable surface of the resin layer 14 are bonded by a force caused by van der Waals force between the adjacent solid molecules that are very close to each other, that is, by an adhesion force. It is considered possible. Therefore, in this case, the supporting base material and the glass substrate can be held in a state of being laminated via the resin layer.
  • a glass laminate having the support 20 and the glass substrate 16 in contact with the peelable surface side of the resin layer 14 is obtained.
  • stacking a glass substrate on the surface of the resin layer of a support body is demonstrated.
  • the method for laminating the glass substrate on the surface of the resin layer fixed to the support substrate is not particularly limited and can be carried out using a known method.
  • a non-contact pressure bonding method in which a glass substrate is stacked on the surface of a resin layer in a normal pressure environment, and then the resin layer and the glass substrate are pressure-bonded using a pressure chamber; the resin layer and the glass substrate using a roll or a press And the like.
  • a method of pressure bonding with a pressure chamber, a roll, a press or the like is preferable because the resin layer and the glass substrate are more closely adhered to each other.
  • pressurization with gas and pressure bonding with a roll or a press are preferable because air bubbles mixed between the resin layer and the glass substrate are relatively easily removed.
  • the surface of the glass substrate is sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer and the glass substrate, the resin layer is deformed and thus does not affect the flatness of the surface of the glass substrate. However, the higher the cleanness, the better the flatness. Therefore, it is preferable.
  • the constituent member 18 of the display device panel refers to a member formed on the glass substrate 16 or a part thereof in a display device such as an LCD or an OLED using the glass substrate 16.
  • a display device such as an LCD or OLED
  • various circuit patterns such as a TFT array (hereinafter simply referred to as “array”), a protective layer, a color filter, a liquid crystal, a transparent electrode made of ITO, etc. on the surface of the glass substrate 16. These members or a combination of these members is formed.
  • a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like formed on the glass substrate 16 can be used.
  • the display device panel 40 including the glass substrate 16 and the constituent member 18 is a glass substrate on which at least a part of the above members is formed. Therefore, for example, the glass substrate 16 on which the array is formed or the glass substrate 16 on which the transparent electrode or the like is formed is the display device panel 40.
  • the support-equipped display device panel 10 includes a support base 12, a resin layer 14, a glass substrate 16, and a display device panel constituent member 18.
  • the display-equipped display device panel 10 includes, for example, an array-forming surface of the support-equipped display device panel in which the array is formed on the first main surface 16A of the glass substrate 16, and a color filter that is the first of the glass substrate.
  • the form which bonded together the color filter formation surface of the panel for other display apparatuses with a support body formed in 2 main surface 16B via the sealing material etc. is also contained.
  • the display device panel 40 can be obtained from the support-equipped display device panel 10.
  • the display device panel 10 includes the display panel constituent member 18 and the glass substrate 16 by peeling the glass substrate 16 and the resin layer 14 fixed to the support base material 12 from the support-equipped display device panel 10.
  • Panel 40 can be obtained.
  • a display device can be obtained from such a display device panel.
  • the display device include an LCD and an OLED.
  • the LCD include TN type, STN type, FE type, TFT type, and MIM type.
  • the method for forming at least a part of the constituent members of the display device panel on the glass substrate surface of the glass laminate is not particularly limited, and a conventionally known method is performed according to the type of the constituent member of the display device panel. Is done.
  • a transparent electrode is formed on the second main surface 16B of the glass substrate. Step of forming, step of depositing a hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. on the surface on which the transparent electrode is formed, step of forming a back electrode, step of sealing using a sealing plate
  • Various layer formation and processing such as are performed.
  • these layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
  • the formation of these constituent members may be part of the formation of all the constituent members necessary for the display device panel. In that case, after peeling the glass substrate which formed the one part structural member from the resin layer, the remaining structural members are formed on a glass substrate, and the panel for display apparatuses is manufactured.
  • the first main surface 16A of the glass substrate 16 and the peelable surface of the resin layer 14 in the display device panel 10 with the support are further peeled to obtain a display device.
  • Panel 40 can be obtained.
  • the constituent members on the glass substrate at the time of peeling are a part of the formation of all the constituent members necessary for the display device panel, the remaining constituent members are then formed on the glass substrate for display. Manufacture panels for equipment.
  • the method of peeling the 1st main surface of a glass substrate and the peelable surface of a resin layer is not specifically limited. Specifically, for example, a sharp blade-like object is inserted into the interface between the glass substrate and the resin layer, and after peeling is given, a mixed fluid of water and compressed air is sprayed to peel off. Can do.
  • the support base of the display device panel with support is placed on the surface plate so that the support base is on the upper side and the panel side is on the lower side, and the panel side substrate is vacuum-sucked on the surface plate, and in this state, the blade is first attached. A blade is allowed to enter the glass substrate-resin layer interface.
  • the supporting substrate side is adsorbed by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of a resin layer and a panel side glass substrate, the air layer will spread over the whole surface of an interface, and a support base material can be peeled easily.
  • the support base material is laminated
  • a display device can be manufactured using the obtained display device panel.
  • the operation for obtaining the display device is not particularly limited.
  • the display device can be manufactured by a conventionally known method.
  • a step of forming an array on a conventionally known glass substrate, a step of forming a color filter, a glass substrate on which an array is formed, and a glass substrate on which a color filter is formed May be the same as various steps such as a step of bonding together through a sealing material or the like (array / color filter bonding step). More specifically, examples of the processing performed in these steps include pure water cleaning, drying, film formation, resist solution application, exposure, development, etching, and resist removal. Further, as a process performed after the array / color filter bonding process is performed, there are a liquid crystal injection process and an injection port sealing process performed after the above process, and a process performed in these processes is mentioned.
  • Example 1 A glass substrate having a length of 350 mm, a width of 300 mm, and a plate thickness of 0.5 mm (“AN100”, a glass plate made of borosilicate glass containing no alkali metal oxide and having a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C .: manufactured by Asahi Glass Co., Ltd.) was prepared as a supporting substrate, and the surface was purified by washing with pure water and UV to obtain a supporting substrate with a cleaned surface.
  • AN100 a glass plate made of borosilicate glass containing no alkali metal oxide and having a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C .: manufactured by Asahi Glass Co., Ltd.
  • a linear silicone compound (a) (hereinafter also referred to as “component (a)”), a vinyl group-containing methylpolysiloxane (vinyl group concentration: 0.904 mmol / g, viscosity at 25 ° C .: 560 mPas, number average molecular weight) (Mn): 10, 100 Average number of vinyl groups per molecule: 9, all organic groups bonded to silicon atoms other than vinyl groups are methyl groups, manufactured by Arakawa Chemical Co.) and linear silicone compound (b) (hereinafter referred to as “Mn”) Si-H group-containing methylpolysiloxane (Si—H group concentration: 6.85 mmol / g, viscosity at 25 ° C .: 20 mPas, number average molecular weight (Mn): 1,000, as “component (b)”) The average number of Si—H groups per molecule: 7, all organic groups bonded to silicon atoms are methyl groups, manufactured by
  • the obtained mixed liquid was coated on the first main surface of the supporting base material with a length of 200 mm and a width of 200 mm by a spin coater (a coating amount of 15 g / m 2 ). Furthermore, it was cured by heating at 210 ° C. for 30 minutes in the air to form a cured silicone resin layer, thereby obtaining a support. At this time, a plurality of supports having different thicknesses of the cured silicone resin layer of 1 to 12 ⁇ m were obtained by adjusting the spin coater rotation speed and the coating amount.
  • the silicon compound (boiling point: 120 ° C.) having an acetylenically unsaturated group represented by the formula (d-1) as a reaction inhibitor was removed in the heat curing treatment step.
  • a glass substrate having a length of 200 mm, a width of 200 mm, and a thickness of 0.2 mm (“AN100”, a glass plate made of the same glass as the glass having a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C .: manufactured by Asahi Glass Co., Ltd.) UV cleaning was performed to clean the surface of the glass substrate. Then, after aligning the support and the glass substrate, using a vacuum press, the first main surface of the glass substrate and the peelable surface of the cured silicone resin layer of the support are brought into close contact with each other at room temperature, A glass laminate was obtained.
  • ⁇ Evaluation 1 >> First, about the support body before laminating
  • “Maximum film thickness” is 8 ⁇ m or more and 12 ⁇ m or less. “ ⁇ ”: “Maximum film thickness” is 4 ⁇ m or more and less than 8 ⁇ m. “ ⁇ ”: “Maximum film thickness” is 1 ⁇ m or more and less than 4 ⁇ m.
  • ⁇ Evaluation 3-2 A peel test was conducted on the glass laminate after the heat treatment in Evaluation 3-1. Specifically, a glass laminate having a width of 25 mm and a length of 70 mm was prepared, and the glass substrate was peeled off using a precision universal testing machine “Autograph AG-20 / 50kNXDplus” (manufactured by Shimadzu Corporation) ( Peeling speed: 30 mm / min). At this time, a stainless steel knife having a thickness of 0.1 mm was inserted into the interface between the glass substrate and the cured silicone resin layer to form a notch for peeling, and then the glass substrate was completely fixed and the supporting base was pulled up. The peel state was evaluated according to the following criteria. In the case where the evaluation was not performed, “-” was described in Table 1 below. “ ⁇ ”: Interfacial peeling between the glass substrate and the cured silicone resin layer. “X”: A part of the cured silicone resin layer was adhered to the glass substrate.
  • the “molar ratio (C1 m ⁇ 100 / (A m + C1 m ))” shown in Table 1 above is a component with respect to the total amount of the alkenyl group of component (a) and the alkenyl group of component (c) ( This corresponds to the percentage of the alkenyl group ratio (molar ratio) in c).
  • Examples 1 to 4 in which the blending amount of component (c) is less than Example 5 are examples in which the “maximum film thickness” that can form a resin layer without causing cracks is an example. It was thicker than 5 and had better crack resistance. This is probably because the resin layer became slightly hard because the amount of component (c) was slightly too large in Example 5, but in Examples 1 to 4, the resin layer was not too hard with an appropriate amount of component (c). It is done.
  • Comparative Example 1 in which D4Vi was not used as the component (c), change in appearance was confirmed after heat treatment according to Evaluation 3-1, and interface peeling was observed according to Evaluation 3-2. A portion of the resin layer adhered to the glass substrate. Moreover, according to the evaluation 1, the comparative example 2 which did not use the component (a) was inferior in crack resistance. This is considered because the cured silicone resin layer became too hard. In Comparative Example 3 using DVB instead of the component (c), according to the evaluation 2, bubbles (bubbles having a diameter of more than 2 mm) were confirmed after the glass substrate was laminated, and the appearance evaluation after the lamination was inferior. It was. This is considered because the flatness of the cured silicone resin layer was not good.
  • disassembly was suppressed even after high temperature heat processing the support body containing the resin layer, the manufacturing method of the support body, and a glass laminated body can be provided.

Abstract

The present invention provides an adhesive composition with which the decomposition of a cured silicone resin layer is suppressed even after high-temperature heat treatment. Provided is an adhesive composition that is characterized by including: a linear silicone compound (A) having an alkenyl group bonded to a silicon atom; a silicone compound (B) having, per molecule, at least three hydrogen atoms bonded to a silicon atom; and a cyclic silicone compound (c) having an alkenyl group bonded to a silicon atom.

Description

粘着剤組成物、支持体およびその製造方法ならびにガラス積層体Adhesive composition, support, method for producing the same, and glass laminate
 本発明は、粘着剤組成物、支持体およびその製造方法ならびにガラス積層体に関する。 The present invention relates to an adhesive composition, a support, a method for producing the same, and a glass laminate.
 薄板化されたガラス基板のハンドリング性を向上させるため、ガラス基板と補強板とを積層したガラス積層体を用意し、ガラス基板上に表示装置などの電子デバイス用部材を形成した後、ガラス基板と補強板とを分離する方法が提案されている(例えば、特許文献1参照)。 In order to improve the handleability of the thinned glass substrate, a glass laminate is prepared by laminating a glass substrate and a reinforcing plate, and after forming an electronic device member such as a display device on the glass substrate, the glass substrate and A method of separating the reinforcing plate has been proposed (see, for example, Patent Document 1).
国際公開第2007/018028号International Publication No. 2007/018028
 近年、形成される電子デバイス用部材の高機能化や複雑化に伴い、電子デバイス用部材を形成する際の温度がさらに高温になると共に、その高温に曝される時間も長時間を要する場合がある。その結果、ガラス積層体に対し高い耐熱性が要求されている。
 しかしながら、特許文献1に記載のガラス積層体は、大気中300℃、1時間の処理条件には耐えられるが、高温加熱処理(450℃)においては短時間のうちに分解が起こる場合がある。
In recent years, with the increase in functionality and complexity of electronic device members to be formed, the temperature at which the electronic device members are formed becomes even higher, and the time of exposure to the high temperatures may take a long time. is there. As a result, high heat resistance is required for the glass laminate.
However, the glass laminate described in Patent Document 1 can withstand processing conditions of 300 ° C. for 1 hour in the atmosphere, but decomposition may occur within a short time in high-temperature heat treatment (450 ° C.).
 本発明は、以上の点を鑑みてなされたものであり、高温加熱処理後でも分解が抑制された樹脂層の粘着剤組成物、その樹脂層を含む支持体、その支持体の製造方法及びガラス積層体を提供することを目的とする。 The present invention has been made in view of the above points, and is a pressure-sensitive adhesive composition for a resin layer in which decomposition is suppressed even after high-temperature heat treatment, a support including the resin layer, a method for producing the support, and glass It aims at providing a laminated body.
 本発明の粘着剤組成物は、
 ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、
 ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有するシリコーン化合物(b)と、
 ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、
を含むことを特徴とする。
 本発明の支持体は、
 支持基材と、前記支持基材上に設けられた樹脂層とを有し、前記樹脂層上にガラス基板を積層するための支持体であって、
 前記樹脂層は、
 ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、
 ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状シリコーン化合物(b)と、
 ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、
を含む粘着剤組成物、すなわち硬化性シリコーン樹脂組成物を硬化させてなるものであることを特徴とする。
 本発明の支持体の製造方法は、
 支持基材を準備する工程と、
 ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有するシリコーン化合物(b)と、ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、を含む粘着剤組成物を準備する工程と、
 前記支持基材上に、前記粘着剤組成物を塗布し、硬化させて樹脂層を形成する工程と、
 を含むことを特徴とする。
 本発明のガラス積層体は、支持体と、上記支持体が有する硬化シリコーン樹脂層の剥離性表面側に接したガラス基板とを含むことを特徴とするガラス積層体。
The pressure-sensitive adhesive composition of the present invention is
A linear silicone compound (a) having an alkenyl group bonded to a silicon atom;
A silicone compound (b) having at least three hydrogen atoms bonded to silicon atoms per molecule;
A cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom;
It is characterized by including.
The support of the present invention comprises
It has a support base material and a resin layer provided on the support base material, and is a support for laminating a glass substrate on the resin layer,
The resin layer is
A linear silicone compound (a) having an alkenyl group bonded to a silicon atom;
A linear silicone compound (b) having at least 3 hydrogen atoms bonded to silicon atoms per molecule;
A cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom;
It is characterized by being made by curing a pressure-sensitive adhesive composition containing a curable silicone resin composition.
The method for producing the support of the present invention comprises:
Preparing a support substrate;
A linear silicone compound (a) having an alkenyl group bonded to a silicon atom, a silicone compound (b) having at least three hydrogen atoms bonded to a silicon atom per molecule, and a ring having an alkenyl group bonded to a silicon atom Preparing a pressure-sensitive adhesive composition comprising a silicone compound (c1);
Applying the pressure-sensitive adhesive composition on the support substrate and curing to form a resin layer;
It is characterized by including.
The glass laminated body of this invention contains a support body and the glass substrate which contact | connected the peelable surface side of the cured silicone resin layer which the said support body has, The glass laminated body characterized by the above-mentioned.
 本発明によれば、高温加熱処理後でも分解が抑制された樹脂層の粘着剤組成物、その樹脂層を含む支持体、その支持体の製造方法及びガラス積層体を提供することができる。 According to the present invention, it is possible to provide an adhesive composition for a resin layer in which decomposition is suppressed even after high-temperature heat treatment, a support containing the resin layer, a method for producing the support, and a glass laminate.
本発明における支持体付き表示装置用パネルの一実施形態の模式的断面図である。It is typical sectional drawing of one Embodiment of the panel for display apparatuses with a support body in this invention.
 以下に、本発明の粘着剤組成物(すなわち、硬化性シリコーン樹脂組成物)、支持体、その支持体の製造方法ならびに、本発明の支持体を含むガラス積層体、支持体付き表示装置用パネル、および、表示装置用パネルについて、図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the pressure-sensitive adhesive composition of the present invention (that is, the curable silicone resin composition), the support, the method for producing the support, the glass laminate including the support of the present invention, and the display panel with the support The display device panel will be described in detail based on a preferred embodiment shown in the drawings.
 図1は、本発明における支持体付き表示装置用パネルの一実施形態の模式的断面図である。図1に示す支持体付き表示装置用パネル10は、本発明の支持体20を備えているもので、支持基材12、樹脂層14、ガラス基板16、および、表示装置用パネルの構成部材18をこの順で積層した積層構造を有する。なお、各層の厚さは、図1によって限定されない。
 なお、支持基材12と樹脂層14とは本発明の支持体20を構成し、支持体20とガラス基板16とはガラス積層体30を構成し、ガラス基板16と表示装置用パネルの構成部材18とは表示装置用パネル40(支持体20がないもの)を構成する。
 まず、本発明の支持体20、ガラス積層体30、表示装置用パネル40、支持体付き表示装置用パネル10を構成する各層について説明する。
FIG. 1 is a schematic cross-sectional view of an embodiment of a display device-equipped panel according to the present invention. A panel 10 for a display device with a support shown in FIG. 1 includes a support 20 according to the present invention, and includes a support base 12, a resin layer 14, a glass substrate 16, and a component 18 of the display device panel. Are stacked in this order. In addition, the thickness of each layer is not limited by FIG.
In addition, the support base material 12 and the resin layer 14 comprise the support body 20 of this invention, the support body 20 and the glass substrate 16 comprise the glass laminated body 30, and the structural member of the glass substrate 16 and the panel for display apparatuses. 18 constitutes a display device panel 40 (without the support 20).
First, each layer which comprises the support body 20, the glass laminated body 30, the display apparatus panel 40, and the display apparatus panel 10 with a support body of this invention is demonstrated.
<支持基材>
 本発明で使用される支持基材12は、樹脂層14を介してガラス基板16を支持し、ガラス基板16の強度を補強するためのものであれば、特に限定されない。
 支持基材12の材質としては特に制限されないが、工業的な入手の容易性の観点より、ガラス、シリコン、合成樹脂、金属等が好適な例として例示される。なかでも、支持基材12としては、ガラス板、シリコンウエハ、合成樹脂板または金属板であることが好ましい。
<Support base material>
The support substrate 12 used in the present invention is not particularly limited as long as it supports the glass substrate 16 through the resin layer 14 and reinforces the strength of the glass substrate 16.
Although it does not restrict | limit especially as a material of the support base material 12, Glass, a silicon | silicone, a synthetic resin, a metal, etc. are illustrated as a suitable example from a viewpoint of industrial availability. Among these, the support substrate 12 is preferably a glass plate, a silicon wafer, a synthetic resin plate, or a metal plate.
 支持基材12の材質としてガラスを採用する場合、その組成は、例えばアルカリ金属酸化物を含有するケイ酸塩系ガラス(ソーダライムガラスなど)、無アルカリのケイ酸塩系ガラス(アルカリ金属酸化物を実質的に含有しないホウケイ酸ガラスなど)等の種々の組成のガラスを使用できる。中でも、熱収縮率が小さいことから無アルカリのケイ酸塩系ガラスが好ましい。ここで、実質的に含有しないとは、材料の不純物由来の含有は排除しないことを意味する。
 ガラス基板16と支持基材12に用いるガラスとの線膨張係数の差は、150×10-7/℃以下が好ましく、100×10-7/℃以下がより好ましく、50×10-7/℃以下がさらに好ましい。ガラス基板16のガラスと支持基材12のガラスとは同一材質のガラスであってもよい。この場合は、両ガラスの線膨張係数の差は0である。
When glass is employed as the material of the support substrate 12, the composition thereof is, for example, a silicate glass (such as soda lime glass) containing an alkali metal oxide, or an alkali-free silicate glass (alkali metal oxide). Glass of various compositions, such as borosilicate glass substantially free of Of these, alkali-free silicate glass is preferred because of its low thermal shrinkage. Here, “substantially not containing” means that inclusion of impurities from the material is not excluded.
The difference in coefficient of linear expansion between the glass substrate 16 and the glass used for the support base 12 is preferably 150 × 10 −7 / ° C. or less, more preferably 100 × 10 −7 / ° C. or less, and 50 × 10 −7 / ° C. The following is more preferable. The glass of the glass substrate 16 and the glass of the support base 12 may be the same material. In this case, the difference between the linear expansion coefficients of both glasses is zero.
 支持基材12の材質として合成樹脂(プラスチック)を採用する場合、その種類は特に制限されず、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンナフタレート樹脂、ポリアクリル樹脂、各種液晶ポリマー樹脂、シリコーン樹脂などが例示される。 When a synthetic resin (plastic) is adopted as the material of the support substrate 12, the type is not particularly limited. For example, polyethylene terephthalate resin, polycarbonate resin, polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyethersulfone resin Examples thereof include polyether ketone resins, polyether ether ketone resins, polyethylene naphthalate resins, polyacrylic resins, various liquid crystal polymer resins, and silicone resins.
 支持基材12の材質として金属を採用する場合、その種類は特に制限されず、例えば、ステンレス鋼、銅などが例示される。 When the metal is adopted as the material of the support base 12, the type thereof is not particularly limited, and examples thereof include stainless steel and copper.
 支持基材12の耐熱性は、特に制限されないが、支持基材12上にガラス基板16を積層した上で、表示装置用部材のTFTアレイなどを形成する場合は耐熱性が高いことが好ましい。耐熱性は、支持基材12を空気存在下、加熱した場合の5%加熱重量減温度にて定義する。5%加熱重量減温度とは、加熱前の支持基材12の重量を基準としたとき、加熱過程において5%を超える重量減があった温度をいう。加熱重量減温度が300℃以上であることが好ましく、350℃以上であることがより好ましい。
 この場合、耐熱性の点では上述したガラスはどれも当てはまる。
 耐熱性の観点より好ましいプラスチックとしては、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンナフタレート樹脂、各種液晶ポリマー樹脂等が例示される。
The heat resistance of the support substrate 12 is not particularly limited, but when the glass substrate 16 is laminated on the support substrate 12 and a TFT array of a display device member is formed, the heat resistance is preferably high. The heat resistance is defined as a 5% weight loss by heating when the support base 12 is heated in the presence of air. The 5% heating weight loss temperature refers to a temperature at which a weight loss of more than 5% has occurred in the heating process, based on the weight of the support substrate 12 before heating. The heating weight loss temperature is preferably 300 ° C. or more, and more preferably 350 ° C. or more.
In this case, any of the above-mentioned glasses is applicable in terms of heat resistance.
Examples of preferable plastics from the viewpoint of heat resistance include polyimide resins, fluororesins, polyamide resins, polyaramid resins, polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, polyethylene naphthalate resins, and various liquid crystal polymer resins. Is done.
 支持基材12の厚さは、特に限定されるものではないが、0.3~1.1mmの厚さであることが好ましく、0.4~0.8mmの厚さであることがより好ましく、0.5~0.7mmの厚さであることがさらに好ましい。支持基材12の厚さが、0.3mm以上であると、ガラス基板16を補強する強度が不足がちとならず、破損を生じにくくなる。 The thickness of the support substrate 12 is not particularly limited, but is preferably 0.3 to 1.1 mm, and more preferably 0.4 to 0.8 mm. More preferably, the thickness is 0.5 to 0.7 mm. When the thickness of the support base 12 is 0.3 mm or more, the strength to reinforce the glass substrate 16 tends to be insufficient, and breakage hardly occurs.
 ガラス基板16の厚さは、特に限定されるものではないが、0.05~0.4mmの厚さであることが好ましく、0.05~0.2mmの厚さであることがより好ましく、0.5~0.1mmの厚さであることがさらに好ましい。ガラス基板16の厚さが、0.05mm以上であると、ガラスの強度が不足がちとならず、破損を生じにくくなる。
 ガラス基板16の厚さは、支持基材12の厚さよりも薄いものとする。
The thickness of the glass substrate 16 is not particularly limited, but is preferably 0.05 to 0.4 mm, and more preferably 0.05 to 0.2 mm. More preferably, the thickness is 0.5 to 0.1 mm. When the thickness of the glass substrate 16 is 0.05 mm or more, the strength of the glass tends to be insufficient, and breakage hardly occurs.
It is assumed that the thickness of the glass substrate 16 is thinner than the thickness of the support base 12.
 上述した各種材料で構成される支持基材12の表面は、支持基材としてガラス基板を採用する場合は、研磨処理された研磨面でもよく、または研磨処理されていない非エッチング面(生地面)であってもよい。生産性およびコストの点からは、非エッチング面(生地面)が好ましい。 When the glass substrate is adopted as the support substrate, the surface of the support substrate 12 composed of the various materials described above may be a polished surface that has been subjected to a polishing process, or a non-etched surface that is not subjected to the polishing process (fabric surface). It may be. From the viewpoint of productivity and cost, a non-etched surface (fabric surface) is preferable.
 支持基材12は、第1主面および第2主面を有しており、その形状は限定されないが、矩形が好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の角を切り落とした(コーナーカットした)形状をも含む。ここで、支持基材12の第1主面12Aは、樹脂層14が形成される面であり、第2主面12Bは、その反対面である。
 支持基材12の大きさは、限定されないが、例えば矩形の場合は100~2000mm×100~2000mmであってよく、500~1000mm×500~1000mmが好ましい。
The support base 12 has a first main surface and a second main surface, and the shape is not limited, but a rectangle is preferable. Here, the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut). Here, the first main surface 12A of the support substrate 12 is a surface on which the resin layer 14 is formed, and the second main surface 12B is the opposite surface.
The size of the support substrate 12 is not limited, but for example, in the case of a rectangle, it may be 100 to 2000 mm × 100 to 2000 mm, and preferably 500 to 1000 mm × 500 to 1000 mm.
<樹脂層(硬化シリコーン樹脂層)>
 本発明における樹脂層14は、上述した支持基材12の第1主面12A上に固定され、ガラス基板16が積層されたガラス積層体30においては、第1主面および第2主面を有するガラス基板16の第1主面に密着している。ここで、ガラス基板16の第1主面16Aは、樹脂層14と接する面であり、第2主面16Bは、その反対面である。
 この明細書における“固定”とは樹脂層14と支持基材12との結合を言い、この明細書における“密着”とは、ガラス基板16と樹脂層14との結合を言う。樹脂層14と支持基材12との結合(いわゆる、固定)は、ガラス基板16と樹脂層14との結合(いわゆる、密着)よりも、強い結合力であることをいう。ここで、樹脂層14とガラス基板16とは非常に弱い力によって接着されている。例えば、分子間力やファンデルワールス力に代表される力である。
 以下、より具体的に説明する。
 ガラス基板16の第1主面16Aと樹脂層14との間の剥離強度は、支持基材12の第1主面12Aと樹脂層14との間の剥離強度よりも低いことが必要である。すなわち、ガラス基板16と支持基材12とを分離する際には、ガラス基板16の第1主面16Aと樹脂層14との界面で剥離し、支持基材12の第1主面12Aと樹脂層14との界面では剥離しにくいことが必要である。このため、樹脂層14は、ガラス基板16の第1主面16Aと密着するが、ガラス基板16を容易に剥離することができる表面特性を有する。すなわち、樹脂層14は、ガラス基板16の第1主面16Aに対してある程度の結合力で結合してガラス基板16の位置ずれなどを防止している。そして、樹脂層14は、ガラス基板16を剥離する際には、ガラス基板16を破壊することなく、容易に剥離できる程度の結合力で結合している。本発明では、この樹脂層14の容易に剥離できる性質を剥離性という。一方、支持基材12の第1主面12Aと樹脂層14との結合力は、ガラス基板16の第1主面16Aと樹脂層14との結合力に比べて剥離しにくい結合力である。
<Resin layer (cured silicone resin layer)>
The resin layer 14 in the present invention is fixed on the first main surface 12A of the support base 12 described above, and the glass laminate 30 in which the glass substrate 16 is laminated has a first main surface and a second main surface. The glass substrate 16 is in close contact with the first main surface. Here, the first main surface 16A of the glass substrate 16 is a surface in contact with the resin layer 14, and the second main surface 16B is the opposite surface.
“Fixed” in this specification refers to a bond between the resin layer 14 and the support base 12, and “adhesion” in this specification refers to a bond between the glass substrate 16 and the resin layer 14. The bond (so-called fixing) between the resin layer 14 and the support base 12 means a stronger bonding force than the bond (so-called close contact) between the glass substrate 16 and the resin layer 14. Here, the resin layer 14 and the glass substrate 16 are bonded by a very weak force. For example, forces represented by intermolecular forces and van der Waals forces.
More specific description will be given below.
The peel strength between the first main surface 16A of the glass substrate 16 and the resin layer 14 needs to be lower than the peel strength between the first main surface 12A of the support base 12 and the resin layer 14. That is, when the glass substrate 16 and the support base 12 are separated, the glass substrate 16 is peeled off at the interface between the first main surface 16A of the glass substrate 16 and the resin layer 14, and the first main surface 12A of the support base 12 and the resin are separated. It must be difficult to peel off at the interface with the layer 14. For this reason, the resin layer 14 is in close contact with the first main surface 16A of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the resin layer 14 is bonded to the first main surface 16 </ b> A of the glass substrate 16 with a certain bonding force to prevent the glass substrate 16 from being displaced. Then, when the glass substrate 16 is peeled off, the resin layer 14 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16. In the present invention, the easily peelable property of the resin layer 14 is called peelability. On the other hand, the bonding force between the first main surface 12A of the support base 12 and the resin layer 14 is a bonding force that is less likely to peel than the bonding force between the first main surface 16A of the glass substrate 16 and the resin layer 14.
 樹脂層14のガラス基板16の第1主面16Aに対する剥離強度を相対的に低くし、樹脂層14の支持基材12の第1主面12Aに対する剥離強度を相対的に高くするために、粘着剤組成物(以下、粘着性組成物を、硬化性シリコーン樹脂組成物とも称する)を支持基材12の第1主面12A上で硬化させて硬化シリコーン樹脂からなる樹脂層14を形成し、その後に硬化シリコーン樹脂からなる樹脂層14にガラス基板16を積層して密着させることが好ましい。
 本発明における硬化シリコーン樹脂は、ガラス基板16と密着させても剥離強度は低い。
 しかし、硬化シリコーン樹脂となる硬化性シリコーン樹脂組成物を支持基材12表面で硬化させると、硬化反応時の支持基材表面との相互作用により接着し、硬化後の硬化シリコーン樹脂と支持基材表面との剥離強度は高くなると考えられる。
 したがって、ガラス基板16と支持基材12とが同じ材質からなるものであっても、樹脂層と両者間の剥離強度に差を設けることができる。
In order to relatively lower the peel strength of the resin layer 14 with respect to the first main surface 16A of the glass substrate 16, and to relatively increase the peel strength of the resin layer 14 with respect to the first main surface 12A of the support base 12, An agent composition (hereinafter, the adhesive composition is also referred to as a curable silicone resin composition) is cured on the first main surface 12A of the support base 12 to form a resin layer 14 made of a cured silicone resin, and then It is preferable that the glass substrate 16 is laminated and adhered to the resin layer 14 made of a cured silicone resin.
Even if the cured silicone resin in the present invention is in close contact with the glass substrate 16, the peel strength is low.
However, when the curable silicone resin composition to be a cured silicone resin is cured on the surface of the support substrate 12, it adheres by interaction with the surface of the support substrate during the curing reaction, and the cured silicone resin after curing and the support substrate The peel strength from the surface is considered to be high.
Therefore, even if the glass substrate 16 and the support base 12 are made of the same material, a difference can be provided in the resin layer and the peel strength between them.
 ガラス基板16の第1主面16Aに対する剥離強度と支持基材12の第1主面12Aに対する剥離強度とに差を設けた樹脂層14の形成は、上記方法に限られるものではない。
 例えば、硬化シリコーン樹脂表面に対する密着性がガラス基板16よりも高い材質の支持基材12を用いる場合には、硬化シリコーン樹脂フィルムを介在させてガラス基板16と支持基材12とを同時に積層することができる。
 また、硬化性シリコーン樹脂組成物の硬化による接着性がガラス基板16に対して十分低くかつその接着性が支持基材12に対して十分高い場合は、硬化性シリコーン樹脂組成物を支持基材12の第1主面12A上で硬化させる前に、硬化性シリコーン樹脂組成物上にガラス基板16を積層し、ガラス基板16と支持基材12との間で硬化性シリコーン樹脂組成物を硬化させて樹脂層14を形成することができる。
 支持基材12がガラス基板16と同様のガラス材料からなる場合であっても、支持基材12表面の接着性を高める処理を施して樹脂層14に対する剥離強度を高めることもできる。例えば、ガラス材料からなる支持基材12表面にシラノール基の濃度を高める処理を施して樹脂層14との結合力を高めることができる。
The formation of the resin layer 14 having a difference between the peel strength with respect to the first main surface 16A of the glass substrate 16 and the peel strength with respect to the first main surface 12A of the support base 12 is not limited to the above method.
For example, when using the support base material 12 having higher adhesion to the surface of the cured silicone resin than the glass substrate 16, the glass substrate 16 and the support base material 12 are laminated simultaneously with a cured silicone resin film interposed. Can do.
Moreover, when the adhesiveness by hardening of a curable silicone resin composition is low enough with respect to the glass substrate 16, and the adhesiveness is high enough with respect to the support base material 12, a curable silicone resin composition is used for the support base material 12. Before curing on the first main surface 12A, a glass substrate 16 is laminated on the curable silicone resin composition, and the curable silicone resin composition is cured between the glass substrate 16 and the support base 12. The resin layer 14 can be formed.
Even when the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the resin layer 14 by performing a process for increasing the adhesion of the surface of the support base 12. For example, it is possible to increase the bonding strength with the resin layer 14 by performing a treatment for increasing the concentration of silanol groups on the surface of the support substrate 12 made of a glass material.
 付加反応型の硬化性シリコーン樹脂組成物(すなわち、粘着剤組成物)は、ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物と、ケイ素原子に結合した水素原子を有するシリコーン化合物と、ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物と、を含む硬化性の粘着剤組成物であり、好ましくは、ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物と、ケイ素原子に結合した水素原子を有する線状シリコーン化合物と、ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物と、触媒等の添加剤とを含む硬化性の組成物であり、加熱により硬化して硬化シリコーン樹脂となる。
 本発明における樹脂層14は、概略的には、ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物である線状シリコーン化合物(a)と、ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状シリコーン化合物ある線状シリコーン化合物(b)と、ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)を含有する付加反応型の硬化性シリコーン樹脂組成物を硬化せしめてなる、硬化シリコーン樹脂の層である。さらには、硬化性シリコーン樹脂組成物は、ケイ素原子に結合した水素原子を有する環状シリコーン化合物(c2)を含んでいてもよい。
 本発明における付加反応型の硬化性シリコーン樹脂組成物の硬化物は、組成物におけるSi-H基とビニル基とのモル比を最適化しているため、硬化後の未反応の水素原子(ケイ素原子に結合した水素原子)の残存量が少ない。そのため、剥離強度の経時的変化が少なく、耐熱性が優れている。
 以下に樹脂層14の形成に使用される粘着剤組成物、すなわち硬化性シリコーン樹脂組成物について詳述する。
An addition reaction type curable silicone resin composition (that is, a pressure-sensitive adhesive composition) includes a linear silicone compound having an alkenyl group bonded to a silicon atom, a silicone compound having a hydrogen atom bonded to a silicon atom, and a silicon atom. A curable pressure-sensitive adhesive composition comprising an alkenyl group bonded to a linear silicone compound having an alkenyl group bonded to a silicon atom, and a hydrogen atom bonded to a silicon atom. A curable composition comprising a linear silicone compound having a cyclic silicone compound having an alkenyl group bonded to a silicon atom, and an additive such as a catalyst, and cured by heating to form a cured silicone resin.
The resin layer 14 in the present invention generally includes at least 3 linear silicone compounds (a), which are linear silicone compounds having an alkenyl group bonded to a silicon atom, and at least 3 hydrogen atoms bonded to a silicon atom per molecule. An addition reaction type curable silicone resin composition containing a linear silicone compound (b) having a linear silicone compound and a cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom; It is a layer of a cured silicone resin. Furthermore, the curable silicone resin composition may contain a cyclic silicone compound (c2) having a hydrogen atom bonded to a silicon atom.
Since the cured product of the addition reaction type curable silicone resin composition in the present invention has optimized the molar ratio of Si—H groups to vinyl groups in the composition, unreacted hydrogen atoms (silicon atoms after curing) The residual amount of hydrogen atoms bonded to is small. For this reason, the change in peel strength with time is small, and the heat resistance is excellent.
The pressure-sensitive adhesive composition used for forming the resin layer 14, that is, the curable silicone resin composition will be described in detail below.
<線状シリコーン化合物(a)>
 本発明における硬化性シリコーン樹脂組成物が含む線状シリコーン化合物(a)は、アルケニル基を1分子あたり少なくとも2個有する線状シリコーン化合物が好ましい。
<Linear silicone compound (a)>
The linear silicone compound (a) contained in the curable silicone resin composition in the present invention is preferably a linear silicone compound having at least two alkenyl groups per molecule.
 アルケニル基としては特に限定されないが、例えば、ビニル基(エテニル基)、アリル基(2-プロペニル基)、ブテニル基、ペンテニル基、ヘキシニル基、などが挙げられ、中でも耐熱性に優れる点から、ビニル基が好ましい。 The alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, a hexynyl group, and the like. Groups are preferred.
 線状シリコーン化合物(a)において、アルケニル基の濃度は、0.1~20.4mmol/gが好ましく、0.5~11.6mmol/gがより好ましい。 In the linear silicone compound (a), the alkenyl group concentration is preferably 0.1 to 20.4 mmol / g, and more preferably 0.5 to 11.6 mmol / g.
 一般に、線状シリコーン化合物(a)の両末端の1官能性単位は、M単位と呼ばれ、両末端以外の2官能性の単位は、D単位と呼ばれ、n個のD単位を有する線状シリコーン化合物(a)の構造は、M(D)Mで表される。また、各単位の平均組成を表す場合、M(D)で表されることもある。
 線状シリコーン化合物(a)において、アルケニル基は、M単位またはD単位に存在し、M単位とD単位の両方に存在していてもよい。硬化速度の点から、少なくともM単位に存在していることが好ましく、2個のM単位の両方に存在していることが好ましい。
 また、M単位のみにアルケニル基を有する線状シリコーン化合物(a)は、それが高分子量になるほど1分子あたりのアルケニル基濃度が低くなり硬化シリコーン樹脂の架橋密度が低下するため、耐熱性の低下をもたらすおそれがあることより、M単位とともにD単位の一部にもアルケニル基を有していることが好ましい。
In general, monofunctional units at both ends of the linear silicone compound (a) are referred to as M units, and difunctional units other than both ends are referred to as D units, and a line having n D units. The structure of the silicone compound (a) is represented by M (D) n M. Moreover, when expressing the average composition of each unit, it may be represented by M 2 (D) n .
In the linear silicone compound (a), the alkenyl group is present in the M unit or D unit, and may be present in both the M unit and D unit. From the viewpoint of curing speed, it is preferably present at least in M units, and preferably present in both two M units.
Further, the linear silicone compound (a) having an alkenyl group only in the M unit has a lower heat resistance because the higher the molecular weight, the lower the alkenyl group concentration per molecule and the lower the crosslinking density of the cured silicone resin. It is preferable to have an alkenyl group in part of the D unit as well as the M unit.
 線状シリコーン化合物(a)の1分子あたりのアルケニル基の数は、硬化物の耐熱性の点で、2~120個が好ましく、2~100個がより好ましい。 The number of alkenyl groups per molecule of the linear silicone compound (a) is preferably 2 to 120, more preferably 2 to 100, from the viewpoint of heat resistance of the cured product.
 線状シリコーン化合物(a)としては、下記式(1)で表される平均組成の線状オルガノポリシロキサンが好ましい。
  (M(M(D(D ・・・(1)
 ただし、Mはアルケニル基とケイ素原子に結合した水素原子のいずれも有しないM単位、Mはケイ素原子に結合したアルケニル基を有するM単位、Dはアルケニル基とケイ素原子に結合した水素原子のいずれも有しないD単位、およびDはケイ素原子に結合したアルケニル基を有するD単位を表し、aは0~2の数、bは0~2の数でa+b=2、cは0以上の数、dは0以上の数でc+d=nである(ただし、b+dは2以上)。より好ましい式(1)で表される線状シリコーン化合物(a)は、aが0以上1未満の数、bは1以上2以下の数、cは1以上の数、dは1以上の数である。
As the linear silicone compound (a), a linear organopolysiloxane having an average composition represented by the following formula (1) is preferable.
(M 1 ) a (M 2 ) b (D 1 ) c (D 2 ) d (1)
Where M 1 is an M unit having neither an alkenyl group nor a hydrogen atom bonded to a silicon atom, M 2 is an M unit having an alkenyl group bonded to a silicon atom, and D 1 is a hydrogen bonded to an alkenyl group and a silicon atom. D unit having no atom, and D 2 represents a D unit having an alkenyl group bonded to a silicon atom, a is a number from 0 to 2, b is a number from 0 to 2, a + b = 2, c is 0 The above number, d is a number of 0 or more and c + d = n (where b + d is 2 or more). In the more preferred linear silicone compound (a) represented by the formula (1), a is a number of 0 or more and less than 1, b is a number of 1 or more and 2 or less, c is a number of 1 or more, and d is a number of 1 or more. It is.
 M単位は、ケイ素原子に結合したアルケニル基を2個または3個有してもよいが、好ましくは1個有する。
 D単位は、ケイ素原子に結合したアルケニル基を2個有してもよいが、好ましくは1個有する。
 アルケニル基としてはビニル基が好ましい。
 M単位、D単位、好ましいM単位、好ましいD単位は、下記式で表されるものであることが好ましい。
 R~Rは、それぞれ独立に、上記と同様に炭素数4以下のアルキル基もしくはフルオロアルキル基またはフェニル基を表す。R~Rは、好ましくはすべてメチル基である。
The M 2 unit may have two or three alkenyl groups bonded to a silicon atom, but preferably has one.
The D 2 unit may have two alkenyl groups bonded to a silicon atom, but preferably has one.
The alkenyl group is preferably a vinyl group.
The M 1 unit, D 1 unit, preferred M 2 unit, and preferred D 2 unit are preferably those represented by the following formulae.
R 1 to R 5 each independently represents an alkyl group having 4 or less carbon atoms, a fluoroalkyl group, or a phenyl group, as described above. R 1 to R 5 are preferably all methyl groups.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)は、線状シリコーン化合物(a)の組成を単位ごとに表記したものであり、平均の組成を示すものである。
 線状シリコーン化合物(a)の個々の分子は、好ましくは、aは0または1である整数、bは1または2である整数でa+b=2、cは1以上の整数、dは0以上の整数である。
 線状シリコーン化合物(a)は、1分子あたりアルケニル基を2個以上有することより、b+dが2以上であることが好ましい。
The above formula (1) represents the composition of the linear silicone compound (a) for each unit, and represents an average composition.
The individual molecules of the linear silicone compound (a) are preferably such that a is an integer of 0 or 1, b is an integer of 1 or 2, a + b = 2, c is an integer of 1 or more, and d is 0 or more. It is an integer.
Since the linear silicone compound (a) has two or more alkenyl groups per molecule, b + d is preferably 2 or more.
 線状シリコーン化合物(a)は、ケイ素原子に結合したアルケニル基を有する他の線状シリコーン化合物との混合物であってもよいが、通常線状シリコーン化合物(a)のみが使用される。ただし、ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物は、ケイ素原子に結合したアルケニル基を有する2種以上の線状シリコーン化合物の混合物であってもよい。
 また、上記式(1)の線状シリコーン化合物(a)において、DとDとがいずれも多数存在する場合、DとDとの配列は、ランダム共重合鎖構造であってもブロック共重合鎖構造であってもよい。
 なお、線状シリコーン化合物(a)としては、国際公開第2007/018028号に記載の線状シリコーン化合物(a)を使用できる。
The linear silicone compound (a) may be a mixture with another linear silicone compound having an alkenyl group bonded to a silicon atom, but usually only the linear silicone compound (a) is used. However, the linear silicone compound having an alkenyl group bonded to a silicon atom may be a mixture of two or more linear silicone compounds having an alkenyl group bonded to a silicon atom.
In the linear silicone compound (a) of the above formula (1), when both D 1 and D 2 are present, the sequence of D 1 and D 2 may be a random copolymer chain structure. It may be a block copolymer chain structure.
As the linear silicone compound (a), the linear silicone compound (a) described in International Publication No. 2007/018028 can be used.
 線状シリコーン化合物(a)の数平均分子量(Mn)は、500~3,000,000が好ましく、1,000~2,000,000がより好ましく、1500~500,000がさらに好ましい。Mnをこの範囲とすることにより、加熱硬化時の揮散が抑制され、また、高粘度となりすぎず作業性が良好となる。 The number average molecular weight (Mn) of the linear silicone compound (a) is preferably 500 to 3,000,000, more preferably 1,000 to 2,000,000, and further preferably 1500 to 500,000. By setting Mn within this range, volatilization during heat curing is suppressed, and workability is improved without becoming too viscous.
 線状シリコーン化合物(a)の25℃における粘度は、100~1000mPasが好ましく、300~700mPasが好ましい。 The viscosity of the linear silicone compound (a) at 25 ° C. is preferably 100 to 1000 mPas, more preferably 300 to 700 mPas.
<ケイ素原子に結合した水素原子を有する線状シリコーン化合物(b)>
 本発明における硬化性シリコーン樹脂組成物が含む線状シリコーン化合物(b)は、水素原子を1分子あたり少なくとも3個有する線状シリコーン化合物(b)が好ましい。
 線状シリコーン化合物(b)において、ケイ素原子に結合した水素原子(Si-H基)の濃度は、0.90~43.5mmol/gが好ましく、3.0~16.7mmol/gがより好ましい。
<Linear silicone compound (b) having a hydrogen atom bonded to a silicon atom>
The linear silicone compound (b) contained in the curable silicone resin composition in the present invention is preferably a linear silicone compound (b) having at least 3 hydrogen atoms per molecule.
In the linear silicone compound (b), the concentration of hydrogen atoms bonded to silicon atoms (Si—H groups) is preferably 0.90 to 43.5 mmol / g, more preferably 3.0 to 16.7 mmol / g. .
 本発明における線状シリコーン化合物(b)は、2個のM単位の少なくとも一方にケイ素原子に結合した水素原子が存在していることが好ましい。より好ましい線状シリコーン化合物(b)は、2個のM単位のそれぞれにケイ素原子に結合した水素原子が存在し、かつn個存在するD単位の一部のD単位にもケイ素原子に結合した水素原子が存在する、線状シリコーン化合物である。
 なお、線状シリコーン化合物(b)は、ケイ素原子に結合した水素原子を有する他の線状シリコーン化合物と併用することもできる。ケイ素原子に結合した水素原子を有する他の線状シリコーン化合物としては、例えば、M単位にケイ素原子に結合した水素原子が存在せず、D単位の一部のみにケイ素原子に結合した水素原子が存在する線状シリコーン化合物が挙げられる。
In the linear silicone compound (b) in the present invention, a hydrogen atom bonded to a silicon atom is preferably present in at least one of the two M units. A more preferable linear silicone compound (b) has a hydrogen atom bonded to a silicon atom in each of two M units, and a part of the D units of n D units also bonded to a silicon atom. It is a linear silicone compound in which hydrogen atoms are present.
The linear silicone compound (b) can also be used in combination with other linear silicone compounds having a hydrogen atom bonded to a silicon atom. As another linear silicone compound having a hydrogen atom bonded to a silicon atom, for example, there is no hydrogen atom bonded to a silicon atom in the M unit, and a hydrogen atom bonded to a silicon atom is only part of the D unit. Examples include existing linear silicone compounds.
 線状シリコーン化合物(b)、または、線状シリコーン化合物(b)とケイ素原子に結合した水素原子を有する他の線状シリコーン化合物との混合物としては、例えば、下記式(2)で表される平均組成のケイ素原子に結合した水素原子を有する線状シリコーン化合物が好適に挙げられる。
  (Mα(Mβ(Dγ(Dδ ・・・(2)
 ただし、Mはケイ素原子に結合した水素原子とアルケニル基のいずれも存在しないM単位(上記式(1)におけるM単位と同じ)、Mはケイ素原子に結合した水素原子が存在するM単位、Dはケイ素原子に結合した水素原子とアルケニル基のいずれも存在しないD単位(上記式(1)におけるD単位と同じ)、およびDはケイ素原子に結合した水素原子が存在するD単位を表し、αは0以上2未満の数、βは0でない2以下の数でα+β=2、γは0を超える数、δは0以上の数でγ+δ=nである。
 より好ましい平均組成は、αは0以上1未満の数、βは1以上2以下の数、γは1以上の数、δは1以上の数である。
 なお、国際公開第2007/018028号に記載の線状シリコーン化合物(b)は、式(2)において、β=0の化合物である。
Examples of the linear silicone compound (b) or a mixture of the linear silicone compound (b) and another linear silicone compound having a hydrogen atom bonded to a silicon atom are represented by the following formula (2). A linear silicone compound having a hydrogen atom bonded to a silicon atom having an average composition is preferably mentioned.
(M 1 ) α (M 3 ) β (D 1 ) γ (D 3 ) δ (2)
However, M 1 is an M unit in which neither a hydrogen atom bonded to a silicon atom nor an alkenyl group exists (the same as the M 1 unit in the above formula (1)), and M 3 is an M unit in which a hydrogen atom bonded to a silicon atom is present. The unit, D 1 is a D unit in which neither a hydrogen atom bonded to a silicon atom nor an alkenyl group is present (same as the D 1 unit in the above formula (1)), and D 3 is a hydrogen atom bonded to a silicon atom D represents a unit, α is a number of 0 or more and less than 2, β is a number of 2 or less that is not 0, α + β = 2, γ is a number exceeding 0, and δ is a number of 0 or more and γ + δ = n.
More preferably, α is a number of 0 or more and less than 1, β is a number of 1 or more and 2 or less, γ is a number of 1 or more, and δ is a number of 1 or more.
The linear silicone compound (b) described in International Publication No. 2007/018028 is a compound with β = 0 in the formula (2).
 M単位は、ケイ素原子に結合した水素原子を2個または3個有してもよいが、好ましくは1個有する。
 D単位は、ケイ素原子に結合した水素原子を2個有してもよいが、好ましくは1個有する。
 M単位、D単位、好ましいM単位、好ましいD単位は、下記式で表されるものであることが好ましい。
 R~Rは、それぞれ独立に、炭素数4以下のアルキル基もしくはフルオロアルキル基またはフェニル基を表す。R~Rは、好ましくはすべてメチル基である。
The M 3 unit may have two or three hydrogen atoms bonded to a silicon atom, but preferably has one.
The D 3 unit may have two hydrogen atoms bonded to a silicon atom, but preferably has one.
The M 1 unit, D 1 unit, preferred M 3 unit, and preferred D 3 unit are preferably those represented by the following formulae.
R 1 to R 5 each independently represents an alkyl group having 4 or less carbon atoms, a fluoroalkyl group, or a phenyl group. R 1 to R 5 are preferably all methyl groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 D単位が存在する場合(δが0でない場合)、DとDとの存在比であるγ/δは、分子中のケイ素原子に結合した水素原子の密度を表す指標である。この存在比(γ/δ)は、0.2~30が好ましく、特に0.5~20が好ましい。
 この存在比が小さすぎると、硬化シリコーン樹脂中に、未反応の水素原子(ケイ素原子に結合した水素原子)の残存量が多くなることより、硬化シリコーン樹脂のガラス基板に対する剥離強度の経時的変化が大きくなり、また耐熱性の低下をもたらすおそれがある。
 また、存在比が大きすぎると、硬化シリコーン樹脂の架橋密度が低下するため、耐熱性の低下をもたらすおそれがある。
When D 3 units are present (when δ is not 0), γ / δ, which is the abundance ratio between D 1 and D 3 , is an index representing the density of hydrogen atoms bonded to silicon atoms in the molecule. The abundance ratio (γ / δ) is preferably 0.2 to 30, and particularly preferably 0.5 to 20.
If this abundance ratio is too small, the residual amount of unreacted hydrogen atoms (hydrogen atoms bonded to silicon atoms) in the cured silicone resin will increase, and the change in peel strength of the cured silicone resin with respect to the glass substrate over time May increase, and heat resistance may be reduced.
On the other hand, if the abundance ratio is too large, the crosslink density of the cured silicone resin decreases, which may cause a decrease in heat resistance.
 M単位とD単位との存在比を表すβ/δは、15≦(β/δ)×1000≦1500が好ましい。より好ましくは15≦(β/δ)×1000≦1000であり、特に15≦(β/δ)×1000≦500が好ましい。
 (β/δ)×1000が15よりも小さいと分子量が大きくなり、あるいは官能基の立体障害が大きくなり、反応性が低下することより、硬化シリコーン樹脂のガラス基板に対する剥離強度の経時的変化が大きくなるおそれがある。
 一方、(β/δ)×1000が1500よりも大きいと、架橋密度が小さくなるため、強度等の物性が充分な硬化シリコーン樹脂が得られないおそれが生じる。
Β / δ representing the abundance ratio of M 3 units to D 3 units is preferably 15 ≦ (β / δ) × 1000 ≦ 1500. More preferably, 15 ≦ (β / δ) × 1000 ≦ 1000, and particularly preferably 15 ≦ (β / δ) × 1000 ≦ 500.
When (β / δ) × 1000 is less than 15, the molecular weight increases, or the steric hindrance of the functional group increases and the reactivity decreases, so that the change in the peel strength of the cured silicone resin with respect to the glass substrate with time is changed. May grow.
On the other hand, if (β / δ) × 1000 is larger than 1500, the crosslink density becomes small, so that a cured silicone resin having sufficient physical properties such as strength may not be obtained.
 上記式(2)は、線状シリコーン化合物(b)の組成を単位ごとに表記したものであり、平均の組成を示すものである。
 線状シリコーン化合物(b)の個々の分子は、好ましくは、αは0または1である整数、βは1または2である整数でα+β=2、γは1以上の整数、δは0以上の整数である。
 より好ましい線状シリコーン化合物(b)は、αが0以上1未満の数、βが1以上2以下の数、γが1以上の数、δが1以上の数である化合物である。
 また、線状シリコーン化合物(b)は、1分子あたり、ケイ素原子に結合した水素原子を3個以上有することより、β+εが3以上であることが好ましい。
The above formula (2) represents the composition of the linear silicone compound (b) for each unit, and represents an average composition.
The individual molecules of the linear silicone compound (b) are preferably such that α is an integer of 0 or 1, β is an integer of 1 or 2, α + β = 2, γ is an integer of 1 or more, and δ is 0 or more. It is an integer.
A more preferable linear silicone compound (b) is a compound in which α is a number of 0 or more and less than 1, β is a number of 1 or more and 2 or less, γ is a number of 1 or more, and δ is a number of 1 or more.
Moreover, it is preferable that (beta) + (epsilon) is 3 or more because the linear silicone compound (b) has 3 or more hydrogen atoms couple | bonded with the silicon atom per molecule.
 線状シリコーン化合物(b)の1分子あたりのケイ素原子に結合した水素原子の数が2個の場合、架橋による高耐熱化が達成できない。このため、線状シリコーン化合物(b)の1分子あたりのケイ素原子に結合した水素原子の数は、硬化物の耐熱性の点で、3個~120個が好ましく、3個~100個がより好ましい。 When the number of hydrogen atoms bonded to silicon atoms per molecule of the linear silicone compound (b) is 2, high heat resistance cannot be achieved by crosslinking. Therefore, the number of hydrogen atoms bonded to silicon atoms per molecule of the linear silicone compound (b) is preferably 3 to 120 in terms of heat resistance of the cured product, and more preferably 3 to 100. preferable.
 線状シリコーン化合物(b)以外のケイ素原子に結合した水素原子を有する線状シリコーン化合物は、例えば、αが2、βが0、γは0以上の整数、δが1以上の整数であるケイ素原子に結合した水素原子を有する線状シリコーン化合物である。 Examples of the linear silicone compound having a hydrogen atom bonded to a silicon atom other than the linear silicone compound (b) include silicon in which α is 2, β is 0, γ is an integer of 0 or more, and δ is an integer of 1 or more. A linear silicone compound having a hydrogen atom bonded to an atom.
 なお、これら分子においてDとDとがいずれも多数存在する場合、DとDとの配列は、ランダム共重合鎖構造であってもブロック共重合鎖構造であってもよい。通常は環状シロキサンの開環重合で共重合鎖が形成されることより、開環した環状シロキサンのブロックがランダムに共重合した構造を有すると考えられる。 In the case where the D 1 and D 3 in these molecules exist many none, the sequence of the D 1 and D 3 may be a block copolymer chain structure may be a random copolymer chain structure. Usually, a copolymer chain is formed by ring-opening polymerization of a cyclic siloxane, so that it is considered that the ring-opened cyclic siloxane block has a random copolymerized structure.
 上述したように、ケイ素原子に結合した水素原子を有する線状シリコーン化合物としては個々の分子が線状シリコーン化合物(b)である線状シリコーン化合物ばかりでなく、線状シリコーン化合物(b)とケイ素原子に結合した水素原子を有する他の線状シリコーン化合物の混合物(その平均組成が前記式(2)で表されるもの)であってもよい。
 その場合、使用されるケイ素原子に結合した水素原子を有する他の線状シリコーン化合物の全モル数のうち、線状シリコーン化合物(b)は、20モル%以上含まれることが好ましい。20モル%未満であると、ケイ素原子に結合した水素原子が残存し易くなり、経時的に樹脂層14とガラス基板16との界面の剥離強度が上昇しやすく好ましくない。硬化シリコーン樹脂の耐熱性および樹脂層14とガラス基板との剥離強度の経時安定性の観点から、線状シリコーン化合物(b)の含有量は、50モル%以上が好ましく、80モル%以上がより好ましい。
As described above, as the linear silicone compound having a hydrogen atom bonded to a silicon atom, not only the linear silicone compound whose individual molecule is the linear silicone compound (b), but also the linear silicone compound (b) and silicon. It may be a mixture of other linear silicone compounds having a hydrogen atom bonded to an atom (the average composition of which is represented by the formula (2)).
In that case, it is preferable that 20 mol% or more of the linear silicone compound (b) is included in the total number of moles of the other linear silicone compound having a hydrogen atom bonded to the silicon atom used. If it is less than 20 mol%, hydrogen atoms bonded to silicon atoms tend to remain, and the peel strength at the interface between the resin layer 14 and the glass substrate 16 tends to increase with time, which is not preferable. From the viewpoint of the heat resistance of the cured silicone resin and the temporal stability of the peel strength between the resin layer 14 and the glass substrate, the content of the linear silicone compound (b) is preferably 50 mol% or more, more preferably 80 mol% or more. preferable.
 線状シリコーン化合物(b)の数平均分子量(Mn)は、300~5,000,000が好ましく、400~1,000,000がより好ましく、500~500,000がさらに好ましい。
 線状シリコーン化合物(b)の数平均分子量(Mn)は、線状シリコーン化合物(a)の数平均分子量(Mn)よりも小さい。
The number average molecular weight (Mn) of the linear silicone compound (b) is preferably 300 to 5,000,000, more preferably 400 to 1,000,000, and further preferably 500 to 500,000.
The number average molecular weight (Mn) of the linear silicone compound (b) is smaller than the number average molecular weight (Mn) of the linear silicone compound (a).
 線状シリコーン化合物(b)の25℃における粘度は、10~100mPasが好ましく、20~50mPasがより好ましい。 The viscosity of the linear silicone compound (b) at 25 ° C. is preferably 10 to 100 mPas, more preferably 20 to 50 mPas.
<環状シリコーン化合物(c)>
 本発明における硬化性シリコーン樹脂組成物が含む環状シリコーン化合物(c)は、ケイ素原子に結合したアルケニル基を1分子あたり少なくとも2個有する環状シリコーン化合物(c1)が好ましく、さらにはケイ素原子に結合した水素原子を有する環状シリコーン化合物(c2)を含むのも好ましい。
<Cyclic silicone compound (c)>
The cyclic silicone compound (c) contained in the curable silicone resin composition in the present invention is preferably a cyclic silicone compound (c1) having at least two alkenyl groups bonded to a silicon atom per molecule, and further bonded to a silicon atom. It is also preferable to include a cyclic silicone compound (c2) having a hydrogen atom.
 本発明においては、硬化シリコーン樹脂層となる硬化性シリコーン樹脂組成物に、上述した線状シリコーン化合物(a)および線状シリコーン化合物(b)のほか、さらに、環状シリコーン化合物(c)を含ませることで、高温加熱処理後でも硬化シリコーン樹脂層の分解を抑制することができる。
 この理由は明らかではないが、以下のように推測される。すなわち、硬化性シリコーン樹脂組成物が、単に、線状シリコーン化合物(a)および線状シリコーン化合物(b)のみを含有する場合と比べて、さらに環状シリコーン化合物(c)を含有することで、硬化物の架橋密度が高くなるためと考えられる。
 また、線状シリコーン化合物(a)および線状シリコーン化合物(b)は、線状であるため、高温加熱処理が施されると、それぞれ折れ曲がった状態で、Si-O結合が切れて、このSi原子が同じ1分子内の他のOと新たなSi-O結合を形成し(以下、これを「Si-O結合の入れ替え」と呼ぶ)、その結果、環状の低分子ポリシロキサンが生成し、揮発することが考えられる。しかし、本発明においては、さらに、環状シリコーン化合物(c)を含有することで、線状シリコーン化合物(a)および線状シリコーン化合物(b)は、1分子内でのSi-O結合の入れ替えが生じにくくなったり、また、Si-O結合の入れ替えが生じても、他の分子との入れ替えとなるため低分子ポリシロキサンが生成しにくくなったりして、揮発成分の発生が抑制され、その結果、硬化シリコーン樹脂層の分解が抑制されると考えられる。
In the present invention, the curable silicone resin composition to be the cured silicone resin layer further contains a cyclic silicone compound (c) in addition to the linear silicone compound (a) and the linear silicone compound (b) described above. Thereby, decomposition | disassembly of a cured silicone resin layer can be suppressed even after high temperature heat processing.
The reason for this is not clear, but is presumed as follows. That is, the curable silicone resin composition is cured by further containing the cyclic silicone compound (c) as compared with the case of containing only the linear silicone compound (a) and the linear silicone compound (b). This is thought to be because the crosslink density of the product increases.
Further, since the linear silicone compound (a) and the linear silicone compound (b) are linear, when subjected to high-temperature heat treatment, the Si—O bond is broken in a bent state, and this Si A new Si—O bond is formed with other O atoms in the same molecule (hereinafter referred to as “replacement of Si—O bond”), and as a result, a cyclic low-molecular polysiloxane is formed. It may be volatilized. However, in the present invention, the linear silicone compound (a) and the linear silicone compound (b) can further exchange Si—O bonds in one molecule by containing the cyclic silicone compound (c). Even if the Si-O bond is replaced, it becomes difficult to generate low-molecular polysiloxane because it is replaced with other molecules, and the generation of volatile components is suppressed. It is considered that decomposition of the cured silicone resin layer is suppressed.
 環状シリコーン化合物(c)は、複数個のD単位が環状に結合したオルガノポリシロキサンであり、このD単位に、ケイ素原子に結合したアルケニル基またはケイ素原子に結合した水素原子が存在する。
 アルケニル基としては特に限定されないが、例えば、ビニル基(エテニル基)、アリル基(2-プロペニル基)、ブテニル基、ペンテニル基、ヘキシニル基、などが挙げられ、中でも耐熱性に優れる点から、ビニル基が好ましい。
The cyclic silicone compound (c) is an organopolysiloxane in which a plurality of D units are bonded cyclically, and an alkenyl group bonded to a silicon atom or a hydrogen atom bonded to a silicon atom exists in the D unit.
The alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, a hexynyl group, and the like. Groups are preferred.
 環状シリコーン化合物(c)の、環を構成するケイ素原子の個数は、合成の容易性および硬化物の耐熱性の観点から、3~10個が好ましく、3~8個がより好ましく、3~6個が特に好ましい。 In the cyclic silicone compound (c), the number of silicon atoms constituting the ring is preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6 from the viewpoints of ease of synthesis and heat resistance of the cured product. Individual is particularly preferred.
 また、環状シリコーン化合物(c)におけるアルケニル基の濃度またはケイ素原子に結合した水素原子の濃度は、合成の容易性という理由から、0.5~44mmol/gが好ましく、1.0~17mol/gがより好ましい。 In addition, the concentration of the alkenyl group or the concentration of the hydrogen atom bonded to the silicon atom in the cyclic silicone compound (c) is preferably 0.5 to 44 mmol / g, because of the ease of synthesis, and is preferably 1.0 to 17 mol / g. Is more preferable.
 次に、環状シリコーン化合物(c)である、環状シリコーン化合物(c1)および環状シリコーン化合物(c2)について、より詳細に説明する。 Next, the cyclic silicone compound (c), which is the cyclic silicone compound (c), and the cyclic silicone compound (c2) will be described in more detail.
 なお、環状シリコーン化合物(c1)の1分子あたりのアルケニル基の数は、硬化物の耐熱性の点で、2~20個が好ましく、3~20個がより好ましい。
 また、環状シリコーン化合物(c2)の1分子あたりのケイ素基に結合した水素原子の数は、硬化物の耐熱性の点で、2~20個が好ましく、3~20個がより好ましい。
The number of alkenyl groups per molecule of the cyclic silicone compound (c1) is preferably 2 to 20 and more preferably 3 to 20 from the viewpoint of heat resistance of the cured product.
In addition, the number of hydrogen atoms bonded to the silicon group per molecule of the cyclic silicone compound (c2) is preferably 2 to 20, more preferably 3 to 20, in view of the heat resistance of the cured product.
 《環状シリコーン化合物(c1)》
 環状シリコーン化合物(c1)の好適態様としては、例えば、下記式(c1-1)で表される環状シリコーン化合物が挙げられる。
<< Cyclic silicone compound (c1) >>
A preferred embodiment of the cyclic silicone compound (c1) is, for example, a cyclic silicone compound represented by the following formula (c1-1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(c1-1)中、Viはビニル基を表し、R11~R13は各々独立して炭素数1~4のアルキル基または炭素数6~10のアリール基を表し、hは2~6の整数を表し、iは0~4の整数を表し、h+iは3~10の整数を表す。 In formula (c1-1), Vi represents a vinyl group, R 11 to R 13 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and h represents 2 to 6 I represents an integer of 0 to 4, and h + i represents an integer of 3 to 10.
 式(c1-1)中のR11~R13が表す炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2級ブチル基、イソブチル基、t-ブチル基などが挙げられる。
 式(c1-1)中のR11~R13が表す炭素数6~10のアリール基としては、例えば、フェニル基、エチルフェニル基、トリル基、クメニル基、キシリル基、プソイドクメニル基、メシチル基、t-ブチルフェニル基、ベンジル基、フェネチル基などが挙げられる。
 式(c1-1)中のR11~R13が表す基としては、耐熱性、工業的な入手の容易さ等の観点から、メチル基、エチル基、フェニル基が好ましく、メチル基がより好ましい。
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 11 to R 13 in the formula (c1-1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a secondary butyl group, and an isobutyl group. , T-butyl group and the like.
Examples of the aryl group having 6 to 10 carbon atoms represented by R 11 to R 13 in the formula (c1-1) include a phenyl group, an ethylphenyl group, a tolyl group, a cumenyl group, a xylyl group, a pseudocumenyl group, a mesityl group, Examples thereof include t-butylphenyl group, benzyl group, phenethyl group and the like.
The group represented by R 11 to R 13 in formula (c1-1) is preferably a methyl group, an ethyl group, or a phenyl group, more preferably a methyl group, from the viewpoints of heat resistance, industrial availability, and the like. .
 式(c1-1)中のhは、硬化物の硬度の観点から、3~6の整数が好ましく、3または4がより好ましい。
 式(c1-1)中のiは、合成の容易性の観点から、0または1が好ましく、0がより好ましい。
In the formula (c1-1), h is preferably an integer of 3 to 6 and more preferably 3 or 4 from the viewpoint of the hardness of the cured product.
I in the formula (c1-1) is preferably 0 or 1, more preferably 0, from the viewpoint of ease of synthesis.
 式(c1-1)で表わされる環状シリコーン化合物(c1)の具体例としては、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6,8-テトラエチル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6,8-テトラフェニル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6-トリメチル-8-フェニル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4-ジメチル-6,8-ジフェニル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6,8-テトラメチル-2-フェニル-4,6,8-トリビニルシクロテトラシロキサン、2,4,6,8,10-ペンタメチル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4,6,8-テトラメチル-10-フェニル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4,6,8-テトラメチル-10-フェニル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4,6-トリメチル-8,10-ジフェニル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4-ジメチル-6,8,10-トリフェニル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4,6,8,10-ペンタメチル-2-フェニル-4,6,8,10-テトラビニルシクロペンタシロキサン、2,4,6,8,10-ペンタメチル-2,4-ジフェニル-6,8,10-トリビニルシクロペンタシロキサン、2,4,6,8,10,12-ヘキサメチル-2,4,6,8,10,12-ヘキサビニルシクロヘキサシロキサン等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6-トリメチル-8-フェニル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4-ジメチル-6,8-ジフェニル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6,8-テトラメチル-2-フェニル-4,6,8-トリビニルシクロテトラシロキサン、2,4,6,8,10-ペンタメチル-2,4,6,8,10-ペンタビニルシクロペンタシロキサン、2,4,6,8,10-ペンタメチル-2-フェニル-4,6,8,10-テトラビニルシクロペンタシロキサンが好ましく、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6,8-テトラメチル-2-フェニル-4,6,8-トリビニルシクロテトラシロキサン、2,4,6-トリメチル-8-フェニル-2,4,6,8-テトラビニルシクロテトラシロキサンがより好ましい。
Specific examples of the cyclic silicone compound (c1) represented by the formula (c1-1) include 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane, 2,4,6,8-tetra Methyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetraethyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetraphenyl -2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6-trimethyl-8-phenyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4-dimethyl-6,8 -Diphenyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetramethyl-2-phenyl-4,6,8-trivinylcyclotetrasiloxane, 2,4, , 8,10-Pentamethyl-2,4,6,8,10-pentavinylcyclopentasiloxane, 2,4,6,8-tetramethyl-10-phenyl-2,4,6,8,10-pentavinyl Cyclopentasiloxane, 2,4,6,8-tetramethyl-10-phenyl-2,4,6,8,10-pentavinylcyclopentasiloxane, 2,4,6-trimethyl-8,10-diphenyl-2 , 4,6,8,10-pentavinylcyclopentasiloxane, 2,4-dimethyl-6,8,10-triphenyl-2,4,6,8,10-pentavinylcyclopentasiloxane, 2,4, 6,8,10-pentamethyl-2-phenyl-4,6,8,10-tetravinylcyclopentasiloxane, 2,4,6,8,10-pentamethyl-2,4-diphenyl-6 , 10-trivinylcyclopentasiloxane, 2,4,6,8,10,12-hexamethyl-2,4,6,8,10,12-hexavinylcyclohexasiloxane, and the like. Or two or more of them may be used in combination.
Of these, 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane, 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane, , 4,6-Trimethyl-8-phenyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4-dimethyl-6,8-diphenyl-2,4,6,8-tetravinylcyclotetrasiloxane 2,4,6,8-tetramethyl-2-phenyl-4,6,8-trivinylcyclotetrasiloxane, 2,4,6,8,10-pentamethyl-2,4,6,8,10- Pentavinylcyclopentasiloxane, 2,4,6,8,10-pentamethyl-2-phenyl-4,6,8,10-tetravinylcyclopentasiloxane is preferred, and 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetramethyl-2-phenyl-4,6,8-trivinylcyclotetrasiloxane, 2,4,6-trimethyl -8-phenyl-2,4,6,8-tetravinylcyclotetrasiloxane is more preferred.
 《環状シリコーン化合物(c2)》
 環状シリコーン化合物(c2)の好適態様としては、例えば、下記式(c2-1)で表される環状シリコーン化合物が挙げられる。
<< Cyclic silicone compound (c2) >>
A preferred embodiment of the cyclic silicone compound (c2) is, for example, a cyclic silicone compound represented by the following formula (c2-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(c2-1)中、R11~R13は各々独立して炭素数1~4のアルキル基または炭素数6~10のアリール基を表し、jは3~6の整数を表し、kは0~4の整数を表し、j+kは3~10の整数を表す。 In formula (c2-1), R 11 to R 13 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, j represents an integer of 3 to 6, and k is Represents an integer of 0 to 4, and j + k represents an integer of 3 to 10.
 式(c2-1)中のR11~R13は、式(c1-1)中のR11~R13と同義であり、好ましい範囲も同様である。
 式(c2-1)中のjは、硬化物の硬度の観点から、4または5が好ましく、4がより好ましい。
 式(c2-1)中のkは、合成の容易性の観点から、0または1が好ましく、0がより好ましい。
R 11 ~ R 13 in the formula (c2-1) has the same meaning as R 11 ~ R 13 in the formula (c1-1), and preferred ranges are also the same.
J in formula (c2-1) is preferably 4 or 5, more preferably 4, from the viewpoint of the hardness of the cured product.
K in the formula (c2-1) is preferably 0 or 1, more preferably 0 from the viewpoint of ease of synthesis.
 式(c2-1)で表される環状シリコーン化合物(c2)の具体例としては、2,4,6-トリメチルシクロトリシロキサン、2,4,6,8-テトラメチルシクロテトラシロキサン、2,4,6,8-テトラエチルシクロテトラシロキサン、2,4,6,8-テトラフェニルシクロテトラシロキサン、2,4,6-トリメチル-8-フェニルシクロテトラシロキサン等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the cyclic silicone compound (c2) represented by the formula (c2-1) include 2,4,6-trimethylcyclotrisiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane, 2,4 , 6,8-tetraethylcyclotetrasiloxane, 2,4,6,8-tetraphenylcyclotetrasiloxane, 2,4,6-trimethyl-8-phenylcyclotetrasiloxane, etc., and these can be used alone. Or two or more of them may be used in combination.
<各成分の含有量>
 硬化性シリコーン樹脂組成物において、線状シリコーン化合物(a)と、線状シリコーン化合物(b)と、環状シリコーン化合物(c)との含有比率は特に限定されない。
 450℃における耐熱性の観点からは、硬化性シリコーン樹脂組成物における下記式(3)で表される環状シリコーン化合物(c1)中のアルケニル基のモル数(C1)と環状シリコーン化合物(c2)中のアルケニル基のモル数(C2)との割合(モル%)は20以上であることが好ましい。
 C1×100/(A+C1)+C2×100/(B+C2) ・・・(3)
 ただし、Aは線状シリコーン化合物(a)中のアルケニル基のモル数、Bは線状シリコーン化合物(b)中のケイ素原子に結合した水素原子のモル数、C1は環状シリコーン化合物(c1)中のアルケニル基のモル数およびC2は環状シリコーン化合物(c2)中のケイ素原子に結合した水素原子のモル数を表す。
<Content of each component>
In the curable silicone resin composition, the content ratio of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c) is not particularly limited.
From the viewpoint of heat resistance at 450 ° C., the number of moles of alkenyl groups (C1 m ) in the cyclic silicone compound (c1) represented by the following formula (3) in the curable silicone resin composition and the cyclic silicone compound (c2) ratio of the moles of alkenyl groups (C2 m) in (mol%) is preferably 20 or more.
C1 m × 100 / (A m + C1 m) + C2 m × 100 / (B m + C2 m) ··· (3)
However, A m is the number of moles of alkenyl groups in the linear silicone compound (a), B m is the number of moles of hydrogen atoms bonded to silicon atoms in the linear silicone compound (b), C1 m cyclic silicone compound ( moles and C2 m of alkenyl groups in c1) represents the number of moles of hydrogen atoms bonded to silicon atoms of the cyclic silicone compound (c2) in.
 例えば、環状シリコーン化合物(c)が環状シリコーン化合物(c1)のみからなる場合(すなわち、C2=0の場合)、線状シリコーン化合物(a)中のアルケニル基と環状シリコーン化合物(c1)中のアルケニル基との合計に対する環状シリコーン化合物(c1)中のアルケニル基の割合は20モル%以上であることが好ましい。
 また、例えば、環状シリコーン化合物(c)が環状シリコーン化合物(c2)のみからなる場合は、C1=0として計算される。
 上記式(3)で表される割合(モル%)の値は、20~100であることが好ましく、24~95であることがより好ましく、耐クラック性の観点から24~93であることがさらに好ましい。
For example, when the cyclic silicone compound (c) consists only of the cyclic silicone compound (c1) (that is, when C2 m = 0), the alkenyl group in the linear silicone compound (a) and the cyclic silicone compound (c1) The ratio of the alkenyl group in the cyclic silicone compound (c1) to the total with the alkenyl group is preferably 20 mol% or more.
Further, for example, when the cyclic silicone compound (c) is composed of only the cyclic silicone compound (c2), the calculation is performed as C1 m = 0.
The ratio (mol%) represented by the above formula (3) is preferably 20 to 100, more preferably 24 to 95, and 24 to 93 from the viewpoint of crack resistance. Further preferred.
 さらに、同様に、耐クラック性の観点からは、線状シリコーン化合物(a)と線状シリコーン化合物(b)と環状シリコーン化合物(c)との合計100質量%に対して、環状シリコーン化合物(c)の含有量は、0.1~60質量%が好ましく、0.5~38質量%がより好ましく、30質量%未満が特に好ましい。
 すなわち、環状シリコーン化合物(c)の含有量が多すぎると、硬化シリコーン樹脂層が硬くなりすぎてしまい、薄い膜厚であってもクラックが生じる可能性が高くなるおそれがあるが、環状シリコーン化合物(c)の含有量が上記範囲内であれば、硬化シリコーン樹脂層が硬くなりすぎず、クラックを生じさせることなく形成できる最大膜厚を厚くすることができる、すなわち、耐クラック性を良好にできる。
Further, similarly, from the viewpoint of crack resistance, the cyclic silicone compound (c) with respect to a total of 100 mass% of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). ) Is preferably 0.1 to 60% by mass, more preferably 0.5 to 38% by mass, and particularly preferably less than 30% by mass.
That is, if the content of the cyclic silicone compound (c) is too large, the cured silicone resin layer becomes too hard and there is a possibility that cracks may occur even with a thin film thickness. If the content of (c) is within the above range, the cured silicone resin layer does not become too hard, and the maximum film thickness that can be formed without causing cracks can be increased, that is, the crack resistance is improved. it can.
 また、より耐クラック性を良好にする点で、環状シリコーン化合物(c)におけるアルケニル基の濃度またはケイ素原子に結合した水素原子の濃度が0.5~44mmol/gである環状シリコーン化合物(c)の含有量が、線状シリコーン化合物(a)と線状シリコーン化合物(b)と環状シリコーン化合物(c)との合計100質量%に対して、0.1~60質量%であることが好ましい。 Further, from the viewpoint of improving crack resistance, the cyclic silicone compound (c) in which the concentration of alkenyl groups or the concentration of hydrogen atoms bonded to silicon atoms in the cyclic silicone compound (c) is 0.5 to 44 mmol / g. The content of is preferably 0.1 to 60% by mass with respect to 100% by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c).
 さらに、環状シリコーン化合物(c)は、環状シリコーン化合物(c1)のみからなることがより好ましい。 Furthermore, it is more preferable that the cyclic silicone compound (c) consists only of the cyclic silicone compound (c1).
 なお、線状シリコーン化合物(a)の含有量は、線状オルガノポリシロキサン(a)と線状シリコーン化合物(b)と環状オルガノポリシロキサン(c)との合計100質量%に対して、5~95質量%が好ましく、10~90質量がより好ましい。
 また、線状シリコーン化合物(b)の含有量は、線状シリコーン化合物(a)と線状シリコーン化合物(b)と環状シリコーン化合物(c)との合計100質量%に対して、3~75質量%が好ましく、8~65質量%がより好ましい。
The content of the linear silicone compound (a) is 5 to 5% with respect to a total of 100% by mass of the linear organopolysiloxane (a), the linear silicone compound (b), and the cyclic organopolysiloxane (c). 95% by mass is preferable, and 10 to 90% by mass is more preferable.
The content of the linear silicone compound (b) is 3 to 75% by mass with respect to 100% by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). % Is preferable, and 8 to 65% by mass is more preferable.
 また、硬化性シリコーン樹脂組成物においては、線状シリコーン化合物(a)と、線状シリコーン化合物(b)と、環状シリコーン化合物(c)との量を、全アルケニル基に対する全ケイ素原子に結合した水素原子のモル比(水素原子/アルケニル基)が0.7~1.05となるように調整するのが好ましく、0.8~1.0となるように調整するのがより好ましい。
 上記モル比が1.05を超える場合には、硬化シリコーン樹脂の長期間放置後の剥離力が上昇しやすく、剥離性が十分でない可能性がある。一方、上記モル比が0.7未満である場合には、硬化シリコーン樹脂の架橋密度が低下するため、耐薬品性等に問題が生じる可能性がある。
In the curable silicone resin composition, the amounts of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c) were bonded to all silicon atoms relative to all alkenyl groups. It is preferable to adjust the molar ratio of hydrogen atoms (hydrogen atom / alkenyl group) to 0.7 to 1.05, and more preferable to adjust to 0.8 to 1.0.
If the molar ratio exceeds 1.05, the peel strength of the cured silicone resin after standing for a long time tends to increase, and the peelability may not be sufficient. On the other hand, when the molar ratio is less than 0.7, the crosslinking density of the cured silicone resin is lowered, which may cause a problem in chemical resistance.
 なお、ケイ素原子に結合した水素原子とアルケニル基のモル比が1.05を超える場合に長期間放置後の剥離力が上昇する原因は明らかではないが、長期間放置により、空気中の水分が徐々に樹脂層に浸入し、硬化シリコーン樹脂中の未反応のヒドロシリル基(Si-H基)が加水分解され、ガラス基板表面のシラノール基との間でなんらかの反応が関与しているものと考えられる。従って、樹脂層14中には、実質的に未反応のケイ素原子に結合した水素原子が残存していないことが好ましい。 In addition, when the molar ratio of the hydrogen atom bonded to the silicon atom and the alkenyl group exceeds 1.05, it is not clear why the peeling force increases after standing for a long period of time. Gradually penetrates into the resin layer, unreacted hydrosilyl groups (Si-H groups) in the cured silicone resin are hydrolyzed, and some reaction is considered to be involved with the silanol groups on the glass substrate surface. . Therefore, it is preferable that hydrogen atoms bonded to substantially unreacted silicon atoms do not remain in the resin layer 14.
<その他構成成分>
 本発明における硬化性シリコーン樹脂組成物には、必要に応じて本発明の効果を損なわない範囲で、各種添加剤が含有されていてもよい。
 添加剤として、通常、ケイ素原子に結合した水素原子とアルケニル基の反応を促進する触媒(付加反応用触媒)を使用することが好ましい。この触媒としては、金属触媒が挙げられ、白金族金属系触媒を用いることが好ましい。
 白金族金属系触媒としては、白金系、パラジウム系、ロジウム系などの触媒が挙げられ、特に白金系触媒として用いることが経済性、反応性の点から好ましい。
 白金系触媒としては、公知のものを用いることができる。具体的には、例えば、白金微粉末;白金黒;塩化第一白金酸、塩化第二白金酸などの塩化白金酸;四塩化白金;塩化白金酸のアルコール化合物、アルデヒド化合物;白金のオレフィン錯体、アルケニルシロキサン錯体、カルボニル錯体;等が挙げられる。
 触媒は、線状シリコーン化合物(a)と線状シリコーン化合物(b)と環状シリコーン化合物(c)との合計質量に対する質量比で、2~400ppmが好ましく、5~300ppmがより好ましく、8~200ppmがさらに好ましい。
<Other components>
Various additives may be contained in the curable silicone resin composition in the present invention as long as the effects of the present invention are not impaired as necessary.
As an additive, it is usually preferable to use a catalyst (addition reaction catalyst) that promotes the reaction between a hydrogen atom bonded to a silicon atom and an alkenyl group. Examples of the catalyst include metal catalysts, and it is preferable to use a platinum group metal catalyst.
Examples of the platinum group metal-based catalyst include platinum-based, palladium-based, and rhodium-based catalysts, and it is particularly preferable to use as a platinum-based catalyst from the viewpoint of economy and reactivity.
A known catalyst can be used as the platinum-based catalyst. Specifically, for example, platinum fine powder; platinum black; chloroplatinic acid such as chloroplatinic acid and chloroplatinic acid; platinum tetrachloride; alcohol compounds and aldehyde compounds of chloroplatinic acid; olefin complexes of platinum; Alkenylsiloxane complex, carbonyl complex; and the like.
The catalyst has a mass ratio to the total mass of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c), preferably 2 to 400 ppm, more preferably 5 to 300 ppm, and more preferably 8 to 200 ppm. Is more preferable.
 本発明における硬化性シリコーン樹脂組成物には、さらに、触媒とともに、触媒活性を調整する目的で、触媒活性を抑制する作用のある活性抑制剤(反応抑制剤、遅延剤等とも呼ばれる化合物)を併用することが好ましい。
 活性抑制剤として、より具体的には、例えば、1-エチニル-1-シクロヘキサノール、2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、2-エチニルイソプロパノール、2-エチニルブタン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール等のアセチレン系アルコール類;トリメチル(3,5-ジメチル-1-ヘキシン-3-オキシ)シラン、メチルビニルビス(3-メチル-1-ブチン-3-オキシ)シラン、((1,1-ジメチル-2-プロピニル)オキシ)トリメチルシラン等のシリル化アセチレン系アルコール類;ジアリルマレート、ジメチルマレート、ジエチルフマレート、ジアリルフマレート、ビス(メトキシイソプロピル)マレート等の不飽和カルボン酸エステル類;2-イソブチル-1-ブテン-3-イン、3,5-ジメチル-3-ヘキセン-1-イン、3-メチル-3-ペンテン-1-イン、3-メチル-3-ヘキセン-1-イン、1-エチニルシクロヘキセン、3-エチル-3-ブテン-1-イン、3-フェニル-3-ブテン-1-イン等の共役ene-yne類;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のビニルシクロテトラシロキサン類;などが例示される。特に、アセチレン系化合物(例えば、アセチレンアルコール類およびアセチレンアルコールのシリル化物)が好適である。組成物中における反応抑制剤の含有量は特に制限されないが、上記線状シリコーン化合物(a)と、線状シリコーン化合物(b)と、環状シリコーン化合物(c)との合計100質量部に対して0.00001~5質量部の範囲内であることが好ましい。
 さらに必要に応じて、本発明の効果を損なわない範囲で、各種シリカ、炭酸カルシウム、酸化鉄などの無機フィラー等を含有していてもよい。
 また、ヘキサン、ヘプタン、オクタン、トルエン、キシレンなどの有機溶媒や水などの分散媒は、硬化シリコーン樹脂を構成しない成分であるが、硬化性シリコーン樹脂組成物の塗布のための作業性向上などの目的で本発明における硬化性シリコーン樹脂組成物に配合して使用できる。
The curable silicone resin composition of the present invention is used together with a catalyst and an activity inhibitor (a compound also called a reaction inhibitor, a retarder, etc.) having an action of suppressing the catalyst activity for the purpose of adjusting the catalyst activity. It is preferable to do.
More specifically, as an activity inhibitor, for example, 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 2-ethynylisopropanol Acetylenic alcohols such as 2-ethynylbutan-2-ol, 3,5-dimethyl-1-hexyn-3-ol; trimethyl (3,5-dimethyl-1-hexyne-3-oxy) silane, methylvinyl Silylated acetylenic alcohols such as bis (3-methyl-1-butyne-3-oxy) silane and ((1,1-dimethyl-2-propynyl) oxy) trimethylsilane; diallyl malate, dimethyl malate, diethyl Unsaturated carboxylic acid esters such as fumarate, diallyl fumarate, bis (methoxyisopropyl) malate; 2-iso Til-1-buten-3-yne, 3,5-dimethyl-3-hexen-1-yne, 3-methyl-3-penten-1-yne, 3-methyl-3-hexen-1-yne, 1- Conjugated ene-ynes such as ethynylcyclohexene, 3-ethyl-3-buten-1-yne, and 3-phenyl-3-buten-1-yne; 1,3,5,7-tetramethyl-1,3,5 , 7-tetravinylcyclotetrasiloxane, and other vinylcyclotetrasiloxanes; In particular, acetylene compounds (for example, acetylene alcohols and silylated products of acetylene alcohols) are suitable. The content of the reaction inhibitor in the composition is not particularly limited, but is 100 parts by mass in total of the linear silicone compound (a), the linear silicone compound (b), and the cyclic silicone compound (c). It is preferably in the range of 0.00001 to 5 parts by mass.
Furthermore, if necessary, an inorganic filler such as various silicas, calcium carbonates, iron oxides and the like may be contained within a range not impairing the effects of the present invention.
In addition, organic solvents such as hexane, heptane, octane, toluene and xylene, and dispersion media such as water are components that do not constitute a cured silicone resin, but include improved workability for application of the curable silicone resin composition. For the purpose, it can be blended and used in the curable silicone resin composition of the present invention.
<樹脂層の形成>
 上述したように、硬化性シリコーン樹脂組成物を支持基材12の第1主面12A上で硬化させて硬化シリコーン樹脂からなる樹脂層14を形成することが好ましい。
 そのために、硬化性シリコーン樹脂組成物を支持基材の片面に塗布して硬化性シリコーン樹脂組成物の層を形成し、次いで硬化性シリコーン樹脂組成物を硬化させて硬化シリコーン樹脂層を形成する。
 硬化性シリコーン樹脂組成物の層の形成は、硬化性シリコーン樹脂組成物が流動性の組成物の場合はそのまま塗布し、硬化性シリコーン樹脂組成物が流動性の低い組成物や流動性のない組成物の場合は、有機溶剤を配合して塗布する。また、硬化性シリコーン樹脂組成物の乳化液や分散液なども使用できる。有機溶剤などの揮発性成分を含む塗膜は、次いでその揮発性成分を蒸発除去して硬化性シリコーン樹脂組成物の層とする。硬化性シリコーン樹脂組成物の硬化は、揮発性成分の蒸発除去と連続して行うことができる。
<Formation of resin layer>
As described above, it is preferable to cure the curable silicone resin composition on the first main surface 12A of the support substrate 12 to form the resin layer 14 made of a cured silicone resin.
For this purpose, a curable silicone resin composition is applied to one side of a supporting substrate to form a layer of the curable silicone resin composition, and then the curable silicone resin composition is cured to form a cured silicone resin layer.
When the curable silicone resin composition is a fluid composition, the layer of the curable silicone resin composition is applied as it is, and the curable silicone resin composition has a low fluidity or a non-fluid composition. In the case of a product, an organic solvent is blended and applied. In addition, an emulsion or dispersion of a curable silicone resin composition can also be used. The coating film containing a volatile component such as an organic solvent is then evaporated to remove the volatile component to form a curable silicone resin composition layer. Curing of the curable silicone resin composition can be performed continuously with evaporation removal of volatile components.
 硬化性シリコーン樹脂組成物の硬化は、上記方法に限られるものではない。例えば、硬化性シリコーン樹脂組成物を何らかの剥離性表面上で硬化して硬化シリコーン樹脂のフィルムを製造し、このフィルムを支持基材に積層して支持体を製造することができる。
 また、硬化性シリコーン樹脂組成物が揮発性成分を含まない場合、上記のように、ガラス基板16と支持基材12との間に挟持して硬化させることができる。
Curing of the curable silicone resin composition is not limited to the above method. For example, a curable silicone resin composition can be cured on some peelable surface to produce a cured silicone resin film, and this film can be laminated to a support substrate to produce a support.
When the curable silicone resin composition does not contain a volatile component, it can be cured by being sandwiched between the glass substrate 16 and the support base 12 as described above.
 硬化性シリコーン樹脂組成物を支持基材の片面に塗布して硬化性シリコーン樹脂組成物の層を形成する場合、塗布方法は特に限定されず、従来公知の方法が挙げられる。
 公知の方法としては、例えば、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法が挙げられる。
 このような方法の中から、組成物の種類に応じて適宜選択できる。例えば、硬化性シリコーン樹脂組成物に揮発性成分を配合していない場合、ダイコート法、スピンコート法またはスクリーン印刷法が好ましい。
 溶剤などの揮発性成分を配合した組成物の場合、硬化前に加熱等で揮発性成分を除去してから硬化させる。
When a curable silicone resin composition is applied to one side of a supporting substrate to form a layer of the curable silicone resin composition, the application method is not particularly limited, and a conventionally known method can be mentioned.
Examples of known methods include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
From such a method, it can select suitably according to the kind of composition. For example, when a volatile component is not blended in the curable silicone resin composition, a die coating method, a spin coating method, or a screen printing method is preferable.
In the case of a composition containing a volatile component such as a solvent, the composition is cured after removing the volatile component by heating or the like before curing.
 硬化性シリコーン樹脂組成物を硬化させる条件としては、使用されるオルガノポリシロキサンなどの種類によって異なり、適宜最適な条件が選択される。通常、加熱温度としては50~300℃が好ましく、処理時間としては5~300分が好ましい。 The conditions for curing the curable silicone resin composition vary depending on the type of organopolysiloxane used and the optimum conditions are appropriately selected. Usually, the heating temperature is preferably 50 to 300 ° C., and the treatment time is preferably 5 to 300 minutes.
 樹脂層が低シリコーン移行性を有していれば、ガラス基板を剥離した際に、樹脂層中の成分がガラス基板に移行しにくい。低シリコーン移行性を有する樹脂層とするためには、樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることが好ましい。
 上述した反応温度および反応時間であると、樹脂層中に未反応のオルガノシリコーン成分が実質的に残らないようにすることができるので好ましい。上記した反応時間よりも長すぎたり、反応温度が高すぎたりする場合には、オルガノシリコーン成分や硬化シリコーン樹脂の酸化分解が同時に起こり低分子量のオルガノシリコーン成分が生成して、シリコーン移行性が高くなる可能性がある。樹脂層中に未反応のオルガノシリコーン成分が残らないように硬化反応をできるだけ進行させることは、加熱処理後の剥離性を良好にするためにも好ましい。
If the resin layer has low silicone migration, when the glass substrate is peeled off, the components in the resin layer are difficult to migrate to the glass substrate. In order to obtain a resin layer having a low silicone migration property, it is preferable to proceed the curing reaction as much as possible so that an unreacted silicone component does not remain in the resin layer.
The reaction temperature and reaction time described above are preferable because substantially no unreacted organosilicone component remains in the resin layer. If the reaction time is too long or the reaction temperature is too high, the organosilicone component and the cured silicone resin are simultaneously oxidized and decomposed to produce a low molecular weight organosilicone component, resulting in high silicone migration. There is a possibility. It is also preferable to allow the curing reaction to proceed as much as possible so that no unreacted organosilicone component remains in the resin layer, in order to improve the peelability after the heat treatment.
 なお、樹脂層と支持基材との高い固定力(高い剥離強度)を付与するために、支持基材表面に表面改質処理(プライミング処理)を行ってもよい。例えば、シランカップリング剤のような化学的に固定力を向上させる化学的方法(プライマー処理);フレーム(火炎)処理のように表面活性基を増加させる物理的方法;サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的処理方法;等が例示される。 In addition, in order to provide a high fixing force (high peel strength) between the resin layer and the support substrate, a surface modification treatment (priming treatment) may be performed on the support substrate surface. For example, a chemical method (primer treatment) that improves the fixing force chemically such as a silane coupling agent; a physical method that increases surface active groups such as a flame (flame) treatment; a surface method such as a sandblast treatment Examples thereof include a mechanical treatment method for increasing the catch by increasing the roughness.
 上記硬化シリコーン樹脂からなる樹脂層14の厚さは、特に限定されず、ガラス基板16の種類などにより適宜最適な厚さが選択されるが、0.1~100μmが好ましく、0.5~50μmがより好ましく、1.0~20μmがさらに好ましい。 The thickness of the resin layer 14 made of the cured silicone resin is not particularly limited, and an optimum thickness is appropriately selected depending on the type of the glass substrate 16 and the like, but is preferably 0.1 to 100 μm, preferably 0.5 to 50 μm. Is more preferable, and 1.0 to 20 μm is more preferable.
 なお、樹脂層14は、2層以上からなっていてもよい。この場合「樹脂層の厚さ」は、全ての層の合計の厚さを意味するものとする。
 また、樹脂層14が2層以上からなる場合は、各々の層を形成する樹脂の種類が異なってもよい。
The resin layer 14 may be composed of two or more layers. In this case, “the thickness of the resin layer” means the total thickness of all the layers.
Moreover, when the resin layer 14 consists of two or more layers, the kind of resin which forms each layer may differ.
 樹脂層14の剥離性表面の表面張力は、30mN/m以下が好ましく、25mN/m以下がより好ましく、22mN/m以下がさらに好ましい。下限については特に限定はないが、15mN/m以上が好ましい。
 このような表面張力であると、より容易にガラス基板16表面と剥離することができ、同時にガラス基板16表面との密着も十分になる。
The surface tension of the peelable surface of the resin layer 14 is preferably 30 mN / m or less, more preferably 25 mN / m or less, and even more preferably 22 mN / m or less. Although there is no limitation in particular about a minimum, 15 mN / m or more is preferred.
With such surface tension, it can be more easily peeled off from the surface of the glass substrate 16, and at the same time, adhesion to the surface of the glass substrate 16 is sufficient.
 樹脂層14は、ガラス転移点が室温(25℃程度)よりも低い材料、またはガラス転移点を有しない材料からなることが好ましい。このようなガラス転移点であれば、非粘着性を維持しながら適度な弾力性も併せ持つことができ、より容易にガラス基板16表面と剥離することができ、同時にガラス基板16表面との密着も十分になるからである。 The resin layer 14 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or a material having no glass transition point. If it is such a glass transition point, it can have moderate elasticity while maintaining non-adhesiveness, and can be more easily peeled off from the surface of the glass substrate 16, and at the same time, can be adhered to the surface of the glass substrate 16. It will be enough.
 硬化シリコーン樹脂からなる樹脂層14の熱分解開始温度は、ガラス基板積層状態で400℃以上が好ましく、420℃以上がより好ましく、430℃~450℃が特に好ましい。上記範囲内であれば、TFTアレイの製造プロセスなど高温条件(約400℃以上)下においても樹脂層の分解が抑制され、結果として、ガラス積層体中の発泡の発生などがより抑制される。 The thermal decomposition starting temperature of the resin layer 14 made of a cured silicone resin is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and particularly preferably 430 ° C. to 450 ° C. in the laminated state of the glass substrate. If it is in the said range, decomposition | disassembly of a resin layer will be suppressed also under high temperature conditions (about 400 degreeC or more), such as a manufacturing process of a TFT array, and generation | occurrence | production of the foaming in a glass laminated body will be suppressed more as a result.
 また、樹脂層14の弾性率が高すぎるとガラス基板16表面との密着性が低くなる傾向にある。一方、弾性率が低すぎると剥離性が低くなることがある。本発明における硬化シリコーン樹脂はこの要求性能を満たす弾性率を有する。 Further, if the elastic modulus of the resin layer 14 is too high, the adhesion with the surface of the glass substrate 16 tends to be lowered. On the other hand, if the elastic modulus is too low, the peelability may be lowered. The cured silicone resin in the present invention has an elastic modulus that satisfies this required performance.
<支持体>
 本発明の支持体20は、図示例においては、上述した支持基材12と樹脂層14とから構成される。樹脂層14表面は良好な剥離性能を示すため、その上の積層されたガラス基板16を破壊することなく剥離できる。そのため、ガラス基板を支持するための支持体として好適に使用できる。また、他の用途としては、有機EL照明用ガラス基板の支持体などが挙げられる。
<Support>
In the illustrated example, the support 20 of the present invention includes the support base 12 and the resin layer 14 described above. Since the surface of the resin layer 14 exhibits good peeling performance, it can be peeled without destroying the laminated glass substrate 16 thereon. Therefore, it can be suitably used as a support for supporting the glass substrate. Moreover, as another use, the support body of the glass substrate for organic EL lighting, etc. are mentioned.
<ガラス基板>
 ガラス基板16は、その上に後述する表示装置用パネルの構成部材18を形成して、表示装置用パネルを製造するためのガラス基板である。
 本発明で使用されるガラス基板16の製造方法は、特に限定されず、従来公知の方法で製造できる。例えば、従来公知のガラス原料を溶解し溶融ガラスとした後、フロート法、フュージョン法、スロットダウンドロー法、リドロー法、引き上げ法等によって板状に成形して得ることができる。また、市販品を用いることもできる。
<Glass substrate>
The glass substrate 16 is a glass substrate for producing a display device panel by forming a constituent member 18 of the display device panel, which will be described later, on the glass substrate 16.
The manufacturing method of the glass substrate 16 used by this invention is not specifically limited, It can manufacture by a conventionally well-known method. For example, it can be obtained by melting a conventionally known glass raw material into a molten glass and then forming it into a plate shape by a float method, a fusion method, a slot down draw method, a redraw method, a pulling method or the like. Commercial products can also be used.
 ガラス基板16の厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は、特に限定されず、例えば、従来のLCD、OLED等の表示装置用のガラス基板と同様であってよい。 The thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the glass substrate 16 are not particularly limited. For example, conventional glass for display devices such as LCDs and OLEDs. It may be the same as the substrate.
 ガラス基板16の厚さは、特に限定されないが、0.7mm未満が好ましく、0.5mm以下がより好ましく、0.4mm以下がさらに好ましい。また、0.05mm以上が好ましく、0.07mm以上がより好ましく、0.1mm以上がさらに好ましい。 The thickness of the glass substrate 16 is not particularly limited, but is preferably less than 0.7 mm, more preferably 0.5 mm or less, and even more preferably 0.4 mm or less. Moreover, 0.05 mm or more is preferable, 0.07 mm or more is more preferable, and 0.1 mm or more is further more preferable.
 ガラス基板16は、第1主面16Aおよび第2主面16Bを有しており、その形状は限定されないが、矩形が好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の角を切り落とした形状(すなわち、コーナーカットした形状)をも含む。 The glass substrate 16 has a first main surface 16A and a second main surface 16B, and the shape thereof is not limited, but is preferably rectangular. Here, the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (that is, a shape obtained by corner cutting).
 ガラス基板16の大きさは、限定されないが、例えば、矩形の場合は100~2000mm×100~2000mmであってよく、500~1000mm×500~1000mmであることが好ましい。 Although the size of the glass substrate 16 is not limited, for example, in the case of a rectangle, it may be 100 to 2000 mm × 100 to 2000 mm, and preferably 500 to 1000 mm × 500 to 1000 mm.
 このような好ましい厚さおよび好ましい大きさであれば、ガラス積層体30は、ガラス基板16と支持体20とを容易に剥離できる。 If it is such a preferable thickness and a preferable size, the glass laminate 30 can easily peel the glass substrate 16 and the support 20.
 ガラス基板16の熱収縮率、表面形状、耐薬品性等の特性も特に限定されず、製造する表示装置用パネルの種類により異なる。
 ただし、ガラス基板16の熱収縮率は、小さいことが好ましい。具体的には熱収縮率の指標である線膨張係数は、150×10-7/℃以下が好ましく、100×10-7/℃以下がより好ましく、45×10-7/℃以下がさらに好ましい。その理由としては、熱収縮率が大きいと高精細な表示装置を作りにくくなるからである。
 なお、本発明において線膨張係数は、JIS R3102(1995年)に規定のものを意味する。
 ガラス基板16は、例えば、アルカリ金属酸化物含有ケイ酸塩系ガラスや無アルカリのケイ酸塩系ガラスなどからなる。なかでも、熱収縮率が小さいことからアルカリ金属酸化物を含まないホウケイ酸ガラスなどの無アルカリのケイ酸塩系ガラスが好ましい。
Properties of the glass substrate 16 such as heat shrinkage, surface shape, chemical resistance, etc. are not particularly limited, and vary depending on the type of display device panel to be manufactured.
However, the thermal contraction rate of the glass substrate 16 is preferably small. Specifically, the linear expansion coefficient, which is an index of the thermal shrinkage rate, is preferably 150 × 10 −7 / ° C. or less, more preferably 100 × 10 −7 / ° C. or less, and further preferably 45 × 10 −7 / ° C. or less. . The reason is that a high-definition display device is difficult to produce when the thermal shrinkage rate is large.
In the present invention, the linear expansion coefficient means a value defined in JIS R3102 (1995).
The glass substrate 16 is made of, for example, alkali metal oxide-containing silicate glass or non-alkali silicate glass. Of these, non-alkali silicate glass such as borosilicate glass containing no alkali metal oxide is preferable because of its low thermal shrinkage.
 上述したガラス基板16の表面は、研磨処理された研磨面でもよく、または研磨処理されていない非エッチング面(生地面)であってもよい。すなわち、作製する表示パネルの要求精度に応じて平坦性を満たす物を適宜選択すればよい。 The surface of the glass substrate 16 described above may be a polished surface that has been subjected to polishing treatment, or may be a non-etched surface (fabric surface) that has not been subjected to polishing treatment. That is, a material that satisfies flatness may be selected as appropriate in accordance with the required accuracy of the display panel to be manufactured.
<ガラス積層体>
 本発明におけるガラス積層体30は、図示例においては、上記した支持基材12、樹脂層14、ガラス基板16から構成される。
 上述したように、樹脂層14は、剥離性表面を有し、ガラス基板16や表示装置用パネル40(表示装置用パネルの場合には、表示装置用パネルの構成部材18が形成されたガラス基板16)を容易に剥離できる。
 なお、樹脂層14表面とガラス基板16表面との間の剥離強度は、8.5N/25mm以下が好ましく、7.8N/25mm以下がより好ましく、4.5N/25mm以下がさらに好ましい。上記強度以下であれば、剥離時の樹脂層の破壊や、ガラス基板等の破壊などが起こりにくく、好ましい。下限については、ガラス基板が樹脂層上で位置ずれを起こさない程度の密着力を有していればよく、通常は1.0N/25mm以上が好ましい。
<Glass laminate>
In the illustrated example, the glass laminate 30 in the present invention is composed of the above-mentioned support base 12, resin layer 14, and glass substrate 16.
As described above, the resin layer 14 has a peelable surface, and is a glass substrate 16 or a display device panel 40 (in the case of a display device panel, a glass substrate on which a constituent member 18 of the display device panel is formed. 16) can be easily peeled off.
The peel strength between the surface of the resin layer 14 and the surface of the glass substrate 16 is preferably 8.5 N / 25 mm or less, more preferably 7.8 N / 25 mm or less, and further preferably 4.5 N / 25 mm or less. If it is below the said intensity | strength, destruction of the resin layer at the time of peeling, destruction of a glass substrate, etc. hardly occur, and it is preferable. About a minimum, the glass substrate should just have the adhesive force of the grade which does not raise | generate a position shift on a resin layer, and 1.0 N / 25mm or more is preferable normally.
 樹脂層表面とガラス基板表面との間の剥離強度は、次の測定方法により表される。
 25×50mm角の支持基材(厚さ=約0.4~0.6mm)上の全面に樹脂層(厚さ=約15~20μm)を形成し、25×75mm角のガラス基板(厚さ=約0.1~0.4mm)を積層した物を評価サンプルとする。そして、このサンプルの支持基材の非吸着面を両面テープで台の端に固定したうえで、はみ出しているガラス基板(25×25mm)の中央部を、デジタルフォースゲージを用いて垂直に突き上げ、剥離強度を測定する。
The peel strength between the resin layer surface and the glass substrate surface is represented by the following measurement method.
A resin layer (thickness = about 15 to 20 μm) is formed on the entire surface of a 25 × 50 mm square support base (thickness = about 0.4 to 0.6 mm), and a 25 × 75 mm square glass substrate (thickness) = About 0.1 to 0.4 mm) is used as an evaluation sample. And after fixing the non-adsorption surface of the support base material of this sample to the end of the base with a double-sided tape, the center part of the protruding glass substrate (25 × 25 mm) is pushed vertically using a digital force gauge, Measure peel strength.
 一方、樹脂層14表面と支持基材12表面との間の剥離強度は、9.8N/25mm以上が好ましく、14.7N/25mm以上がより好ましく、19.6N/25mm以上がさらに好ましい。上記剥離強度を有する場合、ガラス基板等を樹脂層から剥離するときに支持基材と樹脂層との剥離が起こりにくく、ガラス積層体からガラス基板等と支持体(すなわち、支持基材と樹脂層の積層体)とに容易に分離できる。
 上述したように、支持基材上で硬化性シリコーン樹脂組成物を硬化させることで、この剥離強度を容易に達成できる。
 また、樹脂層14表面と支持基材12表面との間の剥離強度があまりに高すぎると、支持基材の再利用等のために支持基材と樹脂層の剥離が必要となった際に、その剥離が困難になるおそれがある。したがって、樹脂層14表面と支持基材12表面との間の剥離強度は29.4N/25mm以下が好ましい。
 また、樹脂層14表面と支持基材12表面との間の剥離強度は、樹脂層14表面とガラス基板16表面との間の剥離強度よりも、10N/25mm以上高いことが好ましく、15N/25mm以上高いことがより好ましい。
On the other hand, the peel strength between the surface of the resin layer 14 and the surface of the supporting substrate 12 is preferably 9.8 N / 25 mm or more, more preferably 14.7 N / 25 mm or more, and further preferably 19.6 N / 25 mm or more. When having the above-mentioned peel strength, peeling between the supporting substrate and the resin layer hardly occurs when the glass substrate or the like is peeled from the resin layer, and the glass substrate or the like and the supporting body from the glass laminate (that is, the supporting substrate and the resin layer). Can be easily separated.
As described above, this peel strength can be easily achieved by curing the curable silicone resin composition on the support substrate.
Also, if the peel strength between the resin layer 14 surface and the support substrate 12 surface is too high, when the support substrate and the resin layer need to be peeled for reuse of the support substrate, There is a possibility that the peeling becomes difficult. Accordingly, the peel strength between the surface of the resin layer 14 and the surface of the support base 12 is preferably 29.4 N / 25 mm or less.
The peel strength between the surface of the resin layer 14 and the surface of the support base 12 is preferably 10 N / 25 mm or more higher than the peel strength between the surface of the resin layer 14 and the surface of the glass substrate 16, and 15 N / 25 mm. More preferably, it is higher.
<ガラス積層体の製造方法>
 ガラス積層体30の製造方法は、支持体20の樹脂層14の表面にガラス基板16を積層する方法(積層方法)が好ましい。しかし、ガラス積層体30の製造方法は、この積層方法に限られるものではないことは、前述の通りである。
 積層方法では、ガラス基板の第1主面16Aと樹脂層14の剥離性表面とは、非常に近接した、相対する固体分子間におけるファンデルワールス力に起因する力、すなわち、密着力によって結合させることができると考えられる。したがって、この場合、支持基材とガラス基板とを樹脂層を介して積層させた状態に保持することができる。
 このような積層方法により、支持体20と、樹脂層14の剥離性表面側に接したガラス基板16とを有するガラス積層体が得られる。
 以下、支持体の樹脂層の表面にガラス基板を積層する方法によるガラス積層体の製造方法を説明する。
<Method for producing glass laminate>
The method for producing the glass laminate 30 is preferably a method (lamination method) in which the glass substrate 16 is laminated on the surface of the resin layer 14 of the support 20. However, as described above, the method for manufacturing the glass laminate 30 is not limited to this lamination method.
In the laminating method, the first main surface 16A of the glass substrate and the peelable surface of the resin layer 14 are bonded by a force caused by van der Waals force between the adjacent solid molecules that are very close to each other, that is, by an adhesion force. It is considered possible. Therefore, in this case, the supporting base material and the glass substrate can be held in a state of being laminated via the resin layer.
By such a lamination method, a glass laminate having the support 20 and the glass substrate 16 in contact with the peelable surface side of the resin layer 14 is obtained.
Hereinafter, the manufacturing method of the glass laminated body by the method of laminating | stacking a glass substrate on the surface of the resin layer of a support body is demonstrated.
 支持基材に固定された樹脂層の表面にガラス基板を積層させる方法は、特に限定されず、公知の方法を用いて実施することができる。例えば、常圧環境下で樹脂層の表面にガラス基板を重ねた後、加圧チャンバーを用いて樹脂層とガラス基板とを圧着させる非接触圧着方法;ロールやプレスを用いて樹脂層とガラス基板とを圧着させる方法;等が挙げられる。加圧チャンバー、ロール、プレスなどで圧着する方法によれば、樹脂層とガラス基板とがより密着するので好ましい。また、気体による加圧、およびロールまたはプレスによる圧着によれば、樹脂層とガラス基板との間に混入している気泡が比較的容易に除去されるので好ましい。真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保がより良好に行われるのでより好ましい。真空下で圧着する方法によれば、微少な気泡が残存した場合でも加熱により気泡が成長することがなく、ガラス基板のゆがみ欠陥につながりにくいという利点もある。 The method for laminating the glass substrate on the surface of the resin layer fixed to the support substrate is not particularly limited and can be carried out using a known method. For example, a non-contact pressure bonding method in which a glass substrate is stacked on the surface of a resin layer in a normal pressure environment, and then the resin layer and the glass substrate are pressure-bonded using a pressure chamber; the resin layer and the glass substrate using a roll or a press And the like. A method of pressure bonding with a pressure chamber, a roll, a press or the like is preferable because the resin layer and the glass substrate are more closely adhered to each other. Further, pressurization with gas and pressure bonding with a roll or a press are preferable because air bubbles mixed between the resin layer and the glass substrate are relatively easily removed. When pressure bonding is performed by a vacuum laminating method or a vacuum pressing method, it is more preferable because the suppression of the mixing of bubbles and the securing of good adhesion are performed better. According to the method of pressure bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate.
 支持体とガラス基板とを積層させる際には、ガラス基板の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。樹脂層とガラス基板との間に異物が混入しても、樹脂層が変形するのでガラス基板の表面の平坦性に影響を与えることはないが、クリーン度が高いほどその平坦性は良好となるので好ましい。 When laminating the support and the glass substrate, it is preferable that the surface of the glass substrate is sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer and the glass substrate, the resin layer is deformed and thus does not affect the flatness of the surface of the glass substrate. However, the higher the cleanness, the better the flatness. Therefore, it is preferable.
<表示装置用パネルの構成部材>
 本発明において、表示装置用パネルの構成部材18とは、ガラス基板16を使用したLCD、OLED等の表示装置において、ガラス基板16上に形成された部材やその一部をいう。
 例えば、LCD、OLED等の表示装置においては、ガラス基板16の表面にTFTアレイ(以下、単に「アレイ」という。)、保護層、カラーフィルタ、液晶、ITOからなる透明電極等、各種回路パターン等の部材、またはこれらを組み合わせたものが形成される。
 また、例えば、OLEDからなる表示装置においては、ガラス基板16上に形成された透明電極、ホール注入層、ホール輸送層、発光層、電子輸送層等が挙げられる。
 ガラス基板16と構成部材18からなる表示装置用パネル40は、上記部材の少なくとも一部が形成されたガラス基板である。したがって、例えば、アレイが形成されたガラス基板16や透明電極等が形成されたガラス基板16が表示装置用パネル40である。
<Components of display panel>
In the present invention, the constituent member 18 of the display device panel refers to a member formed on the glass substrate 16 or a part thereof in a display device such as an LCD or an OLED using the glass substrate 16.
For example, in a display device such as an LCD or OLED, various circuit patterns such as a TFT array (hereinafter simply referred to as “array”), a protective layer, a color filter, a liquid crystal, a transparent electrode made of ITO, etc. on the surface of the glass substrate 16. These members or a combination of these members is formed.
Further, for example, in a display device made of OLED, a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like formed on the glass substrate 16 can be used.
The display device panel 40 including the glass substrate 16 and the constituent member 18 is a glass substrate on which at least a part of the above members is formed. Therefore, for example, the glass substrate 16 on which the array is formed or the glass substrate 16 on which the transparent electrode or the like is formed is the display device panel 40.
<支持体付き表示装置用パネル>
 支持体付き表示装置用パネル10は、図示例においては、支持基材12、樹脂層14、ガラス基板16、および、表示装置用パネルの構成部材18から構成される。
 なお、支持体付き表示装置用パネル10には、例えば、アレイがガラス基板16の第1主面16Aに形成された支持体付き表示装置用パネルのアレイ形成面と、カラーフィルタがガラス基板の第2主面16Bに形成された他の支持体付き表示装置用パネルのカラーフィルタ形成面とを、シール材等を介して貼り合わされた形態も含まれる。
<Panel for display with support>
In the illustrated example, the support-equipped display device panel 10 includes a support base 12, a resin layer 14, a glass substrate 16, and a display device panel constituent member 18.
The display-equipped display device panel 10 includes, for example, an array-forming surface of the support-equipped display device panel in which the array is formed on the first main surface 16A of the glass substrate 16, and a color filter that is the first of the glass substrate. The form which bonded together the color filter formation surface of the panel for other display apparatuses with a support body formed in 2 main surface 16B via the sealing material etc. is also contained.
 また、このような支持体付き表示装置用パネル10から、表示装置用パネル40を得ることができる。つまり、支持体付き表示装置用パネル10から、ガラス基板16と支持基材12に固定されている樹脂層14とを剥離して、表示装置用パネルの構成部材18およびガラス基板16を有する表示装置用パネル40を得ることができる。
 また、このような表示装置用パネルから表示装置を得ることができる。表示装置としては、例えば、LCD、OLED等が挙げられる。LCDとしては、例えば、TN型、STN型、FE型、TFT型、MIM型などが挙げられる。
Further, the display device panel 40 can be obtained from the support-equipped display device panel 10. In other words, the display device panel 10 includes the display panel constituent member 18 and the glass substrate 16 by peeling the glass substrate 16 and the resin layer 14 fixed to the support base material 12 from the support-equipped display device panel 10. Panel 40 can be obtained.
Further, a display device can be obtained from such a display device panel. Examples of the display device include an LCD and an OLED. Examples of the LCD include TN type, STN type, FE type, TFT type, and MIM type.
<支持体付き表示装置用パネルの製造方法>
 上述した支持体付き表示装置用パネル10の製造方法は、特に限定されないが、上記したガラス積層体30のガラス基板16表面上に、表示装置用パネルの構成部材18の少なくとも一部を形成することが好ましい。
<Method for producing panel for display device with support>
Although the manufacturing method of the panel 10 for display devices with a support mentioned above is not specifically limited, On the glass substrate 16 surface of the above-mentioned glass laminated body 30, forming at least one part of the structural member 18 of the panel for display devices is formed. Is preferred.
 ガラス積層体のガラス基板表面上に、表示装置用パネルの構成部材の少なくとも一部を形成する方法は、特に限定されず、表示装置用パネルの構成部材の種類に応じて従来公知の方法が実施される。
 例えば、OLEDを製造する場合を例にとると、ガラス積層体のガラス基板の第2主面16B上に有機EL構造体を形成するために、ガラス基板の第2主面16B上に透明電極を形成する工程、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する工程、裏面電極を形成する工程、封止板を用いて封止する工程等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理などが挙げられる。これら構成部材の形成は、表示装置用パネルに必要な全構成部材の形成の一部であってもよい。その場合、その一部の構成部材を形成したガラス基板を樹脂層から剥離した後、残りの構成部材をガラス基板上に形成して表示装置用パネルを製造する。
The method for forming at least a part of the constituent members of the display device panel on the glass substrate surface of the glass laminate is not particularly limited, and a conventionally known method is performed according to the type of the constituent member of the display device panel. Is done.
For example, taking the case of manufacturing an OLED as an example, in order to form an organic EL structure on the second main surface 16B of the glass substrate of the glass laminate, a transparent electrode is formed on the second main surface 16B of the glass substrate. Step of forming, step of depositing a hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. on the surface on which the transparent electrode is formed, step of forming a back electrode, step of sealing using a sealing plate Various layer formation and processing such as are performed. Specific examples of these layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like. The formation of these constituent members may be part of the formation of all the constituent members necessary for the display device panel. In that case, after peeling the glass substrate which formed the one part structural member from the resin layer, the remaining structural members are formed on a glass substrate, and the panel for display apparatuses is manufactured.
<表示装置用パネルの製造方法>
 上述した支持体付き表示装置用パネルを得た後、さらに、支持体付き表示装置用パネル10におけるガラス基板16の第1主面16Aと樹脂層14の剥離性表面とを剥離して、表示装置用パネル40を得ることができる。
 上述したように、剥離時のガラス基板上の構成部材が表示装置用パネルに必要な全構成部材の形成の一部である場合には、その後残りの構成部材をガラス基板上に形成して表示装置用パネルを製造する。
<Method for Manufacturing Display Panel>
After obtaining the display device panel with the support described above, the first main surface 16A of the glass substrate 16 and the peelable surface of the resin layer 14 in the display device panel 10 with the support are further peeled to obtain a display device. Panel 40 can be obtained.
As described above, when the constituent members on the glass substrate at the time of peeling are a part of the formation of all the constituent members necessary for the display device panel, the remaining constituent members are then formed on the glass substrate for display. Manufacture panels for equipment.
 ガラス基板の第1主面と樹脂層の剥離性表面とを剥離する方法は、特に限定されない。
 具体的には、例えば、ガラス基板と樹脂層との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。
 好ましくは、支持体付き表示装置用パネルの支持基材が上側、パネル側が下側となるように定盤上に設置し、パネル側基板を定盤上に真空吸着し、この状態でまず刃物をガラス基板-樹脂層界面に刃物を侵入させる。そして、その後に支持基材側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると樹脂層とパネル側ガラス基板との界面へ空気層が形成され、その空気層が界面の全面に広がり、支持基材を容易に剥離できる。なお、支持体付き表示装置用パネルの両面に支持基材が積層されている場合は、上記剥離工程を片面ずつ順次繰り返す。
The method of peeling the 1st main surface of a glass substrate and the peelable surface of a resin layer is not specifically limited.
Specifically, for example, a sharp blade-like object is inserted into the interface between the glass substrate and the resin layer, and after peeling is given, a mixed fluid of water and compressed air is sprayed to peel off. Can do.
Preferably, the support base of the display device panel with support is placed on the surface plate so that the support base is on the upper side and the panel side is on the lower side, and the panel side substrate is vacuum-sucked on the surface plate, and in this state, the blade is first attached. A blade is allowed to enter the glass substrate-resin layer interface. And after that, the supporting substrate side is adsorbed by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of a resin layer and a panel side glass substrate, the air layer will spread over the whole surface of an interface, and a support base material can be peeled easily. In addition, when the support base material is laminated | stacked on both surfaces of the panel for display apparatuses with a support body, the said peeling process is sequentially repeated one side at a time.
 また、上述した表示装置用パネルを得た後、さらに、得られた表示装置用パネルを用いて表示装置を製造できる。ここで表示装置を得る操作は、特に限定されず、例えば、従来公知の方法で表示装置を製造できる。 Further, after obtaining the above-described display device panel, a display device can be manufactured using the obtained display device panel. Here, the operation for obtaining the display device is not particularly limited. For example, the display device can be manufactured by a conventionally known method.
 例えば、表示装置としてTFT-LCDを製造する場合、従来公知のガラス基板上にアレイを形成する工程、カラーフィルタを形成する工程、アレイが形成されたガラス基板とカラーフィルタが形成されたガラス基板とをシール材等を介して貼り合わせる工程(アレイ・カラーフィルタ貼り合わせ工程)等の各種工程と同様であってよい。
 より具体的には、これらの工程で実施される処理として、例えば、純水洗浄、乾燥、成膜、レジスト液塗布、露光、現像、エッチングおよびレジスト除去が挙げられる。
 さらに、アレイ・カラーフィルタ貼り合わせ工程を実施した後に行われる工程として、液晶注入工程および上記処理の実施後に行われる注入口の封止工程があり、これらの工程で実施される処理が挙げられる。
For example, when manufacturing a TFT-LCD as a display device, a step of forming an array on a conventionally known glass substrate, a step of forming a color filter, a glass substrate on which an array is formed, and a glass substrate on which a color filter is formed May be the same as various steps such as a step of bonding together through a sealing material or the like (array / color filter bonding step).
More specifically, examples of the processing performed in these steps include pure water cleaning, drying, film formation, resist solution application, exposure, development, etching, and resist removal.
Further, as a process performed after the array / color filter bonding process is performed, there are a liquid crystal injection process and an injection port sealing process performed after the above process, and a process performed in these processes is mentioned.
 以下に示す実施例において作製されるガラス積層体に関して、次に示す項目の評価を行った。 The following items were evaluated for the glass laminates produced in the following examples.
 <実施例1>
 縦350mm、横300mm、板厚0.5mmのガラス基板(「AN100」、線膨張係数38×10-7/℃の、アルカリ金属酸化物を含有しないホウケイ酸ガラスからなるガラス板:旭硝子社製)を支持基材として用意し、純水洗浄、UV洗浄して表面を浄化して、表面を清浄化した支持基材を得た。
 次に、線状シリコーン化合物(a)(以下、「成分(a)」ともいう)としてビニル基含有メチルポリシロキサン(ビニル基濃度:0.904mmol/g、25℃における粘度:560mPas、数平均分子量(Mn):10,100、1分子あたり平均のビニル基数:9、ビニル基以外のケイ素原子に結合した有機基は全てメチル基、荒川化学社製)と、線状シリコーン化合物(b)(以下、「成分(b)」ともいう)としてSi-H基含有メチルポリシロキサン(Si-H基濃度:6.85mmol/g、25℃における粘度:20mPas、数平均分子量(Mn):1,000、1分子あたり平均のSi-H基数:7、ケイ素原子に結合した有機基は全てメチル基、荒川化学社製)と、環状シリコーン化合物(c)(以下、「成分(c)」ともいう)として2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン(「D4Vi」、アルケニル基濃度:11.6mmol/g、25℃における粘度2~3mPas、東京化成工業社製)とを、Si-H基とビニル基とのモル比(水素原子/ビニル基)が0.94となるように、成分(a):成分(b):成分(c)=84:14:2の質量比で混合した。
 この混合物100質量部に対して、成分(d)として下記式(d-1)で示されるアセチレン系不飽和基を有するケイ素化合物(沸点:120℃)1質量部を混合した。
  HC≡C-C(CH3)2-O-Si(CH3)3  ・・・ 式(d-1)
 次いで、成分(a)と成分(b)と成分(c)と成分(d)との合計量に対して、白金換算で白金金属濃度が100ppmとなるように白金系触媒(信越シリコーン社製、CAT-PL-56)を加え、組成物の混合液を得た。
<Example 1>
A glass substrate having a length of 350 mm, a width of 300 mm, and a plate thickness of 0.5 mm (“AN100”, a glass plate made of borosilicate glass containing no alkali metal oxide and having a linear expansion coefficient of 38 × 10 −7 / ° C .: manufactured by Asahi Glass Co., Ltd.) Was prepared as a supporting substrate, and the surface was purified by washing with pure water and UV to obtain a supporting substrate with a cleaned surface.
Next, as a linear silicone compound (a) (hereinafter also referred to as “component (a)”), a vinyl group-containing methylpolysiloxane (vinyl group concentration: 0.904 mmol / g, viscosity at 25 ° C .: 560 mPas, number average molecular weight) (Mn): 10, 100 Average number of vinyl groups per molecule: 9, all organic groups bonded to silicon atoms other than vinyl groups are methyl groups, manufactured by Arakawa Chemical Co.) and linear silicone compound (b) (hereinafter referred to as “Mn”) Si-H group-containing methylpolysiloxane (Si—H group concentration: 6.85 mmol / g, viscosity at 25 ° C .: 20 mPas, number average molecular weight (Mn): 1,000, as “component (b)”) The average number of Si—H groups per molecule: 7, all organic groups bonded to silicon atoms are methyl groups, manufactured by Arakawa Chemical Co., Ltd.) and cyclic silicone compounds (c) (hereinafter “component ( ) ”), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (“ D4Vi ”, alkenyl group concentration: 11.6 mmol / g, viscosity at 25 ° C. 2 To 3 mPas (manufactured by Tokyo Chemical Industry Co., Ltd.) so that the molar ratio of Si—H group to vinyl group (hydrogen atom / vinyl group) is 0.94. (C) Mixing was performed at a mass ratio of 84: 14: 2.
100 parts by mass of this mixture was mixed with 1 part by mass of a silicon compound having an acetylenically unsaturated group represented by the following formula (d-1) (boiling point: 120 ° C.) as component (d).
HC≡C—C (CH 3 ) 2 —O—Si (CH 3 ) 3 ... Formula (d-1)
Next, a platinum-based catalyst (manufactured by Shin-Etsu Silicone Co., Ltd.) such that the platinum metal concentration is 100 ppm in terms of platinum with respect to the total amount of component (a), component (b), component (c), and component (d). CAT-PL-56) was added to obtain a mixture of the compositions.
 次に、得られた混合液を、支持基材の第1主面上に縦200mm、横200mmの大きさで、スピンコーターにて塗工した(塗工量15g/m2)。さらに、210℃にて30分間大気中で加熱硬化して、硬化シリコーン樹脂層を形成し、支持体を得た。
 このとき、スピンコーターの回転数と塗工量とを調節することにより、硬化シリコーン樹脂層の膜厚を1~12μmの間で異ならせた複数個の支持体を得た。
 なお、本例においては、加熱硬化処理工程において、反応抑制剤である式(d-1)で示されるアセチレン系不飽和基を有するケイ素化合物(沸点:120℃)が除去された。
Next, the obtained mixed liquid was coated on the first main surface of the supporting base material with a length of 200 mm and a width of 200 mm by a spin coater (a coating amount of 15 g / m 2 ). Furthermore, it was cured by heating at 210 ° C. for 30 minutes in the air to form a cured silicone resin layer, thereby obtaining a support.
At this time, a plurality of supports having different thicknesses of the cured silicone resin layer of 1 to 12 μm were obtained by adjusting the spin coater rotation speed and the coating amount.
In this example, the silicon compound (boiling point: 120 ° C.) having an acetylenically unsaturated group represented by the formula (d-1) as a reaction inhibitor was removed in the heat curing treatment step.
 一方、縦200mm、横200mm、板厚0.2mmのガラス基板(「AN100」、線膨張係数38×10-7/℃の上記ガラスと同じガラスからなるガラス板:旭硝子社製)を純水洗浄、UV洗浄し、ガラス基板の表面を清浄化した。
 その後、支持体とガラス基板とを位置合わせしたうえで、真空プレス装置を用いて、室温下で、ガラス基板の第1主面と支持体の硬化シリコーン樹脂層の剥離性表面とを密着させ、ガラス積層体を得た。
On the other hand, a glass substrate having a length of 200 mm, a width of 200 mm, and a thickness of 0.2 mm (“AN100”, a glass plate made of the same glass as the glass having a linear expansion coefficient of 38 × 10 −7 / ° C .: manufactured by Asahi Glass Co., Ltd.) UV cleaning was performed to clean the surface of the glass substrate.
Then, after aligning the support and the glass substrate, using a vacuum press, the first main surface of the glass substrate and the peelable surface of the cured silicone resin layer of the support are brought into close contact with each other at room temperature, A glass laminate was obtained.
 <実施例2>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=77:18:5とした以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Example 2>
The same as Example 1 except that the mass ratio of the component (a), the component (b) and the component (c) was changed to component (a): component (b): component (c) = 77: 18: 5 A glass laminate was produced according to the procedure.
 <実施例3>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=61:27:12とした以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Example 3>
The same as Example 1 except that the mass ratio of the component (a), the component (b) and the component (c) was changed to component (a): component (b): component (c) = 61: 27: 12 A glass laminate was produced according to the procedure.
 <実施例4>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=23:48:29とした以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Example 4>
The same as Example 1 except that the mass ratio of component (a), component (b) and component (c) was changed to component (a): component (b): component (c) = 23: 48: 29 A glass laminate was produced according to the procedure.
 <実施例5>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=19:51:30とした以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Example 5>
The same as Example 1 except that the mass ratio of the component (a), the component (b) and the component (c) was changed to component (a): component (b): component (c) = 19: 51: 30 A glass laminate was produced according to the procedure.
 <比較例1>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=89:11:0とした(つまり、成分(c)を用いなかった)以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
 なお、比較例1は、特許文献1に記載の態様に相当する。
<Comparative Example 1>
The mass ratio of the component (a), the component (b), and the component (c) was set to component (a): component (b): component (c) = 89: 11: 0 (that is, the component (c) was used) A glass laminate was produced according to the same procedure as in Example 1 except for the above.
Comparative Example 1 corresponds to the aspect described in Patent Document 1.
 <比較例2>
 成分(a)、成分(b)および成分(c)の質量比を、成分(a):成分(b):成分(c)=0:61:39とした(つまり、成分(a)を用いなかった)以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Comparative example 2>
The mass ratio of the component (a), the component (b), and the component (c) was set to component (a): component (b): component (c) = 0: 61: 39 (that is, using the component (a) A glass laminate was produced according to the same procedure as in Example 1 except for the above.
 <比較例3>
 上記した成分(c)の代わりに、ジビニルベンゼン(「DVB」、アルケニル基濃度:15.4mmol/g、25℃における粘度:0.7~1.3mPas:東京化成工業社製)を用い、成分(a)、成分(b)およびDVB成分の質量比を、成分(a):成分(b):DVB成分=64:27:9とした以外は、実施例1と同様の手順に従って、ガラス積層体を製造した。
<Comparative Example 3>
Instead of the component (c) described above, divinylbenzene (“DVB”, alkenyl group concentration: 15.4 mmol / g, viscosity at 25 ° C .: 0.7 to 1.3 mPas: manufactured by Tokyo Chemical Industry Co., Ltd.) Glass lamination according to the same procedure as in Example 1, except that the mass ratio of (a), component (b) and DVB component was changed to component (a): component (b): DVB component = 64: 27: 9 The body was manufactured.
 <評価>
 上記実施例および比較例で得られた、ガラス基板を積層する前の支持体、および、ガラス基板を積層した後の支持体(つまり、ガラス積層体)について、以下に示す評価を行なった。結果を下記第1表に示す。
<Evaluation>
The following evaluations were performed on the support obtained by the examples and comparative examples before the glass substrate was laminated and the support after the glass substrate was laminated (that is, the glass laminate). The results are shown in Table 1 below.
 《評価1》
 まず、ガラス基板を積層する前の支持体について、硬化シリコーン樹脂層に生じたクラックを目視にて確認した。
 次に、クラックが確認されなかった硬化シリコーン樹脂層の厚さを、表面粗さ測定機「サーフコム」(東京精密社製、1400D-12)を用いて測定した。この厚さのうち最も厚い膜厚を、クラックを生じさせずに樹脂層を形成できる「最大膜厚」とした。得られた「最大膜厚」の値から、硬化シリコーン樹脂層の耐クラック性を、以下の基準に従って評価した。実用上、「×」でないことが望ましい。
 「○」:「最大膜厚」が8μm以上12μm以下。
 「△」:「最大膜厚」が4μm以上8μm未満。
 「×」:「最大膜厚」が1μm以上4μm未満。
<< Evaluation 1 >>
First, about the support body before laminating | stacking a glass substrate, the crack which arose in the cured silicone resin layer was confirmed visually.
Next, the thickness of the cured silicone resin layer in which no crack was confirmed was measured using a surface roughness measuring machine “Surfcom” (Tokyo Seimitsu Co., Ltd., 1400D-12). The thickest film thickness among these thicknesses was defined as the “maximum film thickness” at which a resin layer can be formed without causing cracks. From the obtained “maximum film thickness” value, the crack resistance of the cured silicone resin layer was evaluated according to the following criteria. In practice, it is desirable not to be “x”.
“◯”: “Maximum film thickness” is 8 μm or more and 12 μm or less.
“Δ”: “Maximum film thickness” is 4 μm or more and less than 8 μm.
“×”: “Maximum film thickness” is 1 μm or more and less than 4 μm.
 《評価2》
 評価1において「最大膜厚」と判断された支持体を用いたガラス積層体の界面(すなわち、硬化シリコーン樹脂層とガラス基板との間)に生じた気泡を目視にて確認し、以下の基準に従って積層性を評価した。「×」であると加熱したときに気泡が拡大する可能性があり実用上問題があることから、「×」でないことが望ましい。
 「○」:目視では気泡が観察されなかった。
 「△」:極微小の気泡(直径2mm以下の気泡)が少量見られた。
 「×」:気泡(直径2mm超の気泡)が確認された。
<< Evaluation 2 >>
The bubbles generated at the interface (that is, between the cured silicone resin layer and the glass substrate) of the glass laminate using the support that was determined to be “maximum film thickness” in Evaluation 1 were visually confirmed, and the following criteria were used: According to the evaluation, the laminate property was evaluated. If it is “x”, bubbles may expand when heated, and this is problematic in practical use.
“◯”: No bubbles were observed visually.
“Δ”: Very small bubbles (bubbles having a diameter of 2 mm or less) were observed in a small amount.
“×”: Bubbles (bubbles having a diameter of more than 2 mm) were confirmed.
 《評価3-1》
 樹脂の分解の有無は、気泡の発生の有無にて評価した。すなわち、気泡が発生しない場合は樹脂の分解はないものとした。評価2において目視では気泡が観察されなかったガラス積層体を、窒素雰囲気下にて450℃で60分間加熱処理を行い、室温まで冷却し、硬化シリコーン樹脂層の発泡や白化などの外観上の変化を目視にて確認し、以下の基準に従って評価した。「×」であると実用上問題があることから、「×」でないことが望ましい。なお、評価を行なわなかった場合には下記第1表には「-」を記載した。
 「○」:目視では発泡や白化が観察されず、気泡の拡大(直径2mm超の気泡)も確認されなかった。
 「×」:目視で発泡または白化が観察された、または、気泡の拡大(直径2mm超の気泡)が確認された。
<< Evaluation 3-1 >>
The presence or absence of decomposition of the resin was evaluated by the presence or absence of generation of bubbles. That is, the resin was not decomposed when no bubbles were generated. A glass laminate in which no bubbles were visually observed in Evaluation 2 was heat-treated at 450 ° C. for 60 minutes in a nitrogen atmosphere, cooled to room temperature, and changes in appearance such as foaming and whitening of the cured silicone resin layer Was visually confirmed and evaluated according to the following criteria. If “x”, there is a practical problem, so it is desirable that it is not “x”. In the case where the evaluation was not performed, “-” was described in Table 1 below.
“◯”: Foaming or whitening was not observed visually, and no expansion of bubbles (bubbles with a diameter of more than 2 mm) was confirmed.
“X”: Foaming or whitening was observed visually, or expansion of bubbles (bubbles having a diameter of more than 2 mm) was confirmed.
 《評価3-2》
 評価3-1において加熱処理を行なった後のガラス積層体に対して、剥離試験を行なった。具体的には、幅25mmおよび長さ70mmのガラス積層体を用意し、精密万能試験機「オートグラフAG-20/50kNXDplus」(島津製作所社製)を用いて、ガラス基板の剥離を行なった(剥離速度:30mm/min)。この際、ガラス基板と硬化シリコーン樹脂層との界面に厚さ0.1mmのステンレス製刃物を挿入して剥離の切欠部を形成した後、ガラス基板を完全に固定し、支持基材を引き上げて、剥離の状態を以下の基準に従って評価した。なお、評価を行なわなかった場合には下記第1表には「-」を記載した。
 「○」:ガラス基板と硬化シリコーン樹脂層とが界面剥離した。
 「×」:ガラス基板に硬化シリコーン樹脂層の一部が付着していた。
<< Evaluation 3-2 >>
A peel test was conducted on the glass laminate after the heat treatment in Evaluation 3-1. Specifically, a glass laminate having a width of 25 mm and a length of 70 mm was prepared, and the glass substrate was peeled off using a precision universal testing machine “Autograph AG-20 / 50kNXDplus” (manufactured by Shimadzu Corporation) ( Peeling speed: 30 mm / min). At this time, a stainless steel knife having a thickness of 0.1 mm was inserted into the interface between the glass substrate and the cured silicone resin layer to form a notch for peeling, and then the glass substrate was completely fixed and the supporting base was pulled up. The peel state was evaluated according to the following criteria. In the case where the evaluation was not performed, “-” was described in Table 1 below.
“◯”: Interfacial peeling between the glass substrate and the cured silicone resin layer.
“X”: A part of the cured silicone resin layer was adhered to the glass substrate.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~5および比較例1~3においては、いずれも、Si-H基とビニル基とのモル比(水素原子/ビニル基)が0.94となるように調製した。したがって、上記第1表に示す「仕込みSi-H基濃度」が多いほど架橋が多いことを示す。 In Examples 1 to 5 and Comparative Examples 1 to 3, all were prepared so that the molar ratio of Si—H group to vinyl group (hydrogen atom / vinyl group) was 0.94. Therefore, the greater the “prepared Si—H group concentration” shown in Table 1, the more cross-linking.
 また、上記第1表中に示す「モル比(C1×100/(A+C1))」は、成分(a)のアルケニル基と成分(c)のアルケニル基との合計量に対する成分(c)のアルケニル基の割合(モル比)の百分率に相当する。 In addition, the “molar ratio (C1 m × 100 / (A m + C1 m ))” shown in Table 1 above is a component with respect to the total amount of the alkenyl group of component (a) and the alkenyl group of component (c) ( This corresponds to the percentage of the alkenyl group ratio (molar ratio) in c).
 上記第1表に示すように、成分(c)としてD4Viを用いた実施例1~5では、評価2によれば、硬化シリコーン樹脂層とガラス基板との間の気泡の発生が抑制されたガラス積層体を得ることができ、評価3-1によれば、得られたガラス積層体は、窒素雰囲気下にて450℃で60分間加熱処理しても硬化シリコーン樹脂層の分解もないことが確認された。さらに、評価3-2によれば、その後の剥離作業においてもガラス基板と硬化シリコーン樹脂層との界面で界面剥離していることが確認された。
 なお、実施例1~5のうち、成分(c)の配合量が実施例5よりも少ない実施例1~4は、クラックを生じさせることなく樹脂層を形成できる「最大膜厚」が実施例5よりも厚く、耐クラック性がより優れていた。これは、実施例5では成分(c)の量がやや多すぎたため樹脂層がやや硬くなったが、実施例1~4では成分(c)が適量で樹脂層が硬くなりすぎなかったためと考えられる。
As shown in Table 1, in Examples 1 to 5 using D4Vi as the component (c), according to Evaluation 2, the glass in which the generation of bubbles between the cured silicone resin layer and the glass substrate was suppressed was suppressed. A laminate can be obtained, and according to Evaluation 3-1, it is confirmed that the obtained glass laminate does not decompose the cured silicone resin layer even when heat-treated at 450 ° C. for 60 minutes in a nitrogen atmosphere. It was done. Furthermore, according to Evaluation 3-2, it was confirmed that the interface was peeled at the interface between the glass substrate and the cured silicone resin layer in the subsequent peeling operation.
Among Examples 1 to 5, Examples 1 to 4 in which the blending amount of component (c) is less than Example 5 are examples in which the “maximum film thickness” that can form a resin layer without causing cracks is an example. It was thicker than 5 and had better crack resistance. This is probably because the resin layer became slightly hard because the amount of component (c) was slightly too large in Example 5, but in Examples 1 to 4, the resin layer was not too hard with an appropriate amount of component (c). It is done.
 これに対して、成分(c)としてD4Viを用いなかった比較例1は、評価3-1によれば、加熱処理後に外観の変化が確認されたうえ、評価3-2によれば、界面剥離できずガラス基板に樹脂層の一部が付着していた。
 また、成分(a)を用いなかった比較例2は、評価1によれば、耐クラック性に劣っていた。これは、硬化シリコーン樹脂層が硬くなりすぎたためと考えられる。
 また、成分(c)の代わりにDVBを使用した比較例3は、評価2によれば、ガラス基板を積層した後に気泡(直径2mm超の気泡)が確認され、積層後の外観評価が劣っていた。これは、硬化シリコーン樹脂層の平坦性が良好でなかったためと考えられる。
On the other hand, in Comparative Example 1 in which D4Vi was not used as the component (c), change in appearance was confirmed after heat treatment according to Evaluation 3-1, and interface peeling was observed according to Evaluation 3-2. A portion of the resin layer adhered to the glass substrate.
Moreover, according to the evaluation 1, the comparative example 2 which did not use the component (a) was inferior in crack resistance. This is considered because the cured silicone resin layer became too hard.
In Comparative Example 3 using DVB instead of the component (c), according to the evaluation 2, bubbles (bubbles having a diameter of more than 2 mm) were confirmed after the glass substrate was laminated, and the appearance evaluation after the lamination was inferior. It was. This is considered because the flatness of the cured silicone resin layer was not good.
 本発明によれば、高温加熱処理後でも分解が抑制された樹脂層の粘着剤組成物、その樹脂層を含む支持体、その支持体の製造方法及びガラス積層体を提供することができる。
 なお、2014年5月29日に出願された日本特許出願2014-111578号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, the adhesive composition of the resin layer by which decomposition | disassembly was suppressed even after high temperature heat processing, the support body containing the resin layer, the manufacturing method of the support body, and a glass laminated body can be provided.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-111578 filed on May 29, 2014 are incorporated herein by reference. .
  10 支持体付き表示装置用パネル
  12 支持基材
  14 硬化シリコーン樹脂層(樹脂層)
  16 ガラス基板
  18 表示装置用パネルの構成部材
  20 支持体
  30 ガラス積層体
  40 表示装置用パネル
DESCRIPTION OF SYMBOLS 10 Display panel with support body 12 Support base material 14 Hardened silicone resin layer (resin layer)
Reference Signs List 16 Glass substrate 18 Display panel component 20 Support body 30 Glass laminate 40 Display panel

Claims (19)

  1.  ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、
     ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有するシリコーン化合物(b)と、
     ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、
    を含むことを特徴とする粘着剤組成物。
    A linear silicone compound (a) having an alkenyl group bonded to a silicon atom;
    A silicone compound (b) having at least three hydrogen atoms bonded to silicon atoms per molecule;
    A cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom;
    A pressure-sensitive adhesive composition comprising:
  2.  前記シリコーン化合物(b)は、線状シリコーン化合物を、含むことを特徴とする請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the silicone compound (b) contains a linear silicone compound.
  3.  前記シリコーン化合物(b)は、環状シリコーン化合物を、含むことを特徴とする請求項1または2に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1 or 2, wherein the silicone compound (b) contains a cyclic silicone compound.
  4.  支持基材と、前記支持基材上に設けられた樹脂層とを有し、前記樹脂層上にガラス基板を積層するための支持体であって、
     前記樹脂層は、
     ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、
     ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状シリコーン化合物(b)と、
     ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、
    を含む粘着剤組成物を硬化させてなるものであることを特徴とする支持体。
    It has a support base material and a resin layer provided on the support base material, and is a support for laminating a glass substrate on the resin layer,
    The resin layer is
    A linear silicone compound (a) having an alkenyl group bonded to a silicon atom;
    A linear silicone compound (b) having at least 3 hydrogen atoms bonded to silicon atoms per molecule;
    A cyclic silicone compound (c1) having an alkenyl group bonded to a silicon atom;
    A support obtained by curing a pressure-sensitive adhesive composition containing a support.
  5.  前記樹脂層は、さらに、ケイ素原子に結合した水素原子を有する環状シリコーン化合物(c2)を含む粘着剤組成物を硬化させてなるものであることを特徴とする請求項4に記載の支持体。 The support according to claim 4, wherein the resin layer is obtained by curing a pressure-sensitive adhesive composition containing a cyclic silicone compound (c2) having a hydrogen atom bonded to a silicon atom.
  6.  前記線状シリコーン化合物(a)の前記アルケニル基の数は、1分子あたり少なくとも2個であり、
     前記環状シリコーン化合物(c1)の前記アルケニル基の数は、1分子あたり少なくとも2個、若しくは、前記環状シリコーン化合物(c2)の前記水素原子の数は、1分子あたり少なくとも3個、であることを特徴とする請求項4または5に記載の支持体。
    The number of the alkenyl groups of the linear silicone compound (a) is at least 2 per molecule,
    The number of the alkenyl groups of the cyclic silicone compound (c1) is at least 2 per molecule, or the number of the hydrogen atoms of the cyclic silicone compound (c2) is at least 3 per molecule. The support according to claim 4 or 5, characterized in that
  7.  前記硬化性シリコーン樹脂組成物における、前記線状シリコーン化合物(a)中のアルケニル基のモル数(A)、前記線状シリコーン化合物(b)中のケイ素原子に結合した水素原子のモル数(B)、前記環状シリコーン化合物(c1)中のアルケニル基のモル数(C1)および前記環状シリコーン化合物(c2)中のケイ素原子に結合した水素原子のモル数(C2)が、下記式を満たすことを特徴とする請求項4または5に記載の支持体。
     C1×100/(A+C1)+C2×100/(B+C2)≧20
    In the curable silicone resin composition, the number of moles of alkenyl groups in the linear silicone compound (a) (A m ), the number of moles of hydrogen atoms bonded to silicon atoms in the linear silicone compound (b) ( B m ), the number of moles of alkenyl groups in the cyclic silicone compound (c1) (C1 m ), and the number of moles of hydrogen atoms bonded to silicon atoms in the cyclic silicone compound (c2) (C2 m ) The support according to claim 4 or 5, wherein:
    C1 m × 100 / (A m + C1 m) + C2 m × 100 / (B m + C2 m) ≧ 20
  8.  前記[C1×100/(A+C1)+C2×100/(B+C2)]の値が24~95であることを特徴とする請求項7に記載の支持体。 The support according to claim 7, wherein the value of [C1 m × 100 / (A m + C1 m ) + C2 m × 100 / (B m + C2 m )] is 24 to 95.
  9.  前記環状シリコーン化合物(c)が、前記環状シリコーン化合物(c1)であることを特徴とする請求項4~8のいずれか1項に記載の支持体。 The support according to any one of claims 4 to 8, wherein the cyclic silicone compound (c) is the cyclic silicone compound (c1).
  10.  前記硬化性シリコーン樹脂組成物における前記環状シリコーン化合物(c)の含有量が、前記線状シリコーン化合物(a)と前記線状シリコーン化合物(b)と前記環状シリコーン化合物(c)との合計100質量%に対して、0.1~60質量%であることを特徴とする請求項4~9のいずれか1項に記載の支持体。 Content of the said cyclic silicone compound (c) in the said curable silicone resin composition is 100 mass in total of the said linear silicone compound (a), the said linear silicone compound (b), and the said cyclic silicone compound (c). The support according to any one of claims 4 to 9, which is 0.1 to 60 mass% with respect to%.
  11.  前記硬化性シリコーン樹脂組成物における前記環状シリコーン化合物(c)の含有量が、前記線状シリコーン化合物(a)と前記線状シリコーン化合物(b)と前記環状シリコーン化合物(c)との合計100質量%に対して、30質量%未満であることを特徴とする請求項10に記載の支持体。 Content of the said cyclic silicone compound (c) in the said curable silicone resin composition is 100 mass in total of the said linear silicone compound (a), the said linear silicone compound (b), and the said cyclic silicone compound (c). It is less than 30 mass% with respect to%, The support body of Claim 10 characterized by the above-mentioned.
  12.  前記環状シリコーン化合物(c)の、環を構成するケイ素原子の個数が3~10個であることを特徴とする請求項4~11のいずれか1項に記載の支持体。 The support according to any one of claims 4 to 11, wherein the cyclic silicone compound (c) has 3 to 10 silicon atoms constituting the ring.
  13.  前記環状シリコーン化合物(c)におけるアルケニル基の濃度またはケイ素原子に結合した水素原子の濃度が、0.5~44mmol/gであることを特徴とする請求項4~12のいずれか1項に記載の支持体。 The concentration of alkenyl groups or the concentration of hydrogen atoms bonded to silicon atoms in the cyclic silicone compound (c) is 0.5 to 44 mmol / g, according to any one of claims 4 to 12. Support.
  14.  前記硬化性シリコーン樹脂組成物における全アルケニル基に対する全ケイ素原子に結合した水素原子のモル比(水素原子/アルケニル基)が、0.7~1.05であることを特徴とする請求項4~13のいずれか1項に記載の支持体。 The molar ratio of hydrogen atoms bonded to all silicon atoms to all alkenyl groups in the curable silicone resin composition (hydrogen atom / alkenyl group) is 0.7 to 1.05. 14. The support according to any one of items 13.
  15.  前記硬化性シリコーン樹脂組成物が、白金族金属系触媒を含むことを特徴とする請求項4~14のいずれか1項に記載の支持体。 The support according to any one of claims 4 to 14, wherein the curable silicone resin composition contains a platinum group metal catalyst.
  16.  前記硬化性シリコーン樹脂組成物が、さらに活性抑制剤を含むことを特徴とする請求項15に記載の支持体。 The support according to claim 15, wherein the curable silicone resin composition further comprises an activity inhibitor.
  17.  前記支持基材が、ガラス板、シリコンウエハ、合成樹脂板または金属板であることを特徴とする請求項4~16のいずれか1項に記載の支持体。 The support according to any one of claims 4 to 16, wherein the support substrate is a glass plate, a silicon wafer, a synthetic resin plate, or a metal plate.
  18.  支持基材を準備する工程と、
     ケイ素原子に結合したアルケニル基を有する線状シリコーン化合物(a)と、ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有するシリコーン化合物(b)と、ケイ素原子に結合したアルケニル基を有する環状シリコーン化合物(c1)と、を含む粘着剤組成物を準備する工程と、
     前記支持基材上に、前記粘着剤組成物を塗布し、硬化させて樹脂層を形成する工程と、
     を含むことを特徴とする支持体の製造方法。
    Preparing a support substrate;
    A linear silicone compound (a) having an alkenyl group bonded to a silicon atom, a silicone compound (b) having at least three hydrogen atoms bonded to a silicon atom per molecule, and a ring having an alkenyl group bonded to a silicon atom Preparing a pressure-sensitive adhesive composition comprising a silicone compound (c1);
    Applying the pressure-sensitive adhesive composition on the support substrate and curing to form a resin layer;
    The manufacturing method of the support body characterized by including.
  19.  請求項4~17のいずれか1項に記載の支持体と、前記支持体が有する前記硬化シリコーン樹脂層の前記剥離性表面側に接したガラス基板とを有するガラス積層体。 A glass laminate comprising the support according to any one of claims 4 to 17 and a glass substrate in contact with the peelable surface side of the cured silicone resin layer of the support.
PCT/JP2015/065644 2014-05-29 2015-05-29 Adhesive composition, support body and method for producing same, and glass laminate WO2015182766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014111578A JP2017132036A (en) 2014-05-29 2014-05-29 Support body and method for producing the same, and glass laminate
JP2014-111578 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182766A1 true WO2015182766A1 (en) 2015-12-03

Family

ID=54699084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065644 WO2015182766A1 (en) 2014-05-29 2015-05-29 Adhesive composition, support body and method for producing same, and glass laminate

Country Status (3)

Country Link
JP (1) JP2017132036A (en)
TW (1) TW201546224A (en)
WO (1) WO2015182766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165344A (en) * 2018-11-28 2021-07-23 日产化学株式会社 Adhesive composition, laminate, method for producing laminate, and method for thinning semiconductor-forming substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102899B2 (en) * 2018-04-24 2022-07-20 Agc株式会社 Manufacturing method of laminates and electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275681A (en) * 1988-08-04 1990-03-15 Minnesota Mining & Mfg Co <3M> Silicone-base pressure-sensitive adhesive composition
JPH0328269A (en) * 1989-05-19 1991-02-06 Minnesota Mining & Mfg Co <3M> Hydrosilanation and hydro- silanated compound
JP2011088982A (en) * 2009-10-21 2011-05-06 Adeka Corp Silicon-containing curable composition and cured form thereof
JP2012041505A (en) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd Solventless addition-curable pressure sensitive silicone adhesive composition and adhesive article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275681A (en) * 1988-08-04 1990-03-15 Minnesota Mining & Mfg Co <3M> Silicone-base pressure-sensitive adhesive composition
JPH0328269A (en) * 1989-05-19 1991-02-06 Minnesota Mining & Mfg Co <3M> Hydrosilanation and hydro- silanated compound
JP2011088982A (en) * 2009-10-21 2011-05-06 Adeka Corp Silicon-containing curable composition and cured form thereof
JP2012041505A (en) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd Solventless addition-curable pressure sensitive silicone adhesive composition and adhesive article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165344A (en) * 2018-11-28 2021-07-23 日产化学株式会社 Adhesive composition, laminate, method for producing laminate, and method for thinning semiconductor-forming substrate
CN113165344B (en) * 2018-11-28 2023-09-12 日产化学株式会社 Adhesive composition, laminate, method for producing laminate, and method for thinning semiconductor-forming substrate

Also Published As

Publication number Publication date
JP2017132036A (en) 2017-08-03
TW201546224A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5562597B2 (en) SUPPORT, GLASS SUBSTRATE LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT AND METHOD FOR PRODUCING DISPLAY DEVICE PANEL
JP6555254B2 (en) Glass laminate, method for producing the same, and method for producing electronic device
JP6443350B2 (en) Glass laminate
WO2011024690A1 (en) Multilayer structure with flexible base material and support, panel for use in electronic device provided with support and production method for panel for use in electronic device
JP5760376B2 (en) SUPPORT, GLASS SUBSTRATE LAMINATE, PANEL FOR DISPLAY DEVICE WITH SUPPORT, ORGANOPOLYSILOXANE COMPOSITION, AND PROCESS FOR PRODUCING DISPLAY DEVICE PANEL
JP2013149713A (en) Electronic device manufacturing method and glass laminate manufacturing method
JP6610560B2 (en) Glass laminate, method for producing the same, and method for producing electronic device
WO2014103678A1 (en) Glass laminate, method for producing same, and supporting base with silicone resin layer
JP6194893B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
KR20170102239A (en) Glass laminate, method for producing electronic device, method for producing glass laminate, and glass plate package
JP6471643B2 (en) Glass laminate and method for producing the same
WO2015182766A1 (en) Adhesive composition, support body and method for producing same, and glass laminate
JP5770890B2 (en) SUPPORT, GLASS SUBSTRATE LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT AND METHOD FOR PRODUCING DISPLAY DEVICE PANEL
JP6063522B2 (en) SUPPORT, GLASS SUBSTRATE LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT AND METHOD FOR PRODUCING DISPLAY DEVICE PANEL
JP2014080348A (en) Method of manufacturing glass laminate and method of manufacturing electronic device
JP6361440B2 (en) Glass laminate, method for producing the same, and method for producing electronic device
JP2014079730A (en) Method of manufacturing glass laminate, and method of manufacturing electronic device
JP2018094763A (en) Laminate, and support base material with silicone resin layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP