WO2015182758A1 - Hydrogen supply system - Google Patents

Hydrogen supply system Download PDF

Info

Publication number
WO2015182758A1
WO2015182758A1 PCT/JP2015/065610 JP2015065610W WO2015182758A1 WO 2015182758 A1 WO2015182758 A1 WO 2015182758A1 JP 2015065610 W JP2015065610 W JP 2015065610W WO 2015182758 A1 WO2015182758 A1 WO 2015182758A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
unit
gas
supply system
flow
Prior art date
Application number
PCT/JP2015/065610
Other languages
French (fr)
Japanese (ja)
Inventor
智史 古田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015182758A1 publication Critical patent/WO2015182758A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a hydrogen supply system that supplies hydrogen.
  • the hydrogen supply system of Patent Document 1 includes a tank for storing a raw material aromatic hydrocarbon hydride, a dehydrogenation reactor for obtaining hydrogen by dehydrogenating a raw material supplied from the tank, and a reactor.
  • a gas-liquid separator that gas-liquid separates the obtained hydrogen and a hydrogen purifier that purifies the gas-liquid separated hydrogen are provided.
  • hydrogen purified by a hydrogen purifier is supplied to an external hydrogen consuming device as a product, and management of the quality of the hydrogen is important.
  • a method may be used in which the quality of hydrogen is collectively checked at the purification location and shipped to the supply location.
  • purified hydrogen is supplied to the FCV in situ, such as a hydrogen station, a method for inspecting the quality of the hydrogen in situ is required.
  • the present invention has been made to solve the above problems, and provides a hydrogen supply system capable of inspecting the quality of purified hydrogen on the spot and constantly managing the quality of hydrogen supplied to a hydrogen consuming apparatus. With the goal.
  • a hydrogen supply system is a hydrogen supply system that supplies hydrogen, and contains hydrogen by dehydrogenating a raw material containing a hydride of an aromatic hydrocarbon. Obtained in a dehydrogenation reaction part for obtaining gas, a hydrogen purification part for removing a dehydrogenation product from a hydrogen-containing gas obtained in the dehydrogenation reaction part, and obtaining a purified gas containing high-purity hydrogen, and a hydrogen purification part A compression unit that brings the purified gas into a high-pressure state, and a detection unit that detects the content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit.
  • This hydrogen supply system includes a detection unit that detects the content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit.
  • a detection unit that detects the content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit.
  • the detection unit may be constituted by a gas chromatograph. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas.
  • the detection unit may be constituted by a flame ion detector. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas. In addition, it becomes possible to detect the content of moisture contained in the refined gas together with the hydrocarbon, so that the quality of hydrogen can be suitably managed.
  • the detection unit may be constituted by a gas analyzer using near infrared light or ultraviolet light. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas. In addition, it becomes possible to detect the content of moisture contained in the refined gas together with the hydrocarbon, so that the quality of hydrogen can be suitably managed.
  • the hydrogen supply system is a flow that prevents the flow of purified gas from the hydrogen purification unit to the compression unit when the detection unit detects that the hydrocarbon content in the purified gas exceeds a predetermined threshold. You may provide the prevention part. Thereby, even if it is a case where a dehydrogenation product mixes in refined gas, it can prevent that the gas line downstream from a compression part will be contaminated.
  • the flow prevention unit may be a blocking unit that blocks the flow of purified gas from the hydrogen purification unit toward the compression unit. By blocking the flow of the purified gas by the blocking unit, it is possible to more reliably prevent the gas line downstream of the compression unit from being contaminated.
  • the flow prevention unit may be a switching unit that switches the flow destination of the purified gas from the hydrogen purification unit to the compression unit to the upstream side of the flow prevention unit.
  • the switching unit By switching the flow destination of the purified gas to the upstream side of the flow prevention unit by the switching unit, it is possible to more reliably prevent the gas line downstream of the compression unit from being contaminated.
  • the quality of the purified hydrogen can be inspected on the spot, and the quality of the hydrogen supplied to the hydrogen consuming apparatus can always be managed.
  • FIG. 1 is a block diagram showing an embodiment of the hydrogen supply system according to the first embodiment of the present invention.
  • FIG. 2 is a principal block diagram showing an example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG.
  • FIG. 3 is a principal block diagram showing another example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG.
  • FIG. 4 is a principal block diagram showing an example of the configuration of the quality control unit in the hydrogen supply system according to the second embodiment of the present invention.
  • FIG. 5 is a principal block diagram showing another example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG.
  • FIG. 1 is a block diagram showing the configuration of the hydrogen supply system according to the first embodiment.
  • the hydrogen supply system 100 according to the first embodiment uses an organic compound (liquid at normal temperature) as a raw material.
  • the dehydrogenated product organic compound (liquid at room temperature)
  • the raw material organic compound include organic hydride.
  • An organic hydride is preferably a hydride obtained by reacting a large amount of hydrogen produced in a refinery with an aromatic hydrocarbon.
  • the organic hydride is not limited to an aromatic hydride compound, but also includes 2-propanol (hydrogen and acetone are produced).
  • the organic hydride can be transported to the hydrogen supply system 100 as a liquid fuel by a tank lorry as in the case of gasoline.
  • methylcyclohexane hereinafter referred to as MCH
  • MCH methylcyclohexane
  • hydrides of aromatic hydrocarbons such as cyclohexane, dimethylcyclohexane, ethylcyclohexane, decalin, methyldecalin, dimethyldecalin, and ethyldecalin can be used as organic hydrides. This is a preferred example).
  • the hydrogen supply system 100 can supply hydrogen to a fuel cell vehicle (FCV) or a hydrogen engine vehicle.
  • FCV fuel cell vehicle
  • the present invention can also be applied to the production of hydrogen from liquid hydrocarbon raw materials such as natural gas mainly composed of methane, LPG mainly composed of propane, or gasoline, naphtha, kerosene, and light oil.
  • the hydrogen supply system 100 will be described using a hydrogen station that supplies high-purity hydrogen to the FCV 10 as an example.
  • the hydrogen supply system 100 includes an MCH tank 1, a vaporizer 2, a dehydrogenation reactor (dehydrogenation reaction unit) 3, a gas-liquid separator 4, a toluene tank 5, and hydrogen purification.
  • the apparatus (hydrogen refining part) 6, the compressor (compression part) 7, the pressure accumulator 8, the dispenser 9, the heat source 11, the cold heat source 12, and the cold heat source 13 are provided.
  • the hydrogen supply system 100 includes lines L1 to L9.
  • Lines L1 to L9 are flow paths through which MCH, toluene, hydrogen-containing gas, off-gas, or high-purity hydrogen passes.
  • Line L1 connects MCH tank 1 and vaporizer 2.
  • Line L2 connects vaporizer 2 and dehydrogenation reactor 3.
  • the line L3 connects the dehydrogenation reactor 3 and the gas-liquid separator 4.
  • the line L4 connects the gas-liquid separator 4 and the hydrogen purifier 6.
  • the line L5 connects the gas / liquid separator 4 and the toluene tank 5.
  • the line L6 connects the hydrogen purifier 6 and the compressor 7.
  • the line L7 connects the hydrogen purifier 6 and the vaporizer 2.
  • the line L7 functions as a recycle line for refluxing off-gas discharged from the hydrogen purifier 6 to the upstream side of the dehydrogenation reactor 3.
  • the line L7 will be referred to as “recycle line L7”.
  • the line L8 connects the compressor 7 and the pressure accumulator 8.
  • Line L9 connects pressure accumulator 8 and dispenser 9.
  • the MCH tank 1 is a tank that stores MCH as a raw material. MCH transported from outside by a tank lorry or the like is stored in the MCH tank 1. MCH stored in the MCH tank 1 is supplied to the vaporizer 2 via a line L1 by a compressor (not shown).
  • the vaporizer 2 is a device that vaporizes the MCH supplied from the MCH tank 1 via an injector or the like.
  • the vaporized MCH is supplied to the dehydrogenation reactor 3 through the line L2 together with the off gas supplied from the hydrogen purifier 6 through the recycle line L7.
  • the dehydrogenation reactor 3 is a device that obtains hydrogen by dehydrogenating MCH. That is, the dehydrogenation reactor 3 is a device that extracts hydrogen from MCH by a dehydrogenation reaction using a dehydrogenation catalyst.
  • the dehydrogenation catalyst is not particularly limited, and is selected from, for example, a platinum catalyst, a palladium catalyst, and a nickel catalyst. These catalysts may be supported on a carrier such as alumina, silica and titania.
  • the organic hydride reaction is a reversible reaction, and the direction of the reaction changes depending on the reaction conditions (temperature, pressure) (restricted by chemical equilibrium).
  • the dehydrogenation reaction is a reaction in which the number of molecules is always increased by an endothermic reaction. Therefore, high temperature and low pressure conditions are advantageous. Since the dehydrogenation reaction is an endothermic reaction, the dehydrogenation reactor 3 is supplied with heat from the heat source 11 via a heat medium.
  • the dehydrogenation reactor 3 has a mechanism capable of exchanging heat between the MCH flowing in the dehydrogenation catalyst and the heat medium from the heat source 11. Any heat source 11 may be adopted as long as it can heat the dehydrogenation reactor 3.
  • the heat source 11 may directly heat the dehydrogenation reactor 3.
  • the MCH supplied to the dehydrogenation reactor 3 is heated by heating the vaporizer 2 or the lines L1 and L2. Also good.
  • the heat source 11 may heat both the dehydrogenation reactor 3 and the MCH supplied to the dehydrogenation reactor 3.
  • a burner or an engine can be adopted as the heat source 11.
  • the hydrogen-containing gas taken out by the dehydrogenation reactor 3 is supplied to the gas-liquid separator 4 via the line L3.
  • the hydrogen-containing gas in the line L3 is supplied to the gas-liquid separator 4 in a state where the liquid toluene is contained as a mixture.
  • the gas-liquid separator 4 is a tank that separates toluene from the hydrogen-containing gas.
  • the gas-liquid separator 4 gas-liquid separates hydrogen as a gas and toluene as a liquid by storing a hydrogen-containing gas containing toluene as a mixture.
  • the gas-liquid separator 4 is cooled by a cooling medium from the cold heat source 12.
  • the gas-liquid separator 4 has a mechanism capable of exchanging heat between the hydrogen-containing gas in the gas-liquid separator 4 and the cooling medium from the cold heat source 12. As long as the cold-heat source 12 can cool the gas-liquid separator 4, what kind of thing may be employ
  • the toluene separated by the gas-liquid separator 4 is supplied to the toluene tank 5 via the line L5.
  • the hydrogen-containing gas separated by the gas-liquid separator 4 is supplied to the hydrogen purifier 6 via the line L4.
  • the hydrogen-containing gas is cooled, a part of the gas (toluene) is liquefied and can be separated from the gas (hydrogen) that is not liquefied by the gas-liquid separator 4.
  • the efficiency of the separation is improved when the gas is at a low temperature, and the liquefaction of toluene further proceeds when the pressure is increased.
  • the toluene tank 5 is a tank that stores liquid toluene separated by the gas-liquid separator 4.
  • the toluene stored in the toluene tank 5 can be recovered and used.
  • the hydrogen purifier 6 removes the dehydrogenation product (toluene in this embodiment) from the hydrogen-containing gas obtained in the dehydrogenation reactor 3 and gas-liquid separated in the gas-liquid separator 4. Thereby, the hydrogen purifier 6 purifies the hydrogen-containing gas to obtain high-purity hydrogen (purified gas).
  • the obtained high-purity hydrogen is supplied to the line L6, and the off gas containing hydrogen and a dehydrogenation product is discharged to the recycle line L7.
  • the off gas supplied to the recycle line L7 is supplied to the vaporizer 2 via a compressor (not shown), and is supplied to the dehydrogenation reactor 3 via the line L2.
  • the hydrogen purifier 6 differs depending on the hydrogen purification method employed. Specifically, when membrane separation is used as the hydrogen purification method, the hydrogen purifier 6 is a hydrogen separation apparatus equipped with a hydrogen separation membrane, and is a PSA (Pressure Swing Adsorption) method. Or when using TSA (Temperature swing adsorption) method, it is an adsorption removal apparatus provided with two or more adsorption towers which store the adsorbent which adsorb
  • PSA Pressure Swing Adsorption
  • TSA Tempoture swing adsorption
  • a hydrogen-containing gas pressurized to a predetermined pressure by a compressor (not shown) is permeated through a film heated to a predetermined temperature to remove dehydrogenated products, and high-purity hydrogen gas ( Purified gas).
  • the pressure of the permeated gas that has permeated the membrane is lower than the pressure before permeating the membrane.
  • the pressure of the non-permeating gas that has not permeated the membrane is substantially the same as the predetermined pressure before permeating the membrane. At this time, the non-permeating gas that has not permeated the membrane corresponds to the off-gas of the hydrogen purifier 6.
  • the type of membrane applied to the hydrogen purifier 6 is not particularly limited, and is a porous membrane (separated by molecular flow, separated by surface diffusion flow, separated by capillary condensation, or separated by molecular sieving. Etc.) and non-porous membranes can be applied.
  • membranes applied to the hydrogen purifier 6 include metal membranes (PbAg, PdCu, Nb, etc.), zeolite membranes, inorganic membranes (silica membrane, carbon membrane, etc.), polymer membranes (polyimide membrane, etc.). Can be adopted.
  • the hydrogen recovery rate of the hydrogen purifier 6 by membrane separation is 70 to 90%.
  • the separation factor of “hydrogen / toluene” of the membrane used in the hydrogen purifier 6 is preferably 1000 or more, and more preferably 10,000 or more.
  • the adsorbent used in the PSA method has the property of adsorbing toluene contained in the hydrogen-containing gas under high pressure and desorbing the adsorbed toluene under low pressure.
  • the PSA method utilizes such properties of the adsorbent. That is, by setting the inside of the adsorption tower at a high pressure, toluene contained in the hydrogen-containing gas is adsorbed and removed by the adsorbent to obtain high-purity hydrogen gas (purified gas).
  • the adsorption function of the adsorbent in the adsorption tower decreases due to adsorption, the toluene adsorbed on the adsorbent is desorbed and a part of the purified gas removed is caused to flow backward by lowering the pressure in the adsorption tower.
  • the adsorption function of the adsorbent is regenerated (at this time, the hydrogen containing at least hydrogen and toluene discharged by removing toluene from the inside of the adsorption tower)
  • the gas corresponds to the off-gas from the hydrogen purifier 6).
  • the method for adjusting the pressure in the adsorption tower is not particularly limited, and can be adjusted for each adsorption tower by, for example, closing a valve provided for each adsorption tower. Therefore, for the adsorption tower in which the adsorption function of the adsorbent is lowered, the adsorbent is regenerated by reducing the pressure and off-gas is discharged. On the other hand, with respect to the remaining adsorption tower, toluene contained in the hydrogen-containing gas is removed by being adsorbed to the adsorbent by pressurization and high-purity hydrogen is obtained.
  • the adsorption tower starts to remove toluene by pressurization and obtains high-purity hydrogen.
  • regeneration of the adsorbent is started by reducing the pressure and off-gas is discharged.
  • the adsorbent used in the TSA method has the property of adsorbing toluene contained in the hydrogen-containing gas at room temperature and desorbing the adsorbed toluene at high temperature.
  • the TSA method utilizes such properties of the adsorbent. That is, by setting the inside of the adsorption tower to room temperature, toluene contained in the hydrogen-containing gas is adsorbed and removed by the adsorbent to obtain high-purity hydrogen gas (high-purity hydrogen).
  • the adsorption function of the adsorbent in the adsorption tower is reduced due to adsorption, the toluene adsorbed on the adsorbent is desorbed by raising the temperature in the adsorption tower, and a part of the high-purity hydrogen that has been removed is backflowed.
  • the adsorption function of the adsorbent is regenerated (at this time, at least hydrogen and hydrogen containing toluene discharged by removing toluene from the adsorption tower)
  • the contained gas corresponds to the off-gas from the hydrogen purifier 6).
  • the method for adjusting the temperature in the adsorption tower is not particularly limited, but can be adjusted for each adsorption tower by, for example, switching ON / OFF of the heater provided for each adsorption tower. Therefore, for the adsorption tower in which the adsorption function of the adsorbent is lowered, the adsorbent is regenerated and the off-gas is discharged by raising the temperature. On the other hand, with respect to the remaining adsorption towers, the toluene contained in the hydrogen-containing gas is removed by adsorbing the adsorbent while maintaining the room temperature, and high-purity hydrogen is obtained.
  • the hydrogen supply system 100 as a whole can obtain high-purity hydrogen and off-gas continuously.
  • the hydrogen recovery rate when the hydrogen purifier 6 adopts the TSA method is about 60 to 90%, depending on the number of adsorption towers.
  • the compressor 7 puts the high purity hydrogen obtained by the hydrogen purifier 6 into a high pressure state.
  • the compressor 7 brings high-purity hydrogen into a high-pressure state at a pressure of 20 to 90 MPa, for example.
  • the compressor 7 is in a high pressure state so that high purity hydrogen can be supplied to the FCV (hydrogen consuming apparatus) 10 and then supplied to the pressure accumulator 8 via the line L8.
  • FCV hydrogen consuming apparatus
  • the pressure accumulator 8 stores high purity hydrogen in a high pressure state.
  • the high purity hydrogen stored in the pressure accumulator 8 is supplied to the FCV 10 by the dispenser 9 via the line L9. Since the pressure accumulator 8 can store a certain amount of high-purity hydrogen in the hydrogen supply system 100, hydrogen can be stably supplied to the FCV 10. However, since the pressure accumulator 8 is not essential for supplying hydrogen, it may be omitted.
  • the high purity hydrogen passing through the line L9 is cooled to, for example, about ⁇ 40 ° C. by the cooling medium from the cold heat source 13.
  • the line L9 has a mechanism capable of exchanging heat between the high purity hydrogen flowing through the line L9 and the heat medium from the cold heat source 13. Any cooling source 13 may be used as long as it can cool the high purity hydrogen flowing through the line L9. For example, a cooler such as a chiller can be employed as the cold heat source 13.
  • the hydrogen supply system 100 includes a quality control unit 21 that inspects the quality of the high purity hydrogen on the spot when supplying the purified high purity hydrogen to the FCV 10 on the spot.
  • the quality management unit 21 includes a detection unit 22, a control unit 23, and a distribution prevention unit 24.
  • the detection unit 22 detects components contained in the high purity hydrogen obtained by the hydrogen purifier 6.
  • the detection part 22 is comprised by the gas chromatograph, and detects content of the hydrocarbon in high purity hydrogen.
  • a small amount (for example, several cc) of high-purity hydrogen for inspection is introduced into the detection unit 22 via a line L10 branched from a line L6 through which high-purity hydrogen flows from the hydrogen purifier 6 to the compressor 7.
  • the pressure of the high-purity hydrogen flowing through the line L6 (pressure before being brought to a high pressure state by the compressor 7) is, for example, about 0.6 MPa, but is introduced into the detection unit 22 by the pressure reducing valve 25 provided in the line L10.
  • the pressure of high purity hydrogen may be reduced to about 0.01 MPa, for example.
  • the detection unit 22 outputs a result signal to the control unit 23 when the hydrocarbon content in the high-purity hydrogen exceeds a preset threshold value.
  • a barrier discharge ionization detector (BID) may be used, or a flame ion detector (FID) may be used.
  • a barrier discharge ionization detector it is possible to detect moisture simultaneously with detection of hydrocarbons.
  • the detection part 22 may detect using a batch type gas chromatograph, and may detect using an online type gas chromatograph.
  • an online gas chromatograph it is possible to prevent foreign matters from being mixed in high-purity hydrogen for inspection as compared with the batch type, and the inspection accuracy can be further increased.
  • the detection timing may be any timing, and can be set to about once per hour, for example.
  • the control unit 23 controls the flow prevention unit 24 according to the detection result of the detection unit 22.
  • the flow preventing unit 24 is configured as a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7.
  • the blocking unit 26 includes, for example, an electromagnetic valve provided in the line L6.
  • the hydrogen supply system 100 includes the detection unit 22 that detects the content of hydrocarbons contained in high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. Thereby, the quality of the high purity hydrogen purified by the hydrogen purifier 6 can be inspected on the spot, and the quality of the hydrogen supplied to the FCV 10 can always be managed. Further, in the hydrogen supply system 100, a relatively low-pressure high-purity hydrogen before being compressed by the compressor 7 is an inspection target. Therefore, unlike the case where, for example, high-purity hydrogen released from the dispenser 9 is an object to be inspected, it is not necessary to perform an extreme pressure reduction of the high-purity hydrogen in the inspection, and the quality of hydrogen can be easily inspected.
  • the dehydrogenation product is not introduced and mixed into the high purity hydrogen in the components after the hydrogen purifier 6, so that the high purity hydrogen before being compressed by the compressor 7 is removed.
  • quality control equivalent to the case where high purity hydrogen released from the dispenser 9 is the subject of inspection can be performed.
  • the hydrogen supply system 100 is configured such that when the detection unit 22 detects that the content of hydrocarbons included in the high-purity hydrogen exceeds a predetermined threshold, the hydrogen supply system 100 supplies the high-pressure hydrogen from the hydrogen purifier 6 to the compressor 7.
  • a flow prevention unit 24 for preventing the flow of pure hydrogen is provided.
  • the flow preventing unit 24 is configured by a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. In this way, by blocking the flow of the high purity hydrogen by the blocking unit 26, even if toluene exceeding the threshold is mixed in the high purity hydrogen, the gas line on the downstream side of the compressor 7 is contaminated. Can be prevented.
  • the flow prevention unit 24 replaces the blocking unit 26 and switches the high-purity hydrogen flow destination from the hydrogen purifier 6 to the compressor 7 to the upstream side of the flow prevention unit 24. May be provided.
  • the control unit 23 controls the switching unit 27 when a result signal indicating that the content of hydrocarbons in the high purity hydrogen exceeds a predetermined value set in advance is received from the detection unit 22.
  • the high purity hydrogen flow path is switched from the line L6 to the bypass line BL.
  • the connection destination of the bypass line BL may be the line L4 that connects the gas-liquid separator 4 and the hydrogen purifier 6, or the line L7 that connects the hydrogen purifier 6 and the vaporizer 2.
  • the switching unit 27 switches the distribution destination of the high purity hydrogen to the upstream side of the distribution prevention unit 24, so that even if toluene exceeding the threshold is mixed in the high purity hydrogen, the compression is performed. It is possible to prevent the gas line downstream from the machine 7 from being contaminated.
  • FIG. 4 is a principal block diagram showing an example of the configuration of the quality control unit in the hydrogen supply system according to the second embodiment.
  • the online detection unit 32 is configured by a gas analyzer using near infrared light or ultraviolet light instead of the gas chromatograph. This is different from the first embodiment.
  • the detection unit 32 has a small amount (for example, several cc) via a line L10 branched from a line L6 through which high-purity hydrogen flows from the hydrogen purifier 6 to the compressor 7.
  • High-purity hydrogen for inspection is introduced.
  • the high-purity hydrogen that has been inspected by the detection unit 32 may be returned to the line L6 by the line L11.
  • the gas analyzer is, for example, a gas cell through which high-purity hydrogen for inspection flows, a gas cell through which hydrogen for reference flows, a light emitter disposed at one end of the gas cell, and a detection disposed at the other end of the gas cell.
  • the detection unit 32 outputs a result signal to the control unit 23 when the hydrocarbon content in the high-purity hydrogen exceeds a preset threshold value.
  • a gas analyzer it is not necessary to provide the pressure reducing valve 25 (see FIG. 2) in the line L10, and the high-purity hydrogen for inspection remains at the pressure of the high-purity hydrogen flowing through the line L6. Can be introduced into the detector 32.
  • the flow preventing unit 24 is configured as a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7.
  • the blocking unit 26 includes, for example, an electromagnetic valve provided in the line L6.
  • the quality of the high purity hydrogen purified by the hydrogen purifier 6 can be inspected on the spot by the detection unit 32, and the quality of the hydrogen supplied to the FCV 10 is always managed. It becomes possible. Also in this hydrogen supply system 200, a relatively low-pressure high-purity hydrogen before being compressed by the compressor 7 is an inspection target. Therefore, unlike the case where, for example, high-purity hydrogen released from the dispenser 9 is an object to be inspected, it is not necessary to perform an extreme pressure reduction of the high-purity hydrogen in the inspection, and the quality of hydrogen can be easily inspected.
  • the dehydrogenation product is not introduced into and mixed in the high purity hydrogen in the components after the hydrogen purifier 6, the high purity hydrogen before being compressed by the compressor 7 is subject to inspection. By doing so, quality control equivalent to the case where high purity hydrogen released from the dispenser 9 is the object of inspection can be performed.
  • the hydrogen purifier 6 when the detection unit 32 detects that the content of hydrocarbons contained in the high-purity hydrogen exceeds a predetermined threshold, the hydrogen purifier 6 to the compressor 7 A flow prevention unit 24 for preventing the flow of high purity hydrogen is provided.
  • the flow preventing unit 24 is configured by a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. In this way, by blocking the flow of the high purity hydrogen by the blocking unit 26, even if toluene exceeding the threshold is mixed in the high purity hydrogen, the gas line on the downstream side of the compressor 7 is contaminated. Can be prevented.
  • the flow prevention unit 24 replaces the blocking unit 26 with the flow destination of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7 as shown in FIG.
  • a switching unit 27 that switches to the upstream side may be provided.
  • the function of the switching unit 27 is the same as in the case of the first embodiment, and when the hydrocarbon content in the high purity hydrogen exceeds a predetermined value set in advance, the high purity hydrogen distribution path is lined up. Switch from L6 to bypass line BL.
  • the hydrogen station for FVC is exemplified as the hydrogen supply system.
  • a hydrogen supply system for a distributed power source such as a household power source or an emergency power source may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 A hydrogen supply system for supplying hydrogen, the hydrogen supply system being provided with a dehydrogenation reaction unit for obtaining a hydrogen-containing gas by dehydrogenation of a starting material including a hydride of an aromatic hydrocarbon, a hydrogen purification unit for removing a dehydrogenation product from the hydrogen-containing gas obtained by the dehydrogenation reaction unit and obtaining a purified gas including high-purity hydrogen, a compression unit for placing the purified gas obtained by the hydrogen purification unit under high pressure, and a detection unit for detecting the content of a hydrocarbon included in the purified gas directed from the hydrogen purification unit to the compression unit.

Description

水素供給システムHydrogen supply system
 本発明は、水素の供給を行う水素供給システムに関する。 The present invention relates to a hydrogen supply system that supplies hydrogen.
 従来の水素供給システムとして、例えば特許文献1に挙げるものが知られている。特許文献1の水素供給システムは、原料の芳香族炭化水素の水素化物を貯蔵するタンクと、当該タンクから供給された原料を脱水素反応させることによって水素を得る脱水素反応器と、反応器で得られた水素を気液分離する気液分離器と、気液分離された水素を精製する水素精製器と、を備える。 As conventional hydrogen supply systems, for example, those described in Patent Document 1 are known. The hydrogen supply system of Patent Document 1 includes a tank for storing a raw material aromatic hydrocarbon hydride, a dehydrogenation reactor for obtaining hydrogen by dehydrogenating a raw material supplied from the tank, and a reactor. A gas-liquid separator that gas-liquid separates the obtained hydrogen and a hydrogen purifier that purifies the gas-liquid separated hydrogen are provided.
特開2006-232607号公報JP 2006-232607 A
 上述したような水素供給システムでは、水素精製器で精製された水素が製品として外部の水素消費装置に供給される水素であり、当該水素の品質の管理が重要となっている。水素の精製場所と供給場所とが異なる場合、精製場所で水素の品質を一括して検査して供給場所に出荷する方法を採り得る。しかしながら、例えば水素ステーションのように、精製した水素をその場でFCVに供給する場合には、その場で水素の品質を検査する方法が求められる。 In the hydrogen supply system as described above, hydrogen purified by a hydrogen purifier is supplied to an external hydrogen consuming device as a product, and management of the quality of the hydrogen is important. When the hydrogen purification site and the supply location are different, a method may be used in which the quality of hydrogen is collectively checked at the purification location and shipped to the supply location. However, in the case where purified hydrogen is supplied to the FCV in situ, such as a hydrogen station, a method for inspecting the quality of the hydrogen in situ is required.
 本発明は、上記課題の解決のためになされたものであり、精製した水素の品質をその場で検査でき、水素消費装置に供給される水素の品質を常に管理できる水素供給システムを提供することを目的とする。 The present invention has been made to solve the above problems, and provides a hydrogen supply system capable of inspecting the quality of purified hydrogen on the spot and constantly managing the quality of hydrogen supplied to a hydrogen consuming apparatus. With the goal.
 上記課題の解決のため、本発明の一側面に係る水素供給システムは、水素の供給を行う水素供給システムであって、芳香族炭化水素の水素化物を含む原料を脱水素反応させることによって水素含有ガスを得る脱水素反応部と、脱水素反応部で得られた水素含有ガスから脱水素生成物を除去し、高純度水素を含む精製ガスを得る水素精製部と、水素精製部で得られた精製ガスを高圧状態とする圧縮部と、水素精製部から圧縮部に向かう精製ガスに含まれる炭化水素の含有量を検出する検出部と、を備える。 In order to solve the above-described problem, a hydrogen supply system according to one aspect of the present invention is a hydrogen supply system that supplies hydrogen, and contains hydrogen by dehydrogenating a raw material containing a hydride of an aromatic hydrocarbon. Obtained in a dehydrogenation reaction part for obtaining gas, a hydrogen purification part for removing a dehydrogenation product from a hydrogen-containing gas obtained in the dehydrogenation reaction part, and obtaining a purified gas containing high-purity hydrogen, and a hydrogen purification part A compression unit that brings the purified gas into a high-pressure state, and a detection unit that detects the content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit.
 この水素供給システムは、水素精製部から圧縮部に向かう精製ガスに含まれる炭化水素の含有量を検出する検出部を備えている。これにより、水素精製部で精製された精製ガスの品質をその場で検査することができ、外部の水素消費装置に供給される水素の品質を常に管理することが可能となる。また、この水素供給システムでは、圧縮部で圧縮される前の比較的低圧の精製ガスを検査の対象としている。したがって、検査にあたって精製ガスの極端な減圧を行う必要はなく、簡便に水素の品質を検査できる。 This hydrogen supply system includes a detection unit that detects the content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit. As a result, the quality of the purified gas purified by the hydrogen purification section can be inspected on the spot, and the quality of the hydrogen supplied to the external hydrogen consuming apparatus can be always managed. Further, in this hydrogen supply system, a relatively low-pressure purified gas before being compressed in the compression unit is a target for inspection. Therefore, it is not necessary to extremely reduce the pressure of the purified gas for the inspection, and the quality of hydrogen can be easily inspected.
 検出部は、ガスクロマトグラフによって構成されていてもよい。この場合、精製ガスに含まれる炭化水素の含有量の検出を精度良く実施できる。 The detection unit may be constituted by a gas chromatograph. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas.
 検出部は、水素炎イオン検出器によって構成されていてもよい。この場合、精製ガスに含まれる炭化水素の含有量の検出を精度良く実施できる。また、炭化水素と合わせて精製ガスに含まれる水分の含有量の検出も可能となり、水素の品質を好適に管理できる。 The detection unit may be constituted by a flame ion detector. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas. In addition, it becomes possible to detect the content of moisture contained in the refined gas together with the hydrocarbon, so that the quality of hydrogen can be suitably managed.
 検出部は、近赤外光又は紫外光を用いるガス分析計によって構成されていてもよい。この場合、精製ガスに含まれる炭化水素の含有量の検出を精度良く実施できる。また、炭化水素と合わせて精製ガスに含まれる水分の含有量の検出も可能となり、水素の品質を好適に管理できる。 The detection unit may be constituted by a gas analyzer using near infrared light or ultraviolet light. In this case, it is possible to accurately detect the hydrocarbon content contained in the purified gas. In addition, it becomes possible to detect the content of moisture contained in the refined gas together with the hydrocarbon, so that the quality of hydrogen can be suitably managed.
 水素供給システムは、検出部によって精製ガスに含まれる炭化水素の含有量が所定の閾値を超えていることが検出された場合に、水素精製部から圧縮部への精製ガスの流通を防止する流通防止部を備えていてもよい。これにより、精製ガスに脱水素生成物が混入した場合であっても、圧縮部よりも下流側のガスラインが汚染されてしまうことを防止できる。 The hydrogen supply system is a flow that prevents the flow of purified gas from the hydrogen purification unit to the compression unit when the detection unit detects that the hydrocarbon content in the purified gas exceeds a predetermined threshold. You may provide the prevention part. Thereby, even if it is a case where a dehydrogenation product mixes in refined gas, it can prevent that the gas line downstream from a compression part will be contaminated.
 流通防止部は、水素精製部から圧縮部に向かう精製ガスの流通を遮断する遮断部であってもよい。遮断部によって精製ガスの流通を遮断することで、圧縮部よりも下流側のガスラインが汚染されてしまうことをより確実に防止できる。 The flow prevention unit may be a blocking unit that blocks the flow of purified gas from the hydrogen purification unit toward the compression unit. By blocking the flow of the purified gas by the blocking unit, it is possible to more reliably prevent the gas line downstream of the compression unit from being contaminated.
 また、流通防止部は、水素精製部から圧縮部に向かう精製ガスの流通先を当該流通防止部よりも上流側に切り替える切替部であってもよい。切替部によって精製ガスの流通先を流通防止部の上流側に切り替えることで、圧縮部よりも下流側のガスラインが汚染されてしまうことをより確実に防止できる。 Further, the flow prevention unit may be a switching unit that switches the flow destination of the purified gas from the hydrogen purification unit to the compression unit to the upstream side of the flow prevention unit. By switching the flow destination of the purified gas to the upstream side of the flow prevention unit by the switching unit, it is possible to more reliably prevent the gas line downstream of the compression unit from being contaminated.
 本発明によれば、精製した水素の品質をその場で検査でき、水素消費装置に供給される水素の品質を常に管理できる。 According to the present invention, the quality of the purified hydrogen can be inspected on the spot, and the quality of the hydrogen supplied to the hydrogen consuming apparatus can always be managed.
図1は、本発明の第1実施形態に係る水素供給システムの一実施形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the hydrogen supply system according to the first embodiment of the present invention. 図2は、図1に示した水素供給システムに配置される品質管理部の構成の一例を示す要部ブロック図である。FIG. 2 is a principal block diagram showing an example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG. 図3は、図1に示した水素供給システムに配置される品質管理部の構成の他の例を示す要部ブロック図である。FIG. 3 is a principal block diagram showing another example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG. 図4は、本発明の第2実施形態に係る水素供給システムにおける品質管理部の構成の一例を示す要部ブロック図である。FIG. 4 is a principal block diagram showing an example of the configuration of the quality control unit in the hydrogen supply system according to the second embodiment of the present invention. 図5は、図1に示した水素供給システムに配置される品質管理部の構成の他の例を示す要部ブロック図である。FIG. 5 is a principal block diagram showing another example of the configuration of the quality control unit arranged in the hydrogen supply system shown in FIG.
 以下、図面を参照しながら、本発明に係る水素供給システムの好適な実施形態について詳細に説明する。以下の説明において、同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
Hereinafter, preferred embodiments of a hydrogen supply system according to the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]
 図1は、第1実施形態に係る水素供給システムの構成を示すブロック図である。第1実施形態に係る水素供給システム100は、有機化合物(常温で液体)を原料とするものである。なお、水素精製の過程では、原料である有機化合物(常温で液体)を脱水素した、脱水素生成物(有機化合物(常温で液体))が除去される。原料の有機化合物として、例えば、有機ハイドライドが挙げられる。有機ハイドライドは、製油所で大量に生産されている水素を芳香族炭化水素と反応させた水素化物が好適な例である。また、有機ハイドライドは、芳香族の水素化化合物に限らず、2-プロパノール(水素とアセトンが生成される)の系もある。有機ハイドライドは、ガソリンなどと同様に液体燃料としてタンクローリーなどによって水素供給システム100へ輸送することができる。本実施形態では有機ハイドライドとして、メチルシクロヘキサン(以下、MCHと称する)を用いる。その他、有機ハイドライドとしてシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、デカリン、メチルデカリン、ジメチルデカリン、エチルデカリンなど芳香物炭化水素の水素化物を適用することができる(なお、芳香族化合物は特に水素含有量の多い好適な例である)。水素供給システム100は、燃料電池自動車(FCV)や水素エンジン車に水素を供給することができる。なお、メタンを主成分とした天然ガスやプロパンを主成分としたLPG、あるいはガソリン、ナフサ、灯油、軽油といった液体炭化水素原料から水素を製造する場合にも適用可能である。 FIG. 1 is a block diagram showing the configuration of the hydrogen supply system according to the first embodiment. The hydrogen supply system 100 according to the first embodiment uses an organic compound (liquid at normal temperature) as a raw material. In the process of hydrogen purification, the dehydrogenated product (organic compound (liquid at room temperature)) obtained by dehydrogenating the organic compound (liquid at room temperature) as a raw material is removed. Examples of the raw material organic compound include organic hydride. An organic hydride is preferably a hydride obtained by reacting a large amount of hydrogen produced in a refinery with an aromatic hydrocarbon. The organic hydride is not limited to an aromatic hydride compound, but also includes 2-propanol (hydrogen and acetone are produced). The organic hydride can be transported to the hydrogen supply system 100 as a liquid fuel by a tank lorry as in the case of gasoline. In this embodiment, methylcyclohexane (hereinafter referred to as MCH) is used as the organic hydride. In addition, hydrides of aromatic hydrocarbons such as cyclohexane, dimethylcyclohexane, ethylcyclohexane, decalin, methyldecalin, dimethyldecalin, and ethyldecalin can be used as organic hydrides. This is a preferred example). The hydrogen supply system 100 can supply hydrogen to a fuel cell vehicle (FCV) or a hydrogen engine vehicle. The present invention can also be applied to the production of hydrogen from liquid hydrocarbon raw materials such as natural gas mainly composed of methane, LPG mainly composed of propane, or gasoline, naphtha, kerosene, and light oil.
 本実施形態では、水素供給システム100として、FCV10に高純度水素を供給する水素ステーションを例として説明を行う。図1に示すように、本実施形態に係る水素供給システム100は、MCHタンク1、気化器2、脱水素反応器(脱水素反応部)3、気液分離器4、トルエンタンク5、水素精製器(水素精製部)6、圧縮機(圧縮部)7、蓄圧器8、及びディスペンサ9、熱源11、冷熱源12、冷熱源13を備えている。また、水素供給システム100は、ラインL1~L9を備えている。なお、本実施形態では、原料としてMCHを採用し、水素精製の過程で除去される脱水素生成物がトルエンである場合を例として説明する。なお、実際には、トルエンのみならず、未反応のMCHと少量の副生成物及び不純物も存在するが、本実施形態中では、トルエンに混じって当該トルエンと同じ挙動を示す。従って、以下の説明において、「トルエン」と称して説明するものには、未反応のMCHや副生成物も含むものとする。また、以下の説明において、「圧力」とは「ゲージ圧」を指すものとする。 In the present embodiment, the hydrogen supply system 100 will be described using a hydrogen station that supplies high-purity hydrogen to the FCV 10 as an example. As shown in FIG. 1, the hydrogen supply system 100 according to this embodiment includes an MCH tank 1, a vaporizer 2, a dehydrogenation reactor (dehydrogenation reaction unit) 3, a gas-liquid separator 4, a toluene tank 5, and hydrogen purification. The apparatus (hydrogen refining part) 6, the compressor (compression part) 7, the pressure accumulator 8, the dispenser 9, the heat source 11, the cold heat source 12, and the cold heat source 13 are provided. Further, the hydrogen supply system 100 includes lines L1 to L9. In the present embodiment, an example will be described in which MCH is employed as a raw material, and the dehydrogenation product removed in the process of hydrogen purification is toluene. In practice, not only toluene but also unreacted MCH and a small amount of by-products and impurities are present, but in this embodiment, the same behavior as toluene is exhibited when mixed with toluene. Therefore, in the following description, what is referred to as “toluene” includes unreacted MCH and by-products. In the following description, “pressure” refers to “gauge pressure”.
 ラインL1~L9は、MCH、トルエン、水素含有ガス、オフガス、または高純度水素が通過する流路である。ラインL1は、MCHタンク1と気化器2とを接続する。ラインL2は、気化器2と脱水素反応器3とを接続する。ラインL3は、脱水素反応器3と気液分離器4とを接続する。ラインL4は、気液分離器4と水素精製器6とを接続する。ラインL5は、気液分離器4とトルエンタンク5とを接続する。ラインL6は、水素精製器6と圧縮機7とを接続する。ラインL7は、水素精製器6と気化器2とを接続する。ラインL7は、水素精製器6から排出されるオフガスを脱水素反応器3よりも上流側へ還流させるリサイクルラインとして機能する。以下の説明においては、ラインL7を「リサイクルラインL7」と称して説明する。ラインL8は、圧縮機7と蓄圧器8とを接続する。ラインL9は、蓄圧器8とディスペンサ9とを接続する。 Lines L1 to L9 are flow paths through which MCH, toluene, hydrogen-containing gas, off-gas, or high-purity hydrogen passes. Line L1 connects MCH tank 1 and vaporizer 2. Line L2 connects vaporizer 2 and dehydrogenation reactor 3. The line L3 connects the dehydrogenation reactor 3 and the gas-liquid separator 4. The line L4 connects the gas-liquid separator 4 and the hydrogen purifier 6. The line L5 connects the gas / liquid separator 4 and the toluene tank 5. The line L6 connects the hydrogen purifier 6 and the compressor 7. The line L7 connects the hydrogen purifier 6 and the vaporizer 2. The line L7 functions as a recycle line for refluxing off-gas discharged from the hydrogen purifier 6 to the upstream side of the dehydrogenation reactor 3. In the following description, the line L7 will be referred to as “recycle line L7”. The line L8 connects the compressor 7 and the pressure accumulator 8. Line L9 connects pressure accumulator 8 and dispenser 9.
 MCHタンク1は、原料となるMCHを貯留するタンクである。外部からタンクローリーなどで輸送されたMCHは、MCHタンク1にて貯留される。MCHタンク1に貯留されているMCHは、圧縮機(不図示)によってラインL1を介して気化器2へ供給される。 The MCH tank 1 is a tank that stores MCH as a raw material. MCH transported from outside by a tank lorry or the like is stored in the MCH tank 1. MCH stored in the MCH tank 1 is supplied to the vaporizer 2 via a line L1 by a compressor (not shown).
 気化器2は、インジェクタなどを介してMCHタンク1から供給されたMCHを気化する機器である。気化されたMCHは、リサイクルラインL7を介して水素精製器6から供給されたオフガスと併せて、ラインL2を介して脱水素反応器3へ供給される。 The vaporizer 2 is a device that vaporizes the MCH supplied from the MCH tank 1 via an injector or the like. The vaporized MCH is supplied to the dehydrogenation reactor 3 through the line L2 together with the off gas supplied from the hydrogen purifier 6 through the recycle line L7.
 脱水素反応器3は、MCHを脱水素反応させることによって水素を得る機器である。すなわち、脱水素反応器3は、脱水素触媒を用いた脱水素反応によってMCHから水素を取り出す機器である。脱水素触媒は、特に制限されないが、例えば、白金触媒、パラジウム触媒及びニッケル触媒から選ばれる。これら触媒は、アルミナ、シリカ及びチタニア等の担体上に担持されていてもよい。有機ハイドライドの反応は可逆反応であり、反応条件(温度、圧力)によって反応の方向が変わる(化学平衡の制約を受ける)。一方、脱水素反応は、常に吸熱反応で分子数が増える反応である。従って、高温、低圧の条件が有利である。脱水素反応は吸熱反応であるため、脱水素反応器3は熱源11から熱媒体を介して熱を供給される。脱水素反応器3は、脱水素触媒中を流れるMCHと熱源11からの熱媒体との間で熱交換可能な機構を有している。熱源11は、脱水素反応器3を加熱することができるものであればどのようなものを採用してもよい。例えば、熱源11は、脱水素反応器3を直接加熱するものであってもよく、例えば気化器2やラインL1,L2を加熱することによって脱水素反応器3に供給されるMCHを加熱してもよい。また、熱源11は、脱水素反応器3と、脱水素反応器3へ供給されるMCHの両方を加熱してもよい。例えば、熱源11としてバーナーやエンジンを採用することができる。脱水素反応器3で取り出された水素含有ガスは、ラインL3を介して気液分離器4へ供給される。ラインL3の水素含有ガスは、液体であるトルエンを混合物として含んだ状態で、気液分離器4へ供給される。 The dehydrogenation reactor 3 is a device that obtains hydrogen by dehydrogenating MCH. That is, the dehydrogenation reactor 3 is a device that extracts hydrogen from MCH by a dehydrogenation reaction using a dehydrogenation catalyst. The dehydrogenation catalyst is not particularly limited, and is selected from, for example, a platinum catalyst, a palladium catalyst, and a nickel catalyst. These catalysts may be supported on a carrier such as alumina, silica and titania. The organic hydride reaction is a reversible reaction, and the direction of the reaction changes depending on the reaction conditions (temperature, pressure) (restricted by chemical equilibrium). On the other hand, the dehydrogenation reaction is a reaction in which the number of molecules is always increased by an endothermic reaction. Therefore, high temperature and low pressure conditions are advantageous. Since the dehydrogenation reaction is an endothermic reaction, the dehydrogenation reactor 3 is supplied with heat from the heat source 11 via a heat medium. The dehydrogenation reactor 3 has a mechanism capable of exchanging heat between the MCH flowing in the dehydrogenation catalyst and the heat medium from the heat source 11. Any heat source 11 may be adopted as long as it can heat the dehydrogenation reactor 3. For example, the heat source 11 may directly heat the dehydrogenation reactor 3. For example, the MCH supplied to the dehydrogenation reactor 3 is heated by heating the vaporizer 2 or the lines L1 and L2. Also good. Further, the heat source 11 may heat both the dehydrogenation reactor 3 and the MCH supplied to the dehydrogenation reactor 3. For example, a burner or an engine can be adopted as the heat source 11. The hydrogen-containing gas taken out by the dehydrogenation reactor 3 is supplied to the gas-liquid separator 4 via the line L3. The hydrogen-containing gas in the line L3 is supplied to the gas-liquid separator 4 in a state where the liquid toluene is contained as a mixture.
 気液分離器4は、水素含有ガスからトルエンを分離するタンクである。気液分離器4は、混合物としてトルエンを含む水素含有ガスを貯留することによって、気体である水素と液体であるトルエンとを気液分離する。気液分離器4は、冷熱源12からの冷却媒体によって冷却される。気液分離器4は、気液分離器4中の水素含有ガスと冷熱源12からの冷却媒体との間で熱交換可能な機構を有している。冷熱源12は気液分離器4を冷却することができるものであればどのようなものを採用してもよい。例えば、冷熱源12としてチラー等の冷却器を採用することができる。気液分離器4で分離されたトルエンは、ラインL5を介してトルエンタンク5へ供給される。気液分離器4で分離された水素含有ガスは、ラインL4を介して水素精製器6へ供給される。なお、水素含有ガスを冷やすと当該ガスの一部(トルエン)は液化し、気液分離器4によって、液化しないガス(水素)と分離することができる。ガスを低温とした方が、分離の効率は良くなり、圧力を上げると更に、トルエンの液化が進む。 The gas-liquid separator 4 is a tank that separates toluene from the hydrogen-containing gas. The gas-liquid separator 4 gas-liquid separates hydrogen as a gas and toluene as a liquid by storing a hydrogen-containing gas containing toluene as a mixture. The gas-liquid separator 4 is cooled by a cooling medium from the cold heat source 12. The gas-liquid separator 4 has a mechanism capable of exchanging heat between the hydrogen-containing gas in the gas-liquid separator 4 and the cooling medium from the cold heat source 12. As long as the cold-heat source 12 can cool the gas-liquid separator 4, what kind of thing may be employ | adopted. For example, a cooler such as a chiller can be employed as the cold heat source 12. The toluene separated by the gas-liquid separator 4 is supplied to the toluene tank 5 via the line L5. The hydrogen-containing gas separated by the gas-liquid separator 4 is supplied to the hydrogen purifier 6 via the line L4. When the hydrogen-containing gas is cooled, a part of the gas (toluene) is liquefied and can be separated from the gas (hydrogen) that is not liquefied by the gas-liquid separator 4. The efficiency of the separation is improved when the gas is at a low temperature, and the liquefaction of toluene further proceeds when the pressure is increased.
 トルエンタンク5は、気液分離器4で分離された液体のトルエンを貯留するタンクである。トルエンタンク5に貯留されたトルエンは、回収して利用することが可能である。 The toluene tank 5 is a tank that stores liquid toluene separated by the gas-liquid separator 4. The toluene stored in the toluene tank 5 can be recovered and used.
 水素精製器6は、脱水素反応器3で得られると共に気液分離器4で気液分離された水素含有ガスから、脱水素生成物(本実施形態ではトルエン)を除去する。これによって、水素精製器6は、当該水素含有ガスを精製して高純度水素(精製ガス)を得る。得られた高純度水素は、ラインL6へ供給され、水素及び脱水素生成物を含むオフガスは、リサイクルラインL7へ排出される。リサイクルラインL7へ供給されたオフガスは、図示されない圧縮機を介して気化器2へ供給され、ラインL2を介して脱水素反応器3へ供給される。 The hydrogen purifier 6 removes the dehydrogenation product (toluene in this embodiment) from the hydrogen-containing gas obtained in the dehydrogenation reactor 3 and gas-liquid separated in the gas-liquid separator 4. Thereby, the hydrogen purifier 6 purifies the hydrogen-containing gas to obtain high-purity hydrogen (purified gas). The obtained high-purity hydrogen is supplied to the line L6, and the off gas containing hydrogen and a dehydrogenation product is discharged to the recycle line L7. The off gas supplied to the recycle line L7 is supplied to the vaporizer 2 via a compressor (not shown), and is supplied to the dehydrogenation reactor 3 via the line L2.
 水素精製器6は、採用する水素精製方法によって異なるが、具体的には、水素精製方法として膜分離を用いる場合には、水素分離膜を備える水素分離装置であり、PSA(Pressure swing adsorption)法又はTSA(Temperature swing adsorption)法を用いる場合には、不純物を吸着する吸着材を格納する吸着塔を複数備えた吸着除去装置である。 The hydrogen purifier 6 differs depending on the hydrogen purification method employed. Specifically, when membrane separation is used as the hydrogen purification method, the hydrogen purifier 6 is a hydrogen separation apparatus equipped with a hydrogen separation membrane, and is a PSA (Pressure Swing Adsorption) method. Or when using TSA (Temperature swing adsorption) method, it is an adsorption removal apparatus provided with two or more adsorption towers which store the adsorbent which adsorb | sucks an impurity.
 水素精製器6が膜分離を用いる場合について説明する。この方法では、所定温度に加熱された膜に、圧縮機(不図示)によって所定圧力に加圧された水素含有ガスを透過させることによって、脱水素生成物を除去し、高純度の水素ガス(精製ガス)を得ることができる。膜を透過した透過ガスの圧力は、膜を透過する前の圧力と比べて低下する。一方、膜を透過しなかった非透過ガスの圧力は、膜を透過する前の所定圧力と略同一である。このとき、膜を透過しなかった非透過ガスが、水素精製器6のオフガスに該当する。 The case where the hydrogen purifier 6 uses membrane separation will be described. In this method, a hydrogen-containing gas pressurized to a predetermined pressure by a compressor (not shown) is permeated through a film heated to a predetermined temperature to remove dehydrogenated products, and high-purity hydrogen gas ( Purified gas). The pressure of the permeated gas that has permeated the membrane is lower than the pressure before permeating the membrane. On the other hand, the pressure of the non-permeating gas that has not permeated the membrane is substantially the same as the predetermined pressure before permeating the membrane. At this time, the non-permeating gas that has not permeated the membrane corresponds to the off-gas of the hydrogen purifier 6.
 水素精製器6に適用される膜の種類は特に限定されず、多孔質膜(分子流によって分離するもの、表面拡散流によって分離するもの、毛管凝縮作用によって分離するもの、分子ふるい作用によって分離するものなど)や、非多孔質膜を適用することができる。水素精製器6に適用される膜として、例えば、金属膜(PbAg系、PdCu系、Nb系など)、ゼオライト膜、無機膜(シリカ膜、カーボン膜など)、高分子膜(ポリイミド膜など)を採用することができる。 The type of membrane applied to the hydrogen purifier 6 is not particularly limited, and is a porous membrane (separated by molecular flow, separated by surface diffusion flow, separated by capillary condensation, or separated by molecular sieving. Etc.) and non-porous membranes can be applied. Examples of membranes applied to the hydrogen purifier 6 include metal membranes (PbAg, PdCu, Nb, etc.), zeolite membranes, inorganic membranes (silica membrane, carbon membrane, etc.), polymer membranes (polyimide membrane, etc.). Can be adopted.
 膜分離による水素精製器6の水素回収率は、70~90%である。水素精製器6で用いられる膜の「水素/トルエン」の分離係数は、1000以上であることが好ましく、10000以上であることがより好ましい。 The hydrogen recovery rate of the hydrogen purifier 6 by membrane separation is 70 to 90%. The separation factor of “hydrogen / toluene” of the membrane used in the hydrogen purifier 6 is preferably 1000 or more, and more preferably 10,000 or more.
 水素精製器6の除去方法として、PSA法を採用する場合について説明する。PSA法で用いられる吸着材は、高圧下では水素含有ガスに含まれるトルエンを吸着し、低圧下では吸着したトルエンを脱着する性質を持つ。PSA法は、吸着材のこのような性質を利用するものである。すなわち、吸着塔内を高圧にすることにより、水素含有ガスに含まれるトルエンを吸着材に吸着させて除去し、高純度の水素ガス(精製ガス)を得る。吸着により吸着塔内の吸着材の吸着機能が低下した場合には、吸着塔内を低圧にすることにより、吸着材に吸着したトルエンを脱着し、併せて除去した精製ガスの一部を逆流させることにより当該脱着されたトルエンを吸着塔内から除去することで、吸着材の吸着機能を再生する(このとき、トルエンを吸着塔内から除去することで排出される少なくとも水素とトルエンを含む水素含有ガスが、水素精製器6からのオフガスに該当する)。 The case where the PSA method is adopted as a method for removing the hydrogen purifier 6 will be described. The adsorbent used in the PSA method has the property of adsorbing toluene contained in the hydrogen-containing gas under high pressure and desorbing the adsorbed toluene under low pressure. The PSA method utilizes such properties of the adsorbent. That is, by setting the inside of the adsorption tower at a high pressure, toluene contained in the hydrogen-containing gas is adsorbed and removed by the adsorbent to obtain high-purity hydrogen gas (purified gas). If the adsorption function of the adsorbent in the adsorption tower decreases due to adsorption, the toluene adsorbed on the adsorbent is desorbed and a part of the purified gas removed is caused to flow backward by lowering the pressure in the adsorption tower. By removing the desorbed toluene from the inside of the adsorption tower, the adsorption function of the adsorbent is regenerated (at this time, the hydrogen containing at least hydrogen and toluene discharged by removing toluene from the inside of the adsorption tower) The gas corresponds to the off-gas from the hydrogen purifier 6).
 吸着塔内の圧力の調整方法は特に限定されないが、例えば、吸着塔毎に備えられたバルブを閉めるなどの操作により、吸着塔毎に調節することができる。従って、吸着材の吸着機能が低下した吸着塔については、減圧により吸着材を再生させるとともにオフガスを排出する。一方、残りの吸着塔については、加圧により水素含有ガスに含まれるトルエンを吸着材に吸着させて除去するとともに高純度水素を得る。再生中の吸着塔についての吸着材再生が完了したら、当該吸着塔については、加圧によりトルエンの除去を開始するとともに高純度水素を得る。一方、トルエンの除去を行っていた吸着塔の全部または一部については、減圧により吸着材の再生を開始するとともにオフガスを排出する。このように、再生を行う吸着塔とトルエンの除去を行う吸着塔の切り替えを繰り返し行うことで、水素供給システム100全体として、連続的に高純度水素とオフガスとを得ることができる。水素精製器6がPSA法を採用する場合の水素回収率は、吸着塔の数によるが、約60~90%である。 The method for adjusting the pressure in the adsorption tower is not particularly limited, and can be adjusted for each adsorption tower by, for example, closing a valve provided for each adsorption tower. Therefore, for the adsorption tower in which the adsorption function of the adsorbent is lowered, the adsorbent is regenerated by reducing the pressure and off-gas is discharged. On the other hand, with respect to the remaining adsorption tower, toluene contained in the hydrogen-containing gas is removed by being adsorbed to the adsorbent by pressurization and high-purity hydrogen is obtained. When the adsorbent regeneration for the adsorption tower being regenerated is completed, the adsorption tower starts to remove toluene by pressurization and obtains high-purity hydrogen. On the other hand, for all or part of the adsorption tower from which toluene has been removed, regeneration of the adsorbent is started by reducing the pressure and off-gas is discharged. Thus, by repeatedly switching the adsorption tower for regeneration and the adsorption tower for removing toluene, the hydrogen supply system 100 as a whole can obtain high-purity hydrogen and off-gas continuously. The hydrogen recovery rate when the hydrogen purifier 6 employs the PSA method is approximately 60 to 90%, depending on the number of adsorption towers.
 水素精製器6の除去方法として、TSA法を採用する場合について説明する。TSA法で用いられる吸着材は、常温下では水素含有ガスに含まれるトルエンを吸着し、高温下では吸着したトルエンを脱着する性質を持つ。TSA法は、吸着材のこのような性質を利用するものである。すなわち、吸着塔内を常温にすることにより、水素含有ガスに含まれるトルエンを吸着材に吸着させて除去し、高純度の水素ガス(高純度水素)を得る。吸着により吸着塔内の吸着材の吸着機能が低下した場合には、吸着塔内を高温にすることにより、吸着材に吸着したトルエンを脱着し、併せて除去した高純度水素の一部を逆流させることにより当該脱着されたトルエンを吸着塔内から除去することで、吸着材の吸着機能を再生する(このとき、トルエンを吸着塔内から除去することで排出される少なくとも水素とトルエンを含む水素含有ガスが、水素精製器6からのオフガスに該当する)。 The case where the TSA method is adopted as a method for removing the hydrogen purifier 6 will be described. The adsorbent used in the TSA method has the property of adsorbing toluene contained in the hydrogen-containing gas at room temperature and desorbing the adsorbed toluene at high temperature. The TSA method utilizes such properties of the adsorbent. That is, by setting the inside of the adsorption tower to room temperature, toluene contained in the hydrogen-containing gas is adsorbed and removed by the adsorbent to obtain high-purity hydrogen gas (high-purity hydrogen). If the adsorption function of the adsorbent in the adsorption tower is reduced due to adsorption, the toluene adsorbed on the adsorbent is desorbed by raising the temperature in the adsorption tower, and a part of the high-purity hydrogen that has been removed is backflowed. By removing the desorbed toluene from the adsorption tower, the adsorption function of the adsorbent is regenerated (at this time, at least hydrogen and hydrogen containing toluene discharged by removing toluene from the adsorption tower) The contained gas corresponds to the off-gas from the hydrogen purifier 6).
 吸着塔内の温度の調整方法は特に限定されないが、例えば、吸着塔毎に備えられたヒータのON/OFFを切り替えるなどの操作により、吸着塔毎に調節することができる。従って、吸着材の吸着機能が低下した吸着塔については、高温にすることにより吸着材を再生させるとともにオフガスを排出する。一方、残りの吸着塔については、常温に保つことにより水素含有ガスに含まれるトルエンを吸着材に吸着させて除去するとともに高純度水素を得る。再生中の吸着塔についての吸着材再生が完了したら、当該吸着塔については、吸着塔内を常温に保つことによりトルエンの除去を開始するとともに高純度水素を得る。一方、トルエンの除去を行っていた吸着塔の全部または一部については、吸着塔内を高温にすることにより吸着材の再生を開始するとともにオフガスを排出する。このように、再生を行う吸着塔とトルエンの除去を行う吸着塔の切り替えを繰り返し行うことで、水素供給システム100全体として、連続的に高純度水素とオフガスとを得ることができる。水素精製器6がTSA法を採用する場合の水素回収率は、吸着塔の数によるが、約60~90%である。 The method for adjusting the temperature in the adsorption tower is not particularly limited, but can be adjusted for each adsorption tower by, for example, switching ON / OFF of the heater provided for each adsorption tower. Therefore, for the adsorption tower in which the adsorption function of the adsorbent is lowered, the adsorbent is regenerated and the off-gas is discharged by raising the temperature. On the other hand, with respect to the remaining adsorption towers, the toluene contained in the hydrogen-containing gas is removed by adsorbing the adsorbent while maintaining the room temperature, and high-purity hydrogen is obtained. When the adsorbent regeneration for the adsorption tower being regenerated is completed, the removal of toluene is started and high purity hydrogen is obtained for the adsorption tower by keeping the inside of the adsorption tower at room temperature. On the other hand, for all or part of the adsorption tower from which toluene has been removed, regeneration of the adsorbent is started and the off-gas is discharged by raising the temperature in the adsorption tower. Thus, by repeatedly switching the adsorption tower for regeneration and the adsorption tower for removing toluene, the hydrogen supply system 100 as a whole can obtain high-purity hydrogen and off-gas continuously. The hydrogen recovery rate when the hydrogen purifier 6 adopts the TSA method is about 60 to 90%, depending on the number of adsorption towers.
 圧縮機7は、水素精製器6で得られた高純度水素を高圧状態とする。圧縮機7は、例えば、20~90MPaの圧力で高純度水素を高圧状態とする。圧縮機7は、高純度水素をFCV(水素消費装置)10へ供給可能とするために高圧状態にした上で、ラインL8を介して蓄圧器8へ供給する。なお、目的とする圧力に応じて、圧縮を行う圧縮ユニットを複数備え、段階的に圧縮を行う構成としてもよい。 The compressor 7 puts the high purity hydrogen obtained by the hydrogen purifier 6 into a high pressure state. The compressor 7 brings high-purity hydrogen into a high-pressure state at a pressure of 20 to 90 MPa, for example. The compressor 7 is in a high pressure state so that high purity hydrogen can be supplied to the FCV (hydrogen consuming apparatus) 10 and then supplied to the pressure accumulator 8 via the line L8. In addition, according to the target pressure, it is good also as a structure which provides multiple compression units which compress, and performs compression in steps.
 蓄圧器8は、高純度水素を高圧状態のまま蓄える。蓄圧器8で蓄えられた高純度水素は、ラインL9を介して、ディスペンサ9によってFCV10に供給される。蓄圧器8により、水素供給システム100内にある程度の量の高純度水素を蓄えておくことができるため、FCV10へ水素を安定供給することが可能となる。ただし、蓄圧器8は、水素供給を行うために必須ではないため、省略してもよい。ラインL9を通過する高純度水素は、冷熱源13からの冷却媒体によって例えば-40℃程度に冷却される。ラインL9は、当該ラインL9を流れる高純度水素と冷熱源13からの熱媒体との間で熱交換可能な機構を有している。冷熱源13はラインL9を流れる高純度水素を冷却することができるものであればどのようなものを採用してもよい。例えば、冷熱源13としてチラー等の冷却器を採用することができる。 The pressure accumulator 8 stores high purity hydrogen in a high pressure state. The high purity hydrogen stored in the pressure accumulator 8 is supplied to the FCV 10 by the dispenser 9 via the line L9. Since the pressure accumulator 8 can store a certain amount of high-purity hydrogen in the hydrogen supply system 100, hydrogen can be stably supplied to the FCV 10. However, since the pressure accumulator 8 is not essential for supplying hydrogen, it may be omitted. The high purity hydrogen passing through the line L9 is cooled to, for example, about −40 ° C. by the cooling medium from the cold heat source 13. The line L9 has a mechanism capable of exchanging heat between the high purity hydrogen flowing through the line L9 and the heat medium from the cold heat source 13. Any cooling source 13 may be used as long as it can cool the high purity hydrogen flowing through the line L9. For example, a cooler such as a chiller can be employed as the cold heat source 13.
 続いて、上述した水素供給システム100における高純度水素の品質管理機構について説明する。 Subsequently, the quality control mechanism of high purity hydrogen in the hydrogen supply system 100 described above will be described.
 水素供給システム100では、上述したように、水素精製器6において水素含有ガスから脱水素生成物であるトルエンを除去して高純度水素が精製される。しかしながら、精製された高純度水素に僅かながらトルエンが残存する場合があり、トルエンの残存量が所定値を超えてしまうと、製品としてFCV10に供給される水素の品質が低下してしまうことが考えられる。そこで、水素供給システム100は、精製した高純度水素をその場でFCV10に供給するにあたり、その場で高純度水素の品質を検査する品質管理部21を備えている。 In the hydrogen supply system 100, as described above, high purity hydrogen is purified by removing toluene, which is a dehydrogenated product, from the hydrogen-containing gas in the hydrogen purifier 6. However, a small amount of toluene may remain in the purified high-purity hydrogen, and if the remaining amount of toluene exceeds a predetermined value, the quality of hydrogen supplied to the FCV 10 as a product may be deteriorated. It is done. Therefore, the hydrogen supply system 100 includes a quality control unit 21 that inspects the quality of the high purity hydrogen on the spot when supplying the purified high purity hydrogen to the FCV 10 on the spot.
 品質管理部21は、図2に示すように、検出部22、制御部23、及び流通防止部24を備えている。検出部22は、水素精製器6で得られた高純度水素に含まれる成分を検出する。図2に示す例では、検出部22は、ガスクロマトグラフによって構成され、高純度水素中の炭化水素の含有量を検出する。検出部22には、水素精製器6から圧縮機7に高純度水素を流通させるラインL6から分岐するラインL10を介し、少量(例えば数cc)の検査用の高純度水素が導入される。ラインL6を流れる高純度水素の圧力(圧縮機7で高圧状態とされる前の圧力)は、例えば0.6MPa程度であるが、ラインL10に設けた減圧弁25によって検出部22に導入される高純度水素の圧力を例えば0.01MPa程度に減圧してもよい。検出部22は、検出の結果、高純度水素中の炭化水素の含有量が予め設定された閾値を超えている場合に、制御部23に結果信号を出力する。 As shown in FIG. 2, the quality management unit 21 includes a detection unit 22, a control unit 23, and a distribution prevention unit 24. The detection unit 22 detects components contained in the high purity hydrogen obtained by the hydrogen purifier 6. In the example shown in FIG. 2, the detection part 22 is comprised by the gas chromatograph, and detects content of the hydrocarbon in high purity hydrogen. A small amount (for example, several cc) of high-purity hydrogen for inspection is introduced into the detection unit 22 via a line L10 branched from a line L6 through which high-purity hydrogen flows from the hydrogen purifier 6 to the compressor 7. The pressure of the high-purity hydrogen flowing through the line L6 (pressure before being brought to a high pressure state by the compressor 7) is, for example, about 0.6 MPa, but is introduced into the detection unit 22 by the pressure reducing valve 25 provided in the line L10. The pressure of high purity hydrogen may be reduced to about 0.01 MPa, for example. As a result of detection, the detection unit 22 outputs a result signal to the control unit 23 when the hydrocarbon content in the high-purity hydrogen exceeds a preset threshold value.
 検出部22としては、バリア放電イオン化検出器(BID)を用いてもよく、水素炎イオン検出器(FID)を用いてもよい。バリア放電イオン化検出器を用いる場合は、炭化水素の検出と同時に水分の検出を行うことも可能である。また、検出部22は、バッチ式のガスクロマトグラフを用いて検出を行ってもよく、オンライン式のガスクロマトグラフを用いて検出を行ってもよい。オンライン式のガスクロマトグラフを用いる場合、バッチ式に比べて検査用の高純度水素中に異物が混入することを防止でき、検査精度をより高めることができる。検出のタイミングは、任意のタイミングであってよく、例えば1時間に1回程度に設定することができる。ガスクロマトグラフィーに用いるキャリアガスに特に制限はなく、一般的なヘリウム、アルゴン、窒素などの不活性ガスを用いることができる。 As the detection unit 22, a barrier discharge ionization detector (BID) may be used, or a flame ion detector (FID) may be used. When a barrier discharge ionization detector is used, it is possible to detect moisture simultaneously with detection of hydrocarbons. Moreover, the detection part 22 may detect using a batch type gas chromatograph, and may detect using an online type gas chromatograph. When an online gas chromatograph is used, it is possible to prevent foreign matters from being mixed in high-purity hydrogen for inspection as compared with the batch type, and the inspection accuracy can be further increased. The detection timing may be any timing, and can be set to about once per hour, for example. There is no restriction | limiting in particular in the carrier gas used for gas chromatography, General inert gas, such as helium, argon, and nitrogen, can be used.
 制御部23は、検出部22の検出結果に応じて流通防止部24を制御する。本実施形態において、流通防止部24は、水素精製器6から圧縮機7に向かう高純度水素の流通を遮断する遮断部26として構成されている。遮断部26は、例えばラインL6に設けられた電磁弁を備えている。制御部23は、高純度水素中の炭化水素の含有量が予め設定された所定値を超えている旨を示す結果信号を検出部22から受信した場合に電磁弁を閉鎖し、ラインL6における高純度水素の流通を停止させる。 The control unit 23 controls the flow prevention unit 24 according to the detection result of the detection unit 22. In the present embodiment, the flow preventing unit 24 is configured as a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. The blocking unit 26 includes, for example, an electromagnetic valve provided in the line L6. When the control unit 23 receives a result signal indicating that the hydrocarbon content in the high-purity hydrogen exceeds a predetermined value set in advance from the detection unit 22, the control unit 23 closes the solenoid valve, Stop the flow of pure hydrogen.
 以上説明したように、この水素供給システム100は、水素精製器6から圧縮機7に向かう高純度水素に含まれる炭化水素の含有量を検出する検出部22を備えている。これにより、水素精製器6で精製された高純度水素の品質をその場で検査することができ、FCV10に供給される水素の品質を常に管理することが可能となる。また、この水素供給システム100では、圧縮機7で圧縮される前の比較的低圧の高純度水素を検査の対象としている。したがって、例えばディスペンサ9から放出される高純度水素を検査の対象とする場合と異なり、検査にあたって高純度水素の極端な減圧を行う必要はなく、簡便に水素の品質を検査できる。その一方、水素供給システム100においては、水素精製器6以降の構成要素において高純度水素に脱水素生成物が導入・混入することはないため、圧縮機7で圧縮される前の高純度水素を検査の対象とすることでディスペンサ9から放出される高純度水素を検査の対象とする場合と同等の品質管理を行うことができる。 As described above, the hydrogen supply system 100 includes the detection unit 22 that detects the content of hydrocarbons contained in high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. Thereby, the quality of the high purity hydrogen purified by the hydrogen purifier 6 can be inspected on the spot, and the quality of the hydrogen supplied to the FCV 10 can always be managed. Further, in the hydrogen supply system 100, a relatively low-pressure high-purity hydrogen before being compressed by the compressor 7 is an inspection target. Therefore, unlike the case where, for example, high-purity hydrogen released from the dispenser 9 is an object to be inspected, it is not necessary to perform an extreme pressure reduction of the high-purity hydrogen in the inspection, and the quality of hydrogen can be easily inspected. On the other hand, in the hydrogen supply system 100, the dehydrogenation product is not introduced and mixed into the high purity hydrogen in the components after the hydrogen purifier 6, so that the high purity hydrogen before being compressed by the compressor 7 is removed. By making it a subject of inspection, quality control equivalent to the case where high purity hydrogen released from the dispenser 9 is the subject of inspection can be performed.
 また、水素供給システム100は、検出部22によって高純度水素に含まれる炭化水素の含有量が所定の閾値を超えていることが検出された場合に、水素精製器6から圧縮機7への高純度水素の流通を防止する流通防止部24を備えている。本実施形態では、流通防止部24は、水素精製器6から圧縮機7に向かう高純度水素の流通を遮断する遮断部26によって構成されている。このように、遮断部26によって高純度水素の流通を遮断することで、高純度水素に閾値を超えるトルエンが混入した場合であっても、圧縮機7よりも下流側のガスラインが汚染されてしまうことを防止できる。 Further, the hydrogen supply system 100 is configured such that when the detection unit 22 detects that the content of hydrocarbons included in the high-purity hydrogen exceeds a predetermined threshold, the hydrogen supply system 100 supplies the high-pressure hydrogen from the hydrogen purifier 6 to the compressor 7. A flow prevention unit 24 for preventing the flow of pure hydrogen is provided. In the present embodiment, the flow preventing unit 24 is configured by a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. In this way, by blocking the flow of the high purity hydrogen by the blocking unit 26, even if toluene exceeding the threshold is mixed in the high purity hydrogen, the gas line on the downstream side of the compressor 7 is contaminated. Can be prevented.
 流通防止部24は、図3に示すように、遮断部26に代えて、水素精製器6から圧縮機7に向かう高純度水素の流通先を流通防止部24よりも上流側に切り替える切替部27を備えていてもよい。この場合、制御部23は、高純度水素中の炭化水素の含有量が予め設定された所定値を超えている旨を示す結果信号を検出部22から受信した場合に切替部27を制御し、高純度水素の流通経路をラインL6からバイパスラインBLに切り替える。バイパスラインBLの接続先は、気液分離器4と水素精製器6とを接続するラインL4であってもよく、水素精製器6と気化器2とを接続するラインL7であってもよい。このような構成においても、切替部27によって高純度水素の流通先が流通防止部24よりも上流側に切り替えられることで、高純度水素に閾値を超えるトルエンが混入した場合であっても、圧縮機7よりも下流側のガスラインが汚染されてしまうことを防止できる。
[第2実施形態]
As shown in FIG. 3, the flow prevention unit 24 replaces the blocking unit 26 and switches the high-purity hydrogen flow destination from the hydrogen purifier 6 to the compressor 7 to the upstream side of the flow prevention unit 24. May be provided. In this case, the control unit 23 controls the switching unit 27 when a result signal indicating that the content of hydrocarbons in the high purity hydrogen exceeds a predetermined value set in advance is received from the detection unit 22. The high purity hydrogen flow path is switched from the line L6 to the bypass line BL. The connection destination of the bypass line BL may be the line L4 that connects the gas-liquid separator 4 and the hydrogen purifier 6, or the line L7 that connects the hydrogen purifier 6 and the vaporizer 2. Even in such a configuration, the switching unit 27 switches the distribution destination of the high purity hydrogen to the upstream side of the distribution prevention unit 24, so that even if toluene exceeding the threshold is mixed in the high purity hydrogen, the compression is performed. It is possible to prevent the gas line downstream from the machine 7 from being contaminated.
[Second Embodiment]
 図4は、第2実施形態に係る水素供給システムにおける品質管理部の構成の一例を示す要部ブロック図である。第2実施形態に係る水素供給システム200では、品質管理部31において、ガスクロマトグラフに代えて、近赤外光又は紫外光を用いたガス分析計によってオンラインの検出部32を構成している点で第1実施形態と異なっている。 FIG. 4 is a principal block diagram showing an example of the configuration of the quality control unit in the hydrogen supply system according to the second embodiment. In the hydrogen supply system 200 according to the second embodiment, in the quality control unit 31, the online detection unit 32 is configured by a gas analyzer using near infrared light or ultraviolet light instead of the gas chromatograph. This is different from the first embodiment.
 より具体的には、図4に示すように、検出部32には、水素精製器6から圧縮機7に高純度水素を流通させるラインL6から分岐するラインL10を介し、少量(例えば数cc)の検査用の高純度水素が導入される。検出部32で検査を終えた高純度水素は、ラインL11によって再びラインL6に戻してもよい。ガス分析計は、例えば検査用の高純度水素が流通するガスセルと、基準用の水素が流通するガスセルと、ガスセルの一端側に配置された発光器と、ガスセルの他端側に配置された検出器とを備え、検出器で検出された近赤外光又は紫外光の吸収スペクトルに基づいて、検査用の高純度水素中の炭化水素の含有量をリアルタイムで検出する。ガス分析計では、炭化水素の検出と同時に水分の検出を行うことも可能である。検出部32は、検出の結果、高純度水素中の炭化水素の含有量が予め設定された閾値を超えている場合に、制御部23に結果信号を出力する。なお、検出部32としてガス分析計を用いる場合には、ラインL10に減圧弁25(図2参照)を設ける必要はなく、ラインL6を流通する高純度水素の圧力のまま検査用の高純度水素を検出部32に導入することができる。 More specifically, as shown in FIG. 4, the detection unit 32 has a small amount (for example, several cc) via a line L10 branched from a line L6 through which high-purity hydrogen flows from the hydrogen purifier 6 to the compressor 7. High-purity hydrogen for inspection is introduced. The high-purity hydrogen that has been inspected by the detection unit 32 may be returned to the line L6 by the line L11. The gas analyzer is, for example, a gas cell through which high-purity hydrogen for inspection flows, a gas cell through which hydrogen for reference flows, a light emitter disposed at one end of the gas cell, and a detection disposed at the other end of the gas cell. And detecting the content of hydrocarbons in high-purity hydrogen for inspection in real time based on the absorption spectrum of near-infrared light or ultraviolet light detected by the detector. In the gas analyzer, it is also possible to detect moisture simultaneously with detection of hydrocarbons. As a result of detection, the detection unit 32 outputs a result signal to the control unit 23 when the hydrocarbon content in the high-purity hydrogen exceeds a preset threshold value. When a gas analyzer is used as the detection unit 32, it is not necessary to provide the pressure reducing valve 25 (see FIG. 2) in the line L10, and the high-purity hydrogen for inspection remains at the pressure of the high-purity hydrogen flowing through the line L6. Can be introduced into the detector 32.
 制御部23及び流通防止部24の機能は、第1実施形態と同様である。本実施形態において、流通防止部24は、水素精製器6から圧縮機7に向かう高純度水素の流通を遮断する遮断部26として構成されている。遮断部26は、例えばラインL6に設けられた電磁弁を備えている。制御部23は、高純度水素中の炭化水素の含有量が予め設定された所定値を超えている旨を示す結果信号を検出部32から受信した場合に電磁弁を閉鎖し、ラインL6における高純度水素の流通を停止させる。 Functions of the control unit 23 and the distribution prevention unit 24 are the same as those in the first embodiment. In the present embodiment, the flow preventing unit 24 is configured as a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. The blocking unit 26 includes, for example, an electromagnetic valve provided in the line L6. When the control unit 23 receives a result signal indicating that the hydrocarbon content in the high-purity hydrogen exceeds a predetermined value set in advance from the detection unit 32, the control unit 23 closes the solenoid valve, Stop the flow of pure hydrogen.
 このような水素供給システム200においても、検出部32により、水素精製器6で精製された高純度水素の品質をその場で検査することができ、FCV10に供給される水素の品質を常に管理することが可能となる。また、この水素供給システム200においても、圧縮機7で圧縮される前の比較的低圧の高純度水素を検査の対象としている。したがって、例えばディスペンサ9から放出される高純度水素を検査の対象とする場合と異なり、検査にあたって高純度水素の極端な減圧を行う必要はなく、簡便に水素の品質を検査できる。水素供給システム200においても、水素精製器6以降の構成要素において高純度水素に脱水素生成物が導入・混入することはないため、圧縮機7で圧縮される前の高純度水素を検査の対象とすることでディスペンサ9から放出される高純度水素を検査の対象とする場合と同等の品質管理を行うことができる。 Also in such a hydrogen supply system 200, the quality of the high purity hydrogen purified by the hydrogen purifier 6 can be inspected on the spot by the detection unit 32, and the quality of the hydrogen supplied to the FCV 10 is always managed. It becomes possible. Also in this hydrogen supply system 200, a relatively low-pressure high-purity hydrogen before being compressed by the compressor 7 is an inspection target. Therefore, unlike the case where, for example, high-purity hydrogen released from the dispenser 9 is an object to be inspected, it is not necessary to perform an extreme pressure reduction of the high-purity hydrogen in the inspection, and the quality of hydrogen can be easily inspected. Also in the hydrogen supply system 200, since the dehydrogenation product is not introduced into and mixed in the high purity hydrogen in the components after the hydrogen purifier 6, the high purity hydrogen before being compressed by the compressor 7 is subject to inspection. By doing so, quality control equivalent to the case where high purity hydrogen released from the dispenser 9 is the object of inspection can be performed.
 また、水素供給システム200においても、検出部32によって高純度水素に含まれる炭化水素の含有量が所定の閾値を超えていることが検出された場合に、水素精製器6から圧縮機7への高純度水素の流通を防止する流通防止部24を備えている。本実施形態では、流通防止部24は、水素精製器6から圧縮機7に向かう高純度水素の流通を遮断する遮断部26によって構成されている。このように、遮断部26によって高純度水素の流通を遮断することで、高純度水素に閾値を超えるトルエンが混入した場合であっても、圧縮機7よりも下流側のガスラインが汚染されてしまうことを防止できる。 Also in the hydrogen supply system 200, when the detection unit 32 detects that the content of hydrocarbons contained in the high-purity hydrogen exceeds a predetermined threshold, the hydrogen purifier 6 to the compressor 7 A flow prevention unit 24 for preventing the flow of high purity hydrogen is provided. In the present embodiment, the flow preventing unit 24 is configured by a blocking unit 26 that blocks the flow of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7. In this way, by blocking the flow of the high purity hydrogen by the blocking unit 26, even if toluene exceeding the threshold is mixed in the high purity hydrogen, the gas line on the downstream side of the compressor 7 is contaminated. Can be prevented.
 なお、水素供給システム200においても、流通防止部24は、図5に示すように、遮断部26に代えて、水素精製器6から圧縮機7に向かう高純度水素の流通先を流通防止部24よりも上流側に切り替える切替部27を備えていてもよい。切替部27の機能は、第1実施形態の場合と同様であり、高純度水素中の炭化水素の含有量が予め設定された所定値を超えている場合に、高純度水素の流通経路をラインL6からバイパスラインBLに切り替える。切替部27によって高純度水素の流通先が切り替えられることで、高純度水素に閾値を超えるトルエンが混入した場合であっても、圧縮機7よりも下流側のガスラインが汚染されてしまうことを防止できる。 In the hydrogen supply system 200 as well, the flow prevention unit 24 replaces the blocking unit 26 with the flow destination of high-purity hydrogen from the hydrogen purifier 6 toward the compressor 7 as shown in FIG. A switching unit 27 that switches to the upstream side may be provided. The function of the switching unit 27 is the same as in the case of the first embodiment, and when the hydrocarbon content in the high purity hydrogen exceeds a predetermined value set in advance, the high purity hydrogen distribution path is lined up. Switch from L6 to bypass line BL. By switching the distribution destination of the high purity hydrogen by the switching unit 27, even if toluene exceeding the threshold is mixed in the high purity hydrogen, the gas line downstream from the compressor 7 is contaminated. Can be prevented.
 本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、水素供給システムとしてFVCのための水素ステーションを例示したが、例えば家庭用電源や非常用電源などの分散電源のための水素供給システムであってもよい。 The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the hydrogen station for FVC is exemplified as the hydrogen supply system. However, a hydrogen supply system for a distributed power source such as a household power source or an emergency power source may be used.
 3…脱水素反応器(脱水素反応部)、6…水素精製器(水素精製部)、7…圧縮機(圧縮部)、22,32…検出部、24…流通防止部、26…遮断部、27…切替部、100,200…水素供給システム。 DESCRIPTION OF SYMBOLS 3 ... Dehydrogenation reactor (dehydrogenation reaction part), 6 ... Hydrogen refiner (hydrogen purification part), 7 ... Compressor (compression part), 22, 32 ... Detection part, 24 ... Flow prevention part, 26 ... Shut off part , 27 ... switching unit, 100, 200 ... hydrogen supply system.

Claims (7)

  1.  水素の供給を行う水素供給システムであって、
     芳香族炭化水素の水素化物を含む原料を脱水素反応させることによって水素含有ガスを得る脱水素反応部と、
     前記脱水素反応部で得られた前記水素含有ガスから脱水素生成物を除去し、高純度水素を含む精製ガスを得る水素精製部と、
     前記水素精製部で得られた前記精製ガスを高圧状態とする圧縮部と、
     前記水素精製部から前記圧縮部に向かう前記精製ガスに含まれる炭化水素の含有量を検出する検出部と、を備えた水素供給システム。
    A hydrogen supply system for supplying hydrogen,
    A dehydrogenation reaction section for obtaining a hydrogen-containing gas by dehydrogenating a raw material containing a hydride of an aromatic hydrocarbon;
    A hydrogen purification unit for removing a dehydrogenation product from the hydrogen-containing gas obtained in the dehydrogenation reaction unit to obtain a purified gas containing high-purity hydrogen;
    A compression section for bringing the purified gas obtained in the hydrogen purification section into a high-pressure state;
    A hydrogen supply system comprising: a detection unit that detects a content of hydrocarbons contained in the purified gas from the hydrogen purification unit toward the compression unit.
  2.  前記検出部は、ガスクロマトグラフによって構成されている請求項1記載の水素供給システム。 The hydrogen supply system according to claim 1, wherein the detection unit is configured by a gas chromatograph.
  3.  前記検出部は、水素炎イオン検出器によって構成されている請求項2記載の水素供給システム。 The hydrogen supply system according to claim 2, wherein the detection unit is configured by a flame ion detector.
  4.  前記検出部は、近赤外光又は紫外光を用いるガス分析計によって構成されている請求項1記載の水素供給システム。 The hydrogen supply system according to claim 1, wherein the detection unit is configured by a gas analyzer using near infrared light or ultraviolet light.
  5.  前記検出部によって前記精製ガスに含まれる炭化水素の含有量が所定の閾値を超えていることが検出された場合に、前記水素精製部から前記圧縮部への前記精製ガスの流通を防止する流通防止部を備えた請求項1~4のいずれか一項記載の水素供給システム。 A flow for preventing the flow of the purified gas from the hydrogen purification unit to the compression unit when the detection unit detects that the content of hydrocarbons contained in the purified gas exceeds a predetermined threshold. The hydrogen supply system according to any one of claims 1 to 4, further comprising a prevention unit.
  6.  前記流通防止部は、前記水素精製部から前記圧縮部に向かう前記精製ガスの流通を遮断する遮断部である請求項5記載の水素供給システム。 6. The hydrogen supply system according to claim 5, wherein the flow prevention unit is a blocking unit that blocks the flow of the purified gas from the hydrogen purification unit toward the compression unit.
  7.  前記流通防止部は、前記水素精製部から前記圧縮部に向かう前記精製ガスの流通先を当該流通防止部よりも上流側に切り替える切替部である請求項5記載の水素供給システム。 6. The hydrogen supply system according to claim 5, wherein the flow prevention unit is a switching unit that switches a flow destination of the purified gas from the hydrogen purification unit toward the compression unit to an upstream side of the flow prevention unit.
PCT/JP2015/065610 2014-05-30 2015-05-29 Hydrogen supply system WO2015182758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-112117 2014-05-30
JP2014112117A JP6106128B2 (en) 2014-05-30 2014-05-30 Hydrogen supply system

Publications (1)

Publication Number Publication Date
WO2015182758A1 true WO2015182758A1 (en) 2015-12-03

Family

ID=54699078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065610 WO2015182758A1 (en) 2014-05-30 2015-05-29 Hydrogen supply system

Country Status (2)

Country Link
JP (1) JP6106128B2 (en)
WO (1) WO2015182758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118047351B (en) * 2024-04-16 2024-06-07 河北启明氢能源发展有限公司 High-purity hydrogen production and preparation system and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180612A (en) * 2016-03-29 2017-10-05 岩谷産業株式会社 Evaluation device for hydrogen gas dispenser, and vehicle
JP6585545B2 (en) * 2016-05-20 2019-10-02 株式会社神戸製鋼所 Hydrogen gas production method and hydrogen gas production apparatus
JP7213156B2 (en) * 2019-06-25 2023-01-26 東京瓦斯株式会社 Hydrogen production equipment
JP7213155B2 (en) * 2019-06-25 2023-01-26 東京瓦斯株式会社 Hydrogen production equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196617A (en) * 2002-12-19 2004-07-15 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrogen
JP2005216774A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Hydrogen supplying device of fuel cell for working machine
WO2006006480A1 (en) * 2004-07-08 2006-01-19 Sued-Chemie Catalysts Japan, Inc. Catalyst for aromatization of lower hydrocarbon and process for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon with the same
JP2007099528A (en) * 2005-09-30 2007-04-19 Japan Energy Corp Method for producing high purity hydrogen
JP2014073921A (en) * 2012-10-03 2014-04-24 Jx Nippon Oil & Energy Corp Hydrogen supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196617A (en) * 2002-12-19 2004-07-15 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrogen
JP2005216774A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Hydrogen supplying device of fuel cell for working machine
WO2006006480A1 (en) * 2004-07-08 2006-01-19 Sued-Chemie Catalysts Japan, Inc. Catalyst for aromatization of lower hydrocarbon and process for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon with the same
JP2007099528A (en) * 2005-09-30 2007-04-19 Japan Energy Corp Method for producing high purity hydrogen
JP2014073921A (en) * 2012-10-03 2014-04-24 Jx Nippon Oil & Energy Corp Hydrogen supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118047351B (en) * 2024-04-16 2024-06-07 河北启明氢能源发展有限公司 High-purity hydrogen production and preparation system and method

Also Published As

Publication number Publication date
JP2015224185A (en) 2015-12-14
JP6106128B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015182758A1 (en) Hydrogen supply system
KR101928606B1 (en) Method for purifying propane, and purification system
JP5743215B2 (en) Helium gas purification method and purification apparatus
AU2016420899B2 (en) Method for recovering hydrogen from biomass pyrolysis gas
US20150259201A1 (en) Hydrogen supply system
JP6297006B2 (en) Carbon dioxide production facility and carbon dioxide production method
JP2014073922A (en) Hydrogen supply system
US10576410B2 (en) Use of refinery fuel gas to improve steam reformer pressure swing adsorption processes
JP2014034493A (en) Purifying method and purifying apparatus of an argon gas
JP2014073923A (en) Hydrogen purification system and hydrogen feeding system
US10730005B2 (en) Porous materials for natural gas liquids separations
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
US20230111727A1 (en) Hydrogen supply system
WO2021193740A1 (en) Hydrogen supply system
JP2012162444A (en) Refining method and refining apparatus of helium gas
JP6236354B2 (en) Hydrogen supply system
JP2015227256A (en) Hydrogen supply system
JP2015189629A (en) hydrogen supply system and hydrogen station
JP2016040218A (en) Dehydrogenation system and operation method of dehydrogenation system
WO2021200727A1 (en) Hydrogen supply system
JP2015224184A (en) Hydrogen supply system
WO2021193767A1 (en) Hydrogen supply system
WO2022118636A1 (en) Hydrogen supply system
JP6198677B2 (en) Hydrogen supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799201

Country of ref document: EP

Kind code of ref document: A1