WO2015182112A1 - Engine rotation speed control device - Google Patents

Engine rotation speed control device Download PDF

Info

Publication number
WO2015182112A1
WO2015182112A1 PCT/JP2015/002637 JP2015002637W WO2015182112A1 WO 2015182112 A1 WO2015182112 A1 WO 2015182112A1 JP 2015002637 W JP2015002637 W JP 2015002637W WO 2015182112 A1 WO2015182112 A1 WO 2015182112A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine speed
torque
target
control device
actual
Prior art date
Application number
PCT/JP2015/002637
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 岡田
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to EP15799188.6A priority Critical patent/EP3150834A4/en
Priority to CN201580026152.1A priority patent/CN106460716A/en
Publication of WO2015182112A1 publication Critical patent/WO2015182112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position

Definitions

  • the present invention relates to an engine speed control device for controlling the engine speed of a vehicle, and more particularly to a technique for appropriately controlling the engine speed according to accelerator depression (driver operation).
  • a driver when starting, a driver first depresses a clutch pedal to shift the clutch from a transmission state to a disengagement state, and then operates a shift lever to put the transmission mechanism into the first gear. Then, while depressing the accelerator pedal to increase the engine speed, the clutch pedal is gradually returned to gradually shift the clutch from the disengaged state to the transmitting state. At this time, it is necessary for the driver to harmonize the operation of the clutch pedal and the operation of the accelerator pedal. However, this harmonizing operation cannot be easily performed for all drivers. For example, if you depress the accelerator pedal strongly before starting the transition to the transmission state when starting, the engine speed will increase more than necessary (up), fuel consumption will deteriorate, and the transmission and clutch will have a heavy load. There is a risk of taking.
  • a control device that sets an upper limit of the engine speed when the vehicle starts to start.
  • the accelerator pedal is required before the vehicle starts moving forward (before the accelerator pedal is depressed and the clutch shifts to the transmission state). If stepped on more than this, the engine speed may increase more than necessary (swell up), and fuel efficiency may deteriorate.
  • the driver requests higher engine torque than usual, such as when starting on an uphill road or suddenly starting, the engine speed may be limited and drivability may be reduced.
  • the engine speed upper limit value changes in accordance with the amount of change in the accelerator opening, so that a stable engine speed cannot be maintained for each accelerator opening. For example, even when the accelerator opening is the same, if the amount of change in the accelerator opening is different (for example, when the accelerator pedal is depressed slowly or suddenly), the engine speed is controlled to be different. Will be. Further, in the conventional control device, since the throttle opening is controlled only when the actual engine speed exceeds the upper limit value (engine speed upper limit value), hunting of the engine speed near the upper limit value is performed. There is a possibility that overshoot may occur, and there is a problem in convergence to the target engine speed.
  • An object of the present invention is to provide an engine speed control device that can arbitrarily set a target engine speed for each accelerator opening and can improve convergence to the target engine speed.
  • One aspect of the present invention is an engine speed control device, and the engine speed control device is an engine speed control device for controlling the engine speed of a vehicle, and the engine speed set as a target.
  • a target engine speed calculating unit that calculates a target engine speed that is a number according to an accelerator opening of the vehicle, a change amount of an actual engine speed that is an actual engine speed of the vehicle, and the target engine Based on a value obtained by multiplying the torque request by a torque gain calculation unit that calculates a torque gain based on the arrival rate of the actual engine speed with respect to the speed, and a driver request torque that is a torque corresponding to the accelerator opening.
  • a system required torque calculation unit that calculates a system required torque that is a torque required to output to the engine of the vehicle. To have.
  • FIG. 1 is a diagram illustrating an outline of a vehicle equipped with an engine speed control device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the engine speed control device according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the target engine speed MAP value in the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the torque gain MAP value in the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of the torque correction value MAP value in the embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining the operation of the engine speed control device according to the embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of engine speed control (normal time) in the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of engine speed control (during overshoot) in the embodiment of the present invention.
  • the engine speed control device of the present invention is an engine speed control device for controlling the engine speed of a vehicle, and the target engine speed, which is the engine speed set as a target, is determined by the accelerator opening degree of the vehicle.
  • Torque gain based on a target engine speed calculation unit that is calculated according to the vehicle speed, a change amount of the actual engine speed that is the actual engine speed of the vehicle, and an arrival rate of the actual engine speed with respect to the target engine speed.
  • a system required torque which is a torque required to output to the engine of the vehicle, is calculated.
  • a system required torque calculation unit is an engine speed control device for controlling the engine speed of a vehicle, and the target engine speed, which is the engine speed set as a target, is determined by the accelerator opening degree of the vehicle.
  • the target engine speed is set according to the accelerator opening. Then, based on the value obtained by multiplying the driver request torque by the torque gain calculated based on the arrival rate of the actual engine speed with respect to the target engine speed and the change amount of the actual engine speed (engine speed change amount), A system required torque is calculated. Since the system required torque calculated in this way is output to the engine, the torque gain gradually decreases as the actual engine speed approaches the target engine speed, and the convergence to the target engine speed improves. In this case, the target engine speed can be arbitrarily set for each accelerator opening. In addition, since the target engine speed is set for each accelerator opening, the target engine speed will change as the accelerator opening changes, so as not to obstruct the request for rotation increase due to accelerator depression (driver operation). Can do.
  • the engine speed can be appropriately controlled in accordance with the accelerator depression (driver operation). Therefore, an excessive increase in the engine speed can be prevented, and drivability when the accelerator is depressed can be improved.
  • the engine speed can be controlled to an appropriate level when the accelerator is depressed, the transmission and the clutch can be protected, and fuel consumption can be improved.
  • the engine speed control device of the present invention compares the actual engine speed and the target engine speed, and determines whether or not the actual engine speed is larger than the target engine speed, A torque correction value calculator that calculates a torque correction value according to a difference between the actual engine speed and the target engine speed when the actual engine speed is greater than the target engine speed, and the system required torque calculator is
  • the system required torque may be calculated by subtracting the torque correction value from the value obtained by multiplying the driver required torque by the torque gain.
  • the torque correction value is calculated based on the difference between the actual engine speed and the target engine speed, and the driver request torque is multiplied by the torque gain.
  • the system required torque is calculated by subtracting the torque correction value from the value. Therefore, when the actual engine speed exceeds the target engine speed, it is possible to quickly converge to the target engine speed by reducing the system required torque (for example, by making it a negative torque).
  • the engine speed control device of the present invention includes a start detection unit that detects whether or not the vehicle is starting, and the system request torque calculation unit calculates the system request torque when it is detected that the vehicle is starting. Calculation may be performed.
  • the system required torque is calculated and the engine speed is controlled when starting.
  • the engine speed is controlled when starting.
  • fuel efficiency can be improved by starting at an appropriate engine speed.
  • the target engine speed can be arbitrarily set for each accelerator opening, and the convergence to the target engine speed can be improved.
  • FIG. 1 is a diagram illustrating an outline of a vehicle equipped with an engine speed control device of the present embodiment.
  • the vehicle includes an engine 1, a clutch 2, and a transmission 3.
  • the engine 1 is one of known internal combustion engines, and is, for example, a gasoline engine that uses gasoline as fuel and a diesel engine that uses light oil as fuel.
  • the transmission 3 is a manual transmission having, for example, a plurality of (for example, five) forward gears, one reverse gear, and a neutral gear.
  • the output shaft of the transmission 3 is connected to the drive wheels 4 of the vehicle via a differential (not shown). Switching of the gear position of the transmission 3 is executed by the driver operating the shift lever 5. At this time, the driver also operates the clutch pedal 6 and the accelerator pedal 7.
  • the transmission 3 is connected to an input rotation sensor 8 that detects the rotation speed (input rotation speed) input from the transmission 3 to the drive wheels 4.
  • the clutch pedal 6 is connected to a clutch stroke sensor 9 that detects an operation amount (clutch stroke amount) of the clutch pedal 6.
  • the accelerator pedal 7 is connected to an accelerator opening sensor 10 that detects an operation amount (accelerator opening) of the accelerator pedal 7.
  • the engine 1 includes an engine ECU 11 for electronically controlling engine operation.
  • the engine ECU 11 is connected to an engine speed controller 12 for controlling the engine speed.
  • Information such as the input rotational speed detected by the input rotational sensor 8 and the clutch stroke amount detected by the clutch stroke sensor 9 is input to the engine rotational speed control device 12.
  • Information on the accelerator opening detected by the accelerator opening sensor 10 is input to the engine ECU 11.
  • the engine ECU 11 outputs information such as driver request torque to the engine 1.
  • Information such as actual output torque is input from the engine 1 to the engine ECU 11.
  • Information such as engine speed (also referred to as actual engine speed), accelerator opening, driver request torque, and actual output torque is input from the engine ECU 11 to the engine speed control device 12. Further, information such as system required torque is output from the engine speed control device 12 to the engine ECU 11.
  • the clutch stroke sensor 9 is not limited to a sensor that directly detects the amount of displacement of the clutch 2, for example, the amount of movement of the clutch master cylinder (CMC) that operates the clutch 2, the displacement angle of the clutch pedal 6, Includes those that can detect displacement. Based on these pieces of information, the movement amount of the clutch 2 may be calculated by the calculation function of the engine speed control device 12.
  • CMC clutch master cylinder
  • the actual engine speed is the actual speed of the vehicle engine 1 (actual engine speed).
  • the target engine speed is an engine speed set as a target.
  • the driver request torque is generally torque obtained from engine characteristics (MAP of engine speed and engine output torque) according to the accelerator opening.
  • the system required torque is a torque requested to be output to the engine 1 (engine ECU 11).
  • FIG. 2 is a block diagram showing the configuration of the engine speed control device 12.
  • the engine speed control device 12 includes an accelerator opening input unit 20, an actual engine speed input unit 21, a driver request torque input unit 22, and a start detection unit 23.
  • the accelerator opening (%) is input from the accelerator opening sensor 10 to the accelerator opening input unit 20.
  • the actual engine speed input unit 21 receives the actual engine speed (rpm) from the engine ECU 11.
  • a driver request torque (Nm) is input from the engine ECU 11 to the driver request torque input unit 22.
  • the start detection unit 23 receives the input rotation speed from the input rotation speed sensor.
  • the start detection unit 23 detects whether or not the vehicle is starting based on the input rotation speed and the clutch operation.
  • the start detection unit 23 may detect whether or not the vehicle is starting based on the vehicle speed (for example, input from a vehicle sensor).
  • the engine speed control device 12 includes a target engine speed calculation unit 24, an engine speed comparison unit 25, an engine speed change amount calculation unit 26, and an arrival rate calculation unit 27.
  • the target engine speed calculation unit 24 calculates the target engine speed according to the accelerator opening of the vehicle. For example, with reference to the target engine speed MAP value 28 as shown in FIG. 3, the target engine speed corresponding to the accelerator opening is obtained.
  • the engine speed comparison unit 25 compares the actual engine speed and the target engine speed, and determines whether or not the actual engine speed is greater than the target engine speed.
  • the engine speed change amount calculation unit 26 calculates the change amount (rpm / sec) of the actual engine speed.
  • the change speed (change time) of the engine speed generally varies depending on the engine speed. For example, in the change time from 1000 rpm to 1500 rpm and the change time from 4500 rpm to 5000 rpm, the latter tends to be shorter. This is due to the characteristics of the engine that the rotation is more likely to increase in the high rotation range than in the low rotation range. Therefore, for example, when the target engine speed is 1500 rpm and the target engine speed is 5000 rpm, even if the deviation of the actual engine speed from the target engine speed is the same (for example, 500 rpm), The degree of control will vary greatly.
  • the torque control amount is set in accordance with the ratio of the current actual engine speed to the target engine speed, whereby a rapid target value (target engine speed) in a wide speed range can be obtained. Convergence is achieved.
  • the engine speed control device 12 includes a torque gain calculation unit 29, a torque correction value calculation unit 30, and a system required torque calculation unit 31.
  • the torque gain calculation unit 29 calculates the torque gain based on the change amount of the actual engine speed (engine speed change amount) and the arrival rate. For example, with reference to the torque gain MAP value 32 shown in FIG. As shown in FIG. 4, the characteristic of the torque gain with respect to the arrival rate changes depending on the engine speed change amount ⁇ . In this case, the torque gain calculation unit 29 sets the torque gain when the change amount of the actual engine speed is large to a smaller value than the torque gain when the change amount of the actual engine speed is small.
  • the torque correction value calculation unit 30 calculates a torque correction value according to the difference between the actual engine speed and the target engine speed when the actual engine speed is greater than the target engine speed. That is, the torque correction value calculation unit 30 calculates the torque correction value when the actual engine speed becomes equal to or higher than the target engine speed. For example, referring to a torque correction value MAP value 33 as shown in FIG. 5, a torque correction value corresponding to the difference between the actual engine speed and the target engine speed is obtained. When there is a rotational speed difference between the actual engine rotational speed and the target engine rotational speed, the torque correction value calculation unit 30 sets the torque correction value to a larger value as the rotational speed difference is larger. When the actual engine speed is not greater than the target engine speed, the torque correction value is zero. That is, when the actual engine speed is lower than the target engine speed, the torque correction value calculation unit 30 sets the torque correction value to zero.
  • the system required torque calculation unit 31 calculates the system required torque (Nm) by using, for example, the following Equation 2 (that is, by subtracting the torque correction value from the value obtained by multiplying the driver request torque by the torque gain).
  • System required torque Driver required torque x Torque gain-Torque correction value (Formula 2)
  • the system required torque is controlled (gain control) using the torque gain as the base characteristic to converge to the target engine speed.
  • engine output characteristics may change due to changes in the load on air conditioners and electric auxiliary equipment, changes in outside air temperature, and atmospheric pressure.
  • gain control by performing gain control, the base characteristics (driver required torque characteristics) can be reduced. Even if there is a change, the system required torque can be controlled so that it converges to the target engine speed regardless of the amount of variation in characteristics.
  • the gain control as in the present embodiment is not performed, for example, it is conceivable to control the system required torque using an absolute value (torque correction value) instead of a torque gain.
  • the driver request torque is controlled by a predetermined absolute value torque (torque correction value) with respect to the target engine speed, so that the balance between the torque correction value and the characteristic variation amount is balanced. There is a risk that it will fail and not follow the target value.
  • the system required torque calculated in this way is output to the engine 1 and used for controlling the engine speed. It is desirable that the control of the engine speed by the system required torque is performed particularly when the vehicle starts (when the start of the vehicle is detected).
  • the target engine speed calculator 24 sets the target engine speed corresponding to the accelerator opening (S3).
  • the target engine speed corresponding to the accelerator opening is obtained by referring to the target engine speed MAP as shown in FIG.
  • the engine speed comparison unit 25 compares the target engine speed with the actual engine speed (S4). If the actual engine speed is not larger than the target engine speed, the torque correction value calculation unit 30 A torque correction value is calculated according to the difference between the actual engine speed and the target engine speed (S5).
  • a torque correction value corresponding to the difference between the actual engine speed and the target engine speed is obtained.
  • the torque correction value is zero.
  • the engine speed change amount calculation unit 26 calculates the actual engine speed change amount (engine speed change amount) (S6). Further, the arrival rate calculation unit 27 calculates the arrival rate of the actual engine speed with respect to the target engine speed (S7). Then, the torque gain calculation unit 29 calculates a torque gain according to the arrival rate and the engine speed change amount (S8). In this case, for example, referring to a torque gain MAP value 32 as shown in FIG. 4, a torque gain corresponding to the arrival rate and the engine speed change amount is obtained. Finally, the system request torque calculation unit 31 multiplies the driver request torque by the torque gain (S9), and subtracts the torque correction value from the multiplied value (S10), thereby calculating the system request torque (S11). .
  • the target engine speed is set according to the accelerator opening. Then, based on the value obtained by multiplying the driver request torque by the torque gain calculated based on the arrival rate of the actual engine speed with respect to the target engine speed and the change amount of the actual engine speed (engine speed change amount), A system required torque is calculated. Since the system required torque calculated in this way is output to the engine 1, as shown in FIG. 7, the torque gain gradually decreases as the actual engine speed approaches the target engine speed, and the target engine speed. Convergence is improved.
  • the target engine speed can be arbitrarily set for each accelerator opening.
  • the target engine speed since the target engine speed is set for each accelerator opening, the target engine speed will change as the accelerator opening changes, so as not to obstruct the request for rotation increase due to accelerator depression (driver operation). Can do.
  • the engine speed can be appropriately controlled in accordance with the accelerator depression (driver operation). Therefore, an excessive increase in the engine speed can be prevented, and drivability when the accelerator is depressed can be improved.
  • the engine speed can be controlled to an appropriate value when the accelerator is depressed, the clutch 2 and the transmission 3 can be protected, and the fuel efficiency can be improved.
  • a torque correction value is calculated based on the difference between the actual engine speed and the target engine speed, and a torque gain is added to the driver request torque.
  • the system required torque is calculated by subtracting this torque correction value from the multiplied value. Therefore, as shown in FIG. 8, when the actual engine speed exceeds the target engine speed (when overshooting), the target engine speed is quickly reduced by reducing the system required torque (for example, making it a negative torque). It can be converged to the rotational speed.
  • the required system torque is calculated and the engine speed is controlled at the start.
  • the engine speed is controlled at the start.
  • the engine ECU and the engine speed control device are configured as separate bodies (separate ECUs) has been described.
  • the engine ECU and the engine speed control device are configured as a single body (one ECU). May be.
  • the engine speed control device can arbitrarily set the target engine speed for each accelerator opening, and can improve the convergence to the target engine speed. It is useful when applied to a vehicle or the like equipped with a manual transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An engine rotation speed control device is provided with a target engine rotation speed calculation unit that calculates a target engine rotation speed depending on an accelerator opening of a vehicle, a torque gain calculation unit that calculates a torque gain on the basis of an amount of change in actual engine rotation speed and an attainment rate of the actual engine rotation speed with respect to the target engine rotation speed, and a system request torque calculation unit that calculates a system request torque on the basis of a value obtained by multiplying a driver request torque by the torque gain. The system request torque calculated in this way is requested to be output from the engine of the vehicle during engine rotation speed control.

Description

エンジン回転数制御装置Engine speed control device
 本発明は、車両のエンジン回転数を制御するためのエンジン回転数制御装置に関し、特に、アクセル踏み込み(ドライバ操作)に応じてエンジン回転数を適切に制御する技術に関する。 The present invention relates to an engine speed control device for controlling the engine speed of a vehicle, and more particularly to a technique for appropriately controlling the engine speed according to accelerator depression (driver operation).
 一般に、手動変速機を備えた車両では、発進時に、まずドライバーがクラッチペダルを踏み込んでクラッチを伝達状態から断状態にした後、シフトレバーを操作して変速機構を1速段にいれる。そして、アクセルペダルを踏み込んでエンジン回転数を上昇させながら、クラッチペダルを徐々に戻してクラッチを断状態から伝達状態に徐々に移行させる。このとき、ドライバーがクラッチペダルの操作とアクセルペダルの操作を調和させる必要があるが、この調和させる操作は、すべての運転者にとって容易に行うことができるものではない。例えば、発進時に、クラッチが伝達状態に移行完了する前にアクセルペダルを強く踏み込むと、エンジンの回転数が必要以上に上昇し(吹け上がり)、燃費が悪化したり、変速機やクラッチに大きな負荷がかかるおそれがある。 Generally, in a vehicle equipped with a manual transmission, when starting, a driver first depresses a clutch pedal to shift the clutch from a transmission state to a disengagement state, and then operates a shift lever to put the transmission mechanism into the first gear. Then, while depressing the accelerator pedal to increase the engine speed, the clutch pedal is gradually returned to gradually shift the clutch from the disengaged state to the transmitting state. At this time, it is necessary for the driver to harmonize the operation of the clutch pedal and the operation of the accelerator pedal. However, this harmonizing operation cannot be easily performed for all drivers. For example, if you depress the accelerator pedal strongly before starting the transition to the transmission state when starting, the engine speed will increase more than necessary (up), fuel consumption will deteriorate, and the transmission and clutch will have a heavy load. There is a risk of taking.
 そのため、車両が発進を開始した際にエンジン回転数の上限を設定する制御装置が提案されている。しかし、例えば、車両が前進を開始したことを条件としてエンジン回転数を制限すると、車両の前進開始前(アクセルペダルが踏み込まれてからクラッチが伝達状態に移行するまでに間)にアクセルペダルが必要以上に踏み込まれると、エンジンの回転数が必要以上に上昇し(吹け上がり)、燃費が悪化する場合があった。また、登坂道における発進時や急発進時など、ドライバーが通常より高いエンジントルクを要求した場合にも、エンジン回転数が制限されてしまい、ドライバビリティが低下してしまう場合があった。 Therefore, there has been proposed a control device that sets an upper limit of the engine speed when the vehicle starts to start. However, for example, if the engine speed is limited on the condition that the vehicle has started moving forward, the accelerator pedal is required before the vehicle starts moving forward (before the accelerator pedal is depressed and the clutch shifts to the transmission state). If stepped on more than this, the engine speed may increase more than necessary (swell up), and fuel efficiency may deteriorate. Also, when the driver requests higher engine torque than usual, such as when starting on an uphill road or suddenly starting, the engine speed may be limited and drivability may be reduced.
 そこで従来、車両の発進時においてドライバビリティを低下することなく、燃費を向上させる制御装置が提案されている(例えば特許文献1参照)。この従来の制御装置では、車速ゼロかつクラッチペダルが最大限に踏み込まれていることを条件に、初期のエンジン回転数上限値が決定されている。そして、アクセル開度の変化量に応じてエンジン回転数の補正量を決定し、この補正量で初期のエンジン回転数上限値を補正して、実エンジン回転数が補正後のエンジン回転数上限値を上回った場合に、スロットル開度を漸減させる。  Therefore, conventionally, there has been proposed a control device that improves fuel efficiency without degrading drivability when the vehicle starts (see, for example, Patent Document 1). In this conventional control device, the initial engine speed upper limit value is determined on the condition that the vehicle speed is zero and the clutch pedal is fully depressed. Then, the correction amount of the engine speed is determined according to the amount of change in the accelerator opening, the initial engine speed upper limit value is corrected with this correction amount, and the actual engine speed is corrected and the engine speed upper limit value is corrected. When the value exceeds the value, the throttle opening is gradually decreased. *
 しかしながら、従来の制御装置においては、アクセル開度の変化量に応じてエンジン回転数上限値が変化してしまうため、アクセル開度毎に安定したエンジン回転数を保持することができない。例えば、アクセル開度が同じ場合であっても、アクセル開度の変化量が異なる場合(例えば、アクセルペダルをゆっくり踏み込む場合、急に踏み込む場合など)には、異なるエンジン回転数になるように制御されてしまう。また、従来の制御装置においては、実エンジン回転数が上限値(エンジン回転数上限値)を上回った場合にのみスロットル開度の制御が行われるため、上限値の付近でエンジン回転数のハンチングやオーバーシュートが発生してしまうおそれがあり、目標のエンジン回転数への収束性に課題がある。 However, in the conventional control device, the engine speed upper limit value changes in accordance with the amount of change in the accelerator opening, so that a stable engine speed cannot be maintained for each accelerator opening. For example, even when the accelerator opening is the same, if the amount of change in the accelerator opening is different (for example, when the accelerator pedal is depressed slowly or suddenly), the engine speed is controlled to be different. Will be. Further, in the conventional control device, since the throttle opening is controlled only when the actual engine speed exceeds the upper limit value (engine speed upper limit value), hunting of the engine speed near the upper limit value is performed. There is a possibility that overshoot may occur, and there is a problem in convergence to the target engine speed.
特開2011-163233号公報JP 2011-163233 A
 本発明は、上記背景の下でなされたものである。本発明の目的は、アクセル開度毎に目標エンジン回転数を任意に設定することができ、目標エンジン回転数への収束性を向上することのできるエンジン回転数制御装置を提供することにある。 The present invention has been made under the above background. An object of the present invention is to provide an engine speed control device that can arbitrarily set a target engine speed for each accelerator opening and can improve convergence to the target engine speed.
 本発明の一の態様は、エンジン回転数制御装置であり、このエンジン回転数制御装置は、車両のエンジン回転数を制御するためのエンジン回転数制御装置であって、目標として設定されるエンジン回転数である目標エンジン回転数を、前記車両のアクセル開度に応じて算出する目標エンジン回転数算出部と、前記車両の実際のエンジン回転数である実エンジン回転数の変化量と、前記目標エンジン回転数に対する前記実エンジン回転数の到達率とに基づいて、トルクゲインを算出するトルクゲイン算出部と、前記アクセル開度に応じたトルクであるドライバー要求トルクに前記トルクゲインを乗算した値に基づいて、前記車両のエンジンに対して出力要求するトルクであるシステム要求トルクを算出するシステム要求トルク算出部と、を備えている。 One aspect of the present invention is an engine speed control device, and the engine speed control device is an engine speed control device for controlling the engine speed of a vehicle, and the engine speed set as a target. A target engine speed calculating unit that calculates a target engine speed that is a number according to an accelerator opening of the vehicle, a change amount of an actual engine speed that is an actual engine speed of the vehicle, and the target engine Based on a value obtained by multiplying the torque request by a torque gain calculation unit that calculates a torque gain based on the arrival rate of the actual engine speed with respect to the speed, and a driver request torque that is a torque corresponding to the accelerator opening. A system required torque calculation unit that calculates a system required torque that is a torque required to output to the engine of the vehicle. To have.
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, this disclosure is intended to provide some aspects of the invention and is not intended to limit the scope of the invention described and claimed herein.
図1は、本発明の実施の形態におけるエンジン回転数制御装置を搭載した車両の概要を説明する図である。FIG. 1 is a diagram illustrating an outline of a vehicle equipped with an engine speed control device according to an embodiment of the present invention. 図2は、本発明の実施の形態におけるエンジン回転数制御装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the engine speed control device according to the embodiment of the present invention. 図3は、本発明の実施の形態における目標エンジン回転数MAP値の説明図である。FIG. 3 is an explanatory diagram of the target engine speed MAP value in the embodiment of the present invention. 図4は、本発明の実施の形態におけるトルクゲインMAP値の説明図である。FIG. 4 is an explanatory diagram of the torque gain MAP value in the embodiment of the present invention. 図5は、本発明の実施の形態におけるトルク補正値MAP値の説明図である。FIG. 5 is an explanatory diagram of the torque correction value MAP value in the embodiment of the present invention. 図6は、本発明の実施の形態におけるエンジン回転数制御装置の動作を説明するためのフロー図である。FIG. 6 is a flowchart for explaining the operation of the engine speed control device according to the embodiment of the present invention. 図7は、本発明の実施の形態におけるエンジン回転数制御(通常時)の説明図である。FIG. 7 is an explanatory diagram of engine speed control (normal time) in the embodiment of the present invention. 図8は、本発明の実施の形態におけるエンジン回転数制御(オーバーシュート時)の説明図である。FIG. 8 is an explanatory diagram of engine speed control (during overshoot) in the embodiment of the present invention.
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。 The detailed description of the present invention will be described below. However, the following detailed description and the accompanying drawings do not limit the invention.
 本発明のエンジン回転数制御装置は、車両のエンジン回転数を制御するためのエンジン回転数制御装置であって、目標として設定されるエンジン回転数である目標エンジン回転数を、車両のアクセル開度に応じて算出する目標エンジン回転数算出部と、車両の実際のエンジン回転数である実エンジン回転数の変化量と、目標エンジン回転数に対する実エンジン回転数の到達率とに基づいて、トルクゲインを算出するトルクゲイン算出部と、アクセル開度に応じたトルクであるドライバー要求トルクにトルクゲインを乗算した値に基づいて、車両のエンジンに対して出力要求するトルクであるシステム要求トルクを算出するシステム要求トルク算出部と、を備えている。 The engine speed control device of the present invention is an engine speed control device for controlling the engine speed of a vehicle, and the target engine speed, which is the engine speed set as a target, is determined by the accelerator opening degree of the vehicle. Torque gain based on a target engine speed calculation unit that is calculated according to the vehicle speed, a change amount of the actual engine speed that is the actual engine speed of the vehicle, and an arrival rate of the actual engine speed with respect to the target engine speed. Based on a value obtained by multiplying the torque required by the driver gain torque, which is a torque corresponding to the accelerator opening, and the torque gain, a system required torque, which is a torque required to output to the engine of the vehicle, is calculated. A system required torque calculation unit.
 この構成によれば、アクセル開度に応じて目標エンジン回転数が設定される。そして、その目標エンジン回転数に対する実エンジン回転数の到達率と実エンジン回転数の変化量(エンジン回転数変化量)とに基づいて算出したトルクゲインをドライバー要求トルクに乗算した値に基づいて、システム要求トルクが算出される。このようにして算出されたシステム要求トルクがエンジンに対して出力されるので、実エンジン回転数が目標エンジン回転数に近づくにつれてトルクゲインが漸減し、目標エンジン回転数への収束性が向上する。この場合、アクセル開度毎に目標エンジン回転数を任意に設定することができる。また、アクセル開度毎に目標エンジン回転数が設定されるので、アクセル開度の変化にともなって目標エンジン回転数が変化し、アクセル踏み込み(ドライバー操作)による回転上昇要求を阻害しないようにすることができる。このようにして、アクセル踏み込み(ドライバー操作)に応じてエンジン回転数を適切に制御することができる。したがって、エンジン回転数の過度な吹け上がりを防止することができ、アクセル踏み込み時のドライバビリティを向上することができる。また、アクセル踏み込み時に適切なエンジン回転数に制御することができるため、変速機やクラッチを保護することができ、燃費を向上させることができる。 According to this configuration, the target engine speed is set according to the accelerator opening. Then, based on the value obtained by multiplying the driver request torque by the torque gain calculated based on the arrival rate of the actual engine speed with respect to the target engine speed and the change amount of the actual engine speed (engine speed change amount), A system required torque is calculated. Since the system required torque calculated in this way is output to the engine, the torque gain gradually decreases as the actual engine speed approaches the target engine speed, and the convergence to the target engine speed improves. In this case, the target engine speed can be arbitrarily set for each accelerator opening. In addition, since the target engine speed is set for each accelerator opening, the target engine speed will change as the accelerator opening changes, so as not to obstruct the request for rotation increase due to accelerator depression (driver operation). Can do. In this way, the engine speed can be appropriately controlled in accordance with the accelerator depression (driver operation). Therefore, an excessive increase in the engine speed can be prevented, and drivability when the accelerator is depressed can be improved. In addition, since the engine speed can be controlled to an appropriate level when the accelerator is depressed, the transmission and the clutch can be protected, and fuel consumption can be improved.
 また、本発明のエンジン回転数制御装置は、実エンジン回転数と目標エンジン回転数を比較して、実エンジン回転数が目標エンジン回転数より大きいか否かを判定するエンジン回転数比較部と、実エンジン回転数が目標エンジン回転数より大きい場合に、実エンジン回転数と目標エンジン回転数の差に応じてトルク補正値を算出するトルク補正値算出部と、を備え、システム要求トルク算出部は、ドライバー要求トルクにトルクゲインを乗算した値からトルク補正値を減算することによって、システム要求トルクを算出してもよい。 Further, the engine speed control device of the present invention compares the actual engine speed and the target engine speed, and determines whether or not the actual engine speed is larger than the target engine speed, A torque correction value calculator that calculates a torque correction value according to a difference between the actual engine speed and the target engine speed when the actual engine speed is greater than the target engine speed, and the system required torque calculator is The system required torque may be calculated by subtracting the torque correction value from the value obtained by multiplying the driver required torque by the torque gain.
 この構成によれば、実エンジン回転数が目標エンジン回転数より大きい場合に、実エンジン回転数と目標エンジン回転数の差に基づいてトルク補正値が算出され、ドライバー要求トルクにトルクゲインを乗算した値からこのトルク補正値を減算することによってシステム要求トルクが算出される。したがって、実エンジン回転数が目標エンジン回転数を超過した場合に、システム要求トルクを小さくする(例えば負トルクにする)ことにより、速やかに目標エンジン回転数へ収束させることができる。 According to this configuration, when the actual engine speed is greater than the target engine speed, the torque correction value is calculated based on the difference between the actual engine speed and the target engine speed, and the driver request torque is multiplied by the torque gain. The system required torque is calculated by subtracting the torque correction value from the value. Therefore, when the actual engine speed exceeds the target engine speed, it is possible to quickly converge to the target engine speed by reducing the system required torque (for example, by making it a negative torque).
 本発明のエンジン回転数制御装置は、車両が発進しているか否かを検知する発進検知部を備え、システム要求トルク算出部は、車両が発進していると検知されたときにシステム要求トルクの算出を行ってもよい。 The engine speed control device of the present invention includes a start detection unit that detects whether or not the vehicle is starting, and the system request torque calculation unit calculates the system request torque when it is detected that the vehicle is starting. Calculation may be performed.
 この構成によれば、発進時に、システム要求トルクが算出され、エンジン回転数の制御が行われる。これにより、発進時におけるエンジン回転数の過度な吹け上がりを防止することができ、発進時のドライバビリティを向上することができる。また、高回転数での不意な発進を防止することができ、変速機やクラッチを保護することができる。また、適切なエンジン回転数で発進することにより、燃費を向上させることができる。 According to this configuration, the system required torque is calculated and the engine speed is controlled when starting. As a result, it is possible to prevent an excessive increase in the engine speed at the time of starting, and to improve the drivability at the time of starting. Further, it is possible to prevent an unexpected start at a high rotational speed, and to protect the transmission and the clutch. In addition, fuel efficiency can be improved by starting at an appropriate engine speed.
 本発明によれば、アクセル開度毎に目標エンジン回転数を任意に設定することができ、目標エンジン回転数への収束性を向上することができる。 According to the present invention, the target engine speed can be arbitrarily set for each accelerator opening, and the convergence to the target engine speed can be improved.
(実施の形態)
 以下、本発明の実施の形態のエンジン回転数制御装置について、図面を用いて説明する。本実施の形態では、手動変速機を搭載した車両等に用いられるエンジン回転数制御装置の場合を例示する。
(Embodiment)
Hereinafter, an engine speed control device according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the case of an engine speed control device used for a vehicle or the like equipped with a manual transmission is illustrated.
 本発明の実施の形態のエンジン回転数制御装置の構成を、図面を参照して説明する。図1は、本実施の形態のエンジン回転数制御装置を搭載した車両の概要を説明する図である。図1に示すように、車両は、エンジン1と、クラッチ2と、変速機3を備えている。エンジン1は、周知の内燃機関の1つであり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。変速機3は、例えば、前進用の複数(例えば、5つ)の変速段、後進用の1つの変速段、及びニュートラル段を有する手動変速機である。変速機3の出力軸は、ディファレンシャル(図示せず)を介して車両の駆動輪4と接続されている。変速機3の変速段の切り替えは、ドライバーがシフトレバー5を操作することにより実行される。このとき、ドライバーはクラッチペダル6の操作とアクセルペダル7の操作も行う。 The configuration of the engine speed control device according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an outline of a vehicle equipped with an engine speed control device of the present embodiment. As shown in FIG. 1, the vehicle includes an engine 1, a clutch 2, and a transmission 3. The engine 1 is one of known internal combustion engines, and is, for example, a gasoline engine that uses gasoline as fuel and a diesel engine that uses light oil as fuel. The transmission 3 is a manual transmission having, for example, a plurality of (for example, five) forward gears, one reverse gear, and a neutral gear. The output shaft of the transmission 3 is connected to the drive wheels 4 of the vehicle via a differential (not shown). Switching of the gear position of the transmission 3 is executed by the driver operating the shift lever 5. At this time, the driver also operates the clutch pedal 6 and the accelerator pedal 7.
 変速機3には、変速機3から駆動輪4に入力される回転数(インプット回転数)を検出するインプット回転センサ8が接続されている。また、クラッチペダル6には、クラッチペダル6の操作量(クラッチストローク量)を検知するクラッチストロークセンサ9が接続されている。また、アクセルペダル7には、アクセルペダル7の操作量(アクセル開度)を検知するアクセル開度センサ10が接続されている。 The transmission 3 is connected to an input rotation sensor 8 that detects the rotation speed (input rotation speed) input from the transmission 3 to the drive wheels 4. The clutch pedal 6 is connected to a clutch stroke sensor 9 that detects an operation amount (clutch stroke amount) of the clutch pedal 6. The accelerator pedal 7 is connected to an accelerator opening sensor 10 that detects an operation amount (accelerator opening) of the accelerator pedal 7.
 エンジン1は、エンジン動作を電子制御するためのエンジンECU11を備えている。エンジンECU11には、エンジン回転数を制御するためのエンジン回転数制御装置12が接続されている。インプット回転センサ8が検出したインプット回転数、クラッチストロークセンサ9が検出したクラッチストローク量などの情報は、エンジン回転数制御装置12に入力される。アクセル開度センサ10が検出したアクセル開度の情報は、エンジンECU11に入力される。エンジンECU11は、エンジン1に、ドライバ要求トルクなどの情報を出力する。エンジンECU11には、エンジン1から、実出力トルクなどの情報が入力される。エンジン回転数制御装置12には、エンジンECU11から、エンジン回転数(実エンジン回転数ともいう)、アクセル開度、ドライバー要求トルク、実出力トルクなどの情報が入力される。また、エンジン回転数制御装置12からは、エンジンECU11に、システム要求トルクなどの情報が出力される。 The engine 1 includes an engine ECU 11 for electronically controlling engine operation. The engine ECU 11 is connected to an engine speed controller 12 for controlling the engine speed. Information such as the input rotational speed detected by the input rotational sensor 8 and the clutch stroke amount detected by the clutch stroke sensor 9 is input to the engine rotational speed control device 12. Information on the accelerator opening detected by the accelerator opening sensor 10 is input to the engine ECU 11. The engine ECU 11 outputs information such as driver request torque to the engine 1. Information such as actual output torque is input from the engine 1 to the engine ECU 11. Information such as engine speed (also referred to as actual engine speed), accelerator opening, driver request torque, and actual output torque is input from the engine ECU 11 to the engine speed control device 12. Further, information such as system required torque is output from the engine speed control device 12 to the engine ECU 11.
 なお、クラッチストロークセンサ9は、クラッチ2の変位量を直接的に検知するセンサに限定されず、例えば、クラッチ2を動作させるクラッチマスタシリンダ(CMC)の移動量や、クラッチペダル6の変位角または変位量を検知できるものも含む。これらの情報に基づいて、エンジン回転数制御装置12の演算機能によってクラッチ2の移動量を算出してもよい。 The clutch stroke sensor 9 is not limited to a sensor that directly detects the amount of displacement of the clutch 2, for example, the amount of movement of the clutch master cylinder (CMC) that operates the clutch 2, the displacement angle of the clutch pedal 6, Includes those that can detect displacement. Based on these pieces of information, the movement amount of the clutch 2 may be calculated by the calculation function of the engine speed control device 12.
 実エンジン回転数とは、車両のエンジン1の実際の回転数(実際のエンジン回転数)である。これに対し、目標エンジン回転数とは、目標として設定されるエンジン回転数である。また、ドライバー要求トルクとは、一般的にアクセル開度に応じてエンジン特性(エンジン回転数とエンジン出力トルクのMAP)から求まるトルクである。一方、システム要求トルクとは、エンジン1(エンジンECU11)へ出力要求するトルクである。 The actual engine speed is the actual speed of the vehicle engine 1 (actual engine speed). On the other hand, the target engine speed is an engine speed set as a target. The driver request torque is generally torque obtained from engine characteristics (MAP of engine speed and engine output torque) according to the accelerator opening. On the other hand, the system required torque is a torque requested to be output to the engine 1 (engine ECU 11).
 つぎに、エンジン回転数制御装置12の構成を詳しく説明する。図2は、エンジン回転数制御装置12の構成を示すブロック図である。図2に示すように、エンジン回転数制御装置12は、アクセル開度入力部20と、実エンジン回転数入力部21と、ドライバー要求トルク入力部22と、発進検知部23を備えている。アクセル開度入力部20には、アクセル開度センサ10からアクセル開度(%)が入力される。実エンジン回転数入力部21には、エンジンECU11から実エンジン回転数(rpm)が入力される。ドライバー要求トルク入力部22には、エンジンECU11からドライバー要求トルク(Nm)が入力される。発進検知部23には、インプット回転数センサからインプット回転数が入力される。発進検知部23は、インプット回転数とクラッチ操作に基づいて車両が発進しているか否かを検知する。なお、この発進検知部23は、車速(例えば、車両センサから入力される)に基づいて車両が発進しているか否かを検知してもよい。 Next, the configuration of the engine speed control device 12 will be described in detail. FIG. 2 is a block diagram showing the configuration of the engine speed control device 12. As shown in FIG. 2, the engine speed control device 12 includes an accelerator opening input unit 20, an actual engine speed input unit 21, a driver request torque input unit 22, and a start detection unit 23. The accelerator opening (%) is input from the accelerator opening sensor 10 to the accelerator opening input unit 20. The actual engine speed input unit 21 receives the actual engine speed (rpm) from the engine ECU 11. A driver request torque (Nm) is input from the engine ECU 11 to the driver request torque input unit 22. The start detection unit 23 receives the input rotation speed from the input rotation speed sensor. The start detection unit 23 detects whether or not the vehicle is starting based on the input rotation speed and the clutch operation. The start detection unit 23 may detect whether or not the vehicle is starting based on the vehicle speed (for example, input from a vehicle sensor).
 また、エンジン回転数制御装置12は、目標エンジン回転数算出部24と、エンジン回転数比較部25と、エンジン回転数変化量算出部26と、到達率算出部27を備えている。目標エンジン回転数算出部24は、車両のアクセル開度に応じて目標エンジン回転数を算出する。例えば、図3に示すような目標エンジン回転数MAP値28を参照して、アクセル開度に対応する目標エンジン回転数が求められる。エンジン回転数比較部25は、実エンジン回転数と目標エンジン回転数を比較して、実エンジン回転数が目標エンジン回転数より大きいか否かを判定する。エンジン回転数変化量算出部26は、実エンジン回転数の変化量(rpm/sec)を算出する。到達率算出部27は、例えば、下記の式1を用いて、目標エンジン回転数に対する実エンジン回転数の到達率(%)を算出する。
 到達率=(実エンジン回転数/目標エンジン回転数)×100 (式1)
The engine speed control device 12 includes a target engine speed calculation unit 24, an engine speed comparison unit 25, an engine speed change amount calculation unit 26, and an arrival rate calculation unit 27. The target engine speed calculation unit 24 calculates the target engine speed according to the accelerator opening of the vehicle. For example, with reference to the target engine speed MAP value 28 as shown in FIG. 3, the target engine speed corresponding to the accelerator opening is obtained. The engine speed comparison unit 25 compares the actual engine speed and the target engine speed, and determines whether or not the actual engine speed is greater than the target engine speed. The engine speed change amount calculation unit 26 calculates the change amount (rpm / sec) of the actual engine speed. The arrival rate calculation unit 27 calculates, for example, the arrival rate (%) of the actual engine speed with respect to the target engine speed using the following Equation 1.
Reaching rate = (actual engine speed / target engine speed) × 100 (Formula 1)
 エンジン回転数の変化速度(変化時間)は、一般的にエンジン回転数によって異なることが多い。例えば、1000rpmから1500rpmへの変化時間と、4500rpmから5000rpmへの変化時間では、後者のほうが短くなる傾向にある。これは、低回転域に比べて高回転域のほうが回転が上がり易い、というエンジンの特性によるものである。したがって、例えば、目標エンジン回転数が1500rpmである場合と、目標エンジン回転数が5000rpmである場合とでは、目標エンジン回転数に対する実エンジン回転数の偏差が同じ(例えば500rpm)であったとしても、制御の度合いは大きく異なることになる。すなわち、実エンジン回転数1000rpmから目標エンジン回転数1500rpmへの迅速な収束を想定して偏差500rpmに対するトルク制御量を設定した場合、それを実エンジン回転数4500rpmから目標エンジン回転数5000rpmの場合に適用すると、実エンジン回転数が目標エンジン回転数をオーバーシュートしてしまう可能性がある。逆に、実エンジン回転数4500rpmから目標エンジン回転数5000rpmへの迅速な収束を想定して偏差500rpmに対するトルク制御量を設定した場合、それを実エンジン回転数1000rpmから目標エンジン回転数1500rpmの場合に適用すると、追従時間が長くなるまたは収束しない可能性がある。そのため、本実施の形態では、目標エンジン回転数に対する現在の実エンジン回転数の割合に応じてトルク制御量を設定し、これにより、幅広い回転域における迅速な目標値(目標エンジン回転数)への収束を実現している。 The change speed (change time) of the engine speed generally varies depending on the engine speed. For example, in the change time from 1000 rpm to 1500 rpm and the change time from 4500 rpm to 5000 rpm, the latter tends to be shorter. This is due to the characteristics of the engine that the rotation is more likely to increase in the high rotation range than in the low rotation range. Therefore, for example, when the target engine speed is 1500 rpm and the target engine speed is 5000 rpm, even if the deviation of the actual engine speed from the target engine speed is the same (for example, 500 rpm), The degree of control will vary greatly. That is, when a torque control amount for a deviation of 500 rpm is set assuming a rapid convergence from the actual engine speed of 1000 rpm to the target engine speed of 1500 rpm, it is applied when the actual engine speed is 4500 rpm and the target engine speed is 5000 rpm. As a result, the actual engine speed may overshoot the target engine speed. On the contrary, when a torque control amount for a deviation of 500 rpm is set on the assumption that rapid convergence from the actual engine speed of 4500 rpm to the target engine speed of 5000 rpm is performed, this is applied when the actual engine speed of 1000 rpm is changed to the target engine speed of 1500 rpm. When applied, the tracking time may be long or may not converge. Therefore, in the present embodiment, the torque control amount is set in accordance with the ratio of the current actual engine speed to the target engine speed, whereby a rapid target value (target engine speed) in a wide speed range can be obtained. Convergence is achieved.
 さらに、エンジン回転数制御装置12は、トルクゲイン算出部29と、トルク補正値算出部30と、システム要求トルク算出部31を備えている。トルクゲイン算出部29は、実エンジン回転数の変化量(エンジン回転数変化量)と到達率とに基づいてトルクゲインを算出する。例えば、図4に示すようなトルクゲインMAP値32を参照して、エンジン回転数変化量と到達率からトルクゲインが求められる。図4に示すように、エンジン回転数変化量Δによって、到達率に対するトルクゲインの特性が変化する。この場合、トルクゲイン算出部29は、実エンジン回転数の変化量が大きい場合のトルクゲインを、実エンジン回転数の変化量が小さい場合のトルクゲインに比べて、小さい値に設定する。 Furthermore, the engine speed control device 12 includes a torque gain calculation unit 29, a torque correction value calculation unit 30, and a system required torque calculation unit 31. The torque gain calculation unit 29 calculates the torque gain based on the change amount of the actual engine speed (engine speed change amount) and the arrival rate. For example, with reference to the torque gain MAP value 32 shown in FIG. As shown in FIG. 4, the characteristic of the torque gain with respect to the arrival rate changes depending on the engine speed change amount Δ. In this case, the torque gain calculation unit 29 sets the torque gain when the change amount of the actual engine speed is large to a smaller value than the torque gain when the change amount of the actual engine speed is small.
 トルク補正値算出部30は、実エンジン回転数が目標エンジン回転数より大きい場合に、実エンジン回転数と目標エンジン回転数の差に応じてトルク補正値を算出する。すなわち、トルク補正値算出部30は、実エンジン回転数が目標エンジン回転数以上となった場合に、トルク補正値を算出する。例えば、図5に示すようなトルク補正値MAP値33を参照して、実エンジン回転数と目標エンジン回転数の差に応じたトルク補正値が求められる。実エンジン回転数と目標エンジン回転数との回転数差がある場合、トルク補正値算出部30は、回転数差が大きいほどトルク補正値を大きい値に設定する。なお、実エンジン回転数が目標エンジン回転数より大きくない場合には、トルク補正値はゼロである。すなわち、トルク補正値算出部30は、実エンジン回転数が目標エンジン回転数より低い場合には、トルク補正値をゼロに設定する。 The torque correction value calculation unit 30 calculates a torque correction value according to the difference between the actual engine speed and the target engine speed when the actual engine speed is greater than the target engine speed. That is, the torque correction value calculation unit 30 calculates the torque correction value when the actual engine speed becomes equal to or higher than the target engine speed. For example, referring to a torque correction value MAP value 33 as shown in FIG. 5, a torque correction value corresponding to the difference between the actual engine speed and the target engine speed is obtained. When there is a rotational speed difference between the actual engine rotational speed and the target engine rotational speed, the torque correction value calculation unit 30 sets the torque correction value to a larger value as the rotational speed difference is larger. When the actual engine speed is not greater than the target engine speed, the torque correction value is zero. That is, when the actual engine speed is lower than the target engine speed, the torque correction value calculation unit 30 sets the torque correction value to zero.
 システム要求トルク算出部31は、例えば、下記の式2を用いて(すなわち、ドライバー要求トルクにトルクゲインを乗算した値からトルク補正値を減算することによって)、システム要求トルク(Nm)を算出する。
 システム要求トルク=ドライバー要求トルク×トルクゲイン-トルク補正値 (式2)
The system required torque calculation unit 31 calculates the system required torque (Nm) by using, for example, the following Equation 2 (that is, by subtracting the torque correction value from the value obtained by multiplying the driver request torque by the torque gain). .
System required torque = Driver required torque x Torque gain-Torque correction value (Formula 2)
 このように本実施の形態では、ベースの特性にトルクゲインを用いてシステム要求トルクを制御(ゲイン制御)することにより、目標エンジン回転数へ収束させている。例えばエアコンや電気補器類の負荷の変化や、外気温や気圧の変化によって、エンジン出力特性が変化することがあり得るが、ゲイン制御を行うことにより、ベースの特性(ドライバ要求トルク特性)が変化したとしても、特性の変動量の如何にかかわらず、目標エンジン回転数へ収束するように、システム要求トルクを制御することができる。一方、本実施の形態のようなゲイン制御を行わない場合、例えばトルクゲインではなく絶対値(トルク補正値)を用いてシステム要求トルクを制御することも考えられる。しかし、その場合には、目標エンジン回転数に対して、ドライバ要求トルクを予め定められた絶対値トルク(トルク補正値)で制御することになるため、トルク補正値と特性の変動量のバランスが破綻し、目標値へ追従しなくなるおそれがある。 As described above, in the present embodiment, the system required torque is controlled (gain control) using the torque gain as the base characteristic to converge to the target engine speed. For example, engine output characteristics may change due to changes in the load on air conditioners and electric auxiliary equipment, changes in outside air temperature, and atmospheric pressure. However, by performing gain control, the base characteristics (driver required torque characteristics) can be reduced. Even if there is a change, the system required torque can be controlled so that it converges to the target engine speed regardless of the amount of variation in characteristics. On the other hand, when the gain control as in the present embodiment is not performed, for example, it is conceivable to control the system required torque using an absolute value (torque correction value) instead of a torque gain. However, in this case, the driver request torque is controlled by a predetermined absolute value torque (torque correction value) with respect to the target engine speed, so that the balance between the torque correction value and the characteristic variation amount is balanced. There is a risk that it will fail and not follow the target value.
 このようにして算出されたシステム要求トルクがエンジン1へ出力要求され、エンジン回転数の制御に用いられる。このシステム要求トルクによるエンジン回転数の制御は、特に車両の発進時(車両の発進が検知された時)に行われることが望ましい。 The system required torque calculated in this way is output to the engine 1 and used for controlling the engine speed. It is desirable that the control of the engine speed by the system required torque is performed particularly when the vehicle starts (when the start of the vehicle is detected).
 以上のように構成されたエンジン回転数制御装置12について、図6のフロー図を参照してその動作を説明する。 The operation of the engine speed control device 12 configured as described above will be described with reference to the flowchart of FIG.
 図6に示すように、本実施の形態のエンジン回転数制御装置12では、まず、発進検知部23で車両の発進が検知されると(S1)、アクセル開度センサ10からのアクセル開度を取得し(S2)、目標エンジン回転数算出部24でアクセル開度に応じた目標エンジン回転数を設定する(S3)。この場合、例えば、図3に示すような目標エンジン回転数MAPを参照することによって、アクセル開度に応じた目標エンジン回転数が求められる。そして、エンジン回転数比較部25で目標エンジン回転数と実エンジン回転数を比較して(S4)、目標エンジン回転数より実エンジン回転数が大きくない場合には、トルク補正値算出部30で、実エンジン回転数と目標エンジン回転数の差に応じてトルク補正値を算出する(S5)。この場合、例えば、図5に示すようなトルク補正値MAP値33を参照して、実エンジン回転数と目標エンジン回転数の差に応じたトルク補正値が求められる。なお、目標エンジン回転数より実エンジン回転数が大きい場合には、トルク補正値はゼロである。 As shown in FIG. 6, in the engine speed control device 12 of the present embodiment, first, when the start of the vehicle is detected by the start detection unit 23 (S1), the accelerator opening from the accelerator opening sensor 10 is changed. Obtained (S2), the target engine speed calculator 24 sets the target engine speed corresponding to the accelerator opening (S3). In this case, for example, the target engine speed corresponding to the accelerator opening is obtained by referring to the target engine speed MAP as shown in FIG. Then, the engine speed comparison unit 25 compares the target engine speed with the actual engine speed (S4). If the actual engine speed is not larger than the target engine speed, the torque correction value calculation unit 30 A torque correction value is calculated according to the difference between the actual engine speed and the target engine speed (S5). In this case, for example, referring to a torque correction value MAP value 33 as shown in FIG. 5, a torque correction value corresponding to the difference between the actual engine speed and the target engine speed is obtained. When the actual engine speed is larger than the target engine speed, the torque correction value is zero.
 エンジン回転数変化量算出部26では、実エンジン回転数の変化量(エンジン回転数変化量)が算出される(S6)。また、到達率算出部27では、目標エンジン回転数に対する実エンジン回転数の到達率が算出される(S7)。そして、トルクゲイン算出部29で、到達率とエンジン回転数変化量に応じたトルクゲインが算出される(S8)。この場合、例えば、図4に示すようなトルクゲインMAP値32を参照して、到達率とエンジン回転数変化量に応じたトルクゲインが求められる。最後に、システム要求トルク算出部31で、ドライバー要求トルクにトルクゲインを乗算し(S9)、その乗算した値からトルク補正値を減算して(S10)、システム要求トルクが算出される(S11)。 The engine speed change amount calculation unit 26 calculates the actual engine speed change amount (engine speed change amount) (S6). Further, the arrival rate calculation unit 27 calculates the arrival rate of the actual engine speed with respect to the target engine speed (S7). Then, the torque gain calculation unit 29 calculates a torque gain according to the arrival rate and the engine speed change amount (S8). In this case, for example, referring to a torque gain MAP value 32 as shown in FIG. 4, a torque gain corresponding to the arrival rate and the engine speed change amount is obtained. Finally, the system request torque calculation unit 31 multiplies the driver request torque by the torque gain (S9), and subtracts the torque correction value from the multiplied value (S10), thereby calculating the system request torque (S11). .
 このような本実施の形態のエンジン回転数制御装置12によれば、アクセル開度に応じて目標エンジン回転数が設定される。そして、その目標エンジン回転数に対する実エンジン回転数の到達率と実エンジン回転数の変化量(エンジン回転数変化量)とに基づいて算出したトルクゲインをドライバー要求トルクに乗算した値に基づいて、システム要求トルクが算出される。このようにして算出されたシステム要求トルクがエンジン1に対して出力されるので、図7に示すように、実エンジン回転数が目標エンジン回転数に近づくにつれてトルクゲインが漸減し、目標エンジン回転数への収束性が向上する。 According to the engine speed control device 12 of this embodiment, the target engine speed is set according to the accelerator opening. Then, based on the value obtained by multiplying the driver request torque by the torque gain calculated based on the arrival rate of the actual engine speed with respect to the target engine speed and the change amount of the actual engine speed (engine speed change amount), A system required torque is calculated. Since the system required torque calculated in this way is output to the engine 1, as shown in FIG. 7, the torque gain gradually decreases as the actual engine speed approaches the target engine speed, and the target engine speed. Convergence is improved.
 この場合、アクセル開度毎に目標エンジン回転数を任意に設定することができる。また、アクセル開度毎に目標エンジン回転数が設定されるので、アクセル開度の変化にともなって目標エンジン回転数が変化し、アクセル踏み込み(ドライバー操作)による回転上昇要求を阻害しないようにすることができる。このようにして、アクセル踏み込み(ドライバー操作)に応じてエンジン回転数を適切に制御することができる。したがって、エンジン回転数の過度な吹け上がりを防止することができ、アクセル踏み込み時のドライバビリティを向上することができる。また、アクセル踏み込み時に適切なエンジン回転数に制御することができるため、クラッチ2や変速機3を保護することができ、燃費を向上させることができる。 In this case, the target engine speed can be arbitrarily set for each accelerator opening. In addition, since the target engine speed is set for each accelerator opening, the target engine speed will change as the accelerator opening changes, so as not to obstruct the request for rotation increase due to accelerator depression (driver operation). Can do. In this way, the engine speed can be appropriately controlled in accordance with the accelerator depression (driver operation). Therefore, an excessive increase in the engine speed can be prevented, and drivability when the accelerator is depressed can be improved. Further, since the engine speed can be controlled to an appropriate value when the accelerator is depressed, the clutch 2 and the transmission 3 can be protected, and the fuel efficiency can be improved.
 また、本実施の形態では、実エンジン回転数が目標エンジン回転数より大きい場合に、実エンジン回転数と目標エンジン回転数の差に基づいてトルク補正値が算出され、ドライバー要求トルクにトルクゲインを乗算した値からこのトルク補正値を減算することによってシステム要求トルクが算出される。したがって、図8に示すように、実エンジン回転数が目標エンジン回転数を超過した場合(オーバーシュートした場合)に、システム要求トルクを小さくする(例えば負トルクにする)ことにより、速やかに目標エンジン回転数へ収束させることができる。 In this embodiment, when the actual engine speed is larger than the target engine speed, a torque correction value is calculated based on the difference between the actual engine speed and the target engine speed, and a torque gain is added to the driver request torque. The system required torque is calculated by subtracting this torque correction value from the multiplied value. Therefore, as shown in FIG. 8, when the actual engine speed exceeds the target engine speed (when overshooting), the target engine speed is quickly reduced by reducing the system required torque (for example, making it a negative torque). It can be converged to the rotational speed.
 また、本実施の形態では、発進時に、システム要求トルクが算出され、エンジン回転数の制御が行われる。これにより、発進時におけるエンジン回転数の過度な吹け上がりを防止することができ、発進時のドライバビリティを向上することができる。また、高回転数での不意な発進を防止することができ、クラッチ2や変速機3を保護することができる。また、適切なエンジン回転数で発進することにより、燃費を向上させることができる。 In this embodiment, the required system torque is calculated and the engine speed is controlled at the start. As a result, it is possible to prevent an excessive increase in the engine speed at the time of starting, and to improve the drivability at the time of starting. Further, it is possible to prevent an unexpected start at a high rotational speed, and to protect the clutch 2 and the transmission 3. In addition, fuel efficiency can be improved by starting at an appropriate engine speed.
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。 The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.
 例えば、以上の説明では、エンジンECUとエンジン回転数制御装置が別体(別々のECU)として構成した例について説明したが、エンジンECUとエンジン回転数制御装置は一体(一つのECU)として構成してもよい。 For example, in the above description, the example in which the engine ECU and the engine speed control device are configured as separate bodies (separate ECUs) has been described. However, the engine ECU and the engine speed control device are configured as a single body (one ECU). May be.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, it will be understood that various modifications can be made to the present embodiments and are within the true spirit and scope of the present invention. It is intended that the appended claims include all such variations.
 以上のように、本発明にかかるエンジン回転数制御装置は、アクセル開度毎に目標エンジン回転数を任意に設定することができ、目標エンジン回転数への収束性を向上することができるという効果を有し、手動変速機を搭載した車両等に適用され、有用である。 As described above, the engine speed control device according to the present invention can arbitrarily set the target engine speed for each accelerator opening, and can improve the convergence to the target engine speed. It is useful when applied to a vehicle or the like equipped with a manual transmission.
 1 エンジン
 2 クラッチ
 3 変速機
 4 駆動輪
 5 シフトレバー
 6 クラッチペダル
 7 アクセルペダル
 8 インプット回転センサ
 9 クラッチストロークセンサ
 10 アクセル開度センサ
 11 エンジンECU
 12 エンジン回転数制御装置
 20 アクセル開度入力部
 21 実エンジン回転数入力部
 22 ドライバー要求トルク入力部
 23 発進検知部
 24 目標エンジン回転数算出部
 25 エンジン回転数比較部
 26 エンジン回転数変化量算出部
 27 到達率算出部
 28 目標エンジン回転数MAP値
 29 トルクゲイン算出部
 30 トルク補正値算出部
 31 システム要求トルク算出部
 32 トルクゲインMAP値
 33 トルク補正値MAP値
DESCRIPTION OF SYMBOLS 1 Engine 2 Clutch 3 Transmission 4 Drive wheel 5 Shift lever 6 Clutch pedal 7 Accelerator pedal 8 Input rotation sensor 9 Clutch stroke sensor 10 Accelerator opening sensor 11 Engine ECU
DESCRIPTION OF SYMBOLS 12 Engine speed control apparatus 20 Accelerator opening input part 21 Actual engine speed input part 22 Driver demand torque input part 23 Start detection part 24 Target engine speed calculation part 25 Engine speed comparison part 26 Engine speed change amount calculation part 27 Achieving rate calculation unit 28 Target engine speed MAP value 29 Torque gain calculation unit 30 Torque correction value calculation unit 31 System required torque calculation unit 32 Torque gain MAP value 33 Torque correction value MAP value

Claims (7)

  1.  車両のエンジン回転数を制御するためのエンジン回転数制御装置であって、
     目標として設定されるエンジン回転数である目標エンジン回転数を、前記車両のアクセル開度に応じて算出する目標エンジン回転数算出部と、
     前記車両の実際のエンジン回転数である実エンジン回転数の変化量と、前記目標エンジン回転数に対する前記実エンジン回転数の到達率とに基づいて、トルクゲインを算出するトルクゲイン算出部と、
     前記アクセル開度に応じたトルクであるドライバー要求トルクに前記トルクゲインを乗算した値に基づいて、前記車両のエンジンに対して出力要求するトルクであるシステム要求トルクを算出するシステム要求トルク算出部と、
    を備える、エンジン回転数制御装置。
    An engine speed control device for controlling the engine speed of a vehicle,
    A target engine speed calculation unit that calculates a target engine speed, which is an engine speed set as a target, according to the accelerator opening of the vehicle;
    A torque gain calculating unit that calculates a torque gain based on a change amount of the actual engine speed that is an actual engine speed of the vehicle and an arrival rate of the actual engine speed with respect to the target engine speed;
    A system required torque calculating unit that calculates a system required torque that is a torque to be output to the engine of the vehicle based on a value obtained by multiplying the torque required by a driver required torque that is a torque according to the accelerator opening; ,
    An engine speed control device comprising:
  2.  前記実エンジン回転数と前記目標エンジン回転数を比較して、前記実エンジン回転数が前記目標エンジン回転数より大きいか否かを判定するエンジン回転数比較部と、
     前記実エンジン回転数が前記目標エンジン回転数より大きい場合に、前記実エンジン回転数と前記目標エンジン回転数の差に応じてトルク補正値を算出するトルク補正値算出部と、
    を備え、
     前記システム要求トルク算出部は、前記ドライバー要求トルクに前記トルクゲインを乗算した値から前記トルク補正値を減算することによって、前記システム要求トルクを算出する、請求項1に記載のエンジン回転数制御装置。
    An engine speed comparison unit that compares the actual engine speed with the target engine speed to determine whether the actual engine speed is greater than the target engine speed;
    A torque correction value calculation unit that calculates a torque correction value according to a difference between the actual engine speed and the target engine speed when the actual engine speed is greater than the target engine speed;
    With
    The engine speed control device according to claim 1, wherein the system required torque calculation unit calculates the system required torque by subtracting the torque correction value from a value obtained by multiplying the driver required torque by the torque gain. .
  3.  前記車両が発進しているか否かを検知する発進検知部を備え、
     前記システム要求トルク算出部は、前記車両が発進していると検知されたときに前記システム要求トルクの算出を行う、請求項1に記載のエンジン回転数制御装置。
    A start detection unit for detecting whether or not the vehicle is starting,
    The engine speed control device according to claim 1, wherein the system required torque calculation unit calculates the system required torque when it is detected that the vehicle is starting.
  4.  前記トルクゲイン算出部は、前記実エンジン回転数の変化量が大きい場合のトルクゲインを、前記実エンジン回転数の変化量が小さい場合のトルクゲインに比べて、小さい値に設定する、請求項1に記載のエンジン回転数制御装置。 The torque gain calculation unit sets a torque gain when the amount of change in the actual engine speed is large to a value smaller than a torque gain when the amount of change in the actual engine speed is small. The engine speed control device described in 1.
  5.  前記トルク補正値算出部は、前記実エンジン回転数が前記目標エンジン回転数以上となった場合に、前記トルク補正値を算出する、請求項2に記載のエンジン回転数制御装置。 The engine speed control device according to claim 2, wherein the torque correction value calculation unit calculates the torque correction value when the actual engine speed is equal to or higher than the target engine speed.
  6.  前記トルク補正値算出部は、前記実エンジン回転数が前記目標エンジン回転数より低い場合に、前記トルク補正値をゼロに設定する、請求項2に記載のエンジン回転数制御装置。 The engine speed control device according to claim 2, wherein the torque correction value calculation unit sets the torque correction value to zero when the actual engine speed is lower than the target engine speed.
  7.  前記トルク補正値算出部は、前記実エンジン回転数と前記目標エンジン回転数との回転数差がある場合に、前記回転数差が大きいほど前記トルク補正値を大きい値に設定する、請求項2に記載のエンジン回転数制御装置。 The torque correction value calculation unit sets the torque correction value to a larger value as the rotation speed difference is larger when there is a rotation speed difference between the actual engine rotation speed and the target engine rotation speed. The engine speed control device described in 1.
PCT/JP2015/002637 2014-05-26 2015-05-26 Engine rotation speed control device WO2015182112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15799188.6A EP3150834A4 (en) 2014-05-26 2015-05-26 Engine rotation speed control device
CN201580026152.1A CN106460716A (en) 2014-05-26 2015-05-26 Engine rotation speed control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-107783 2014-05-26
JP2014107783A JP6252356B2 (en) 2014-05-26 2014-05-26 Engine speed control device

Publications (1)

Publication Number Publication Date
WO2015182112A1 true WO2015182112A1 (en) 2015-12-03

Family

ID=54698461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002637 WO2015182112A1 (en) 2014-05-26 2015-05-26 Engine rotation speed control device

Country Status (4)

Country Link
EP (1) EP3150834A4 (en)
JP (1) JP6252356B2 (en)
CN (1) CN106460716A (en)
WO (1) WO2015182112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870183A (en) * 2015-12-11 2017-06-20 博世汽车柴油系统有限公司 Vehicular intelligent torque controller based on dynamic factor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142421B2 (en) * 2017-07-28 2022-09-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Control device used for motorcycle and method for controlling engine speed of motorcycle
EP3795816B1 (en) * 2018-05-18 2024-08-28 Bosch Corporation Engine control device and engine control method
CN110864106B (en) * 2019-11-29 2021-03-16 安徽江淮汽车集团股份有限公司 Automobile gear shifting rotating speed control method, equipment, storage medium and device
CN112033685A (en) * 2020-10-10 2020-12-04 东风汽车集团有限公司 Engine extremely-low load rotating speed control method based on thermal test bench and storage medium
CN116834745B (en) * 2023-08-31 2023-11-17 清博(昆山)智能科技有限公司 Whole vehicle control system, method and computer equipment for automatic gear shifting of agricultural machinery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293319A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Engine transmission control device
JP2009174401A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Control device for internal combustion engine
JP2012030664A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control apparatus of hybrid vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904333B (en) * 2005-07-26 2010-06-23 日产自动车株式会社 Device and method for preventing over-rotation of engines
JP2007327406A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Control device and control method for internal combustion engine
JP5439083B2 (en) * 2009-07-31 2014-03-12 三菱重工業株式会社 Engine, engine speed control device, and engine speed control method
JP5045767B2 (en) * 2010-02-10 2012-10-10 トヨタ自動車株式会社 Vehicle control device
US8935080B2 (en) * 2012-01-26 2015-01-13 Ford Global Technologies, Llc Engine response adjustment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293319A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Engine transmission control device
JP2009174401A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Control device for internal combustion engine
JP2012030664A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control apparatus of hybrid vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150834A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870183A (en) * 2015-12-11 2017-06-20 博世汽车柴油系统有限公司 Vehicular intelligent torque controller based on dynamic factor
CN106870183B (en) * 2015-12-11 2020-07-03 博世汽车柴油系统有限公司 Vehicle intelligent torque controller based on power factor

Also Published As

Publication number Publication date
EP3150834A4 (en) 2017-05-31
JP6252356B2 (en) 2017-12-27
JP2015224543A (en) 2015-12-14
CN106460716A (en) 2017-02-22
EP3150834A1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2015182112A1 (en) Engine rotation speed control device
US8892316B2 (en) Control system for vehicle
US20090037066A1 (en) Control device for internal combustion engine
US9719443B2 (en) Vehicle control system and vehicle control method
JP5849928B2 (en) Vehicle drive device
US9446683B2 (en) System and method for controlling the torque of a traction motor of a motor vehicle as a function of the rotation speed and the depression of the accelerator pedal
WO2014065062A1 (en) Vehicular drive apparatus
JP2020100349A (en) Vehicle control device
JP5602522B2 (en) Coasting control device
JP2011126425A (en) Vehicle control system
GB2517816B (en) A method for limiting the amount of energy dissipated in a friction clutch during engagement of the clutch
US9249739B2 (en) Throttle behaviour
US9523428B2 (en) System and method for shift restraint control
JP6318950B2 (en) Vehicle control device
JP5899812B2 (en) Vehicle control device
KR20140050656A (en) Method and device for monitoring a control unit for operating an engine system
WO2015184132A1 (en) Systems and methods for idle coasting management
JP5231948B2 (en) Engine control apparatus and control method
JP2008302726A (en) Controller for vehicle, control system for vehicle and running support device
JP2007255402A (en) Vehicle control device
JP7559586B2 (en) Vehicle control device
JP5240062B2 (en) Coasting control device
JP4483646B2 (en) Engine control device
JP2009227025A (en) Vehicle controller
JP5157834B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799188

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015799188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799188

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE